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ABSTRACT 

 

This dissertation consists of three studies that focus on price transmission 

analyses. The first study investigates the vertical transmission processes among the 

prices of Taiwanese pork, chicken, hen eggs, international crop prices, and ocean freight 

rates with monthly data from 2001-2017. Using the Engle-Granger two-step and 

Johansen methodologies, the study confirmed that the farm-gate prices of livestock 

products were cointegrated with the export prices of the U.S. and Brazilian corn and 

soybeans and the Baltic Dry Index (BDI). Consequently, the Enders-Siklos threshold 

cointegration and nonlinear autoregressive distributed lag approaches were used to test 

for asymmetric effects on the speeds of price adjustment and the magnitude of price 

transmission, respectively. The empirical results indicate that the U.S. soybean and corn 

prices have a nonlinear long-run effect on Taiwanese pork and hen egg prices 

respectively when the U.S. corn prices and BDI have a nonlinear long-run effect on 

Taiwanese chicken prices. 

The second study investigated dynamic relationships among Taiwanese live eel, 

vegetable soybean (edamame), and feather and down prices and their major competitors' 

prices in the Japanese market. For this purpose, vector error correction models were 

estimated. Directed acyclic graphs based on the PC algorithm characterized the 

contemporaneous causal relationships among major competitor's prices from different 

countries. The empirical results reveal that Chinese prepared eel prices dominate the 

other competitors' prices except for the prepared eel prices from Shizuoka Prefecture. 
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For the Japanese edamame market, domestic edamame prices are almost independent of 

import prices, and Chinese and Thai prices have a significant effect on Taiwanese prices. 

For the Japanese feather and down market, Chinese and French feather and down prices 

have a stronger influence on Taiwanese feather and down prices. 

The third study estimated the U.S. banana import demand disaggregated by 

exporting countries and offered a comparison of short-term forecasting ability of the 

inverse national bureau of research (INBR), dynamic inverse almost ideal demand 

system (DIAIDS) models, and their directed graphical models (DGMs). According to 

four measures of forecast accuracy, the DGM-DIAIDS model performs the best, whereas 

the DGM-INBR model performs the worst. In the short run, all Marshallian own-

quantity frequencies estimates were less than one in absolute value, indicating that the 

fresh bananas of six exporting countries are price inflexible. In addition, all statistically 

significant Marshallian cross-quantity frequencies were found to be negative. This 

means that bananas from two different exporting countries are gross quantity-substitutes. 

Finally, the scale frequencies show that the Banana prices from six exporting countries 

are significantly affected by the quantity of total import bananas. 
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CHAPTER I 

INTRODUCTION 

 

Everyone is concerned with fluctuations in market prices because increases and 

decreases in prices of goods and services affect everyone in everyday life, and volatility 

in prices of goods and services affects economic agents' decision-making. For example, 

consumers are concerned with changes in the prices of necessities because they are 

associated with the cost of maintaining a desired standard of living. In addition, 

producers are concerned with prices of outputs and inputs of production, since they 

affect the revenues and profits of their enterprises. The theory of price postulates that the 

forces of consumption (demand) and production (supply) in a free market economy 

determine market prices. In a market economy, prices of goods and services provide the 

information necessary for producers and consumers to make a profit and to make 

decisions that maximize utility, respectively. Fluctuations in market prices are an 

indicator of generation of economic activities, and part of endogenous and exogenous 

variables might affect their fluctuations. Economists use various models to study the 

welfare effects of a price change, measure the sensitivity of quantity change caused by a 

price change, investigate whether there a relationship between the prices of related 

products, etc. Price transmission (PT) analysis measures the effect of changes of prices 

of one commodity to another commodity in a supply chain. There are three types of 

price transmission, spatial, vertical, and cross transmission. Spatial price transmission 

(SPT) occurs when price linkages occur across spatially distributed markets. In SPT, 
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goods are homogeneous, such as world prices and local prices for a given commodity, 

and local prices for the same commodity in different regions or countries. Vertical price 

transmission (VPT) happens when price linkages occur in a marketing chain, and it 

usually explores the extent to which downstream markets are impacted by changes in the 

upstream prices. Upstream prices are the prices of inputs in the production processes of 

downstream firms or prices quoted on higher market levels (e.g. wholesale markets). 

Accordingly, downstream prices are the prices of downstream outputs which are 

processed or manufactured by the outputs of upstream firms or prices quoted on lower 

market levels (e.g. retail markets). Cross price transmission (CPT) occurs when two 

goods are substitutes in consumption and/or production (e.g. maize and rice). 

In general, the results of PT analyses can provide solutions to the following areas 

(Rapsomanikis et al., 2003; Molnár et al., 2013): (1) long-term relationship among 

prices, (2) magnitude of change in the price of one commodity due to a change in the 

price of another commodity (3) the speed of the pass-through of the length in time until 

the reaction of one commodity to a price change in another commodity, and (4) 

symmetric or asymmetric PT. Symmetric PT means that the price of one commodity 

would respond in the same manner for both increases and decreases in the price of 

another commodity. Otherwise, PT is asymmetric. Studies with regard to PT are 

numerous. Some are interested in financial sectors, such as American depository receipts 

and their underlying foreign securities (Kim et al., 2000), stock markets (Masih and 

Masih, 2002), futures markets (Shyy and Lee, 1995). Some studies focus on energy 

sectors such as crude oil and gasoline (Balke et al., 1998; Chen et al., 2005), crude oil 



 

 3

and plastic products (Weinhagen, 2006; Jiang et al., 2015), biofuels and their crops 

(Serra and Zilberman, 2013). Also, a large part of the literature is concentrated in agro-

food sectors such as the relationship between the upstream and downstream prices of 

agricultural products: the retail and landing prices of fresh cod and the retail and import 

prices of fresh salmon in France (Simioni et al., 2013), the wholesale and retail prices of 

aquaculture and capture fisheries in Bangladesh (Sapkota et al., 2015), the fish prices of 

Canadian fist-hand and processing markets (Gordon, 2017), etc. and the price 

relationship of a certain agricultural product in different markets: the maize wholesale 

prices of Accra and Bolgatanga markets in Ghana (Abdulai, 2000), the pork producer 

prices in Germany, Spain, France, and Denmark (Serra and Gil, 2006), the real wheat 

prices in 28 Turkish provinces (Brosig et al., 2011), etc.  

In general, microeconomics is divided into two categories of private economic 

units: consumers (or households) and producers (or firms). These two categories result in 

two research branches: the theory of the consumer and theory of the firm. The theory of 

the consumer is concerned with the demand for goods and services by rational 

consumers pursuing maximum utility on a given budget decided upon by themselves. 

Prices are also an important factor that affects the demand quantity of goods and 

services. When the price of one good changes, what happens to the demand of the other 

good? According to the reaction type of its demand, the relationship between two goods 

can be divided into substitute, complementary, and independent of each other. Market 

demand analysis can help producers understand how much consumer demand exists for 

a good or service and how changes in the price of other related goods and services affect 
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the demand of their goods and services. Moreover, market demand forecasting uses 

scientific theories and methods to analyze and study the market demand and impact 

demand factors within a certain period in the future analyses. In general, the analytical 

method can be classified into four groups: a survey of buyers' intentions, sales-force 

composite, expert opinions, and time series analyses. There is a large amount of 

literature exploring the demand of goods and services. The related literature can be 

roughly classified into three groups: (1) The primary sector of the economy such as food 

demand (Seale et al., 2003), fish demand (Dey et al., 2008), and meat demand (Mutondo 

and Henneberry, 2007); (2) the secondary sector of the economy such as electricity 

demand (Erdogdu, 2007) and crude oil or gasoline demand (Cheung and Thomson, 

2010; Ziramba, 2010); (3) the tertiary sector of the economy such as travel or tourism 

demand (Cooper, 2000; Starbuck et al., 2004, Wu et al., 2012). 

The relevant literature regarding PT and demand analyses for our study will be 

reviewed in the following three essays. The essays in this thesis are motivated in part by 

the broad goal of better understanding price adjustment processes. The first two essays 

empirically investigate PT and both use time series methods and graphical models. The 

last essay discusses the demand issues related to the imports of fresh bananas in the U.S. 

market and applies consumer demand and graphical models. 
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CHAPTER ΙI 

VERTICAL PRICE TRANSMISSION AMONG INTERNATIONAL CROPS, 

OCEAN FREIGHT, AND TAIWAN MAJOR ANIMAL HUSBANDRY 

 

2.1 Introduction 

According to the statistics from Taiwan Council of Agriculture (COA), the top 5 

most valuable sectors of agricultural production in Taiwan are hogs, rice, white broilers 

and colorful chickens, tuna, and hen eggs. Pork and poultry meat are major sources of 

meat consumption in Taiwan, averaging 89.80 and 77.03 pounds per person in 2017, and 

the consumption was about 6.79 and 5.83 times the amount of beef consumption, 

respectively. More than 84% of the poultry meat consumed is chicken. Moreover, egg 

consumption was estimated at about 337 eggs per person. More than 94% of eggs 

consumed are hen eggs. Although the demand for pork, chicken, and hen eggs mainly 

depends on domestic production, their import percentages gradually increased after 

joining the World Trade Organization (WTO) in 2002, except the import of hen eggs is 

still minimal. Since 1986, the gross output value of the hog industry exceeded that of 

rice and became number one among all agricultural products. Its export volume also 

sharply increased from about 50 thousand metric tons (tmt) in 1984 to a peak of 276.90 

tmt in 1996. Taiwan was a net exporting country of pork from 1969 until the outbreak of 

foot-and-mouth disease in 1997. The Taiwan chicken-meat industry has two types of 

broilers: white and colored broilers. The typical breeds of colorful chickens in Taiwan 

are red- and black-feathered chickens. For domestic chicken production, the ratio of 
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white broilers to colorful chickens was three to two in 2017. However, the production 

value of colorful chickens is higher than that of white broilers because a colorful chicken 

is more expensive than a white broiler in Taiwan. For the reason that colorful chicken 

are fed longer than white broilers to reach market weight, the muscles and gonads are 

more mature, and the meat quality is better than that of white broilers. Taiwan also fully 

opened chicken imports in 2005, and the import volume hit a record high in 2015. 

Because most of the imports of poultry meat are white broilers, even in 2015 the 

imported volume of white broilers accounted for up to 37.64% of the total supply of 

white broilers. Except for the egg industry, it is obvious that the hog and chicken 

industries have suffered from market competition since Taiwan has opened their markets 

to the world market. 

According to Taiwan Agriculture Statistics Yearbook 2017, feed costs accounted 

for approximately 62.33%, 59.61%, and 76.73% of the production costs for hogs, white 

broilers, and laying hens, respectively. In general, hog and chicken feed is more than 

50% of field corn and about 20% of soybeans. Thus, it is reasonable to believe that corn 

and soybean prices have a major influence on pork and chicken prices. Because both the 

degrees of self-sufficiency in field corn and soybeans are below 1%, their demand 

almost exclusively depends on imports. The main import sources for field corn and 

soybeans are the USA and Brazil. Thus, the fluctuations in the international prices of 

field corn and soybeans not only directly affect the import prices of feed but also 

indirectly affect the prices of pork, chicken, and hen eggs. 
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Figure 2.1 shows that there was a sharp increase in the prices of corn and 

soybeans during 2007-2008 because of the worldwide food price crisis. Although after 

the crisis the prices reduced to a lower level, the average prices in recent years were still 

higher than those before the crisis. High grain prices lead to increased production cost of 

feeding farm animals, which leads to a decreased profit margin because farmers can not 

easily transfer the increased costs to consumers. This forced the farmers to decrease 

outputs or quit farming. Between 2006 and 2008, average worldwide prices for corn and 

soybeans went up by 125% and 107% respectively, and the average prices of pork, 

chicken, and hen eggs increased 34%, 29%, and 47%, respectively (Figure 2.2). 
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Figure 2.1. Monthly average prices of corn and soybean in the U.S. and Brazil and 
the average value of the Baltic Dry Index, 2001-2017 
Notes: U.S. corn (USC), U.S. soybean (USS), Brazil corn (BRC), Brazil soybean (BRS), and Baltic Dry 
index (BDI). 
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Figure 2.2. Monthly average prices of the selected livestock in Taiwan, 2001-2017 
Notes: Farm prices for livestock except eggs by a retail price. 

 

In addition, the global production of corn ethanol gradually increased as oil 

prices increased. It is expected that the strong increases in ethanol production would 

result in higher corn prices and an indirect increase in the production costs of stock 

farming. There has been considerable concern about how much the international prices 

of grains need to increase to shock Taiwanese animal husbandry. In the feeding process 

of farm animals, higher input prices could not only reduce the competitiveness of 

agricultural producers but also increase pricing on outputs. Moreover, the increases in 

prices of necessities of life would reduce consumer welfare. With this background, the 

objective of this essay is to use an appropriate time series model to examine the vertical 

transmission processes among the prices of Taiwanese pork, chicken, and hen eggs, 

international crop prices, and ocean freight rates, according to the properties of data. The 

paper is organized as follows. The related literature on the economic topics of VPT is 
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presented in the next section of the paper. Then, the theoretical frameworks for linear 

and nonlinear cointegration tests and data sources are described. Following that, results 

and relevant discussions are presented. The summary of main findings is presented in the 

last section of the paper. 

2.2 Literature Review 

Analyses of vertical price transmission are extensively applied to agricultural 

commodities. For example, Kinnucan and Forker (1987) found that the price 

transmission process among American farm milk and four retail products which are fluid 

milk, butter, cheese, and ice cream is asymmetric by an econometric model using a 

pricing relationship between farm and retail prices. Cramon-Taubadel (1998) 

demonstrated that asymmetric price adjustment exists between the producer and 

wholesale pork prices in northern Germany. Goodwin and Holt (1999) and Goodwin and 

Harper (2000) used threshold cointegration models to investigate linkages among farm, 

wholesale, and retail markets in the U.S. beef and pork sectors, respectively. Both 

confirmed previous researchers’ findings that the transmission of shocks is largely 

unidirectional and that information tends to flow from farm to wholesale and finally to 

retail markets. Jaffry (2004) applied the Engle and Granger two-step method, and the 

Enders and Granger threshold autoregression (TAR) and momentum autoregression 

(MTAR) approaches to analyze the relationship between auction and retail prices of 

whole hake in France. Zheng et al. (2010) used asymmetric error correction models 

(ECM), almost ideal demand systems (AIDS), and the Rotterdam demand models to 

estimate the welfare impact of asymmetric price transmission among producer, 
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wholesale, and retail pork and beef prices for American consumers. Nakajima (2011) 

used TAR and repeated TAR models to investigate asymmetric relationship between 

U.S. domestic and export soybean prices. Asche et al. (2014) employed the Johansen test 

to investigate the relationship among French retail prices for fresh salmon fillets and 

smoked salmon and Norwegian export prices of salmon. Ahn and Lee (2015) applied a 

nonlinear autoregressive distributed lag (NLARDL) model to investigate the asymmetry 

of the price transmission in the marketing chain of shipping points and terminal markets 

for apples, table grapes, and peaches in the western U.S.  

It is interesting how farm sector shocks, which work through crop prices, 

influence related food prices in the noncrop sectors of a certain economy. For example, 

Babula and Bessler (1990) found that the U.S. egg prices at the farm and retail levels 

rose after a positive shock of the U.S. corn prices happened and the response period 

persisted for 17 months. Babula et al. (1991) reported similar relationships among the 

U.S. corn, farm broiler, and retail broiler markets. Anderson and Trapp (2000) 

constructed a feeder-calf price model that contains elements of a break-even budget 

analysis to explore the relationship between the U.S. corn and feeder-calf prices. The 

results showed that feeder-calf prices are less sensitive to the fluctuation of corn prices 

than popular rules of thumb imply. Xu et al. (2011) found the degree of price 

transmission between corn and egg markets or feed and egg markets is larger than that 

between egg-laying chicken and egg markets in China. 

For the literature of price transmission on the main animal husbandry in Taiwan, 

Huang and Wu (2008) showed that regional hog prices converge in the long run, and 
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regional effects significantly affect the cross-city price volatility and price correlations. 

Lee (2010) reported that the speed of the price transmission to the retail price of pork 

while the producer price of pork was declining was faster than that, while the producer 

price of pork was increasing and that the bi-direction feedback relationship existed 

between farm and retail pork markets in Taiwan. Li et al. (2012) developed an industry-

related price model to investigate the impacts of the price volatility of oil on production 

costs of industries and price levels in Taiwan and discovered that a 1% rise in 

international prices of crude oil causes an increase in production costs of hogs of 1.65%. 

Hwang and Yeh (2012) found that there is an asymmetric cointegration relationship 

between farm prices of chicken and feed prices. Hsu (2015) simulated the influence of 

increases in both gasoline and electricity prices on the agricultural sector and suggested 

that positive impacts on the pork, chicken, and hen egg industries are greater than their 

negative impacts, and rises in consumer prices of pork, chicken, and hen eggs are much 

greater than those in their farm prices. 

2.3 Methodology 

2.3.1 Linear Cointegration Tests 

The relationship between the cointegration and error correction models was first 

introduced by Granger (1981) and then developed by Engle and Granger (1987). 

According to their definition, an n-dimensional vector of time series tx  is a 

cointegrated process of order d and b (CI(d, b)) if it satisfies two conditions: (a) Each 

series of tx  without deterministic components which has a stationary and invertible 

autoregressive moving average (ARMA) representation after differenced d times is said 
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to be integrated of order d, denoted )(~ dIxt , and (b) there is existence of a linear 

combination of them so that )(~ bdIxz tt  , .0b  The vector   is called the 

cointegrating vector. In case of d = 1, b = 1, all components tx  are cointegrated and 

move together over time, and the distance among them is stable, i.e., the existence of a 

long-run equilibrium relationship among them. This implies that these time series could 

deviate from the equilibrium in the short run, but the equilibrating force would push 

them back towards the long-run relationship. Thus, in order to investigate the existence 

of a long-run equilibrium relationship among nonstationary time series, Engle and 

Granger (1987) proposed a two-step estimation procedure that allows explicit tests of the 

underlying assumption of cointegration. Let ],,[ 1  Nttt xxx   denote the tht  

observation on N time series. Each component of tx  is known to be I(1). Suppose that 

there exists a vector   such that ,1[tz ]tx  is I(0). In the first step, the parameters 

of the cointegrating vector are estimated generally by using the ordinary least squares 

(OLS) method in the following cointegrating regression: 

(2.1) ,,1,
211   

txx
N

i titit  T , 

where t  are known as innovations. By the estimate of the true cointegrating vector, 

,]'ˆ,,ˆ,1[ˆ 1 N    one could calculate  

(2.2) ,1[ˆ tz NtNttt xxxx  ˆˆˆˆ] 2211   . 

In the second step, an augmented Dickey-Fuller (ADF) test is used to check 

whether a unit root is present in tẑ   and the test regression is 
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(2.3) tjt

p

j jtt ezzz    ˆˆˆ
110  , 

where P is the number of lags, 0  and j  are the coefficients, and te  is a white-

noise disturbance term. The lag P can be selected using the Akaike information criterion 

(AIC), Bayesian information criterion (BIC), Liung-Box tests, or other information 

criteria. One can run equation (2.3) and calculate the t statistic of 0 . If the null 

hypothesis that 00    is rejected, it implies that there also is enough evidence to 

reject the null hypothesis of no cointegration in Engle-Granger (EG) tests. Note that it is 

very important to search appropriate lag length such that the residual process te  is 

white noise.  

Johansen (1988, 1991) derived the maximum likelihood estimator of the space of 

cointegration vectors and the likelihood ratio test of the hypothesis that it has a given 

number of dimensions. Consider a vector autoregression (VAR) model of order P as 

follows: 

(2.4) ,,2,1,11    tDxxx ttptptt  T , 

where tx  is a )1( N  vector of series at period t and is allowed to be non-stationary 

(I(1)), ),,1( pii   are )( NN   coefficient matrices of the lagged endogenous 

variables,   is a )1( N  vector of constants, tD  is a vector of non-stochastic 

variables such as seasonal or intervention dummies, and t  is an independent N-

dimensional Gaussian variable with mean zero and variance matrix  . 

It is convenient to rewrite equation (2.4) in an error correction form 
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(2.5) ,,2,1,
1

1
 



 tDxxx ttptit

p

i it  T , 

where )( 1 ii I    for 1,,1  pi  . )( 1 pI   . L 1  

with the lag operator L and I  is a )( NN   identity matrix. 

Because each component of tx  is at most I(1) series, the left-hand side (LHS) of 

equation (2.5) is stationary. In order to maintain the balance of equation (2.5), ptx   

must also be stationary. There are three possible cases: 

(і) ,)( Nrk   

(іі) ,0)( rk  

(ііі) ,)(0 Nrrk   

where )(rk  is the rank of a matrix. In the first case the matrix   has full rank; this 

implies that there exist N linear combinations t

N

i iti zx  1
  such that }{ tz  is 

stationary. Only if all variables in the vector process tx  are stationary, the first case 

could exist. In the second case, the matrix   has zero rank; it indicates that there is not 

any linear combination of tx  such that }{ tz  is stationary except for the trivial solution. 

All sx'  are non-stationary. Thus, in this case equation (2.5) corresponds to a VAR 

model in first differences. The third case is the focus of this cointegration test. It implies 

the existence of two )( rN   matrices   and   such that    where   

represents the average speed of convergence towards long-run equilibrium, and   

denotes the cointegrating vectors. Then, ptx   is stationary. By the property of  , 
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ptx   also is stationary even if tx  itself is non-stationary. In this case, equation (2.5) 

is a vector error correction model (VECM).  

Johansen (1988, 1991) showed that the likelihood-ratio test statistic for 

rrkH )(:0  or    is 

(2.6) ,)ˆ1ln()ln(2
1 


N

ri iTQ   

where Q  denotes the likelihood ratio of the null model to alternative model, and 

Nr  ˆ,,ˆ
1   are the rN   smallest eigenvalues of the equation 0ˆˆˆˆ

0
1

000  
pppp SSSS  

with the product moment matrices  

(2.7) ,0,,ˆ
1

1   
 jiRRTS

T

t jtitij
,p  

where the residuals tR0  and ptR  are obtained by regressing tx  and ptx   on 

,,,, 11 tptt Dxx     and 1, respectively. 

Moreover, Johansen and Juselius (1990) proposed the following likelihood ratio 

test statistic for testing rrkH )(:0  against .1)(:  rrkH A  

(2.8) )ˆ1ln()1|;ln(2 1 rTrrQ  . 

2.3.2 Nonlinear Cointegration Test 

The above-mentioned cointegration tests assume that the presence of 

cointegration among non-stationary variables represents such a tendency to move toward 

a long-run equilibrium is present every period. However, it is possible for changes of the 

cointegration parameters or of the existence of cointegration relationships at unknown 

periods. Balke and Fomby (1997) introduced the concept of discrete adjustment into 
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long-run equilibrium relationships among the variables in hand and proposed a two-step 

approach for checking whether so-called “threshold” effects on the cointegrating 

relationships exist. The first step utilizes a linear cointegration test such as Engel-

Granger approach to examine whether a long-run relationship is present. If there is 

enough evidence to reject :0H  no cointegration, he developed a sup-Wald test to check 

whether threshold effects are present in the time series in the second step. 

For the above-mentioned Engle-Granger test assuming symmetric adjustment ant 

its extensions, the statistical inference would be misspecified if the adjustment is 

asymmetric. Thus, Enders and Siklos (2001) introduced the concept of asymmetric 

adjustment into the long-run cointegration relationship of the Engle-Granger test. The 

alternative model modifies equation (2.3) such that: 

(2.9) tjt

p

j jttttt ezzIzIz    ˆˆˆˆ
11211  , 

if 1ˆtz , 
(2.10a) 






0

1
tI  

if 1ˆtz ; or 

if  1ˆtz , 
(2.10b) 






0

1
tI  

if  1ˆtz , 

where It is the Heaviside indicator, P is the number of lags, 1 , 2  and j  are the 

coefficients, and   is the threshold value. 

Models made up of equation (2.9) and (2.10a) are called the TAR models, while 

those formed using equation (2.9) and (2.10b) are named as the MTAR models. The 

appropriate lag length in equation (2.9) could be selected using the AIC or the BIC. 

According to Petruccelli and Woolford's (1984) proof, the process  0; tzt  is 
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stationary when 1  and 2  satisfy the following necessary and sufficient conditions: 

01  , 02  , and    111 21    for any value of  . If the above-mentioned 

conditions are fulfilled, 0ˆ tz  can be regarded as the long-run equilibrium value of the 

system and then NtNtt xxx  ˆˆˆ 2211   . Generally, the threshold value,  , is 

unknown and needs to be estimated along with the values of 1  and 2  if the 

various itx  are cointegrated, whereas there is no threshold and the value of 1  and/or 

2  is equal to zero if the various  itx  are not cointegrated. Thus, when the threshold 

value   exists, TAR (MTAR) threshold adjustment is 11 ˆ tz  ( 11 ˆ  tz ) if 1ˆ tz  ( 1ˆ  tz ) 

is over its long-run equilibrium value and 12 ˆ tz  ( 12 ˆ  tz ) if 1ˆ tz  ( 1ˆ  tz ) is under the 

long-run equilibrium value. Two tests are employed to understanding the asymmetric 

adjustments in the content of a long-run cointegration relationship. First, an F-test is 

applied to examine the null hypothesis of no cointegration  0: 210  H  against 

the alternative of cointegration with either TAR or M-TAR threshold adjustment. The 

test statistic is called  , does not follow a standard distribution, and its critical values 

in Enders and Siklos (2001) could be used. Second, a standard F-test is employed to test 

the null hypothesis of symmetric adjustment in the long-run equilibrium  210 :  H  

against the alternative of the existence of an asymmetric adjustment process. 

2.3.3 Autoregressive Distributed Lag Model 

To investigate the long-run relationship of the pork, chicken, and egg VPT and 

see how much international crop prices (corn and soybeans) and ocean freight rates can 
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explain the changes of Taiwanese pork, chicken, and egg prices, we begin with the 

following multivariate regression model: 

(2.11) 

,,,1,***** 543210 TtBDIBRSBRCUSSUSCy ttttttit    

where 3,2,1i  denote Taiwanese pork, chicken, and egg prices, respectively, USCt and 

USSt are U.S. corn and soybean prices, respectively, BRCt and BRSt are Brazilian corn 

and soybean prices, respectively, BDIt is a shipping and trade index that measures 

shipping costs for dry bulk commodities such as grain and metals, and t  are known as 

innovations. The OLS estimators of Equation (2.11) are said to be super-consistent if 

cointegration among the nonstationary variables is established. In order to assess the 

short-run effects, we follow Pesaran et al. (2001) and transform equation (2.11) to the 

error correction form of a linear ARDL (LARDL) model as in equation (2.12): 

(2.12) 
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where coefficients of the first differenced variables, b2i-b6i, represent the short-run 

effects of international crop prices and shipping cost on Taiwanese pork, chicken and 

egg prices, respectively and long-run effects can be obtained by estimating coefficients 

of the lagged level of international crop prices and shipping cost, c2-c6, normalized on c1. 

AIC, BIC, or other information criteria can be used to determine the optimum lag 

length in equation (2.12). However, in order to avoid spurious estimates, cointegration 
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must be established. Pesaran et al. (2001) developed a bounds testing procedure to check 

the existence of a relationship among variables in levels which is applicable irrespective 

of whether the underlying repressors are purely I(0), purely I(1) or mutually 

cointegrated. They suggest using the F-statistic for testing joint significance of lagged 

level variables, c2-c6, in equation (2.12). Since the distribution and critical values of the 

F-statistic is different from conventional F-statistic, they provide lower and upper 

bounds for the asymptotic critical values of the F-bounds test. The lower bound values 

assume that all variables in a model are purely I(0), and the upper bound values assume 

that those are purely I(1). If the computed F-statistic is more than the upper bound 

critical value, the null hypothesis of no cointegration can be rejected. Similarly, the null 

hypothesis cannot be rejected if the computed F-statistic is less than the lower bound 

value. However, if the computed F-statistic falls between the lower and upper bound 

values, statistical inference would be inconclusive. 

To assess the asymmetric effects of international crop prices and ocean freight 

rates on Taiwanese pork, chicken, and egg prices, we follow Shin et al. (2014) to build 

an ARDL model with an asymmetric cointegration. First, international crop prices and 

ocean freight rates are divided into the partial sum processes of positive and negative 

changes as outlined by specification equation (2.13): 

(2.13) ,)0,min(,)0,max(
11







 
t

j
jt

t

j
jt xxxx  
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where x denotes USC, USS, BRC, BRS, or BDI. Then, the error-correction form in 

equation (2.12) can be rewritten by replacing USC, USS, BRC, BRS, and BDI with the 

two partial sum variables as follows: 

(2.14) 
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The error correlation form of the NLARDL model in equation (2.14) can 

simultaneously analyze the asymmetric effects on both the underlying long-run 

relationship and the patterns of dynamic adjustment. Shin et al. (2014) followed Pesaran 

et al. (2001) and developed a NLARDL bound test to check the null hypothesis that an 

asymmetric long-run level relationship exists in equation (2.14). Similarly, this approach 

is applicable irrespective of whether the underlying repressors are purely I(0), purely I(1) 

or mutually cointegrated. Moreover, the null hypothesis of symmetric long-run or short-

run coefficients can be tested using the Wald statistic following an asymptotic Chi-

square distribution. 

2.4 Data 

A price transmission analysis, just as its name implies, is conducted to discover 

the connections among prices of theoretically-related commodities by time series data. 

This study considers monthly international prices for corn and soybeans and farm prices 
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for Taiwanese hogs, white broilers, and hen eggs because of the difficulties of obtaining 

daily prices of Taiwanese agricultural products. In addition, we also want to know 

whether ocean freight rates affect these farm prices because Taiwanese corn and soybean 

imports depend on ocean shipping. The time span of observation is from January 2001 to 

December 2017 for the analyzed price series. The starting period reflects data 

availability. During the period, the Taiwanese hog industry has been a fully open market 

since 2005 (Taiwan joined the WTO in 2002). The information regarding monthly farm 

prices for Taiwanese hogs, white broilers, and hen eggs comes from the Taiwan COA. 

Monthly futures prices of the U.S. corn and soybeans are obtained from the Chicago 

Board of Trade (CBOT). Because we are unable to collect enough monthly futures 

prices of Brazilian corn and soybeans, we use Brazilian wholesale prices to replace 

them. The Baltic freight index (BFI) was first published on January 4, 1985 to get a 

sense of global shipping freight rates and was replaced by the BDI on November 1, 

1999. The monthly BDI is obtained from the Consumer News and Business Channel 

(CNBC). 

2.5 Empirical Results 

The descriptive statistics for farm prices of pigs, white broilers, and hen eggs; 

international prices of corn and soybeans; and the BDI are presented in Table 2.1. 

Although the standard deviation (SD) value for the BDI cannot be compared with those 

of price series due to different units of measurement, the coefficient of variation (CV) 

suggests that the BDI has a high degree of fluctuation. Both the SD and CV of chicken 

prices are the lowest of selected livestock in Taiwan. For international prices of the 
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selected crops, except for the CV, the values of all statistics can be grouped into two 

types: corn and soybeans, i.e., they have similar values within each group, respectively. 

Moreover, the CV reveals that all domestic prices of the selected livestock in Taiwan are 

less dispersed than the international prices of corn and soybeans, but the SD obtains 

opposite results, i.e., it suggests that all domestic prices of the selected livestock are 

more variable than the international prices of corn and soybeans. 

 

Table 2.1. Descriptive Statistics for Monthly Prices (USD/KG) of the 
Selected Agricultural Products and the Baltic Dry Index, 2001-2017 
Variable Mean Maximum Minimum SD CV 
Taiwan      

Pork 1.95 2.77 1.06 0.44 0.22 
Chicken 1.25 1.68 0.78 0.26 0.20 
Egg 1.17 1.82 0.48 0.34 0.29 

Foreign crops      
U.S. corn 0.15 0.32 0.08 0.06 0.42 
U.S. soybean 0.37 0.67 0.17 0.13 0.35 
Brazil corn 0.17 0.32 0.07 0.07 0.38 
Brazil soybean 0.34 0.70 0.14 0.12 0.36 

Baltic Dry Index 2470.60 11440.00 317.00 2201.85 0.89 
Notes: SD and CV represent the standard deviation and the coefficient of variation, 
respectively. 
 

As a rule, nonstationary data cannot be modeled or forecasted because the results 

obtained by using nonstationary time series might be spurious. Thus, in order to obtain 

consistent and reliable results for analyzed time series, unit root tests on levels and the 

first differences of the data were conducted. Results of both the ADF and PP tests are 

presented in Table 2.2. The null hypothesis of both tests is that each evaluated series is 

nonstationary. The number of augmenting lags for the ADF test is determined by 
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minimizing the BIC. The statistics of both the ADF and PP tests reveal that unit roots 

cannot be rejected at the 5% significance level for all time-series in levels but can be 

rejected for the first differences. Thus, it is concluded that in levels, all time-series are 

nonstationary, however in their first differences they are stationary. That is to say, they 

are integrated of order one. 

 

Table 2.2. Unit Root Tests in the Level and First Difference of Monthly 
Price Series and the Baltic Dry Index, 2001-2017 
Variable ADF PP 
 Level 1st diff. Level 1st diff. 
Pork -1.980 (2) -11.207 (1)** -1.944 (4) -9.903 (4)** 
Chicken -1.068 (2) -10.246 (1)** -1.081 (4) -9.399 (4)** 
Egg -2.352 (1) -19.304 (0)** -2.428 (4) -20.857 (4)** 
U.S. corn -1.961 (1) -10.993 (0)** -1.909 (4) -11.088 (4)** 
U.S. soybean -2.271 (1) -9.994 (0)** -2.030 (4) -9.901 (4)** 
Brazil corn -2.817 (2) -7.941 (1)** -2.467 (4) -13.315 (4)** 
Brazil soybean -1.923 (0) -8.657 (2)** -2.060 (4) -13.112 (4)** 
Baltic Dry Index -2.873 (1) -8.980 (3)** -2.509 (4) -10.480 (4)** 
Notes: The data are transformed by taking natural logarithms. The numbers in parentheses 
indicate the lag order in the ADF test and the bandwidth using the Newey-West bandwidth 
selection method and the Bartlett kernel in the PP test, respectively. The default bandwidth is 

the integer part of 9
2

)100/(4 T  where T is the sample size. ** denotes significance at the 

5% level. 
 

2.5.1 Johansen Cointegration Test 

Using the Johansen and Engle-Granger approaches, a linear cointegration 

analysis is conducted. First, the Johansen approach requires the determination of a lag 

length for the VAR representation of a VECM. The VECM will include one fewer lag of 

the first differences. Based on the lowest AIC, the optimal lag lengths for the VECM of 

the pork, chicken, and egg VPT should be 2, 1, and 2, respectively. Without prior 



 

 24

information, five model specifications with different deterministic trend assumptions in 

level data and cointegrating equations are estimated (Table 2.3). For the pork VPT, 

except for the second and fifth models, the Johansen trace and maximum eigenvalue 

statistics have the same results for all of the models. However, only one model has the 

same result for the chicken and egg VPT. Johansen and Juselius (1990) recommend the 

use of the trace statistic when these two statistics provide conflicting results. Moreover, 

the trace statistic considers all of the smallest eigenvalues and holds more power than the 

maximum eigenvalue statistic (Kasa, 1992; Serletis and king, 1997). Thus, when the 

results of two statistics produce a contradiction in a certain model, the number of 

cointegrating vectors is determined by the trace statistic. 

 

Table 2.3. Johansen Tests for the Order of Cointegration in 5 Trend 
Assumptions 
Data trend None None Linear Linear Quadratic 
ECT None Intercept Intercept Intercept Intercept 
    Trend Trend 
Panel A: Pork vertical price transmission    
Trace 1 1 2 1 2 
Max. eigenvalue 1 2 2 1 1 
Panel B: Chicken vertical price transmission   
Trace 1 1 2 1 2 
Max. eigenvalue 0 1 1 0 0 
Panel C: Egg vertical price transmission    
Trace 2 2 2 1 2 
Max. eigenvalue 1 1 1 1 1 
Notes: Selected number of cointegrating relations at the 5% significance level. ECT denotes the 
error correction terms in a vector error correction model. 

 

The values of the BIC for each model with different cointegrating ranks (r) are 

shown in Table 2.4. Based on the lowest BIC values for five models with selected r 
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values from Johansen's trace statistic, model 2 (r=1), model 2 (r=1), and model 4 (r=1) 

are the best models for the pork, chicken, and egg VPT, respectively. Their best models 

imply that the number of cointegration vectors is one. 

 

Table 2.4. Schwarz Criteria by Ranks (Row) and Models (Column) 
Data trend None None Linear Linear Quadratic 
ECT None Intercept Intercept Intercept Intercept 
    Trend Trend 
Panel A: Pork vertical price transmission   
r=1 -12.976 -12.993 -12.868 -12.845 -12.719 
r=2 -12.778 -12.824 -12.725 -12.678 -12.579 
Panel B: Chicken vertical price transmission   
r=0 -14.268 -14.268 -14.116 -14.116 -13.966 
r=1 -14.131 -14.134 -14.009 -13.987 -13.863 
r=2 -13.913 -13.931 -13.832 -13.805 -13.707 
Panel C: Egg vertical price transmission    
r=1 -11.266 -11.242 -11.115 -11.098 -10.973 
r=2 -11.075 -11.061 -10.960 -10.916 -10.818 
Notes: ECT denotes the error correction terms in a vector error correction model. 

 

2.5.2 Engle-Granger and Enders-Siklos Cointegration Tests 

Similarly, the Engle-Granger cointegration test is executed to check the null 

hypothesis that cointegration does not exist among time-series of interest through a two-

step procedure. The Ljung-Box test is conducted to see if the residuals te  are serially 

correlated in five cointegration models. In the first step, the long-run relationships 

among variables of the pork, chicken, or egg VPT are estimated, as specified in equation 

(2.2). In the second step, the residual is used to conduct a unit root test, as specified in 

equation (2.3). As reported in Table 2.5-2.7, based on the lowest AIC and BIC values, 

one, two, and zero lag order(s) of the linear AR(p) are selected for the pork, chicken, and 
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egg VPT, respectively. The values of the unit root test statistic are -0.167, -0.127, and -

0.298 respectively and are significant at the 1% level. Thus, the Enger-Granger approach 

also confirms that variables for each VPT are cointegrated, i.e., there is a correlation 

among these time series of each VPT in the long term. 

 

Table 2.5. Engle-Granger and Enders-Siklos Cointegration Tests for the Pork 
Vertical Price Transmission 
Item Engle-

Granger 
TAR Consistent 

TAR 
MTAR Consistent 

MTAR 
Lags 1 1 1 1 1 
Threshold  0 -0.141 0 -0.014 
ρ1 -0.167*** 

(-4.84) 
-0.195*** 

(-3.86) 
-0.257*** 

(-4.10) 
-0.198*** 

(-4.32) 
-0.217*** 

(-4.44) 
ρ2  -0.144*** 

(-3.15) 
-0.131*** 

(-3.28) 
-0.129** 
(-2.58) 

-0.121** 
(-2.60) 

Diagnostics      
AIC -582.500 -581.084 -583.462 -581.572 -582.624 
BIC -575.883 -571.159 -573.538 -571.647 -572.699 
QLB(4) 0.205 0.2118 0.226 0.173 0.196 
QLB(8) 0.132 0.1401 0.192 0.106 0.106 
QLB(12) 0.113 0.1230 0.167 0.084 0.079 
Hypothesis      
Φ(H0: ρ1=ρ2=0)  11.99*** 

[0.000] 
13.31*** 
[0.000] 

12.26*** 
[0.000] 

12.84*** 
[0.000] 

F(H0: ρ1=ρ2)  0.58 
[0.449] 

2.94* 
[0.088] 

1.06 
[0.305] 

2.10 
[0.149] 

Notes: TAR and MTAR denote the threshold autoregression and momentum threshold autoregression 
models, respectively. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. 
The t-statistics and p values are states in parenthesis and bracket, respectively. QLB(k) denotes the p-
value of Ljung-Box Q statistics with k lags. 

 

The nonlinear cointegration analysis is conducted using the TAR models. Four 

models (TAR, MTAR and their consistent counterparts) were examined, and the results 

are reported in Table 2.5-2.7. The length of lags for the lagged first differences of tẑ  
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can be determined by an analysis of the regression residuals and/or using information 

criteria. It is selected by the lowest AIC and BIC values in this study, and one-lagged 

and two-lagged changes are used in all four TAR models of the pork and chicken VPT, 

respectively. However, for the egg VPT, zero-lagged change used in the first three TAR 

models is different from one-lagged change used in the consistent MTAR model. 

 

Table 2.6. Engle-Granger and Enders-Siklos Cointegration Tests for the Chicken 
Vertical Price Transmission 
Item Engle-

Granger 
TAR Consistent 

TAR 
MTAR Consistent 

MTAR 
Lags 2 2 2 2 2 
Threshold  0 0.114 0 0.045 
ρ1 -0.127*** 

(-3.66) 
-0.152*** 

(-3.24) 
-0.154*** 

(-3.52) 
-0.145*** 

(-2.87) 
-0.157*** 

(-4.24) 
ρ2  -0.102** 

(-2.18) 
-0.089* 
(-1.72) 

-0.114** 
(-2.56) 

0.019 
(0.25) 

Diagnostics      
AIC -669.470 -668.106 -668.489 -667.701 -672.301 
BIC -659.560 -654.892 -655.275 -654.488 -659.087 
QLB(4) 0.999 0.999 0.998 0.998 0.980 
QLB(8) 0.239 0.240 0.251 0.214 0.360 
QLB(12) 0.096 0.091 0.102 0.086 0.130 
Hypothesis      
Φ(H0: ρ1=ρ2=0)  7.00*** 

[0.001] 
7.20*** 
[0.001] 

6.78*** 
[0.001] 

9.22*** 
[0.000] 

F(H0: ρ1=ρ2)  0.62 
[0.430] 

1.00 
[0.318] 

0.23 
[0.6345] 

4.79** 
[0.030] 

Notes: TAR and MTAR denote the threshold autoregression and momentum threshold autoregression 
models, respectively. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. 
The t-statistics and p values are states in parenthesis and bracket, respectively. QLB(k) denotes the p-
value of Ljung-Box Q statistics with k lags. 

 

Moreover, except for the threshold value which is set equal to zero, the threshold 

values with the lowest sum of squared errors are estimated to be -0.141, 0.114, and -
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0.146 for the consistent TAR model of the pork, chicken, and egg VPT respectively. The 

threshold values with the lowest sum of squared errors are estimated to be -0.014, 0.045, 

and -0.145 for the consistent MTAR model of the pork, chicken, and egg VPT, 

respectively. 

 

Table 2.7. Engle-Granger and Enders-Siklos Cointegration Tests for the Egg 
Vertical Price Transmission 
Item Engle-

Granger 
TAR Consistent 

TAR 
MTAR Consistent 

MTAR 
Lags 0 0 0 0 1 
Threshold  0 -0.146 0 -0.145 
ρ1 -0.298*** 

(-5.98) 
-0.273*** 

(-3.92) 
-0.186** 
(-2.54) 

-0.256*** 
(-3.52) 

0.072 
(0.49) 

ρ2  -0.325*** 
(-4.54) 

-0.392*** 
(-5.86) 

-0.335*** 
(-4.90) 

-0.295*** 
(-5.34) 

Diagnostics      
AIC -285.490 -283.772 -287.820 -284.1096 -288.267 
BIC -282.177 -277.146 -281.194 -277.4832 -278.342 
QLB(4) 0.211 0.227 0.277 0.2510 0.487 
QLB(8) 0.146 0.155 0.173 0.1535 0.112 
QLB(12) 0.001 0.001 0.001 0.0009 0.000 
Hypothesis      
Φ(H0: ρ1=ρ2=0)  17.97*** 

[0.000] 
20.36*** 
[0.000] 

18.17*** 
[0.000] 

14.84*** 
[0.000] 

F(H0: ρ1=ρ2)  0.28 
[0.5977] 

4.33** 
[0.0386] 

0.61 
[0.4340] 

5.85** 
[0.017] 

Notes: TAR and MTAR denote the threshold autoregression and momentum threshold autoregression 
models, respectively. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. 
The t-statistics and p values are states in parenthesis and bracket, respectively. QLB(k) denotes the p-
value of Ljung-Box Q statistics with k lags. 

 

As shown in the fourth and fifth columns of Table 2.5, the point estimates for ρ1 

and ρ2 of the four TAR models of the pork VPT are significantly different from zero at 

the 5% level. The sample values of Φ are more than the 5% critical value. Therefore, we 
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can reject the null hypothesis that there is no cointegration. Moreover, the consistent 

TAR model has the lowest AIC statistic of -583.462 and BIC statistic of -573.538 among 

the four TAR models of the pork VPT. However, all p values of the F statistic are more 

than 5% in Table 2.5, and we cannot reject the null hypothesis of symmetric adjustment. 

Thus, the adjustment process is symmetric when the price series of the pork VPT adjust 

to achieve the long-run equilibrium. 

The results of the four TAR models for the chicken VPT are reported in Table 

2.6. The sample values of Φ are more than the 5% critical value, so we can reject the null 

hypothesis of no cointegration. The consistent TAR model has the lowest AIC statistic 

of -668.489, while the consistent MTAR model has the lowest BIC statistic of -659.087. 

Because the point estimates for ρ2 of the consistent TAR and MTAR models are not 

significantly different from zero at the 5% level, the asymmetric speed of adjustment 

does not exist. For the TAR and MTAR models, the point estimates for ρ1 and ρ2 are 

significantly different from zero at the 5% level. However, because p values of the F 

statistic are more than 5%, we cannot reject the null hypothesis of symmetric adjustment. 

Thus, the speed of adjustment is symmetric when the price series of the chicken VPT 

adjust to achieve the long-run equilibrium. 

The results of the four TAR models for the egg VPT are reported in Table 2.7. 

The sample values of Φ are more than the 5% critical value, and we can reject the null 

hypothesis of no cointegration. The consistent MTAR model has the lowest AIC statistic 

of -288.267, while the consistent TAR model has the lowest BIC statistic of -281.194. 

Because the point estimate for ρ1 of the consistent MTAR model is not significantly 
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different from zero at the 5% level, the asymmetric speed of adjustment does not exist. 

For the TAR and MTAR models, the point estimates for ρ1 and ρ2 are significantly 

different from zero at the 5% level. However, because p values of the F statistic are 

more than 5%, we cannot reject the null hypothesis of symmetric adjustment. Thus, the 

asymmetric speed of adjustment only exists in the consistent TAR model. To conserve 

space, only coefficients of the error correction terms in the consistent TAR model are 

represented in Table 2.8. We imposed a maximum of twelve lags and used a general-to-

specific approach to identify the right number of lags, i.e. trim down lags if higher lags 

are found to be statistically insignificant at the 5% level. The Ljung-Box test shows that 

the null hypothesis that residuals are not serially correlated cannot be rejected, implying 

the residuals follow a whiter noise process. The F statistic has a p-value of 0.035 below 

a significance level of 5%, and the null hypothesis of symmetric speed of adjustment can 

be rejected. However, the point estimate of the coefficient for a negative error correction 

term is insignificantly different from zero at the 5% level. Thus, the model suggests that 

positive discrepancies from long-run equilibrium are eliminated rather quickly but that 

others are allowed to persist. 

 

Table 2.8. Estimates of the Asymmetric Error Correction Model for the 
Egg Vertical Price Transmission 


1tECT  


1tECT  H0: δ

+=δ-=0 H0: δ
+=δ- QLB(12) 

-0.320*** 
(-4.00) 

-0.099 
(-1.36) 

17.31*** 
[0.000] 

4.43** 
[0.035] 

0.585 

Notes: ECT denotes the error correction terms in a vector error correction model. *, **, 
and *** denote significance at the 10%, 5% and 1% levels, respectively. The t-statistics 
and p values are states in parenthesis and bracket, respectively. QLB(k) denotes the p-value 
of Ljung-Box Q statistics with k lags. 
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2.5.3 LARDL and NLARDL Models 

We first estimate LARDL models for the pork, chicken, egg VPT outlined by 

equation (2.12) and then estimate their NLARDL models to find out whether asymmetric 

effects of international crop prices and ocean shipping rates exist in long-run equilibrium 

relationships. We use the AIC to select an optimal lag specification for LARDL and 

NLARDL models and then use the approach of general-to-specific modeling to drop 

insignificantly lagged-level variables. In other words, p-values for the variables are less 

than a pre-specified significance level. For each VPT, the results are reported in Table 

2.9. Panel A and Panel B show the long-run normalized estimated coefficients and some 

related diagnostic statistics of LARDL and NLARDL models, respectively. Because the 

values of the F-bounds statistic for all models exceed the upper bound at the 1% 

significance level, we can conclude that there is enough evidence to reject the null 

hypothesis of no cointegrating relationships among variables for each model. 

The Breusch-Godfrey Lagrange multiplier test statistic is reported as BG, and its 

values reveal statistical insignificance for all models, i.e., their residual series can be 

regarded as free of autocorrelation at the 0.05% significance level. In addition, the null 

hypothesis of the Breusch-Pagan-Godfrey (BPG) test that residuals are homoscedastic is 

rejected for the models of the chicken VPT. Thus, robust standard errors are applied to 

them. The Ramsey's regression equation specification error test (RESET) is also reported 

to check on model misspecification. The test results are statistically insignificant in all 

models, i.e., the functional form for each model is correctly specified.  
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Table 2.9. Estimates of the Linear (LARDL) and Nonlinear (NLARDL) 
Autoregressive Distributed Lag Models 

 Pork Chicken Egg 
 LARDL NLARDL LARDL NLARDL LARDL NLARDL 

Panel A: Long-run estimates 
USC -0.818*** 

(-3.644) 
-0.324*** 
(-2.668) 

  -0.466** 
(-2.559) 

 

USC+      -0.325** 
(-1.985) 

USC-      -0.383** 
(-2.408) 

USS 1.439*** 
(5.475) 

 0.253*** 
(3.615) 

   

USS+  1.344*** 
(4.413) 

 0.300*** 
(6.567) 

  

USS-  1.275*** 
(4.104) 

 0.629*** 
(4.751) 

  

BRC     0.552*** 
(3.687) 

0.494*** 
(3.874) 

BRS  -0.638** 
(-2.456) 

  0.663*** 
(4.216) 

0.405*** 
(2.640) 

BDI 0.078** 
(2.599) 

 0.030*** 
(2.602) 

   

BDI+    0.177*** 
(2.630) 

  

BDI-    0.068** 
(1.991) 

  

Constant  -1.634*** 
(-2.972) 

  0.984*** 
(6.721) 

1.521*** 
(3.658) 

Trend   0.002*** 
(9.539) 

   

Notes: *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. The t-statistics 
are states in parenthesis. U.S. corn (USC), U.S. soybean (USS), Brazil corn (BRC), Brazil soybean 
(BRS), and Baltic Dry index (BDI). 

 

The stability of long-run coefficient estimates is measured by cumulative sum 

(CS) and cumulative sum-of-squares (CS2) tests of recursive residuals for each model. 

"S" and "US" indicate that estimated coefficients of a model are stable and unstable, 

respectively. Clearly all long-run estimated coefficients for each model are stable except 



 

 33

for the models of the chicken VPT. In other words, their values of the CS2 statistic are 

outside the 5% significance lines, and the null hypothesis is rejected. 

 

Table 2.9. Continued 
 Pork Chicken Egg 
 LARDL NLARDL LARDL NLARDL LARDL NLARDL 

Panel B: Diagnostic test statistics 
F 6.675*** 7.240*** 8.327*** 8.135*** 6.487*** 5.974*** 
ECTt-1 -0.085*** 

(-5.207) 
-0.187*** 
(-6.683) 

-0.128*** 
(-5.024) 

-0.119*** 
(-6.450) 

-0.211*** 
(-5.753) 

-0.260*** 
(-6.064) 

RSEST 1.434 0.052 1.807 0.254 0.384 0.264 
CS(CS2) S(S) S(S) S(US) S(US) S(S) S(S) 
BG 1.301 0.649 0.607 0.710 0.931 0.730 
BPG 0.439 0.908 8.766*** 2.977*** 1.543 1.272 
WALD1  9.661***  5.560**  4.998** 
WALD2    8.365***   
Notes: *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. The t-statistics 
are states in parenthesis. The error correction term (ECT), Ramsey’s regression equation specification 
error test (RESET), the cumulative sum (CS) and the cumulative sum of squares (CS2) tests, the 
Breusch-Godfrey Lagrange multiplier (BG) test, and Breusch-Pagan-Godfrey (BPG) test. 

 

Furthermore, the Wald tests WALD1 and WALD2 are applied to check the null 

hypothesis of long-run symmetry for the first and second variables of interest, which are 

separated into the partial sums of positive and negative shocks. The null hypothesis is 

rejected in all NLARDL models implying that the estimated coefficient of the positive 

component is different from that of the negative component. Moreover, the coefficient 

estimates for the speed of adjustment (ECTt-1) in all models are significantly different 

from zero at the 1% level. The larger absolute value for a speed of adjustment parameter 

suggests a faster convergence toward long-run equilibrium in cases of short-run 

deviations from this equilibrium. For six analyzed models, the fastest speed of 
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adjustment exists in the NLARDL model of the egg VPT, whereas the slowest that exists 

is in the LARDL model of the pork VPT. For the pork VPT, the results show that 

Taiwanese pork prices have a long-run relationship with U.S. corn and soybean prices 

and the BDI in the LARDL model and that there is an asymmetric effect of U.S. soybean 

prices on Taiwanese pork prices in the NLARDL model besides symmetric effects of 

U.S. corn and Brazilian soybean prices. For the chicken VPT, there is a long-run 

relationship among the U.S. soybean prices, the BDI, and Taiwanese chicken prices in 

the LARDL model, while two kinds of asymmetric effects, U.S. soybean prices and the 

BDI, exist in the NLARDL model. For the egg VPT, a long-run equilibrium relationship 

exists among U.S. corn prices, Brazilian corn and soybean prices, and Taiwanese egg 

prices in the LARDL model. However, there is an asymmetric effect of U.S. corn prices 

on Taiwanese egg prices in the NLARDL model besides symmetric effects of the 

Brazilian corn and soybean prices. 

2.6 Conclusions 

Pork, chicken, and hen eggs are the main sources of animal protein consumed in 

Taiwan, and most of the pork, chicken, and hen eggs are supplied by domestic 

production, with over 93%, 87%, and 99% self-sufficiency rates in 2017, respectively. 

Moreover, corn and soybeans, in the form of soybean meal, are the main ingredients in 

hog and poultry feed whose expenses dominate their production costs. Since Taiwan is 

an island, and both the self-sufficiency rates of corn and soybeans are less than 2%, the 

prices of international corn and soybeans and dry bulk freight rates will affect feed 

prices and then indirectly cause the fluctuation of Taiwanese pork, chicken, or egg 
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prices. In this study, the integration and price dynamics in the pork, chicken, and egg 

VPT are examined by linear and nonlinear cointegration tests and related error 

correlation models.  

Based on the results of Engle-Granger and Johansen cointegration tests, there is a 

long-run equilibrium relationship among variables for the pork, chicken, or egg VPT. In 

addition, the results of TAR and M-TAR models show that asymmetric speed of 

adjustment does not exist for the pork and chicken VPT at the 5% significance level 

except for the egg VPT, i.e., the first two VPT have a symmetric speed of price 

adjustment. For the egg VPT, the VECM model with consistent TAR adjustment shows 

that the speed of adjustment in returning to the long-run equilibrium after positive 

shocks is more rapid than that after negative shocks. Moreover, we also applied the 

NLARDL model to investigate the long-run asymmetric magnitude of lagged-level 

variables. The results show that there is the asymmetric effect of Brazilian soybean 

prices on Taiwanese pork prices, that two kinds of asymmetric effects, U.S. soybean 

prices and the BDI, exist in the chicken VPT, and that there is the asymmetric effect of 

U.S. soybean prices on Taiwanese egg prices. 

The role of international crop prices and ocean freight rates as primary 

determinants of Taiwanese pork, chicken, and hen egg price variations is almost 

uncontested. Because main ingredients of feed depend on imports, imported meat, 

poultry, and egg products from corn and soybean producing countries will be more price 

competitive than the related products in Taiwan. This is the main reason for the gradual 

increase in chicken and pork imports after jointing the WTO. Thus, how to reduce 
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production costs, improve meat quality, and face the competition in various regional free 

trade agreements in the world will be important issues for policy makers in Taiwanese 

animal husbandry. 
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CHAPTER ΙΙI 

PRICE DYNAMICS IN THE IMPORT MARKETS OF EELS, EDAMAME, AND 

FEATHERS AND DOWN IN JAPAN 

 

3.1 Introduction 

The largest export market for Taiwanese agricultural products is China, followed 

by Japan and the U.S. The main agricultural products exported to Japan are tuna, 

feathers and down, edamame, and eels. Except for tuna, the sources of feathers and 

down, edamame, and eels are mostly farm-sourced. According to the statistics of the 

Taiwan COA, their shares (rankings) of the total export value for Taiwanese agricultural 

products were 2.13% (8), 0.98% (18), and 0.98% (19) in 2017, respectively.  

An eel is any fish belonging to the order Anguilliformes. According to the 

statistics of the Food and Agriculture Organization (FAO) of the United Nations, global 

capture production of eels hit an all-time high in 1996 and then showed a decreasing 

trend. In addition, global capture production of eels only accounted for 5.41% of the 

global total production of eels in 2015, and global aquaculture production of eels has 

exceeded the global capture production since 1974. The most important factor affecting 

eel farming is the capture of wild eel fry and glass eels. Since eels have very special life 

history that is difficult to simulate in artificial environments, many drawbacks of the 

artificial breeding technology of eel fry still need to be overcome. The most commonly 

farmed species of eels in the world are Japanese and European eels, but in 2015, only 

about 97% of farmed eels were Japanese. The countries that farm Japanese eels all are 
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located in Asia. China dominates in Japanese eel farming. Japan once accounted for 

more than 50% of the global total consumption of eels. However, because of the 

reduction of Japanese domestic demand and the rapid increase of the eel farming in 

China, the share of Japanese eel consumption to the global total consumption of eels 

gradually decreased and maintained at about 12%-18 % in recent years. Nevertheless, 

Japan still is the largest import country of eels in the world. The domestic eel production 

in Japan was within the range of 38 to 41 thousand tons from 1984 to 1991 and then 

showed a downward trend (Figure 3.1).  
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Figure 3.1. The volume of eel fry and the production of eels in Japan, 1957-2017 
Notes: Before 1988 the volume of eel fry does not include import sources.  

 

In 2013, this figure even fell to around 14 thousand tons. Conversely, the eel 

domestic demand in Japan gradually increased from about 20 thousand tons in the 1970s 

to reach the peak of about 160 thousand tons in 2000 (Figure 3.2). However, a rise in eel 
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prices leads to a decline in the eel consumption and purchase frequency according to the 

consumer price index and the family income and expenditure survey from the Japanese 

Statistics Bureau. Japanese eel suppliers cannot satisfy domestic demand, and the gap 

between eel consumption and production in Japan must be filled with imported eels. 

Although weak demand and residues of malachite green, a veterinary drug illegally used 

for the treatment of farm-raised fish, heavily affect the import volume of eels in Japan, 

imported eels still make up over 50% of the market share of eels. 
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Figure 3.2. Import types of eels in Japan, 1988-2017 
 

Once Taiwan was the largest supplier of the Japanese eel market but was 

replaced by China since 1994. There are four different types of eel products in 

international markets, but the import volumes of two of them in the Japanese market that 

are fresh or chilled and frozen eels are negligible. Due to the lower production costs of 

the eel farming and processing in China, China has quickly had a dominant presence in 
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the eel market in Japan. The import of prepared eel products in Japan, especially, is 

mostly from China, and the market share of prepared or preserved eel products from 

China exceeded that from Taiwan since 1994. Thus, this study will only focus on the 

Japanese import market of live eels. According to the statistics of the Japan Customs, the 

main importing sources of live eels are China and Taiwan, and their shares of the total 

import volume of live eels in the Japanese market were 69.87% and 29.54% in 2017, 

respectively. Obviously Taiwanese eel farmers face strong competition from China 

(Figure 3.3). 
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Figure 3.3. Top import partners of live eels in Japan (% of total import 
volume of the item) 

 

Edamame, or vegetable soybeans, are the immature and green form of edible 

soybeans in the pod. It is classified as a vegetable and is not a grain crop as in the case of 

mature soybean seeds. In recent years, edamame has been gradually recognized in the 
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world, but except for China, Japan, and Taiwan, there still are not many edamame 

customers in the rest of world. In general, it may appear in Japanese and Chinese 

restaurants throughout the world as a meal starter. Therefore, Japan is the main export 

market for edamame growers. The Japanese domestic production and planted area hit an 

all-time high in 1982 (Figure 3.4). 
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Figure 3.4. Planted area, harvest volume, and shipping volume of edamame in 
Japan, 1973-2017 

 

Comparing 1982 with 2017, we can find that the planted area only decreases 

about 12.84%, whereas the harvest and shipping volumes decrease about 44.46% and 

41.07%, respectively. The widening gap between the domestic edamame supply and 

demand in Japan is favorable for exporting countries of edamame. According to the 

statistics of the Japan Customs and the Ministry of Agriculture, Forestry and Fisheries of 



 

 42

Japan, about 59.56% of edamame consumption depended on imports in 2017 (Figure 

3.5). The Japanese edamame market can be divided into two separate markets: fresh and 

frozen edamame. The import volume of fresh edamame is less than 2% of the total 

import volume of edamame and is mostly from Taiwan.  
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Figure 3.5. Import volume of frozen and fresh/chilled edamame, 1988-2017 
 

According to the 2017 yearbooks of the Taiwan COA, Japan and the U.S. 

accounted for 85.34% and 9.30% of the total value of Taiwanese edamame exports, 

respectively. Although Taiwan remained top of the import market of frozen edamame in 

Japan in 2017, its share shrank largely because Taiwan has faced heavy competition 

from other exporting countries of frozen edamame since 1993. The major importing 

sources of frozen edamame in Japan are Taiwan, Thailand, China, and Indonesia, and 

their shares of the total import volume of frozen edamame were 41.40%, 26.96%, 

26.10%, and 5.39% in 2017, respectively (Figure 3.6). 
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Figure 3.6. Top import partners of frozen edamame in Japan (% of total 
import volume of the item) 

 

Feathers and down are used for insulation and padding of products like coats, 

bedclothes, and sleeping bags. The vast majority of them are a by-product of the poultry 

industry. They may come from the same animal source but are gathered from different 

parts of the body. Only ducks, geese, penguins, and other water birds have down. 

According to the statement of the Taiwan COA, the export volume of the Taiwanese 

down processing ranks the third in the world, behind China and the European Union 

(EU). In 2017, the share (ranking) of feathers and down in the total export value of 

agricultural products in Taiwan was about 3.86% (3), behind frozen tuna and bovine 

leather, and Japan, China, and Vietnam accounted for 29.86%, 27.97%, and 10.79% of 

the total export value of Taiwanese feathers and down, respectively. Because wearing 

apparel manufacturing remains a labor-intensive process, the cost of labor is an 

important consideration. Most of down jacket manufacturers in Taiwan moved 
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production to China and other lower-cost countries in Southeast Asia. Main products of 

the Taiwanese feather and down processing are presently prepared feathers and down of 

a kind used for stuffing and their bedding products. According to the statistics of the 

Japan Customs, import volume and value hit an all-time high in 1989 and then showed a 

decreasing trend (Figure 3.7). 
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Figure 3.7. The volume and average price of imported feathers and down in Japan, 
1988-2017 

 

Both the changes of average global temperatures and the prices of duck and 

goose meat may affect the demand and prices of feathers and down. For instance, 

because of the outbreak of bird flu in many provinces of China in 2013, large-scale 

culling of poultry species on farms resulted in a sharp drop in the supply of feathers and 

down. This also caused rapid increases in the average import price of feathers and down 

in Japan, and it jumped to an all-time high of $7,518 thousand yen per ton in 2014. The 
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major importing sources of prepared feathers and down are China, Taiwan, Poland, 

Hungary, and France, and their shares of the total import value of feathers and down in 

Japan were 29.19%, 25.39%, 14.12%, 10.36%, and 7.37% in 2017, respectively (Figure 

3.8).  
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Comparing 1982 with 2017, we can find that except for Taiwan, all market 

shares of other main exporting countries in regards to feather and down imports in Japan 

increase remarkably. Although there is no obvious relationship between the quality and 

countries of origin of feathers and down, European feathers and down are more preferred 

by consumers and can be sold at higher prices. Besides the EU, Taiwan still faces the 

low-price competition from China. Thus, the Taiwanese market share of the Japanese 

feather and down imports decreased by 40.45% between 1988 and 2017. 
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This study will employ a time-series model to examine the relationship among 

Taiwanese main export products and other substitutes from other exporting countries in 

the Japanese market. The paper is organized as follows. The related literature on the 

economic topics of spatial price transmission is presented in the next section of the 

paper. Then, the theoretical framework for a causal search algorithm and data sources 

are described. Following that, results and relevant discussions are presented. The 

summary of main findings is presented in the last section of the paper.  

3.2 Literature Review 

Because the European eel was included in Appendix II of the Convention on 

International Trade in Endangered Species of Wild Fauna and Flora (CITES) in March 

2009, social science researchers mainly focused on discussing the influence of the 

CITES on eel-farming countries in the past years, such as Crook and Nakamura (2013) 

and Nijman (2015 and 2017). However, few articles analyze the relationship among 

local prices of eels in different cities or imported and domestic prices of eels. Lee et al. 

(2003) employed net private profitability and domestic resources cost approaches to 

evaluate the competitiveness of the eel aquaculture in China, Japan, and Taiwan. Most 

papers on edamame focus on agricultural sciences, and a few studies focus on social 

sciences. Kelley and Sánchez (2005) discussed the consumer preference and potential 

demand for edamame by the sensory evaluation that contained 113 participants who 

tasted and ranked three kinds of edamame at the main campus of the Pennsylvania State 

University system and the telephone survey that produced a total of 401 completed 

responses in the Metro-Philadelphia area. Wszelaki et al. (2005) applied consumer 
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testing and a descriptive analysis to compare six edamame cultivars which are 

organically grown in order to understand consumer preference and which is the most 

popular with Ohio consumers. Sundari et al. (2015) employed a snowball sampling 

method to get the sample group which consisted of 372 edamame farmers in order to 

conduct a questionnaire. Then, software Structure Equation Modeling was used to 

analyze the questionnaire data in order to decide what factors affect the successful 

implementation of quality culture farmers. 

In the literature of price transmission analyses, there are some articles 

investigating the relationship among prices of the same or homogeneous commodities 

which are produced in different regions or countries. For example, Gallagher (1983) 

applied linear regression equations to examine whether international price margins in the 

U.S. Pacific Northwest-Japan softwood trade are influenced by nontariff trade barriers 

and inelastic supplies of international transportation services. Ghoshray (2007) used 

linear and nonlinear cointegration tests and an asymmetric ECM to explore the 

relationship of monthly average prices of durum wheat exported by Canada and the U.S. 

Asche et al. (2007) investigated smoked salmon exported by Norway and United 

Kingdom in the French retail market and found that there is a very high degree of price 

transmission in both supply chains. Balcombe et al. (2007) applied a generalized 

threshold ECM to investigate relationships of pairs of monthly wheat, maize, and 

soybean prices for Brazil, the U.S., and Argentina. Sun (2011) employed linear and 

nonlinear cointegration tests and an asymmetric ECM to evaluate the dynamic 

relationship of monthly import prices of wooden beds from China and Vietnam in the 
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U.S. market. Myers and Jayne (2012) developed a threshold ECM which allows multiple 

long-run equilibria and multiple speeds of adjustment to examine the linkage of monthly 

maize prices for South Africa and Zambia. Jezghani et al. (2013) used a standard VECM 

to examine the relationship of monthly wholesale prices of rice for Thailand and Iran. 

Sun and Ning (2014) applied a threshold ECM and a generalized impulse response 

function on monthly prices from 1978 to 2011 to investigate the spatial price linkage 

among three mainly suppliers of the softwood lumber market in North America: the 

Southern U.S., the Western U.S., and Canada. Santeramo (2015) applied a threshold 

autoregressive model to explore the dynamics of tomato and cauliflower prices among 

EU spatially separated regions. 

3.3 Methodology 

Probabilistic graphical models contain graph theory, probability theory, and 

computer science to represent and visualize the associations among stochastic variables. 

One of the two most common types of graphical models is a Bayesian network presented 

by Pearl (1986) (also called a belief network or a causal network). Bayesian networks 

use directed graphs to represent causal relationships among random variables. A directed 

graph is the generalization of a tree data structure in which a nonempty set of vertices V 

(or nodes) is connected by a set of edges (or links) that has an orientation (directed path) 

and is represented by arrows. An arrow from vertex A to vertex B indicates that there is a 

direct causal effect of A on B. The directed graph that does not contain directed cyclic 

paths (e.g. A→B, B→A) is called a directed acyclic graph (DAG) corresponding to a 

Bayesian network. A DAG is used not only to represent causal relations between 
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vertices corresponding to variables but also to represent a set of probability measures 

over a set of vertices. According to the definition of Lauritzen et al. (1990), for a DAG G 

with a set of vertices V, a probability measure P over V obeys the local directed Markov 

property if and only if each variable VX  in V is independent of its nondescendants, 

conditional on its parents. Lauritzen et al. (1990) also proved that for G, the local 

directed Markov condition is equivalent to the other two conditions: (a) P over V obeys 

the global directed Markov property if and only if for any triple (J, K, L) of disjoint 

subsets of V, J is d-separated from K given L in G, that is, J is conditionally independent 

of K given L in G. (b) P admits a recursive factorization according to G. That is, a joint 

density function )(Xf  for P over V factorizes according to G if and only if for each 

subset ,VX   

(3.1) )),,(,()( GxPaxkxf vvv
Vv
  

where )(xf  and vx  is the abbreviations of )( xXf   and vV xX  , respectively. vk  

is a non-negative kernel function. ),( GxPa v  is the set of parents of the variable vX  in 

G. Since P admits a recursive factorization, the term )),(,( GxPaxk vvv  is the 

conditional density of vx  given ),( GxPa v . Thus, 

(3.2) .)),(()( GxPaxfxf vvv
Vv
  

In a DAG, all of the conditionally independent relationships can be generated 

using the concept of d-separation ("d" implies "directional"). If A is d-separated from B 

by C, this means that all the paths (information) between subsets A and B are blocked 

given the vertices in a set C. There are three situations under which a path is blocked 
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given a set of vertices C: (a) In a causal chain such as ,BCA   A and B are 

conditionally independent given the middle node C. The encoded joint distribution is 

)()()(),,( CBPACPAPCBAP  , that is to say, it assumes the probability Markov 

condition (the joint probability distribution among set of causal variable is determined 

by the product of all unconditional marginal probabilities and conditional probabilities 

where one condition only on the parent causal variable). (b) In a collider structure such 

as ,BCA   A and B are unconditionally independent. However, A and B are 

conditionally dependence (d-connected) given their common effect C. The encoded joint 

distribution is ),()()(),,( BACPBPAPCBAP  . (c) In a causal fork such as 

,BCA   A and B are conditionally independent given their common parent C. The 

encoded joint distribution is )()()(),,( CBPCAPCPCBAP  . These configurations of 

triples are viewed as base cases of Bayesian networks and used to analyze more complex 

causal structures. 

It is not enough for policy makers and social scientists to only obtain optimal 

estimation of a covariance matrix or have best parameter estimates by least square 

methods. To establish causal relationships among variables generated via observational 

data, many algorithms have been developed. Wermuth and Lauritzen (1983) specified a 

subclass of the recursive models for contingency tables proposed by Goodman (1973). 

Each of these matches a special kind of a directed graph instead and can be represented 

by a nontrivial decomposition of the joint probability distribution in terms of the 

response variables. The term ‘recursive’ means that endogenous (response) factors are 
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permitted to explain themselves regardless of direct or indirect effects. The vertices in 

any possible DAG are labeled by numbering them so that edges )()( jXiX   happen 

only if ji   in the complete ordering of variables. However, this algorithm requires 

that an ordering of the variables is known in advance. Thus, in order to remove this 

requirement, improve its computational efficient, and decrease the difficulty of statistical 

decisions, several algorithms for finding causal relations among variables have been 

developed such as the Spirtes-Glymour-Scheines (SGS) algorithm (Spirtes et al., 1990 

and 2000) and the PC algorithm (Spirtes and Glymour, 1991) with the assumptions of 

causal sufficiency, causal faithfulness and causal Markov conditions. The SGS and the 

PC algorithms have similar procedures for discovering causal structure and the main 

difference between them is the step of edge elimination. Because the revised edge-

removal step omits needless tests of the null hypothesis of conditional independence, the 

PC algorithm has more computationally efficient than the SGS algorithm. The main 

steps of the PC algorithm is as follows: (a) Build the complete undirected graph G on a 

set V of variables, that is, every unordered pair of vertices (also called nodes or points) is 

connected by an edge (also called an arc or line) without a direction. (b) For each pair of 

variables ),( ba  in V, try to find a conditioning set abS  where all variables are adjacent 

to either a or b except for a and b themselves such that the null hypothesis of (a ╨ b abS ) 

is not rejected. In other words, abS  should disconnect a and b. In this step the 

cardinality of the set abS  starts at 0, then 1, and so on. Edges are recursively removed 

from G as soon as a conditional independence relation is found between a and b. A 
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predetermined cut-off probability (p-value) is used to reject the null hypothesis of no 

correlation (most studies use p-value 0.05 for 95% statistical significance in the removal 

of edges). The ultimately resulting undirected graph is named as G . (c) For each pair of 

nonadjacent variables a and b that are linked through a variable c in G , examine 

whether abSc . The edges of bca  are oriented as bca  (called an 

unshielded collider or v-structure) if and only if abSc . (d) In the partially directed 

graph G   produced by step (c), the rest of the undirected edges will be oriented by 

repeated application of the following two conditions: (і) The orientation should avoid 

producing a new v-structure. (іі) The orientation should avoid producing a directed cycle 

(search through causal chains and causal forks). 

3.4 Data 

The period of data covered concerning the imported edamame is from January 

1992 through December 2017. China and Thailand have been exporting edamame to 

Japan since 1988 and 1990, respectively. However, trade volumes for China and 

Thailand were insubstantial, and their monthly import prices were volatile before 1992. 

Thus, the starting period is set at January 1992. Furthermore, the period of data covered 

concerning imported eels and down/feathers is from January 1988 to December 2017. 

The starting period reflects data availability. Their monthly import volumes and values 

are obtained from the Japan Customs and applied to calculate unit prices (JPY1000/kg) 

for each main exporting country. In addition, monthly wholesale prices of domestic eels 

and edamame are obtained from the Tokyo Metropolitan Central Wholesale Market. 
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3.5 Empirical Results 

3.5.1 Eel Imports in Japan 

The descriptive statistics for import prices from China and Taiwan and wholesale 

prices in the Tsukiji fish market are presented in Table 3.1. Aichi and Shizuoka 

prefectures are the main areas of eel production in Japan. The highest price of live eels is 

reported from Shizuoka prefecture, while Taiwanese live eels have the lowest price 

among four analyzed price series. For prepared eels, the price from Shizuoka prefecture 

is higher than that from China. Thus, comparing contemporaneous prices, we can find 

that prices of Japanese domestic eels are higher than those of imported eels. The CV 

suggests that there is a similar degree of variability within two groups of live eel prices, 

imports and domestics. Similarly, the SD also shows the same result. However, for 

between-group variations, the CV suggests that prices of domestic live eels in Japan are 

less dispersed than those of imported live eels, while the SD suggests that the prices of 

imported live eels are less changeable than the domestic prices. For prepared eels, both 

the SD and CV show that the domestic price fluctuation is bigger than the fluctuation of 

import prices. 

As a rule, nonstationary data cannot be modeled or forecasted because the results 

obtained by nonstationary time series might be spurious. Thus, in order to obtain 

consistent and reliable results for analyzed time series, unit root tests on levels and the 

first differences of data were conducted. The results of both ADF and PP tests are 

presented in Table 3.2. The null hypothesis of both tests is that each evaluated time-

series is nonstationary. The number of augmenting lags for the ADF test is determined 
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by minimizing the BIC. The statistics of both ADF and PP tests reveal that the presence 

of a unit root cannot be rejected at the 5% significance level for all eel price series in 

levels but can be rejected for the first differences. Thus, it is concluded that all eel price 

series are integrated of order one. 

 

Table 3.1. Descriptive Statistics for Monthly Eel Prices (JPY/KG), 2002-2017 
Variable Mean SD Minimum Maximum CV 
Import (live)     

China 2083.825 991.837 766.264 4671.317 0.476 
Taiwan 2022.474 944.041 747.652 4455.652 0.467 

Domestics (live)     
Shizuoka 2923.943 1244.000 1093.000 5629.000 0.425 
Aichi 2948.266 1245.250 1135.000 5486.000 0.422 

Import (prepared)  
China 1867.098 691.012 901.898 3600.394 0.370 

Domestics (prepared)  
Shizuoka 3359.531 1952.342 1054.000 7419.000 0.581 

Notes: SD and CV represent the standard deviation and the coefficient of variation, respectively. 
 

Table 3.2. Unit Root Tests in the Level and First Difference of Monthly Eel 
Prices, 2002-2017 
Series ADF PP 
 Level 1st diff. Level 1st diff. 
Aichi -1.919 (1) -8.220 (0)** -1.916 (4) -8.041 (4)** 
China 1 -1.570 (2) -8.994 (1)** -1.622 (4) -9.600 (4)** 
China 2 -1.852 (0) -13.042 (0)** -1.844 (4) -13.016 (4)** 
Shizuoka 1 -1.822 (2) -9.172 (1)** -1.916 (4) -8.844 (4)** 
Shizuoka 2 -1.232 (1) -11.340 (2)** -1.006 (4) -20.018 (4)** 
Taiwan -1.867 (2) -9.392 (1)** -1.888 (4) -8.271 (4)** 
Notes: The data are transformed by taking natural logarithms. The numbers in parentheses indicate the 
lag order in the ADF test and the bandwidth using the Newey-West bandwidth selection method and 
the Bartlett kernel in the PP test, respectively. The default bandwidth is the integer part of 

9
2

)100/(4 T where T is the sample size. ** denotes significance at the 5% level. 1 and 2 denote 

live and prepared eel prices, respectively. 
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A linear cointegration analysis is conducted using the Johansen approach. First, 

the Johansen approach requires the determination of a lag length for the VAR 

representation of a VECM. The order of the VECM fitted is always one less than the 

order of the corresponding VAR model. Based on the lowest Hannan-Quinn information 

criterion (HQ), one lag is used in the VECM. Without prior information, five model 

specifications with different deterministic trend assumptions in level data and 

cointegrating equations are estimated (Table 3.3). Except for the second and fourth 

models at the 5% level of significance, the results show that the Johansen trace and 

maximum eigenvalue tests determine different numbers of cointegrating vectors, called 

cointegrating ranks (r). Johansen and Juselius (1990) recommended the use of the trace 

statistic when these two statistics provide conflicting results. Moreover, the trace test 

statistic considers all of the smallest eigenvalues and holds more power than the 

maximum eigenvalue statistic (Kasa, 1992; Serletis and king, 1997). Thus, when the 

results of two statistics produce a contradiction in a certain model, r is determined by the 

trace statistic.  

 

Table 3.3. Johansen Tests for the Order of Cointegration of Monthly Eel Prices 
in 5 Trend Assumptions 
Data trend None None Linear Linear Quadratic 
ECT None Intercept Intercept Intercept Intercept 
    Trend Trend 
Trace 4 3 4 4 6 
Max. eigenvalue 2 3 3 4 4 
Notes: Selected number of cointegrating relations at the 5% significance level. ECT denotes the error 
correction terms in a vector error correction model. 
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The values of the BIC for each model with different r values are shown in Table 

3.4. The lowest BIC value is -16.550 in the model that has no deterministic trends in 

level data and whose cointegrating equations have intercepts. Thus, the innovations 

generated from this model are used to identify causal structure among the eel price 

series. 

 

Table 3.4. Schwarz Criteria by Ranks (Row) and Models (Column) Using 
Monthly Eel Prices 
Data trend None None Linear Linear Quadratic 
ECT None Intercept Intercept Intercept Intercept 
    Trend Trend 
Rank (r)      

2 -16.709 -16.702 -16.600 -16.631 -16.527 
3 -16.480 -16.550 -16.475 -16.483 -16.406 
4 -16.237 -16.293 -16.242 -16.281 -16.230 
6 -15.620 -15.653 -15.653 -15.666 -15.666 

Notes: ECT denotes the error correction terms in a vector error correction model. 
 

As discussed earlier in this report, the innovations generated from the VECM are 

used to study the contemporaneous causal relations among the six eel prices. The 

analysis of directed graphs is carried out using the PC algorithm and its more refined 

extensions, which are implemented in the software package TETRAD VI. At the 5% 

significance level, the end result after removing the insignificant edges and directing the 

remaining edges is given in Figure 3.9. It shows us that a change in Taiwanese (live) eel 

prices leads to a change in the (live) eel prices from Aichi prefecture, Shizuoka 

prefecture, and China in contemporaneous time. Both the prices of prepared eels from 

China and Shizuoka prefecture (China 2 and Shizuoka 2) have a causal effect on those of 
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their live eels (China 1 and Shizuoka 1), respectively. In addition, the fact that no 

directed edges (or arrows) leave the vertex (or node) for the price of Chinese (live) eels 

implies that the price of Chinese (live) eels does not cause the other price variables and 

is completely an information receiver. 

 

 
Figure 3.9. Directed acyclic graph on innovations 
from the VECM with eel prices 
Notes: 1 and 2 denote live and prepared eel prices, respectively. 

 

The impulse response functions (response of a given variable for one-time only 

shock of another variable) of our estimated model for selected eel price series are 

depicted in Figure 3.10-3.15. The x-axis of graphs covers 24 months. Figure 3.10 shows 

that a shock in the price of Taiwanese live eels has a positive impact on all eel prices 

throughout all 24 months. Overall, the graphs show that the responses of all eel prices to 

the shock immediately increase to reach their peaks in the first month, decrease 

thereafter, and gradually tend towards stability except for the prepared eel price from 

Shizuoka Prefecture.  
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Figure 3.10. Impulse response function to a shock in Taiwanese live eel prices 
Notes: 1 and 2 denote live and prepared eel prices, respectively. 
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Figure 3.12. Impulse response function to a shock in Chinese prepared eel prices 
Notes: 1 and 2 denote live and prepared eel prices, respectively. 
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Figure 3.13. Impulse response function to a shock in the 
live eel prices from Aichi Prefecture, Japan 
Notes: 1 and 2 denote live and prepared eel prices, respectively. 
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Figure 3.14. Impulse response function to a shock in the live eel 
prices from Shizuoka Prefecture, Japan 
Notes: 1 and 2 denote live and prepared eel prices, respectively. 
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Shizuoka.2-->China.1
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Figure 3.15. Impulse response function to a shock in the prepared eel prices 
from Shizuoka Prefecture, Japan 
Notes: 1 and 2 denote live and prepared eel prices, respectively. 
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Before the response of the prepared eel price from Shizuoka Prefecture reaches a 

peak after 18 months, it continuously rises except for the second month. Then, after 

being unchanged over a four-month period, it slowly declines. 

Figure 3.11 shows that a shock in the price of Chinese live eels has a positive 

impact on all eel prices except for the prepared eel price from Shizuoka Prefecture. The 

response of Chinese live eel prices to its own shock has roughly downward trend. The 

line graph of the response of the prepared eel price from Shizuoka Prefecture looks like a 

check mark, i.e., its response keeps an upward tendency after reaching rock bottom in 

the second month. Overall, the responses of the remaining price series have an inverted 

V-curve.  

Figure 3.12 shows that a shock in Chinese prepared eel prices has a positive 

impact on all eel prices. The responses of all eel prices initially exhibit an upward trend 

until reaching their peaks and then decrease gradually except that there is a downward 

trend in the response of Chinese prepared eel prices to its own shock throughout all 24 

months. In Figure 3.13 the effect of a shock in the live eel price from Aichi Prefecture on 

Taiwanese and Chinese live eel prices and on the live eel prices from Aichi and 

Shizuoka Prefectures and the prepared eel price from Shizuoka Prefecture (except for the 

1st month) changes from positive to negative in the 10th month and 13th month, 

respectively. Although the shock has a negative impact on Chinese prepared eel prices, 

the fluctuation in response of Chinese prepared eel prices slows down after the 3rd 

month. To compare Figure 3.13 to Figure 3.14, roughly speaking, shocks in the live eel 

prices from Aichi and Shizuoka Prefectures have similar effects on all eel prices. 
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Overall, Figure 3.15 shows that a shock in the prepared eel price from Aichi Prefecture 

has a positive impact on all eel prices. It is also worth mentioning that the shapes of line 

graphs describing the effects of the shock on the import eel prices are similar. 

Based on the result given in Figure 3.9, the forecast error variance decomposition 

for each eel price at alternative time horizons is given in Table 3.5. The percentage share 

of a forecast error variance is attributable to earlier shocks from each other series 

(including itself) at a specific time horizon. In this study, we list horizons of 1, 6, 12, 18, 

and 24 months ahead. Since the eel farmers in China produce eels considerably more 

cheaply than those in other producing countries, Taiwanese farmers have completely lost 

the prepared eel market and still face strong competition from China in the live eel 

market in Japan. China is the only competitor for Taiwanese eel farmers in the Japanese 

import market. This also reflects that at the longer horizon of two years besides its own 

innovations, the Taiwanese price variation is mainly explained by innovations in prices 

of eels imported from China (China 1 and China 2, about 55.57% in total). Before the 

12-month horizon, the influence of its own prices on the uncertainty of Taiwanese live 

eel prices sharply decreases, while the influence of Chinese prepared eel prices (China 2) 

dramatically increases. It is not unexpected that the price variation of Chinese live eels is 

initially determined mostly by the shocks in Taiwanese live eel prices (48.22%) and its 

own prices (48.00%). However, the explanatory power of its own innovations sharply 

decreases to 18.00% at the 6-month horizon. In contrast, the influence of Chinese 

prepared eel prices on Chinese live eel prices dramatically increases before the 12-month 

horizon and then gradually increases.  



 

 66

Table 3.5. Variance Decomposition on Monthly Eel Prices 
Step SE Taiwan China1 China2 Aichi Shizuoka1 Shizuoka2
Taiwan        

1 0.065 100.000 0.000 0.000 0.000 0.000 0.000 
6 0.184 80.020 4.020 14.162 1.622 0.020 0.155 
12 0.245 53.493 5.864 38.491 1.367 0.016 0.770 
18 0.287 44.020 4.817 47.557 1.626 0.081 1.898 
24 0.320 39.162 4.140 51.428 2.297 0.221 2.753 

China1        
1 0.057 48.216 47.996 1.848 1.374 0.523 0.043 
6 0.175 51.904 18.000 24.557 5.094 0.373 0.071 
12 0.241 36.030 13.071 46.667 3.288 0.267 0.677 
18 0.286 31.105 9.862 54.024 2.922 0.253 1.834 
24 0.322 28.622 8.108 56.859 3.326 0.358 2.727 

China2        
1 0.063 0.000 0.000 100.000 0.000 0.000 0.000 
6 0.154 19.461 0.510 75.095 3.303 0.174 1.457 
12 0.212 20.582 1.204 70.670 4.408 0.487 2.649 
18 0.249 19.973 1.252 69.482 5.215 0.656 3.421 
24 0.275 19.669 1.215 68.628 5.774 0.776 3.937 

Aichi        
1 0.039 40.453 0.000 0.000 42.160 16.059 1.328 
6 0.134 48.708 3.635 15.892 25.339 5.614 0.812 
12 0.191 33.379 5.188 40.884 15.629 3.033 1.887 
18 0.234 28.630 4.173 51.145 10.634 2.057 3.361 
24 0.269 26.362 3.494 55.307 8.831 1.697 4.308 

Shizuoka1        
1 0.044 38.119 0.000 0.000 0.000 57.155 4.726 
6 0.141 45.867 4.788 17.167 13.732 16.804 1.642 
12 0.201 32.595 6.468 40.949 9.898 8.674 1.416 
18 0.243 28.332 5.237 51.062 6.944 5.931 2.493 
24 0.277 26.262 4.377 55.140 6.121 4.691 3.410 

Shizuoka2        
1 0.148 0.000 0.000 0.000 0.000 0.000 100.000 
6 0.235 2.251 0.566 7.842 1.598 0.114 87.629 
12 0.292 6.136 0.396 22.323 1.589 0.151 69.404 
18 0.344 9.255 0.386 33.520 1.278 0.241 55.320 
24 0.389 11.243 0.450 40.538 1.528 0.353 45.888 

Notes: SE is the standard error. 1 and 2 denote live and prepared eel prices, respectively. 
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The influence of Taiwanese live eel prices on Chinese live eel prices shows a 

decreasing trend after reaching its peak at the 6-month horizon. Furthermore, after the 1-

month horizon, the influence of the six eel prices on Chinese prepared eel prices 

becomes more stable, and the main sources of influence are from its own prices (68% to 

75%) and Taiwanese live eel prices (19% to 20%) at each horizon. At the 1-month 

horizon, the price variation of Aichi's live eels is determined mainly by its own 

innovations (42.16%) and the innovations of Taiwanese live eel prices (40.45%). As 

time goes on, the influence of Aichi's own prices on its live eel prices sharply declines to 

8.83%, and the influence of Taiwanese live eel prices shows a decreasing trend after the 

6-month horizon. In contrast, the explanatory power of shocks in Chinese prepared eel 

prices displays an increasing trend, and there is a surge in the influence of Chinese 

prepared eel prices on Aichi's live eel prices before the 12-month horizon. The 

relationships among the price variation of Shizuoka's live eels and the main sources of 

influence (Shizuoka1, China 2, Taiwan) are similar to those among the price variation of 

Aichi's live eels and the main sources of influence (Aichi, China 2, Taiwan). Finally, the 

price volatility of Shizuoka's prepared eels (Shizuoka 2) is mostly determined by its own 

innovations at the initial stage of time horizons. As time passes, its own influence has a 

decreasing trend. A considerable proportion of the reduction is reflected in the increase 

of the explanatory power of shocks in Chinese prepared eel prices (China 2) for the price 

variation of Shizuoka's prepared eels. 
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3.5.2 Vegetable Soybean (Edamame) Imports in Japan 

The descriptive statistics for import prices of vegetable-type soybeans from 

China, Indonesia, Taiwan, and Thailand and wholesale prices of domestic edamame in 

the Tokyo Metropolitan Central Wholesale Market are presented in Table 3.6. The 

highest price is reported from domestic edamame, while Indonesian edamame has the 

lowest price among five analyzed prices. Because of higher production costs, the 

preference for domestic goods, and product types, domestic prices of fresh edamame in 

Japan are much higher than those of imported frozen edamame. The CV suggests that 

prices of imported edamame are less dispersed than those of domestic edamame. 

Similarly, the SD also shows the same result. In the same way as the statistical mean, the 

SD is easily influenced by extreme values, i.e., the SD increases as the average 

increases. In this case, the CV is the best way to summarize the variation. 

 

Table 3.6. Descriptive Statistics for Monthly Edamame Prices 
(JPY/KG), 1999-2017 
Variable Mean SD Minimum Maximum CV 
Import      

China 167.122 22.692 129.740 223.603 0.136 
Indonesia 180.681 31.867 106.299 263.751 0.176 
Taiwan 208.463 27.341 162.513 277.501 0.131 
Thailand 198.923 27.525 155.514 270.600 0.138 

Domestics  
Japan 1181.741 494.698 387.000 2299.700 0.419 

Notes: SD and CV are the standard deviation and coefficient of variation, respectively. 
 

Table 3.7 presents both ADF and PP unit root tests. The null hypothesis for both 

test procedures is that a unit root exists in an evaluated series. The number of 
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augmenting lags for the ADF test is determined by minimizing the BIC. Except for 

Indonesia, both ADF and PP tests have the same results for all analyzed price series. The 

results consistently suggest that the level of Japanese domestic prices is stationary, while 

levels of import prices from China, Taiwan, and Thailand are nonstationary at the 5% 

significance level. Both tests reveal that the null hypothesis is rejected for the first 

differences of all price series. Thus, it is concluded that all nonstationary price series in 

levels are integrated of order one. 

 

Table 3.7. Unit Root Tests on the Level and First Difference of Monthly 
Edamame Prices, 1999-2017 
Series ADF PP 
 Level 1st diff. Level 1st diff. 
China -2.411 (0) -16.211 (0)** -2.172 (4) -16.440 (4)** 
Indonesia -2.150 (1) -25.028 (0)** -3.078 (4)** -27.438 (4)** 
Japan -3.169 (12)** -7.783 (11)** -7.010 (4)** -14.346 (4)** 
Taiwan -1.691 (0) -15.563 (0)** -1.724 (4) -15.558 (4)** 
Thailand -1.750 (2) -9.100 (1)** -1.549 (4) -17.392 (4)** 
Notes: The data are transformed by taking natural logarithms. The numbers in parentheses 
indicate the lag order in the ADF test and the bandwidth using the Newey-West bandwidth 
selection method and the Bartlett kernel in the PP test, respectively. The default bandwidth 

is the integer part of 9
2

)100/(4 T where T is the sample size. ** denotes significance at 

the 5% level. 
 

Based on the lowest HQ, one lag is used in the VECM. Except for the second and 

fourth models, the Johansen trace and maximum eigenvalue statistics have different 

results for the five VECMs (Table 3.8). As mentioned above, when results of two 

statistics produce a contradiction in a certain model, the number of cointegrating vectors 

is determined by the trace statistic. The values of the BIC for each model with different r 

values are shown in Table 3.9. The lowest BIC value is -13.884 in the model that has 
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linear trends in level data and its cointegrating equations. Thus, the innovations from this 

model are used to identify causal structure among the edamame price series. 

 

Table 3.8. Johansen Tests on the Order of Cointegration of Monthly Edamame 
Prices in 5 Trend Assumptions 
Data trend None None Linear Linear Quadratic 
ECT None Intercept Intercept Intercept Intercept 
    Trend Trend 
Trace 3 2 3 2 3 
Max. eigenvalue 2 2 2 2 2 
Notes: Selected number of cointegrating relations at the 5% significance level. ECT denotes the error 
correction terms in a vector error correction model. 

 

Table 3.9. Schwarz Criteria by Ranks (Row) and Models (Column) Using 
Monthly Edamame Prices 
Data trend None None Linear Linear Quadratic 
ECT None Intercept Intercept Intercept Intercept 
    Trend Trend 
Rank (r)      

2 -13.831 -13.827 -13.757 -13.884 -13.815 
3 -13.660 -13.648 -13.602 -13.722 -13.676 

Notes: ECT denotes the error correction terms in a vector error correction model. 
 

At the 5% significance level, the result after removing the insignificant edges and 

directing the remaining edges is given in Figure 3.16. It clearly shows that changes in 

Chinese and Indonesian edamame prices lead to a change in Taiwanese edamame prices 

in contemporaneous time, while changes in Chinese and Taiwanese edamame prices 

affect a change in Thai edamame prices in contemporaneous time. In addition, the Thai 

edamame price is completely an information receiver. 
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Figure 3.16. Directed acyclic graph on innovations 
from the VECM with edamame prices 

 

The impulse response functions of our estimated model for selected edamame 

price series are depicted in Figure 3.17-3.21. In Figure 3.17 it is observed that a shock of 

Taiwanese edamame prices has an immediate positive effect on all edamame pries. All 

the effects peak in the 1st month expert for its own price in the origin and remain positive 

throughout all 24 months except that the shock has a negative impact on the price of 

Japanese domestic edamame after the 6th month. Comparing Figure 3.17 to Figure 3.18, 

shocks in the Taiwanese and Chinese edamame prices have similar effects on all 

edamame prices. The main differences are that the initial value from the response of 

Taiwanese prices to a Chinese price shock is nonzero and that the shock has a negative 

impact on the price of Japanese domestic edamame after the 3rd month. Figure 3.19 

shows that a shock in Indonesian edamame prices has a positive impact on all edamame 

prices except for the price of Japanese domestic edamame.  
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Figure 3.17. Impulse response function to a shock in Taiwanese edamame 
prices 
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Figure 3.18. Impulse response function to a shock in Chinese edamame 
prices 
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Figure 3.19. Impulse response function to a shock in Indonesian edamame 
prices 
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Figure 3.20. Impulse response function to a shock in Japanese edamame prices 
Notes: The responses of Thai edamamea use a y-axis on the right side. 
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Figure 3.21. Impulse response function to a shock in Thai edamame prices 
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Additionally, the responses of Taiwanese, Chinese, and Thai edamame prices 

exhibit a slowly decreasing trend after reaching the peaks. The response of its own price 

takes a jump in the 1st month and continuously declines after the 6th month. 

Figure 3.20 shows that a shock in the price of Japanese domestic edamame has a 

positive impact on all edamame prices except that the shock has a negative impact on its 

own prices after the 6th month. It is also worth mentioning that the shapes of line graphs 

describing the effects of the shock on the import edamame prices are similar. Figure 3.21 

reveals that a shock of Thai edamame prices has positive effects on all edamame prices 

throughout all 24 months except for the response of Indonesian edamame prices in the 

1st month and the response of the price of Japanese domestic edamame after the 16th 

month. The responses of all edamame prices appear as a downward trend after reaching 

a peak except the response of its own prices. 

Based on the result of the directed graph given in Figure 3.16, the forecast error 

variance decomposition for each edamame price at alternative time horizons is given in 

Table 3.10. These values indicate how much of the volatility of the variable of interest 

can be explained by different variables in the model. For example, besides for its own 

innovations, price variations of edamame imported from Taiwan are explained mainly 

by innovations in prices of edamame imported from China (32 to 40 percent), Thailand 

(0 to 20 percent), and Indonesia (1 to 10 percent) and somewhat by innovations in prices 

of domestic edamame (0 to 3 percent). After the 6-month horizon, the influences of its 

own prices and Chinese edamame prices on the uncertainty of Taiwanese edamame 
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prices have a decreasing trend, while the influences of Thai and Indonesian edamame 

prices are gradually increased.  

 

Table 3.10. Variance Decomposition of Monthly Edamame Prices 
Step SE Taiwan China Indonesia Japan Thailand 
Taiwan       

1 0.032 65.438 32.885 1.677 0.000 0.000 
6 0.072 45.740 40.348 7.107 2.112 4.693 
12 0.093 37.730 38.418 9.400 3.033 11.419 
18 0.106 32.679 37.287 10.307 2.924 16.803 
24 0.115 29.346 36.753 10.661 2.746 20.496 

China       
1 0.041 0.000 100.000 0.000 0.000 0.000 
6 0.088 4.235 87.381 1.283 0.951 6.150 
12 0.108 4.109 79.767 2.184 1.318 12.622 
18 0.118 3.891 74.666 2.886 1.278 17.279 
24 0.124 3.749 71.409 3.388 1.228 20.226 

Indonesia       
1 0.069 0.000 0.000 100.000 0.000 0.000 
6 0.109 13.110 12.558 69.456 2.656 2.219 
12 0.131 16.803 16.671 55.544 3.474 7.508 
18 0.145 16.962 18.952 48.459 3.366 12.261 
24 0.155 16.310 20.499 44.247 3.187 15.757 

Japan       
1 0.302 0.000 0.000 0.000 100.000 0.000 
6 0.435 1.068 0.337 1.371 96.294 0.930 
12 0.437 1.088 0.864 1.684 95.209 1.155 
18 0.438 1.115 0.956 1.692 95.079 1.158 
24 0.438 1.125 0.979 1.695 95.040 1.161 

Thailand       
1 0.030 19.195 21.654 0.492 0.000 58.658 
6 0.071 19.261 36.893 5.154 0.761 37.931 
12 0.094 15.434 36.671 7.680 1.180 39.036 
18 0.109 13.385 36.396 8.595 1.219 40.404 
24 0.119 12.163 36.298 8.970 1.202 41.367 

Notes: SE is the standard error. 
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Moreover, the variation of Chinese edamame prices is influenced primarily by its 

own shocks (71 to 100 percent) and secondarily by shocks in Thai edamame prices (0 to 

20 percent). The explanatory power of shocks in its own prices gradually declines, while 

the explanatory power of shocks in Thai edamame prices has an increasing trend. The 

price volatility of Indonesian edamame is completely determined by its own innovations 

at the initial stage of time horizons. As time passes, its own influence has a decreasing 

trend. The reduction is mainly reflected in the increase of the explanatory power of 

shocks in Chinese (0 to 20 percent), Taiwanese (0 to 16 percent), and Thai (0 to 15 

percent) edamame prices for the price variation of Indonesian edamame. In contrast, 

Japanese domestic price variations are determined almost solely by its own innovations 

at all steps (95 to 100 percent). In addition, Thai price variations are determined mainly 

by innovations of its own (41 to 58 percent), Chinese (21 to 36 percent), and Taiwanese 

(12 to 19 percent) edamame prices and somewhat by those of Indonesian (0 to 8 percent) 

edamame prices at all steps. The explanatory power of shocks in its own prices gradually 

declines, and the influences of Chinese and Taiwanese edamame prices have a 

decreasing trend after the six-month horizon. Conversely, the influence of Indonesian 

edamame price has an increasing trend. 

3.5.3 Feather and Down Imports in Japan 

The descriptive statistics for prices of feathers and down imported from China, 

France, Hungary, Poland, and Taiwan and of eiderdowns imported from China are 

presented in Table 3.11. According to the statistics of the Japan Customs, Japanese 

eiderdown imports are mostly from China, accounting for about 92 percent of total 
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imports of eiderdowns in 2017. Extreme values have large impact on the arithmetic 

mean of data and cause bigger SDs in Hungarian and Polish price series than those in the 

rest of price series. The highest price of feathers and down is found from Poland, while 

French feathers and down have the lowest price among five analyzed price series of 

feathers and down. The CV suggests that the Polish and French price series are more 

dispersed than the rest of price series. The results are partly different from those of the 

SD. Moreover, both the SD and CV suggest that prices of eiderdown imported from 

China have the least dispersed among six analyzed prices. 

 

Table 3.11. Descriptive Statistics for Monthly Feather and Down Prices 
(JPY/KG), 2004-2017 
Variable Mean SD Min. Max. CV 
Feather and down      

China 4571.636 1643.750 1979.090 10287.220 0.360 
France 3849.774 1801.656 723.667 8761.789 0.468 
Hungary 7781.382 3098.671 3162.718 24143.520 0.398 
Poland 9419.518 4638.041 1958.763 31450.000 0.492 
Taiwan 4082.398 1566.003 1220.233 8834.913 0.384 

Eiderdown  
China 1343.311 380.882 808.349 2544.947 0.284 

Notes: SD and CV represent the standard deviation and the coefficient of variation, 
respectively. 

 

Table 3.12 presents both ADF and PP unit root tests. Except for Hungary, results 

of the ADF test are different from those of the PP test. At a significance level of 0.05, 

the ADF test suggests that all price series are nonstationary in levels except for Hungary, 

whereas the PP test suggests that all price series are stationary in levels. Moreover, the 

ADF test reveals that the null hypothesis is rejected for the first differences of all price 
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series. Thus, according to the results of the ADF test, it can be concluded that all 

nonstationary price series in levels are integrated of order one. 

 

Table 3.12. Unit Root Tests on the Level and First Difference of Monthly Feather 
and Down Prices, 2004-2017 
Series ADF PP 
 Level 1st diff. Level 1st diff. 
Feather and down     

China -2.503 (2) -14.535 (1)** -4.311 (4)** -19.142 (4)** 
France -2.191 (2) -16.510 (1)** -5.697 (4)** -30.320 (4)** 
Hungary -3.167 (2)** -14.480 (1)** -6.767 (4)** -27.462 (4)** 
Poland -1.914 (3) -12.343 (2)** -5.259 (4)** -31.616 (4)** 
Taiwan -2.862 (1) -20.308 (0)** -4.093 (4)** -22.088 (4)** 

Eiderdown   
China 0.032 (12) -5.670 (11)** -3.215 (4)** -16.813 (4)** 

Notes: The data are transformed by taking natural logarithms. The numbers in parentheses indicate the 
lag order in the ADF test and the bandwidth using the Newey-West bandwidth selection method and 
the Bartlett kernel in the PP test, respectively. The default bandwidth is the integer part of 

9
2

)100/(4 T where T is the sample size. ** denotes significance at the 5% level. 
 

Based on the lowest HQ, one lag is used in the VECM. Both the Johansen trace 

and maximum eigenvalue statistics have the same results for the five VECMs (Table 

3.13). The results suggest that rank r in the first model is equal to three and is the least 

than those in the rest of models, while the fifth model has full rank, i.e., rank r is equal to 

the number of equations in the VECM system. The values of the BIC for each model 

with different r values are shown in Table 3.14. The lowest BIC value is 0.554 in the 

model that has no deterministic trends in level data and whose cointegrating equations 

do not have intercepts. Thus, the innovations of this model are used to identify causal 

structure among the six analyzed price series. 
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Table 3.13. Johansen Tests on the Order of Cointegration of Monthly Feather 
and Down Prices in 5 Trend Assumptions 
Date trend None None Linear Linear Quadratic 
ECT None Intercept Intercept Intercept Intercept 
    Trend Trend 
Trace 3 4 5 5 6 
Max. eigenvalue 3 4 5 5 6 
Notes: Selected number of cointegrating relations at the 5% significance level. ECT denotes the error 
correction terms in a vector error correction model. 

 

Table 3.14. Schwarz Criteria by Ranks (rows) and Models (columns) Using 
Monthly feather and down prices 
Data trend None None Linear Linear Quadratic 
ECT None Intercept Intercept Intercept Intercept 
    Trend Trend 
Rank (r)      

3 0.554 0.616 0.704 0.781 0.873 
4 0.831 0.871 0.929 0.970 1.031 
5 1.150 1.183 1.210 1.231 1.262 
6 1.519 1.562 1.562 1.597 1.597 

Notes: ECT denotes the error correction terms in a vector error correction model. 
 

At the 5% significance level, the result after removing the insignificant edges and 

directing the remaining edges is given in Figure 3.22. It clearly shows that changes in 

Chinese eiderdown (China 2) and Taiwanese feather and down prices lead to a change in 

Chinese feather and down prices (China 1) in contemporaneous time, while changes in 

Chinese (China 1), Taiwanese, and Polish feather and down prices affect a change in 

Hungarian feather and down prices in contemporaneous time. In addition, the Hungarian 

feather and down price is completely an information receiver. 
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Figure 3.22. Directed acyclic graph on innovations from 
the VECM with feather-down and eiderdown prices 
Notes: 1 and 2 denote feather-down and eiderdown prices, respectively. 

 

The impulse response functions of our estimated model for selected feather-down 

and eiderdown price series are depicted in Figure 3.23-3.28. Figure 3.23 shows that a 

shock of Taiwanese feather-down prices has positive effects on all selected prices 

throughout all 24 months except for the response of Chinese eiderdown prices during the 

first two months. The effects of the shock on all the selected price series fluctuate wildly 

during the early stage of the time horizon and then go down gradually except that the 

response of Chinese eiderdown prices has a declining trend after reaching a peak. Figure 

3.24 reveals that the effects of a stock of Chinese feather-down prices on all selected 

price series are positive except for the responses of French and polish feather-down 

prices in the 2nd month. The effects have a downward trend after the peaks of the 

responses of Taiwanese feather-down, Chinese eiderdown, and Polish feather-down 

prices, the initial value of the response of its own prices, and the 8th and 9th month of the 

responses of Hungarian and French prices, respectively.  
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Taiwan-->Taiwan
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Figure 3.23. Impulse response function to a shock in Taiwanese feather and 
down prices 
Notes: 1 and 2 denote feather-down and eiderdown prices, respectively. 
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China.1-->China.1
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Figure 3.24. Impulse response function to a shock in Chinese feather 
and down prices 
Notes: 1 and 2 denote feather-down and eiderdown prices, respectively. 
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China.2-->China.1
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Figure 3.25. Impulse response function to a shock in Chinese 
eiderdown prices 
Notes: 1 and 2 denote feather-down and eiderdown prices, respectively. 
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France-->China.1
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Figure 3.26. Impulse response function to a shock in French feather and 
down prices 
Notes: 1 and 2 denote feather-down and eiderdown prices, respectively. 
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Hungary-->China.1
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Figure 3.27. Impulse response function to a shock in Hungarian 
feather and down prices 
Notes: 1 and 2 denote feather-down and eiderdown prices, respectively. 
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Poland-->China.1
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Figure 3.28. Impulse response function to a shock in Polish feather and 
down prices 
Notes: 1 and 2 denote feather-down and eiderdown prices, respectively. 
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Figure 3.25 shows that a shock of Chinese eiderdown prices has positive effects 

on all selected prices throughout all 24 months except for the response of Hungarian 

feather-down price during the 2nd and 3rd months. In addition, the responses of all the 

selected prices appear a downward trend after reaching peaks except for the response of 

its own prices. Figure 3.26 reveals that a shock of French feather-down prices has 

positive effects on all selected prices throughout all 24 months except for the response of 

Polish feather-down price in the 1st month. Additionally, the responses of all the selected 

prices go down gradually after reaching peaks except for the response of its own prices. 

Figure 3.27 shows that a shock of Hungarian feather-down prices has positive 

and negative effects on the responses of all the selected prices except for the response of 

Polish feather-down prices. In complete contradiction of the response of French feather-

down and Chinese eiderdown prices, most positive effects are greater than negative 

effects on the responses of Taiwanese, Chinese, and Hungarian feather-down prices. 

Figure 3.28 shows a shock of Polish feather-down prices has positive effects on French, 

Hungarian, and Polish feather-down prices throughout all 24 months, whereas there is 

zero or negative effects on the response of the remaining selected prices. In complete 

contradiction of the response of Chinese feather-down prices, most of the effects on the 

response of Chinese eiderdown prices at each time point are positive. 

Based on the result of the directed graph given in Figure 3.22, the forecast error 

variance decomposition is given in Table 3.15. Now China is the largest exporter of 

down raw materials and its products in the world.  
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Table 3.15. Variance Decomposition of Monthly Feather and Down Prices 
Step SE Taiwan China1 China2 France Hungary Poland 
Taiwan        

1 0.194 100.000 0.000 0.000 0.000 0.000 0.000 
6 0.270 67.579 19.496 4.933 7.815 0.126 0.051 
12 0.318 53.205 25.501 7.558 13.602 0.095 0.039 
18 0.341 48.107 26.963 8.999 15.786 0.088 0.056 
24 0.353 45.757 27.489 9.789 16.796 0.084 0.086 

China1        
1 0.210 3.851 94.912 1.237 0.000 0.000 0.000 
6 0.315 6.416 82.524 1.107 6.697 0.231 3.025 
12 0.344 7.206 77.455 1.619 9.818 0.274 3.629 
18 0.353 7.433 75.813 2.085 10.824 0.287 3.558 
24 0.357 7.547 75.053 2.379 11.249 0.286 3.486 

China2        
1 0.136 0.000 0.000 100.000 0.000 0.000 0.000 
6 0.207 0.512 2.150 84.303 7.687 2.252 3.096 
12 0.234 2.598 4.971 74.124 12.002 1.766 4.540 
18 0.251 4.132 7.488 68.103 14.155 1.541 4.582 
24 0.261 4.996 9.217 64.567 15.385 1.417 4.417 

France        
1 0.311 0.000 0.000 0.000 100.000 0.000 0.000 
6 0.381 4.463 3.402 12.149 77.998 0.369 1.620 
12 0.428 6.253 7.212 16.081 67.743 0.295 2.416 
18 0.457 7.280 9.741 17.221 63.011 0.260 2.487 
24 0.475 7.833 11.274 17.677 60.535 0.240 2.441 

Hungary        
1 0.241 3.979 2.025 0.026 0.000 92.015 1.955 
6 0.289 15.765 3.702 0.641 1.031 71.368 7.493 
12 0.310 17.315 7.787 2.074 3.837 62.067 6.920 
18 0.324 17.237 9.972 3.386 5.845 57.130 6.429 
24 0.331 17.120 11.070 4.176 6.955 54.511 6.168 

Poland        
1 0.257 0.000 0.000 0.000 0.000 0.000 100.000
6 0.331 5.518 0.482 10.171 2.382 1.450 79.996 
12 0.373 7.515 2.922 14.677 6.415 1.371 67.100 
18 0.400 8.603 5.741 16.334 9.262 1.206 58.854 
24 0.419 9.153 7.705 17.004 10.960 1.105 54.072 

Notes: SE is the standard error. 1 and 2 denote feather-down and eiderdown prices, respectively. 
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The clothing industry is a labor-intensive industry, i.e., its production process 

relies on a large amount of manpower, and the proportion of labor costs to 

manufacturing costs is high. Thus, most processing factories of down jackets and coats 

in Taiwan move to countries where wages are relatively cheaper. At present the 

Taiwanese feather and down industry mainly produces feathers of a kind used for 

stuffing, down, and eiderdowns filled with them. Because China has lower production 

costs and prices of raw materials, Taiwanese manufacturers have lost the Japanese 

eiderdown market and still face strong competition from China in the Japanese feather 

and down market. 

This also reflects that besides its own innovations, the price variation of 

Taiwanese feathers and down is explained chiefly by innovations in the prices of 

feathers, down, and eiderdowns filled with them and imported from China (China 1 and 

China 2, 0 to 37 percent in total) and by those of feathers and down imported from 

France (0 to 16 percent). As time goes by, the influence of its own prices declines to 

45.76%. In contrast, the explanatory powers of Chinese feather and down prices (China 

1), Chinese eiderdown prices (China 2), and French feather and down prices have an 

increasing trend. 

The price variation of Chinese feathers and down (China 1) is determined 

primarily by its own innovations at all steps (75 to 94 percent) and partly by innovations 

of French (0 to 11 percent) and Taiwanese (3 to 7 percent) feather and down prices. 

Similarly, the influence of its own prices gradually decreases, while the influences of 

French and Taiwanese feather and down prices on Chinese feather and down prices 
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(China 1) have an increasing trend. The uncertainty in Chinese eiderdown prices (China 

2) is influenced mainly by its own innovations (64 to 100 percent). As time goes by, its 

own influence has a decreasing trend. The reduction is reflected largely in the increase of 

the explanatory power of shocks in French (0 to 15 percent) and Chinese (0 to 9 percent) 

feather and down prices and somewhat in that in Taiwanese (0 to 4 percent) and Polish 

(0 to 4 percent) feather and down prices. For the French price series besides itself, its 

price variation is explained mostly by Chinese (China 1 and China 2, 0 to 28 percent in 

total) innovations and rather by Taiwanese (0 to 8 percent) innovations. At the longer 

horizon of two years, the explanatory power of shocks in its own prices for the variation 

of Hungarian prices declines to 54.51%. The reduction is reflected mainly in the increase 

of the explanatory power of shocks in Taiwanese and Chinese (China 1 and China 2) 

prices and somewhat in that in French and Polish prices. Moreover, for the Polish price 

series besides itself, its price variation is explained largely by Chinese (China 1 and 

China 2, 0 to 24 percent in total) innovations and partly by Taiwanese (0 to 9 percent) 

and French (0 to 10 percent) innovations. 

3.6 Conclusions 

This paper examines dynamic price relationships in the Japanese eel, edamame, 

and feather and down import markets. We study observational data in an error correction 

framework using causal DAGs. For the Japanese eel import market, the DAG shows that 

a change in Taiwanese (live) eel prices leads to changes in (live) eel prices from Aichi 

prefecture, Shizuoka prefecture, and China in contemporaneous time. At the longer 

horizon of two years besides its own innovations, the Taiwanese price variation is 
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mainly explained by innovations in prices of eels exported from China (China 1 and 

China 2, about 55.57% in total). The results of the impulse response functions reveal that 

the effect of a change in Taiwanese live eel prices on live eel prices from other markets 

is stronger than on prepared eel prices from other markets in initial phase. The volatility 

in Taiwanese live eel prices is significantly influenced by shocks in Chinese eel prices, 

whereas the effect of a change in eel prices from other markets is weak. 

For the Japanese edamame import market, the DAG shows that changes in 

Chinese and Indonesian edamame prices lead to a change in Taiwanese edamame prices 

in contemporaneous time. In addition, a change in Taiwanese edamame prices leads to a 

change in Thai edamame prices in contemporaneous time. Besides its own innovations, 

price variations of Taiwanese edamame are explained primarily by innovations of 

Chinese (32 to 40 percent) and Thai (0 to 20 percent) edamame prices and somewhat by 

innovations of Indonesian edamame prices (1 to 10 percent). According the results of 

impulse response functions, the effect of a shock of Taiwanese edamame prices on 

Japanese edamame prices is stronger and positive in the first months but rapidly decline 

to negative. The effect of a change in edamame prices from other markets on Taiwanese 

edamame prices is insignificant. 

For the Japanese feather and down import market, the DAG shows changes in 

Taiwanese feather and down prices lead to changes in Chinese (China 1) and Hungarian 

feather and down prices in contemporaneous time. Besides its own innovations, price 

variations of Taiwanese feathers and down are explained largely by innovations in prices 

of feathers, down, and eiderdowns exported from China (China 1 and China 2, 0 to 37 



 

 95

percent in total) and partly by those of feathers and down exported from France (0 to 16 

percent). The results of the impulse response functions show that the volatility in 

feather-down prices from other markets is significantly influenced by a shock in 

Taiwanese feather-down prices. Additionally, the response of Taiwanese feather-down 

prices to Chinese and French feather-down prices is significant, whereas the response to 

Hungarian and Polish feather-down prices is insignificant. 
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CHAPTER ΙV 

AN ANALYSIS OF THE BANANA IMPORT MARKET IN THE U.S. 

 

4.1 Introduction 

According to the statistics of the U.S. Department of Agriculture (USDA) and 

the U.S. International Trade Commission (USITC), banana is the number one fresh fruit 

consumed in the U.S. Its share is over 22% of the yearly quantity of fresh fruit 

consumption per capita and even exceeds the sum of the annual consumption of all citrus 

fruit since 1989. The annual volume of banana imports increased steadily until it peaked 

in 1999. After fluctuating between 3,500 and 4,100 thousand tons in the first decade and 

a half of the 21st century, the import volume of bananas reached a new historic high 4.38 

million tons in 2017. The annual value of banana imports has fluctuated; however, the 

value increased between 2004 and 2012 and hit a historic high $1.93 billion. Because of 

the geographic location of the United States, the production of bananas is limited to the 

state of Hawaii, which is less than 1,000 acres of land. The ratio of this production to 

domestic consumption is much smaller than the imports. In other words, the American 

consumption of bananas mostly depends on imports. Moreover, in terms of the import 

quantity of fresh fruits, bananas are the largest staple fruit consumed in the United 

States. This makes U.S. the biggest importer of bananas in the world with an 

approximate 4,379.34 thousand tons in 2017 and whose average share in global banana 

net import during 2008 to 2017 is about 24.66%. The share of banana imports in the EU 

taken as a whole is more than that of the U.S. and accounts for about 30.81% share in the 
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period; however, it is made up of 28 countries and has about 1.56 times the population of 

the U.S. 

Global banana exports are highly concentrated in five countries: Ecuador, Costa 

Rica, Guatemala, Colombia, and the Philippines. Along with wheat, rice, and corn, 

bananas are a significant staple commodity for these developing countries. Nevertheless, 

banana trade has a number of inherent complications. They include the consideration of 

transportation costs, time, delicate and perishable properties in banana distribution, and 

diverging import policies in the consuming countries. For this reason, U.S. banana 

imports originate almost entirely from Latin American countries near the equator, with 

imports from other parts of the world considered negligible. Colombia, Costa Rica, 

Ecuador, Guatemala, Honduras, and Mexico are the largest providers of fresh bananas to 

the United States. These equatorial countries together supply over 99% of total U.S. 

fresh banana imports, which make up about 35.71% of the fresh or chilled fruit quantity 

shipped by them to the United States in 2017. Furthermore, according to statistics from 

the WTO and the FAO, the percentage of banana export value to total export value (the 

volume share of bananas exported to the U.S. to total banana exports) in Colombia, 

Costa Rica, Ecuador, Guatemala, Honduras, and Mexico in 2017 are 2.26% (14.96%), 

11.63% (32.55%), 15.48% (12.71%), 7.21% (87.32%), 2.88% (92.95%), 0.06% 

(68.79%), respectively. These show that the U.S. banana demand market plays a decisive 

role in the economic development and acquisition of foreign exchange of these 

countries. 
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Thus, structural and competitive changes in the demand for fresh bananas in the 

U.S. may have the possibility to cause severe economic shock in Latin American 

countries, which largely depend on the banana trade. Analyzing demand conditions of 

the import banana market in the U.S. could provide information for policy makers in 

banana export countries. In addition, bananas from these countries are called “dollar 

bananas” because they are mainly exported to North America by US-based transnational 

corporations (TNCs). The three largest producers and marketers of bananas in the world 

are all US-based TNCs. They are Chiquita Brands International (formerly known as the 

United Fruit Company, then United Brands), Fresh Del Monte Produce, and Dole Food 

Company (formerly Standard Fruit). Each accounts for about 11-13% of all bananas 

traded in the world. In addition to these US-based TNCs, the fourth largest is Fyffes plc, 

which controls about 6% of the world banana trade and whose headquarters is in Dublin, 

Ireland. Then the fifth largest banana export company in the world is Exportadora 

Bananera Noboa, which is one of the largest exporters of Ecuadorian bananas and which 

controls about 2% of total world trade. The U.S. banana market is free of tariffs or 

quantitative import restrictions and is basically controlled by these five companies, along 

with some relatively small ones. Thus, the banana import market has an oligopolistic 

market structure. In addition, due to producing and marketing large quantities of 

bananas, these TNCs can generate economies of scale at all levels of the supply chain to 

make profit. 

The U.S. banana market in the past two decades has become saturated such that 

the volume and price (share, wholesale, and retail prices) generally remain fixed even 
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during peak periods. Moreover, the U.S. is the largest banana importer in the world. 

Therefore, the primary goal of this article is to investigate the U.S. import demand for 

fresh bananas differentiated by country of origin to evaluate implication for the six main 

exporting countries. An ancillary goal is to compare forecasting performances among 

four inverse demand systems applied to evaluate the intensity of interaction of the six 

largest exporters of fresh bananas in the U.S. The paper is organized as follows. The 

related literature on the economic topics of bananas is presented in the next section of 

the paper. Then, the theoretical framework for inverse demand systems and data sources 

are described. Following that, results and relevant discussions are presented. The 

summary of main findings is presented in the last section of the paper.  

4.2 Literature Review 

Banana is the most important fresh fruit product traded internationally. 

According to the statistics of the FAO, in 2018, its global exports reached about 19.21 

million tons, and it stood second in the global fruit production after watermelon. Thus, 

banana related issues are of interest to researchers such as determining consumer 

behavior, investigating market structures and supply chain, analyses of production 

efficiency, plant disease and pest control, etc. Some studies have investigated banana 

consumption and are described as follows. For the related literature in banana markets 

outside the U.S., Stuckey and Anderson (1974) used time series data at wholesale and 

cross-section data at retail to estimate the demand functions for bananas at wholesale and 

retail levels in Sydney, Australia. Lee et al. (1992) applied three demand systems: a 

general demand model, Rotterdam, and Central Bureau of Statistics (CBS) to estimate 
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Canadian demand for fresh fruits and juice. Behr and Ellinger (1995) used linear 

regression equations to estimate German banana demand of three household types. 

Deodhar and Sheldon (1995, 1996) estimated the degree of market imperfection in the 

German market for banana imports using the new empirical industrial organization 

(NEIO) approach and its dynamic version and concluded that the market is imperfectly 

competitive, respectively. James and Anderson (1998) used a standard comparative-

static partial equilibrium approach to estimate the economic welfare consequences of 

lifting the import ban on fresh bananas in Australia.  

Burrell and Henningsen (2001) investigated the consumer demand for bananas 

and for other fruits in Germany. They found that the demand for bananas is significantly 

responsive to their own price, and suggested that policy-induced price increases generate 

the usual dead-weight losses. Florido et al. (2002) applied structural econometric models 

of market equilibrium where both the market demand and the firm's strategies are 

specified to determine the type of strategic behavior adopted by firms in the German 

banana market. Moreover, a linear approximated almost ideal demand system 

(LA/AIDS) is applied to test the separability and homotheticity of the demand model of 

the German banana imports. Schmitz and Seale (2002) used likelihood ratio tests to 

compare a general demand model with other four demand models (AIDS, Rotterdam, 

CBS, and National Bureau of Research) in order to determine which models are applied 

to estimate Japanese import demand for fresh fruits. Hatirli et al. (2003) measured the 

market power of the banana import market in Turkey and concluded that the market is 

not perfectly competitive and the behavior of firms is much closer to price-taking than to 
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collusion. Abdullah et al. (2011) applied a differentiated double logarithmic demand 

system to analyze Japanese demand for fruits such as bananas. Kikulwe et al. (2011) 

used a latent class model to analyze the choice experiment data which are collected by a 

household interview survey to evaluate consumer acceptance and valuation of 

genetically modified bananas in Uganda. Mortazavi et al. (2013) used an inverse AIDS 

(IAIDS) and residual demand model to analyze Iranian import demand for bananas 

exported from four major exporters. Weerahewa et al. (2013) used a liner regression 

approach to analyze the demand for bananas, mangos, papaws, and all fruits in Sri 

Lanka. 

For the related literature in the U.S. banana market, Houck (1964) used an 

inverse log linear demand function to estimate the U.S. retail demand for bananas. The 

results suggested that the retail demand for bananas is price elastic, and seasonal 

relationships with other fruits are strong, while the competitive relationship with other 

fruits is not as strong as one might think. Durham and Eales (2010) applied an double-

log demand system, AIDS, and its linear and quadratic (QUAIDS) versions to evaluate 

the demand for the U.S. fresh fruits (apples, pears, bananas, oranges, grapes, and others), 

and compare forecasting performances among four demand systems. The results showed 

that the QUAIDS has the lowest root mean square among them. Nzaku et al. (2010) 

applied a dynamic AIDS to estimate U.S. demand for fresh fruits (imported avocados, 

bananas, grapes, mangos, papayas, pineapples, and domestic graphs) and vegetables. 

The results suggested that the expenditure elasticity of bananas is about 0.25, that is, 

bananas are a normal and necessity good. When the import price of banana increases 
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1%, its import quantity will decrease about 0.10%. Moreover, imported bananas are a 

statistically significant substitute for imported avocados and mangos and domestic 

grapes. Muhammad et al. (2015) used a generalized dynamic Rotterdam model to 

analyze monthly import data from January 2000 to March 2010 in order to estimate the 

U.S. import demand for fresh bananas exported from five major exporters. 

4.3 Inverse Demand Systems 

In contrast with a regular system of demand equations, an inverse system of 

demand equations means that price changes are explained by quantity changes. In 

general, the regular demand system is suitable to describe the commodity whose 

consumers are price takers, that is, they have no ability to influence market prices. 

However, for perishable commodities such as fresh seafood and fresh fruit and 

vegetables, their producers behave like price takers and the supply is extremely inelastic 

in the short run. In such situations the causality goes from quantity to price, i.e. prices 

become endogenous and quantities demanded are exogenous. Thus, the inverse demand 

system is more appropriate to estimate the consumer demand of perishable commodities. 

4.3.1 Inverse Almost Ideal Demand System 

The traditional AIDS model can be used to model a complete demand system 

when the assumption of predetermined prices at the market level is tenable (Deaton and 

Muellbauer, 1980). However, for the demand of perishable commodities, which are 

produced in response to biological lags rather than price, the AIDS model would become 

inappropriate because of the preceding assumption is not met (Eales and Unnevehr, 

1994). For this situation, inverse demand functions, where prices are functions of 
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quantities, may be suitable to modeling agricultural demand using monthly or quarterly 

time series data. In the IAIDS model, the consumer preference is derived from the 

distance function (transformation function), which is dual to the cost function 

(expenditure function) of the AIDS. As the properties of cost function, the distance 

function is continuous in utility and quantity, decreasing in utility, and non-decreasing, 

concave, and homogeneous of degree one in quality (Moschini and Vissa, 1992). It 

measures the proportional amount by which all quantities consumed need to be inflated 

in order to reach a particular indifference curve. Let  qU  represent the direct utility 

function, where q  denotes the vector of quantities. Then, the distance function  quF ,  

is implicitly defined by   uquF
qU 





, , where u denotes the reference utility level. 

The distance function has a derivative property similar to the cost function (Deaton, 

1979). That is, differentiation of the distance function with respect to the optimal 

quantity of a particular good yields the compensated demand for that good in the same 

way that differentiation of the cost function with respect to a particular price yields a 

compensated demand function. Thus, following Deaton and Muellbauer’s derivation of 

the AIDS model (1980), a logarithmic distance function is defined by Eales and 

Unnevehr (1994): 

(4.1) )(ln)(ln)1(),(ln qbuqauquF  . 

Because the distance function possesses the same properties as the cost function, 

except for substituting quantities for prices, )(ln qa  and )(ln qb  are basically defined 

analogous to those in the development of the AIDS model. 
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(4.2)   j
i j

iijj
j

j qqqqa lnln
2

1
lnln *

0    , 

(4.3)       j
j

qqaqb 0lnln . 

Thus, the IAIDS distance function is written 

(4.4)   j

j
j

ji
i j

ijj
j

j quqqqquF    0
*

0 lnln
2

1
ln,ln . 

The compensated inverse demand function can be derived directly from equation 

(4.4). The quantity derivatives of the distance function are the normalized prices 

demanded, i.e., by Shepherd’s Lemma m

p

q

quF i

i




 ),(
, where ip  and m denote the price 

of good i and total expenditure, respectively. In addition, if q is the bundle for which 

  Uqu  , then   1, qUF . Thus, multiplying both sides by ),( quF

qi
 to yield 

(4.5) i
ii

i

w
m

qp

q

quF





ln

),(ln
, 

where iw  is the budget share of good i . Hence, logarithmic differentiation of (4.4) 

gives the budget shares as a function of quantities and utility: 

(4.6) 
j

j
j

ij
j

ijii quqw    0ln , 

where )(
2

1 **
jiijijr   . 

Inverting the distance function at the optimal quantity yields the direct utility 

function that may be substituted into equation (4.6). 

(4.7)   )](ln)(/[lnln)( qaqbqaqU  . 
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This yields a system of inverse demand functions that Eales and Unnevehr 

(1994) call IAIDS.  

(4.8) 
Qqw ij

j
ijii lnln    , 

where the natural logarithm of the quantity index, Qln , is expressed as follows:  

(4.9) kj
j k

kjk
k

k qqqQ lnln
2

1
lnln 0    . 

Finally, as with the AIDS model, the theoretical restrictions of the fixed and 

unknown coefficients are imposed as:  

(4.10a) Adding up: 1
i

i , 0
i

i , 0
i

ij , 

(4.10b) Homogeneity: 
0

j
ij , 

(4.10c) Symmetry: jiij   . 

Eales and Unnevehr (1994) also provide the relevant formulas for the 

flexibilities, when estimating the static IAIDS model as follows, 

(4.11) iii wf /1  , 

(4.12) ijjiijijij wQwf /)}ln({   , 

(4.13) ijij
c

ij fwff  , 

where if , ijf , and 
c

ijf  denote scale, Marshallian (uncompensated) quantity, and 

Hicksian (compensated) quantity flexibilities, respectively. ij  denotes the Kronecker 

delta that equals one if ji   and zero otherwise. 
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Because both static AIDS and IAIDS ignore the problem of estimation and 

inference with nonstationary variables, Balcombe and Davis (1996) employed the 

canonical cointegrating regression procedure to estimate the AIDS, and Karagiannis and 

Velentzas (1997) developed a dynamic formulation of the AIDS based on the ECM. 

Following the previous work, Klonaris (2014) derived an inverse version of dynamic 

AIDS based on the ECM. To understand the statistical properties of the data, first unit 

root tests are used to examine whether the variables used in the static IAIDS are 

stationary. If the variables are nonstationary, the next step is to test for cointegration in 

equation (4.8). When it is ensured that all variables are cointegrated, a dynamic IAIDS 

(DIAIDS) based on an error correction can be expressed as 

(4.14) tti
j

tjijtiiti Qqvw    lnlnˆ ,1,, , 

where   is the first difference operator, 1ˆ tv  is the estimated lagged residuals with a 

lag of one period from the static IAIDS model and can be obtained by: 

(4.15) tijt
j

ijiitt Qqwv lnˆlnˆˆˆ    . 

Similar to the static IAIDS model, the DIAIDS is required to satisfy the 

properties of adding-up, homogeneity, and symmetry, as expressed in equation (4.10) 

with the corresponding parameters being substituted. Similarly, for the calculation of the 

scale and quantity flexibilities of the DIAIDS, the parameter estimates i  and ij  in 

equation (4.11) and (4.12) are replaced by short-run those i  and ij , respectively. 
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4.3.2 Inverse National Bureau of Research Demand System 

Barten and Bettendorf (1989) derived a Rotterdam inverse demand system and 

used it to estimate fish demand in Belgian fishery ports. Ordinary demand functions can 

be derived from the analysis of (direct) utility maximization subject to a budget 

constraint. From the duality between direct and indirect utility functions, an inverse 

demand function can be derived by minimizing the indirect utility function subject to the 

budget constraint (Weymark, 1980). Formally, this problem can be expressed as: 

(4.16) Min.  v  subject to 1q  

where v  is the indirect utility function, p
m








1  is the normalized price vector, 

qpm   is total expenditure on all commodities in the demand system, p is a 1n  

price vector for the commodities purchased in the demand system, and q is the 

corresponding quantity vector. The method of Lagrange multipliers is used to solve the 

constrained minimum problem. As quantities are varied, the normalized prices produce 

the inverse demand functions:  qg . The total derivative of i  with respect to jq  

can be written as: 

(4.17) j
j j

i
i dq

q
d  















 , 

According to Anderson's paper in 1980, the total effect 
i

i

q


 can be divided into 

the Antonelli substitution effect, analogous to the Slutsky equation for direct demands, 

and a scale effect. Thus, equation (4.17) can be rewritten as: 
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(4.18) j
j

i
jiji dq

h
hd  



















 , 

where ij  refers to the degree of responsiveness of i  given a marginal change of jq  

when consumers maintain the same indifference level. h is a scalar variable. We can 

multiply both sides of equation (4.18) by iq  and rearrange terms to obtain  

(4.19) 

j

j
j

j
j

i

i
ii

j j

j
ij

j

j

j

i
jijji

i

i
ii q

dq
q

h

h
q

q

dq

q

dq

h
hqq

d
q 





  





















 , 

where ijjiij qq   . Because ii
ii

i q
m

pq
w   is the share of expenditure on 

commodity i in total expenditure, equation (4.19) can be written as: 

(4.20) 
j

j

j
jhii

j j

j
ij

i

i
i q

dq
ww

q

dqd
w   ,




, 

where hi,  is the scale flexibility of commodity i. Because i
i

i xd
x

dx
ln  (ln: the natural 

logarithm), equation (4.20) can be rewritten as: 

(4.21) 
Qdqddw i

j
jijii lnlnln   , 

where hiii w ,   and j
j

j qdwQd lnln  . In general, )(
2

1
1,,  titiit www , is used to 

replaces tiw ,  (t is the current time period). According to Barten and Bettendorf (1989), 

ij  and i  have the following properties: 

(4.22a) Adding up: 1
i

i  and 0
i

ij , 
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(4.22b) Homogeneity: 
0

j
ij

, 

(4.22c) Antonelli symmetry: jiij   . 

To add Qdwi ln  to both sides of equation (4.21) and treat the iii wc   as 

constants, the variable on the left-hand side is then 

(4.23) 

),/ln()lnln()lnlnln()lnln( PpdwPdpdwQdmdpdwQddw iiiiiiii   

where Pln  is the Divisia price index. The inverse CBS (ICBS) model can be written as 

follows: 

(4.24) 
.lnln)/ln( QdcqdPpdw i

j
jijii  

 

To add )lnln( Qdqdw ii   to both sides of equation (4.24) and treat the 

jiijiijij wwwc    ( ij  is Kronecker delta) as constants, the variable on the left-

hand side is then 

(4.25) .ln)lnlnlnln( iiiiii dwwdwQdPdqdpdw   

The differential IAIDS model can be obtained as follows: 

(4.26) 
.lnln Qdcqdcdw i

j
jiji   

To subtract Qdwi ln  from both sides of equation (4.26) and iii wc   as 

constants, the inverse National Bureau of Research (INBR) model can be obtained as 

follows: 

(4.27) 
.lnlnln QdqdcQdwdw i

j
jijii    
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Scale flexibilities refer to the degree of responsiveness of i  given a change of 

the aggregated quantity and are calculated as: 

(4.28) 
i

i
ih w

 , . 

The Hicksian (compensated) quantity flexibilities can be expressed as follows: 

(4.29) j
i

ij
ij

c
ij w

w

c
  . 

The Marshallian (uncompensated) quantity flexibilities are given by 

(4.30) ihj
c
ijij w ,  . 

4.4 Data 

Quarterly data on imported fresh bananas to the U.S. are used to estimate inverse 

demand systems. The data were obtained from the USITC and included 116 pieces of 

import quantities in kilograms and import values in dollars from the first quarter of 1989 

to the fourth quarter of 2017. The data for all imported fresh bananas are disaggregated 

by countries of origin, Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Mexico, 

and the rest of the world. 

4.5 Empirical Results 

The descriptive statistics for market shares and prices of fresh bananas exported 

to the U.S. from main departure countries are presented in Table 4.1. In terms of import 

values of fresh bananas in the U.S. market from 1989 to 2017, average shares from 

Costa Rica, Guatemala, and Ecuador were compositely greater than 20%, and those from 

Colombia, Honduras, and Mexico were about 12%, 12%, and 4%, respectively. Because 
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the market share from Guatemala sharply grew from under 10% in 1989 to over 40% in 

2017, bigger SD and CV values reflect the rapid change of its market share. The CV 

suggests that the Mexican share series is the most dispersed of share series. With respect 

to import prices, both the SD and CV suggest import prices of fresh bananas exported 

from Honduras have the least dispersal among six analyzed import prices, while those 

exported from Costa Rica have the biggest dispersal. 

 

Table 4.1. Descriptive Statistics for Imported Fresh Bananas, 
1989/Q1-2017/Q4 
Variable Mean Maximum Minimum SD CV 
Share      

Colombia 12.14% 21.42% 4.56% 3.51% 0.29 
Costa Rica 23.89% 36.30% 12.22% 4.70% 0.20 
Ecuador 22.68% 37.27% 7.79% 5.72% 0.25 
Guatemala 23.31% 47.10% 7.67% 10.71% 0.46 
Honduras 11.56% 22.72% 0.95% 3.55% 0.31 
Mexico 4.02% 10.84% 1.02% 2.36% 0.59 

Price (USD/kg)  
Colombia 0.349 0.557 0.257 0.082 0.24 
Costa Rica 0.338 0.614 0.195 0.087 0.26 
Ecuador 0.322 0.589 0.230 0.082 0.25 
Guatemala 0.332 0.603 0.245 0.076 0.23 
Honduras 0.308 0.635 0.221 0.065 0.21 
Mexico 0.342 0.546 0.163 0.084 0.24 

Notes: SD and CV represent the standard deviation and the coefficient of variation, 
respectively. 
 

Table 4.2 presents both ADF and PP unit root tests. The null hypothesis for both 

test procedures is that a unit root exists in an evaluated series. The number of 

augmenting lags for the ADF test is determined by minimizing the BIC. Except for 

Costa Rica and Ecuador, both ADF and PP tests have the same results for all series of 
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market shares. They consistently suggest that the level of the Honduran market share 

series is stationary, while levels in the market share series of the rest of the exporting 

countries are nonstationary. With regard to import quantities, both ADF and PP tests 

have the same results. They clearly imply that levels of import quantities from Costa 

Rica, Honduras, and the others are stationary, while those of the rest of the exporting 

countries are nonstationary. Both unit root tests reveal that the null hypothesis is rejected 

for the first differences of all market share and import quantity series. Thus, it is 

concluded that all nonstationary price series in levels are integrated processes of order 

one. 

 

Table 4.2. Unit Root Tests in the Level and First Difference of the Data for 
Imported Fresh Bananas, 1989/Q1-2017/Q4 
 ADF PP 
Variable Level 1st diff. Level 1st diff. 
Share     

Colombia -2.830 (0) -12.163 (0)** -2.600 (4) -12.776 (4)** 
Costa Rica -2.701 (1) -15.333 (0)** -3.603 (4)** -16.423 (4)** 
Ecuador -1.136 (4) -6.184 (3)** -3.292 (4)** -17.975 (4)** 
Guatemala 1.285 (6) -9.513 (2)** -0.220 (4) -14.433 (4)** 
Honduras -3.867 (1)** -15.616 (0)** -4.309 (4)** -15.527 (4)** 
Mexico -1.824 (0) -11.622 (0)** -1.967 (4) -11.591 (4)** 

Quantity     
Colombia -2.408 (0) -13.256 (0)** -2.014 (4) -14.118 (4)** 
Costa Rica -4.281 (0)** -14.719 (0)** -4.129 (4)** -15.749 (4)** 
Ecuador 1.822 (11) -5.335 (10)** -2.694 (4) -16.436 (4)** 
Guatemala -1.172 (7) -8.056 (6)** -1.749 (4) -16.130 (4)** 
Honduras -3.727 (0)** -12.669 (0)** -3.854 (4)** -12.684 (4)** 
Mexico -1.262 (0) -12.357 (0)** -1.247 (4) -12.259 (4)** 
Others -3.847 (0)** -12.451 (0)** -3.739 (4)** -13.287 (4)** 

Notes: The data are transformed by taking natural logarithms. The numbers in parentheses indicate 
the lag order in the ADF test and the bandwidth using the Newey-West bandwidth selection 
method and the Bartlett kernel in the PP test, respectively. The default bandwidth is the integer 

part of 9
2

)100/(4 T where T is the sample size. ** denotes significance at the 5% level. 
 



 

 113

We applied the directed graph method (DGM) to identify the causal relationship 

among the variables in DIAIDS and INBR models. For example, consider the equation 

associated with differentially Colombian market shares (dw1) in the DIAIDS. We 

formed the starting undirected graph by connecting all pairs of vertices formed by 

differentially Colombian market shares, differentially logarithmic banana quantities 

exported from Colombia, Costa Rica, Ecuador, Guatemala, Hondurans, Mexico, and the 

other countries (dlnqi), the differentially logarithmic Divisia volume index (dlnQ), and 

lagged innovations from the Colombia equation in the static IAIDS model (lresid1). We 

chose a 0.2 significance level in removing edges from the graph consistent with the 

sample size (Scheines, Spirtes, Glymour, and Meek, 1994, P. 81). Similarly, the same 

steps and causal discovery algorithm are applied to the INBR model. Figure 4.1 and 4.2 

are final graphs of DIAIDS and INBR models, respectively. According to the final DGM 

model of the DIAIDS, dw1 will be estimated and forecasted by dlnq1, dlnq4, dlnq5, and 

lresid1. Furthermore, we could find that changes in its own quantity cause changes in the 

dependent variable for each equation regardless of DIAIDS or INBR models. 

Based upon the four models identified earlier, we generated forecasts for a post-

sample period (2013Q1-2017Q4) and assess the forecast performance for each equation. 

The root mean squared error (RMSE), mean absolute error (MAE), mean absolute scaled 

error (MASE), and Theil inequality coefficient (Theil) are selected as measures of 

evaluation because they are widely used in combining and selecting forecasts for 

measuring the bias and accuracy of models as empirical methods.  



 

 114

  
A B 

 
C D 

E F 

Figure 4.1. Directed acyclic graphs based on the PC algorithm for each equation 
of the dynamic inverse almost ideal demand system model 
Notes: 1-7 denote Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Mexico, and the rest of the 
world. dw 1-6 are the dependent variable of each equation. dlnq 1-7 and dlnQ are the first difference of 
log-transformed import volumes of fresh bananas from the foregoing countries and the quantity index, 
respectively. lresid 1-6 are the estimated lagged residuals from the static IAIDS. 
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A B 

C D 

E F 

Figure 4.2. Directed acyclic graphs based on the PC algorithm for each equation of 
the inverse national bureau of research demand system model 
Notes: 1-7 denote Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Mexico, and the rest of the 
world. depv 1-6 are the dependent variable of each equation. dlnq1-7 and dlnQ are the first difference of 
log-transformed import volumes of fresh bananas from the foregoing countries and the quantity index, 
respectively. 
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Table 4.3 shows the prediction performances of the four models. The RMSE and 

MAE depend on the scale of dependent variables and could only be used to compare 

forecasts for the same dependent variables across an ordinary inverse demand system 

and its DGM (or DAG-) model. The MAPE is scale independent of dependent variables 

and its value is lower if the forecasting performance of a model is better than another 

model. The Theil coefficient is scale invariant for dependent variables and lies between 

zero and one. If the Theil coefficient equals one, the forecasting performance of a model 

is very poor. Conversely, a model completely predicts future values if the Theil 

coefficient equals zero. 

For the comparison of the ordinary and its DGM (or DAG-) models, the 

forecasting performance of the DAG-DIAIDS is better than the DIAIDS in Ecuador, 

Guatemala, and Mexico equations, although the MASE results are inconsistent with the 

rest of the measurement statistics in Guatemala and Mexico equations. The forecasting 

performance of the DAG-INBR is better than the INBR in the Colombia and Costa Rica 

equations, but the RMSE results are inconsistent with the rest of the measurement 

statistics in the Colombia equation. For the comparison of four models identified earlier, 

the MASE and the Theil coefficient have the same results except for the Ecuador and 

Mexico equations. They suggest that the DIAIDS, DAG-INBR, INBR, and DIAIDS 

models have the best forecast accuracy compared to the rest of the evaluating models in 

the Colombia, Costa Rica, Guatemala, and Honduras equations, respectively. For the 

Ecuador and Mexico equations, the MASE suggests that the DAG-DIAIDS and INBR 

models are respectively the best compared to the rest of the evaluating models, while the 
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Theil coefficient suggests that the INBR and DAG-DIAIDS models are respectively the 

best compared to the rest of the evaluating models. 

 

Table 4.3. Comparison of the Forecasting Performance of the Four 
Demand Models, Forecasting Periods: 2013-2017 
Equation Model RMSE MAE MASE Theil 
Colombia DIAIDS 0.0093 0.0077 0.5618 0.2868 
 DAG-DIAIDS 0.0128 0.0098 0.5997 0.3532 
 INBR 0.0107 0.0084 0.7047 0.4102 
 DAG-INBR 0.0109 0.0080 0.6712 0.3907 
Costa Rica DIAIDS 0.0121 0.0099 0.4252 0.2677 
 DAG-DIAIDS 0.0205 0.0167 0.7542 0.3588 
 INBR 0.0131 0.0104 0.2991 0.2136 
 DAG-INBR 0.0120 0.0096 0.2766 0.1987 
Ecuador DIAIDS 0.0168 0.0134 0.2660 0.2035 
 DAG-DIAIDS 0.0163 0.0127 0.2182 0.2000 
 INBR 0.0194 0.0147 0.2412 0.1804 
 DAG-INBR 0.0251 0.0205 0.3375 0.2228 
Guatemala DIAIDS 0.0199 0.0156 0.3693 0.4130 
 DAG-DIAIDS 0.0141 0.0109 0.4303 0.3253 
 INBR 0.0208 0.0162 0.2632 0.2281 
 DAG-INBR 0.0251 0.0193 0.3120 0.2905 
Honduras DIAIDS 0.0077 0.0063 0.1429 0.1575 
 DAG-DIAIDS 0.0135 0.0105 0.2723 0.3413 
 INBR 0.0098 0.0077 0.1881 0.2322 
 DAG-INBR 0.0188 0.0154 0.3775 0.4935 
Mexico DIAIDS 0.0050 0.0039 0.3922 0.3632 
 DAG-DIAIDS 0.0045 0.0035 0.4045 0.3232 
 INBR 0.0078 0.0049 0.3332 0.3603 
 DAG-INBR 0.0087 0.0051 0.3492 0.4173 
Notes: The dynamic inverse almost ideal demand system (DIAIDS), inverse national 
bureau of research (INBR) demand system, directed acyclic graphs (DAG) from Figure 
4.1 and 4.2, root mean squared error (RMSE), mean absolute error (MAE), and mean 
absolute percentage error (MAPE). 
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After the demand models are estimated, several diagnostic tests are conducted, 

and results are reported in Table 4.4. For example, for the six equations in the DIAIDS 

model at a 10% significance level, three pass the Jarque-Bera (JB) Lagrange multiplier 

test of the null hypothesis that residuals are normally distributed, five pass the Harvey 

(Harvey) Lagrange multiplier test of the null hypothesis that there is no autocorrelation, 

five pass the Ramey regression equation specification error test (RESET) of the null 

hypothesis that the model has no omitted variables, and four pass the Hall-Pagan (HP) 

Lagrange multiplier test of the null hypothesis that the variance of the residuals is 

homogenous, or the residual variance is said to be homoscedastic. For the JB test, the 

DAG-DIAIDS model has a best fit, and there are no equations to violate the assumption 

of the normal distribution for disturbances. For the Harvey test, the DIAIDS model has 

one equation that violates the assumption that there is no serial correlation in 

disturbances, and the rest of the demand system models have two equations. For the 

RESET test, both versions of the DIAIDS models have better performance than those of 

the INBR models. For the HP test, the DAG-INBR model has a best fit, and there are no 

equations to violate the assumption that the covariance matrix of disturbances is 

homoscedastic. 

The long-run and short-run scale flexibilities are reported in Table 4.5 and 4.6. 

All scale flexibilities are significant at a 1% significance level and negative. The scale 

flexibilities measure the percentage change in the normalized import price of fresh 

bananas from a certain exporting country due to one percentage change in the import 
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supply of US fresh bananas. When the quantities increase, all the scale flexibilities show 

that the normalized price also decreases as expected. 

 

Table 4.4. Results from the Diagnostic Tests on Inverse Demand System Models 
 Jarque-Bera Harvey RESET Hall-Pagan 
Equation statistic p-value statistic p-value statistic p-value statistic p-value 
DIAIDS         

Colombia 0.434 0.805 0.130 0.718 0.48 0.694 1.349 0.245 

Costa Rica 33.493 0.000 2.104 0.147 1.85 0.145 0.497 0.481 

Ecuador 0.153 0.926 0.156 0.693 1.54 0.210 0.001 0.976 

Guatemala 0.703 0.704 0.041 0.840 0.85 0.469 0.825 0.364 

Honduras 120.433 0.000 0.170 0.680 9.10 0.000 18.509 0.000 

Mexico 8.528 0.014 3.132 0.077 1.25 0.298 4.797 0.029 

DAG-DIAIDS         

Colombia 1.218 0.544 0.173 0.678 1.72 0.170 0.457 0.499 

Costa Rica 1.721 0.423 8.549 0.004 2.03 0.116 1.493 0.222 

Ecuador 1.129 0.569 0.011 0.915 2.06 0.112 3.472 0.062 

Guatemala 0.264 0.876 0.707 0.401 1.15 0.335 2.299 0.130 

Honduras 2.531 0.282 8.558 0.003 9.07 0.000 17.294 0.000 

Mexico 4.358 0.113 0.022 0.883 0.94 0.425 6.808 0.009 

INBR         

Colombia 2.957 0.228 3.542 0.060 0.60 0.619 2.041 0.153 

Costa Rica 43.043 0.000 3.036 0.081 3.76 0.014 2.937 0.087 

Ecuador 0.354 0.838 1.974 0.160 0.47 0.705 0.002 0.967 

Guatemala 0.752 0.687 1.999 0.157 8.93 0.000 0.451 0.502 

Honduras 221.632 0.000 0.062 0.804 15.65 0.000 24.102 0.000 

Mexico 18.962 0.000 1.137 0.286 0.31 0.820 3.852 0.050 

DAG-INBR         

Colombia 2.161 0.340 3.978 0.046 0.51 0.674 2.042 0.153 

Costa Rica 0.342 0.843 0.386 0.534 5.03 0.003 1.432 0.232 

Ecuador 29.313 0.000 7.094 0.008 2.26 0.087 1.073 0.300 

Guatemala 9.778 0.008 0.000 0.993 5.12 0.003 1.571 0.210 

Honduras 0.279 0.870 0.776 0.378 6.74 0.000 2.382 0.123 

Mexico 25.818 0.000 1.768 0.184 0.28 0.838 2.220 0.136 
Notes: The dynamic inverse almost ideal demand system (DIAIDS), inverse national bureau of 
research (INBR) demand system, directed acyclic graph (DAG), and Ramey regression equation 
specification error test (RESET). 
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Table 4.5. Long-run Marshallian Quantity and Scale Flexibilities of the Static 
Inverse Almost Ideal Demand System, 1989Q1-2017Q4 

 
Own and cross quantity ii  Scale i  

 Colombia Costa Rica Ecuador Guatemala Honduras Mexico  
Colombia -0.064 

(0.045) 
-0.202*** 

(0.032) 
-0.195*** 

(0.042) 
-0.120*** 

(0.016) 
-0.028 
(0.024) 

-0.015 
(0.010) 

-0.652*** 
(0.097) 

Costa 
Rica 

-0.192*** 
(0.024) 

-0.382*** 
(0.024) 

-0.331*** 
(0.034) 

-0.231*** 
(0.013) 

-0.084*** 
(0.015) 

-0.042*** 
(0.008) 

-1.278*** 
(0.077) 

Ecuador -0.107*** 
(0.018) 

-0.181*** 
(0.024) 

-0.192*** 
(0.029) 

-0.116*** 
(0.012) 

-0.027 
(0.018) 

-0.015** 
(0.007) 

-0.657*** 
(0.057) 

Guatemala -0.146*** 
(0.018) 

-0.257*** 
(0.026) 

-0.264*** 
(0.025) 

-0.311*** 
(0.017) 

-0.109*** 
(0.018) 

-0.012 
(0.009) 

-1.147*** 
(0.077) 

Honduras -0.119*** 
(0.022) 

-0.185*** 
(0.040) 

-0.215*** 
(0.031) 

-0.217*** 
(0.026) 

-0.516*** 
(0.039) 

-0.058*** 
(0.015) 

-1.303*** 
(0.105) 

Mexico -0.123** 
(0.055) 

-0.259*** 
(0.080) 

-0.230*** 
(0.084) 

-0.072 
(0.059) 

-0.168*** 
(0.063) 

-0.283*** 
(0.041) 

-1.178*** 
(0.283) 

Notes: Figures in parentheses are standard errors. ***, **, and * indicate significant at 1%, 5%, and 
10% levels, respectively. 

 

Table 4.6. Short-run Marshallian Quantity and Scale Flexibilities of the Dynamic 
Inverse Almost Ideal Demand System, 1989Q1-2017Q4 

 
Own and cross quantity ii  Scale i  

 Colombia Costa Rica Ecuador Guatemala Honduras Mexico  
Colombia -0.290*** 

(0.070) 
0.015 

(0.130) 
-0.265*** 

(0.048) 
-0.036 
(0.069) 

-0.146*** 
(0.053) 

-0.065*** 
(0.025) 

-0.785*** 
(0.082) 

Costa 
Rica 

-0.054 
(0.056) 

-0.658*** 
(0.162) 

-0.204*** 
(0.059) 

-0.285*** 
(0.058) 

-0.011 
(0.072) 

-0.006 
(0.027) 

-1.253*** 
(0.065) 

Ecuador -0.160*** 
(0.027) 

-0.121 
(0.079) 

-0.288*** 
(0.037) 

-0.185*** 
(0.038) 

-0.098*** 
(0.029) 

-0.034** 
(0.015) 

-0.909*** 
(0.049) 

Guatemala -0.061* 
(0.033) 

-0.309*** 
(0.085) 

-0.267*** 
(0.029) 

-0.337*** 
(0.053) 

-0.046 
(0.031) 

-0.018 
(0.014) 

-1.064*** 
(0.064) 

Honduras -0.172*** 
(0.054) 

0.086 
(0.191) 

-0.182*** 
(0.052) 

-0.029 
(0.077) 

-0.485*** 
0.090 

-0.024 
(0.026) 

-0.810*** 
(0.115) 

Mexico -0.254*** 
(0.074) 

0.044 
(0.226) 

-0.233*** 
(0.066) 

-0.068 
(0.096) 

-0.090 
(0.065) 

-0.313*** 
(0.053) 

-0.924*** 
(0.167) 

Notes: Figures in parentheses are standard errors. ***, **, and * indicate significant at 1%, 5%, and 
10% levels, respectively. 

 

In both long-run and short-run scale flexibilities, the price of fresh bananas from 

Colombia is least affected by the quantity of total imported fresh bananas. However, the 

most influential price in the long-run results is different from that in the short-run results. 
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The former is the price of fresh bananas from Honduras, while the latter is that from 

Costa Rica. All Marshallian own-quantity flexibilities, as reported in Table 4.5 and 4.6, 

are negative and significant at the 1% significance level in both the long run and short 

run except for the long-run flexibility in Colombia. All Marshallian own-quantity 

flexibilities are less than one in absolute values, indicating that fresh bananas of six main 

exporting countries are price inflexible. In terms of the long-run Marshallian own-

quantity flexibilities at the price-imported level, the U.S. own price for fresh bananas 

from Honduras with respect to the import quantity from Honduras appears to be the 

largest variation in absolute value (0.516). That is, a one percent increase (decrease) in 

the import quantity of fresh bananas from Honduras was found to decrease (increase) the 

import price of fresh bananas from Hondurans in the U.S. market by approximately 

0.516%. However, for the short- run Marshallian own-quantity flexibilities, Costa Rica 

has the largest variation in absolute value (0.658). 

The cross-quantity flexibilities measure the percentage change in the price of 

fresh bananas from a certain exporting country when the quantity demanded of fresh 

bananas from another exporting country increases by one percent. From Table 4.5 and 

4.6, all long-run and short-run Marshallian cross-quantity flexibilities significant at the 

10% significance level were found to be negative and indicate that fresh bananas from 

any two exporting countries are gross quantity substitutes for each other. To better 

understand the competition relationship among exporting countries, the long-run and 

short-run Hicksian cross-quantity flexibilities are calculated and reported in Table 4.7 

and 4.8. 
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Table 4.7. Long-run Hicksian Quantity Flexibilities of the Static Inverse Almost 
Ideal Demand System, 1989Q1-2017Q4 

 Own and cross quantity 
 Colombia Costa Rica Ecuador Guatemala Honduras Mexico 

Colombia 0.022 
(0.038) 

-0.041 
(0.033) 

-0.036 
(0.030) 

0.009 
(0.020) 

0.047*** 
(0.017) 

0.009 
(0.010) 

Costa 
Rica 

-0.022 
(0.018) 

-0.067*** 
(0.025) 

-0.019 
(0.020) 

0.021 
(0.014) 

0.064*** 
(0.012) 

0.005 
(0.007) 

Ecuador -0.020 
(0.016) 

-0.019 
(0.021) 

-0.031 
(0.024) 

0.013 
(0.011) 

0.049*** 
(0.014) 

0.009 
(0.006) 

Guatemala 0.006 
(0.013) 

0.026 
(0.017) 

0.017 
(0.014) 

-0.085*** 
(0.018) 

0.023* 
(0.013) 

0.030*** 
(0.009) 

Honduras 0.054*** 
(0.019) 

0.136*** 
(0.025) 

0.103***
(0.029) 

0.040* 
(0.022) 

-0.365*** 
(0.031) 

-0.010 
(0.014) 

Mexico 0.033 
(0.036) 

0.031 
(0.047) 

0.058 
(0.043) 

0.161*** 
(0.046) 

-0.032 
(0.046) 

-0.240*** 
(0.039) 

Notes: Figures in parentheses are standard errors. ***, **, and * significant at the 1%, 5%, and 10% 
levels, respectively. 

 

Table 4.8. Short-run Hicksian Quantity Flexibilities of the Dynamic Inverse 
Almost Ideal Demand System, 1989Q1-2017Q4 

 Own and cross quantity 
 Colombia Costa Rica Ecuador Guatemala Honduras Mexico 

Colombia -0.185** 
(0.080) 

0.209* 
(0.112) 

-0.073 
(0.056) 

0.119** 
(0.059) 

-0.056 
(0.056) 

-0.036 
(0.025) 

Costa 
Rica 

0.112* 
(0.060) 

-0.349** 
(0.146) 

0.102 
(0.068) 

-0.038 
(0.056) 

0.134* 
(0.077) 

0.040 
(0.028) 

Ecuador -0.040 
(0.031) 

0.103 
(0.068) 

-0.066 
(0.047) 

-0.006 
(0.032) 

0.007 
(0.031) 

-0.001 
(0.014) 

Guatemala 0.080** 
(0.039) 

-0.047 
(0.070) 

-0.007 
(0.040) 

-0.127*** 
(0.044) 

0.077** 
(0.037) 

0.021 
(0.014) 

Honduras -0.064 
(0.064) 

0.286* 
(0.165) 

0.015 
(0.066) 

0.131** 
(0.062) 

-0.392*** 
(0.102) 

0.005 
(0.025) 

Mexico -0.131 
(0.090) 

0.272 
(0.186) 

-0.007 
(0.096) 

0.115 
(0.077) 

0.017 
(0.080) 

-0.279*** 
(0.053) 

Notes: Figures in parentheses are standard errors. ***, **, and * significant at the 1%, 5%, and 10% 
levels, respectively. 
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A positive quantity flexibility between import bananas from two countries 

denotes net substitutes and a negative value denotes net complements. All long-run and 

short-run Hicksian cross-quantity flexibilities significant at the 10% significance level 

were found to be positive and indicate that fresh bananas from any two exporting 

countries are net quantity complements for each other. 

The Marshallian and Hicksian flexibilities of the INBR model are reported in 

Table 4.9 and 4.10. All scale flexibilities are significant at the 1% significance level and 

negative. However, the least and most influential prices in the INBR model are the fresh 

bananas from Honduras and Guatemala, while those in the DIAIDS model are Colombia 

and Costa Rica, respectively. All Marshallian own-quantity flexibilities are negative and 

significant at the 1% significance level and less than one in absolute values, indicating 

that fresh bananas of the six main exporting countries are price inflexible. The results are 

consistent with those of the DIAIDS model but the estimated flexibilities of the former 

are less than those of the latter in absolute values except Ecuador and Guatemala. For 

Marshallian and Hicksian cross-quantity flexibilities, the results are consistent with those 

of the DIAIDS model. All Marshallian cross-quantity flexibilities significant at the 10% 

significance level were negative and indicate that fresh bananas from any two exporting 

countries are gross quantity substitutes for each other. Contrarily, all Hicksian cross-

quantity flexibilities significant at the 10% significance level are positive and indicate 

that fresh bananas from any two exporting countries are net quantity complements for 

each other. 
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Table 4.9. Marshallian Quantity and Scale Flexibilities of the Inverse National 
Bureau of Research Demand System, 1989Q1-2017Q4 

 
Own and cross quantity ii  Scale i  

 Colombia Costa Rica Ecuador Guatemala Honduras Mexico  
Colombia -0.174*** 

(0.046) 
-0.238*** 

(0.037) 
-0.180*** 

(0.034) 
-0.129*** 

(0.039) 
-0.040 
(0.026) 

-0.047*** 
(0.018) 

-0.803*** 
(0.089) 

Costa 
Rica 

-0.157*** 
(0.023) 

-0.326*** 
(0.036) 

-0.257*** 
(0.027) 

-0.170*** 
(0.031) 

-0.083*** 
(0.020) 

-0.009 
(0.011) 

-1.021*** 
(0.073) 

Ecuador -0.122*** 
(0.018) 

-0.252*** 
(0.022) 

-0.294*** 
(0.026) 

-0.208*** 
(0.022) 

-0.054*** 
(0.015) 

-0.034*** 
(0.009) 

-0.989*** 
(0.055) 

Guatemala -0.162*** 
(0.030) 

-0.298*** 
(0.037) 

-0.350*** 
(0.033) 

-0.343*** 
(0.047) 

-0.146*** 
(0.025) 

-0.035** 
(0.015) 

-1.368*** 
(0.082) 

Honduras -0.035 
(0.035) 

-0.103** 
(0.050) 

-0.050 
(0.045) 

-0.122*** 
(0.047) 

-0.386*** 
(0.043) 

-0.018 
(0.016) 

-0.725*** 
(0.133) 

Mexico -0.175** 
(0.074) 

-0.014 
(0.072) 

-0.189*** 
(0.067) 

-0.083 
(0.082) 

-0.069 
(0.050) 

-0.292*** 
(0.059) 

-0.842*** 
(0.160) 

Notes: Figures in parentheses are standard errors. ***, **, and * indicate significant at 1%, 5%, and 
10% levels, respectively. 

 

Table 4.10. Hicksian Quantity Flexibilities of the Inverse National Bureau of 
Research Demand System, 1989Q1-2017Q4 

 Own and cross quantity 
 Colombia Costa Rica Ecuador Guatemala Honduras Mexico 

Colombia -0.067* 
(0.040) 

-0.040 
(0.035) 

0.016 
(0.028) 

0.029 
(0.037) 

0.053** 
(0.024) 

-0.017 
(0.018) 

Costa 
Rica 

-0.021 
(0.019) 

-0.074** 
(0.035) 

-0.008 
(0.020) 

0.031 
(0.027) 

0.035* 
(0.019) 

0.029*** 
(0.011) 

Ecuador 0.009 
(0.015) 

-0.008 
(0.020) 

-0.053** 
(0.022) 

-0.013 
(0.020) 

0.060*** 
(0.014) 

0.002 
(0.008) 

Guatemala 0.020 
(0.025) 

0.039 
(0.034) 

-0.016 
(0.025) 

-0.073 
(0.046) 

0.012 
(0.023) 

0.015 
(0.015) 

Honduras 0.061** 
(0.028) 

0.075* 
(0.040) 

0.127***
(0.030) 

0.020 
(0.040) 

-0.302*** 
(0.041) 

0.009 
(0.015) 

Mexico -0.063 
(0.064) 

0.194*** 
(0.072) 

0.016 
(0.056) 

0.083 
(0.079) 

0.029 
(0.047) 

-0.261*** 
(0.057) 

Notes: Figures in parentheses are standard errors. ***, **, and * significant at the 1%, 5%, and 10% 
levels, respectively. 
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4.6 Conclusions 

Banana consumption in the U.S. is highly dependent on imports, and these 

imports come from a concentrated market that is controlled by a few TNCs. First, we 

used inverse demand systems including DIAIDS and INBR models and their DGM (or 

DAG-) models to understand consumer behavior for U.S. fresh bananas from six major 

exporting countries and evaluate their forecasting accuracy. Overall, the forecasting 

performances of the DIAIDS and its DGM models are equally good, that is, the 

forecasting accuracy of a half of the equations in one model is better than that in the 

other. However, the forecasting performance of the INBR model is better than that of its 

DGM model, i.e., forecasting accuracy of four of six equations in the INBR model is 

clearly better than that in its DGM model. When comparing the four models together, we 

can find that forecasting performances of the DIAIDS and INBR models are equally 

good and better than those of their DGM models. Furthermore, according to the results 

of several diagnostic tests, both versions of the DIAIDS model have better performance 

than those of the INBR model. Next, we estimated the long-run scale and quantity 

flexibilities of the static IAIDS and INBR models and the short-run those of the DIAIDS 

model. As expected, all Marshallian own-quantity flexibilities for each inverse demand 

system significant at the 1% significance level are negative and relatively inelastic. 

Moreover, all Marshallian cross-quantity flexibilities significant at the 10% significance 

level show that fresh bananas from any two exporting countries are gross quantity 

substitutes for each other, while all Hicksian cross-quantity flexibilities significant at the 
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10% significance level show that fresh bananas from any two exporting countries are net 

quantity complements for each other. 
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CHAPTER V 

SUMMARY 

 

This dissertation presented results from three different empirical studies of price 

transmission analyses and consumer demand systems. The first study (Chapter II), titled 

"Vertical price transmission among international crops, ocean freight, and Taiwan major 

animal husbandry," examined the relationship among pork, chicken, and hen egg prices, 

the prices of the main ingredients in their feed, and the BDI. Because asymmetric price 

transmission may exist in the magnitude of price transmission and/or speeds of 

adjustment, we employed the NARDL model and Enders-Siklos threshold cointegration 

approach to check whether there is an asymmetric effect in the VPT between output 

prices (Taiwanese pork, chicken, and hen eggs) and input prices (ocean freight rates, the 

U.S. and Brazilian corn, and soybeans). The empirical results indicate that except for the 

VPT between hen egg prices and the input prices, the other VPT have no obvious 

asymmetrical effects in speed of price adjustment. However, the results of the NARDL 

models show that asymmetric effects on the magnitude of long-run price transmission 

significantly exist in all VPT.  

Japan is the second largest export market for Taiwanese agricultural products. 

Because Taiwanese agricultural technology, cultivars, and talents continuously flow to 

China over two decades plus its lower production costs, the market shares of Taiwanese 

agricultural products in major export markets have dropped significantly. In this context 

the second study (Chapter III), titled "Price dynamics in the import markets of eels, 
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edamame, and feathers and down in Japan," explored the relationship among the prices 

of Taiwanese eel, edamame, and feathers and down and their major competitor's prices 

in the Japanese market. We first used the partial correlations of the VECM residuals as 

input to graphical causal models from the PC algorithm. The empirical results suggest 

that a change in Taiwanese (live) eel prices leads to a change in the (live) eel prices from 

Aichi prefecture, Shizuoka prefecture, and China in contemporaneous time. Chinese 

prepared eel price is the most influential among the six evaluated eel prices in the long 

run except the uncertainty associated with the prepared eel price from Shizuoka 

Prefecture. Also, the effect of a change in Chinese prepared eel price on other evaluated 

eel prices is significant. 

For the Japanese edamame market, price changes in China and Indonesia lead to 

a price change in Taiwan in contemporaneous time. The influence of other imported 

edamame prices on Japanese edamame price is very small. Taiwanese edamame price is 

mainly affected by Chinese and Thai edamame prices in the long run besides its own 

price. For the Japanese feather and down market, a price change in Taiwan leads to price 

changes in China and Hungary in contemporaneous time. The uncertainty in each 

evaluated price is primarily explained by its own price. In addition, Taiwanese feather 

and down price is mainly affected by Chinese and French feather and down prices in the 

long run besides its own price. 

Measured by value of volume, banana is still the major fresh fruit imported to the 

U.S. Because of the consideration of transportation costs, time, the delicate and 

perishable properties in banana distribution, and diverging import policies in the 
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consuming countries, the U.S. banana market reveals an absolutely dominance by 

neighboring Latin America. In this context, the third study (Chapter IV), titled "An 

analysis of the banana import market in the U.S.," investigated the factors that determine 

the country composition of the U.S. fresh banana imports and estimated the level of 

price competition among the Latin American countries. Two static and one dynamic 

inverse demand system were used in estimating the demand for disaggregated fresh 

bananas in the U.S. The empirical results suggest the fresh bananas of six exporting 

countries are price inflexible, and any two exporting countries are gross quantity 

substitutes for each other in the short run and long run. In addition, the Banana prices 

from six exporting countries are significantly affected by the quantity of total import 

bananas. 
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	In general, microeconomics is divided into two categories of private economic units: consumers (or households) and producers (or firms). These two categories result in two research branches: the theory of the consumer and theory of the firm. The theory of the consumer is concerned with the demand for goods and services by rational consumers pursuing maximum utility on a given budget decided upon by themselves. Prices are also an important factor that affects the demand quantity of goods and services. When the price of one good changes, what happens to the demand of the other good? According to the reaction type of its demand, the relationship between two goods can be divided into substitute, complementary, and independent of each other. Market demand analysis can help producers understand how much consumer demand exists for a good or service and how changes in the price of other related goods and services affect the demand of their goods and services. Moreover, market demand forecasting uses scientific theories and methods to analyze and study the market demand and impact demand factors within a certain period in the future analyses. In general, the analytical method can be classified into four groups: a survey of buyers' intentions, sales-force composite, expert opinions, and time series analyses. There is a large amount of literature exploring the demand of goods and services. The related literature can be roughly classified into three groups: (1) The primary sector of the economy such as food demand (Seale et al., 2003), fish demand (Dey et al., 2008), and meat demand (Mutondo and Henneberry, 2007); (2) the secondary sector of the economy such as electricity demand (Erdogdu, 2007) and crude oil or gasoline demand (Cheung and Thomson, 2010; Ziramba, 2010); (3) the tertiary sector of the economy such as travel or tourism demand (Cooper, 2000; Starbuck et al., 2004, Wu et al., 2012).
	CHAPTER ΙI
	VERTICAL PRICE TRANSMISSION AMONG INTERNATIONAL CROPS, OCEAN FREIGHT, AND TAIWAN MAJOR ANIMAL HUSBANDRY
	2.1 Introduction
	According to the statistics from Taiwan Council of Agriculture (COA), the top 5 most valuable sectors of agricultural production in Taiwan are hogs, rice, white broilers and colorful chickens, tuna, and hen eggs. Pork and poultry meat are major sources of meat consumption in Taiwan, averaging 89.80 and 77.03 pounds per person in 2017, and the consumption was about 6.79 and 5.83 times the amount of beef consumption, respectively. More than 84% of the poultry meat consumed is chicken. Moreover, egg consumption was estimated at about 337 eggs per person. More than 94% of eggs consumed are hen eggs. Although the demand for pork, chicken, and hen eggs mainly depends on domestic production, their import percentages gradually increased after joining the World Trade Organization (WTO) in 2002, except the import of hen eggs is still minimal. Since 1986, the gross output value of the hog industry exceeded that of rice and became number one among all agricultural products. Its export volume also sharply increased from about 50 thousand metric tons (tmt) in 1984 to a peak of 276.90 tmt in 1996. Taiwan was a net exporting country of pork from 1969 until the outbreak of foot-and-mouth disease in 1997. The Taiwan chicken-meat industry has two types of broilers: white and colored broilers. The typical breeds of colorful chickens in Taiwan are red- and black-feathered chickens. For domestic chicken production, the ratio of white broilers to colorful chickens was three to two in 2017. However, the production value of colorful chickens is higher than that of white broilers because a colorful chicken is more expensive than a white broiler in Taiwan. For the reason that colorful chicken are fed longer than white broilers to reach market weight, the muscles and gonads are more mature, and the meat quality is better than that of white broilers. Taiwan also fully opened chicken imports in 2005, and the import volume hit a record high in 2015. Because most of the imports of poultry meat are white broilers, even in 2015 the imported volume of white broilers accounted for up to 37.64% of the total supply of white broilers. Except for the egg industry, it is obvious that the hog and chicken industries have suffered from market competition since Taiwan has opened their markets to the world market.
	According to Taiwan Agriculture Statistics Yearbook 2017, feed costs accounted for approximately 62.33%, 59.61%, and 76.73% of the production costs for hogs, white broilers, and laying hens, respectively. In general, hog and chicken feed is more than 50% of field corn and about 20% of soybeans. Thus, it is reasonable to believe that corn and soybean prices have a major influence on pork and chicken prices. Because both the degrees of self-sufficiency in field corn and soybeans are below 1%, their demand almost exclusively depends on imports. The main import sources for field corn and soybeans are the USA and Brazil. Thus, the fluctuations in the international prices of field corn and soybeans not only directly affect the import prices of feed but also indirectly affect the prices of pork, chicken, and hen eggs.
	Figure 2.1 shows that there was a sharp increase in the prices of corn and soybeans during 2007-2008 because of the worldwide food price crisis. Although after the crisis the prices reduced to a lower level, the average prices in recent years were still higher than those before the crisis. High grain prices lead to increased production cost of feeding farm animals, which leads to a decreased profit margin because farmers can not easily transfer the increased costs to consumers. This forced the farmers to decrease outputs or quit farming. Between 2006 and 2008, average worldwide prices for corn and soybeans went up by 125% and 107% respectively, and the average prices of pork, chicken, and hen eggs increased 34%, 29%, and 47%, respectively (Figure 2.2).
	Figure 2.1. Monthly average prices of corn and soybean in the U.S. and Brazil and the average value of the Baltic Dry Index, 2001-2017
	Notes: U.S. corn (USC), U.S. soybean (USS), Brazil corn (BRC), Brazil soybean (BRS), and Baltic Dry index (BDI).
	Figure 2.2. Monthly average prices of the selected livestock in Taiwan, 2001-2017
	Notes: Farm prices for livestock except eggs by a retail price.
	In addition, the global production of corn ethanol gradually increased as oil prices increased. It is expected that the strong increases in ethanol production would result in higher corn prices and an indirect increase in the production costs of stock farming. There has been considerable concern about how much the international prices of grains need to increase to shock Taiwanese animal husbandry. In the feeding process of farm animals, higher input prices could not only reduce the competitiveness of agricultural producers but also increase pricing on outputs. Moreover, the increases in prices of necessities of life would reduce consumer welfare. With this background, the objective of this essay is to use an appropriate time series model to examine the vertical transmission processes among the prices of Taiwanese pork, chicken, and hen eggs, international crop prices, and ocean freight rates, according to the properties of data. The paper is organized as follows. The related literature on the economic topics of VPT is presented in the next section of the paper. Then, the theoretical frameworks for linear and nonlinear cointegration tests and data sources are described. Following that, results and relevant discussions are presented. The summary of main findings is presented in the last section of the paper.
	2.2 Literature Review
	Analyses of vertical price transmission are extensively applied to agricultural commodities. For example, Kinnucan and Forker (1987) found that the price transmission process among American farm milk and four retail products which are fluid milk, butter, cheese, and ice cream is asymmetric by an econometric model using a pricing relationship between farm and retail prices. Cramon-Taubadel (1998) demonstrated that asymmetric price adjustment exists between the producer and wholesale pork prices in northern Germany. Goodwin and Holt (1999) and Goodwin and Harper (2000) used threshold cointegration models to investigate linkages among farm, wholesale, and retail markets in the U.S. beef and pork sectors, respectively. Both confirmed previous researchers’ findings that the transmission of shocks is largely unidirectional and that information tends to flow from farm to wholesale and finally to retail markets. Jaffry (2004) applied the Engle and Granger two-step method, and the Enders and Granger threshold autoregression (TAR) and momentum autoregression (MTAR) approaches to analyze the relationship between auction and retail prices of whole hake in France. Zheng et al. (2010) used asymmetric error correction models (ECM), almost ideal demand systems (AIDS), and the Rotterdam demand models to estimate the welfare impact of asymmetric price transmission among producer, wholesale, and retail pork and beef prices for American consumers. Nakajima (2011) used TAR and repeated TAR models to investigate asymmetric relationship between U.S. domestic and export soybean prices. Asche et al. (2014) employed the Johansen test to investigate the relationship among French retail prices for fresh salmon fillets and smoked salmon and Norwegian export prices of salmon. Ahn and Lee (2015) applied a nonlinear autoregressive distributed lag (NLARDL) model to investigate the asymmetry of the price transmission in the marketing chain of shipping points and terminal markets for apples, table grapes, and peaches in the western U.S. 
	For the literature of price transmission on the main animal husbandry in Taiwan, Huang and Wu (2008) showed that regional hog prices converge in the long run, and regional effects significantly affect the cross-city price volatility and price correlations. Lee (2010) reported that the speed of the price transmission to the retail price of pork while the producer price of pork was declining was faster than that, while the producer price of pork was increasing and that the bi-direction feedback relationship existed between farm and retail pork markets in Taiwan. Li et al. (2012) developed an industry-related price model to investigate the impacts of the price volatility of oil on production costs of industries and price levels in Taiwan and discovered that a 1% rise in international prices of crude oil causes an increase in production costs of hogs of 1.65%. Hwang and Yeh (2012) found that there is an asymmetric cointegration relationship between farm prices of chicken and feed prices. Hsu (2015) simulated the influence of increases in both gasoline and electricity prices on the agricultural sector and suggested that positive impacts on the pork, chicken, and hen egg industries are greater than their negative impacts, and rises in consumer prices of pork, chicken, and hen eggs are much greater than those in their farm prices.
	2.3 Methodology
	2.3.1 Linear Cointegration Tests
	The relationship between the cointegration and error correction models was first introduced by Granger (1981) and then developed by Engle and Granger (1987). According to their definition, an n-dimensional vector of time series  is a cointegrated process of order d and b (CI(d, b)) if it satisfies two conditions: (a) Each series of  without deterministic components which has a stationary and invertible autoregressive moving average (ARMA) representation after differenced d times is said to be integrated of order d, denoted , and (b) there is existence of a linear combination of them so that ,  The vector  is called the cointegrating vector. In case of d = 1, b = 1, all components  are cointegrated and move together over time, and the distance among them is stable, i.e., the existence of a long-run equilibrium relationship among them. This implies that these time series could deviate from the equilibrium in the short run, but the equilibrating force would push them back towards the long-run relationship. Thus, in order to investigate the existence of a long-run equilibrium relationship among nonstationary time series, Engle and Granger (1987) proposed a two-step estimation procedure that allows explicit tests of the underlying assumption of cointegration. Let  denote the  observation on N time series. Each component of  is known to be I(1). Suppose that there exists a vector  such that  is I(0). In the first step, the parameters of the cointegrating vector are estimated generally by using the ordinary least squares (OLS) method in the following cointegrating regression:
	(2.1) ,
	where  are known as innovations. By the estimate of the true cointegrating vector,  one could calculate 
	(2.2) .
	In the second step, an augmented Dickey-Fuller (ADF) test is used to check whether a unit root is present in   and the test regression is
	(2.3) ,
	where P is the number of lags,  and  are the coefficients, and  is a white-noise disturbance term. The lag P can be selected using the Akaike information criterion (AIC), Bayesian information criterion (BIC), Liung-Box tests, or other information criteria. One can run equation (2.3) and calculate the t statistic of . If the null hypothesis that   is rejected, it implies that there also is enough evidence to reject the null hypothesis of no cointegration in Engle-Granger (EG) tests. Note that it is very important to search appropriate lag length such that the residual process  is white noise. 
	Johansen (1988, 1991) derived the maximum likelihood estimator of the space of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number of dimensions. Consider a vector autoregression (VAR) model of order P as follows:
	(2.4) ,
	where  is a  vector of series at period t and is allowed to be non-stationary (I(1)),  are  coefficient matrices of the lagged endogenous variables,  is a  vector of constants,  is a vector of non-stochastic variables such as seasonal or intervention dummies, and  is an independent N-dimensional Gaussian variable with mean zero and variance matrix .
	It is convenient to rewrite equation (2.4) in an error correction form
	(2.5) ,
	where  for . .  with the lag operator L and  is a  identity matrix.
	Because each component of  is at most I(1) series, the left-hand side (LHS) of equation (2.5) is stationary. In order to maintain the balance of equation (2.5),  must also be stationary. There are three possible cases:
	(і) 
	(іі) 
	(ііі) 
	where  is the rank of a matrix. In the first case the matrix  has full rank; this implies that there exist N linear combinations  such that  is stationary. Only if all variables in the vector process  are stationary, the first case could exist. In the second case, the matrix  has zero rank; it indicates that there is not any linear combination of  such that  is stationary except for the trivial solution. All  are non-stationary. Thus, in this case equation (2.5) corresponds to a VAR model in first differences. The third case is the focus of this cointegration test. It implies the existence of two  matrices  and  such that  where  represents the average speed of convergence towards long-run equilibrium, and  denotes the cointegrating vectors. Then,  is stationary. By the property of ,  also is stationary even if  itself is non-stationary. In this case, equation (2.5) is a vector error correction model (VECM). 
	Johansen (1988, 1991) showed that the likelihood-ratio test statistic for  or  is
	(2.6) 
	where  denotes the likelihood ratio of the null model to alternative model, and  are the  smallest eigenvalues of the equation  with the product moment matrices 
	(2.7) 
	where the residuals  and  are obtained by regressing  and  on  and 1, respectively.
	Moreover, Johansen and Juselius (1990) proposed the following likelihood ratio test statistic for testing  against 
	(2.8) .
	2.3.2 Nonlinear Cointegration Test
	The above-mentioned cointegration tests assume that the presence of cointegration among non-stationary variables represents such a tendency to move toward a long-run equilibrium is present every period. However, it is possible for changes of the cointegration parameters or of the existence of cointegration relationships at unknown periods. Balke and Fomby (1997) introduced the concept of discrete adjustment into long-run equilibrium relationships among the variables in hand and proposed a two-step approach for checking whether so-called “threshold” effects on the cointegrating relationships exist. The first step utilizes a linear cointegration test such as Engel-Granger approach to examine whether a long-run relationship is present. If there is enough evidence to reject  no cointegration, he developed a sup-Wald test to check whether threshold effects are present in the time series in the second step.
	For the above-mentioned Engle-Granger test assuming symmetric adjustment ant its extensions, the statistical inference would be misspecified if the adjustment is asymmetric. Thus, Enders and Siklos (2001) introduced the concept of asymmetric adjustment into the long-run cointegration relationship of the Engle-Granger test. The alternative model modifies equation (2.3) such that:
	(2.9) ,
	(2.10a)
	if ,
	if ; or
	(2.10b)
	if ,
	if ,
	where It is the Heaviside indicator, P is the number of lags, ,  and  are the coefficients, and  is the threshold value.
	Models made up of equation (2.9) and (2.10a) are called the TAR models, while those formed using equation (2.9) and (2.10b) are named as the MTAR models. The appropriate lag length in equation (2.9) could be selected using the AIC or the BIC. According to Petruccelli and Woolford's (1984) proof, the process  is stationary when  and  satisfy the following necessary and sufficient conditions: , , and  for any value of . If the above-mentioned conditions are fulfilled,  can be regarded as the long-run equilibrium value of the system and then . Generally, the threshold value, , is unknown and needs to be estimated along with the values of  and  if the various are cointegrated, whereas there is no threshold and the value of  and/or  is equal to zero if the various  are not cointegrated. Thus, when the threshold value  exists, TAR (MTAR) threshold adjustment is  () if  () is over its long-run equilibrium value and  () if  () is under the long-run equilibrium value. Two tests are employed to understanding the asymmetric adjustments in the content of a long-run cointegration relationship. First, an F-test is applied to examine the null hypothesis of no cointegration  against the alternative of cointegration with either TAR or M-TAR threshold adjustment. The test statistic is called , does not follow a standard distribution, and its critical values in Enders and Siklos (2001) could be used. Second, a standard F-test is employed to test the null hypothesis of symmetric adjustment in the long-run equilibrium  against the alternative of the existence of an asymmetric adjustment process.
	2.3.3 Autoregressive Distributed Lag Model
	To investigate the long-run relationship of the pork, chicken, and egg VPT and see how much international crop prices (corn and soybeans) and ocean freight rates can explain the changes of Taiwanese pork, chicken, and egg prices, we begin with the following multivariate regression model:
	(2.11) 
	where  denote Taiwanese pork, chicken, and egg prices, respectively, USCt and USSt are U.S. corn and soybean prices, respectively, BRCt and BRSt are Brazilian corn and soybean prices, respectively, BDIt is a shipping and trade index that measures shipping costs for dry bulk commodities such as grain and metals, and  are known as innovations. The OLS estimators of Equation (2.11) are said to be super-consistent if cointegration among the nonstationary variables is established. In order to assess the short-run effects, we follow Pesaran et al. (2001) and transform equation (2.11) to the error correction form of a linear ARDL (LARDL) model as in equation (2.12):
	(2.12) 
	where coefficients of the first differenced variables, b2i-b6i, represent the short-run effects of international crop prices and shipping cost on Taiwanese pork, chicken and egg prices, respectively and long-run effects can be obtained by estimating coefficients of the lagged level of international crop prices and shipping cost, c2-c6, normalized on c1.
	AIC, BIC, or other information criteria can be used to determine the optimum lag length in equation (2.12). However, in order to avoid spurious estimates, cointegration must be established. Pesaran et al. (2001) developed a bounds testing procedure to check the existence of a relationship among variables in levels which is applicable irrespective of whether the underlying repressors are purely I(0), purely I(1) or mutually cointegrated. They suggest using the F-statistic for testing joint significance of lagged level variables, c2-c6, in equation (2.12). Since the distribution and critical values of the F-statistic is different from conventional F-statistic, they provide lower and upper bounds for the asymptotic critical values of the F-bounds test. The lower bound values assume that all variables in a model are purely I(0), and the upper bound values assume that those are purely I(1). If the computed F-statistic is more than the upper bound critical value, the null hypothesis of no cointegration can be rejected. Similarly, the null hypothesis cannot be rejected if the computed F-statistic is less than the lower bound value. However, if the computed F-statistic falls between the lower and upper bound values, statistical inference would be inconclusive.
	To assess the asymmetric effects of international crop prices and ocean freight rates on Taiwanese pork, chicken, and egg prices, we follow Shin et al. (2014) to build an ARDL model with an asymmetric cointegration. First, international crop prices and ocean freight rates are divided into the partial sum processes of positive and negative changes as outlined by specification equation (2.13):
	(2.13) 
	where x denotes USC, USS, BRC, BRS, or BDI. Then, the error-correction form in equation (2.12) can be rewritten by replacing USC, USS, BRC, BRS, and BDI with the two partial sum variables as follows:
	(2.14) 
	The error correlation form of the NLARDL model in equation (2.14) can simultaneously analyze the asymmetric effects on both the underlying long-run relationship and the patterns of dynamic adjustment. Shin et al. (2014) followed Pesaran et al. (2001) and developed a NLARDL bound test to check the null hypothesis that an asymmetric long-run level relationship exists in equation (2.14). Similarly, this approach is applicable irrespective of whether the underlying repressors are purely I(0), purely I(1) or mutually cointegrated. Moreover, the null hypothesis of symmetric long-run or short-run coefficients can be tested using the Wald statistic following an asymptotic Chi-square distribution.
	2.4 Data
	A price transmission analysis, just as its name implies, is conducted to discover the connections among prices of theoretically-related commodities by time series data. This study considers monthly international prices for corn and soybeans and farm prices for Taiwanese hogs, white broilers, and hen eggs because of the difficulties of obtaining daily prices of Taiwanese agricultural products. In addition, we also want to know whether ocean freight rates affect these farm prices because Taiwanese corn and soybean imports depend on ocean shipping. The time span of observation is from January 2001 to December 2017 for the analyzed price series. The starting period reflects data availability. During the period, the Taiwanese hog industry has been a fully open market since 2005 (Taiwan joined the WTO in 2002). The information regarding monthly farm prices for Taiwanese hogs, white broilers, and hen eggs comes from the Taiwan COA. Monthly futures prices of the U.S. corn and soybeans are obtained from the Chicago Board of Trade (CBOT). Because we are unable to collect enough monthly futures prices of Brazilian corn and soybeans, we use Brazilian wholesale prices to replace them. The Baltic freight index (BFI) was first published on January 4, 1985 to get a sense of global shipping freight rates and was replaced by the BDI on November 1, 1999. The monthly BDI is obtained from the Consumer News and Business Channel (CNBC).
	2.5 Empirical Results
	The descriptive statistics for farm prices of pigs, white broilers, and hen eggs; international prices of corn and soybeans; and the BDI are presented in Table 2.1. Although the standard deviation (SD) value for the BDI cannot be compared with those of price series due to different units of measurement, the coefficient of variation (CV) suggests that the BDI has a high degree of fluctuation. Both the SD and CV of chicken prices are the lowest of selected livestock in Taiwan. For international prices of the selected crops, except for the CV, the values of all statistics can be grouped into two types: corn and soybeans, i.e., they have similar values within each group, respectively. Moreover, the CV reveals that all domestic prices of the selected livestock in Taiwan are less dispersed than the international prices of corn and soybeans, but the SD obtains opposite results, i.e., it suggests that all domestic prices of the selected livestock are more variable than the international prices of corn and soybeans.
	Table 2.1. Descriptive Statistics for Monthly Prices (USD/KG) of the Selected Agricultural Products and the Baltic Dry Index, 2001-2017
	Variable
	Mean
	Maximum
	Minimum
	SD
	CV
	Taiwan
	Pork
	1.95
	2.77
	1.06
	0.44
	0.22
	Chicken
	1.25
	1.68
	0.78
	0.26
	0.20
	Egg
	1.17
	1.82
	0.48
	0.34
	0.29
	Foreign crops
	U.S. corn
	0.15
	0.32
	0.08
	0.06
	0.42
	U.S. soybean
	0.37
	0.67
	0.17
	0.13
	0.35
	Brazil corn
	0.17
	0.32
	0.07
	0.07
	0.38
	Brazil soybean
	0.34
	0.70
	0.14
	0.12
	0.36
	Baltic Dry Index
	2470.60
	11440.00
	317.00
	2201.85
	0.89
	Notes: SD and CV represent the standard deviation and the coefficient of variation, respectively.
	As a rule, nonstationary data cannot be modeled or forecasted because the results obtained by using nonstationary time series might be spurious. Thus, in order to obtain consistent and reliable results for analyzed time series, unit root tests on levels and the first differences of the data were conducted. Results of both the ADF and PP tests are presented in Table 2.2. The null hypothesis of both tests is that each evaluated series is nonstationary. The number of augmenting lags for the ADF test is determined by minimizing the BIC. The statistics of both the ADF and PP tests reveal that unit roots cannot be rejected at the 5% significance level for all time-series in levels but can be rejected for the first differences. Thus, it is concluded that in levels, all time-series are nonstationary, however in their first differences they are stationary. That is to say, they are integrated of order one.
	Table 2.2. Unit Root Tests in the Level and First Difference of Monthly Price Series and the Baltic Dry Index, 2001-2017
	Variable
	ADF
	PP
	Level
	1st diff.
	Level
	1st diff.
	Pork
	-1.980 (2)
	-11.207 (1)**
	-1.944 (4)
	-9.903 (4)**
	Chicken
	-1.068 (2)
	-10.246 (1)**
	-1.081 (4)
	-9.399 (4)**
	Egg
	-2.352 (1)
	-19.304 (0)**
	-2.428 (4)
	-20.857 (4)**
	U.S. corn
	-1.961 (1)
	-10.993 (0)**
	-1.909 (4)
	-11.088 (4)**
	U.S. soybean
	-2.271 (1)
	-9.994 (0)**
	-2.030 (4)
	-9.901 (4)**
	Brazil corn
	-2.817 (2)
	-7.941 (1)**
	-2.467 (4)
	-13.315 (4)**
	Brazil soybean
	-1.923 (0)
	-8.657 (2)**
	-2.060 (4)
	-13.112 (4)**
	Baltic Dry Index
	-2.873 (1)
	-8.980 (3)**
	-2.509 (4)
	-10.480 (4)**
	Notes: The data are transformed by taking natural logarithms. The numbers in parentheses indicate the lag order in the ADF test and the bandwidth using the Newey-West bandwidth selection method and the Bartlett kernel in the PP test, respectively. The default bandwidth is the integer part of  where T is the sample size. ** denotes significance at the 5% level.
	2.5.1 Johansen Cointegration Test
	Using the Johansen and Engle-Granger approaches, a linear cointegration analysis is conducted. First, the Johansen approach requires the determination of a lag length for the VAR representation of a VECM. The VECM will include one fewer lag of the first differences. Based on the lowest AIC, the optimal lag lengths for the VECM of the pork, chicken, and egg VPT should be 2, 1, and 2, respectively. Without prior information, five model specifications with different deterministic trend assumptions in level data and cointegrating equations are estimated (Table 2.3). For the pork VPT, except for the second and fifth models, the Johansen trace and maximum eigenvalue statistics have the same results for all of the models. However, only one model has the same result for the chicken and egg VPT. Johansen and Juselius (1990) recommend the use of the trace statistic when these two statistics provide conflicting results. Moreover, the trace statistic considers all of the smallest eigenvalues and holds more power than the maximum eigenvalue statistic (Kasa, 1992; Serletis and king, 1997). Thus, when the results of two statistics produce a contradiction in a certain model, the number of cointegrating vectors is determined by the trace statistic.
	Table 2.3. Johansen Tests for the Order of Cointegration in 5 Trend Assumptions
	Data trend
	None
	None
	Linear
	Linear
	Quadratic
	ECT
	None
	Intercept
	Intercept
	Intercept
	Intercept
	Trend
	Trend
	Panel A: Pork vertical price transmission
	Trace
	1
	1
	2
	1
	2
	Max. eigenvalue
	1
	2
	2
	1
	1
	Panel B: Chicken vertical price transmission
	Trace
	1
	1
	2
	1
	2
	Max. eigenvalue
	0
	1
	1
	0
	0
	Panel C: Egg vertical price transmission
	Trace
	2
	2
	2
	1
	2
	Max. eigenvalue
	1
	1
	1
	1
	1
	Notes: Selected number of cointegrating relations at the 5% significance level. ECT denotes the error correction terms in a vector error correction model.
	The values of the BIC for each model with different cointegrating ranks (r) are shown in Table 2.4. Based on the lowest BIC values for five models with selected r values from Johansen's trace statistic, model 2 (r=1), model 2 (r=1), and model 4 (r=1) are the best models for the pork, chicken, and egg VPT, respectively. Their best models imply that the number of cointegration vectors is one.
	Table 2.4. Schwarz Criteria by Ranks (Row) and Models (Column)
	Data trend
	None
	None
	Linear
	Linear
	Quadratic
	ECT
	None
	Intercept
	Intercept
	Intercept
	Intercept
	Trend
	Trend
	Panel A: Pork vertical price transmission
	r=1
	-12.976
	-12.993
	-12.868
	-12.845
	-12.719
	r=2
	-12.778
	-12.824
	-12.725
	-12.678
	-12.579
	Panel B: Chicken vertical price transmission
	r=0
	-14.268
	-14.268
	-14.116
	-14.116
	-13.966
	r=1
	-14.131
	-14.134
	-14.009
	-13.987
	-13.863
	r=2
	-13.913
	-13.931
	-13.832
	-13.805
	-13.707
	Panel C: Egg vertical price transmission
	r=1
	-11.266
	-11.242
	-11.115
	-11.098
	-10.973
	r=2
	-11.075
	-11.061
	-10.960
	-10.916
	-10.818
	Notes: ECT denotes the error correction terms in a vector error correction model.
	Similarly, the Engle-Granger cointegration test is executed to check the null hypothesis that cointegration does not exist among time-series of interest through a two-step procedure. The Ljung-Box test is conducted to see if the residuals  are serially correlated in five cointegration models. In the first step, the long-run relationships among variables of the pork, chicken, or egg VPT are estimated, as specified in equation (2.2). In the second step, the residual is used to conduct a unit root test, as specified in equation (2.3). As reported in Table 2.5-2.7, based on the lowest AIC and BIC values, one, two, and zero lag order(s) of the linear AR(p) are selected for the pork, chicken, and egg VPT, respectively. The values of the unit root test statistic are -0.167, -0.127, and -0.298 respectively and are significant at the 1% level. Thus, the Enger-Granger approach also confirms that variables for each VPT are cointegrated, i.e., there is a correlation among these time series of each VPT in the long term.
	Table 2.5. Engle-Granger and Enders-Siklos Cointegration Tests for the Pork Vertical Price Transmission
	-0.141
	-0.014
	-0.195***
	(-3.86)
	-0.144***
	(-3.15)
	Notes: TAR and MTAR denote the threshold autoregression and momentum threshold autoregression models, respectively. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. The t-statistics and p values are states in parenthesis and bracket, respectively. QLB(k) denotes the p-value of Ljung-Box Q statistics with k lags.
	The nonlinear cointegration analysis is conducted using the TAR models. Four models (TAR, MTAR and their consistent counterparts) were examined, and the results are reported in Table 2.5-2.7. The length of lags for the lagged first differences of  can be determined by an analysis of the regression residuals and/or using information criteria. It is selected by the lowest AIC and BIC values in this study, and one-lagged and two-lagged changes are used in all four TAR models of the pork and chicken VPT, respectively. However, for the egg VPT, zero-lagged change used in the first three TAR models is different from one-lagged change used in the consistent MTAR model.
	Table 2.6. Engle-Granger and Enders-Siklos Cointegration Tests for the Chicken Vertical Price Transmission
	0.114
	0.045
	-0.152***
	(-3.24)
	-0.102**
	(-2.18)
	Notes: TAR and MTAR denote the threshold autoregression and momentum threshold autoregression models, respectively. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. The t-statistics and p values are states in parenthesis and bracket, respectively. QLB(k) denotes the p-value of Ljung-Box Q statistics with k lags.
	Moreover, except for the threshold value which is set equal to zero, the threshold values with the lowest sum of squared errors are estimated to be -0.141, 0.114, and -0.146 for the consistent TAR model of the pork, chicken, and egg VPT respectively. The threshold values with the lowest sum of squared errors are estimated to be -0.014, 0.045, and -0.145 for the consistent MTAR model of the pork, chicken, and egg VPT, respectively.
	Table 2.7. Engle-Granger and Enders-Siklos Cointegration Tests for the Egg Vertical Price Transmission
	-0.273***
	(-3.92)
	-0.325***
	(-4.54)
	Notes: TAR and MTAR denote the threshold autoregression and momentum threshold autoregression models, respectively. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. The t-statistics and p values are states in parenthesis and bracket, respectively. QLB(k) denotes the p-value of Ljung-Box Q statistics with k lags.
	As shown in the fourth and fifth columns of Table 2.5, the point estimates for ρ1 and ρ2 of the four TAR models of the pork VPT are significantly different from zero at the 5% level. The sample values of Φ are more than the 5% critical value. Therefore, we can reject the null hypothesis that there is no cointegration. Moreover, the consistent TAR model has the lowest AIC statistic of -583.462 and BIC statistic of -573.538 among the four TAR models of the pork VPT. However, all p values of the F statistic are more than 5% in Table 2.5, and we cannot reject the null hypothesis of symmetric adjustment. Thus, the adjustment process is symmetric when the price series of the pork VPT adjust to achieve the long-run equilibrium.
	The results of the four TAR models for the chicken VPT are reported in Table 2.6. The sample values of Φ are more than the 5% critical value, so we can reject the null hypothesis of no cointegration. The consistent TAR model has the lowest AIC statistic of -668.489, while the consistent MTAR model has the lowest BIC statistic of -659.087. Because the point estimates for ρ2 of the consistent TAR and MTAR models are not significantly different from zero at the 5% level, the asymmetric speed of adjustment does not exist. For the TAR and MTAR models, the point estimates for ρ1 and ρ2 are significantly different from zero at the 5% level. However, because p values of the F statistic are more than 5%, we cannot reject the null hypothesis of symmetric adjustment. Thus, the speed of adjustment is symmetric when the price series of the chicken VPT adjust to achieve the long-run equilibrium.
	The results of the four TAR models for the egg VPT are reported in Table 2.7. The sample values of Φ are more than the 5% critical value, and we can reject the null hypothesis of no cointegration. The consistent MTAR model has the lowest AIC statistic of -288.267, while the consistent TAR model has the lowest BIC statistic of -281.194. Because the point estimate for ρ1 of the consistent MTAR model is not significantly different from zero at the 5% level, the asymmetric speed of adjustment does not exist. For the TAR and MTAR models, the point estimates for ρ1 and ρ2 are significantly different from zero at the 5% level. However, because p values of the F statistic are more than 5%, we cannot reject the null hypothesis of symmetric adjustment. Thus, the asymmetric speed of adjustment only exists in the consistent TAR model. To conserve space, only coefficients of the error correction terms in the consistent TAR model are represented in Table 2.8. We imposed a maximum of twelve lags and used a general-to-specific approach to identify the right number of lags, i.e. trim down lags if higher lags are found to be statistically insignificant at the 5% level. The Ljung-Box test shows that the null hypothesis that residuals are not serially correlated cannot be rejected, implying the residuals follow a whiter noise process. The F statistic has a p-value of 0.035 below a significance level of 5%, and the null hypothesis of symmetric speed of adjustment can be rejected. However, the point estimate of the coefficient for a negative error correction term is insignificantly different from zero at the 5% level. Thus, the model suggests that positive discrepancies from long-run equilibrium are eliminated rather quickly but that others are allowed to persist.
	Table 2.8. Estimates of the Asymmetric Error Correction Model for the Egg Vertical Price Transmission
	Notes: ECT denotes the error correction terms in a vector error correction model. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. The t-statistics and p values are states in parenthesis and bracket, respectively. QLB(k) denotes the p-value of Ljung-Box Q statistics with k lags.
	The Breusch-Godfrey Lagrange multiplier test statistic is reported as BG, and its values reveal statistical insignificance for all models, i.e., their residual series can be regarded as free of autocorrelation at the 0.05% significance level. In addition, the null hypothesis of the Breusch-Pagan-Godfrey (BPG) test that residuals are homoscedastic is rejected for the models of the chicken VPT. Thus, robust standard errors are applied to them. The Ramsey's regression equation specification error test (RESET) is also reported to check on model misspecification. The test results are statistically insignificant in all models, i.e., the functional form for each model is correctly specified. 
	Table 2.9. Estimates of the Linear (LARDL) and Nonlinear (NLARDL) Autoregressive Distributed Lag Models
	BDI-
	Notes: *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. The t-statistics are states in parenthesis. U.S. corn (USC), U.S. soybean (USS), Brazil corn (BRC), Brazil soybean (BRS), and Baltic Dry index (BDI).
	Table 2.9. Continued
	Notes: *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. The t-statistics are states in parenthesis. The error correction term (ECT), Ramsey’s regression equation specification error test (RESET), the cumulative sum (CS) and the cumulative sum of squares (CS2) tests, the Breusch-Godfrey Lagrange multiplier (BG) test, and Breusch-Pagan-Godfrey (BPG) test.
	2.6 Conclusions
	Based on the results of Engle-Granger and Johansen cointegration tests, there is a long-run equilibrium relationship among variables for the pork, chicken, or egg VPT. In addition, the results of TAR and M-TAR models show that asymmetric speed of adjustment does not exist for the pork and chicken VPT at the 5% significance level except for the egg VPT, i.e., the first two VPT have a symmetric speed of price adjustment. For the egg VPT, the VECM model with consistent TAR adjustment shows that the speed of adjustment in returning to the long-run equilibrium after positive shocks is more rapid than that after negative shocks. Moreover, we also applied the NLARDL model to investigate the long-run asymmetric magnitude of lagged-level variables. The results show that there is the asymmetric effect of Brazilian soybean prices on Taiwanese pork prices, that two kinds of asymmetric effects, U.S. soybean prices and the BDI, exist in the chicken VPT, and that there is the asymmetric effect of U.S. soybean prices on Taiwanese egg prices.
	CHAPTER ΙΙI
	PRICE DYNAMICS IN THE IMPORT MARKETS OF EELS, EDAMAME, AND FEATHERS AND DOWN IN JAPAN
	3.1 Introduction
	The largest export market for Taiwanese agricultural products is China, followed by Japan and the U.S. The main agricultural products exported to Japan are tuna, feathers and down, edamame, and eels. Except for tuna, the sources of feathers and down, edamame, and eels are mostly farm-sourced. According to the statistics of the Taiwan COA, their shares (rankings) of the total export value for Taiwanese agricultural products were 2.13% (8), 0.98% (18), and 0.98% (19) in 2017, respectively. 
	An eel is any fish belonging to the order Anguilliformes. According to the statistics of the Food and Agriculture Organization (FAO) of the United Nations, global capture production of eels hit an all-time high in 1996 and then showed a decreasing trend. In addition, global capture production of eels only accounted for 5.41% of the global total production of eels in 2015, and global aquaculture production of eels has exceeded the global capture production since 1974. The most important factor affecting eel farming is the capture of wild eel fry and glass eels. Since eels have very special life history that is difficult to simulate in artificial environments, many drawbacks of the artificial breeding technology of eel fry still need to be overcome. The most commonly farmed species of eels in the world are Japanese and European eels, but in 2015, only about 97% of farmed eels were Japanese. The countries that farm Japanese eels all are located in Asia. China dominates in Japanese eel farming. Japan once accounted for more than 50% of the global total consumption of eels. However, because of the reduction of Japanese domestic demand and the rapid increase of the eel farming in China, the share of Japanese eel consumption to the global total consumption of eels gradually decreased and maintained at about 12%-18 % in recent years. Nevertheless, Japan still is the largest import country of eels in the world. The domestic eel production in Japan was within the range of 38 to 41 thousand tons from 1984 to 1991 and then showed a downward trend (Figure 3.1). 
	Figure 3.1. The volume of eel fry and the production of eels in Japan, 1957-2017
	Notes: Before 1988 the volume of eel fry does not include import sources. 
	In 2013, this figure even fell to around 14 thousand tons. Conversely, the eel domestic demand in Japan gradually increased from about 20 thousand tons in the 1970s to reach the peak of about 160 thousand tons in 2000 (Figure 3.2). However, a rise in eel prices leads to a decline in the eel consumption and purchase frequency according to the consumer price index and the family income and expenditure survey from the Japanese Statistics Bureau. Japanese eel suppliers cannot satisfy domestic demand, and the gap between eel consumption and production in Japan must be filled with imported eels. Although weak demand and residues of malachite green, a veterinary drug illegally used for the treatment of farm-raised fish, heavily affect the import volume of eels in Japan, imported eels still make up over 50% of the market share of eels.
	Figure 3.2. Import types of eels in Japan, 1988-2017
	Once Taiwan was the largest supplier of the Japanese eel market but was replaced by China since 1994. There are four different types of eel products in international markets, but the import volumes of two of them in the Japanese market that are fresh or chilled and frozen eels are negligible. Due to the lower production costs of the eel farming and processing in China, China has quickly had a dominant presence in the eel market in Japan. The import of prepared eel products in Japan, especially, is mostly from China, and the market share of prepared or preserved eel products from China exceeded that from Taiwan since 1994. Thus, this study will only focus on the Japanese import market of live eels. According to the statistics of the Japan Customs, the main importing sources of live eels are China and Taiwan, and their shares of the total import volume of live eels in the Japanese market were 69.87% and 29.54% in 2017, respectively. Obviously Taiwanese eel farmers face strong competition from China (Figure 3.3).
	1988
	2017
	Figure 3.3. Top import partners of live eels in Japan (% of total import volume of the item)
	Edamame, or vegetable soybeans, are the immature and green form of edible soybeans in the pod. It is classified as a vegetable and is not a grain crop as in the case of mature soybean seeds. In recent years, edamame has been gradually recognized in the world, but except for China, Japan, and Taiwan, there still are not many edamame customers in the rest of world. In general, it may appear in Japanese and Chinese restaurants throughout the world as a meal starter. Therefore, Japan is the main export market for edamame growers. The Japanese domestic production and planted area hit an all-time high in 1982 (Figure 3.4).
	Figure 3.4. Planted area, harvest volume, and shipping volume of edamame in Japan, 1973-2017
	Comparing 1982 with 2017, we can find that the planted area only decreases about 12.84%, whereas the harvest and shipping volumes decrease about 44.46% and 41.07%, respectively. The widening gap between the domestic edamame supply and demand in Japan is favorable for exporting countries of edamame. According to the statistics of the Japan Customs and the Ministry of Agriculture, Forestry and Fisheries of Japan, about 59.56% of edamame consumption depended on imports in 2017 (Figure 3.5). The Japanese edamame market can be divided into two separate markets: fresh and frozen edamame. The import volume of fresh edamame is less than 2% of the total import volume of edamame and is mostly from Taiwan. 
	Figure 3.5. Import volume of frozen and fresh/chilled edamame, 1988-2017
	According to the 2017 yearbooks of the Taiwan COA, Japan and the U.S. accounted for 85.34% and 9.30% of the total value of Taiwanese edamame exports, respectively. Although Taiwan remained top of the import market of frozen edamame in Japan in 2017, its share shrank largely because Taiwan has faced heavy competition from other exporting countries of frozen edamame since 1993. The major importing sources of frozen edamame in Japan are Taiwan, Thailand, China, and Indonesia, and their shares of the total import volume of frozen edamame were 41.40%, 26.96%, 26.10%, and 5.39% in 2017, respectively (Figure 3.6).
	1988
	2017
	Figure 3.6. Top import partners of frozen edamame in Japan (% of total import volume of the item)
	Feathers and down are used for insulation and padding of products like coats, bedclothes, and sleeping bags. The vast majority of them are a by-product of the poultry industry. They may come from the same animal source but are gathered from different parts of the body. Only ducks, geese, penguins, and other water birds have down. According to the statement of the Taiwan COA, the export volume of the Taiwanese down processing ranks the third in the world, behind China and the European Union (EU). In 2017, the share (ranking) of feathers and down in the total export value of agricultural products in Taiwan was about 3.86% (3), behind frozen tuna and bovine leather, and Japan, China, and Vietnam accounted for 29.86%, 27.97%, and 10.79% of the total export value of Taiwanese feathers and down, respectively. Because wearing apparel manufacturing remains a labor-intensive process, the cost of labor is an important consideration. Most of down jacket manufacturers in Taiwan moved production to China and other lower-cost countries in Southeast Asia. Main products of the Taiwanese feather and down processing are presently prepared feathers and down of a kind used for stuffing and their bedding products. According to the statistics of the Japan Customs, import volume and value hit an all-time high in 1989 and then showed a decreasing trend (Figure 3.7).
	Figure 3.7. The volume and average price of imported feathers and down in Japan, 1988-2017
	Both the changes of average global temperatures and the prices of duck and goose meat may affect the demand and prices of feathers and down. For instance, because of the outbreak of bird flu in many provinces of China in 2013, large-scale culling of poultry species on farms resulted in a sharp drop in the supply of feathers and down. This also caused rapid increases in the average import price of feathers and down in Japan, and it jumped to an all-time high of $7,518 thousand yen per ton in 2014. The major importing sources of prepared feathers and down are China, Taiwan, Poland, Hungary, and France, and their shares of the total import value of feathers and down in Japan were 29.19%, 25.39%, 14.12%, 10.36%, and 7.37% in 2017, respectively (Figure 3.8). 
	1988
	2017
	Figure 3.8. Top import partners of feathers and down in Japan (% of total import value of the item)
	Comparing 1982 with 2017, we can find that except for Taiwan, all market shares of other main exporting countries in regards to feather and down imports in Japan increase remarkably. Although there is no obvious relationship between the quality and countries of origin of feathers and down, European feathers and down are more preferred by consumers and can be sold at higher prices. Besides the EU, Taiwan still faces the low-price competition from China. Thus, the Taiwanese market share of the Japanese feather and down imports decreased by 40.45% between 1988 and 2017.
	This study will employ a time-series model to examine the relationship among Taiwanese main export products and other substitutes from other exporting countries in the Japanese market. The paper is organized as follows. The related literature on the economic topics of spatial price transmission is presented in the next section of the paper. Then, the theoretical framework for a causal search algorithm and data sources are described. Following that, results and relevant discussions are presented. The summary of main findings is presented in the last section of the paper. 
	3.2 Literature Review
	In the literature of price transmission analyses, there are some articles investigating the relationship among prices of the same or homogeneous commodities which are produced in different regions or countries. For example, Gallagher (1983) applied linear regression equations to examine whether international price margins in the U.S. Pacific Northwest-Japan softwood trade are influenced by nontariff trade barriers and inelastic supplies of international transportation services. Ghoshray (2007) used linear and nonlinear cointegration tests and an asymmetric ECM to explore the relationship of monthly average prices of durum wheat exported by Canada and the U.S. Asche et al. (2007) investigated smoked salmon exported by Norway and United Kingdom in the French retail market and found that there is a very high degree of price transmission in both supply chains. Balcombe et al. (2007) applied a generalized threshold ECM to investigate relationships of pairs of monthly wheat, maize, and soybean prices for Brazil, the U.S., and Argentina. Sun (2011) employed linear and nonlinear cointegration tests and an asymmetric ECM to evaluate the dynamic relationship of monthly import prices of wooden beds from China and Vietnam in the U.S. market. Myers and Jayne (2012) developed a threshold ECM which allows multiple long-run equilibria and multiple speeds of adjustment to examine the linkage of monthly maize prices for South Africa and Zambia. Jezghani et al. (2013) used a standard VECM to examine the relationship of monthly wholesale prices of rice for Thailand and Iran. Sun and Ning (2014) applied a threshold ECM and a generalized impulse response function on monthly prices from 1978 to 2011 to investigate the spatial price linkage among three mainly suppliers of the softwood lumber market in North America: the Southern U.S., the Western U.S., and Canada. Santeramo (2015) applied a threshold autoregressive model to explore the dynamics of tomato and cauliflower prices among EU spatially separated regions.
	3.3 Methodology
	Probabilistic graphical models contain graph theory, probability theory, and computer science to represent and visualize the associations among stochastic variables. One of the two most common types of graphical models is a Bayesian network presented by Pearl (1986) (also called a belief network or a causal network). Bayesian networks use directed graphs to represent causal relationships among random variables. A directed graph is the generalization of a tree data structure in which a nonempty set of vertices V (or nodes) is connected by a set of edges (or links) that has an orientation (directed path) and is represented by arrows. An arrow from vertex A to vertex B indicates that there is a direct causal effect of A on B. The directed graph that does not contain directed cyclic paths (e.g. A→B, B→A) is called a directed acyclic graph (DAG) corresponding to a Bayesian network. A DAG is used not only to represent causal relations between vertices corresponding to variables but also to represent a set of probability measures over a set of vertices. According to the definition of Lauritzen et al. (1990), for a DAG G with a set of vertices V, a probability measure P over V obeys the local directed Markov property if and only if each variable  in V is independent of its nondescendants, conditional on its parents. Lauritzen et al. (1990) also proved that for G, the local directed Markov condition is equivalent to the other two conditions: (a) P over V obeys the global directed Markov property if and only if for any triple (J, K, L) of disjoint subsets of V, J is d-separated from K given L in G, that is, J is conditionally independent of K given L in G. (b) P admits a recursive factorization according to G. That is, a joint density function  for P over V factorizes according to G if and only if for each subset 
	(3.1) 
	where  and  is the abbreviations of  and , respectively.  is a non-negative kernel function.  is the set of parents of the variable  in G. Since P admits a recursive factorization, the term  is the conditional density of  given . Thus,
	(3.2) 
	In a DAG, all of the conditionally independent relationships can be generated using the concept of d-separation ("d" implies "directional"). If A is d-separated from B by C, this means that all the paths (information) between subsets A and B are blocked given the vertices in a set C. There are three situations under which a path is blocked given a set of vertices C: (a) In a causal chain such as  A and B are conditionally independent given the middle node C. The encoded joint distribution is , that is to say, it assumes the probability Markov condition (the joint probability distribution among set of causal variable is determined by the product of all unconditional marginal probabilities and conditional probabilities where one condition only on the parent causal variable). (b) In a collider structure such as  A and B are unconditionally independent. However, A and B are conditionally dependence (d-connected) given their common effect C. The encoded joint distribution is . (c) In a causal fork such as  A and B are conditionally independent given their common parent C. The encoded joint distribution is . These configurations of triples are viewed as base cases of Bayesian networks and used to analyze more complex causal structures.
	It is not enough for policy makers and social scientists to only obtain optimal estimation of a covariance matrix or have best parameter estimates by least square methods. To establish causal relationships among variables generated via observational data, many algorithms have been developed. Wermuth and Lauritzen (1983) specified a subclass of the recursive models for contingency tables proposed by Goodman (1973). Each of these matches a special kind of a directed graph instead and can be represented by a nontrivial decomposition of the joint probability distribution in terms of the response variables. The term ‘recursive’ means that endogenous (response) factors are permitted to explain themselves regardless of direct or indirect effects. The vertices in any possible DAG are labeled by numbering them so that edges  happen only if  in the complete ordering of variables. However, this algorithm requires that an ordering of the variables is known in advance. Thus, in order to remove this requirement, improve its computational efficient, and decrease the difficulty of statistical decisions, several algorithms for finding causal relations among variables have been developed such as the Spirtes-Glymour-Scheines (SGS) algorithm (Spirtes et al., 1990 and 2000) and the PC algorithm (Spirtes and Glymour, 1991) with the assumptions of causal sufficiency, causal faithfulness and causal Markov conditions. The SGS and the PC algorithms have similar procedures for discovering causal structure and the main difference between them is the step of edge elimination. Because the revised edge-removal step omits needless tests of the null hypothesis of conditional independence, the PC algorithm has more computationally efficient than the SGS algorithm. The main steps of the PC algorithm is as follows: (a) Build the complete undirected graph G on a set V of variables, that is, every unordered pair of vertices (also called nodes or points) is connected by an edge (also called an arc or line) without a direction. (b) For each pair of variables  in V, try to find a conditioning set  where all variables are adjacent to either a or b except for a and b themselves such that the null hypothesis of (a ╨ b) is not rejected. In other words,  should disconnect a and b. In this step the cardinality of the set  starts at 0, then 1, and so on. Edges are recursively removed from G as soon as a conditional independence relation is found between a and b. A predetermined cut-off probability (p-value) is used to reject the null hypothesis of no correlation (most studies use p-value 0.05 for 95% statistical significance in the removal of edges). The ultimately resulting undirected graph is named as . (c) For each pair of nonadjacent variables a and b that are linked through a variable c in , examine whether . The edges of  are oriented as (called an unshielded collider or v-structure) if and only if . (d) In the partially directed graph  produced by step (c), the rest of the undirected edges will be oriented by repeated application of the following two conditions: (і) The orientation should avoid producing a new v-structure. (іі) The orientation should avoid producing a directed cycle (search through causal chains and causal forks).
	3.4 Data
	The period of data covered concerning the imported edamame is from January 1992 through December 2017. China and Thailand have been exporting edamame to Japan since 1988 and 1990, respectively. However, trade volumes for China and Thailand were insubstantial, and their monthly import prices were volatile before 1992. Thus, the starting period is set at January 1992. Furthermore, the period of data covered concerning imported eels and down/feathers is from January 1988 to December 2017. The starting period reflects data availability. Their monthly import volumes and values are obtained from the Japan Customs and applied to calculate unit prices (JPY1000/kg) for each main exporting country. In addition, monthly wholesale prices of domestic eels and edamame are obtained from the Tokyo Metropolitan Central Wholesale Market.
	3.5 Empirical Results
	3.5.1 Eel Imports in Japan
	The descriptive statistics for import prices from China and Taiwan and wholesale prices in the Tsukiji fish market are presented in Table 3.1. Aichi and Shizuoka prefectures are the main areas of eel production in Japan. The highest price of live eels is reported from Shizuoka prefecture, while Taiwanese live eels have the lowest price among four analyzed price series. For prepared eels, the price from Shizuoka prefecture is higher than that from China. Thus, comparing contemporaneous prices, we can find that prices of Japanese domestic eels are higher than those of imported eels. The CV suggests that there is a similar degree of variability within two groups of live eel prices, imports and domestics. Similarly, the SD also shows the same result. However, for between-group variations, the CV suggests that prices of domestic live eels in Japan are less dispersed than those of imported live eels, while the SD suggests that the prices of imported live eels are less changeable than the domestic prices. For prepared eels, both the SD and CV show that the domestic price fluctuation is bigger than the fluctuation of import prices.
	As a rule, nonstationary data cannot be modeled or forecasted because the results obtained by nonstationary time series might be spurious. Thus, in order to obtain consistent and reliable results for analyzed time series, unit root tests on levels and the first differences of data were conducted. The results of both ADF and PP tests are presented in Table 3.2. The null hypothesis of both tests is that each evaluated time-series is nonstationary. The number of augmenting lags for the ADF test is determined by minimizing the BIC. The statistics of both ADF and PP tests reveal that the presence of a unit root cannot be rejected at the 5% significance level for all eel price series in levels but can be rejected for the first differences. Thus, it is concluded that all eel price series are integrated of order one.
	Table 3.1. Descriptive Statistics for Monthly Eel Prices (JPY/KG), 2002-2017
	Variable
	Mean
	SD
	Minimum
	Maximum
	CV
	Import (live)
	China
	2083.825
	991.837
	766.264
	4671.317
	0.476
	Taiwan
	2022.474
	944.041
	747.652
	4455.652
	0.467
	Domestics (live)
	Shizuoka
	2923.943
	1244.000
	1093.000
	5629.000
	0.425
	Aichi
	2948.266
	1245.250
	1135.000
	5486.000
	0.422
	Import (prepared)
	China
	1867.098
	691.012
	901.898
	3600.394
	0.370
	Domestics (prepared)
	Shizuoka
	3359.531
	1952.342
	1054.000
	7419.000
	0.581
	Notes: SD and CV represent the standard deviation and the coefficient of variation, respectively.
	Table 3.2. Unit Root Tests in the Level and First Difference of Monthly Eel Prices, 2002-2017
	Series
	ADF
	PP
	Level
	1st diff.
	Level
	1st diff.
	Aichi
	-1.919 (1)
	-8.220 (0)**
	-1.916 (4)
	-8.041 (4)**
	China 1
	-1.570 (2)
	-8.994 (1)**
	-1.622 (4)
	-9.600 (4)**
	China 2
	-1.852 (0)
	-13.042 (0)**
	-1.844 (4)
	-13.016 (4)**
	Shizuoka 1
	-1.822 (2)
	-9.172 (1)**
	-1.916 (4)
	-8.844 (4)**
	Shizuoka 2
	-1.232 (1)
	-11.340 (2)**
	-1.006 (4)
	-20.018 (4)**
	Taiwan
	-1.867 (2)
	-9.392 (1)**
	-1.888 (4)
	-8.271 (4)**
	Notes: The data are transformed by taking natural logarithms. The numbers in parentheses indicate the lag order in the ADF test and the bandwidth using the Newey-West bandwidth selection method and the Bartlett kernel in the PP test, respectively. The default bandwidth is the integer part of where T is the sample size. ** denotes significance at the 5% level. 1 and 2 denote live and prepared eel prices, respectively.
	A linear cointegration analysis is conducted using the Johansen approach. First, the Johansen approach requires the determination of a lag length for the VAR representation of a VECM. The order of the VECM fitted is always one less than the order of the corresponding VAR model. Based on the lowest Hannan-Quinn information criterion (HQ), one lag is used in the VECM. Without prior information, five model specifications with different deterministic trend assumptions in level data and cointegrating equations are estimated (Table 3.3). Except for the second and fourth models at the 5% level of significance, the results show that the Johansen trace and maximum eigenvalue tests determine different numbers of cointegrating vectors, called cointegrating ranks (r). Johansen and Juselius (1990) recommended the use of the trace statistic when these two statistics provide conflicting results. Moreover, the trace test statistic considers all of the smallest eigenvalues and holds more power than the maximum eigenvalue statistic (Kasa, 1992; Serletis and king, 1997). Thus, when the results of two statistics produce a contradiction in a certain model, r is determined by the trace statistic. 
	Table 3.3. Johansen Tests for the Order of Cointegration of Monthly Eel Prices in 5 Trend Assumptions
	Data trend
	None
	None
	Linear
	Linear
	Quadratic
	ECT
	None
	Intercept
	Intercept
	Intercept
	Intercept
	Trend
	Trend
	Trace
	4
	3
	4
	4
	6
	Max. eigenvalue
	2
	3
	3
	4
	4
	Notes: Selected number of cointegrating relations at the 5% significance level. ECT denotes the error correction terms in a vector error correction model.
	The values of the BIC for each model with different r values are shown in Table 3.4. The lowest BIC value is -16.550 in the model that has no deterministic trends in level data and whose cointegrating equations have intercepts. Thus, the innovations generated from this model are used to identify causal structure among the eel price series.
	Table 3.4. Schwarz Criteria by Ranks (Row) and Models (Column) Using Monthly Eel Prices
	Data trend
	None
	None
	Linear
	Linear
	Quadratic
	ECT
	None
	Intercept
	Intercept
	Intercept
	Intercept
	Trend
	Trend
	Rank (r)
	2
	-16.709
	-16.702
	-16.600
	-16.631
	-16.527
	3
	-16.480
	-16.550
	-16.475
	-16.483
	-16.406
	4
	-16.237
	-16.293
	-16.242
	-16.281
	-16.230
	6
	-15.620
	-15.653
	-15.653
	-15.666
	-15.666
	Notes: ECT denotes the error correction terms in a vector error correction model.
	As discussed earlier in this report, the innovations generated from the VECM are used to study the contemporaneous causal relations among the six eel prices. The analysis of directed graphs is carried out using the PC algorithm and its more refined extensions, which are implemented in the software package TETRAD VI. At the 5% significance level, the end result after removing the insignificant edges and directing the remaining edges is given in Figure 3.9. It shows us that a change in Taiwanese (live) eel prices leads to a change in the (live) eel prices from Aichi prefecture, Shizuoka prefecture, and China in contemporaneous time. Both the prices of prepared eels from China and Shizuoka prefecture (China 2 and Shizuoka 2) have a causal effect on those of their live eels (China 1 and Shizuoka 1), respectively. In addition, the fact that no directed edges (or arrows) leave the vertex (or node) for the price of Chinese (live) eels implies that the price of Chinese (live) eels does not cause the other price variables and is completely an information receiver.
	Figure 3.9. Directed acyclic graph on innovations from the VECM with eel prices
	Notes: 1 and 2 denote live and prepared eel prices, respectively.
	The impulse response functions (response of a given variable for one-time only shock of another variable) of our estimated model for selected eel price series are depicted in Figure 3.10-3.15. The x-axis of graphs covers 24 months. Figure 3.10 shows that a shock in the price of Taiwanese live eels has a positive impact on all eel prices throughout all 24 months. Overall, the graphs show that the responses of all eel prices to the shock immediately increase to reach their peaks in the first month, decrease thereafter, and gradually tend towards stability except for the prepared eel price from Shizuoka Prefecture. 
	Figure 3.10. Impulse response function to a shock in Taiwanese live eel prices
	Notes: 1 and 2 denote live and prepared eel prices, respectively.
	Figure 3.11. Impulse response function to a shock in Chinese live eel prices
	Notes: 1 and 2 denote live and prepared eel prices, respectively.
	Figure 3.12. Impulse response function to a shock in Chinese prepared eel prices
	Notes: 1 and 2 denote live and prepared eel prices, respectively.
	Figure 3.13. Impulse response function to a shock in the live eel prices from Aichi Prefecture, Japan
	Notes: 1 and 2 denote live and prepared eel prices, respectively.
	Figure 3.14. Impulse response function to a shock in the live eel prices from Shizuoka Prefecture, Japan
	Notes: 1 and 2 denote live and prepared eel prices, respectively.
	Figure 3.15. Impulse response function to a shock in the prepared eel prices from Shizuoka Prefecture, Japan
	Notes: 1 and 2 denote live and prepared eel prices, respectively.
	Before the response of the prepared eel price from Shizuoka Prefecture reaches a peak after 18 months, it continuously rises except for the second month. Then, after being unchanged over a four-month period, it slowly declines.
	Figure 3.11 shows that a shock in the price of Chinese live eels has a positive impact on all eel prices except for the prepared eel price from Shizuoka Prefecture. The response of Chinese live eel prices to its own shock has roughly downward trend. The line graph of the response of the prepared eel price from Shizuoka Prefecture looks like a check mark, i.e., its response keeps an upward tendency after reaching rock bottom in the second month. Overall, the responses of the remaining price series have an inverted V-curve. 
	Figure 3.12 shows that a shock in Chinese prepared eel prices has a positive impact on all eel prices. The responses of all eel prices initially exhibit an upward trend until reaching their peaks and then decrease gradually except that there is a downward trend in the response of Chinese prepared eel prices to its own shock throughout all 24 months. In Figure 3.13 the effect of a shock in the live eel price from Aichi Prefecture on Taiwanese and Chinese live eel prices and on the live eel prices from Aichi and Shizuoka Prefectures and the prepared eel price from Shizuoka Prefecture (except for the 1st month) changes from positive to negative in the 10th month and 13th month, respectively. Although the shock has a negative impact on Chinese prepared eel prices, the fluctuation in response of Chinese prepared eel prices slows down after the 3rd month. To compare Figure 3.13 to Figure 3.14, roughly speaking, shocks in the live eel prices from Aichi and Shizuoka Prefectures have similar effects on all eel prices. Overall, Figure 3.15 shows that a shock in the prepared eel price from Aichi Prefecture has a positive impact on all eel prices. It is also worth mentioning that the shapes of line graphs describing the effects of the shock on the import eel prices are similar.
	Based on the result given in Figure 3.9, the forecast error variance decomposition for each eel price at alternative time horizons is given in Table 3.5. The percentage share of a forecast error variance is attributable to earlier shocks from each other series (including itself) at a specific time horizon. In this study, we list horizons of 1, 6, 12, 18, and 24 months ahead. Since the eel farmers in China produce eels considerably more cheaply than those in other producing countries, Taiwanese farmers have completely lost the prepared eel market and still face strong competition from China in the live eel market in Japan. China is the only competitor for Taiwanese eel farmers in the Japanese import market. This also reflects that at the longer horizon of two years besides its own innovations, the Taiwanese price variation is mainly explained by innovations in prices of eels imported from China (China 1 and China 2, about 55.57% in total). Before the 12-month horizon, the influence of its own prices on the uncertainty of Taiwanese live eel prices sharply decreases, while the influence of Chinese prepared eel prices (China 2) dramatically increases. It is not unexpected that the price variation of Chinese live eels is initially determined mostly by the shocks in Taiwanese live eel prices (48.22%) and its own prices (48.00%). However, the explanatory power of its own innovations sharply decreases to 18.00% at the 6-month horizon. In contrast, the influence of Chinese prepared eel prices on Chinese live eel prices dramatically increases before the 12-month horizon and then gradually increases. 
	Table 3.5. Variance Decomposition on Monthly Eel Prices
	Step
	SE
	Taiwan
	China1
	China2
	Aichi
	Shizuoka1
	Shizuoka2
	Taiwan
	1
	0.065
	100.000
	0.000
	0.000
	0.000
	0.000
	0.000
	6
	0.184
	80.020
	4.020
	14.162
	1.622
	0.020
	0.155
	12
	0.245
	53.493
	5.864
	38.491
	1.367
	0.016
	0.770
	18
	0.287
	44.020
	4.817
	47.557
	1.626
	0.081
	1.898
	24
	0.320
	39.162
	4.140
	51.428
	2.297
	0.221
	2.753
	China1
	1
	0.057
	48.216
	47.996
	1.848
	1.374
	0.523
	0.043
	6
	0.175
	51.904
	18.000
	24.557
	5.094
	0.373
	0.071
	12
	0.241
	36.030
	13.071
	46.667
	3.288
	0.267
	0.677
	18
	0.286
	31.105
	9.862
	54.024
	2.922
	0.253
	1.834
	24
	0.322
	28.622
	8.108
	56.859
	3.326
	0.358
	2.727
	China2
	1
	0.063
	0.000
	0.000
	100.000
	0.000
	0.000
	0.000
	6
	0.154
	19.461
	0.510
	75.095
	3.303
	0.174
	1.457
	12
	0.212
	20.582
	1.204
	70.670
	4.408
	0.487
	2.649
	18
	0.249
	19.973
	1.252
	69.482
	5.215
	0.656
	3.421
	24
	0.275
	19.669
	1.215
	68.628
	5.774
	0.776
	3.937
	Aichi
	1
	0.039
	40.453
	0.000
	0.000
	42.160
	16.059
	1.328
	6
	0.134
	48.708
	3.635
	15.892
	25.339
	5.614
	0.812
	12
	0.191
	33.379
	5.188
	40.884
	15.629
	3.033
	1.887
	18
	0.234
	28.630
	4.173
	51.145
	10.634
	2.057
	3.361
	24
	0.269
	26.362
	3.494
	55.307
	8.831
	1.697
	4.308
	Shizuoka1
	1
	0.044
	38.119
	0.000
	0.000
	0.000
	57.155
	4.726
	6
	0.141
	45.867
	4.788
	17.167
	13.732
	16.804
	1.642
	12
	0.201
	32.595
	6.468
	40.949
	9.898
	8.674
	1.416
	18
	0.243
	28.332
	5.237
	51.062
	6.944
	5.931
	2.493
	24
	0.277
	26.262
	4.377
	55.140
	6.121
	4.691
	3.410
	Shizuoka2
	1
	0.148
	0.000
	0.000
	0.000
	0.000
	0.000
	100.000
	6
	0.235
	2.251
	0.566
	7.842
	1.598
	0.114
	87.629
	12
	0.292
	6.136
	0.396
	22.323
	1.589
	0.151
	69.404
	18
	0.344
	9.255
	0.386
	33.520
	1.278
	0.241
	55.320
	24
	0.389
	11.243
	0.450
	40.538
	1.528
	0.353
	45.888
	Notes: SE is the standard error. 1 and 2 denote live and prepared eel prices, respectively.
	The influence of Taiwanese live eel prices on Chinese live eel prices shows a decreasing trend after reaching its peak at the 6-month horizon. Furthermore, after the 1-month horizon, the influence of the six eel prices on Chinese prepared eel prices becomes more stable, and the main sources of influence are from its own prices (68% to 75%) and Taiwanese live eel prices (19% to 20%) at each horizon. At the 1-month horizon, the price variation of Aichi's live eels is determined mainly by its own innovations (42.16%) and the innovations of Taiwanese live eel prices (40.45%). As time goes on, the influence of Aichi's own prices on its live eel prices sharply declines to 8.83%, and the influence of Taiwanese live eel prices shows a decreasing trend after the 6-month horizon. In contrast, the explanatory power of shocks in Chinese prepared eel prices displays an increasing trend, and there is a surge in the influence of Chinese prepared eel prices on Aichi's live eel prices before the 12-month horizon. The relationships among the price variation of Shizuoka's live eels and the main sources of influence (Shizuoka1, China 2, Taiwan) are similar to those among the price variation of Aichi's live eels and the main sources of influence (Aichi, China 2, Taiwan). Finally, the price volatility of Shizuoka's prepared eels (Shizuoka 2) is mostly determined by its own innovations at the initial stage of time horizons. As time passes, its own influence has a decreasing trend. A considerable proportion of the reduction is reflected in the increase of the explanatory power of shocks in Chinese prepared eel prices (China 2) for the price variation of Shizuoka's prepared eels.
	3.5.2 Vegetable Soybean (Edamame) Imports in Japan
	The descriptive statistics for import prices of vegetable-type soybeans from China, Indonesia, Taiwan, and Thailand and wholesale prices of domestic edamame in the Tokyo Metropolitan Central Wholesale Market are presented in Table 3.6. The highest price is reported from domestic edamame, while Indonesian edamame has the lowest price among five analyzed prices. Because of higher production costs, the preference for domestic goods, and product types, domestic prices of fresh edamame in Japan are much higher than those of imported frozen edamame. The CV suggests that prices of imported edamame are less dispersed than those of domestic edamame. Similarly, the SD also shows the same result. In the same way as the statistical mean, the SD is easily influenced by extreme values, i.e., the SD increases as the average increases. In this case, the CV is the best way to summarize the variation.
	Table 3.6. Descriptive Statistics for Monthly Edamame Prices (JPY/KG), 1999-2017
	Variable
	Mean
	SD
	Minimum
	Maximum
	CV
	Import
	China
	167.122
	22.692
	129.740
	223.603
	0.136
	Indonesia
	180.681
	31.867
	106.299
	263.751
	0.176
	Taiwan
	208.463
	27.341
	162.513
	277.501
	0.131
	Thailand
	198.923
	27.525
	155.514
	270.600
	0.138
	Domestics
	Japan
	1181.741
	494.698
	387.000
	2299.700
	0.419
	Notes: SD and CV are the standard deviation and coefficient of variation, respectively.
	Table 3.7 presents both ADF and PP unit root tests. The null hypothesis for both test procedures is that a unit root exists in an evaluated series. The number of augmenting lags for the ADF test is determined by minimizing the BIC. Except for Indonesia, both ADF and PP tests have the same results for all analyzed price series. The results consistently suggest that the level of Japanese domestic prices is stationary, while levels of import prices from China, Taiwan, and Thailand are nonstationary at the 5% significance level. Both tests reveal that the null hypothesis is rejected for the first differences of all price series. Thus, it is concluded that all nonstationary price series in levels are integrated of order one.
	Table 3.7. Unit Root Tests on the Level and First Difference of Monthly Edamame Prices, 1999-2017
	Series
	ADF
	PP
	Level
	1st diff.
	Level
	1st diff.
	China
	-2.411 (0)
	-16.211 (0)**
	-2.172 (4)
	-16.440 (4)**
	Indonesia
	-2.150 (1)
	-25.028 (0)**
	-3.078 (4)**
	-27.438 (4)**
	Japan
	-3.169 (12)**
	-7.783 (11)**
	-7.010 (4)**
	-14.346 (4)**
	Taiwan
	-1.691 (0)
	-15.563 (0)**
	-1.724 (4)
	-15.558 (4)**
	Thailand
	-1.750 (2)
	-9.100 (1)**
	-1.549 (4)
	-17.392 (4)**
	Notes: The data are transformed by taking natural logarithms. The numbers in parentheses indicate the lag order in the ADF test and the bandwidth using the Newey-West bandwidth selection method and the Bartlett kernel in the PP test, respectively. The default bandwidth is the integer part of where T is the sample size. ** denotes significance at the 5% level.
	Based on the lowest HQ, one lag is used in the VECM. Except for the second and fourth models, the Johansen trace and maximum eigenvalue statistics have different results for the five VECMs (Table 3.8). As mentioned above, when results of two statistics produce a contradiction in a certain model, the number of cointegrating vectors is determined by the trace statistic. The values of the BIC for each model with different r values are shown in Table 3.9. The lowest BIC value is -13.884 in the model that has linear trends in level data and its cointegrating equations. Thus, the innovations from this model are used to identify causal structure among the edamame price series.
	Table 3.8. Johansen Tests on the Order of Cointegration of Monthly Edamame Prices in 5 Trend Assumptions
	Data trend
	None
	None
	Linear
	Linear
	Quadratic
	ECT
	None
	Intercept
	Intercept
	Intercept
	Intercept
	Trend
	Trend
	Trace
	3
	2
	3
	2
	3
	Max. eigenvalue
	2
	2
	2
	2
	2
	Notes: Selected number of cointegrating relations at the 5% significance level. ECT denotes the error correction terms in a vector error correction model.
	Table 3.9. Schwarz Criteria by Ranks (Row) and Models (Column) Using Monthly Edamame Prices
	Data trend
	None
	None
	Linear
	Linear
	Quadratic
	ECT
	None
	Intercept
	Intercept
	Intercept
	Intercept
	Trend
	Trend
	Rank (r)
	2
	-13.831
	-13.827
	-13.757
	-13.884
	-13.815
	3
	-13.660
	-13.648
	-13.602
	-13.722
	-13.676
	Notes: ECT denotes the error correction terms in a vector error correction model.
	At the 5% significance level, the result after removing the insignificant edges and directing the remaining edges is given in Figure 3.16. It clearly shows that changes in Chinese and Indonesian edamame prices lead to a change in Taiwanese edamame prices in contemporaneous time, while changes in Chinese and Taiwanese edamame prices affect a change in Thai edamame prices in contemporaneous time. In addition, the Thai edamame price is completely an information receiver.
	Figure 3.16. Directed acyclic graph on innovations from the VECM with edamame prices
	The impulse response functions of our estimated model for selected edamame price series are depicted in Figure 3.17-3.21. In Figure 3.17 it is observed that a shock of Taiwanese edamame prices has an immediate positive effect on all edamame pries. All the effects peak in the 1st month expert for its own price in the origin and remain positive throughout all 24 months except that the shock has a negative impact on the price of Japanese domestic edamame after the 6th month. Comparing Figure 3.17 to Figure 3.18, shocks in the Taiwanese and Chinese edamame prices have similar effects on all edamame prices. The main differences are that the initial value from the response of Taiwanese prices to a Chinese price shock is nonzero and that the shock has a negative impact on the price of Japanese domestic edamame after the 3rd month. Figure 3.19 shows that a shock in Indonesian edamame prices has a positive impact on all edamame prices except for the price of Japanese domestic edamame. 
	Figure 3.17. Impulse response function to a shock in Taiwanese edamame prices
	Figure 3.18. Impulse response function to a shock in Chinese edamame prices
	Figure 3.19. Impulse response function to a shock in Indonesian edamame prices
	Figure 3.20. Impulse response function to a shock in Japanese edamame prices
	Notes: The responses of Thai edamamea use a y-axis on the right side.
	Figure 3.21. Impulse response function to a shock in Thai edamame prices
	Additionally, the responses of Taiwanese, Chinese, and Thai edamame prices exhibit a slowly decreasing trend after reaching the peaks. The response of its own price takes a jump in the 1st month and continuously declines after the 6th month.
	Figure 3.20 shows that a shock in the price of Japanese domestic edamame has a positive impact on all edamame prices except that the shock has a negative impact on its own prices after the 6th month. It is also worth mentioning that the shapes of line graphs describing the effects of the shock on the import edamame prices are similar. Figure 3.21 reveals that a shock of Thai edamame prices has positive effects on all edamame prices throughout all 24 months except for the response of Indonesian edamame prices in the 1st month and the response of the price of Japanese domestic edamame after the 16th month. The responses of all edamame prices appear as a downward trend after reaching a peak except the response of its own prices.
	Based on the result of the directed graph given in Figure 3.16, the forecast error variance decomposition for each edamame price at alternative time horizons is given in Table 3.10. These values indicate how much of the volatility of the variable of interest can be explained by different variables in the model. For example, besides for its own innovations, price variations of edamame imported from Taiwan are explained mainly by innovations in prices of edamame imported from China (32 to 40 percent), Thailand (0 to 20 percent), and Indonesia (1 to 10 percent) and somewhat by innovations in prices of domestic edamame (0 to 3 percent). After the 6-month horizon, the influences of its own prices and Chinese edamame prices on the uncertainty of Taiwanese edamame prices have a decreasing trend, while the influences of Thai and Indonesian edamame prices are gradually increased. 
	Table 3.10. Variance Decomposition of Monthly Edamame Prices
	Step
	SE
	Taiwan
	China
	Indonesia
	Japan
	Thailand
	Taiwan
	1
	0.032
	65.438
	32.885
	1.677
	0.000
	0.000
	6
	0.072
	45.740
	40.348
	7.107
	2.112
	4.693
	12
	0.093
	37.730
	38.418
	9.400
	3.033
	11.419
	18
	0.106
	32.679
	37.287
	10.307
	2.924
	16.803
	24
	0.115
	29.346
	36.753
	10.661
	2.746
	20.496
	China
	1
	0.041
	0.000
	100.000
	0.000
	0.000
	0.000
	6
	0.088
	4.235
	87.381
	1.283
	0.951
	6.150
	12
	0.108
	4.109
	79.767
	2.184
	1.318
	12.622
	18
	0.118
	3.891
	74.666
	2.886
	1.278
	17.279
	24
	0.124
	3.749
	71.409
	3.388
	1.228
	20.226
	Indonesia
	1
	0.069
	0.000
	0.000
	100.000
	0.000
	0.000
	6
	0.109
	13.110
	12.558
	69.456
	2.656
	2.219
	12
	0.131
	16.803
	16.671
	55.544
	3.474
	7.508
	18
	0.145
	16.962
	18.952
	48.459
	3.366
	12.261
	24
	0.155
	16.310
	20.499
	44.247
	3.187
	15.757
	Japan
	1
	0.302
	0.000
	0.000
	0.000
	100.000
	0.000
	6
	0.435
	1.068
	0.337
	1.371
	96.294
	0.930
	12
	0.437
	1.088
	0.864
	1.684
	95.209
	1.155
	18
	0.438
	1.115
	0.956
	1.692
	95.079
	1.158
	24
	0.438
	1.125
	0.979
	1.695
	95.040
	1.161
	Thailand
	1
	0.030
	19.195
	21.654
	0.492
	0.000
	58.658
	6
	0.071
	19.261
	36.893
	5.154
	0.761
	37.931
	12
	0.094
	15.434
	36.671
	7.680
	1.180
	39.036
	18
	0.109
	13.385
	36.396
	8.595
	1.219
	40.404
	24
	0.119
	12.163
	36.298
	8.970
	1.202
	41.367
	Notes: SE is the standard error.
	Moreover, the variation of Chinese edamame prices is influenced primarily by its own shocks (71 to 100 percent) and secondarily by shocks in Thai edamame prices (0 to 20 percent). The explanatory power of shocks in its own prices gradually declines, while the explanatory power of shocks in Thai edamame prices has an increasing trend. The price volatility of Indonesian edamame is completely determined by its own innovations at the initial stage of time horizons. As time passes, its own influence has a decreasing trend. The reduction is mainly reflected in the increase of the explanatory power of shocks in Chinese (0 to 20 percent), Taiwanese (0 to 16 percent), and Thai (0 to 15 percent) edamame prices for the price variation of Indonesian edamame. In contrast, Japanese domestic price variations are determined almost solely by its own innovations at all steps (95 to 100 percent). In addition, Thai price variations are determined mainly by innovations of its own (41 to 58 percent), Chinese (21 to 36 percent), and Taiwanese (12 to 19 percent) edamame prices and somewhat by those of Indonesian (0 to 8 percent) edamame prices at all steps. The explanatory power of shocks in its own prices gradually declines, and the influences of Chinese and Taiwanese edamame prices have a decreasing trend after the six-month horizon. Conversely, the influence of Indonesian edamame price has an increasing trend.
	3.5.3 Feather and Down Imports in Japan
	The descriptive statistics for prices of feathers and down imported from China, France, Hungary, Poland, and Taiwan and of eiderdowns imported from China are presented in Table 3.11. According to the statistics of the Japan Customs, Japanese eiderdown imports are mostly from China, accounting for about 92 percent of total imports of eiderdowns in 2017. Extreme values have large impact on the arithmetic mean of data and cause bigger SDs in Hungarian and Polish price series than those in the rest of price series. The highest price of feathers and down is found from Poland, while French feathers and down have the lowest price among five analyzed price series of feathers and down. The CV suggests that the Polish and French price series are more dispersed than the rest of price series. The results are partly different from those of the SD. Moreover, both the SD and CV suggest that prices of eiderdown imported from China have the least dispersed among six analyzed prices.
	Table 3.11. Descriptive Statistics for Monthly Feather and Down Prices (JPY/KG), 2004-2017
	Variable
	Mean
	SD
	Min.
	Max.
	CV
	Feather and down
	China
	4571.636
	1643.750
	1979.090
	10287.220
	0.360
	France
	3849.774
	1801.656
	723.667
	8761.789
	0.468
	Hungary
	7781.382
	3098.671
	3162.718
	24143.520
	0.398
	Poland
	9419.518
	4638.041
	1958.763
	31450.000
	0.492
	Taiwan
	4082.398
	1566.003
	1220.233
	8834.913
	0.384
	Eiderdown
	China
	1343.311
	380.882
	808.349
	2544.947
	0.284
	Notes: SD and CV represent the standard deviation and the coefficient of variation, respectively.
	Table 3.12 presents both ADF and PP unit root tests. Except for Hungary, results of the ADF test are different from those of the PP test. At a significance level of 0.05, the ADF test suggests that all price series are nonstationary in levels except for Hungary, whereas the PP test suggests that all price series are stationary in levels. Moreover, the ADF test reveals that the null hypothesis is rejected for the first differences of all price series. Thus, according to the results of the ADF test, it can be concluded that all nonstationary price series in levels are integrated of order one.
	Table 3.12. Unit Root Tests on the Level and First Difference of Monthly Feather and Down Prices, 2004-2017
	Series
	ADF
	PP
	Level
	1st diff.
	Level
	1st diff.
	Feather and down
	China
	-2.503 (2)
	-14.535 (1)**
	-4.311 (4)**
	-19.142 (4)**
	France
	-2.191 (2)
	-16.510 (1)**
	-5.697 (4)**
	-30.320 (4)**
	Hungary
	-3.167 (2)**
	-14.480 (1)**
	-6.767 (4)**
	-27.462 (4)**
	Poland
	-1.914 (3)
	-12.343 (2)**
	-5.259 (4)**
	-31.616 (4)**
	Taiwan
	-2.862 (1)
	-20.308 (0)**
	-4.093 (4)**
	-22.088 (4)**
	Eiderdown
	China
	0.032 (12)
	-5.670 (11)**
	-3.215 (4)**
	-16.813 (4)**
	Notes: The data are transformed by taking natural logarithms. The numbers in parentheses indicate the lag order in the ADF test and the bandwidth using the Newey-West bandwidth selection method and the Bartlett kernel in the PP test, respectively. The default bandwidth is the integer part of where T is the sample size. ** denotes significance at the 5% level.
	Based on the lowest HQ, one lag is used in the VECM. Both the Johansen trace and maximum eigenvalue statistics have the same results for the five VECMs (Table 3.13). The results suggest that rank r in the first model is equal to three and is the least than those in the rest of models, while the fifth model has full rank, i.e., rank r is equal to the number of equations in the VECM system. The values of the BIC for each model with different r values are shown in Table 3.14. The lowest BIC value is 0.554 in the model that has no deterministic trends in level data and whose cointegrating equations do not have intercepts. Thus, the innovations of this model are used to identify causal structure among the six analyzed price series.
	Table 3.13. Johansen Tests on the Order of Cointegration of Monthly Feather and Down Prices in 5 Trend Assumptions
	Date trend
	None
	None
	Linear
	Linear
	Quadratic
	ECT
	None
	Intercept
	Intercept
	Intercept
	Intercept
	Trend
	Trend
	Trace
	3
	4
	5
	5
	6
	Max. eigenvalue
	3
	4
	5
	5
	6
	Notes: Selected number of cointegrating relations at the 5% significance level. ECT denotes the error correction terms in a vector error correction model.
	Table 3.14. Schwarz Criteria by Ranks (rows) and Models (columns) Using Monthly feather and down prices
	Data trend
	None
	None
	Linear
	Linear
	Quadratic
	ECT
	None
	Intercept
	Intercept
	Intercept
	Intercept
	Trend
	Trend
	Rank (r)
	3
	0.554
	0.616
	0.704
	0.781
	0.873
	4
	0.831
	0.871
	0.929
	0.970
	1.031
	5
	1.150
	1.183
	1.210
	1.231
	1.262
	6
	1.519
	1.562
	1.562
	1.597
	1.597
	Notes: ECT denotes the error correction terms in a vector error correction model.
	At the 5% significance level, the result after removing the insignificant edges and directing the remaining edges is given in Figure 3.22. It clearly shows that changes in Chinese eiderdown (China 2) and Taiwanese feather and down prices lead to a change in Chinese feather and down prices (China 1) in contemporaneous time, while changes in Chinese (China 1), Taiwanese, and Polish feather and down prices affect a change in Hungarian feather and down prices in contemporaneous time. In addition, the Hungarian feather and down price is completely an information receiver.
	Figure 3.22. Directed acyclic graph on innovations from the VECM with feather-down and eiderdown prices
	Notes: 1 and 2 denote feather-down and eiderdown prices, respectively.
	The impulse response functions of our estimated model for selected feather-down and eiderdown price series are depicted in Figure 3.23-3.28. Figure 3.23 shows that a shock of Taiwanese feather-down prices has positive effects on all selected prices throughout all 24 months except for the response of Chinese eiderdown prices during the first two months. The effects of the shock on all the selected price series fluctuate wildly during the early stage of the time horizon and then go down gradually except that the response of Chinese eiderdown prices has a declining trend after reaching a peak. Figure 3.24 reveals that the effects of a stock of Chinese feather-down prices on all selected price series are positive except for the responses of French and polish feather-down prices in the 2nd month. The effects have a downward trend after the peaks of the responses of Taiwanese feather-down, Chinese eiderdown, and Polish feather-down prices, the initial value of the response of its own prices, and the 8th and 9th month of the responses of Hungarian and French prices, respectively. 
	Figure 3.23. Impulse response function to a shock in Taiwanese feather and down prices
	Notes: 1 and 2 denote feather-down and eiderdown prices, respectively.
	Figure 3.24. Impulse response function to a shock in Chinese feather and down prices
	Notes: 1 and 2 denote feather-down and eiderdown prices, respectively.
	Figure 3.25. Impulse response function to a shock in Chinese eiderdown prices
	Notes: 1 and 2 denote feather-down and eiderdown prices, respectively.
	Figure 3.26. Impulse response function to a shock in French feather and down prices
	Notes: 1 and 2 denote feather-down and eiderdown prices, respectively.
	Figure 3.27. Impulse response function to a shock in Hungarian feather and down prices
	Notes: 1 and 2 denote feather-down and eiderdown prices, respectively.
	Figure 3.28. Impulse response function to a shock in Polish feather and down prices
	Notes: 1 and 2 denote feather-down and eiderdown prices, respectively.
	Figure 3.25 shows that a shock of Chinese eiderdown prices has positive effects on all selected prices throughout all 24 months except for the response of Hungarian feather-down price during the 2nd and 3rd months. In addition, the responses of all the selected prices appear a downward trend after reaching peaks except for the response of its own prices. Figure 3.26 reveals that a shock of French feather-down prices has positive effects on all selected prices throughout all 24 months except for the response of Polish feather-down price in the 1st month. Additionally, the responses of all the selected prices go down gradually after reaching peaks except for the response of its own prices.
	Figure 3.27 shows that a shock of Hungarian feather-down prices has positive and negative effects on the responses of all the selected prices except for the response of Polish feather-down prices. In complete contradiction of the response of French feather-down and Chinese eiderdown prices, most positive effects are greater than negative effects on the responses of Taiwanese, Chinese, and Hungarian feather-down prices. Figure 3.28 shows a shock of Polish feather-down prices has positive effects on French, Hungarian, and Polish feather-down prices throughout all 24 months, whereas there is zero or negative effects on the response of the remaining selected prices. In complete contradiction of the response of Chinese feather-down prices, most of the effects on the response of Chinese eiderdown prices at each time point are positive.
	Based on the result of the directed graph given in Figure 3.22, the forecast error variance decomposition is given in Table 3.15. Now China is the largest exporter of down raw materials and its products in the world. 
	Table 3.15. Variance Decomposition of Monthly Feather and Down Prices
	Step
	SE
	Taiwan
	China1
	China2
	France
	Hungary
	Poland
	Taiwan
	1
	0.194
	100.000
	0.000
	0.000
	0.000
	0.000
	0.000
	6
	0.270
	67.579
	19.496
	4.933
	7.815
	0.126
	0.051
	12
	0.318
	53.205
	25.501
	7.558
	13.602
	0.095
	0.039
	18
	0.341
	48.107
	26.963
	8.999
	15.786
	0.088
	0.056
	24
	0.353
	45.757
	27.489
	9.789
	16.796
	0.084
	0.086
	China1
	1
	0.210
	3.851
	94.912
	1.237
	0.000
	0.000
	0.000
	6
	0.315
	6.416
	82.524
	1.107
	6.697
	0.231
	3.025
	12
	0.344
	7.206
	77.455
	1.619
	9.818
	0.274
	3.629
	18
	0.353
	7.433
	75.813
	2.085
	10.824
	0.287
	3.558
	24
	0.357
	7.547
	75.053
	2.379
	11.249
	0.286
	3.486
	China2
	1
	0.136
	0.000
	0.000
	100.000
	0.000
	0.000
	0.000
	6
	0.207
	0.512
	2.150
	84.303
	7.687
	2.252
	3.096
	12
	0.234
	2.598
	4.971
	74.124
	12.002
	1.766
	4.540
	18
	0.251
	4.132
	7.488
	68.103
	14.155
	1.541
	4.582
	24
	0.261
	4.996
	9.217
	64.567
	15.385
	1.417
	4.417
	France
	1
	0.311
	0.000
	0.000
	0.000
	100.000
	0.000
	0.000
	6
	0.381
	4.463
	3.402
	12.149
	77.998
	0.369
	1.620
	12
	0.428
	6.253
	7.212
	16.081
	67.743
	0.295
	2.416
	18
	0.457
	7.280
	9.741
	17.221
	63.011
	0.260
	2.487
	24
	0.475
	7.833
	11.274
	17.677
	60.535
	0.240
	2.441
	Hungary
	1
	0.241
	3.979
	2.025
	0.026
	0.000
	92.015
	1.955
	6
	0.289
	15.765
	3.702
	0.641
	1.031
	71.368
	7.493
	12
	0.310
	17.315
	7.787
	2.074
	3.837
	62.067
	6.920
	18
	0.324
	17.237
	9.972
	3.386
	5.845
	57.130
	6.429
	24
	0.331
	17.120
	11.070
	4.176
	6.955
	54.511
	6.168
	Poland
	1
	0.257
	0.000
	0.000
	0.000
	0.000
	0.000
	100.000
	6
	0.331
	5.518
	0.482
	10.171
	2.382
	1.450
	79.996
	12
	0.373
	7.515
	2.922
	14.677
	6.415
	1.371
	67.100
	18
	0.400
	8.603
	5.741
	16.334
	9.262
	1.206
	58.854
	24
	0.419
	9.153
	7.705
	17.004
	10.960
	1.105
	54.072
	Notes: SE is the standard error. 1 and 2 denote feather-down and eiderdown prices, respectively.
	The clothing industry is a labor-intensive industry, i.e., its production process relies on a large amount of manpower, and the proportion of labor costs to manufacturing costs is high. Thus, most processing factories of down jackets and coats in Taiwan move to countries where wages are relatively cheaper. At present the Taiwanese feather and down industry mainly produces feathers of a kind used for stuffing, down, and eiderdowns filled with them. Because China has lower production costs and prices of raw materials, Taiwanese manufacturers have lost the Japanese eiderdown market and still face strong competition from China in the Japanese feather and down market.
	This also reflects that besides its own innovations, the price variation of Taiwanese feathers and down is explained chiefly by innovations in the prices of feathers, down, and eiderdowns filled with them and imported from China (China 1 and China 2, 0 to 37 percent in total) and by those of feathers and down imported from France (0 to 16 percent). As time goes by, the influence of its own prices declines to 45.76%. In contrast, the explanatory powers of Chinese feather and down prices (China 1), Chinese eiderdown prices (China 2), and French feather and down prices have an increasing trend.
	The price variation of Chinese feathers and down (China 1) is determined primarily by its own innovations at all steps (75 to 94 percent) and partly by innovations of French (0 to 11 percent) and Taiwanese (3 to 7 percent) feather and down prices. Similarly, the influence of its own prices gradually decreases, while the influences of French and Taiwanese feather and down prices on Chinese feather and down prices (China 1) have an increasing trend. The uncertainty in Chinese eiderdown prices (China 2) is influenced mainly by its own innovations (64 to 100 percent). As time goes by, its own influence has a decreasing trend. The reduction is reflected largely in the increase of the explanatory power of shocks in French (0 to 15 percent) and Chinese (0 to 9 percent) feather and down prices and somewhat in that in Taiwanese (0 to 4 percent) and Polish (0 to 4 percent) feather and down prices. For the French price series besides itself, its price variation is explained mostly by Chinese (China 1 and China 2, 0 to 28 percent in total) innovations and rather by Taiwanese (0 to 8 percent) innovations. At the longer horizon of two years, the explanatory power of shocks in its own prices for the variation of Hungarian prices declines to 54.51%. The reduction is reflected mainly in the increase of the explanatory power of shocks in Taiwanese and Chinese (China 1 and China 2) prices and somewhat in that in French and Polish prices. Moreover, for the Polish price series besides itself, its price variation is explained largely by Chinese (China 1 and China 2, 0 to 24 percent in total) innovations and partly by Taiwanese (0 to 9 percent) and French (0 to 10 percent) innovations.
	3.6 Conclusions
	This paper examines dynamic price relationships in the Japanese eel, edamame, and feather and down import markets. We study observational data in an error correction framework using causal DAGs. For the Japanese eel import market, the DAG shows that a change in Taiwanese (live) eel prices leads to changes in (live) eel prices from Aichi prefecture, Shizuoka prefecture, and China in contemporaneous time. At the longer horizon of two years besides its own innovations, the Taiwanese price variation is mainly explained by innovations in prices of eels exported from China (China 1 and China 2, about 55.57% in total). The results of the impulse response functions reveal that the effect of a change in Taiwanese live eel prices on live eel prices from other markets is stronger than on prepared eel prices from other markets in initial phase. The volatility in Taiwanese live eel prices is significantly influenced by shocks in Chinese eel prices, whereas the effect of a change in eel prices from other markets is weak.
	For the Japanese edamame import market, the DAG shows that changes in Chinese and Indonesian edamame prices lead to a change in Taiwanese edamame prices in contemporaneous time. In addition, a change in Taiwanese edamame prices leads to a change in Thai edamame prices in contemporaneous time. Besides its own innovations, price variations of Taiwanese edamame are explained primarily by innovations of Chinese (32 to 40 percent) and Thai (0 to 20 percent) edamame prices and somewhat by innovations of Indonesian edamame prices (1 to 10 percent). According the results of impulse response functions, the effect of a shock of Taiwanese edamame prices on Japanese edamame prices is stronger and positive in the first months but rapidly decline to negative. The effect of a change in edamame prices from other markets on Taiwanese edamame prices is insignificant.
	For the Japanese feather and down import market, the DAG shows changes in Taiwanese feather and down prices lead to changes in Chinese (China 1) and Hungarian feather and down prices in contemporaneous time. Besides its own innovations, price variations of Taiwanese feathers and down are explained largely by innovations in prices of feathers, down, and eiderdowns exported from China (China 1 and China 2, 0 to 37 percent in total) and partly by those of feathers and down exported from France (0 to 16 percent). The results of the impulse response functions show that the volatility in feather-down prices from other markets is significantly influenced by a shock in Taiwanese feather-down prices. Additionally, the response of Taiwanese feather-down prices to Chinese and French feather-down prices is significant, whereas the response to Hungarian and Polish feather-down prices is insignificant.
	CHAPTER ΙV
	AN ANALYSIS OF THE BANANA IMPORT MARKET IN THE U.S.
	4.1 Introduction
	According to the statistics of the U.S. Department of Agriculture (USDA) and the U.S. International Trade Commission (USITC), banana is the number one fresh fruit consumed in the U.S. Its share is over 22% of the yearly quantity of fresh fruit consumption per capita and even exceeds the sum of the annual consumption of all citrus fruit since 1989. The annual volume of banana imports increased steadily until it peaked in 1999. After fluctuating between 3,500 and 4,100 thousand tons in the first decade and a half of the 21st century, the import volume of bananas reached a new historic high 4.38 million tons in 2017. The annual value of banana imports has fluctuated; however, the value increased between 2004 and 2012 and hit a historic high $1.93 billion. Because of the geographic location of the United States, the production of bananas is limited to the state of Hawaii, which is less than 1,000 acres of land. The ratio of this production to domestic consumption is much smaller than the imports. In other words, the American consumption of bananas mostly depends on imports. Moreover, in terms of the import quantity of fresh fruits, bananas are the largest staple fruit consumed in the United States. This makes U.S. the biggest importer of bananas in the world with an approximate 4,379.34 thousand tons in 2017 and whose average share in global banana net import during 2008 to 2017 is about 24.66%. The share of banana imports in the EU taken as a whole is more than that of the U.S. and accounts for about 30.81% share in the period; however, it is made up of 28 countries and has about 1.56 times the population of the U.S.
	Global banana exports are highly concentrated in five countries: Ecuador, Costa Rica, Guatemala, Colombia, and the Philippines. Along with wheat, rice, and corn, bananas are a significant staple commodity for these developing countries. Nevertheless, banana trade has a number of inherent complications. They include the consideration of transportation costs, time, delicate and perishable properties in banana distribution, and diverging import policies in the consuming countries. For this reason, U.S. banana imports originate almost entirely from Latin American countries near the equator, with imports from other parts of the world considered negligible. Colombia, Costa Rica, Ecuador, Guatemala, Honduras, and Mexico are the largest providers of fresh bananas to the United States. These equatorial countries together supply over 99% of total U.S. fresh banana imports, which make up about 35.71% of the fresh or chilled fruit quantity shipped by them to the United States in 2017. Furthermore, according to statistics from the WTO and the FAO, the percentage of banana export value to total export value (the volume share of bananas exported to the U.S. to total banana exports) in Colombia, Costa Rica, Ecuador, Guatemala, Honduras, and Mexico in 2017 are 2.26% (14.96%), 11.63% (32.55%), 15.48% (12.71%), 7.21% (87.32%), 2.88% (92.95%), 0.06% (68.79%), respectively. These show that the U.S. banana demand market plays a decisive role in the economic development and acquisition of foreign exchange of these countries.
	Thus, structural and competitive changes in the demand for fresh bananas in the U.S. may have the possibility to cause severe economic shock in Latin American countries, which largely depend on the banana trade. Analyzing demand conditions of the import banana market in the U.S. could provide information for policy makers in banana export countries. In addition, bananas from these countries are called “dollar bananas” because they are mainly exported to North America by US-based transnational corporations (TNCs). The three largest producers and marketers of bananas in the world are all US-based TNCs. They are Chiquita Brands International (formerly known as the United Fruit Company, then United Brands), Fresh Del Monte Produce, and Dole Food Company (formerly Standard Fruit). Each accounts for about 11-13% of all bananas traded in the world. In addition to these US-based TNCs, the fourth largest is Fyffes plc, which controls about 6% of the world banana trade and whose headquarters is in Dublin, Ireland. Then the fifth largest banana export company in the world is Exportadora Bananera Noboa, which is one of the largest exporters of Ecuadorian bananas and which controls about 2% of total world trade. The U.S. banana market is free of tariffs or quantitative import restrictions and is basically controlled by these five companies, along with some relatively small ones. Thus, the banana import market has an oligopolistic market structure. In addition, due to producing and marketing large quantities of bananas, these TNCs can generate economies of scale at all levels of the supply chain to make profit.
	The U.S. banana market in the past two decades has become saturated such that the volume and price (share, wholesale, and retail prices) generally remain fixed even during peak periods. Moreover, the U.S. is the largest banana importer in the world. Therefore, the primary goal of this article is to investigate the U.S. import demand for fresh bananas differentiated by country of origin to evaluate implication for the six main exporting countries. An ancillary goal is to compare forecasting performances among four inverse demand systems applied to evaluate the intensity of interaction of the six largest exporters of fresh bananas in the U.S. The paper is organized as follows. The related literature on the economic topics of bananas is presented in the next section of the paper. Then, the theoretical framework for inverse demand systems and data sources are described. Following that, results and relevant discussions are presented. The summary of main findings is presented in the last section of the paper. 
	4.2 Literature Review
	Banana is the most important fresh fruit product traded internationally. According to the statistics of the FAO, in 2018, its global exports reached about 19.21 million tons, and it stood second in the global fruit production after watermelon. Thus, banana related issues are of interest to researchers such as determining consumer behavior, investigating market structures and supply chain, analyses of production efficiency, plant disease and pest control, etc. Some studies have investigated banana consumption and are described as follows. For the related literature in banana markets outside the U.S., Stuckey and Anderson (1974) used time series data at wholesale and cross-section data at retail to estimate the demand functions for bananas at wholesale and retail levels in Sydney, Australia. Lee et al. (1992) applied three demand systems: a general demand model, Rotterdam, and Central Bureau of Statistics (CBS) to estimate Canadian demand for fresh fruits and juice. Behr and Ellinger (1995) used linear regression equations to estimate German banana demand of three household types. Deodhar and Sheldon (1995, 1996) estimated the degree of market imperfection in the German market for banana imports using the new empirical industrial organization (NEIO) approach and its dynamic version and concluded that the market is imperfectly competitive, respectively. James and Anderson (1998) used a standard comparative-static partial equilibrium approach to estimate the economic welfare consequences of lifting the import ban on fresh bananas in Australia. 
	Burrell and Henningsen (2001) investigated the consumer demand for bananas and for other fruits in Germany. They found that the demand for bananas is significantly responsive to their own price, and suggested that policy-induced price increases generate the usual dead-weight losses. Florido et al. (2002) applied structural econometric models of market equilibrium where both the market demand and the firm's strategies are specified to determine the type of strategic behavior adopted by firms in the German banana market. Moreover, a linear approximated almost ideal demand system (LA/AIDS) is applied to test the separability and homotheticity of the demand model of the German banana imports. Schmitz and Seale (2002) used likelihood ratio tests to compare a general demand model with other four demand models (AIDS, Rotterdam, CBS, and National Bureau of Research) in order to determine which models are applied to estimate Japanese import demand for fresh fruits. Hatirli et al. (2003) measured the market power of the banana import market in Turkey and concluded that the market is not perfectly competitive and the behavior of firms is much closer to price-taking than to collusion. Abdullah et al. (2011) applied a differentiated double logarithmic demand system to analyze Japanese demand for fruits such as bananas. Kikulwe et al. (2011) used a latent class model to analyze the choice experiment data which are collected by a household interview survey to evaluate consumer acceptance and valuation of genetically modified bananas in Uganda. Mortazavi et al. (2013) used an inverse AIDS (IAIDS) and residual demand model to analyze Iranian import demand for bananas exported from four major exporters. Weerahewa et al. (2013) used a liner regression approach to analyze the demand for bananas, mangos, papaws, and all fruits in Sri Lanka.
	For the related literature in the U.S. banana market, Houck (1964) used an inverse log linear demand function to estimate the U.S. retail demand for bananas. The results suggested that the retail demand for bananas is price elastic, and seasonal relationships with other fruits are strong, while the competitive relationship with other fruits is not as strong as one might think. Durham and Eales (2010) applied an double-log demand system, AIDS, and its linear and quadratic (QUAIDS) versions to evaluate the demand for the U.S. fresh fruits (apples, pears, bananas, oranges, grapes, and others), and compare forecasting performances among four demand systems. The results showed that the QUAIDS has the lowest root mean square among them. Nzaku et al. (2010) applied a dynamic AIDS to estimate U.S. demand for fresh fruits (imported avocados, bananas, grapes, mangos, papayas, pineapples, and domestic graphs) and vegetables. The results suggested that the expenditure elasticity of bananas is about 0.25, that is, bananas are a normal and necessity good. When the import price of banana increases 1%, its import quantity will decrease about 0.10%. Moreover, imported bananas are a statistically significant substitute for imported avocados and mangos and domestic grapes. Muhammad et al. (2015) used a generalized dynamic Rotterdam model to analyze monthly import data from January 2000 to March 2010 in order to estimate the U.S. import demand for fresh bananas exported from five major exporters.
	4.3 Inverse Demand Systems
	In contrast with a regular system of demand equations, an inverse system of demand equations means that price changes are explained by quantity changes. In general, the regular demand system is suitable to describe the commodity whose consumers are price takers, that is, they have no ability to influence market prices. However, for perishable commodities such as fresh seafood and fresh fruit and vegetables, their producers behave like price takers and the supply is extremely inelastic in the short run. In such situations the causality goes from quantity to price, i.e. prices become endogenous and quantities demanded are exogenous. Thus, the inverse demand system is more appropriate to estimate the consumer demand of perishable commodities.
	4.3.1 Inverse Almost Ideal Demand System
	The traditional AIDS model can be used to model a complete demand system when the assumption of predetermined prices at the market level is tenable (Deaton and Muellbauer, 1980). However, for the demand of perishable commodities, which are produced in response to biological lags rather than price, the AIDS model would become inappropriate because of the preceding assumption is not met (Eales and Unnevehr, 1994). For this situation, inverse demand functions, where prices are functions of quantities, may be suitable to modeling agricultural demand using monthly or quarterly time series data. In the IAIDS model, the consumer preference is derived from the distance function (transformation function), which is dual to the cost function (expenditure function) of the AIDS. As the properties of cost function, the distance function is continuous in utility and quantity, decreasing in utility, and non-decreasing, concave, and homogeneous of degree one in quality (Moschini and Vissa, 1992). It measures the proportional amount by which all quantities consumed need to be inflated in order to reach a particular indifference curve. Let  represent the direct utility function, where  denotes the vector of quantities. Then, the distance function  is implicitly defined by , where denotes the reference utility level. The distance function has a derivative property similar to the cost function (Deaton, 1979). That is, differentiation of the distance function with respect to the optimal quantity of a particular good yields the compensated demand for that good in the same way that differentiation of the cost function with respect to a particular price yields a compensated demand function. Thus, following Deaton and Muellbauer’s derivation of the AIDS model (1980), a logarithmic distance function is defined by Eales and Unnevehr (1994):
	(4.1) .
	Because the distance function possesses the same properties as the cost function, except for substituting quantities for prices,  and  are basically defined analogous to those in the development of the AIDS model.
	(4.2) ,
	(4.3) .
	Thus, the IAIDS distance function is written
	(4.4) .
	The compensated inverse demand function can be derived directly from equation (4.4). The quantity derivatives of the distance function are the normalized prices demanded, i.e., by Shepherd’s Lemma, where  and m denote the price of good i and total expenditure, respectively. In addition, if q is the bundle for which , then . Thus, multiplying both sides by  to yield
	(4.5) ,
	where  is the budget share of good . Hence, logarithmic differentiation of (4.4) gives the budget shares as a function of quantities and utility:
	(4.6) ,
	where .
	Inverting the distance function at the optimal quantity yields the direct utility function that may be substituted into equation (4.6).
	(4.7) .
	This yields a system of inverse demand functions that Eales and Unnevehr (1994) call IAIDS. 
	(4.8) ,
	where the natural logarithm of the quantity index, , is expressed as follows: 
	(4.9) .
	Finally, as with the AIDS model, the theoretical restrictions of the fixed and unknown coefficients are imposed as: 
	(4.10a) Adding up: , , ,
	(4.10b) Homogeneity: ,
	(4.10c) Symmetry: .
	Eales and Unnevehr (1994) also provide the relevant formulas for the flexibilities, when estimating the static IAIDS model as follows,
	(4.11) ,
	(4.12) ,
	(4.13) ,
	where , , and  denote scale, Marshallian (uncompensated) quantity, and Hicksian (compensated) quantity flexibilities, respectively.  denotes the Kronecker delta that equals one if  and zero otherwise.
	Because both static AIDS and IAIDS ignore the problem of estimation and inference with nonstationary variables, Balcombe and Davis (1996) employed the canonical cointegrating regression procedure to estimate the AIDS, and Karagiannis and Velentzas (1997) developed a dynamic formulation of the AIDS based on the ECM. Following the previous work, Klonaris (2014) derived an inverse version of dynamic AIDS based on the ECM. To understand the statistical properties of the data, first unit root tests are used to examine whether the variables used in the static IAIDS are stationary. If the variables are nonstationary, the next step is to test for cointegration in equation (4.8). When it is ensured that all variables are cointegrated, a dynamic IAIDS (DIAIDS) based on an error correction can be expressed as
	(4.14) ,
	where  is the first difference operator,  is the estimated lagged residuals with a lag of one period from the static IAIDS model and can be obtained by:
	(4.15) .
	Similar to the static IAIDS model, the DIAIDS is required to satisfy the properties of adding-up, homogeneity, and symmetry, as expressed in equation (4.10) with the corresponding parameters being substituted. Similarly, for the calculation of the scale and quantity flexibilities of the DIAIDS, the parameter estimates  and  in equation (4.11) and (4.12) are replaced by short-run those  and , respectively.
	4.3.2 Inverse National Bureau of Research Demand System
	Barten and Bettendorf (1989) derived a Rotterdam inverse demand system and used it to estimate fish demand in Belgian fishery ports. Ordinary demand functions can be derived from the analysis of (direct) utility maximization subject to a budget constraint. From the duality between direct and indirect utility functions, an inverse demand function can be derived by minimizing the indirect utility function subject to the budget constraint (Weymark, 1980). Formally, this problem can be expressed as:
	(4.16) Min.  subject to 
	where  is the indirect utility function,  is the normalized price vector,  is total expenditure on all commodities in the demand system, p is a  price vector for the commodities purchased in the demand system, and q is the corresponding quantity vector. The method of Lagrange multipliers is used to solve the constrained minimum problem. As quantities are varied, the normalized prices produce the inverse demand functions: . The total derivative of  with respect to  can be written as:
	(4.17) ,
	According to Anderson's paper in 1980, the total effect  can be divided into the Antonelli substitution effect, analogous to the Slutsky equation for direct demands, and a scale effect. Thus, equation (4.17) can be rewritten as:
	(4.18) ,
	where  refers to the degree of responsiveness of  given a marginal change of  when consumers maintain the same indifference level. h is a scalar variable. We can multiply both sides of equation (4.18) by  and rearrange terms to obtain 
	(4.19) ,
	where . Because  is the share of expenditure on commodity i in total expenditure, equation (4.19) can be written as:
	(4.20) ,
	where  is the scale flexibility of commodity i. Because  (ln: the natural logarithm), equation (4.20) can be rewritten as:
	(4.21) ,
	where  and . In general, , is used to replaces  (t is the current time period). According to Barten and Bettendorf (1989),  and  have the following properties:
	(4.22a) Adding up:  and ,
	(4.22b) Homogeneity: ,
	(4.22c) Antonelli symmetry: .
	To add  to both sides of equation (4.21) and treat the  as constants, the variable on the left-hand side is then
	(4.23) 
	where  is the Divisia price index. The inverse CBS (ICBS) model can be written as follows:
	(4.24) 
	To add  to both sides of equation (4.24) and treat the  ( is Kronecker delta) as constants, the variable on the left-hand side is then
	(4.25) 
	The differential IAIDS model can be obtained as follows:
	(4.26) 
	To subtract  from both sides of equation (4.26) and  as constants, the inverse National Bureau of Research (INBR) model can be obtained as follows:
	(4.27) 
	Scale flexibilities refer to the degree of responsiveness of  given a change of the aggregated quantity and are calculated as:
	(4.28) .
	The Hicksian (compensated) quantity flexibilities can be expressed as follows:
	(4.29) .
	The Marshallian (uncompensated) quantity flexibilities are given by
	(4.30) .
	4.4 Data
	Quarterly data on imported fresh bananas to the U.S. are used to estimate inverse demand systems. The data were obtained from the USITC and included 116 pieces of import quantities in kilograms and import values in dollars from the first quarter of 1989 to the fourth quarter of 2017. The data for all imported fresh bananas are disaggregated by countries of origin, Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Mexico, and the rest of the world.
	4.5 Empirical Results
	The descriptive statistics for market shares and prices of fresh bananas exported to the U.S. from main departure countries are presented in Table 4.1. In terms of import values of fresh bananas in the U.S. market from 1989 to 2017, average shares from Costa Rica, Guatemala, and Ecuador were compositely greater than 20%, and those from Colombia, Honduras, and Mexico were about 12%, 12%, and 4%, respectively. Because the market share from Guatemala sharply grew from under 10% in 1989 to over 40% in 2017, bigger SD and CV values reflect the rapid change of its market share. The CV suggests that the Mexican share series is the most dispersed of share series. With respect to import prices, both the SD and CV suggest import prices of fresh bananas exported from Honduras have the least dispersal among six analyzed import prices, while those exported from Costa Rica have the biggest dispersal.
	Table 4.1. Descriptive Statistics for Imported Fresh Bananas, 1989/Q1-2017/Q4
	Variable
	Mean
	Maximum
	Minimum
	SD
	CV
	Share
	Colombia
	12.14%
	21.42%
	4.56%
	3.51%
	0.29
	Costa Rica
	23.89%
	36.30%
	12.22%
	4.70%
	0.20
	Ecuador
	22.68%
	37.27%
	7.79%
	5.72%
	0.25
	Guatemala
	23.31%
	47.10%
	7.67%
	10.71%
	0.46
	Honduras
	11.56%
	22.72%
	0.95%
	3.55%
	0.31
	Mexico
	4.02%
	10.84%
	1.02%
	2.36%
	0.59
	Price (USD/kg)
	Colombia
	0.349
	0.557
	0.257
	0.082
	0.24
	Costa Rica
	0.338
	0.614
	0.195
	0.087
	0.26
	Ecuador
	0.322
	0.589
	0.230
	0.082
	0.25
	Guatemala
	0.332
	0.603
	0.245
	0.076
	0.23
	Honduras
	0.308
	0.635
	0.221
	0.065
	0.21
	Mexico
	0.342
	0.546
	0.163
	0.084
	0.24
	Notes: SD and CV represent the standard deviation and the coefficient of variation, respectively.
	Table 4.2 presents both ADF and PP unit root tests. The null hypothesis for both test procedures is that a unit root exists in an evaluated series. The number of augmenting lags for the ADF test is determined by minimizing the BIC. Except for Costa Rica and Ecuador, both ADF and PP tests have the same results for all series of market shares. They consistently suggest that the level of the Honduran market share series is stationary, while levels in the market share series of the rest of the exporting countries are nonstationary. With regard to import quantities, both ADF and PP tests have the same results. They clearly imply that levels of import quantities from Costa Rica, Honduras, and the others are stationary, while those of the rest of the exporting countries are nonstationary. Both unit root tests reveal that the null hypothesis is rejected for the first differences of all market share and import quantity series. Thus, it is concluded that all nonstationary price series in levels are integrated processes of order one.
	Table 4.2. Unit Root Tests in the Level and First Difference of the Data for Imported Fresh Bananas, 1989/Q1-2017/Q4
	ADF
	PP
	Variable
	Level
	1st diff.
	Level
	1st diff.
	Share
	Colombia
	-2.830 (0)
	-12.163 (0)**
	-2.600 (4)
	-12.776 (4)**
	Costa Rica
	-2.701 (1)
	-15.333 (0)**
	-3.603 (4)**
	-16.423 (4)**
	Ecuador
	-1.136 (4)
	-6.184 (3)**
	-3.292 (4)**
	-17.975 (4)**
	Guatemala
	1.285 (6)
	-9.513 (2)**
	-0.220 (4)
	-14.433 (4)**
	Honduras
	-3.867 (1)**
	-15.616 (0)**
	-4.309 (4)**
	-15.527 (4)**
	Mexico
	-1.824 (0)
	-11.622 (0)**
	-1.967 (4)
	-11.591 (4)**
	Quantity
	Colombia
	-2.408 (0)
	-13.256 (0)**
	-2.014 (4)
	-14.118 (4)**
	Costa Rica
	-4.281 (0)**
	-14.719 (0)**
	-4.129 (4)**
	-15.749 (4)**
	Ecuador
	1.822 (11)
	-5.335 (10)**
	-2.694 (4)
	-16.436 (4)**
	Guatemala
	-1.172 (7)
	-8.056 (6)**
	-1.749 (4)
	-16.130 (4)**
	Honduras
	-3.727 (0)**
	-12.669 (0)**
	-3.854 (4)**
	-12.684 (4)**
	Mexico
	-1.262 (0)
	-12.357 (0)**
	-1.247 (4)
	-12.259 (4)**
	Others
	-3.847 (0)**
	-12.451 (0)**
	-3.739 (4)**
	-13.287 (4)**
	Notes: The data are transformed by taking natural logarithms. The numbers in parentheses indicate the lag order in the ADF test and the bandwidth using the Newey-West bandwidth selection method and the Bartlett kernel in the PP test, respectively. The default bandwidth is the integer part of where T is the sample size. ** denotes significance at the 5% level.
	We applied the directed graph method (DGM) to identify the causal relationship among the variables in DIAIDS and INBR models. For example, consider the equation associated with differentially Colombian market shares (dw1) in the DIAIDS. We formed the starting undirected graph by connecting all pairs of vertices formed by differentially Colombian market shares, differentially logarithmic banana quantities exported from Colombia, Costa Rica, Ecuador, Guatemala, Hondurans, Mexico, and the other countries (dlnqi), the differentially logarithmic Divisia volume index (dlnQ), and lagged innovations from the Colombia equation in the static IAIDS model (lresid1). We chose a 0.2 significance level in removing edges from the graph consistent with the sample size (Scheines, Spirtes, Glymour, and Meek, 1994, P. 81). Similarly, the same steps and causal discovery algorithm are applied to the INBR model. Figure 4.1 and 4.2 are final graphs of DIAIDS and INBR models, respectively. According to the final DGM model of the DIAIDS, dw1 will be estimated and forecasted by dlnq1, dlnq4, dlnq5, and lresid1. Furthermore, we could find that changes in its own quantity cause changes in the dependent variable for each equation regardless of DIAIDS or INBR models.
	Based upon the four models identified earlier, we generated forecasts for a post-sample period (2013Q1-2017Q4) and assess the forecast performance for each equation. The root mean squared error (RMSE), mean absolute error (MAE), mean absolute scaled error (MASE), and Theil inequality coefficient (Theil) are selected as measures of evaluation because they are widely used in combining and selecting forecasts for measuring the bias and accuracy of models as empirical methods. 
	A
	B
	C
	D
	E
	F
	Figure 4.1. Directed acyclic graphs based on the PC algorithm for each equation of the dynamic inverse almost ideal demand system model
	Notes: 1-7 denote Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Mexico, and the rest of the world. dw 1-6 are the dependent variable of each equation. dlnq 1-7 and dlnQ are the first difference of log-transformed import volumes of fresh bananas from the foregoing countries and the quantity index, respectively. lresid 1-6 are the estimated lagged residuals from the static IAIDS.
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	Figure 4.2. Directed acyclic graphs based on the PC algorithm for each equation of the inverse national bureau of research demand system model
	Notes: 1-7 denote Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Mexico, and the rest of the world. depv 1-6 are the dependent variable of each equation. dlnq1-7 and dlnQ are the first difference of log-transformed import volumes of fresh bananas from the foregoing countries and the quantity index, respectively.
	Table 4.3 shows the prediction performances of the four models. The RMSE and MAE depend on the scale of dependent variables and could only be used to compare forecasts for the same dependent variables across an ordinary inverse demand system and its DGM (or DAG-) model. The MAPE is scale independent of dependent variables and its value is lower if the forecasting performance of a model is better than another model. The Theil coefficient is scale invariant for dependent variables and lies between zero and one. If the Theil coefficient equals one, the forecasting performance of a model is very poor. Conversely, a model completely predicts future values if the Theil coefficient equals zero.
	For the comparison of the ordinary and its DGM (or DAG-) models, the forecasting performance of the DAG-DIAIDS is better than the DIAIDS in Ecuador, Guatemala, and Mexico equations, although the MASE results are inconsistent with the rest of the measurement statistics in Guatemala and Mexico equations. The forecasting performance of the DAG-INBR is better than the INBR in the Colombia and Costa Rica equations, but the RMSE results are inconsistent with the rest of the measurement statistics in the Colombia equation. For the comparison of four models identified earlier, the MASE and the Theil coefficient have the same results except for the Ecuador and Mexico equations. They suggest that the DIAIDS, DAG-INBR, INBR, and DIAIDS models have the best forecast accuracy compared to the rest of the evaluating models in the Colombia, Costa Rica, Guatemala, and Honduras equations, respectively. For the Ecuador and Mexico equations, the MASE suggests that the DAG-DIAIDS and INBR models are respectively the best compared to the rest of the evaluating models, while the Theil coefficient suggests that the INBR and DAG-DIAIDS models are respectively the best compared to the rest of the evaluating models.
	Table 4.3. Comparison of the Forecasting Performance of the Four Demand Models, Forecasting Periods: 2013-2017
	Equation
	Model
	RMSE
	MAE
	MASE
	Theil
	Colombia
	DIAIDS
	0.0093
	0.0077
	0.5618
	0.2868
	DAG-DIAIDS
	0.0128
	0.0098
	0.5997
	0.3532
	INBR
	0.0107
	0.0084
	0.7047
	0.4102
	DAG-INBR
	0.0109
	0.0080
	0.6712
	0.3907
	Costa Rica
	DIAIDS
	0.0121
	0.0099
	0.4252
	0.2677
	DAG-DIAIDS
	0.0205
	0.0167
	0.7542
	0.3588
	INBR
	0.0131
	0.0104
	0.2991
	0.2136
	DAG-INBR
	0.0120
	0.0096
	0.2766
	0.1987
	Ecuador
	DIAIDS
	0.0168
	0.0134
	0.2660
	0.2035
	DAG-DIAIDS
	0.0163
	0.0127
	0.2182
	0.2000
	INBR
	0.0194
	0.0147
	0.2412
	0.1804
	DAG-INBR
	0.0251
	0.0205
	0.3375
	0.2228
	Guatemala
	DIAIDS
	0.0199
	0.0156
	0.3693
	0.4130
	DAG-DIAIDS
	0.0141
	0.0109
	0.4303
	0.3253
	INBR
	0.0208
	0.0162
	0.2632
	0.2281
	DAG-INBR
	0.0251
	0.0193
	0.3120
	0.2905
	Honduras
	DIAIDS
	0.0077
	0.0063
	0.1429
	0.1575
	DAG-DIAIDS
	0.0135
	0.0105
	0.2723
	0.3413
	INBR
	0.0098
	0.0077
	0.1881
	0.2322
	DAG-INBR
	0.0188
	0.0154
	0.3775
	0.4935
	Mexico
	DIAIDS
	0.0050
	0.0039
	0.3922
	0.3632
	DAG-DIAIDS
	0.0045
	0.0035
	0.4045
	0.3232
	INBR
	0.0078
	0.0049
	0.3332
	0.3603
	DAG-INBR
	0.0087
	0.0051
	0.3492
	0.4173
	Notes: The dynamic inverse almost ideal demand system (DIAIDS), inverse national bureau of research (INBR) demand system, directed acyclic graphs (DAG) from Figure 4.1 and 4.2, root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
	After the demand models are estimated, several diagnostic tests are conducted, and results are reported in Table 4.4. For example, for the six equations in the DIAIDS model at a 10% significance level, three pass the Jarque-Bera (JB) Lagrange multiplier test of the null hypothesis that residuals are normally distributed, five pass the Harvey (Harvey) Lagrange multiplier test of the null hypothesis that there is no autocorrelation, five pass the Ramey regression equation specification error test (RESET) of the null hypothesis that the model has no omitted variables, and four pass the Hall-Pagan (HP) Lagrange multiplier test of the null hypothesis that the variance of the residuals is homogenous, or the residual variance is said to be homoscedastic. For the JB test, the DAG-DIAIDS model has a best fit, and there are no equations to violate the assumption of the normal distribution for disturbances. For the Harvey test, the DIAIDS model has one equation that violates the assumption that there is no serial correlation in disturbances, and the rest of the demand system models have two equations. For the RESET test, both versions of the DIAIDS models have better performance than those of the INBR models. For the HP test, the DAG-INBR model has a best fit, and there are no equations to violate the assumption that the covariance matrix of disturbances is homoscedastic.
	The long-run and short-run scale flexibilities are reported in Table 4.5 and 4.6. All scale flexibilities are significant at a 1% significance level and negative. The scale flexibilities measure the percentage change in the normalized import price of fresh bananas from a certain exporting country due to one percentage change in the import supply of US fresh bananas. When the quantities increase, all the scale flexibilities show that the normalized price also decreases as expected.
	Table 4.4. Results from the Diagnostic Tests on Inverse Demand System Models
	Jarque-Bera
	Harvey
	RESET
	Hall-Pagan
	Equation
	statistic
	p-value
	statistic
	p-value
	statistic
	p-value
	statistic
	p-value
	DIAIDS
	Colombia
	0.434
	0.805
	0.130
	0.718
	0.48
	0.694
	1.349
	0.245
	Costa Rica
	33.493
	0.000
	2.104
	0.147
	1.85
	0.145
	0.497
	0.481
	Ecuador
	0.153
	0.926
	0.156
	0.693
	1.54
	0.210
	0.001
	0.976
	Guatemala
	0.703
	0.704
	0.041
	0.840
	0.85
	0.469
	0.825
	0.364
	Honduras
	120.433
	0.000
	0.170
	0.680
	9.10
	0.000
	18.509
	0.000
	Mexico
	8.528
	0.014
	3.132
	0.077
	1.25
	0.298
	4.797
	0.029
	DAG-DIAIDS
	Colombia
	1.218
	0.544
	0.173
	0.678
	1.72
	0.170
	0.457
	0.499
	Costa Rica
	1.721
	0.423
	8.549
	0.004
	2.03
	0.116
	1.493
	0.222
	Ecuador
	1.129
	0.569
	0.011
	0.915
	2.06
	0.112
	3.472
	0.062
	Guatemala
	0.264
	0.876
	0.707
	0.401
	1.15
	0.335
	2.299
	0.130
	Honduras
	2.531
	0.282
	8.558
	0.003
	9.07
	0.000
	17.294
	0.000
	Mexico
	4.358
	0.113
	0.022
	0.883
	0.94
	0.425
	6.808
	0.009
	INBR
	Colombia
	2.957
	0.228
	3.542
	0.060
	0.60
	0.619
	2.041
	0.153
	Costa Rica
	43.043
	0.000
	3.036
	0.081
	3.76
	0.014
	2.937
	0.087
	Ecuador
	0.354
	0.838
	1.974
	0.160
	0.47
	0.705
	0.002
	0.967
	Guatemala
	0.752
	0.687
	1.999
	0.157
	8.93
	0.000
	0.451
	0.502
	Honduras
	221.632
	0.000
	0.062
	0.804
	15.65
	0.000
	24.102
	0.000
	Mexico
	18.962
	0.000
	1.137
	0.286
	0.31
	0.820
	3.852
	0.050
	DAG-INBR
	Colombia
	2.161
	0.340
	3.978
	0.046
	0.51
	0.674
	2.042
	0.153
	Costa Rica
	0.342
	0.843
	0.386
	0.534
	5.03
	0.003
	1.432
	0.232
	Ecuador
	29.313
	0.000
	7.094
	0.008
	2.26
	0.087
	1.073
	0.300
	Guatemala
	9.778
	0.008
	0.000
	0.993
	5.12
	0.003
	1.571
	0.210
	Honduras
	0.279
	0.870
	0.776
	0.378
	6.74
	0.000
	2.382
	0.123
	Mexico
	25.818
	0.000
	1.768
	0.184
	0.28
	0.838
	2.220
	0.136
	Notes: The dynamic inverse almost ideal demand system (DIAIDS), inverse national bureau of research (INBR) demand system, directed acyclic graph (DAG), and Ramey regression equation specification error test (RESET).
	Table 4.5. Long-run Marshallian Quantity and Scale Flexibilities of the Static Inverse Almost Ideal Demand System, 1989Q1-2017Q4
	Own and cross quantity 
	Scale 
	Colombia
	Costa Rica
	Ecuador
	Guatemala
	Honduras
	Mexico
	Colombia
	-0.064
	(0.045)
	-0.202***
	(0.032)
	-0.195***
	(0.042)
	-0.120***
	(0.016)
	-0.028
	(0.024)
	-0.015
	(0.010)
	-0.652***
	(0.097)
	Costa
	Rica
	-0.192***
	(0.024)
	-0.382***
	(0.024)
	-0.331***
	(0.034)
	-0.231***
	(0.013)
	-0.084***
	(0.015)
	-0.042***
	(0.008)
	-1.278***
	(0.077)
	Ecuador
	-0.107***
	(0.018)
	-0.181***
	(0.024)
	-0.192***
	(0.029)
	-0.116***
	(0.012)
	-0.027
	(0.018)
	-0.015**
	(0.007)
	-0.657***
	(0.057)
	Guatemala
	-0.146***
	(0.018)
	-0.257***
	(0.026)
	-0.264***
	(0.025)
	-0.311***
	(0.017)
	-0.109***
	(0.018)
	-0.012
	(0.009)
	-1.147***
	(0.077)
	Honduras
	-0.119***
	(0.022)
	-0.185***
	(0.040)
	-0.215***
	(0.031)
	-0.217***
	(0.026)
	-0.516***
	(0.039)
	-0.058***
	(0.015)
	-1.303***
	(0.105)
	Mexico
	-0.123**
	(0.055)
	-0.259***
	(0.080)
	-0.230***
	(0.084)
	-0.072
	(0.059)
	-0.168***
	(0.063)
	-0.283***
	(0.041)
	-1.178***
	(0.283)
	Notes: Figures in parentheses are standard errors. ***, **, and * indicate significant at 1%, 5%, and 10% levels, respectively.
	Table 4.6. Short-run Marshallian Quantity and Scale Flexibilities of the Dynamic Inverse Almost Ideal Demand System, 1989Q1-2017Q4
	Own and cross quantity 
	Scale 
	Colombia
	Costa Rica
	Ecuador
	Guatemala
	Honduras
	Mexico
	Colombia
	-0.290***
	(0.070)
	0.015
	(0.130)
	-0.265***
	(0.048)
	-0.036
	(0.069)
	-0.146***
	(0.053)
	-0.065***
	(0.025)
	-0.785***
	(0.082)
	Costa
	Rica
	-0.054
	(0.056)
	-0.658***
	(0.162)
	-0.204***
	(0.059)
	-0.285***
	(0.058)
	-0.011
	(0.072)
	-0.006
	(0.027)
	-1.253***
	(0.065)
	Ecuador
	-0.160***
	(0.027)
	-0.121
	(0.079)
	-0.288***
	(0.037)
	-0.185***
	(0.038)
	-0.098***
	(0.029)
	-0.034**
	(0.015)
	-0.909***
	(0.049)
	Guatemala
	-0.061*
	(0.033)
	-0.309***
	(0.085)
	-0.267***
	(0.029)
	-0.337***
	(0.053)
	-0.046
	(0.031)
	-0.018
	(0.014)
	-1.064***
	(0.064)
	Honduras
	-0.172***
	(0.054)
	0.086
	(0.191)
	-0.182***
	(0.052)
	-0.029
	(0.077)
	-0.485***
	0.090
	-0.024
	(0.026)
	-0.810***
	(0.115)
	Mexico
	-0.254***
	(0.074)
	0.044
	(0.226)
	-0.233***
	(0.066)
	-0.068
	(0.096)
	-0.090
	(0.065)
	-0.313***
	(0.053)
	-0.924***
	(0.167)
	Notes: Figures in parentheses are standard errors. ***, **, and * indicate significant at 1%, 5%, and 10% levels, respectively.
	In both long-run and short-run scale flexibilities, the price of fresh bananas from Colombia is least affected by the quantity of total imported fresh bananas. However, the most influential price in the long-run results is different from that in the short-run results. The former is the price of fresh bananas from Honduras, while the latter is that from Costa Rica. All Marshallian own-quantity flexibilities, as reported in Table 4.5 and 4.6, are negative and significant at the 1% significance level in both the long run and short run except for the long-run flexibility in Colombia. All Marshallian own-quantity flexibilities are less than one in absolute values, indicating that fresh bananas of six main exporting countries are price inflexible. In terms of the long-run Marshallian own-quantity flexibilities at the price-imported level, the U.S. own price for fresh bananas from Honduras with respect to the import quantity from Honduras appears to be the largest variation in absolute value (0.516). That is, a one percent increase (decrease) in the import quantity of fresh bananas from Honduras was found to decrease (increase) the import price of fresh bananas from Hondurans in the U.S. market by approximately 0.516%. However, for the short- run Marshallian own-quantity flexibilities, Costa Rica has the largest variation in absolute value (0.658).
	The cross-quantity flexibilities measure the percentage change in the price of fresh bananas from a certain exporting country when the quantity demanded of fresh bananas from another exporting country increases by one percent. From Table 4.5 and 4.6, all long-run and short-run Marshallian cross-quantity flexibilities significant at the 10% significance level were found to be negative and indicate that fresh bananas from any two exporting countries are gross quantity substitutes for each other. To better understand the competition relationship among exporting countries, the long-run and short-run Hicksian cross-quantity flexibilities are calculated and reported in Table 4.7 and 4.8.
	Table 4.7. Long-run Hicksian Quantity Flexibilities of the Static Inverse Almost Ideal Demand System, 1989Q1-2017Q4
	Own and cross quantity
	Colombia
	Costa Rica
	Ecuador
	Guatemala
	Honduras
	Mexico
	Colombia
	0.022
	(0.038)
	-0.041
	(0.033)
	-0.036
	(0.030)
	0.009
	(0.020)
	0.047***
	(0.017)
	0.009
	(0.010)
	Costa Rica
	-0.022
	(0.018)
	-0.067***
	(0.025)
	-0.019
	(0.020)
	0.021
	(0.014)
	0.064***
	(0.012)
	0.005
	(0.007)
	Ecuador
	-0.020
	(0.016)
	-0.019
	(0.021)
	-0.031
	(0.024)
	0.013
	(0.011)
	0.049***
	(0.014)
	0.009
	(0.006)
	Guatemala
	0.006
	(0.013)
	0.026
	(0.017)
	0.017
	(0.014)
	-0.085***
	(0.018)
	0.023*
	(0.013)
	0.030***
	(0.009)
	Honduras
	0.054***
	(0.019)
	0.136***
	(0.025)
	0.103***
	(0.029)
	0.040*
	(0.022)
	-0.365***
	(0.031)
	-0.010
	(0.014)
	Mexico
	0.033
	(0.036)
	0.031
	(0.047)
	0.058
	(0.043)
	0.161***
	(0.046)
	-0.032
	(0.046)
	-0.240***
	(0.039)
	Notes: Figures in parentheses are standard errors. ***, **, and * significant at the 1%, 5%, and 10% levels, respectively.
	Table 4.8. Short-run Hicksian Quantity Flexibilities of the Dynamic Inverse Almost Ideal Demand System, 1989Q1-2017Q4
	Own and cross quantity
	Colombia
	Costa Rica
	Ecuador
	Guatemala
	Honduras
	Mexico
	Colombia
	-0.185**
	(0.080)
	0.209*
	(0.112)
	-0.073
	(0.056)
	0.119**
	(0.059)
	-0.056
	(0.056)
	-0.036
	(0.025)
	Costa Rica
	0.112*
	(0.060)
	-0.349**
	(0.146)
	0.102
	(0.068)
	-0.038
	(0.056)
	0.134*
	(0.077)
	0.040
	(0.028)
	Ecuador
	-0.040
	(0.031)
	0.103
	(0.068)
	-0.066
	(0.047)
	-0.006
	(0.032)
	0.007
	(0.031)
	-0.001
	(0.014)
	Guatemala
	0.080**
	(0.039)
	-0.047
	(0.070)
	-0.007
	(0.040)
	-0.127***
	(0.044)
	0.077**
	(0.037)
	0.021
	(0.014)
	Honduras
	-0.064
	(0.064)
	0.286*
	(0.165)
	0.015
	(0.066)
	0.131**
	(0.062)
	-0.392***
	(0.102)
	0.005
	(0.025)
	Mexico
	-0.131
	(0.090)
	0.272
	(0.186)
	-0.007
	(0.096)
	0.115
	(0.077)
	0.017
	(0.080)
	-0.279***
	(0.053)
	Notes: Figures in parentheses are standard errors. ***, **, and * significant at the 1%, 5%, and 10% levels, respectively.
	A positive quantity flexibility between import bananas from two countries denotes net substitutes and a negative value denotes net complements. All long-run and short-run Hicksian cross-quantity flexibilities significant at the 10% significance level were found to be positive and indicate that fresh bananas from any two exporting countries are net quantity complements for each other.
	The Marshallian and Hicksian flexibilities of the INBR model are reported in Table 4.9 and 4.10. All scale flexibilities are significant at the 1% significance level and negative. However, the least and most influential prices in the INBR model are the fresh bananas from Honduras and Guatemala, while those in the DIAIDS model are Colombia and Costa Rica, respectively. All Marshallian own-quantity flexibilities are negative and significant at the 1% significance level and less than one in absolute values, indicating that fresh bananas of the six main exporting countries are price inflexible. The results are consistent with those of the DIAIDS model but the estimated flexibilities of the former are less than those of the latter in absolute values except Ecuador and Guatemala. For Marshallian and Hicksian cross-quantity flexibilities, the results are consistent with those of the DIAIDS model. All Marshallian cross-quantity flexibilities significant at the 10% significance level were negative and indicate that fresh bananas from any two exporting countries are gross quantity substitutes for each other. Contrarily, all Hicksian cross-quantity flexibilities significant at the 10% significance level are positive and indicate that fresh bananas from any two exporting countries are net quantity complements for each other.
	Table 4.9. Marshallian Quantity and Scale Flexibilities of the Inverse National Bureau of Research Demand System, 1989Q1-2017Q4
	Own and cross quantity 
	Scale 
	Colombia
	Costa Rica
	Ecuador
	Guatemala
	Honduras
	Mexico
	Colombia
	-0.174***
	(0.046)
	-0.238***
	(0.037)
	-0.180***
	(0.034)
	-0.129***
	(0.039)
	-0.040
	(0.026)
	-0.047***
	(0.018)
	-0.803***
	(0.089)
	Costa
	Rica
	-0.157***
	(0.023)
	-0.326***
	(0.036)
	-0.257***
	(0.027)
	-0.170***
	(0.031)
	-0.083***
	(0.020)
	-0.009
	(0.011)
	-1.021***
	(0.073)
	Ecuador
	-0.122***
	(0.018)
	-0.252***
	(0.022)
	-0.294***
	(0.026)
	-0.208***
	(0.022)
	-0.054***
	(0.015)
	-0.034***
	(0.009)
	-0.989***
	(0.055)
	Guatemala
	-0.162***
	(0.030)
	-0.298***
	(0.037)
	-0.350***
	(0.033)
	-0.343***
	(0.047)
	-0.146***
	(0.025)
	-0.035**
	(0.015)
	-1.368***
	(0.082)
	Honduras
	-0.035
	(0.035)
	-0.103**
	(0.050)
	-0.050
	(0.045)
	-0.122***
	(0.047)
	-0.386***
	(0.043)
	-0.018
	(0.016)
	-0.725***
	(0.133)
	Mexico
	-0.175**
	(0.074)
	-0.014
	(0.072)
	-0.189***
	(0.067)
	-0.083
	(0.082)
	-0.069
	(0.050)
	-0.292***
	(0.059)
	-0.842***
	(0.160)
	Notes: Figures in parentheses are standard errors. ***, **, and * indicate significant at 1%, 5%, and 10% levels, respectively.
	Table 4.10. Hicksian Quantity Flexibilities of the Inverse National Bureau of Research Demand System, 1989Q1-2017Q4
	Own and cross quantity
	Colombia
	Costa Rica
	Ecuador
	Guatemala
	Honduras
	Mexico
	Colombia
	-0.067*
	(0.040)
	-0.040
	(0.035)
	0.016
	(0.028)
	0.029
	(0.037)
	0.053**
	(0.024)
	-0.017
	(0.018)
	Costa Rica
	-0.021
	(0.019)
	-0.074**
	(0.035)
	-0.008
	(0.020)
	0.031
	(0.027)
	0.035*
	(0.019)
	0.029***
	(0.011)
	Ecuador
	0.009
	(0.015)
	-0.008
	(0.020)
	-0.053**
	(0.022)
	-0.013
	(0.020)
	0.060***
	(0.014)
	0.002
	(0.008)
	Guatemala
	0.020
	(0.025)
	0.039
	(0.034)
	-0.016
	(0.025)
	-0.073
	(0.046)
	0.012
	(0.023)
	0.015
	(0.015)
	Honduras
	0.061**
	(0.028)
	0.075*
	(0.040)
	0.127***
	(0.030)
	0.020
	(0.040)
	-0.302***
	(0.041)
	0.009
	(0.015)
	Mexico
	-0.063
	(0.064)
	0.194***
	(0.072)
	0.016
	(0.056)
	0.083
	(0.079)
	0.029
	(0.047)
	-0.261***
	(0.057)
	Notes: Figures in parentheses are standard errors. ***, **, and * significant at the 1%, 5%, and 10% levels, respectively.
	4.6 Conclusions
	Banana consumption in the U.S. is highly dependent on imports, and these imports come from a concentrated market that is controlled by a few TNCs. First, we used inverse demand systems including DIAIDS and INBR models and their DGM (or DAG-) models to understand consumer behavior for U.S. fresh bananas from six major exporting countries and evaluate their forecasting accuracy. Overall, the forecasting performances of the DIAIDS and its DGM models are equally good, that is, the forecasting accuracy of a half of the equations in one model is better than that in the other. However, the forecasting performance of the INBR model is better than that of its DGM model, i.e., forecasting accuracy of four of six equations in the INBR model is clearly better than that in its DGM model. When comparing the four models together, we can find that forecasting performances of the DIAIDS and INBR models are equally good and better than those of their DGM models. Furthermore, according to the results of several diagnostic tests, both versions of the DIAIDS model have better performance than those of the INBR model. Next, we estimated the long-run scale and quantity flexibilities of the static IAIDS and INBR models and the short-run those of the DIAIDS model. As expected, all Marshallian own-quantity flexibilities for each inverse demand system significant at the 1% significance level are negative and relatively inelastic. Moreover, all Marshallian cross-quantity flexibilities significant at the 10% significance level show that fresh bananas from any two exporting countries are gross quantity substitutes for each other, while all Hicksian cross-quantity flexibilities significant at the 10% significance level show that fresh bananas from any two exporting countries are net quantity complements for each other.
	CHAPTER V
	SUMMARY
	This dissertation presented results from three different empirical studies of price transmission analyses and consumer demand systems. The first study (Chapter II), titled "Vertical price transmission among international crops, ocean freight, and Taiwan major animal husbandry," examined the relationship among pork, chicken, and hen egg prices, the prices of the main ingredients in their feed, and the BDI. Because asymmetric price transmission may exist in the magnitude of price transmission and/or speeds of adjustment, we employed the NARDL model and Enders-Siklos threshold cointegration approach to check whether there is an asymmetric effect in the VPT between output prices (Taiwanese pork, chicken, and hen eggs) and input prices (ocean freight rates, the U.S. and Brazilian corn, and soybeans). The empirical results indicate that except for the VPT between hen egg prices and the input prices, the other VPT have no obvious asymmetrical effects in speed of price adjustment. However, the results of the NARDL models show that asymmetric effects on the magnitude of long-run price transmission significantly exist in all VPT. 
	Japan is the second largest export market for Taiwanese agricultural products. Because Taiwanese agricultural technology, cultivars, and talents continuously flow to China over two decades plus its lower production costs, the market shares of Taiwanese agricultural products in major export markets have dropped significantly. In this context the second study (Chapter III), titled "Price dynamics in the import markets of eels, edamame, and feathers and down in Japan," explored the relationship among the prices of Taiwanese eel, edamame, and feathers and down and their major competitor's prices in the Japanese market. We first used the partial correlations of the VECM residuals as input to graphical causal models from the PC algorithm. The empirical results suggest that a change in Taiwanese (live) eel prices leads to a change in the (live) eel prices from Aichi prefecture, Shizuoka prefecture, and China in contemporaneous time. Chinese prepared eel price is the most influential among the six evaluated eel prices in the long run except the uncertainty associated with the prepared eel price from Shizuoka Prefecture. Also, the effect of a change in Chinese prepared eel price on other evaluated eel prices is significant.
	For the Japanese edamame market, price changes in China and Indonesia lead to a price change in Taiwan in contemporaneous time. The influence of other imported edamame prices on Japanese edamame price is very small. Taiwanese edamame price is mainly affected by Chinese and Thai edamame prices in the long run besides its own price. For the Japanese feather and down market, a price change in Taiwan leads to price changes in China and Hungary in contemporaneous time. The uncertainty in each evaluated price is primarily explained by its own price. In addition, Taiwanese feather and down price is mainly affected by Chinese and French feather and down prices in the long run besides its own price.
	Measured by value of volume, banana is still the major fresh fruit imported to the U.S. Because of the consideration of transportation costs, time, the delicate and perishable properties in banana distribution, and diverging import policies in the consuming countries, the U.S. banana market reveals an absolutely dominance by neighboring Latin America. In this context, the third study (Chapter IV), titled "An analysis of the banana import market in the U.S.," investigated the factors that determine the country composition of the U.S. fresh banana imports and estimated the level of price competition among the Latin American countries. Two static and one dynamic inverse demand system were used in estimating the demand for disaggregated fresh bananas in the U.S. The empirical results suggest the fresh bananas of six exporting countries are price inflexible, and any two exporting countries are gross quantity substitutes for each other in the short run and long run. In addition, the Banana prices from six exporting countries are significantly affected by the quantity of total import bananas.
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