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ABSTRACT 

 

Campylobacter jejuni is a Gram-negative pathogenic bacterium that is the 

leading cause of gastroenteritis worldwide.  Like many other Gram-negative bacteria, C. 

jejuni produces a capsular polysaccharide (CPS) that helps improve the overall fitness of 

the organism and contributes to its pathogenicity.  Previously, the structure of the CPS 

from the NCTC 11168 strain was determined, and has revealed the presence of a unique 

O-methyl phosphoramidate (MeOPN), that can be found on C-4 of a heptose and C-3 of 

an N-acetyl galactofuranose residue.  Investigations into the role of MeOPN on the CPS 

suggest that it is involved in the evasion of immune responses, and serum resistance.  

Previously, the biosynthesis of the MeOPN modifications found on the CPS were 

unknown.   

 We have characterized the first four enzymes involved in the biosynthesis of the 

phosphoramidate moiety of the MeOPN modification.  The first enzyme, Cj1418, is a 

novel glutamine kinase that catalyzes the ATP dependent phosphorylation of the amide 

nitrogen of L-glutamine, resulting in L-glutamine phosphate.  Next, the nucleotidyl 

transferase, Cj1416 uses L-glutamine phosphate to displace pyrophosphate from CTP, 

forming CDP-L-glutamine.  CDP-L-glutamine is then hydrolyzed by Cj1417, releasing 

glutamate and cytidine diphosphoramidate.  Cj1415 catalyzes the phosphorylation of the 

3’-hydroxyl group of cytidine diphosphoramidate.  The resulting cofactor is very similar 

to the 3’-phosphoadenylyl sulfate (PAPS) that is used by many biological systems for 

the transfer of sulfate.  Presumably 3’-phosphocytidine diphosphoramidate is used to 
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transfer the phosphoramidate moiety to the capsule, and then methylated resulting in the 

final MeOPN modification.   
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C. jejuni Campylobacter jejuni 
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D2O Deuterium oxide 

DNA Deoxyribonucleic acid 

E. coli Escherichia coli 

ESI Electrospray ionization 

g Gram 

h Hour 
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HS Hot start 

Hz Hertz 

Ile Isoleucine 

IPTG Isopropyl-β-thiogalactoside  

J Coupling Constant 

kcat Turnover number 

Km Michaelis Constant 

kDa Kilodalton 

KOH Potassium Hydroxide 

L Liter 

Lys Lysine 

MeOPN O-Methyl phosphoramidate 

min Minute 
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mg Milligram 
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MgCl2 Magnesium chloride 

mL Milliliter 

MgATP Magnesium Adenosine 5’-triphosphate 

mM millimolar 

MnCl2 Manganese chloride 

NAD+/NADH Nicotinamide adenine dinucleotide 

nm Nanometer 

NMR Nuclear magnetic resonance 

OD600 Optical Density at 600 nanometers 

PAPS 3’-Phosphoadenosine-5’-phosphosulfate 

PDB Protein Data Bank 

PEP Phosphoenolpyruvate 

Phe Phenylalanine 

Pi Phosphate 

PIX Positional isotope exchange 

PPi Pyrophosphate 

ppm Part per million 

RNA Ribonucleic acid 

Ser Serine 

SSN Sequence similarity network 

tRNA Transfer ribonucleic acid 

µg Microgram 
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µM Micromolar 

UDP Uridine 5’-diphosphate 

UDP-NH2 Uridine 5’-diphosphoramidate 

UV Ultraviolet 
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10 µM Cj1418 in 100 mM KCl and 100 mM HEPES pH 8.0.  (A) Spectrum 

was collected 12 h after the addition of Cj1418.  (B)  Spectrum was 

collected 36 h after the addition of Cj1418.  Two resonances (6.07 and 6.45 

ppm) are observed for β-L-aspartyl hydroxamate ( as well as resonances for 

AMP (4.11 ppm) and phosphate (2.72 ppm). ................................................. 113 

Figure 17 13C NMR Spectra of γ-L-glutamyl hydroxamate O-phosphate and γ-L-

glutamyl hydrazide Cj1418 product, after their degradation.  Peaks labeled 

“A” are AMP, “B” are bicarbonate buffer, “H” is starting material, and “C1-

5” are pyroglutamic acid.  (A)  Spectrum of a reaction mixture containing 

20 mM γ-L-glutamyl hydroxamate (7), 20 mM ATP in 50 mM ammonium 

bicarbonate (pH 8.0) after 72 hours of incubation.  (B) Spectrum of a 

reaction mixture containing 10 mM γ-L-glutamyl hydrazide 10 mM ATP in 

500 mM ammonium bicarbonate (pH 8.0) after 24 hours of incubation.  (C) 

Spectrum of pyroglutamic acid in bicarbonate buffer, the five peaks for 

pyroglutamic acid are labeled C1-5. ............................................................... 115 

Figure 18 31P NMR spectra of the products in the reaction catalyzed by Cj1418. (A) 
31P NMR spectrum after incubation of Cj1418 (5 μM) with L-glutamine (5 

mM) and MgATP (5 mM) at pH 8.0. Resonances at −3.66 and −4.31 ppm 

are from L-glutamine phosphate, 2.43 ppm is from phosphate, and 3.91 ppm 

is from AMP. (B) Same reaction conditions as for spectrum A, but the 

reaction was conducted in 50% [18O]-H2O. The 31P NMR resonance for 

phosphate is shifted upfield by 0.023 ppm due to the incorporation of a 

single atom of 18O in the phosphate product. (C) Same reaction conditions 

as for spectrum A, except that unlabeled ATP was mixed with 50% of β-

[18O4]-ATP (13). The 31P NMR spectrum for L-glutamine phosphate 

exhibits four resonances. There are two resonances each for the syn- and 

anti-conformers that are separated by 0.072 ppm due to the incorporation of 

3 atoms of 18O. In the spectra, the 31P NMR resonance for AMP appears at 

3.91 ppm. In spectrum C, the 31P NMR resonance for AMP exhibits two 

resonances separated by 0.024 ppm due to the presence of a single atom of 
18O from the enzymatic cleavage of the bond between the β-P and α/β-

bridging oxygen in the labeled ATP used in this reaction. ............................. 117 

Figure 19 Sequence alignment of the phospho-histidine domains of Cj1418 (residues 

694-767), pyruvate phosphate dikinase (PPDK from Clostridium 

symbiosum, residues 379-508), phosphenolpyruvate synthase (PEPS from 

E. coli, residues 386-457) and rifampin phosphotransferase (RIF from 

Listeria monocytogenes, residues 758-864).   The characterized phospho-

histidine residues (PPDK: His-455, PEPS: His-421, and RIF: His-825) and 

the predicted phospho-histidine residue from Cj1418 (His737) are 

highlighted in red.  Phosphohistidine domains were identified using 
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group of the ATP after incubation with Cj1418 for 8 h. Additional details 
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31P NMR spectrum for the reaction mixture containing 2.5 mM CTP, 5.0 

mM phosphoramidate, and 5.0 mM MnCl2 in 100 mM HEPES/K+ and 100 

mM KCl, at pH 8.0 for 8 h at 30 °C. The pH was adjusted to 12 to oxidize 

the manganese. The mixture was centrifuged, and then 10 mM EDTA was 

added. (B) Same reaction conditions as in part A, except 15 μM Cj1416 was 

added. (C) Control sample of authentic cytidine diphosphoramidate (3). ...... 149 
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Figure 25 31P NMR of Cj1416 Products.  Samples contained 2.5 mM CTP, 5.0 mM 

substrate and 5.0 mM MnCl2 in 100 mM HEPES/KOH, 100 mM KCl at pH 

8.0 with for 8 h at 30 °C while shaking.  The pH was adjusted to12 to 

oxidize manganese.  After removal of manganese by centrifugation 10 mM 

EDTA was added to the sample. (A) Methyl phosphate (7) and formation of 

O-methyl ester CDP (17).  (B) Methyl phosphonate (8) and the formation of 

CMP-methyl phosphonate (18).  (C) (R/S)-serinol phosphate (14) and the 

formation of CDP-serinol (24).  (D) L-serine phosphate (15) and the 

formation of CDP-L-serine (25).  (E) Arsenate (9) and the formation of 

CMP. ............................................................................................................... 157 

Figure 26 31P NMR spectra. 31P NMR of a reaction containing 2.5 mM CTP, 5.0 mM 

substrate, and 5.0 mM MnCl2 in 100 mM HEPES/KOH and 100 mM KCl at 

pH 8.0 for 8 h at 30 °C while shaking with 15 μM Cj1416. The pH was 

adjusted to 12 to oxidize manganese. After the removal of manganese by 

centrifugation, 10 mM EDTA was added to the sample. (A) Glycerol-1-

phosphate and the formation of CMP and cyclic glycerol phosphate (27). 

(B) Glycerol-2-phosphate and the formation of CMP and cyclic glycerol 

phosphate (27). (C) 3-Phospho-D-glycerate and the formation of cyclic 3-

phospho-D-glycerate (26). Insets show the 31P–1H coupled spectra. .............. 159 

Figure 27 Anion exchange chromatograms for the reaction of 1.0 mM MnCTP and 10 

mM 3-phospho-D-glycerate (11).  (A) Sample immediately following the 

addition of 5 µM Cj1416.  (B) Sample after incubation with Cj1416 for 25 

min. (C) Sample after 1 h when all CTP has been consumed.  The formation 
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1. INTRODUCTION  

 

1.1. Phosphoramidate Natural Products 

 Phosphorus containing functional groups are essential to the life of all biological 

organisms.  The most common phosphorus containing functional group is phosphate.  

Phosphate esters are important to DNA and RNA but also play important roles in 

metabolism, from high energy intermediates such as ATP, to regulation, such as post 

translational modifications (1,2).  While phosphate receives most of the attention, other 

phosphorus containing functional groups appear in natural products such as 

phosphoramidates (phosphorus-nitrogen bonds), phosphorothioates (phosphorus-sulfur 

bonds), and phosphonates (phosphorus-carbon bonds).   

 Phosphoramidates are compounds that contain a high energy phosphorus 

nitrogen bond.  Currently, there are approximately 55 phosphoramidate containing 

natural products known to exist (3).  Phosphoramidates are believed to be rare in nature; 

however, due to their instability the prevalence of phosphoramidates may be overlooked 

due to biased isolation methods.  A defining characteristic of phosphoramidate bonds is 

acid lability, so any method utilizing acid is biased against detecting phosphoramidates 

(4).  Formic acid is often added to samples analyzed by mass spectrometry to assist in 

the ionization of the molecule.  While the amount of formic acid is small, usually 0.1%, 

this may be enough to hydrolyze the phosphoramidate bond before analysis (5).  In the 

initial determination of the capsular polysaccharide structure in Campylobacter jejuni 

NCTC11168 no phosphoramidate was detected (6).  A study later showed that the initial 
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characterization was incomplete, and the capsule contained two O-methyl 

phosphoramidate modifications, and upon further analysis it is now believed that 70% of 

all C. jejuni strains contain this phosphoramidate (7,8).   

 Approximately 55 different phosphoramidate natural products are known to exist 

and are discussed in a recent review (2).  Surprisingly very little is known about the 

biosynthesis of phosphoramidate bonds.  Currently four strategies for the formation of 

phosphoramidate bonds have been elucidated.  The first strategy utilizes a kinase that 

catalyzes the ATP dependent phosphorylation of a substrate generating ADP and the 

phosphorylated product.  A second strategy employs the use of a different family of 

kinases that are related to phosphoenolpyruvate synthase and pyruvate phosphate 

dikinase.  Members of this family of kinases generate AMP and phosphate in addition to 

their phosphorylated product.  The third strategy for the synthesis of a phosphoramidate 

involves the use of an enzyme related to tRNA synthetase where the phosphoramidate 

bond is formed by adenylation and not phosphorylation.  The fourth and final strategy 

utilizes an ammonia adenylyltransferase enzyme.  Where ammonia acts as a nucleophile 

to attack an activated phosphoryl center.  These four strategies will be discussed here.   

 

1.2. Strategy 1: Direct Phosphorylation (Phosphagen Kinases) 

 The first strategy for the formation of a phosphoramidate bond uses kinases that 

catalyze the direct phosphorylation of their substrate using ATP, resulting in the 

formation of ADP and the phosphoramidate product.  Currently there are nine natural 

products known that are formed in this manner, phosphoarginine, phosphocreatine, 
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phosphotaurocyamine, phosphohypotaurocyamine, phosphoguanidinoacetate 

phosphoagmatine, phospholombricine, phosphoopheline, and phosphothalassemine 

(Scheme 1) (2,9).  Each of these natural products has a specific kinase associated with its 

formation (creatine kinase, arginine kinase, etc.) (10-18).   

 

Scheme 1 Phosphagen Natural Products 

 

 

 

 

All nine of the characterized natural products share a structural similarity in that 

each product has been phosphorylated on a guanidino nitrogen.  These natural products 

are all classified as phosphagens.  Phosphagens and their respective kinases are used as a 

biological buffer for intracellular ATP and ADP concentrations.  Higher levels of 

phosphagens and phosphagen kinases are found in cells that have variable energy 

requirements, for example skeletal muscles (2).  This buffer system allows for rapid 

conversion of phosphagen and ADP to ATP and the phosphagen precursor (2).   
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1.3. Strategy 2: AMP Forming Kinases 

 Another strategy for the formation of a phosphoramidate bond is through the use 

of an AMP forming kinase.  These kinases are related to phosphoenolpyruvate (PEP) 

synthase and pyruvate phosphate dikinase.  This family of kinases differs from those 

previously discussed in that the product of these kinases is AMP and not ADP.  Pyruvate 

phosphate dikinases and PEP synthase both consist of three separate domains, an ATP-

grasp domain, a pyruvate/PEP binding domain and a phosphohistidine domain (19,20).  

Characterization of these enzymes shows that the phosphohistidine domain has a 

nucleophilic histidine residue that attacks the β-phosphoryl group of ATP, generating 

AMP and a pyrophosphorylated enzyme intermediate, this pyrophosphorylated enzyme 

intermediate is then hydrolyzed, and the phosphorylated histidine is used to transfer 

phosphate to pyruvate forming PEP (20,21).  Currently there are two characterized 

enzymes that use a similar mechanism to form a phosphoramidate bond (25,27).  

Systems that use this strategy to form a phosphoramidate bond may contain a gene 

annotated as a phosphoenolpyruvate synthase.   

 O-methyl phosphoramidate is an unusual modification that is found on the 

capsular polysaccharide of Campylobacter jejuni that helps the organism evade host 

immune responses (Scheme 2) (22,23).  A gene cluster has previously been identified as 

likely being responsible for the biosynthesis of this phosphoramidate (6,24).  Within this 

gene cluster the gene cj1418 was initially annotated as a PEP synthetase/ pyruvate 

phosphate dikinase.  Initial predictions thought Cj1418 would catalyze the 

phosphorylation of ammonia, however ammonia showed no activity with the enzyme 
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(25).  The enzyme has been shown to catalyze the phosphorylation of L-glutamine to 

form L-glutamine phosphate (Scheme 2) (25).  The formation of L-glutamine phosphate 

has been characterized by NMR and mass spectrometry.  This is the first example of an 

enzyme catalyzing the phosphorylation of an amide, and is the first instance in which L-

glutamine has ever been shown to be phosphorylated.  More information about 

glutamine kinase can be found in chapters 2 and 5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2 Structure of the Campylobacter jejuni O-Methyl Phosphoramidate 

Modification and the Reaction Catalyzed by Glutamine Kinase (Cj1418).   
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 Phosphoramidon (Scheme 23) has previously been isolated from Streptomyces 

cultures and has been shown to have activity as a metalloendopeptidase inhibitor (26).  

Recently the genome of Streptomyces mozunenis MK-23, was sequenced and a gene 

cluster for the biosynthesis of phosphoramidon was identified and characterized (27).  

One gene with the locus tag talE was annotated as a potential PEP synthase/ pyruvate 

phosphate dikinase.  Due to the structure of phosphoramidon it was predicted that TalE 

would catalyze the phosphorylation of the α-amino group of the leucine-tryptophan 

dipeptide precursor (27).  The activity of the enzyme was confirmed by NMR, and it was 

demonstrated that TalE catalyzed the phosphorylation of the α-amino group as predicted 

(27).  TalE is recognized as being the first enzyme in natural product biosynthesis to 

catalyze the phosphorylation of a primary amine.   

 

 

 

 

 

 

 

 

 

 

Scheme 3 Structure of Phosphoramidon 
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 Phosphagen kinases and AMP forming kinases differ in two significant ways.  

Phosphagen kinases are similar to a majority of known kinases and catalyze the direct  

phosphorylation of their respective substrate.  In this reaction only one 

phosphoanhydride bond has been cleaved and ADP is the product.  These phosphagen 

kinases must be reversible, as their physiological role is to act as an ATP buffer system 

(9).  AMP forming kinases cleave both the phosphoanhydride bonds of ATP, releasing 

more energy than the phosphagen kinase.  This dual hydrolysis may be out of necessity 

in that phosphorylating a primary amine or an amide may require more energy than a 

guanidino group.  However the reaction these kinases catalyze are irreversible, and this 

dual hydrolysis may be a commitment step to their respective metabolic pathways.  It is 

unclear as to why L-glutamine and a leucine-tryptophan dipeptide would require a 

special kinase.   

 

1.4. Strategy 3: Adenylation (tRNA Synthetases) 

The third strategy for the formation of a phosphoramidate is through the use of a 

class of enzymes that are related to tRNA synthetases.  Currently, Microcin C7 is the 

only known phosphoramidate containing natural product to use an enzyme related to 

tRNA synthetases (Scheme 4) (28).  Microcin C7 is an E. coli produced peptide that is 

adenylylated through a phosphoramidate bond on the C-terminus (29).  Hydrolysis of 

this peptide between residues six and seven results in the release of an adenylylated 

aspartic acid analogue that inhibits aspartyl-tRNA synthetase, preventing protein 

synthesis (Scheme 4) (28,30).  The enzyme responsible for the formation of the 
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phosphoramidate bond is MccB.  The mechanism for the formation of the 

phosphoramidate bond is proposed (28).   

 

 

 

 In the proposed mechanism the carboxylate group of the C-terminal asparagine 

residue attacks the α-phosphate of ATP forming pyrophosphate and an adenylylated 

peptide (28).  The side chain amide group from asparagine attacks the acyl-AMP 

anhydride which generates AMP and a succinimide.  A synthetic version of the 

succinimide was tested as a substrate for MccB, and activity was observed confirming 

this as an intermediate in the MccB reaction (28).  Then it is proposed that the nitrogen 

Scheme 4 Structure of Microcin C7 and the Toxic Adenylated Aspartic Acid Analogue 
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of the succinimide group attacks the α-phosphate group of the second equivalent of ATP, 

resulting in the final phosphoramidate product (28).   

 This strategy is unique from both AMP forming kinases and phosphagen kinases, 

in that the mode of generating the phosphoramidate is by adenylylation and not through 

phosphorylation.  There is however a similarity between AMP forming kinases and 

MccB, in that the formation requires two phosphoanhydride bonds to be cleaved for the 

formation of the phosphoramidate.  One is cleaved to activate aspartate, forming a 

succinimide ring, and the second is the formation of the final product.  Annotated 

enzymes that may use this strategy for phosphoramidate biosynthesis are potentially 

annotated as tRNA synthetases.   

 

1.5. Strategy 4: Ammonia Adenylyltransferase 

 The final known strategy for the formation of a phosphoramidate bond is through 

the use of an ammonia adenylyltransferase.  This enzyme was first discovered in the 

green algae Auxenochlorella pyrenoidosa but homologs have been identified in many 

other organisms including E. coli (31,32).  Ammonia adenylyltransferase catalyzes the 

nucleophilic attack of ammonia to the α-phosphate group of adenylyl sulfate, resulting in 

the formation of adenosine 5’-phosphoramidate (AMP-NH2) and sulfate (Scheme 5).  

Despite being found in many different organisms, including mammals, the biological 

role of AMP-NH2 is unknown.   
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Scheme 5 Reaction Catalyzed by Ammonia Adenylyltransferase 

 

 

 

 While the biological role of AMP-NH2 is unknown, several enzymes have been 

identified that are capable of degrading this natural product (33).  Enzymes that degrade 

AMP-NH2 either hydrolyze the phosphoramidate bond and produce AMP or displace 

ammonia with phosphate and form ADP (33).  The enzymes that catalyze these reactions 

belong to the histidine triad superfamily (34).   

 

1.6. Uncharacterized Biosynthetic Pathways  

 Currently the biosynthesis of phosphoramidate containing natural products is 

poorly understood.  In many cases the genes responsible for the biosynthesis of the 

phosphoramidate natural product have not been identified, or the genome is not 

available, making the biosynthetic characterization of these phosphoramidates difficult 

or impossible.  Currently the biosynthetic gene cluster has been identified for two 

phosphoramidate containing natural products, but the formation of the phosphoramidate 

is still not characterized.   
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1.6.1. Agrocin 84 

 Agrocin 84 contains two phosphoramidate moieties and has been isolated from 

Agrobacterium radiobacter K84 (Scheme 6) (35).  This compound has been found to 

have antimicrobial activity against Agrobacterium tumefaciens which is responsible for 

crown gall disease in plants (36).  A. radiobacter K84 has been used successfully to 

protect plants from crown gall disease; however, strains unable to make Agrocin 84 are 

unable to prevent disease (36).  While the structure of Agrocin 84 has been determined, 

the biosynthesis of this compound is unknown.   

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6 Structure of Agrocin 84 



 

12 

 

 The genes for the biosynthesis, and immunity to Agrocin 84 were identified on a 

45 kb plasmid pAgK84 (35).  This plasmid has been shown to contain 36 possible open 

reading frames and of these possible reading frames, one is an annotated asparaginyl-

tRNA synthetase, and two and annotated phosphoenolpyruvate synthases (35).  Agrocin 

84, like microcin C7 contains a phosphoramidate bond on the α-phosphoryl group of 

AMP.  It is predicted that the annotated asparaginyl-tRNA synthase may catalyze the 

formation of the phosphoramidate bond in a similar manner as MccB (28).  The 

formation of the second phosphoramidate bond on the amino group of adenine could be 

formed by the annotated phosphoenolpyruvate synthases.  However both of these 

synthases (467 and 301 amino acids) are small in comparison to glutamine kinase (779 

amino acids) and TalE (712 amino acids).  Since members of the phosphoenolpyruvate 

synthetase family contain three separate domains, it could be that these two enzymes 

form a complex and together form the second phosphoramidate bond.  

 While the biosynthesis of the phosphoramidate bonds in Agrocin 84 are 

unknown, the biosynthetic gene cluster contains both enzymes similar to aspartyl-tRNA 

synthetase, and phosphoenolpyruvate synthetase.  It is not clear if this is how the two 

phosphoramidate linkages are formed, it however multiple strategies for forming 

phosphoramidate bonds may be employed to form a single natural product.   

 

1.6.2. Phaseolotoxin 

 Phaseolotoxin is a phosphoramidate natural product isolated from Pseudomonas 

syringae phaseolicola, and causes halo blight disease in beans (37).  Phaseolotoxin is a 
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tripeptide natural product, which upon cleavage by a protease releases octicidin which is 

a reversible inhibitor of ornithine carbamoyltransferase (Scheme 7).  Octicidin is a 

unique natural product, as it contains the only know tri-phosphoramidate moiety and it is 

sulfated (Scheme 7) (38).  The gene cluster for the biosynthesis of phaseolotoxin has 

previously been identified and consists of four operons and 23 genes (38).  Within this 

cluster six genes have been characterized.  ArgK encodes for an octicidin resistant 

homolog of ornithine carbamoyltransferase (39).  PhtQ and PhtU which are both peptide 

ligases responsible for the formation of the phaseolotoxin tripeptide, and AmtA an 

amidino transferase that converts lysine and arginine to ornithine and homoarginine 

(40,41).  PhtS and PhtA are an adenylyl sulfate kinase and a sulfotransferase which 

catalyzes the transfer of sulfate to the final phaseolotoxin product (42).   

 

 

Scheme 7 Structures of Phaseolotoxin and Octicidin 
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 Within the phaseolotoxin biosynthesis gene cluster phtL is annotated as a 

phosphoenolpyruvate synthase (43,44).  Investigations into the role of this protein in the 

biosynthesis have shown that PhtL is essential for the formation of phaseolotoxin and it 

appears to act as a regulator for the pathway (43).  It is predicted that PhtL will catalyze 

the phosphorylation of ornithine, generating the first of three phosphoramidate bonds 

found in phaseolotoxin.  Previously Chris Walsh’s group from Harvard attempted to 

characterize the biosynthetic pathway for the formation of phaseolotoxin, however issues 

with solubility and protein expression hampered any progress (42).  While it seems 

likely that PhtL will catalyze the formation of the first phosphoramidate bond, it is 

unclear how the second two phosphoramidates are formed, perhaps PhtJ and PhtK, two 

annotated dCTP deaminases or PhtF an annotated ornithine aminotransferase may play a 

role in the phosphoramidate formation.   

 

1.7. O-Methyl Phosphoramidate 

In this dissertation the discovery of L-glutamine kinase (Cj1418) from 

Campylobacter jejuni is discussed.  L-glutamine kinase represents the first AMP forming 

kinase characterized that results in the formation of a phosphoramidate bond.  In 

addition to L-glutamine kinase the activities of three other enzymes involved in the 

biosynthesis of O-methyl phosphoramidate are examined, Cj1416 a 

CTP:phosphoglutamine cytididylyltransferase, Cj1417 a γ-glutamyl-CDP-amidate 

hydrolase, and Cj1415 a cytidine diphosphoramidate kinase (25,45-48).  The substrate 

specificity and chemical mechanism of L-glutamine kinase is also discussed, as is the 
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manganese induced promiscuity of Cj1416 (47,28).  Together these four enzymes, 

Cj1418, Cj1417, Cj1416, and Cj1415, represent the first four enzymatic steps in the 

biosynthesis of the O-methyl phosphoramidate modification and produce a novel 

cofactor that can be used in the transfer of the phosphoramidate moiety.   
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2. DISCOVERY OF A GLUTAMINE KINASE REQUIRED FOR THE 

BIOSYNTHESIS OF THE O-METHYL PHOSPHORAMIDATE MODIFICATIONS 

FOUND IN THE CAPSULAR POLYSACCHARIDES OF CAMPYLOBACTER 

JEJUNI* 

 

2.1. Introduction 

Campylobacter jejuni is a Gram-negative bacterium that causes foodborne 

gastroenteritis in humans worldwide (1).  It is commonly found in chickens, and as a 

consequence contaminated poultry are a significant reservoir for human disease. 

Whereas infection with C. jejuni is typically self-limiting, in rare cases it can lead to the 

subsequent development of Guillain-Barré syndrome, a devastating acute 

polyneuropathy (2).  Like many Gram-positive and Gram-negative organisms, C. jejuni 

produces capsular polysaccharides, which are composed of chains of sugars that form 

extensive layers surrounding the outer surface of the bacterium. In some cases, these 

chains can be composed of more than 200 sugars (3).  The capsular polysaccharides, 

hereafter referred to as CPS, protect the organism from the environment and from 

complement-mediated phagocytosis and killing (4).  It is now well documented that, in 

C. jejuni, the CPS is important for colonization and invasion of the host organism (5). 

More than 40 serological strains of C. jejuni have been identified, and each strain is 

                                                 
* Reprinted with permission from “ Discovery of a Glutamine Kinase Required for the Biosynthesis of the 

O-Methyl Phosphoramidate Modifications Found in the Capsular Polysaccharides of Campylobacter 

jejuni” by Zane W. Taylor, Haley A. Brown, Tamari Narindoshvili, Cory Q. Wenzel, Christine M. 

Szymanski, Hazel M. Holden, and Frank M. Raushel, Journal of the American Chemical Society, (2017) 

139 (28), pp 9463-9466, Copyright 2017 American Chemical Society 
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likely to produce structural variations to the CPS (6,7).  These modifications are 

involved in a complex strategy for evasion of both bacteriophage predation and host 

defense systems (4,8).  In C. jejuni strain NCTC11168, a cluster of 35 genes has been 

identified as being responsible for the synthesis and export of the CPS (9).   

By far the most unusual modification to the CPS of C. jejuni is the addition of O-

methyl phosphoramidate groups (MeOPN) attached to the polysaccharide backbone. For 

example, in C. jejuni strain NCTC11168, C3 of a 2-acetamido-2-deoxy-β-D-

galactofuranose (I) moiety is decorated with an O-methyl phosphoramidate group, and 

the CPS of the hypermotile variant of this strain (11168H) has an additional MeOPN 

modification at C4 of a derivative of D-glycero-α-L-gluco-heptopyranose (II) as 

illustrated in Scheme 8 (6,7).  The occurrence of P−N bonds in biological systems is 

relatively rare (creatine phosphate and arginine phosphate are notable exceptions), and 

the presence of the O-methyl phosphoramidate groups in the capsular polysaccharides of 

C. jejuni plays a significant role in its pathogenicity (5).  In C. jejuni 11168H, genes with 

the locus tags cj1418c, cj1417c, cj1416c, and cj1415c have been implicated in the 

biosynthesis of the phosphoramidate moiety (III) of the CPS but the pathway leading to 

the formation of the P−N bond in this organism has not been elucidated (10).   
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Scheme 8 Phosphoramidate Intermediates and Products 
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The focus of this investigation is on the catalytic functions of Cj1418 and 

Cj1417. Cj1418 is a member of cog0574, and this enzyme is currently annotated as a 

putative PEP synthase or a pyruvate phosphate dikinase (11,12).  Structurally 

characterized enzymes in this family are composed of three distinct protein segments, 

including an ATP-grasp domain, a PEP/pyruvate binding region, and a phosphohistidine 

domain (9).  The amino acid sequence of Cj1418 suggests that it has an N-terminal ATP-

grasp domain (residues 1−219) and a C-terminal phosphohistidine domain (residues 

694−767). However, its central domain (residues 220−693) does not appear to be 

homologous to any of the known PEP/pyruvate binding regions. The closest structurally 

characterized homologue to Cj1418 with a known catalytic activity is rifampin 

phosphotransferase (23% sequence identity) from Listeria monocytogenes (PDB id: 

5FBS, 5FBT, and 5FBU) (13).  This enzyme catalyzes the ATP-dependent 

phosphorylation of the antibiotic rifampin via a mechanism that involves the 

pyrophosphorylation of His-825, hydrolysis of this intermediate to generate a 

phosphorylated histidine intermediate, and subsequent phosphoryl transfer to rifampin 

(13,14).   

Cj1417 is a member of cog2071 and is annotated as a type I glutamine 

amidotransferase (11,15).  This class of enzymes catalyzes the hydrolysis of glutamine 

(or structurally similar glutamine analogs) via the formation of a thioester intermediate 

with an active site cysteine residue (15).  In many cases, such as in carbamoyl phosphate 

synthetase, the hydrolysis of glutamine is coupled to an ATP-dependent phosphorylation 

of a second substrate by an associated synthetase domain/subunit (16).  We thus initially 



 

28 

 

proposed that the combined activities of Cj1418 and Cj1417 would likely be required for 

the in vivo formation of the putative phosphoramidate intermediate (III) during the 

biosynthesis of the O-methylphosphoramidate groups. In our proposed mechanism, the 

first reaction is initiated by the Cj1417 dependent hydrolysis of glutamine to form 

glutamate and ammonia. This step is subsequently followed by the phosphorylation of 

ammonia via the catalytic activity of Cj1418 Scheme 9. 

 

 

 

 

 

 

 

 

 

2.2. Expression and Purification of Cj1418 

The gene for the expression of Cj1418 with an N-terminal hexa-histidine 

purification tag was cloned from the genomic DNA of C. jejuni 11168H into a modified 

form of the pET-28b expression vector (17).  This vector was subsequently used to 

transform Rosetta (DE3) Escherichia coli, and the cells were subsequently grown in a 

medium of lysogeny broth at 30 °C. Following induction with 1.0 mM IPTG, the cells 

were allowed to grow at 16 °C for 16 h. After cell lysis and centrifugation, 

Scheme 9 Predicted Functions of Cj1417 and Cj1417 
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Cj1418 was purified using Ni-affinity chromatography and the excess imidazole was 

removed by dialysis. The purified protein was concentrated and stored at −80 °C. 

Approximately 4 mg of Cj1418 were purified from 1.0 L of the original cell culture. 

 

2.3. Results and Discussion 

To test our initial prediction that Cj1418 was required for the ATP-dependent 

phosphorylation of ammonia, we first incubated the enzyme (5.0 μM) in the presence of 

2.0 mM MgCl2 and 1.0 mM ATP in 100 mM HEPES buffer (pH 8.0) at 30 °C. This 

control experiment was monitored using anion exchange chromatography by measuring 

the changes in the concentration of ATP at 255 nm. After an incubation period of ∼60 

min, the concentration of ATP (retention time of 8.2 min) did not change significantly 

but relatively small amounts of AMP (retention time of 5.3 min) and ADP (retention 

time of 7.1 min) could be detected (Figure 1A). The addition of 100 mM NH4Cl did not 

change the amounts of AMP or ADP that were produced (Figure 1B).  
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Since catalytic activity was not observed with ammonia, Cj1418 was next 

assayed in the presence of 5.0 mM L-glutamine. After an incubation period of ∼60 min, 

all of the ATP was converted to AMP (Figure 1C). The reaction mixture was 

subsequently examined by 31P NMR spectroscopy, and resonances were observed for 

AMP at 4.36 ppm and at 3.03 ppm for inorganic phosphate (Figure 2A). Two additional 

resonances were observed at −3.57 and −4.06 ppm. Integration of the signal intensities 

for the sum of these two resonances equaled those observed for either AMP or Pi. The 

observed chemical shifts (−3.57 and −4.06 ppm) for the new phosphate containing 

product(s) did not match the 31P NMR spectrum for authentic phosphoramidate (III) at 

1.3 ppm (18).   
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Figure 1. Anion exchange chromatograms of the reaction products when Cj1418 (5.0 

μM) and 100 mM HEPES buffer (pH 8.0) were incubated for 60 minutes at room 

temperature with: (A) 1.0 mM ATP and 2.0 mM MgCl2. (B) 1.0 mM ATP, 2.0 mM 

MgCl2 and 100 mM NH4Cl.  (C) 1.0 mM ATP, 2.0 mM MgCl2, and 5.0 mM L-

glutamine.  Peak retention times correspond to the following: AMP (5.3 minutes), ADP 

(7.1 minutes) and ATP (8.2 minutes).   
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Figure 2 (A) 31P NMR spectrum of the reaction products when Cj1418 was mixed with 

MgATP and L-glutamine.  The resonance at 4.36 ppm is from AMP, and the resonance 

at 3.03 ppm is from inorganic phosphate.  The resonances at -3.57 and -4.06 ppm 

correspond to L-glutamine phosphate (IV).  (B) 31P NMR spectrum of the reaction 

products when Cj1418 was mixed with MgATP and L-glutamine-(amide-15N).  The 

phosphorus resonances at -3.57 and -4.06 are now doublets due to the apparent spin 

coupling with the adjacent 15N-nucleus. 
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The most likely (but initially unexpected) product to form from the reaction 

catalyzed by Cj1418 is L-glutamine-phosphate (IV) where the amide nitrogen is 

phosphorylated. To test this conjecture, the reaction was repeated using L-glutamine with 

an 15N-label exclusively at the amide nitrogen. The two 31P resonances of the reaction 

product now appear as doublets, due to the apparent spin coupling with the 15N-labeled 

amide nitrogen (Figure 2B). The observed coupling constants J(15N−31P) are 18 Hz for 

the phosphorus resonance at −3.57 ppm and 21 Hz for the resonance at −4.06 ppm. The 

magnitude of this coupling constant is consistent with that previously observed for 

phosphocreatine, which exhibits a J(15N−31P) coupling constant of 18−20 Hz (19).  The 

most likely explanation for the observation of two distinct 31P NMR signals for this 

compound is the restricted rotation of the amide functional group thereby giving rise to 

separate resonances for the syn- and anti- conformations of the L-glutamine-phosphate 

product. This conclusion is further supported by the direct chemical synthesis of L-

glutamine phosphate (20).  Two phosphorus resonances for the sodium salt of this 

compound are observed in D2O at−3.5 and −3.7 ppm. A single resonance is observed at 

−5.10 ppm for the free acid where the rate of rotation about the amide bond is expected 

to increase.  
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The formation of L-glutamine-phosphate after incubation of Cj1418, ATP, and L-

glutamine is further supported by the mass spectrum (ESI negative mode) of the 

unfractionated reaction mixture. A peak that corresponds to the mass of the expected L-

glutamine phosphate is observed with an m/z of 225.03 for the (M − H)− species and at 

an m/z of 247.01 (M − 2H + Na)− for the sodium adduct (Figure 3). Several other major 

peaks are observed that correspond to the known compounds in the unfractionated 

reaction mixture including phosphate (m/z = 96.96), HEPES (m/z = 237.09), and AMP 

(m/z = 346.05).  
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Figure 3 Negative ESI mass spectrum of the reaction mixture when Cj1418 was mixed 

with 2.0 mM ATP and 5.0 mM L-glutamine at pH 8.0 in 100 mM sodium bicarbonate 

buffer (pH 8.0).  The identified ions correspond to L-glutamine phosphate (m/z = 225.03 

for M-H and m/z = 247.01 for M-2H+Na), and HEPES (from enzyme purification) (m/z 

= 237.09 for M-H).   
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The kinetic parameters for the phosphorylation of L-glutamine by ATP as 

catalyzed by Cj1418 at pH 8.0 and 30 °C were determined spectrophotometrically at 340 

nm using a coupled enzyme assay that measures the formation of AMP. The assay 

contained adenylate kinase (8 units/mL), pyruvate kinase (8 units/mL), and lactate 

dehydrogenase (8 units/mL) in the presence of 11 mM MgCl2, 0.40 mM NADH, and 2.0 

mM PEP (21).  Under these conditions the apparent kinetic constants for Cj1418 are kcat 

= 2.5 ± 0.3 s−1, KATP = 340 ± 70 μM, kcat/KATP = 7400 ± 1700 M−1 s−1, KGln = 640 ± 60 

μM, and kcat/KGln= 3900 ± 800 M−1 s−1. No catalytic activity was observed (<1% of the 

rate with L-glutamine) in the presence of either L-glutamate (10 mM) or L-asparagine 

(10 mM). 

Quite unexpectedly, we have shown that Cj1418, an enzyme involved in the 

biosynthesis of the O-methyl phosphoramidate groups in C. jejuni, catalyzes the 

phosphorylation of the amide nitrogen of L-glutamine, rather than ammonia. However, it 

has been shown previously that utilization of 15NH4Cl in the medium for growth of C. 

jejuni results in 15N-labeling of the MeOPN groups in whole cells (22).  Our current 

results suggest that the ammonia must first be transformed to L-glutamine, presumably 

by the action of L-glutamine synthetase. To the best of our knowledge our results 

represent the first documented case of an enzyme-catalyzed phosphorylation of a simple 

amide nitrogen. However, similar compounds have been chemically synthesized as 

potential inhibitors of D-alanine:D-alanine ligase (20,23) and aspartate semi-aldehyde 

dehydrogenase (24).  Glutamine synthetase has also been demonstrated to catalyze the 

phosphorylation of L-methionine-S-sulfoximine on nitrogen (25).  The identity of L-
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glutamine phosphate was confirmed by 31P NMR experiments, 15N-labeling, and mass 

spectrometry. These results have further demonstrated that the initial series of steps as 

proposed in Scheme 9 for the biosynthesis of the O-methyl phosphoramidate capsule 

modification in C. jejuni is incorrect. A more likely scenario for phosphoramidate 

biosynthesis is illustrated in Scheme 10. In this modified pathway, L-glutamine 

phosphate is hydrolyzed by Cj1417 to generate phosphoramidate (III). The closest 

functionally characterized homologue of Cj1417 is γ-L-glutamyl-γ-aminobutyrate 

hydrolase (PuuD) from E. coli. This protein has a 23% sequence identity with Cj1417, 

and thus homologous amidotransferase enzymes can catalyze the hydrolysis of 

substrates other than L-glutamine (26).  In the next step we postulate that Cj1416 

catalyzes the displacement of pyrophosphate by phosphoramidate (III) from a nucleotide 

triphosphate (NTP) to form the phosphoramidate of NDP (V). Cj1416 is a member of 

cog1213, and homologous enzymes have been shown to catalyze similar reactions. For 

example, CTP:phosphocholine cytidylyltransferase from Streptococcus pneumonia 

(LicC) catalyzes the formation of CDP-choline from CTP and choline phosphate (27).  

Alternatively, Cj1416 may catalyze the formation of NDP-glutamine (VI) through the 

displacement of pyrophosphate from NTP by L-glutamine-phosphate (IV).  The NDP 

phosphoramidate (V) would then be formed by the catalytic activity of Cj1417. 

Experiments are currently under way to firmly establish the catalytic activities of 

Cj1417, Cj1416, and the remaining transformations that lead to the biosynthesis of this 

fascinating modification to the capsular polysaccharides of C. jejuni.  
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Scheme 10 Proposed Pathway for MeOPN Biosynthesis 
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3. BIOSYNTHESIS OF NUCLEOSIDE DIPHOSPHORAMIDATES IN

CAMPYLOBACTER JEJUNI* 

3.1. Introduction  

The pathogenic Gram-negative bacterium Campylobacter jejuni is a leading 

cause of food-borne gastroenteritis (1).  While pathogenic to humans, C. jejuni is a 

commensal organism in chickens, and as a result, contaminated poultry serves as a 

common route of human infection. While most C. jejuni infections cause a case of 

gastroenteritis, approximately 1 in 1000 infections results in the autoimmune disease 

Guillain-Barré syndrome (2,3).  Like many other organisms, C. jejuni uses a capsular 

polysaccharide (CPS) to improve fitness. The capsular polysaccharide of C. jejuni 

protects the organism from bacteriophages and shields it from the host immune response 

(4,5).  More than 40 different strains of C. jejuni have been identified to date, and each 

strain is believed to produce a unique CPS variant (6,7).  In C. jejuni strain NCTC 

11168, a cluster of approximately 35 genes is responsible for the synthesis and export of 

the CPS (8).  Moreover, C. jejuni has evolved the ability to synthesize a unique O-

methyl phosphoramidate (MeOPN) modification found on the CPS that improves the 

pathogenicity of the bacterium and promotes evasion of the host immune response (9).  

The structures of the MeOPN modification to the CPS in C. jejuni strain NCTC 11168 

and hypermotile strain 11168H are illustrated in Scheme 11. 

* Reprinted with permission from “Biosynthesis of Nucleoside Diphosphoramidates in Campylobacter

jejuni” by Zane W. Taylor, Haley A. Brown, Hazel M. Holden, and Frank M. Raushel, Biochemistry,

(2017), 56 (46), pp 6079-6082, Copyright 2017 American Chemical Society
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We have recently shown that the enzyme denoted with the locus tag Cj1418 from 

C. jejuni strain 11168H catalyzes the first committed step in the biosynthesis of the

MeOPN (10).  This enzyme, L-glutamine kinase, catalyzes the unprecedented ATP-

dependent phosphorylation of the amide nitrogen of L-glutamine (1) to form L-glutamine 

phosphate (2) as shown in Scheme 12A.  However, the subsequent metabolic fate of this 

novel enzyme intermediate has not been addressed. The primary focus of this 

investigation is to identify those enzymes that can harness the phosphoramidate moiety 

contained within L-glutamine phosphate for the ultimate construction of the O-methyl 

phosphoramidate modification of the CPS.  

Scheme 11 Structures of the O-Methyl Phosphoramidate Modifications to the CPS in C. 

jejuni 
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3.2. Methods 

3.2.1. Gene Expression and Enzyme Purification 

The genes used for the expression of Cj1416 and Cj1417 were cloned from the 

genomic DNA of C. jejuni NCTC11168 into a pet30b vector with a C-terminal 

hexahistidine tag.  The expression plasmids for Cj1416 and Cj1417 were used to 

transform Rosetta (DE3) E. coli cells.  Cells containing Cj1416 were grown in LB at 30 

°C and were then induced with 1.0 mM IPTG and grown at 16 °C for 16 hours.  Cells 

containing Cj1417 were grown in TB in a 5.0 mL starter culture for 8 hours at 37 °C, 

and then the 5.0 mL cultures were used to inoculate 1.0 L cultures.  The 1.0 L cultures of 

Cj1417 were allowed to grow for 16 hours at 25 °C.  The enzymes Cj1416 and  

Cj1417 were purified using Ni-affinity chromatography, and excess imidazole was 

removed by dialysis.  The purified proteins were concentrated and stored at -80 °C.  

Scheme 12 Reaction Catalyzed by Cj1418 and the Predicted Functions of Cj1417 and Cj1416 



Cj1416 yielded 25 mg of purified protein per liter of cell culture, and Cj1417 yielded 4 

mg of protein per liter of cell culture. 

3.2.2. Enzyme Assays and Determination of Kinetic Constants 

The kinetic constants for Cj1416 were determined at pH 8.0 in 100 mM 

HEPES/KOH and 100 mM KCl using anion exchange chromatography to monitor the 

change in concentration of the substrates and products as a function of time.  The 

samples were first loaded onto the ion exchange column and then washed with 10 mM 

triethanolamine (pH 8.0).  The products were eluted with a linear gradient of 10 mM 

triethanolamine (pH 8.0), and 2.0 M KCl.  Each reaction was carried out at 25 °C, with a 

minimum of five time points collected for each concentration.  The kinetic constants for 

Cj1417 were determined using a glutamate dehydrogenase (8 units/mL) coupled enzyme 

assay that monitors the reduction of NAD+ (0.5 mM) at 340 nm.  These reactions were 

done using 100 mM HEPES/KOH (pH 8.0), 100 mM KCl, at 25 °C.  The CDP-L-

glutamine (5) for these assays was synthesized using a mixture of Cj1416, 10 mM CTP, 

10 mM L-glutamine phosphate, 12 mM MgCl2 and 10 units/ml of inorganic 

pyrophosphatase.  The reaction was allowed to go to completion, the enzymes were 

removed, and the CDP-L-glutamine was quantified by HPLC and NMR. 
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The two most likely enzymes of unknown function from C. jejuni to utilize L-

glutamine phosphate as a substrate during the biosynthesis of the O-methyl 

phosphoramidate modification of the CPS are Cj1417 and Cj1416. Cj1417 is 

functionally annotated as a Type I amidotransferase from cog2071. Members of the 

Type I amidotransferase family of enzymes typically catalyze the hydrolysis of L-

glutamine or amide substituted derivatives of this amino acid (11,12).  Currently, the 

closest functionally characterized homologue to Cj1417 is the enzyme PuuD (23% 

identical sequence) from Escherichia coli, an enzyme that catalyzes the hydrolysis of 4-

(γ-L-glutamylamino)butanoate to 4-aminobutanoate and L-glutamate (12).  Cj1416 is 

currently annotated as a nucleotidyltransferase from cog1213. The closest functionally 

characterized homologue of Cj1416 is CTP:phosphocholine cytidylyltransferase from 

Streptococcus pneumoniae with a sequence identity of 28% (13).  This enzyme 

catalyzes the formation of CDP-choline and pyrophosphate from CTP and choline 

phosphate. We therefore predict that the combination of Cj1417 and Cj1416 will 

catalyze the synthesis of a nucleoside diphosphoramidate (4) using L-glutamine 

phosphate (2) and a nucleoside triphosphate as substrates.  

The biosynthesis of a nucleoside diphosphoramidate (4) by the consecutive 

reactions catalyzed by Cj1417 and Cj1416 can be envisioned to occur via one of two 

possible reaction schemes. In the first scenario, Cj1417 catalyzes the hydrolysis of L-

glutamine phosphate (2) to L-glutamate and phosphoramidate (3). This reaction is 

followed by the displacement of pyrophosphate from a nucleoside triphosphate by 

phosphoramidate (3) to generate the nucleoside diphosphoramidate (4) in a reaction 

48 
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catalyzed by Cj1416 as illustrated in Scheme 12B. Alternatively, Cj1416 catalyzes the 

displacement of pyrophosphate from a nucleoside triphosphate by L-glutamine 

phosphate to form NDP-L-glutamine (5). This reaction is subsequently followed by the 

hydrolysis of this intermediate by Cj1417 to form L-glutamate and the nucleoside 

diphosphoramidate (4) as presented in Scheme 12C.  

To test our initial prediction that the combination of Cj1416 and Cj1417 

catalyzes the formation of a nucleoside diphosphoramidate, these two enzymes were 

incubated together in the presence of MgCTP and an excess of L-glutamine phosphate 

(2) at pH 8.0. After 45 min, all of the CTP [retention time of 8.7 min (Figure 4A)] was 

converted to a new product with a retention time of 5.9 min (Figure 4B). The retention 

time of the new reaction product formed in the presence of Cj1417 and Cj1416 is 

identical to that of authentic cytidine diphosphoramidate (Figure 4E) (14).   
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Figure 4 Anion exchange chromatograms of nucleotide standards and enzyme-catalyzed 

reaction products formed in 100 mM HEPES (pH 8.0) at 25 °C with an incubation time 

of 45 min. The elution profiles were monitored at 255 nm. The nucleotides were 

separated using a 0 to 17% gradient of 10 mM triethanolamine (pH 8) and 2 M KCl over 

17 column volumes on a 1 mL Resource Q column. (A) Control sample of 1.0 mM CTP 

and 2.0 mM MgCl2 in the absence of any added enzyme. (B) Sample containing 1.0 mM 

CTP, 2.0 mM MgCl2, 5.0 mM l-glutamine phosphate, Cj1416 (5 μM), and Cj1417 (5 

μM). (C) Sample containing 1.0 mM CTP, 2.0 mM MgCl2, 5.0 mM phosphoramidate 

(3), 5 μM Cj1416, and 5 units/mL pyrophosphatase. (D) Sample containing 1.0 mM 

CTP, 2.0 mM MgCl2, 5.0 mM l-glutamine phosphate, 5 μM Cj1416, and 5 units/mL 

pyrophosphatase. (E) Control sample of chemically synthesized CDP phosphoramidate. 
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The identity of the new reaction product as cytidine diphosphoramidate [4 

(Scheme 12C)] was confirmed by 31P nuclear magnetic resonance (NMR) spectroscopy. 

A reaction mixture containing CTP, MgCl2, and an excess of L-glutamine phosphate (2) 

was incubated at pH 8.0 for 90 min in the presence of Cj1416 and Cj1417 until the 

reaction was quenched by the addition of 10 mM EDTA. The 31P NMR spectrum of the 

control reaction (Figure 5A), obtained in the absence of Cj1416 and Cj1417, showed the 

expected resonances for CTP [−20.99 ppm (β-P), −10.33 ppm (α-P), and −5.51 ppm (γ-

P)] and L-glutamine phosphate (−3.57 and −3.83 ppm). In the presence of Cj1416 and 

Cj1417, the resonances for CTP and L-glutamine phosphate (2) essentially disappear and 

are replaced by new resonances for pyrophosphate (−6.63 ppm) and a pair of doublets at 

−0.42 ppm (β-P) and −10.23 ppm (α-P) for cytidine diphosphoramidate (Figure 5B). The 

31P NMR spectrum for authentic cytidine diphosphoramidate is presented in Figure 5C. 

The formation of cytidine diphosphoramidate was further supported by the acquisition of 

the negative ion electrospray ionization (ESI) mass spectrum of the unfractionated 

reaction mixture upon incubation of MgCTP, L-glutamine phosphate, Cj1417, and 

Cj1416 at pH 8.0 in ammonium bicarbonate buffer. A peak at m/z 401.03 was observed 

that is consistent with that expected for cytidine diphosphoramidate (Figure 6). These 

experiments demonstrate that Cj1417 and Cj1416 use MgCTP and L-glutamine 

phosphate (2) to catalyze the formation of CDP-phosphoramidate, pyrophosphate, and L-

glutamate. 
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Figure 5 31P NMR spectra of nucleotide standards and enzyme-catalyzed reaction 

products formed in 100 mM HEPES (pH 8.0) at 25 °C with an incubation time of 90 min 

before the reaction was quenched with 10 mM EDTA. (A) Control sample containing 

5.0 mM CTP, 5.0 mM MgCl2, and 6.0 mM l-glutamine phosphate. (B) Sample 

containing 5.0 mM CTP, 5.0 mM MgCl2, 6.0 mM l-glutamine phosphate, 20 μM 

Cj1416, and 20 μM Cj1417. (C) Control sample of 5.0 mM CDP phosphoramidate. 
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Figure 6 ESI negative ion mass spectrum of the unfractionated reaction mixture formed 

after incubation of Cj1416, Cj1417, MgCTP, and L-glutamine phosphate. The peak that 

corresponds to the mass of CDP-diphosphoramidate can be observed with an m/z of 

401.02 for the (M-H)- species (C9H15O10N4P2). Several other peaks are observed that 

correspond to known compounds in the unfractionated reaction mixture including CDP 

(m/z = 402.01), HEPES (m/z = 237.09) and CTP (m/z = 481.97). The peak at an m/z of 

380.71 is a contaminant from the chemical synthesis of L-glutamine phosphate that 

corresponds to triiodide anion (I3
-). 
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In parts B and C of Scheme 12, we have proposed that either phosphoramidate 

(3) or L-glutamine phosphate (2) is used to displace pyrophosphate from a nucleoside 

triphosphate to form either a nucleoside diphosphoramidate (4) or NDP-L-glutamine (5) 

as an intermediate. The reactivity of Cj1416 with each of these potential substrates was 

tested with MgCTP as the acceptor nucleotide, and the reaction was monitored by ion 

exchange chromatography at 255 nm. In separate experiments, either phosphoramidate 

(3) or L-glutamine phosphate (2) was incubated with CTP, MgCl2, and Cj1416 at pH 8.0 

for 45 min. Utilizing the chemically synthesized phosphoramidate (3) as a potential 

substrate, there was no change in the high performance liquid chromatography 

chromatogram when compared to that of CTP alone (Figure 4C) (15).  However, when 

Cj1416 was incubated with L-glutamine phosphate (2) and MgCTP, all of the CTP was 

converted to a new product that corresponds to a molecule with a net charge of 

approximately −2(Figure 4D) (10).  This result demonstrates that Cj1416 is fully capable 

of using L-glutamine phosphate (2) to displace pyrophosphate from CTP.  
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To provide further spectroscopic support for the Cj1416 catalyzed formation of 

CDP-L-glutamine, the reaction products were analyzed by 31P NMR spectroscopy. In 

this experiment, Cj1416 was incubated with CTP, MgCl2, L-glutamine phosphate (2), 

and inorganic pyrophosphatase until the reaction was quenched with EDTA. After an 

incubation period of 90 min, essentially all of the CTP and L-glutamine phosphate (2) 

were converted to products (Figure 7A). A new resonance is observed at 3.02 ppm for 

phosphate (from the hydrolysis of pyrophosphate), and two new doublets are observed at 

−10.98 ppm (α-P) and −16.13 ppm (β-P) for CDP-L-glutamine. The formation of CDP-

L-glutamine was further supported by the acquisition of the negative ion ESI mass 

spectrum of the unfractionated reaction mixture upon incubation of MgCTP, L-glutamine 

phosphate, and Cj1416 at pH 8.0 in ammonium bicarbonate buffer. A peak at m/z 530.07 

was observed that is consistent with that expected of CDP-L-glutamine (Figure 8).  
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Figure 7. 31P NMR spectra of nucleotide standards and enzyme-catalyzed reaction 

products formed in 100 mM HEPES (pH 8.0) at 25 °C with an incubation time of 90 min 

before the reaction was quenched with 10 mM EDTA. (A) Sample containing 5.0 mM 

CTP, 5.0 mM MgCl2, 5 units/mL pyrophosphatase, and 20 μM Cj1416. (B) Cj1417 (20 

μM) was added to the reaction mixture shown in panel A and the mixture allowed to 

react for an additional 90 min. (C) Sample containing 20 μM Cj1417 and 5.0 mM 

glutamine phosphate. (D) Control sample of 5.0 mM phosphoramidate. 
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Figure 8 ESI negative ion mass spectrum of the unfractionated reaction mixture formed 

after incubation of Cj1416, MgCTP, and L-glutamine phosphate. The peak that 

corresponds to the mass of CDP-L-glutamine phosphate can be observed with an m/z of 

530.07 for the (M-H)-species (C14H22O13N5P2). Two other peaks are observed that 

correspond to the known compounds in the unfractionated reaction mixture, HEPES 

(m/z = 237.09) and triiodide anion from the synthesis of L-glutamine phosphate (m/z = 

380.71). 
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When Cj1417 is subsequently added to the reaction mixture containing CDP-L-

glutamine, the 31P NMR resonances for CDP-L-glutamine disappear and are replaced by 

two new pairs of doublets at −0.43 ppm (β-P) and −10.24 ppm (α-P) that can be assigned 

to cytidine diphosphoramidate (Figure 7B and Figure 5C). These experiments 

demonstrate that Cj1416 catalyzes the formation of CDP-L-glutamine from CTP and L-

glutamine phosphate (2) and that Cj1417 catalyzes the hydrolysis of CDP-L-glutamine to 

L-glutamate and cytidine diphosphoramidate.  

The remaining issue to address for the functional characterization of Cj1417 is 

whether this enzyme is capable of catalyzing the hydrolysis of L-glutamine phosphate to 

L-glutamate and phosphoramidate (2). Cj1417 was therefore incubated with L-glutamine 

phosphate (2) at pH 8.0 for 90 min. The 31P NMR spectrum (Figure 7C) of the reaction 

mixture demonstrated that ∼93% of the original L-glutamine phosphate (2) remained 

intact. Two other resonances that are consistent with the presence of a small amount of 

phosphate (3.08 ppm, 1.2%) and phosphoramidate (1.21 ppm, 5.5%) are observed. The 

31P NMR spectrum for chemically synthesized phosphoramidate (2) is shown in Figure 

7D, where a resonance is observed at 1.19 ppm. On the basis of these results, it is clear 

that the preferred pathway for the synthesis of cytidine diphosphoramidate (4) is for 

Cj1416 to catalyze the displacement of pyrophosphate from CTP to form CDP-L-

glutamine (5) and for Cj1417 to catalyze the hydrolysis of this intermediate to generate 

cytidine diphosphoramidate (4) as shown in Scheme 12C.  

The kinetic constants for the catalytic activity of Cj1417 and Cj1416 were 

determined. At a fixed concentration of either 5.0 mM MgCTP or 2.0 mM L-glutamine 
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phosphate (2), the rates of the reaction catalyzed by Cj1416 were determined at 25 °C 

and pH 8.0 by monitoring the formation of products via anion exchange chromatography 

at 255 nm. The observed kinetic constants using L-glutamine phosphate (2) as the 

variable substrate are as follows: Km = 120 ± 30 μM, kcat = 57± 6 min−1, and kcat/Km = 

(4.8 ± 1.3) × 105 M−1 min−1. The observed kinetic constants using MgCTP as the 

variable substrate are as follows: Km = 170 ± 35 μM, kcat = 57± 6 min−1, and kcat/Km = 

(3.4 ± 0.8) × 105 M−1 min−1.  

The kinetic constants for the hydrolysis of CDP-L-glutamine (5) catalyzed by 

Cj1417 were determined at 25 °C and pH 8.0 using a glutamate dehydrogenase coupled 

assay that monitors the formation of NADH at 340 nm. The kinetic constants were 

determined to be as follows: Km = 28± 3 μM, kcat = 34± 1.2 min−1, and kcat/Km = (1.2 ± 

0.2) × 106 M−1 min−1. In an effort to determine the upper limit of the rate constant for the 

hydrolysis of L-glutamine phosphate (2) by Cj1417, 10 mM L-glutamine phosphate (2) 

was incubated with 20 μM Cj1417, and the reaction was monitored by 31P NMR for 13 

h. From this experiment, an upper limit of 1.6 h−1 was obtained for the hydrolysis of L-

glutamine phosphate by Cj1417.  

Previously, we have demonstrated that the first step in the biosynthesis of the 

MeOPN modification to the CPS of C. jejuni is catalyzed by Cj1418, where ATP is 

utilized to phosphorylate the amide nitrogen of L-glutamine (10).  Here we have shown 

that Cj1416 catalyzes the displacement of pyrophosphate from MgCTP by L-glutamine 

phosphate (2), yielding CDP-L-glutamine (5). We have also established that the catalytic 

function of Cj1417 is to hydrolyze CDP-L-glutamine to L-glutamate and cytidine 
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diphosphoramidate (4). This investigation has thus unveiled the identities of two new 

nucleoside diphosphoramidate derivatives that are involved in the biosynthesis of 

MeOPN. It is likely that cytidine diphosphoramidate (4) will be subsequently 

phosphorylated at the hydroxyl group attached to C3 of the ribose ring prior to transfer 

of the phosphoramidate group to various carbohydrates of the CPS. On the basis of 

sequence similarity network analysis of the enzymes of unknown function contained 

within C. jejuni, we predict that Cj1415 will catalyze this reaction. Cj1415 is a member 

of cog0529, and the closest functionally characterized enzyme is CysC, an adenylyl-

sulfate kinase, from E. coli (26% identity), an enzyme that catalyzes the ATP-dependent 

phosphorylation of the 3′-hydroxyl of adenylyl sulfate (16). The unique biosynthetic 

pathway for the assembly of the phosphoramidate functionality found in the CPS of C. 

jejuni offers many opportunities for the development of potent inhibitors that may 

ultimately be useful in the therapeutic control of this pathogenic organism. 
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4. CYTIDINE DIPHOSPHORAMIDATE KINASE: AN ENZYME REQUIRED FOR 

THE BIOSYNTHESIS OF THE O-METHYL PHOSPHORAMIDATE 

MODIFICATION IN THE CAPSULAR POLYSACCHARIDES OF 

CAMPYLOBACTER JEJUNI* 

 

4.1. Introduction 

Campylobacter jejuni, a Gram-negative pathogenic bacterium, is a leading cause 

of gastroenteritis worldwide (1,2)  C. jejuni, while pathogenic in humans, is commensal 

in chickens, and thus contaminated poultry have become a common source of human 

infections (3).  While most C. jejuni infections result in gastroenteritis, rare cases are 

linked to the occurrence of the autoimmune disease Guillain-Barré syndrome (4).  Like 

many other organisms, C. jejuni produces a capsular polysaccharide (CPS) that aids in 

host colonization, evasion of immune responses, and serum resistance (5,6)  Over 34 

CPS gene clusters have been published, and it is believed that each strain produces a 

unique CPS (7).  Currently, the structures of at least 10 C. jejuni capsular 

polysaccharides have been physically characterized (8).  The CPS of C. jejuni NCTC 

11168 consists of a four carbohydrate repeating unit that is decorated with a unique O-

methyl phosphoramidate (MeOPN) modification (9,10).  Approximately 70% of all C. 

jejuni strains contain the MeOPN moiety attached to their CPS. In the CPS of C. jejuni 

                                                 
* Reprinted with permission from “Cytidine Diphosphoramidate Kinase: An Enzyme Required for the 

Biosynthesis of the O-Methyl Phosphoramidate Modification in the Capsular Polysaccharides of 

Campylobacter jejuni” by Zane W. Taylor and Frank M. Raushel, Biochemistry (2018) 57 (15), pp 2238-

2244, Copyright 2018 American Chemical Society 
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NCTC 11168, the 2-acetamido-2-deoxy-β-D-galactofuranose and D-glycero-α-L-gluco-

heptopyranose sugars are derivatized with the methyl phosphoramidate group (Scheme 

13).  

 

 

 

 

 

 

 

 

 

 

 

A cluster of 35 genes has been identified in C. jejuni NCTC 11168 that is 

primarily responsible for the biosynthesis and export of the CPS (11).  Eight genes in 

this cluster (Cj1415 through Cj1422) have been predicted to be responsible for the 

biosynthesis and transfer of the MeOPN modification to the sugar backbone (10).  

Enzymes with the locus tags Cj1421 and Cj1422 have been implicated in the transfer of 

the phosphoramidate moiety to their respective sugar targets (10).  Cj1422 is required for 

the attachment of the MeOPN group to D-glycero-α-L-gluco-heptopyranose, whereas 

Scheme 13 C. jejuni NCTC11168 Capsular Polysaccharide Structure 
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Cj1421 is needed for modification to 2-acetamido-2-deoxy-β-D-galactofuranose (10).  

Cj1419 and Cj1420 are annotated as SAM-dependent methyltransferases and are 

believed to be responsible for methylation of the phosphoramidate group (10).  The other 

four enzymes, Cj1415, Cj1416, Cj1417, and Cj1418 are required for the biosynthesis of 

the phosphoramidate group of MeOPN, and if any of the four genes for these enzymes 

are deleted, all of the MeOPN modifications are lost (10).  

Recently, we functionally characterized the first three enzymes in the 

biosynthesis of the phosphoramidate modification in C. jejuni (12,13).  In the first 

reaction, Cj1418 catalyzes the adenosine triphosphate (ATP)-dependent phosphorylation 

of L-glutamine on the amide nitrogen to make L-glutamine phosphate (12).  This product 

is utilized by Cj1416 to displace pyrophosphate from MgCTP to form cytidine 

diphosphate (CDP)-L-glutamine (13).  Cj1417 then catalyzes the hydrolysis of CDP-L-

glutamine to produce L-glutamate and cytidine diphosphoramidate (CDP-NH2). These 

reactions are summarized in Scheme 14. Cj1415 is currently annotated as an adenylyl 

sulfate kinase from cog0529 (14).  While most members of this family of enzymes are 

bifunctional adenylyl sulfate synthases/adenylyl sulfate kinases, the closest functionally 

characterized homologue to Cj1415 is the monofunctional CysC from Escherichia coli 

(14).  CysC catalyzes the ATP-dependent phosphorylation of the 3′-hydroxyl group of 

adenylyl sulfate (APS), forming 3′-phosphoadenosine 5′-phosphosulfate (PAPS), a 

molecule that is ultimately used in the transfer of sulfate to various acceptors (Scheme 

15). Because CysC is the closest functionally characterized homologue to Cj1415, we 

postulate that Cj1415 will phosphorylate the 3′-hydroxyl group of cytidine 
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diphosphoramidate (1) to synthesize a new cofactor for the transfer of phosphoramidate 

groups to various acceptors. 

 

 

 

 

 

  

Scheme 14 Activities of Cj1418, Cj1416 and Cj1417 

Scheme 15 Reaction Catalyzed by CysC 
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4.2. Materials and Methods 

 

4.2.1. Materials 

All chemicals and buffers were purchased from Sigma-Aldrich unless otherwise 

specified. CDP, uridine diphosphate (UDP), and cytidine triphosphate (CTP) were 

purchased from Alfa Aesar. Adenosine diphosphate (ADP) was purchased from TCI 

Chemicals. DpnI was obtained from New England Biolabs. Primestar HS polymerase 

was purchased from Takara Industries. The plasmid used for the expression of 

Cj1415 from C. jejuni NCTC 11168 was obtained from Professor Christine Szymanski 

of the University of Georgia. 

 

4.2.2. Gene Expression and Enzyme Purification 

The plasmid for the expression of Cj1415 (UniProt: Q0P8J9) with a C-terminal 

polyhistidine purification tag was used to transform Rosetta (DE3) E. coli cells by 

electroporation. Five-milliliter cultures of LB medium supplemented with 50 μg/mL 

kanamycin and 25 μg/mL chloramphenicol were inoculated with a single colony and 

grown overnight at 37 °C. These cultures were used to inoculate 1 L of LB medium (50 

μg/mL kanamycin and 25 μg/mL chloramphenicol) and then incubated at 30 °C until an 

OD600 of ∼0.6−0.8 was reached. The cells were induced with 1.0 mM isopropyl β-

thiogalactoside (IPTG), grown for 16 h at 16 °C, and then harvested by centrifugation at 

6000 rpm at 4 °C. The resulting cell pellet was resuspended into loading buffer (50 mM 

HEPES/K+, 300 mM KCl, 20 mM imidazole, pH 8.0) and lysed by sonication. The total 
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cell lysate was passed through a 0.45 μm filter before being loaded onto a prepacked 5 

mL HisTrap HP (GE Healthcare) nickel affinity column. Protein was eluted with 50 mM 

HEPES/ K+, pH 8.0, 300 mM KCl, and 400 mM imidazole over a gradient of 30 column 

volumes. Excess imidazole was removed by exchanging the buffers against 50 mM 

HEPES/K+, pH 8.0, 100 mM KCl using a 20 mL (10 kDa molecular weight cutoff) 

concentrator (GE Healthcare). The purified protein was flash frozen and stored at −80 

°C. Approximately 30 mg of purified protein was obtained per liter of cell culture. 

 

4.2.3. Synthesis of Substrates 

Cytidine diphosphoramidate (CDP-NH2, 1), uridine diphosphoramidate (UDP-

NH2, 6), and adenosine diphosphoramidate (ADP-NH2, 7) were prepared chemically as 

previously described (15).  2′-Deoxy cytidine diphosphoramidate (2′-deoxy-CDP-NH2, 

2) was made enzymatically with 2′-deoxy CTP (Roche) and L-glutamine phosphate,12 

using Cj1416 and Cj1417 as catalysts (13).  2′-Deoxy CTP (10 mM), L-glutamine 

phosphate (10 mM) and MgCl2 (15 mM) were incubated with Cj1416 (10 μM) and 

Cj1417 (10 μM) for 3 h at room temperature (100 mM HEPES pH 8.0). The enzymes 

were removed by filtration and the concentration of 2′-deoxy-CDP-NH2 was determined 

by UV−visible spectroscopy.   

CDP-methyl phosphate (CDP-OMe, 4) and CDP-methyl phosphonate (CDP-Me, 

5) were made enzymatically using Cj1416 and MnCTP (13).  In these reactions, methyl 

phosphate (15 mM) or methyl phosphonate (15 mM) was incubated with Cj1416 (15 

μM) and CTP (15 mM) with MgCl2 (15 mM) and MnCl2 (4.0 mM) in 100 mM 
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HEPES/K+, pH 8.0, 100 mM KCl. After 16 h, the reactions were quenched, and the 

target compounds were purified by anion exchange column chromatography (DEAE 

Sephadex) using a gradient of 10− 1000 mM triethylamonium bicarbonate (pH 8.0). The 

elution of the products from the column was monitored at 260 nm. The fractions were 

pooled, and the structures of the desired compounds were confirmed by 31P NMR 

spectroscopy and ESI (negative) mass spectrometry. CDP-Me (5) was obtained in an 

isolated yield of ∼30%, and CDP-OMe (4) was obtained with a yield of ∼20% based on 

the starting concentration of CTP. The 31P NMR spectrum of CDP-Me (5) showed two 

doublets at 17.92 (β-P) and −10.79 ppm (α-P), whereas the 31P NMR spectrum for CDP-

OMe (4) showed two doublets at −9.06 (βP) and −10.82 ppm (α-P). The ESI (negative) 

mass spectrum for CDP-Me (5) indicated an m/z of 400.03 (expected m/z for M − H = 

400.03 for C10H17N3O10P2), whereas the ESI (negative) mass spectrum for CDP-OMe (4) 

had an m/z of 416.02 (expected m/z for M − H = 416.02 for C10H17N3O11P2). The 

structures of the compounds used in this investigation are presented in Scheme 16. 
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Scheme 16 Cj1415 Substrates 
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4.2.4. Determination of Kinetic Constants 

The kinetic constants for wild-type Cj1415 were determined using a pyruvate 

kinase/lactate dehydrogenase coupled enzyme assay, following the oxidation of NADH 

at 340 nm at 25 °C with a SpectraMax340 UV−visible spectrophotometer (16).  Assays 

were performed in 100 mM HEPES/K+, pH 8.0, and 100 mM KCl. The coupling system 

contained 2.0 mM phosphoenol pyruvate, 0.3 mM NADH, 8 units/mL lactate 

dehydrogenase, and 8 units/mL pyruvate kinase. When determining the kinetic constants 

for CDP-NH2 (20−200 μM), 2′-deoxy CDP-NH2 (50−500 μM), ADP-NH2 (1−10 mM), 

UDP-NH2 (2.6−26 mM), CDP-OMe (200−2000 μM), and CDP-Me (360−3600 μM), a 

fixed concentration of 10 mM ATP was used. The kinetic constants for ATP (200−7000 

μM) were determined with a fixed concentration of 400 μM CDP-NH2. For these 

experiments, MgCl2 was added in a 4.0 mM excess of the total nucleoside concentration. 

Kinetic constants for the consumption of CDP (0.5−15 mM) were determined using 31P 

NMR spectroscopy because CDP interfered with the coupled enzyme assay. For these 

assays, each reaction mixture contained 10 mM ATP and a 4 mM excess of MgCl2. The 

reactions were followed for 30 min, collecting a 31P NMR spectrum every 5 min. With 

the S85A mutant of Cj1415, the kinetic constants for CDP-NH2 (0.20−10 mM) were 

determined at a fixed concentration of ATP (10 mM). The kinetic constants for ATP 

(1−8 mM) were determined at a fixed concentration of CDP-NH2 (15 mM). Kinetic 

constants for ATP, CDP-NH2, dCDP-NH2, CDP-OMe, and CDP-Me were determined 

using 200 nM Cj1415; CDP, ADP-NH2, and UDP-NH2 used 1, 2.1, and 10 μM of 

enzyme, respectively.  
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The kinetic parameters were determined by fitting the initial rates to eq 1 using 

GraFit 5, where υ is the initial velocity of the reaction, Et is the enzyme concentration, 

kcat is the turnover number, [A] is the substrate concentration, and Km is the Michaelis 

constant.  

ʋ/Et = kcat(A)/(A + Km)  (1) 

 

4.2.5. 31P NMR Spectroscopy 

The product of the ATP-dependent phosphorylation of each substrate by Cj1415 

was analyzed by 31P NMR spectroscopy. Each reaction was conducted in 100 mM 

HEPES/K+, pH 8.0, and 100 mM KCl at 25 °C and initially contained 5.0 mM ATP, 5.0 

mM substrate, 14 mM MgCl2, and 5 μM Cj1415. All reactions were quenched after 60 

min with 15 mM EDTA, except for UDP-NH2 (6) and ADP-NH2 (7), which were 

quenched after 3 h. After the reactions were quenched, the pH was adjusted to 9.0 before 

the spectra were collected. 

 

4.2.6. Cj1415 S85A Mutant 

Ser85 in Cj1415 was determined to be a residue of interest based on previous 

reports that the homologous residue in CysC from E. coli is phosphorylated during 

catalysis (17).  The pET 30b plasmid for the expression of wild-type Cj1415 with a C-

terminal hexahistidine tag was used as a template for the construction of a plasmid for 

the expression of the S85A mutant. The forward primer 

(5′GTATGATGGTTATTGTCACTACGATTGCAATGTTTAATGAGATTTATG-3′) 
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and reverse primer (5 ′-

CATAAATCTCATTAAACATTGCAATCGTAGTGACAATAACCATCATAC-3′) 

were used to convert the serine codon (TCA) to alanine (GCA). Primestar HS 

polymerase was used to amplify the gene. The reaction used a three-step thermal cycle 

(98 °C for 10 s, 63 °C for 40 s, and 72 °C for 10 min) and continued through 30 cycles. 

After amplification, DpnI was used to digest the template DNA for 2 h at 37 °C. 

Following DpnI digestion, PCR cleanup (Qiagen) was performed, and the plasmid was 

transformed into E. coli BL21 (DE3) cells. Single colonies were selected, and the DNA 

sequence of the mutant gene was confirmed. 

 

4.2.7. Cog0529 Sequence Similarity Network 

The identification codes for cog0529 (1160 total sequences) were downloaded 

from Uniprot. The collected identifiers were used to generate a network using the 

Enzyme Function Initiative− Enzyme Similarity Tool through Option-D (18,19).  The 

full network (each sequence is a node) was downloaded and used to generate a sequence 

similarity network using Cytoscape (20).  Edges below a 50% identity threshold were 

removed, and each cluster was assigned an arbitrary number and color. 
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4.3. Results 

 

4.3.1. Determination of the Catalytic Activity of Cj1415 

CysC in E. coli catalyzes the final step in the biosynthesis of PAPS, the cofactor 

used for sulfuryl transfer in biological systems (14).  Because the closest functionally 

characterized homologue to Cj1415 is CysC, adenylyl sulfate (APS, 8) was tested as a 

substrate for this enzyme using ATP as the phosphoryl donor. Within the limits of the 

coupled enzyme assay, no activity could be detected using Cj1415 to catalyze the 

phosphorylation of APS. Because of its presumptive connection to the biosynthesis of 

the O-methyl phosphoramidate moiety in C. jejuni, Cj1415 was tested with cytidine 

diphosphoramidate (1) as a substrate because this compound has been demonstrated to 

be the final product in the collective reactions catalyzed by Cj1416, Cj1417, and Cj1418 

(Scheme 14) (12,13).  CDP-NH2 (1) is an excellent substrate for Cj1415 with a turnover 

number of 2.2 s−1. 
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4.3.2. Characterization of the Cj1415 Catalyzed Reaction 

The reaction between CDP-NH2 and MgATP, as catalyzed by Cj1415, was 

analyzed by 31P NMR spectroscopy. After an incubation period of approximately 1 h, the 

31P NMR spectrum shows that most of the ATP was converted to ADP and that a new 

resonance was observed at ∼4.1 ppm (Figure 9A). In the 1H-coupled spectrum, this 

resonance is a doublet with a coupling constant of 7.3 Hz, indicating that this 

phosphorus is coupled to a nonexchangeable proton. The molecular weight of the new 

product (9) was determined by ESI (negative ion) mass spectroscopy and shown to be 

480.99. This value is consistent with the expected m/z of 480.99 for C9H17N4O13P3. 

Based on the molecular structure of CDP-NH2, the site of phosphorylation can 

correspond only to the 2′- or 3′-hydroxyl group of the ribose ring.  
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Figure 9 31P NMR spectra of the products in the reaction catalyzed by Cj1415. (A) 

Cj1415 (5 μM) was mixed with 5.0 mM MgATP and 5.0 mM CDP-NH2 for 60 min 

at pH 8.0 before the reaction was quenched with 15 mM EDTA. (B) Cj1415 (5 μM) 

was mixed with 5.0 mM MgATP and 5.0 mM 2′-deoxy-CDP-NH2 for 60 min 

before the reaction was quenched with 15 mM EDTA. The insets show the 1H-

coupled spectra for the resonances at 4.1 (A) and 3.85 ppm (B). Additional details 

are available in the text. 
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The 2′-deoxy derivative of CDP-NH2 (2) was synthesized enzymatically and 

tested as a potential substrate for Cj1415. In the presence of MgATP, 2 ′-deoxy-CDP-

NH2 (2) was phosphorylated with a kcat of 2.2 s−1 (Table 1). The 31P NMR spectrum of 

the phosphorylated reaction product (Figure 9B) shows the presence of a new resonance 

at ∼3.85 ppm that is a doublet, with a coupling constant of 7.8 Hz, in the absence of 

proton decoupling. The molecular weight of this product (10) was determined by 

negative ion ESI-MS and shown to be 465.00. This value is consistent with the expected 

m/z of 464.98 for C9H17N4O12P3.  Because the kinetic constants for the phosphorylation 

of CDP-NH2 and 2′-deoxy-CDP-NH2 are essentially identical, the site of 

phosphorylation is at the hydroxyl group attached to C3′ of the ribose ring. This result is 

fully consistent with the site of phosphorylation catalyzed by CysC. The reaction 

catalyzed by Cj1415 is summarized in Scheme 17. 
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Table 1 Kinetic Constants of Cj1415 at 25 oC, pH 8.0 

substrate  kcat (s-1) Km (mM) kcat/Km (M-1 s-1) 

CDP-NH2  (1) 2.2 ± 0.3 0.11 ± 0.01 20000 ± 3300 

dCDP-NH2  (2) 2.2 ± 0.2 0.39 ± 0.07 5600 ± 1100 

CDP  (3) 0.64 ± 0.04 4.2 ± 0.7 150 ± 30 

CDP-OMe  (4) 0.65 ± 0.06 1.35 ± 0.2 500 ± 100 

CDP-Me  (5) 1.4 ± 0.1 0.83 ± 0.2 1700 ± 400 

UDP-NH2  (6) 0.023 ± 0.002 21 ± 3 1.1 ± 0.2 

ADP-NH2  (7) 0.08 ± 0.01 5.6 ± 0.8 14 ± 3 

APS  (8) < 0.01 n.d. n.d. 

CDP-NH2a  (1) 1.6 ± 0.2 4.4 ± 0.4 360 ± 60 

ATP  2.2 ± 0.3 1.5 ± 0.1 1500 ± 300 

ATPa  1.6 ± 0.2 0.7 ± 0.1 2300 ± 500 

aS85A mutant of Cj1415 
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Scheme 17 Reaction Catalyzed by Cj1415 
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4.3.3. Substrate Specificity of Cj1415 

The range of substrates accepted by Cj1415 was tested with five additional 

compounds. To determine if Cj1415 is selective for the cytosine base, uridine 

diphosphoramidate (6) and adenosine diphosphoramidate (7) were tested as substrates 

(Table 1). The values of kcat/Km for these two compounds are 3−4 orders of magnitude 

poorer than the value for CDP-NH2, and thus, Cj1415 greatly prefers the cytosine base. 

Two other cytidine diphosphoramidate analogues were synthesized and assayed with 

Cj1415. Similar to CDP-NH2, these analogues possess a single negative charge on the β-

phosphorus group. CDP-methyl phosphate (4) and CDP-methyl phosphonate (5) were 

both found to be substrates for Cj1415. The values of kcat are 30−60% comparable to 

CDP-NH2, but the Km values are about an order of magnitude greater than that for CDP-

NH2. CDP can be phosphorylated by Cj1415, but the value of kcat/Km is approximately 

two orders of magnitude poorer than that for CDP-NH2. For all seven substrates 

discovered for Cj1415, the negative ion ESI mass spectra of the phosphorylated reaction 

products are fully consistent with the expected molecular structure. 

 

4.3.4. Mutation of Serine-85 

The closest functionally characterized homologue to Cj1415 is CysC from E. coli 

(14).  Previous investigations with CysC have indicated the requirement for the 

phosphorylation of a serine residue as an obligatory reaction intermediate (17).  The 

phosphorylated enzyme was isolated and shown to phosphorylate APS in the absence of 

added ATP (17).  This serine residue is conserved in close CysC homologues and in 
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Cj1415. To determine if the corresponding residue in Cj1415 is required for catalytic 

activity, Ser-85 was mutated to an alanine residue (S85A). The value of kcat for the S85A 

mutant is 73% of the value of the wild-type enzyme, but the value of Km is 40 times 

greater, suggesting that this residue is not phosphorylated during catalysis but is perhaps 

interacting with the substrate in the active site (Table 1). 

 

4.4. Discussion 

 

4.4.1. Substrate Specificity 

In this study, we established the substrate profile of Cj1415, an enzyme that 

functions in the biosynthesis of the cofactor used for the transfer of phosphoramidate to 

acceptor carbohydrates in C. jejuni. As anticipated, the product of the reaction catalyzed 

by Cj1417, cytidine diphosphoramidate (1), is the best substrate of those tested for 

Cj1415 and is phosphorylated on the C3′-hydroxyl group (Table 1). We also examined 

the catalytic activity with the corresponding adenine and uridine diphosphoramidate 

derivatives and confirmed that cytidine is the nucleotide preferred by Cj1415. CDP is a 

relatively poor substrate for Cj1415, and this result is likely to be a reflection of the two 

negative charges on the β-phosphoryl group, where CDP-NH2 has only one. In addition 

to CDP-NH2, the enzyme will also accept the substitution of −CH3 or −OCH3 for the 

−NH2 functional group on the β-phosphorus substituent. We propose that this enzyme be 

called cytidine diphosphoramidate kinase (CDK). 
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4.4.2. Comparison with Adenylyl Sulfate Kinase  

Cj1415 is a member of cog0529, and the sequence similarity network (SSN) is 

presented in Figure 10 at a percent identity cutoff of 50% (18).  The only known 

catalytic activities from cog0529 are adenylyl sulfate kinase or a bifunctional adenylyl 

sulfate synthase and adenylyl sulfate kinase, which represent arbitrary Group 1 (Figure 

10). At a 50% identity cutoff, Cj1415 is Group 2, which contains no functionally 

characterized enzymes. This cluster contains enzymes primarily from various 

Campylobacter and Helicobacter species. Groups 3−5 are not similar to adenylyl sulfate 

kinase or Cj1415 and thus likely represent other unique catalytic activities. Group 3 

contains sequences only from Desulfovibrio species, indicating this group of enzymes 

may be specific to this bacterium.  
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Figure 10 Sequence similarity network for proteins of cog0529 at a percent identity 

cutoff of 50%. All protein sequences for cog0529 obtained from Uniprot were used to 

create the network. Each node (colored sphere) represents a unique protein sequence, 

and each edge (black line) represents a connection between two sequences at the given 

percent identity cutoff. Group 1 contains known adenylyl sulfate kinases or bifunctional 

adenylyl sulfate kinase/adenylyl sulfate synthases. Group 2 contains Cj1415 and 

homologues from several Campylobacter and Helicobacter species. Groups 3–5 

represent enzymes that are dissimilar from adenylyl sulfate kinases and Cj1415 and 

likely represent unique activities. 
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The closest functionally characterized homologue to Cj1415 is CysC from E. coli 

with a 26% identity. Two other monofunctional adenylyl sulfate kinases from 

Arabidopsis thaliana (UniProt Q43295) and Penicillium chrysogenum (UniProt Q12657) 

also share a 26% identity to Cj1415. A sequence alignment of these four proteins is 

presented in Figure 11. The three-dimensional structure of the A. thaliana enzyme was 

previously solved, and the adenylyl sulfate binding residues were identified (Figure 12). 

Comparing the residues in the active site of adenylyl sulfate kinase to Cj1415, there are 

three notable differences in residues that interact with the nucleoside base and the sulfate 

moiety of the bound adenylyl sulfate. In adenylyl sulfate kinase, there are two 

phenylalanine residues that interact with the adenine base; however, in Cj1415, these 

two residues are replaced by tyrosine and valine. These two residues may help to explain 

the specificity for cytosine over adenine (21).  The sulfate of adenylyl sulfate in CysC is 

stabilized by an asparagine residue, which donates two hydrogen bonds to the substrate. 

In Cj1415, this residue is a methionine, a hydrogen bond acceptor. Methionine 

commonly forms hydrogen bonds with the backbone amide in a polypeptide chain (22).  

This change from a hydrogen bond donor to an acceptor in Cj1415 may help to explain 

why the amidate substrate is preferred over sulfate.  
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Figure 11 Sequence alignment of CysC homologues. Sequence alignment of E. coli 

CysC (UniProt P0A6J1), Arabadopsis CysC (UniProt Q43295), Penicillium CysC 

(UniProt Q12657), and Cj1415 (UniProt Q0P8J9). The annotated adenylyl sulfate 

binding residues are highlighted in red boxes (residues based on Arabidopsis crystal 

structure PDB id: 3UIE) (25). 
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Figure 12 Active site of Arabidopsis adenylyl sulfate kinase (PDB id: 3UIE) (25).  This 

image was adapted from the ligand interactions found within the Protein Data Bank for 

this structure. Potential hydrogen bonds are indicated by the dashed lines, where the 

distances between the two heteroatoms are ≤3.1 Å. 
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Previously, the E. coli CysC enzyme has been reported to require a 

phosphoserine enzyme intermediate (17).  However, this residue has never been 

mutated, and a crystal structure is not available for the E. coli enzyme. Mutation of the 

A. thaliana and P. chrysogenum CysC homologues show that when this serine is 

mutated, there is no loss of catalytic activity (23,24).  In the crystal structure of A. 

thaliana (Figure 12), this serine residue is in the active site but is removed from the 3′- 

hydroxyl group of adenylyl sulfate (25).  While this residue is not forming a 

phosphorylated intermediate in Cj1415, its involvement in substrate binding can be seen 

in the increased Km of CDP-NH2 (Table 1).  

We demonstrated that Cj1415, Cj1416, Cj1417, and Cj1418 collectively catalyze 

the biosynthesis of 3′-phosphocytidine-5′diphosphoamidate (9) using L-glutamine, CTP, 

and two molecules of ATP. The β-phosphoramidate group of 9 must ultimately be 

methylated and transferred to a specific carbohydrate that is incorporated into the 

growing capsular polysaccharide chain. However, at this point, it is unclear as to the 

timing of the methylation and phosphoryl transfer reactions in the biosynthesis of the 

capsular polysaccharide chain. From the appropriate gene cluster contained within C. 

jejuni 11168, it is highly likely that the enzymes Cj1419 and Cj1420 will be responsible 

for the transfer of the methyl group of SAM to the appropriate substrate and that Cj1421 

and Cj1422 will catalyze the transfer of the phosphoramidate or the methylated 

phosphoramidate group to either an NDP-functionalized sugar or the growing capsular 

polysaccharide itself. Experiments are currently underway to unravel the substrate 

profiles for Cj1419, Cj1420, Cj1421, and Cj1422.    
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5. SUBSTRATE SPECIFICITY AND CHEMICAL MECHANISM FOR THE 

REACTION CATALYZED BY GLUTAMINE KINASE* 

 

5.1. Introduction 

Campylobacter jejuni, a Gram-negative pathogenic bacterium, is a leading cause 

of gastroenteritis in the US (1).  While C. jejuni is pathogenic toward humans, this 

organism is commensal toward chickens, and as a result, contaminated poultry is a 

common source of human infection. Like many other Gram-negative bacteria, C. jejuni 

produces a capsular polysaccharide (CPS), which is composed of unusually modified 

sugars, that envelops the organism. The capsular polysaccharides help protect the 

organism from the environment and are important for the invasion and colonization of 

the host organisms (2).  Numerous strains of C. jejuni have been identified, and it is 

currently believed that each strain produces a unique capsular polysaccharide (3,4).  An 

O-methyl phosphoramidate (MeOPN) modification was discovered in the CPS of the 

NCTC11168 strain of C. jejuni (4,5).  This modification to the CPS is most unusual 

since phosphorus−nitrogen bonds are quite rare in nature (5)   

The gene cluster for the biosynthesis of the CPS for the NCTC11168 strain of C. 

jejuni capsule has been identified, and eight of the 35 genes in this cluster appear to be 

linked with the presence of the MeOPN modification in the capsular polysaccharide (5,6)  

Of the eight enzymes that appear to be required for the biosynthesis of the MeOPN 

                                                 
* Reprinted with permission from “Substrate Specificity and Chemical Mechanism for the Reaction 

Catalyzed by Glutamine Kinase” by Zane W. Taylor, Alexandra R. Chamberlain, and Frank M Raushel, 

Biochemistry (2018) 57 (37), pp 5447-5455, Copyright 2018 American Chemical Society 
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modification, two are predicted to be phosphoramidate transferases (Cj1421 and Cj1422) 

and two are annotated as SAM-dependent methyltransferases (Cj1419 and Cj1420). The 

other four enzymes (Cj1415, Cj1416, Cj1417, and Cj1418) are directly responsible for 

the formation of the phosphoramidate moiety. Previously, we have characterized the four 

enzymes responsible for the formation of the phosphoramidate (7−9).  The first enzyme, 

Cj1418, is a novel glutamine kinase that catalyzes the ATP-dependent phosphorylation 

of L-glutamine (1) to form L-glutamine phosphate (2) (8).  L-Glutamine phosphate is 

subsequently used by Cj1416, a CTP−phosphoglutamine cytidylyltransferase, to displace 

pyrophosphate from CTP to generate CDP-L-glutamine (3) (7).  Cj1417, a γ-glutamyl-

CDP-amidate hydrolase, hydrolyzes CDP-L-glutamine to form L-glutamate and cytidine 

diphosphoramidate (4) (7).  Cj1415, a cytidine diphosphoramidate kinase, catalyzes the 

phosphorylation of the 3′ hydroxyl group of cytidine diphosphoramidate (9).  The 

phosphoramidate moiety of the 3′-phospho 5′-cytidine diphosphoramidate cofactor (5) is 

likely transferred to the capsule and methylated or, alternatively, methylated and then 

transferred to the capsule. The reactions are summarized in Scheme 18.  
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Scheme 18 Biosynthesis of 3’-Phospho-5’-cytidine Diphosphoramidate in C. jejuni 

NCTC 11168 
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Of these four enzymes, glutamine kinase (Cj1418), is perhaps the most 

interesting mechanistically, as it is responsible for the synthesis of the phosphoramidate 

bond. Very few enzymes have been shown previously to catalyze the formation of P−N 

bonds; however, two strategies exist. Creatine kinase and arginine kinase catalyze the 

ATP-dependent phosphorylation of their respective substrates and generate ADP as a 

product (10,11).  Alternatively, enzymes that are related to tRNA synthetases can also be 

used to generate phosphoramidate bonds through a mechanism similar to adenylylation 

(12).  Cj1418 belongs to a family of kinases that employ an unusual reaction mechanism. 

Phospho(enol)pyruvate synthase catalyzes the ATP-dependent phosphorylation of 

pyruvate, generating PEP, AMP, and phosphate (13).  Pyruvate phosphate dikinase 

catalyzes the ATP-dependent phosphorylation of phosphate and pyruvate to generate 

AMP, pyrophosphate, and PEP (14).  Finally, rifampin phosphotransferase catalyzes the 

phosphorylation of rifampin with the formation of Pi and AMP (15,16).  All three 

enzymes share a similar protein architecture and contain an ATP-grasp domain, a 

phospho-histidine domain, and a specialized substrate binding domain (16−18).  These 

three domains can be identified in Cj1418, where residues 1−219 comprise the predicted 

ATP-grasp domain, residues 220−693 is likely the specialized substrate-binding domain 

for L-glutamine, and residues 694− 767 form the predicted phospho-histidine domain 

(17).   

This enzyme family catalyzes the phosphorylation of substrates via a mechanism 

that requires three distinct chemical steps. In the first step, the enzyme utilizes a histidine 

residue to attack ATP at the β-phosphoryl group to liberate AMP and a 
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pyrophosphorylated enzyme intermediate. In the next step, the pyrophosphorylated 

enzyme is hydrolyzed to form inorganic phosphate and a phosphorylated enzyme 

intermediate. In the final step, the phosphorylated enzyme intermediate transfers the 

phosphate to the acceptor substrate. These transformations are summarized in Scheme 

19 for the reaction catalyzed by Cj1418.  

 

 

 

 

 

 

 

 

 

In this investigation, we have addressed the reaction mechanism and substrate 

profile for the reaction catalyzed by glutamine kinase. The formation of the 

pyrophosphorylated and phosphorylated covalent reaction intermediates have been 

interrogated by utilization of positional isotope exchange (PIX) and molecular isotope 

exchange (MIX) techniques (19,20).  The active site histidine residue has been identified 

by mutagenesis, and the enzyme has been shown to catalyze the phosphorylation of the 

hydroxamate and hydrazide derivatives of glutamate and aspartate. 

Scheme 19 Proposed Reaction Mechanism for the Formation of L-Glutamine Phosphate 

by Cj1418 
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5.2. Materials and Methods 

 

5.2.1. Materials 

All buffers and salts were purchased from SigmaAldrich, unless otherwise 

specified. L-Glutamine (1), γ-L-glutamyl hydroxamate (7), β-L-aspartyl hydroxamate (9), 

AMP-morpholidate (10), and phosphorus pentachloride were purchased from Sigma-

Aldrich. γ-L-Glutamyl hydrazide (8) was obtained from Santa Cruz Biotechnology. 18O-

Labeled water (97 atom %) was obtained from Cambridge Isotope Laboratories. [15N-

Amide]-L-glutamine was obtained from Merck, Sharp and Dohme, Canada. D-Glutamine 

(98% pure) was purchased from Acros Organics. The restriction enzyme DpnI was 

obtained from New England Biolabs. Primestar HS Polymerase was purchased from 

Takara Industries. The plasmid used for the expression of Cj1418 from C. jejuni NCTC 

11168 was obtained from Professor Christine Szymanski of the University of Georgia. 

 

5.2.2. Purification of Glutamine Kinase 

The plasmid used for the expression of Cj1418 (UniProt: Q0P8J6) with an N-

terminal poly histidine purification tag was used to transform Rosetta (DE3) Escherichia 

coli cells by electroporation. Cultures (5 mL) of LB medium supplemented with 50 μg/ 

mL kanamycin and 25 μg/mL chloramphenicol were inoculated with a single colony and 

grown overnight at 30 °C. These cultures were used to inoculate 1 L of LB medium (50 

μg/mL kanamycin and 25 μg/mL chloramphenicol) and then incubated at 30 °C until an 

OD600 of ∼0.6−0.8 was reached. The cells were induced with 1.0 mM isopropyl β-
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thiogalactoside (IPTG), grown for 16 h at 16 °C, and then harvested by centrifugation at 

6000 rpm at 4 °C. The resulting cell pellet was resuspended into loading buffer (50 mM 

HEPES/KOH, 300 mM KCl, 20 mM imidazole, pH 8.0) and lysed by sonication. The 

total cell lysate was passed through a 0.45 μm filter before being loaded onto a 

prepacked 5 mL HisTrap HP (GE Healthcare) nickel affinity column. Protein was eluted 

with 50 mM HEPES/KOH, pH 8.0, 300 mM KCl, and 400 mM imidazole over a 

gradient of 30 column volumes.  Excess imidazole was removed by exchanging the 

buffer against 50 mM HEPES/KOH, pH 8.0, 100 mM KCl, using a 20 mL (10 kDa 

molecular weight cutoff) concentrator (GE Healthcare). The protein was concentrated to 

a volume of 3 mL and loaded onto a GE Healthcare HiLoad 16/600 Sephadex 120 mL 

size exclusion column and eluted with 10 mM HEPES/ KOH (pH 8.0) and 100 mM KCl. 

Fractions were assayed for catalytic activity, pooled, concentrated, and stored at −80 °C 

until needed. 

 

5.2.3. Construction of H737N Mutant of Glutamine Kinase 

His-737 from Cj1418 was mutated to asparagine. The plasmid used for the 

expression of wild-type Cj1418 with an N-terminal hexa-histidine tag was used as a 

template for the construction of the plasmid for the expression of the H737N mutant. 

The forward (5′-GGGGGTGCTAATTCAAATATGGCCATTCGTGC-3′) and reverse 

primers (5′-GCACGAATGGCCATATTTGAATTAGCACCCCC-3′) were used to 

convert the histidine codon (CAT) at residue 737 to asparagine (AAT). Primestar HS 

polymerase was used to amplify the gene. The reaction used a three-step thermal cycle 
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(98 °C for 10 s, 55 °C for 40 s, and 72 °C for 10 min) and continued through 30 cycles. 

After amplification, DpnI was used to digest the template DNA for 2 h at 37 °C. 

Following DpnI digestion, PCR cleanup (Qiagen) was performed and the plasmid 

transformed into E. coli BL21 (DE3) cells. Single colonies were selected, and the DNA 

sequence of the mutant gene was confirmed. 

 

5.2.4. Determination of Kinetic Constants 

The kinetic constants for Cj1418 were determined using a pyruvate kinase/lactate 

dehydrogenase/myokinase coupled enzyme assay by following the oxidation of NADH 

at 340 nm at 25 °C with a SpectraMax340 UV−visible spectrophotometer. Assays were 

performed in 100 mM HEPES/KOH, pH 8.0, and 100 mM KCl. The coupling system 

contained 2.0 mM PEP, 0.3 mM NADH, 14 mM MgCl2, 10 mM ATP, 8 units/mL 

lactate dehydrogenase, 8 units/mL adenylate kinase, and 8 units/mL pyruvate kinase 

(PK). The kinetic constants for D-glutamine (2.0−20 mM), γ-L-glutamyl hydroxamate 

(0.4−4.0 mM), γ-L-glutamyl hydrazide (2.0−20 mM), and β-L-aspartyl hydroxamate 

(5.0−40 mM) were all assayed using 250 nM Cj1418. The kinetic constants were 

determined by fitting the initial rates to eq 1 using GraFit 5, where ν is the initial velocity 

of the reaction, Et is the enzyme concentration, kcat is the turnover number, A is the 

substrate concentration, and Km is the Michaelis constant.  

ν /Et = kcat(A)/(A + Km) (1) 
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5.2.5. Synthesis of [18O4]-Phosphate 

The synthesis of [18O4]Pi (11) was carried out as reported previously (21).  The 

reaction was conducted in a 10 mL round-bottom flask that was placed in an ice bath. 

The reaction utilized 1.0 g of water containing 97% 18O, and 2.5 g of PCl5. PCl5 was 

slowly added to the water and then heated to 100 °C and allowed to stir for an additional 

2 h. After heating, the reaction was cooled to room temperature, the pH was adjusted to 

7.0, and aliquots were flash frozen and stored at −80 °C. The 31P NMR spectrum of the 

product indicated that 93% of the phosphate contained four 18O atoms and 7% contained 

three 18O atoms, for an overall 18O content of 98%. 

 

5.2.6. Synthesis of β-[18O4]-ATP 

The procedure for the synthesis of 18O-labeled ATP where the β-phosphoryl 

group contains four 18O atoms was modified from a previously reported method (22,23).  

AMP morpholidate (10, 1.0 g) (Sigma) and the tributylammonium salt of [18O4]-

phosphate were stirred in dry DMSO (20 mL) at room temperature for 3 days. The 

reaction was diluted with water (100 mL) and then loaded onto a column of DEAE 

Sephadex. The β-[18O4]-ADP (12) was eluted from the column using a linear gradient of 

triethylammonium bicarbonate (300 mL from 0.01 to 1.0 M) and then concentrated by 

rotary evaporation. The labeled ADP (20 mM) was incubated with pyruvate kinase (3 

units/ mL) and 25 mM phospho(enol)pyruvate (PEP) in 50 mM HEPES/KOH, pH 8.0 

for 16 h in a volume of 50 mL. The reaction mixture was loaded onto a column of DEAE 

Sephadex and eluted with triethylammonium bicarbonate (600 mL from 0.01 to 1 M). 
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The fractions containing β-[18O4]-ATP (13) were identified by the absorbance at 260 nm 

and 31P NMR spectroscopy. Excess triethylamine was removed by evaporation, and the 

product was stored at −80 °C. The reactions are summarized in Scheme 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Scheme 20 Chemical Synthesis of β-[18O4]-ADP and Enzymatic Syntheses of β-[18O4]-

ATP and Hydroxylamine O-Phosphate Ester 
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5.2.7. Synthesis of Hydroxylamine O-Phosphate Ester 

O-Phosphorylated hydroxylamine (14) was synthesized using pyruvate kinase 

(24).  Pyruvate kinase (4 units/mL) was incubated with 20 mM ATP, 25 mM 

hydroxylamine, 30 mM zinc acetate, and 100 mM ammonium bicarbonate (pH 8.0). The 

reaction was monitored by 31P NMR spectroscopy until all of the ATP was converted to 

ADP. Once complete, the reaction mixture was diluted with water and loaded onto a 

DEAE Sephadex anion exchange resin and eluted with a linear gradient of 

triethylammonium bicarbonate (0.01−1.0 M). Fractions containing the O-phosphorylated 

hydroxylamine were identified by 31P NMR spectroscopy, concentrated, flash frozen, 

and then stored at −20 °C. 

 

5.2.8. Positional Isotope Exchange (PIX) 

A reaction mixture containing 5 mM β-[18O4]-ATP (13), 7 mM MgCl2, and 10 

μM Cj1418 in 100 mM KCl, 100 mM HEPES/KOH, 50 mM CHES/KOH, pH 8.0, was 

incubated at 25 °C. At various times, 500 μL of the reaction mixture was removed and 

quenched with 15 mM EDTA, and the pH was adjusted to 9.5 before 31P NMR analysis. 

Samples that were not analyzed immediately were flash frozen and stored at −20 °C. 

Aliquots were collected at 0, 1, 4, 8, 12, and 15 h, and the reaction velocities were 

determined using eq 2, where X is the fraction of change of the original ATP pool, and F 

is the fraction of the equilibrium value for positional isotope exchange in the ATP pool 

at time t (25).   

ʋex = (X/ln(1-X))(ATP0/t)(ln(1-F)) (2) 
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5.2.9. Molecular Isotope Exchange (MIX) 

The reaction mixture containing 10 mM L-glutamine phosphate and 10 mM [15N-

amide]-L-glutamine was incubated with 5 mM MgCl2 and 20 μM Cj1418 for 12 h in 100 

mM HEPES/ KOH, 100 mM KCl (pH 8.0) at 25 °C. The reaction products were 

analyzed by 15N and 31P NMR spectroscopy. [15N-Amide]-L-glutamine phosphate was 

made enzymatically as previously described (8).   

 

5.3. Results 

 

5.3.1. Substrate Specificity of Cj1418 

Cj1418 has previously been identified as a glutamine kinase that catalyzes the 

ATP-dependent phosphorylation of L-glutamine (8).  However, the substrate profile for 

this enzyme has not been adequately determined. In addition to L-glutamine, 15 

structural analogues of L-glutamine were tested as potential substrates for Cj1418 

(Scheme 21). Of the compounds tested, only L-glutamine (1), D-glutamine (6), γ-L-

glutamyl hydroxamate (7), γ-L-glutamyl hydrazide (8), and β-L-aspartyl hydroxamate (9) 

exhibited substrate activity based on the formation of AMP and Pi (Scheme 22). The 

kinetic constants for the phosphorylation of these compounds by Cj1418 are summarized 

in Table 2. 
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Scheme 21 Substrates Tested with Cj1418 
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Scheme 22 Alternate Substrates for Cj1418 
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Table 2 Kinetic constants for Cj1418 at 25 oC, pH 8.0, and 10 mM MgATP. 

substrate  kcat (s-1) Km (mM) kcat/Km (M-1 s-1) 

     

L-glutamine (1) 2.5 ± 0.3 0.64 ± 0.06 3900 ± 800 

D-glutamine (6) 1.5 ± 0.1 10.5 ± 1.8 140 ± 30 

γ-L-glutamyl hydroxamate (7)  2.1 ± 0.2 1.5 ± 0.4 1400 ± 360 

γ-L-glutamyl hydrazide (8) 0.41 ± 0.05 17.2 ± 3.8 24 ± 6 

β-L-aspartyl hydroxamate (9)  ndab ndab 1.2 ± 0.2b 

     

and, not determined. 
bA plot of reaction rate versus substrate concentration was linear up to a 
concentration of 40 mM 
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5.3.2. Characterization of Reaction Products 

The reaction products for the phosphorylation of the alternate substrates 6− 9 

were analyzed by 31P NMR spectroscopy (Figure 13−Figure 16). The product for the 

reaction with D-glutamine (6) exhibited two new resonances (−3.65 and −4.28 ppm) with 

the same chemical shifts as reported previously for the reaction of Cj1418 with L-

glutamine and formation of L-glutamine phosphate (2) (8).  These two resonances 

represent the syn- and anti-conformers of D-glutamine phosphate (Figure 13). With the 

hydroxamate derivative of L-glutamate (7), two new resonances were observed at 5.91 

ppm (major) and 6.33 ppm (minor) ppm after the addition of ATP and Cj1418 (in 

addition to those for AMP and Pi). However, this product was unstable and a new 

resonance was observed at 7.92 ppm after ∼24 h. The degradation product was shown to 

be hydroxylamine-O-phosphate (14) by direct comparison of authentic 14 by 31P NMR 

(Figure 14). This result is consistent with the enzymatic phosphorylation of 7 on the 

hydroxyl group and the initial formation of compound 15 (Scheme 23). Formation of 14 

is proposed to occur via the intramolecular attack of the α-amino group of 15 with the 

C5 carbonyl group and generation of pyroglutamic acid (16) as shown in Scheme 23. 

The 13C NMR spectrum of the reaction mixture confirmed the formation of 

pyroglutaminic acid (Figure 17A).  

With the hydrazide derivative of L-glutamine (8), two new 31P NMR resonances 

were observed with chemical shifts of 5.66 ppm (major) and 5.47 ppm (minor) (Figure 

15A). This product was unstable (17) and subsequently converted to phosphate (Figure 

15B). The 13C NMR spectrum is consistent with the formation of pyroglutamate (Figure 
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17B). The fate of the hydrazine is unknown. The reaction product with the hydroxamate 

of aspartate (9) exhibited two new 31P NMR resonances with chemical shifts of 6.07 

ppm (major) and 6.44 ppm (minor) (Figure 16A). However, unlike the phosphorylated 

hydroxamate from L-glutamate (15), the phosphorylated hydroxamate product (18) from 

L-aspartate is stable (Figure 16B). Presumably, this is a direct consequence of the fact 

that nucleophilic attack by the α-amino group of 16 is hindered by the steric strain 

imposed by the formation of a β-lactam. 
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Figure 13 31P NMR of the reaction product formed from D-glutamine and ATP by the 

action of Cj1418.  The reaction mixture was incubated for 3 h and contained 10 mM D-

glutamine, 10 mM ATP, 14 mM MgCl2 10 µM Cj1418, 100 mM KCl, and 100 mM 

HEPES, pH 8.0.  Two resonances (-3.65 and -4.28 ppm) are observe for the syn- and 

anti- conformations of D-glutamine phosphate, in addition to resonances for AMP (4.09 

ppm) and phosphate (2.69 ppm).   
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Figure 14 Formation and degradation of γ-L-glutamyl hydroxamate O-phosphate (15). 

Reactions contained 10 mM γ-L-glutamyl hydroxamate (7), 10 mM ATP, 14 mM MgCl2, 

100 mM HEPES, pH 8.0 and 10 µM Cj1418.  (A) 31P NMR spectrum of the reaction 

mixture after an incubation period of 3 h.  (B) 31P NMR spectrum of the same reaction 

mixture as seen in part A, but the spectrum was collected after 24 hours.  (C) Standard of 

O-phosphorylated hydroxylamine (14).   
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Figure 15 Formation and degradation of γ-L-glutamyl hydrazide Cj1418 product. 

Reactions contained 10 mM γ-L-glutamyl hydrazide, 10 mM ATP and 14 mM MgCl2 

and 10 µM Cj1418.  (A) 31P NMR spectrum of a reaction mixture that was incubated for 

30 min in 100 mM HEPES 100 mM KCl (pH 8.0).  (B) 31P NMR of the same reaction as 

seen in part A, but spectrum was collected after 24 h of incubation.  (C)  13C NMR of a 

reaction in 500 mM ammonium bicarbonate (pH 8.0) after 24 h of incubation.  

Resonances labeled “A” are AMP, “P” are pyroglutamic acid, “H” are starting material, 

and “B” is bicarbonate buffer.   
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Figure 16 31P NMR of β-L-aspartyl hydroxamate O-phosphate.  10 mM β-L-aspartyl 

hydroxamate, 10 mM ATP and 14 mM MgCl were incubated for three with 10 µM 

Cj1418 in 100 mM KCl and 100 mM HEPES pH 8.0.  (A) Spectrum was collected 12 h 

after the addition of Cj1418.  (B)  Spectrum was collected 36 h after the addition of 

Cj1418.  Two resonances (6.07 and 6.45 ppm) are observed for β-L-aspartyl 

hydroxamate ( as well as resonances for AMP (4.11 ppm) and phosphate (2.72 ppm).   
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Scheme 23 Reaction Products for the Phosphorylation of 7, 8, and 9 by Cj1418 
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Figure 17 13C NMR Spectra of γ-L-glutamyl hydroxamate O-phosphate and γ-L-

glutamyl hydrazide Cj1418 product, after their degradation.  Peaks labeled “A” are 

AMP, “B” are bicarbonate buffer, “H” is starting material, and “C1-5” are pyroglutamic 

acid.  (A)  Spectrum of a reaction mixture containing 20 mM γ-L-glutamyl hydroxamate 

(7), 20 mM ATP in 50 mM ammonium bicarbonate (pH 8.0) after 72 hours of 

incubation.  (B) Spectrum of a reaction mixture containing 10 mM γ-L-glutamyl 

hydrazide 10 mM ATP in 500 mM ammonium bicarbonate (pH 8.0) after 24 hours of 

incubation.  (C) Spectrum of pyroglutamic acid in bicarbonate buffer, the five peaks for 

pyroglutamic acid are labeled C1-5.   
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5.3.3. Characterization of Reaction Products with L-Glutamine 

It was previously demonstrated that Cj1418 catalyzes the formation of AMP, Pi, 

and L-glutamine phosphate from ATP, water, and L-glutamine (8).  The proposed 

mechanism of action (Scheme 19) assumes that the β-phosphoryl group of ATP is 

ultimately found as L-glutamine phosphate, whereas the γ-phosphoryl group is found as 

Pi. However, the previous characterization of the reaction products did not differentiate 

between the β- and γ-phosphoryl groups in the two reaction products (8).  To 

unambiguously determine the origin of the two products from ATP, the reaction was first 

conducted in 100% [16O]-H2O and then in 50% [18O]-H2O. For the product Pi, there is a 

single phosphorus resonance when the reaction was conducted in unlabeled water 

(Figure 18A) but two phosphorus resonances, separated by ∼0.023 ppm from one 

another, when the reaction was conducted in a mixture of 16O- and 18O-H2O (Figure 

18B). The upfield resonance is for the phosphate with a single 18O label, and the 

downfield resonance is for phosphate without an 18O label (26).  The 31P NMR spectrum 

of the reaction products clearly indicates that only the Pi product was labeled with 18O.   
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Figure 18 31P NMR spectra of the products in the reaction catalyzed by Cj1418. (A) 31P 

NMR spectrum after incubation of Cj1418 (5 μM) with L-glutamine (5 mM) and MgATP 

(5 mM) at pH 8.0. Resonances at −3.66 and −4.31 ppm are from L-glutamine phosphate, 

2.43 ppm is from phosphate, and 3.91 ppm is from AMP. (B) Same reaction conditions 

as for spectrum A, but the reaction was conducted in 50% [18O]-H2O. The 31P NMR 

resonance for phosphate is shifted upfield by 0.023 ppm due to the incorporation of a 

single atom of 18O in the phosphate product. (C) Same reaction conditions as for 

spectrum A, except that unlabeled ATP was mixed with 50% of β-[18O4]-ATP (13). The 
31P NMR spectrum for L-glutamine phosphate exhibits four resonances. There are two 

resonances each for the syn- and anti-conformers that are separated by 0.072 ppm due to 

the incorporation of 3 atoms of 18O. In the spectra, the 31P NMR resonance for AMP 

appears at 3.91 ppm. In spectrum C, the 31P NMR resonance for AMP exhibits two 

resonances separated by 0.024 ppm due to the presence of a single atom of 18O from the 

enzymatic cleavage of the bond between the β-P and α/β-bridging oxygen in the labeled 

ATP used in this reaction. 
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In a second experiment, the Cj1418-catalyzed reaction was conducted with L-

glutamine and a 50/50 mixture of β-[18O4]-ATP (13) and unlabeled ATP. In the 31P 

NMR spectrum of the reaction products, a single resonance is observed for phosphate, 

and four resonances are observed for the L-glutamine phosphate product (Figure 18C). 

One pair of resonances is for the unlabeled product (syn- and anti- conformations) and 

the other for the product labeled with 18O. The separation in the chemical shifts for the 

two pairs of resonances is 0.072 ppm, consistent with the incorporation of three 18O 

atoms, as expected from the labeled ATP used in this experiment (26).  These two 

experiments clearly indicate that the β-phosphoryl group is ultimately found in L-

glutamine phosphate and that the γ-phosphoryl group is ultimately found as phosphate. 

This confirms part of the mechanism proposed in Scheme 19. 
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5.3.4. Importance of His-737 as an Enzyme Nucleophile 

The closest homologues of Cj1418 include PEP synthase, pyruvate phosphate 

dikinase, and rifampin phosphotransferase (13,15,16,18).  Each of these enzymes has 

been structurally characterized and shown to be pyrophosphorylated on a conserved 

histidine residue that originates from either a central or C-terminal domain of the protein 

(16,18).  The multiprotein sequence alignment of Cj1418 (residues 694−767) with the 

phospho-histidine domains of these proteins (Figure 19) identifies His-737 as the residue 

that is likely to be pyrophosphorylated in the reaction mechanism of Cj1418 (Scheme 

19). This residue was mutated to asparagine (H737N) and the mutant assayed for its 

ability to phosphorylate glutamine; however, no activity was detected (kcat ≤ 0.001 s−1). 

This result is consistent with His-737 as being the nucleophile that attacks the β-

phosphoryl group of ATP with formation of a pyrophosphorylated enzyme intermediate. 
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Figure 19 Sequence alignment of the phospho-histidine domains of Cj1418 (residues 

694-767), pyruvate phosphate dikinase (PPDK from Clostridium symbiosum, residues 

379-508), phosphenolpyruvate synthase (PEPS from E. coli, residues 386-457) and 

rifampin phosphotransferase (RIF from Listeria monocytogenes, residues 758-864).   

The characterized phospho-histidine residues (PPDK: His-455, PEPS: His-421, and 

RIF: His-825) and the predicted phospho-histidine residue from Cj1418 (His737) are 

highlighted in red.  Phosphohistidine domains were identified using InterPro protein 

sequence, analysis and classification, and the sequence alignment was generated using 

Clustal Omega.   
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5.3.5. Detection of Pyrophosphorylated Intermediate 

In the proposed reaction mechanism for Cj1418, the first step is initiated by the 

nucleophilic attack of the enzyme (likely His737) on the β-phosphoryl group of ATP to 

generate a covalent pyrophosphorylated intermediate and AMP (Scheme 19A). The 

significance of this first step was addressed by measurement of the positional isotope 

exchange (PIX) reaction using β-[18O4]ATP (13) in the absence of added L-glutamine 

(19,20).  To observe a PIX reaction with Cj1418, the formation of the Enz-X-PPi 

intermediate must be reversible and the α-phosphoryl group of AMP bound in the active 

site must be free to rotate. The positional exchange of the 18O label is outlined in Scheme 

24. As the reaction proceeds, the 18O that originally occupies the α/β-bridge position in 

the labeled ATP (13) will equilibrate with the 16O in the two α-nonbridge positions to 

form 19 and 20. At equilibrium, 1/3 of the 18O label will remain in the α/βbridge position 

and 2/3 will be in the two α-nonbridge positions.  

 

 

 

Scheme 24 Positional Isotope Exchange Reaction with Cj1418 and β-[18O4]-ATP 

 



 

122 

 

The PIX reaction was followed by 31P NMR spectroscopy since the incorporation 

of 18O into ATP results in a perturbation in the chemical shift for phosphorus, and the 

magnitude of the shift is dependent on whether the 18-oxygen occupies a bridge or 

nonbridge position within the polyphosphate moiety of ATP (26).  It has been previously 

shown that 18O in the α/β-bridge position of ATP will cause a +0.017 ppm upfield 

chemical shift perturbation for the α- and β-phosphoryl groups (26).  In the α-nonbridge 

position, there will be a +0.028 ppm upfield shift perturbation for a single 18-oxygen 

(26).  Thus, as the α/β-bridge oxygen in the β-[18O4]-ATP scrambles, there will be a 

change in the chemical shift of the β-phosphate of approximately −0.017 ppm and an 

increase in the chemical shift for the α-phosphate by ∼0.011 ppm (0.028− 0.017 ppm).  

The PIX reaction was initiated by incubation of 5 mM β-[18O4]-ATP (13) and 10 

μM Cj1418. Aliquots were removed, the reaction was quenched with EDTA, and the 

products were analyzed by 31P NMR spectroscopy. The 31P NMR spectra of the α- and 

β-phosphoryl groups of the labeled ATP, before the addition of the Cj1418 and after 8 h, 

are presented in Figure 20. For the β-phosphoryl group, the 31P NMR spectrum (Figure 

20C) indicates that, in the original β-[18O4]-ATP, 86% is labeled with 2 nonbridge and 2 

bridge 18O atoms (denoted as 2,2), 7% contain 2 nonbridge and 1 bridge 18O atoms (2,1), 

and 7% contain 1 nonbridge and 2 nonbridge (1,2) 18O atoms. For the α-phosphoryl 

group, the 31P NMR spectrum (Figure 20A) indicates, that in the original β-[18O4]-ATP, 

96% contains 1 bridge 18O atoms (0,1) and 4% contains no label (0,0). The average 18O 

content of the 4 oxygen atoms attached to the β-phosphoryl group is 96%. After 8 h, the 

fraction of the ATP with 2 nonbridge and 2 bridge 18O atoms at the β-phosphoryl group 
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(2,2), relative to that fraction of ATP with 2 nonbridge and 1 bridge 18O (2,1), has been 

reduced from 92% to 58% (Figure 20D). For the α-phosphoryl group, the fraction of 

ATP with 1 bridge 18O atom (0,1), relative to that with 1 nonbridge 18O atom, has 

decreased from 100% to 38% (Figure 20B). The rate of the PIX reaction (vPIX) was 

calculated using eq 2, and the data for additional time points are collected in Table 3. 

The average ratio of the PIX rate to the rate for the loss of ATP (vPIX/vchem) is 1.6 ± 0.3. 

In the presence of 5 mM AMP, there was no measurable increase in the rate of the PIX 

reaction under these conditions. The observation of the positional isotope exchange 

reaction is consistent with the formation of a pyrophosphorylated enzyme in the absence 

of added L-glutamine. 
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Figure 20 31P NMR spectra of 18O-labeled ATP before and after the addition of Cj1418. 

(A) Spectrum of the α-phosphoryl group of [18O4]-ATP (13) before the addition of 

Cj1418. (B) Spectrum of the α-phosphoryl group of the ATP after 8 h of incubation with 

Cj1418. (C) Spectrum of the β-phosphoryl group of [18O4]-ATP (13) before the addition 

of Cj1418. (D) β-Phosphoryl group of the ATP after incubation with Cj1418 for 8 h. 

Additional details are provided in the text. The first number in parentheses indicates the 

number of nonbridging 18O atoms attached to the respective phosphoryl group in ATP, 

and the second indicates the number of bridging 18O atoms. 
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Table 3 Positional isotope exchange for the α- and β-phosphoryl groups with β-[18O4]-

ATP. 

 

Time 

(h) 

% α-P 

(0,1) 

% α-P 

(1,0) 

% β-P 

(2,2) 

% β-P 

(2,1) 

F ATP 

(mM) 

X ʋex 

(mM hr-1) 

ʋchem
 

(mM hr-1) 

ʋex/ʋChem 

0 100 0 92 8  5.00 
    

1 86 14 82 18 0.19 4.41 0.11 0.99 0.59 1.68 

4 75 25 68 32 0.39 3.91 0.21 0.55 0.27 2.04 

8 62 38 58 42 0.57 3.03 0.39 0.41 0.25 1.64 

12 51 49 53 47 0.69 2.21 0.55 0.33 0.23 1.43 

15 48 52 48 52 0.76 1.66 0.66 0.29 0.22 1.32 
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5.3.6. Detection of Phosphorylated Intermediate 

In Scheme 19, we have proposed that the pyrophosphorylated enzyme (Enz-X-

Pβ-Pγ) is hydrolyzed to generate a phosphorylated enzyme intermediate (Enz-X-Pβ), and 

in the last step, this intermediate is utilized to phosphorylate L-glutamine. If this last step 

is reversible, then a molecular isotope exchange reaction (MIX) can be used to provide 

experimental support for the formation of Enz-X-Pβ. This exchange reaction is illustrated 

in Scheme 25. In the MIX experiment, Cj1418 was incubated with 10 mM [15N-amide]-

L-glutamine (21) and 10 mM of unlabeled L-glutamine phosphate (2) in the absence of 

added ATP. The products of the reaction mixture were examined by both 31P and 15N 

NMR spectroscopy after a period of 12 h. In Figure 21A is the 31P NMR spectrum of the 

L-glutamine-P (2) prior to the addition of Cj1418 and the [15Namide]-L-glutamine (21). 

Two resonances are observed at −3.56 and −3.91 ppm, representing the syn- and anti- 

conformations of the product. After the addition of Cj1418 and [15N-amide]-L-

glutamine, four new resonances are observed, representing L-glutamine-P where the two 

phosphorus resonances are now coupled to 15N (compound 22). In the corresponding 15N 

NMR spectra (Figure 21C), a single 15N-resonance is observed at 111.92 ppm for the 

amide nitrogen of the labeled L-glutamine (21). After incubation with L-glutamine-P and 

Cj1418, four new resonances are observed from 146.06 and 142.18 ppm. These 

resonances represent the syn- and anti-conformations of the L-glutamine-P products and 

coupling with 31P of 19 Hz. 
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Scheme 25 Molecular Isotope Exchange Reaction for Cj1418 
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Figure 21 31P and 15N NMR spectra for the MIX reaction with Cj1418. (A) 31P NMR 

spectrum of L-glutamine phosphate. (B) 31P NMR spectrum after 10 μM Cj1418 was 

incubated with 10 mM L-glutamine phosphate (2) and 10 mM [15N-amide]-L-glutamine 

(21) for 12 h. (C) 15N NMR spectrum of [15N-amide]-L-glutamine (21). (D) 15N NMR 

spectrum after 10 μM Cj1418 was incubated with 20 mM [15N-amide]-L-glutamine and 

20 mM L-glutamine phosphate (2) for 12 h. 
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5.4. Discussion 

 

5.4.1. Mechanism of Action 

The proposed mechanism of action for L-glutamine kinase is presented in 

Scheme 19. In this mechanism, a nucleophile in the active site first attacks the β-

phosphoryl group of ATP to form a pyrophosphorylated enzyme intermediate (Enz-X-

Pβ-Pγ) and AMP. The pyrophosphorylated intermediate is subsequently hydrolyzed to 

generate a phosphorylated intermediate (Enz-X-Pβ) and Pi. In the last step, the 

phosphorylated intermediate is used to phosphorylate L-glutamine on the amide nitrogen. 

Using amino acid sequence alignments with the closest functional homologues to 

Cj1418 and site-directed mutagenesis experiments, we have demonstrated that His-737 

is the most likely residue in the active site of this enzyme to function as the primary 

nucleophile.  

In the proposed mechanism, the γ-phosphoryl group of ATP is converted to 

phosphate and the β-phosphoryl group is ultimately used to phosphorylate L-glutamine. 

An alternative mechanism could have been written with the opposite outcome for these 

two phosphoryl groups of ATP. However, we have now demonstrated using β-[18O4]-

ATP that the β-phosphoryl group is exclusively utilized to phosphorylate L-glutamine. 

This result was confirmed by conducting the Cj1418-catalyzed reaction in [18O]-H2O, 

where the only labeled product was inorganic phosphate.  

Positional isotope exchange (PIX) and molecular isotope exchange (MIX) 

experiments were used to further support the formation of the pyrophosphorylated (Enz-
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X-Pβ-Pγ) and phosphorylated enzyme intermediates (Enz-X-Pβ) in the overall reaction 

mechanism. In the PIX experiment, β-[18O4]-ATP was incubated with the enzyme in the 

absence of L-glutamine in an attempt to observe the migration of the α/β-bridge oxygen 

to the α-nonbridge positions in ATP (Scheme 24). As conducted, the PIX reaction can 

only occur if the enzyme is pyrophosphorylated by ATP in the absence of L-glutamine, 

and this reaction must be reversible. In essence, the experiment measures the partitioning 

of the [Enz-X-PβPγ•AMP] complex. When this complex reverts back to Enz-X and ATP, 

a PIX reaction will be observed if the α-phosphoryl group of AMP is able to rotate in the 

active site. The PIX rate will then be governed by the rate at which the ATP can be 

reformed and dissociate from the active site into solution.  

The partitioning forward is potentially governed by two related events. The AMP 

may dissociate from the active site or the pyrophosphorylated enzyme may be 

hydrolyzed to the phosphorylated enzyme. The dissociation of AMP is essentially 

irreversible since the initial concentration of AMP is equivalent to the enzyme 

concentration used in this experiment (10 μM). We attempted to enhance the PIX rate by 

adding unlabeled AMP to the reaction mixture (20).  If the partitioning forward was 

governed by AMP dissociation, then increasing the concentration of AMP would 

enhance the steady-state concentration of the [Enz-X-Pβ-Pγ•AMP] complex and the 

overall PIX rate would increase. However, the addition of AMP had no effect on the PIX 

rate, and no ATP was directly formed from the added unlabeled AMP. This result 

indicates that the partitioning forward is actually governed by the rate at which the [Enz-

X-Pβ-Pγ•AMP] complex is hydrolyzed to [Enz-X-Pβ•Pγ]. Thus, the experimentally 



 

131 

 

determined partitioning ratio (vPIX/vchem) of 1.6 for the [Enz-X-Pβ-Pγ•AMP] complex 

indicates that ATP is reformed and dissociates from the active site 1.6 times faster than 

this complex is hydrolyzed to irreversibly form [Enz-X-Pβ•Pi•AMP].  

It should also be noted that the average rate constant for the PIX reaction 

(obtained from the average value for vex in Table 3) is relatively small at ∼54 h−1 (0.54 

mM h−1/0.01 mM enzyme). Since the dissociation of AMP and the hydrolysis of the 

pyrophosphorylated enzyme intermediate are essentially irreversible, the enzyme must 

somehow be recycled back to free enzyme. This can only occur via the hydrolysis of the 

[Enz-X-Pβ] complex to [Enz-X]. The rate constant for the net loss of ATP in the absence 

of L-glutamine (obtained from the average value of vchem in Table 3) is 31 h −1 (0.31 mM 

h−1/0.01 mM enzyme). The kcat for the overall reaction (2.5 s−1) in the presence of L-

glutamine is 2.9 × 104-fold faster than this value. This clearly indicates that L-glutamine 

is much better than water in reacting with the [Enz-X-Pβ] intermediate. PIX experiments 

have previously been used to characterize the pyrophosphorylated enzyme intermediate 

formed in the reaction catalyzed by pyruvate phosphate dikinase (20).   

Experimental support for the [Enz-X-Pβ] intermediate was obtained with the 

MIX experiment where the free enzyme (Enz-X) was phosphorylated with L-glutamine 

phosphate in the absence of any added nucleotide (Scheme 25). The phosphorylated 

enzyme intermediate was subsequently captured by the 15N-labeled L-glutamine to 

generate the 15N-labeled L-glutamine phosphate (22). This exchange reaction can only 

occur with the formation of the [Enz-X-P] intermediate. 
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5.4.2. Substrate Specificity 

We have identified four additional substrates for Cj1418 in addition to L-

glutamine. These new substrates include the hydroxamate derivatives of L-glutamate (7) 

and L-aspartate (9), the hydrazide of L-glutamate (8), and D-glutamine (6). Other 

compounds were tested as alternative substrates such as L-glutamate and L-asparagine; 

however, neither of these compounds exhibited any detectable activity. L-Glutamine 

derivatives with either the α-amino or α-carboxy groups removed were not substrates; 

however, D-glutamine was shown to be a substrate, and thus the stereochemistry at the 

α-carbon is not vital. The second best substrate for Cj1418 is γ-glutamyl hydroxamate 

(7) and formation of an unstable O-phosphorylated derivative (15). Previously, 

compound 15 has been shown to be an inhibitor of γ-L-glutamyl-L-cysteine synthetase 

where a highly reactive isocyanate intermediate was proposed via a Lossen 

rearrangement (27).  With Cj1418, we did not obtain any evidence for the formation of 

an isocyanate derivative from 7. However, the 13C and 31P NMR spectra clearly indicate 

the formation of pyroglutamic acid (16) and the hydroxyl amine O-phosphate ester (14). 

In contrast, the phosphorylated derivative of β-aspartyl hydroxamate (18) appears to be 

relatively stable under the reaction conditions. The hydrazide derivative of L-glutamate 

(9) is also a substrate that produces a relatively unstable phosphorylated product (18). 

The final products were determined to be phosphate and L-pyroglutamate (16). The 

formation of phosphate presumably arises from the nonenzymatic hydrolysis of the 

hydrazide derivative of phosphate. However, this intermediate was not observed directly 

in the 31P NMR spectrum of the reaction mixture. 
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5.5. Conclusions 

Here we have determined the substrate profile for L-glutamine kinase, an enzyme 

that functions in the formation of the O-methyl phosphoramidate modification in the 

capsular polysaccharide in C. jejuni. We have proposed a chemical reaction mechanism 

for the phosphorylation of L-glutamine and have provided kinetic evidence for the 

formation of pyrophosphorylated and phosphorylated enzyme intermediates in this 

transformation. 
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6. MANGANESE-INDUCED SUBSTRATE PROMISCUITY IN THE REACTION 

CATALYZED BY PHOSPHOGLUTAMINE CYTIDYLYLTRANSFERASE FROM 

CAMPYLOBACTER JEJUNI* 

 

6.1. Introduction 

Campylobacter jejuni, a Gram-negative pathogenic bacteria, is the leading cause 

of bacterial gastroenteritis worldwide (1,2).  Like many Gram-negative bacteria, C. 

jejuni produces a capsular polysaccharide (CPS), which helps improve the overall fitness 

and pathogenicity of this organism (3)  Approximately 70% of all C. jejuni strains 

contain an O-methyl phosphoramidate (MeOPN) modification to the capsular 

polysaccharide (CPS) (4).  This decoration is unique to the genus Campylobacter, and 

phosphorus nitrogen bonds are relatively rare in nature (5).  In the NCTC 11168 strain of 

C. jejuni, several gene knockout studies have been conducted and eight genes appear to 

be responsible for the biosynthesis of the MeOPN modification to the CPS (4).  The role 

of MeOPN was examined using mutants that lacked this modification of its CPS, and it 

was shown that MeOPN contributes to serum resistance and evasion of host immune 

responses (6).   

Of the eight genes directly linked to the presence of MeOPN, four have 

previously been characterized. The first enzyme in the pathway, Cj1418, represents a 

novel L-glutamine kinase that catalyzes the ATP-dependent phosphorylation of L-

                                                 
* Reprinted with permission from “Manganese-Induced Substrate Promiscuity in the Reaction Catalyzed 

by Phosphoglutamine Cytidylyltransferase from Campylobacter jejuni” by Zane W. Taylor and Frank M. 

Raushel, Biochemistry (2019) 58 (16), pp 2144-2151, Copyright 2019 American Chemical Society 
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glutamine, resulting in L-glutamine phosphate (1) (7,8).  The second enzyme, Cj1416, 

uses L-glutamine phosphate and MgCTP to form CDP-L-glutamine (2) (9). CDP-L-

glutamine is then hydrolyzed by Cj1417 to generate L-glutamate and cytidine 

diphosphoramidate (3) (9).  Finally, Cj1415 catalyzes the phosphorylation of the 3′-

hydroxyl group of cytidine diphosphoramidate to make 3′-phosphocytidine 5′-

diphosphoramidate (4), a cofactor that shares similarity with 3′phosphoadenosine 5′-

phosphosulfate (PAPS), which is used in the transfer of sulfate to various acceptors (10).  

The remaining four enzymes, Cj1419, Cj1420, Cj1421, and Cj1422, are likely 

responsible for the transfer of the phosphoramidate moiety from 3′-phosphocytidine 5′-

diphosphoramidate to a carbohydrate substrate and subsequent methylation to generate 

the O-methyl phosphoramidate product.  

Throughout the characterization of the first four steps in the formation of 3′-

phospho-5′-cytidine diphosphoramidate (4) as illustrated in Scheme 26, alternative 

pathways for the biosynthesis of the phosphoramidate cofactor were postulated. In these 

other transformations, Cj1416 was initially proposed to use phosphoramidate (5) as a 

substrate with a nucleotide triphosphate (NTP) to form the corresponding NDP-amidate 

(3). Cj1416 was initially assayed for its ability to catalyze the formation of an NDP-

amidate using phosphoramidate and the Mg2+ complexes of various nucleotide 

triphosphates (9).  However, no significant activity with phosphoramidate was detected 

with any of the NTPs tested in the presence of Mg2+, but catalytic activity was detected 

when Mn2+ was used as the divalent cation (Scheme 27). This promiscuous catalytic 

activity with Cj1416 and MnCTP was unexpected, but other nucleotide utilizing 
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enzymes have previously been shown to alter their substrate profile when different 

divalent cations have been substituted for Mg2+. Pyruvate kinase, for example, catalyzes 

the Mg2+-dependent phosphorylation of pyruvate with ATP. If Zn2+ is used in place of 

Mg2+, the enzyme is able to phosphorylate hydroxylamine to form hydroxylamine 

phosphate (11).  DNA polymerase has been shown to use Mn2+, but significantly more 

errors are made in copying DNA, compared with the fidelity observed with Mg2+ 

(12,13).  Error-prone PCR uses the enhanced Mn2+-dependent error rate to generate 

libraries of mutants for enzyme evolution investigations (14).  Dihydroxyacetone kinase 

catalyzes the phosphorylation of dihydroxyacetone with MgATP, but in the presence of 

Mn2+, the enzyme acts as a cyclase, catalyzing the cyclization of flavin adenine 

dinucleotide (FAD) to riboflavin 4′,5′-cyclic phosphate and AMP (15).  
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Scheme 26 Biosynthesis of 3’-Phospho-5’-cytidine Diphosphoramidate 

Scheme 27 Formation of Cytidine Diphosphoramidate by Cj1416 and MnCTP 
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In this article, we have more fully characterized the expansion in the substrate 

profile of Cj1416 when the reaction is catalyzed in the presence of MnCTP. We have 

shown that Cj1416 can catalyze the formation of 12 different reaction products when 

MnCTP is used as one of the substrates. The products have been characterized by 31P 

NMR spectroscopy and ESI (negative mode) mass spectrometry. 

 

6.2. Materials and Methods 

 

6.2.1. Materials 

All buffers and salts were purchased from SigmaAldrich, unless otherwise 

specified. Phosphate, methyl phosphonate, arsenate, ethanolamine phosphate, 3-

phospho-D-glycerate, racemic glycerol-1-phosphate, glycerol-2-phosphate, and L-serine 

phosphate were purchased from Sigma Aldrich. Phosphoramidate (5), L-glutamine 

phosphate (1), and (R/S)-serinol phosphate (14) were synthesized as reported previously 

(7,16,17).  Methyl phosphate (7) was synthesized by adding dichloromethyl phosphate to 

water. The plasmid (pET30b) for the expression of Cj1416 from C. jejuni NCTC 11168 

was obtained from Professor Christine Szymanski of the University of Georgia. 

 

6.2.2. Purification of CTP/Phosphoglutamine Cytidylyltransferase 

The plasmid used for the expression of Cj1416 (UniProt ID: Q0P8J8) with a C-

terminal poly histidine purification tag was used to transform Rosetta (DE3) Escherichia 

coli cells by electroporation. Cultures (5 mL) of LB medium supplemented with 50 
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μg/mL kanamycin and 25 μg/mL chloramphenicol were inoculated with a single colony 

and grown overnight at 37 °C. These cultures were used to inoculate 1 L of LB medium 

containing 50 μg/mL kanamycin and 25 μg/mL chloramphenicol and then incubated at 

30 °C until an OD600 of ∼0.6−0.8 was achieved. Gene expression was induced with 1.0 

mM isopropyl β-thiogalactoside (IPTG), grown for 16 h at 16 °C, and then harvested by 

centrifugation at 6300g at 4 °C. The resulting cell pellet was resuspended in loading 

buffer (50 mM HEPES/K+, 300 mM KCl, 20 mM imidazole, pH 8.0) and lysed by 

sonication. Cell debris was removed by centrifugation at 26000g and then passed 

through a 0.45 μm filter before being loaded onto a prepacked 5 mL HisTrap HP (GE 

Healthcare) nickel affinity column. Protein was eluted with 30 column volumes using a 

gradient of 20− 400 mM imidazole in 50 mM HEPES/K+, pH 8.0, and 300 mM KCl. 

Excess imidazole was removed by exchanging the buffer against 50 mM HEPES/K+, pH 

8.0, and 100 mM KCl, using a 20 mL (10 kDa molecular weight cutoff) of a concentrator 

(GE Healthcare). The enzyme was divided into smaller aliquots, frozen in liquid 

nitrogen, and stored at −80 °C until needed. 

 

6.2.3. 31P NMR Experiments 

31P NMR analysis was performed on a Bruker Ascend 400 MHz instrument with 

phosphoric acid as the reference at 0.0 ppm. Reactions (600 μL) contained 2.5 mM CTP, 

5.0 mM substrate, and 5.0 mM MnCl2 in 100 mM HEPES/K+ and 100 mM KCl, pH 8.0, 

with 15 μM Cj1416 for 8 h at 30 °C while shaking. Control reactions were conducted 

under the same conditions with no added enzyme. After incubation, 50 μL of 1 M KOH 
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was added to the reaction mixture. The samples were vortexed, and the oxidized 

manganese was removed by centrifugation at 18000g in a microcentrifuge for 5 min. 

The reaction mixtures were centrifuged two more times to remove all of the remaining 

manganese. After the third centrifugation, 10 mM EDTA and 100 μL of D2O were added 

to the sample and the product was analyzed by 31P NMR spectroscopy. 

 

6.2.4. Reaction Rates 

The rates of the reactions catalyzed by Cj1416 were determined by measuring the 

change in substrate and product concentrations using anion exchange chromatography 

and following the reaction on an FPLC by monitoring the wavelength of 255 nm. The 

column used was a prepackaged 1 mL HiTrap Q HP column from GE Healthcare. A 

sample of 600 μL was prepared, which contained 1.0 mM CTP, 4.0 mM MnCl2, 10 mM 

of the substrate to be tested, and 5.0 μM Cj1416 in 100 mM HEPES/K+ and 100 mM 

KCl, pH 8.0. Samples of 100 μL were injected onto the column every 12.5 min. A total 

of 17 column volumes were used to elute the sample using a gradient of 0−17% 10 mM 

triethanolamine, 2 M KCl, pH 8.0, with a flow rate of 2.0 mL min−1. CMP, CDP, and 

CTP standards were used to determine their relative elution times as 5.5, 7.1, and 8.3 

min, respectively. 

 

6.2.5. Negative ESI Mass Spectrometry 

Electrospray ionization mass spectrometry (ESI-MS) experiments were 

performed using a Thermo Scientific Q Exactive Focus. The sample was directly infused 
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at a flow rate of 10 μL/min. The Q Exactive Focus HESI source was operated in full MS 

in the negative mode. The mass resolution was tuned to 17500 fwhm at m/z 200. The 

spray voltage was set to 3.30 kV, and the sheath gas and auxiliary gas flow rates were set 

to 7 and 0 arbitrary units, respectively. The transfer capillary temperature was held at 

250 °C, and the S-Lens RF level was set at 50 V. Exactive Series 2.8 SP1/Xcalibur 4.0 

software was used for data acquisition and processing.  

Samples for negative mode ESI mass spectrometry were prepared as follows, 

unless otherwise stated. Reaction of 1.0 mL containing 5.0 mM CTP, 9.0 mM MnCl2, 10 

mM substrate, and 30 μM Cj1416 were incubated together in 100 mM HEPES/K+ and 

100 mM KCl, pH 8.0, for 16 h, while shaking. Samples were then centrifuged for 5 min 

at 15500g in a microcentrifuge. The supernatant solution was loaded onto an anion 

exchange column, and the product eluted with a total of 35 column volumes using a 

gradient of 0−35% of 1.0 M ammonium bicarbonate, pH 8.0. At a high pH, the initial 

products formed using 3-phospho-D-glycerate (11), glycerol-1phosphate (12), or 

glycerol-2-phosphate (13) degrade to a cyclic phosphate species and CMP. 

Unfractionated reactions using these three substrates were submitted for ESI analysis. 

All conditions were the same as before, except ammonium acetate (pH 8.0) was used in 

place of the HEPES buffer. 
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6.3. Results and Discussion 

 

6.3.1. Substrate Specificity of Cj1416 

Cj1416 was previously characterized as a CTP/phosphoglutamine 

cytididylyltransferase, which catalyzes the formation of CDP-L-glutamine (2) from L-

glutamine phosphate (1) and MgCTP (Scheme 26) (9).  When Cj1416 was incubated 

with MgCTP and phosphoramidate (5) and the reaction followed by anion exchange 

chromatography, no significant activity could be detected (kcat <1h−1). Since Cj1416 

appeared inactive with phosphoramidate using Mg2+ as a cofactor, Mn2+ was substituted 

as a potential divalent cation for the enzyme. Incubation of Cj1416 with MnCTP and 

phosphoramidate resulted in the consumption of CTP and formation of PPi and cytidine 

diphosphoramidate (3), as demonstrated by changes in the FPLC chromatogram (Figure 

22) and 31P NMR spectroscopy.  The 31P NMR spectrum of the reaction products 

revealed the appearance of two new resonances at −0.40 and −10.15 ppm, consistent 

with the formation of cytidine diphosphoramidate and an additional singlet (−5.01 ppm) 

from the PPi reaction product (Figure 23).  
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Figure 22 Anion exchange chromatograms for the reaction of MnCTP and 

phosphoramidate (5). (A) Control sample containing 1.0 mM CTP, 4.0 mM MnCl2, and 

10 mM phosphoramidate in 100 mM HEPES/K+, pH 8.0, and 100 mM KCl. (B) Same 

reaction mixture as in part A, plus the addition of 5.0 μM Cj1416. (C) Authentic cytidine 

diphosphoramidate standard. 
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Figure 23 31P NMR spectra for the reaction of MnCTP and phosphoramidate (5). (A) 
31P NMR spectrum for the reaction mixture containing 2.5 mM CTP, 5.0 mM 

phosphoramidate, and 5.0 mM MnCl2 in 100 mM HEPES/K+ and 100 mM KCl, at pH 

8.0 for 8 h at 30 °C. The pH was adjusted to 12 to oxidize the manganese. The mixture 

was centrifuged, and then 10 mM EDTA was added. (B) Same reaction conditions as 

in part A, except 15 μM Cj1416 was added. (C) Control sample of authentic cytidine 

diphosphoramidate (3). 
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Since Cj1416 is able to catalyze the formation of cytidine diphosphoramidate (3) 

using MnCTP, the breadth of this promiscuous activity with other substrates was 

explored. Methyl phosphate (7) and methyl phosphonate (8) were both assayed as 

possible substrates, since they are each similar in size and shape to phosphoramidate (5). 

Cj1416 catalyzed the formation of the O-methyl ester of CDP (17) and CMP methyl 

phosphonate (18). In total, 35 different compounds were assayed for catalytic activity 

with Cj1416 and MnCTP (Scheme 28). Of these 35 compounds, 12 showed product 

formation when analyzed by 31P NMR spectroscopy after an incubation period of 8 h 

with 15 μM Cj1416 and 2.5 mM MnCTP (Scheme 29). The apparent rate constants for 

the reaction of Cj1416 with 1.0 mM MnCTP and 10 mM substrate are presented in Table 

4. 
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Scheme 28 Substrates Tested with Cj1416 
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Scheme 29 Compounds Identified as Substrates with MnCTP and Cj1416 
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Table 4 Cj1416 and MnCTP Relative Rates, 31P NMR Chemical Shifts and Observed 

[M-H]- 

Substrate Expected 

[M-H]- 

Observed 

[M-H]- 

Rate 

Constant 

α-31P 

(ppm) 

β-31P  

(ppm) 

phosphoramidate (5) 401.02 401.02 36 ± 2 h-1 -10.15 -0.40 

phosphate (6) 402.01 402.01 11 ± 1 h-1 -9.85 -5.33 

methyl phosphate (7) 416.02 416.02 4 ± 0.3 h-1 -10.53 -8.84 

methyl phosphonate (8) 400.03 400.03 9 ± 1 h-1 -10.59 18.18 

arsenate (9) 446.96 322.04 11 ± 1 h-1 4.51a NA 

ethanolamine phosphate (10) 445.05 445.05 1 ± 0.2 h-1 -10.58 -9.91 

3-phospho-D-glycerate (11) 490.02 490.02 220 ± 20 h-1 4.51a 18.88b 

L-glutamine phosphate (1) 530.06 530.06 21 ± 2 h-1 -10.79 -15.64 

(R/S)-glycerol-1-phosphate (12) 476.04 476.04 4 ± 0.7 h-1 4.51a 19.16b 

glycerol-2-phosphate (13) 476.04 476.04 5 ± 0.5 h-1 4.51a 19.16b 

(R/S)-serinol phosphate (14) 475.06 475.06 1 ± 0.2 h-1 -10.56 -9.96 

L-serine phosphate (15) 489.04 489.04 11 ± 2 h-1 -10.47 -10.11 

aThe α-phosphoryl group is for CMP 
βCyclic degradation products 

NA: Not applicable for arsenate. 
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6.3.2. Characterization of Cj1416 Reaction Products 

The predicted initially formed products for Cj1416 with MnCTP and the 

substrates in Scheme 29 are shown in Scheme 30. The Cj1416-catalyzed reaction 

products, cytidine diphosphoramidate (3), CDP-L-glutamine (2), CDP (16), and CDP-

ethanolamine (20) using phosphoramidate (5), L-glutamine-P (1), phosphate (6), and 

ethanolamine-P (10) are consistent with their previously published 31P NMR spectra 

(Figure 23and Figure 24) (9,18).  The chemical shifts for four other reaction products, O-

methyl CDP (17), CMP methyl phosphonate (18), CDP-L-serine (25), and CDP-serinol 

(24), are also consistent with their predicted structures (Figure 25). The remaining four 

substrates, 3-phospho-D-glycerate (11), (R/S)-glycerol-1-phosphate (12), glycerol 2-

phosphate (13), and arsenate (9), all exhibited 31P NMR spectra that were inconsistent 

with the predicted products. 
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Scheme 30 Initial Reaction Products Formed by Cj1416 Using MnCTP and the 

Substrates Shown in Scheme 29.   
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Figure 24 31P NMR spectra of the Cj1416-catalyzed reaction products. Samples initially 

contained 2.5 mM CTP, 5.0 mM substrate, and 5.0 mM MnCl2 in 100 mM HEPES/K+, 

pH 8.0, and were incubated for 8 h at 30 °C while shaking with 15 μM Cj1416. The pH 

was adjusted to 12 to oxidize the manganese. After removal of manganese by 

centrifugation, 10 mM EDTA was added to the sample to sequester any remaining Mn2+. 

(A) L-Glutamine phosphate and the formation of L-glutamine CDP (2). (B) Phosphate 

and formation of CDP (16). (C) Ethanolamine phosphate and formation of ethanolamine 

CDP (20). 
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Figure 25 31P NMR of Cj1416 Products.  Samples contained 2.5 mM CTP, 5.0 mM 

substrate and 5.0 mM MnCl2 in 100 mM HEPES/KOH, 100 mM KCl at pH 8.0 with for 

8 h at 30 °C while shaking.  The pH was adjusted to12 to oxidize manganese.  After 

removal of manganese by centrifugation 10 mM EDTA was added to the sample. (A) 

Methyl phosphate (7) and formation of O-methyl ester CDP (17).  (B) Methyl 

phosphonate (8) and the formation of CMP-methyl phosphonate (18).  (C) (R/S)-serinol 

phosphate (14) and the formation of CDP-serinol (24).  (D) L-serine phosphate (15) and 

the formation of CDP-L-serine (25).  (E) Arsenate (9) and the formation of CMP.   
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In the reaction with arsenate, a new 31P NMR resonance is consistent with the 

formation of PPi, indicating that there was a turnover of MnCTP. However, CMP-

arsenate (19) was not detected, but CMP was observed. The formation of pyrophosphate 

is consistent with arsenate being a substrate for the enzyme, but the CMP-arsenate 

product is anticipated to be unstable and degrades to CMP and arsenate (Figure 25). The 

FPLC chromatograph of the reaction mixture is also consistent with rapid formation of 

the CMP degradation product. With (R/S)-glycerol-1-phosphate (12), glycerol-2-

phosphate (13), and 3-phospho-D-glycerate (11), all of the initially anticipated products 

were predicted to have a pair of doublets in their 31P NMR spectra due to 31P−31P spin 

coupling. However, for these three reaction products, new singlets are observed at 4.51 

ppm (for CMP) and at ∼19 ppm (Figure 26). The proton coupled 31P NMR spectrum of 

the 3-phospho-D-glycerate reaction product that resonates at 4.51 is a triplet, consistent 

with the formation of CMP and another resonance at 18.88 ppm, consistent with the 

formation a cyclic phosphate product as illustrated in Scheme 31. The observed cyclic 

degradation products are believed to be formed during the procedure to remove the 

manganese from the reaction mixture. The initial formation of CDP-3-D-glycerate is 

observed in the FPLC chromatogram when MnCTP is incubated with 3-phospho-D-

glycerate in the presence of Cj1416 (Figure 27). Other examples of five-membered 

cyclic phosphate species have previously been made chemically using a high pH (19,20).  
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Figure 26 31P NMR spectra. 31P NMR of a reaction containing 2.5 mM CTP, 5.0 mM 

substrate, and 5.0 mM MnCl2 in 100 mM HEPES/KOH and 100 mM KCl at pH 8.0 

for 8 h at 30 °C while shaking with 15 μM Cj1416. The pH was adjusted to 12 to 

oxidize manganese. After the removal of manganese by centrifugation, 10 mM EDTA 

was added to the sample. (A) Glycerol-1-phosphate and the formation of CMP and 

cyclic glycerol phosphate (27). (B) Glycerol-2-phosphate and the formation of CMP 

and cyclic glycerol phosphate (27). (C) 3-Phospho-D-glycerate and the formation of 

cyclic 3-phospho-D-glycerate (26). Insets show the 31P–1H coupled spectra. 
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Scheme 31 Cyclic Degradation Products 
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Figure 27 Anion exchange chromatograms for the reaction of 1.0 mM MnCTP and 10 

mM 3-phospho-D-glycerate (11).  (A) Sample immediately following the addition of 5 

µM Cj1416.  (B) Sample after incubation with Cj1416 for 25 min. (C) Sample after 1 h 

when all CTP has been consumed.  The formation of CDP-3-D-glycerate is observed 

with an elution time of ~7.9 min and the degradation product, CMP is observed at a 

retention time of ~5.7 min.   
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ESI-negative mode mass spectrometry was used to analyze all of the Cj1416-

catalyzed reaction products using MnCTP as the nucleotide substrate (Table 4). Table 4 

shows the predicted and observed masses for each of the 12 products. The spectra for 

CDP-glycerol (22) and CDP-2-glycerol (23) both show a mass of 476.04, which is 

consistent with the formation of their respective CDP-glycerol products. With CDP-2-

glycerol (23), masses of 152.99 and 322.04 are consistent with the cyclic phosphate (27) 

degradation product and CMP, respectively. The 3-phosphoglycerate reaction indicates a 

mass of 490.02, which is consistent with the formation of CDP-3-D-glycerate (21). The 

mass spectrum is also consistent with the formation of CMP (322.04) and the cyclic 

phosphate species (166.97) (26). This confirms our prediction that CDP-glycerol, CDP-

2-glycerol, and CDP-3-D-glycerate are the enzymatic products and that the degradation 

products occur due to the high pH, to which the samples were exposed. 

 

6.3.3. Cj1416 Relative Rates 

The rates observed with MnCTP and Cj1416 are relatively slow. In the presence 

of MnCTP, L-glutamine phosphate is utilized with an apparent kcat of 21 ± 2 h−1, 

compared to a kcat of 3400 ± 400 h−1 with MgCTP, resulting in a >100-fold reduction in 

rate (9).  With phosphoramidate and MnCTP, the apparent kcat is 36 ± 2h −1 but no 

significant activity (kcat <1h −1) was detected with MgCTP as the cosubstrate. The most 

surprising substrate was 3-phospho-D-glycerate (11). An apparent kcat of 220 ± 20 h−1 

was observed with this substrate and MnCTP, and thus the promiscuous activity of 3-

phospho-D-glycerate with MnCTP is an order of magnitude faster than the activity of the 
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physiological substrate L-glutamine phosphate when MnCTP is used as the nucleotide. 

When 3-phospho-D-glycerate was examined with MgCTP as the cofactor, no significant 

activity was observed (kcat <1h −1), thus demonstrating a >200-fold increase in rate with 

Mn2+ as a divalent cation, compared to Mg2+. 

 

6.3.4. Manganese-Induced Promiscuity of Cj1416 

The effects of various divalent cations on enzyme catalysis have previously been 

studied. In many cases, the effects of divalent cations have been addressed in terms of 

reaction rates, but promiscuity has rarely been examined. DNA polymerase is well-

known to exhibit promiscuity when Mg2+ is replaced by Mn2+. The promiscuous activity 

has been exploited in error-prone PCR procedures to generate random mutations in 

genes of interest. A physical explanation for how Mn2+ induces this effect on DNA 

polymerase is unknown. DNA polymerases generally require two metals for catalysis; 

“metal A” helps to lower the pKa of the 3′-hydroxyl group of the primer and coordinates 

the α-phosphoryl group of the incoming nucleotide, while “metal B” is coordinated to 

the incoming nucleotide and helps negate the negative charge of the triphosphate moiety 

of the substrate (12).  It is unclear which one of these two metals in DNA polymerase is 

responsible for the Mn2+ promiscuity. Magnesium and manganese are similar in several 

ways; both metals utilize an octahedral coordination geometry, have a similar ionic 

radius (Mg2+ 0.86 Å, Mn2+ 0.81 Å), and have a similar effect on the pKa of coordinated 

water (Mg2+ 11.4, Mn2+ 11.5) (21).  However, if the average covalent bond length is 

examined in all high-resolution Mg2+ and Mn2+ protein crystal structures, Mg2+ has an 
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average bond length of 2.09 Å and Mn2+ has an average bond length of 2.22 Å.22 The 

higher average bond length may help Mn2+ form distorted octahedral geometries, which 

can broaden or relax ligand preferences (21).  The substitution of divalent cations is now 

known to have an effect on the substrate profile of Cj1416. Cj1416 can form a minimum 

of 12 unique reaction products from MnCTP. CDP-ethanolamine is a known natural 

product and is used in the formation of phosphatidylethanolamine, a common lipid, and 

CDP-1-glycerol is used in teichoic acid biosynthesis (23).  CDP-2-glycerol is another 

known natural product from Streptococcus pneumonia (24).  Cj1416 is capable of 

forming all three of these natural products, two of which are unavailable commercially. 

Additionally CDP-serine, CDP-serinol, and CDP-3-D-glycerate are all structurally 

similar to CDP-glycerol and may function as potential inhibitors or as mechanistic 

probes for enzymes that use CDP-glycerol. Another reaction catalyzed by Cj1416 and 

MnCTP is the formation of CDP from CTP and phosphate. If 18O-labeled phosphate is 

used as an alternate substrate, Cj1416 can be used to form β-[18O4]-CDP, which can 

subsequently be used to synthesize β-[18O4]-CTP. Typically, β-[18O4]-CDP is made using 

morpholidate chemistry in dry DMSO with 18O-labeled phosphate. Labeled nucleotides 

of this type can be used to probe the details of enzyme-catalyzed reactions using the 

methodologies of positional isotope exchange (PIX) and molecular isotope exchange 

(MIX). 
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7. CONCLUSIONS 

 

7.1. Biosynthesis of 3’-Phosphocytidine-5’-Diphosphoramidate 

The first four steps in the biosynthesis of the O-methyl phosphoramidate 

modification in Campylobacter jejuni have been elucidated.  The first enzyme, Cj1418, 

catalyzes the ATP dependent phosphorylation of L-glutamine forming L-glutamine 

phosphate.  This novel reaction represents the first instance of an enzyme catalyzing the 

phosphorylation of an amide, and is the first enzyme in this family to catalyze the 

formation of a phosphoramidate bond.  The chemical mechanism of Cj1418 was also 

determined.  Cj1418 catalyzes the nucleophilic attack into the β-phosphoryl group of 

ATP using histidine 737, forming a pyrophosphorylated enzyme intermediate.  This 

pyrophosphorylated enzyme intermediate is then hydrolyzed, resulting in a 

phosphorylated intermediate.  The phosphorylated enzyme intermediate then transfers 

the β-phosphoryl group from ATP to L-glutamine forming L-glutamine phosphate.   

Cj1416, a CTP:phosphoglutamine cytidylyltransferase, catalyzes the formation of 

CDP-L-glutamine from CTP and L-glutamine phosphate.  CDP-L-glutamine is then 

hydrolyzed by Cj1417, a γ-glutamyl-CDP-amidate hydrolase, forming glutamate and 

cytidine diphosphoramidate.  The fourth enzyme then phosphorylates the 3’-hydrozyl 

group of cytidine diphosphoramidate, resulting in the 3’-phosphocytidine-5’-

diphosphoramidate cofactor.  This cofactor shares similarity to 3’-phosphoadenosine-5’-

phosphosulfate, a cofactor that is used in the transfer of sulfate.   
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7.2. Metabolic Fate of 3’-Phosphocytidine-5’-Diphosphoramidate 

The metabolic fate of the 3’-phosphocytidine-5’-diphosphoramidate cofactor is 

currently unknown.  The four genes cj1419, cj1420, cj1421, and cj1422 are believed to 

be responsible for the formation of the O-methyl phosphoramidate modification in the 

NCTC 11168 strain of C. jejuni.  Knockout studies on each of these four genes reveals 

that Cj1421 is responsible for the formation of the phosphoramidate modification found 

on C3 of the 2-acetamido-2-deoxy-β-D-galactofuranose and Cj1422 is responsible for 

the modification found on C4 of D-glycero-α-L-gluco-heptopyranose (1).  Both of these 

enzymes are annotated transferases and are believed to be responsible for the transfer of  

the phosphoramidate to the capsule.   

Cj1419 and Cj1420 are both annotated SAM dependent methyl transferases.  

Any strain of C. jejuni that contains Cj1418, Cj1417, Cj1416, and Cj1415 always 

contains a copy of Cj1419 and Cj1420.  Both methyltransferases are always present, 

however they only share a 32% identity to each other; however Cj1419 and Cj1420 

across different strains of C. jejuni share a >95% identity to their respective counterparts.  

In the same study that examined the Cj1421 and Cj1422 knockouts, Cj1419 and Cj1420 

were analyzed (1).  The authors claim that Cj1419 and Cj1420 are not involved in the 

biosynthesis of the O-methyl phosphoramidate modification, and note that resonances 

for both phosphoramidate resonances are detected in each Cj1419 and Cj1420 knockouts 

(1).  However, looking at the spectra presented in the paper, both resonances are 

observed in the Cj1419 knock out, like the authors claim, although the resonance for the 

phosphoramidate at C3 of the 2-acetamido-2-deoxy-β-D-galactofuranose appears 
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diminished compared to the wild type control.  In the knockout of Cj1420 the resonance 

for the phosphoramidate on C4 of D-glycero-α-L-gluco-heptopyranose is not detected, 

which clearly implicates Cj1420 in the biosynthesis of the O-methyl phosphoramidate 

(1).   

Two experiments are missing from the study involving the knockouts.  Since the 

authors claim Cj1419 and Cj1420 are not involved in the biosynthesis of the O-methyl 

phosphoramidate, this should have been supported by a Cj1419 and Cj1420 double 

mutant.  This would have ruled out the possibility that either Cj1419 or Cj1420 contain 

some degree of promiscuity and can compensate for missing either Cj1419 or Cj1420.  

The other missing experiment is using 31P NMR to examine the knockout strains of 

Cj1419 and Cj1420.  If this had been done, it is possible that a phosphoramidate 

resonance could be detected on the capsule, absent the methyl group.  This would 

confirm that the phosphoramidate moiety is transferred to the capsule then methylated.  

The order of methylation and phosphoramidate transfer is still unknown.   

 

7.3. Future Work 

Currently four of the eight enzymes predicted to be responsible for the formation 

of the O-methyl phosphoramidate modification in the NCTC 11168 strain of C. jejuni 

have been characterized.  It is unknown if the phosphoramidate is methylated then 

transferred to the capsule, or transferred then methylated.  The 3’-phosphocytidine-5’-

diphoshoramidate cofactor has been assayed for activity with both of the methyl 

transferases, but no activity was observed.  Presumably this means transfer of the 
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phosphoramidate occurs first however this still needs to be shown.  Additionally it is 

unclear what the actual substrate for Cj1422 and Cj1421 might be.  The most likely 

substrates are either a nucleotide-carbohydrate or the actual capsule.  Once the order of 

methylation and transfer of the phosphoramidate are elucidated, the entire biosynthesis 

of O-methyl phosphoramidate will be known.   

This project has also been conducted in collaboration with the Holden lab at the 

University of Wisconsin Maddison, who are working on crystalizing these proteins for 

structural determination.  Efforts are currently underway to determine the structures for 

Cj1418, Cj1416, Cj1417 and Cj1415.   
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