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ABSTRACT

Task oriented dialog systems hold numerous applications in assisting users to achieve various

goals. They often comprise of a pipeline of individual components. In this work, our contribution

is towards two such components, namely, dialog state tracker and natural language generator. A

typical conversation comprises of multiple turns between participants where they go back-and-

forth between different topics. At each user turn, dialogue state tracking (DST) aims to estimate

user’s goal by processing the current utterance. However, in many turns, users implicitly refer to

the previous goal, entailing the use of relevant dialogue history. Nonetheless, distinguishing rele-

vant history is challenging and a popular method of using dialogue recency for that is inefficient.

We, therefore, propose a novel framework for DST that identifies relevant historical context by

referring to the past utterances where a particular slot-value changes and uses that together with

weighted system utterance to identify the relevant context. Specifically, we use the current user

utterance and the most recent system utterance to determine the relevance of a system utterance.

Furthermore, we do empirical analyses to show that our method improves joint goal accuracy on

WoZ 2.0 and MultiWoZ 2.0 restaurant domain datasets respectively over the previous state-of-the-

art models. Secondly, we study a family of deep generative models for generating system response

in a task oriented dialog setting. The language generation tasks involves conditioning the output of

the generative models on the current dialog state, system act and the previous user utterance. Fi-

nally, we do qualitative analysis and report the perplexity scores for a transformer encoder-decoder

model and a conditional variational auto-encoder on schema guided dialog state tracking dataset.
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NOMENCLATURE

DST Dialog State Tracking

LSTM Long Short Term Memory

GLE Global-local self-attentive encoder

CVAE Conditional Variational Autoencoder

WoZ Wizard-of-Oz System

ASR Automatic Speech Recognition

NLU Natural Language Understanding

NLG Natural Language Generation

TTS Text to Speech
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1. INTRODUCTION

Natural language and conversation are important characteristics of human intelligence which

allows us to communicate complex ideas on a daily basis. Dialog Systems or conversational agents

are computer programs which aspire to communicate with the user (or a group of users) in natural

language conversational format. They are broadly categorized into two classes, namely, chatbots

and task-oriented dialog agents. Chatbots aim to mimic unstructured human conversations by

conducting casual chit-chat discussions about different topics. These dialog agents don’t have

a practical utility and are often designed for entertainment purposes. On the other hand, you

have task-oriented dialog agents which help the users to complete a set of tasks by carrying

out conversations. Some real world examples of task-oriented dialog agents are digital assistants

like Google Assistant, Alexa, Siri and Cortona which assists the user by scheduling events in the

calendar, booking cabs and restaurants, giving directions etc.

Even with the recent progress in natural language processing (NLP), making computers talk

like humans remains infeasible. A dialog can be defined as a sequence of turns from the partici-

pants, similar to how people take turns rolling a dice while playing a board game. A dialog agent

is required to identify if the current turn is the last turn or not, in order to stop talking, also called

endpoint detection. (8; 9) had an insight that each utterance in a dialog is kind of an action being

performed by the speaker. These speech acts or dialog acts can be of different kinds but they

fall into a small category of acts like answering, asking, planning, thanking etc. A dialog is not a

sequence of independent speech acts but it maintains a structure with sub-dialogues. For instance

questions are followed by answers or proposals are followed by rejections / acceptance. Moreover,

there may be clarification questions and the speakers also establish a common ground on what they

agree upon, by saying "Okay, ..." or repeating what the other person said, during a conversation. A

discussion can also be controlled by the dialog agent, the user or the initiative may shift back and

forth. The user often implicitly states some facts in an indirect manner or just assumes some facts

to be common knowledge and this makes it difficult for the system to respond in a sensible manner.
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These properties of human conversation adds complexities in designing any kind of dialog agent.

For task oriented dialog agent, there is additional challenge of retrieving information from external

knowledge bases.

There are three important architectures for designing chatbots: encoder-decoder models, in-

formation retrieval systems, and rule-based agents. Encoder-decoder models (10), inspired from

phrase-based machine translation, train on a corpus and treat the implementation of a dialog agent

like a transducing task from a particular context (last user utterance or dialog history encoding) to

the system response. In chapter 5, we show how encoder-decoder models can also be utilized for

dialog generation in a task-oriented setting. Information retrieval systems are also a corpus-based

approach which look up the most similar turn from a knowledge base and use that to generate the

system response. ELIZA (11) is considered one of the most important dialog systems in the field

which is rule-based agent as opposed to corpus-based. It was designed to simulate a Rogerian psy-

chologist which tries to draw the patient by reflecting their statements back at them. This allowed

the dialog agent to know nothing about the real world. PARRY (12) was another rule-based dialog

agent, like ELIZA, designed to study schizophrenia. It had rules to simulate different levels of fear

and anger, and is the first known system to pass the Turing test (13).

Architectures for task-oriented dialog agents have evolved over time to employ a pipeline of

multiple individual components designed for a specific purpose. GUS (Genial Understander Sys-

tem)) architecture (14) was one of the first frame-based architectures proposed for task-oriented

dialog agents. It was designed for a travel planning task and still underlies some of the commer-

cial digital assistants today. GUS uses frames to extract user’s intentions from the utterances. A

frame is a knowledge representation which consists of slots taking some pre-defined values sup-

ported by a domain ontology. The dialog agent’s goal is to fill the slots with user’s intended filters

and perform the next action conditioned on the slot values. Usually, these actions are triggered

based on hand-crafted rules based on the combination of slot-value pairs. These agents can also be

multi-domain which requires a domain classification step before any of the slot-filling happens.

For dialog generation, templates are used which are created by the dialog designer. Rule-based

2



Automatic Speech 
Recognition (ASR)

Natural Language 
Understanding 

(NLU)

Dialog State 
Tracker (DST)

Dialog PolicyNatural Language 
Generation (NLG)

Text to Speech 
(TTS)

I would like to reserve a restaurant …
Everest in Albany
At 8 in the evening

{  city: Albany  }
{  name: Everest  }
{  arrive_time: 8 in the evening  }

city: Albany
name: Everest
arrive_time: 8 in the evening
party_size: -
date: -
score: 0.8

city: Albany
name: Everest
arrive_time: 8 in the evening
party_size: -
date: -
score: 0.8

city: Albany
name: Everest
arrive_time: 8 in the evening
party_size: -
date: -
score: 0.8

{  act: confirm  }
{  name: Everest Kitchen  }
{  arrive_time: 8 pm  }
{  date: 4th March  }
{  party_size: 2  }
{  city: Albany  }

Confirming a table for 2 at Everest 
Kitchen in Albany at 8 PM on March 
4th.

Figure 1.1: Dialog State Architecture. (1) Modern dialog systems consist of a pipeline of com-
ponents (green boxes) responsible for tasks like ASR, NLE, DST, NLG and TTS. Yellow boxes
show the processing of user’s utterance to slot-filling for that turn. DST component keeps track of
the cumulative dialog state (orange box). The dialog policy decides the next system act, the NLG
component generates the utterance, which is finally converted to speech by a TTS component (red
boxes show the process).

GUS architecture is heavily used in industry applications. This architecture requires experts to

design the dialog agent which is restricted to a narrow domain. The hand-crafted rules are slow

and expensive to create but they lead to high precision with a recall problem.

1.1 Dialog State Architecture

The dialog state architecture is a more sophisticated version of the frame-based architecture

discussed in the previous section, and most modern task-oriented dialog agents are base on this

3



architecture. The architecture is visualized in Figure 1.1. It consists of six components, namely,

automatic speech recognition (ASR), natural language understanding (NLU), dialog state tracker

(DST), dialog policy, natural language generation (NLG), and text to speech (TTS).

The user utterance is processed by an ASR component to convert the speech to textual format.

The textual representation is fed into an NLU unit. The NLU unit is responsible for understanding

the user’s utterance and extracting the information into a more structured format. It may involve

named-entity recognition, sentiment analysis, coreference resolution, domain classification etc.

The DST takes the output from the NLU unit and uses that to update the cumulative dialog state

until that turn. It consists of a slot-filling task to keep track of user’s goals and intents, which also

represents the current state of the conversation. The dialog policy component takes the dialog state

as input and generates the next action, also called system act, for the dialog agent. The dialog policy

decides whether the system should make a suggestion, ask for clarification, answer a question,

change the topic and so on. It also interacts with external knowledge bases or production services

to query more information to generate the system act. The system acts are given to the NLG

component which converts the structured representation of system acts into a textual utterance

which the dialog agent would use to respond to the user. Finally, the textual system response is

converted to a speech utterance with a TTS component, which processes the text input to generate

an utterance spoken like a human.

These six components are not entirely independent of each other in practice. For instance, the

ASR accuracy is often improved by a language model which predicts the probability of next word

given the previous ones. The language model can be used for NLU and DST as well. The dialog

state and the previous system act can also be used to help the NLU component to understand the

current utterance. For instance, if the system asked about the food preference of the user, then it’s

highly likely that the utterance is going to contain an answer for that, and the NLU component

can be conditioned with the domain ontology to better deal with this scenario. Moreover, these

components can be further dependent on other production services and the processing path from

user utterance to system response generation is not always straightforward as shown in Figure 1.1.

4



Nevertheless, for the purpose of this dissertation, the implementation details are abstracted away

and the datasets used for empirical analysis are loosely based on this architecture.

1.1.1 Dialog Acts

In dialog state architecture, a dialog act combines the concept of speech act and grounding. It

represents the broad action of the current turn or utterance. A dialog act is often associated with the

system utterance and hence it is also called system act. System act is the output of the dialog policy

component. Figure 1.2 shows examples of system act for each system utterance or turn. There can

be multiple system acts like REQUEST, CONFIRM, INFORM, OFFER and GOODBYE. Some acts

also contain slot type-value pairs which are used to construct the system utterance. For instance, a

system act like OFFER(movie_name: Red Joan) may generate a system utterance like "Would you

like to see the movie Red Joan?". The system acts are designed by the dialog designer and there is

no known way to learn them directly from the corpus. They also depend on the domain, some acts

may be common to multiple domains and some may be unique to particular domains, as defined in

the ontology.

1.1.2 Dialog State Tracking

Dialog state (also called belief state) aims to keep track of cumulative user’s goals and requests

during the conversation. It consists of key-value pairs called slot type and slot value. Figure 1.2

shows a conversation where the user wants to do do restaurant reservation and enquire about a

movie. For each user turn, it shows the dialog state with the blue boxes on the right. It consists of

determining the active service (domain) and intent of the user. The user’s utterance is used to fill

slots that the system requires to proceed further with the conversation. When the user says "Could

you help me with a restaurant reservation?", the system recognizes the dialog state as "service:

restaurant, intent: reserve restaurant". In subsequent turns when the user says "Thank you for that.

I’d like to see a movie too. ...", the dialog state shows the active service as movie and intent as

"find movies". The system also fills the slot types like "genre: drama, location: Albany". A frame

is created for each user turn and the slot types and values are extracted from the user utterance.
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The current frame is then combined with the current dialog state by updating the slot types which

have a different value in the current frame compared to the expired value of that slot type in the

current dialog state.

The dialog state corresponding to a particular turn is expected to capture the state of the entire

conversation including the current turn. It can be thought of as a sparse representation of the

conversation which is used by the dialog policy to decide the next action for the dialog agent. The

dialog state is also useful for the system to query an external knowledge base to get the required

information to answer user’s questions. It can also be used to call a production service to complete

some action for the user like adding a calendar event, purchasing movie tickets, or booking a

restaurant.

Similar to dialog acts, the slot types and slot values in the dialog state are also manually devised

by the dialog designer instead of extracting them through corpus directly. Hence, the slot types and

values are also dependent on the domain ontology.

1.1.3 Dialog Policy

The dialog policy generates the next system action given the previous system actions and the

user utterances. More formally, it can be stated in the below equation where A is the system act, U

is the user utterance, and their subscript represents the turn number.

Ai = argmax
Ai∈A

P (Ai|A1, U1, ..., Ai−1, Ui−1) (1.1)

Since we have the dialog state tracker, the above equation can be simplified to use the dialog

state instead of the previous user utterances. Many techniques prefer to condition the policy model

on the previous frames from the dialog state, the last system and user utterances. There are both

policy learned from the corpus and rule-based policies but rule based policies are more common for

industrial applications. More sophisticated models use reinforcement learning to train the policy

model where the reward is given after each turn or at the end of the conversation (15). It remains

a challenge to learn a good dialog policy from a corpus because of complex characteristics of

6



human conversation, and it is also expensive to generate labeled data or devise dialog simulators

for training the policy model.

1.1.4 Response Generation

The system response generation is done by the NLG component. Response generation requires

to decide what to say (content planning) and how to say it (sentence realization). In the dialog state

architecture, most of the content planning is carried out by the dialog policy. Therefore, the task of

response generation boils down to generating natural language response given some context, which

mostly includes the state of dialog state, system act, user utterance and so on. Certain models also

utilize the dialog history to generate the response by maintaining a hidden state representation with

a RNN or using the attention mechanism to summarize the representations for each historical turn.

As is the case with dialog state tracking, collecting data for response generation task is ex-

pensive and complicated. The dataset should include labeled dialog state, system acts, the dialog

history along with the utterances for each turn. System acts should also include relevant slot type

and values. Different datasets follow different conventions and there is added variance for multi-

domain datasets with large ontology as it is not feasible to have utterances for all slot type-value

combinations. It is also good to have multiple utterances for the same input context, which are

often paraphrased version of each other. This can help a latent space generative model to learn to

paraphrase which is common in human conversation. People rarely speak the same sequence of

words even when the same person wants to convey the same thing again, or have the same input

context.

Since rare slot-value pairs in training data is a problem, some methods use delexicalization

as a preprocessing step before training a response generation model. Delexicalization involves

substituting the slot values in the utterance by predefined generic placeholder tokens. To illustrate

delexicalization, we can take an example from Figure 1.2. In turn 8, "Red Joan" in the system utter-

ance "Would you like to see the movie Red Joan?" can be replaced by a token like "[movie_name]"

giving "Would you like to see the movie [movie_name]?". The response generation model can be

trained to output the delexicalized utterance. Relexicalization is used to further process the gener-
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ated utterance from the model, before giving it to the TTS model. Relexicalization is the process

of replacing the generic tokens by specific slot values which can be obtained from the system act.

This technique is especially useful for slot types like "name" and "phone numbers" because it is not

practical to contain all possible values in both the domain ontology and the labeled data. However,

you need to label the starting and ending location of the slot value in the utterance, unlike just

filling in the slot value, which may be more tedious.

1.2 Thesis Outline

We described the fundamentals of dialog systems and the architectures in this chapter. In this

dissertation, our contribution is two fold. Firstly, we provide a new approach for dialog state

tracking which utilizes the dialog history. Secondly, we study deep generative models for system

response generation for the task-oriented dialog setting. Following is an outline for the rest of the

chapters:

1. Chapter 2 covers the background and related work. It is divided into two parts: dialog state

tracking and dialog generation.

2. Chapter 3 presents our contribution on a novel method for dialog state tracking.

3. Chapter 4 presents our study of two generative models, transformer encoder-decoder and

conditional variational autoencoder, for task oriented dialog generation.

4. Chapter 5 summarizes our contributions and discusses future work.
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User System

Could you help me with a 
restaurant reservation?

In what city and at what restaurant?

The restaurant is Everest in Albany.

What time would you like the reservation?

I’d like it at 8 in the evening.

Confirming a table for 2 at Everest 
Kitchen in Albany at 8 pm on March 4th.

Thank you for that. I'd like to see a 
movie, too. I'm interested in a drama 
at the Albany Twin, a regular show.

Would you like to see the movie 
Red Joan?

Sure, what time is the movie 
next Friday?

I have 1 showing at 7 PM at 
Landmark's Albany Twin.

That's everything I need, 
thank you!

You're very welcome.

service: restaurant, intent: reserve restaurant

request: [ city, restaurant_name ]

service: restaurant, intent: reserve restaurant
restaurant: { city: Albany, name: Everest }

request: [ time ]

service: restaurant, intent: reserve restaurant
restaurant: { city: Albany, name: Everest, time:

    8pm }

confirm: [ (city: Albany), (time: 8pm),
        (party_size: 2), (date: March 4th) ]

service: movie, intent: find movies
movie: { genre: drame, location: Albany, 
theater_name: Albany Twin }

offer: [ (movie_name: Red Joan) ]

service: movie, intent: get times for movie
movie: { genre: drame, location: Albany, 
theater_name: Albany Twin }

offer: [ (show_time: 7pm), (theater_name:
    Landmark’s Albany Twin) ]

Inform_count: [ (count: 1) ]

service: movie, intent: get times for movie
movie: { genre: drame, location: Albany, 
theater_name: Albany Twin }

Dialog State / System Act

goodbye: [ ]

Turn

1

2

3

4

5

6

7

8

9

10

11

12

Figure 1.2: A dialog sample from Schema-Guided DST dataset (2) spanning two domains (ser-
vices): restaurant and movie. The first column shows the turn number where the user (yellow
boxes) and system (red boxes) alternate taking turns. Green boxes show the cumulative dialog
state for each user utterance. Restaurant service in the dialog state is omitted after turn 7 to save
space. Blue boxes are the system acts corresponding to each system utterance.

9



2. BACKGROUND AND RELATED WORK

2.1 Dialog State Tracking

Early work for DST relied on separate Spoken Language Understanding (SLU) module (16) to

extract relevant information from user utterances in a pipelined approach. Such systems are prone

to error accumulation from a separate SLU module, in absence of necessary dialog context required

to interpret the user utterance. Thus, later work on DST moved away from separate SLU modules

and inferred the dialog state directly from user utterance and dialog history (17; 18; 19). These

models depend on delexicalization, using generic tags to replace specific slot types and values, and

handcrafted semantic dictionaries. In practice, it is difficult to scale these models for every slot

type and recent state-of-the-art models for DST use deep learning based methods to learn general

representations for user and system utterances and previous system actions, and predict the turn

state (20; 17; 21; 22; 23; 24; 25; 26). However, these systems are found to perform poorly on rare

and unknown slot-value pairs which was recently addressed through local slot-specific encoders

(27) and pointer network (28).

A crucial limitation to all these approaches lies in the modeling of appropriate historical con-

text, which is simply ignored in most of the works. Since user’s goal may change back-and-forth

between previous values, incorporating relevant historical context is useful in monitoring implicit

goal references. In a recent work, (29) discussed on similar limitations of current DST task and in-

troduced a new task of frame tracking that explicitly tracks every slot-values that were introduced

during the dialogue. However, that significantly complicates the task by maintaining multiple re-

dundant frames that are often left unreferenced. Our proposed model, that explicitly track relevant

historical user and system utterances, can be easily incorporated into any known DST or frame

tracking systems such as (30) to replace the recency encoding.
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2.2 Dialog Generation

Encoder-decoder models, also known as seq2seq (sequence to sequence) models, (31; 32;

10) are the most common approach for corpus-based learning for context sensitive conversational

response generation. However, a few modifications are required to these autoregressive models

to obtain better performance on conversation response generation. One of the problems is that

the model learns to predict repetitive and dull responses like "I don’t know" or "I’m fine.". (33)

added a mutual information objective in the training objective and modified the beam decoder for

more diverse responses. (34) encode utterances and generate responses by incorporating different

types of situation behind conversations. (35) proposed to combine topic-information with seq2seq

models to generate informative responses. (36) augmented the encoder-decoder models with meta

word, a structured record to describe various attributes in the response, for open domain dialog

response generation.

Recent works in self-supervised pre-training like BERT (37) and language models like GPT-

2 (38) have also been utilized for response generation in dialog. (39) used a BERT based model to

rank the candidate responses with dot product between the context and candidate embeddings.

TransferTransfo framework (40) proposed a model similar to GPT-2 transformer decoder and

trained it on Persona-chat dataset (41). (42) built on the TransferTransfo framework by utiliz-

ing the transformer decoder for multi-domain task-oriented dialog generation. (43) also showed

the effectiveness of generative pre-trained transformer model for open-domain dialog response

generation.

More recently, (44) trained a large encoder-decoder evolved transformer (45) chatbot, called

Meena, with a multi-turn (maximum 7, instead of a single last turn) context to minimize the re-

sponse perplexity. Meena was significantly better than the other prior models trained on a single

last turn context and exhibited characteristics of human conversation like consistency automati-

cally. (46) used the self-attention mechanism to find the relevant context from the dialog history

for multi-turn dialog generation. (47) model the dialog history with finite state transducer for

non-collaborative conversations which require not only the semantic intent but also the tactics that
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convey the intent. (48) utilize the order information in dialog history for self-supervised learning

on open domain dialog generation.

Multiple responses may be appropriate for a same dialog context. There have been some recent

work which try to address this one-to-many property of response generation in conversations. (49)

proposed Multi-action data augmentation (MADA) technique which maps current dialog state to

different valid system actions to generate diverse system responses. (50) presented a technique

that combined supervised learning and reinforcement learning to generate multiple responses in a

task-oriented dialog setting.

Latent variable models (51) are also very popular for response generation. After the success

of Variational autoencoders (VAE) (52) for text generation (53; 54; 55), recent works have used

VAE for dialog response generation (56; 57). Conditional variational autoencoder (CVAE) (6) is

a variant of VAE which has also been utilized for dialog generation (58). A common problem

with these latent variable model is posterior collapse where the decoder learns to ignore the latent

space vector and the encoder. Several recent works have tried to address this problem (59; 60).

(56) learn a discrete sentence representation for interpretable dialog response generation. (61) use

VAE to extract dialog structure via unsupervised learning. (62) presented a conditional Wasserstein

autoencoder (DialogWAE) which modeled the distribution of data by training a GAN (63) within

the latent variable space.

Previous works have also generated dialog responses with cross-domain latent actions via zero-

shot learning (64). (65) take intuition from turing test and cast the problem of dialog generation

as reinforcement learning where they do adversarial training of two dialog agents. (66) trained

a chatbot using policy gradient to reward sequences that showed three useful properties, namely,

informativity, coherence, and easy of answering.
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3. DISCERNING RELEVANT CONTEXT FOR DST ∗

Narrow domain goal oriented dialog systems have numerous real world applications in fields

like e-commerce, health-care, education, customer care and video-games. These systems function

by accessing or acting upon an external knowledge base by using a structured application program

interface (API). The API calls require some set of arguments which are stored in the belief state

of dialog system, often called dialog state. Dialog state tracking (DST) is a vital component in the

task-oriented dialog systems which is used to estimate user’s goals and requests in order to plan

next action and respond accordingly. At each turn, DST aims to identify the set of goals that a

user aims to achieve and requests that are represented as slot-value pairs. Typically, this decision

is made by considering user utterance in the current turn or system actions in the previous turn.

However, in many cases, the considered user utterance or system actions do not present enough

information and refers to a previous utterance.

As shown through an example in Figure 3.1, while exploring different available options, user

can go back-and-forth between the currently and previously discussed facts. For instance, when

offered with two different restaurant options namely Nirala (food=indian) and Golden Wok

(food=chinese) in the second turn, user first inquires about the details of Golden Wok. And

after getting relevant details about the Golden Wok in the following two turns, user refers back to

the second option provided in second turn and asks about Nirala restaurant. To predict the correct

slot-value pair food=indian in the dialog state of the fifth turn, the system is required to refer

back to the second turn again to find information about Nirala, as the context obtained from the

current dialog turn is insufficient.

Identifying such implicitly referenced historical turns is challenging since implicit references

are not local and most recent turns are often not informative. Therefore, the traditional approach of

∗Reprinted with permission from "Improving Dialogue State Tracking by Discerning the Relevant Context" by
Sanuj Sharma, Prafulla Kumar Choubey, Ruihong Huang, 2019 (4). Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). 576–581. Copyright c© 1963–2019 ACL. .
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User: hello, i'm looking for a restaurant with fair prices
System: There are 31 places with moderate price range. 
Can you please tell me what kind of food you would like?

Sys Act: foodTurn Label: price range = moderate

User: well I want to eat in the North, what's up that way?
System: I have two options that fit that description, 
Golden Wok chinese restaurant and Nirala which serves 
Indian food. Do you have a preference?

Sys Act: foodTurn Label: area = north

User: Can I have the address and phone number for the 
Golden Wok chinese restaurant?
System: The phone number is 01223 350688.
Turn Label: request = address, phone; food = chinese

User: thank you. what is the address?
System: The address is 191 Histon Road Chesterton.
Turn Label: request = address

User: Okay, what about Nirala, what's the address and 
phone of that?
System: 7 Milton Road Chesterton and the number is 
01223 360966
Turn Label: request = address, phone; food = indian

Figure 3.1: An example dialog from WoZ 2.0 dataset (3). A turn contains user utterance (blue),
system utterance (red), system actions (yellow) and turn label (green). Each turn is separated by a
line. Reprinted with permission from (4).

modeling dialogue recency (29) may not suffice. Instead, we propose to model implicit references

by storing links to the past turn where each of the slots was modified. Then at each turn, we look up

though the stored links to find the previous turn which may provide additional cues for predicting

the appropriate slot-value.

Moreover, the dialogue system often asks polar questions with yes-no answers. For instance,

the DST system should update the dialogue state with food=indian when a user replies Yes

to a system utterance Do you want Indian food?. In such cases, neither the user utterance nor

system acts (food in this example) contain any information about the actual slot-value. This makes
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Figure 3.2: The Architecture of Context Aware Dialogue State Tracker. Reprinted with permission
from (4).

utilization of both system and user utterance eminent for dialog state tracking. However, utilizing

the previous system utterance together with the current user utterance always at each turn may add

noise. Therefore, we use a gating mechanism based on both utterances to determine the relevance

of the previous system utterance in the current turn.

The evaluation shows that identifying the relevant context is essential for dialogue state track-

ing. Our novel model that discerns important details in non-adjacent dialogue turns and the previ-

ous system utterance from a dialog history is able to improve the previous state-of-the-art GLAD

(27) model on all evaluation metrics for both WoZ and MultiWoZ (restaurant) datasets. Further-

more, we empirically show that a simple self-attention based biLSTM model, using only one-third

of the number of parameters as GLAD, outperforms GLAD by identifying and incorporating the

relevant context.

3.1 Model

Similar to previous works, we decompose the multi-label classification problem to binary clas-

sification where we score each slot-value pair and select the ones that receive a score above a

threshold to be included in the current dialog state. To predict the score for a candidate slot-value

pair, the model uses the relevant past user utterance (referential utterance), a fused utterance com-

posed using the current user utterance and the system utterance of the previous turn, as well as

15



previous system actions as evidence. Shown in Figure 3.2, our model comprises of:

3.1.1 Lookup module

The Lookup module retrieves a link to the turn where each of the slots changes. At each step,

our system refers to the lookup module that returns the past user utterance (the “antecedent user

utterance”) where the candidate slot-type was modified as well as outputs the previous slot-value.

3.1.2 GLE module

Each of the five green modules in Figure 3.2 is a global-locally self-attentive encoder (GLE

module) (27) that encodes each type of evidence into a vector representation (c). Each input is

represented as a sequence of words which is encoded to a vector representation via global-local

self-attentive encoder (GLE) module (27). Specifically, GLE employs local slot-specific bidirec-

tional LSTMs and a global bidirectional LSTM (67) that is shared across all slots for encoding

the input sequence into a sequence of hidden states (H), followed by a self-attention layer (68) to

obtain a fixed dimension vector representation (c).

The GLE modules are used to encode the antecedent user utterance (Hu
p , c

u
p), the current user

utterance (Hu, cu), the previous system utterance (Hs, cs), each of the system acts (Hai , cai), as

well as the previous slot-value (Hv
p , c

v
p) and the candidate (Hv, cv) slot-value.

3.1.3 Referential Context Scorer

The Referential Context Scorer uses the candidate slot value (cv), the antecedent user utterance

as well as the previous slot-value to determine if the candidate slot value was referenced in the

antecedent utterance. Specifically, the scorer uses the representation of the candidate slot value cv

to attend over hidden states of the antecedent user utterance and the previous slot-value, Hu
p and

Hv
p , and then computes attention weights for each of the hidden states. Next, the scorer sums up

the hidden states weighed with the calculated attentions to get the summary context (Equation 3.1).

Finally, the scorer applies a linear neural layer to calculate the scores yvp and yup representing the

likelihoods that the candidate slot-value is different from the previous slot-value and the candidate
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slot-value was unreferenced in the antecedent utterance (Equation 3.2).

Q(H, c) : aj = (Hj)
>c ; p = softmax(a)

Q(H, c) =
∑
i

piHi

(3.1)

yup = W u
p Q(H

u
p , c

v) + bup

yvp = W v
p Q(H

v
p , c

v) + bvp

(3.2)

3.1.4 Fusion Scorer

This scorer leverages necessary details in the previous system utterance to enrich the current

user utterance. First, we use a gating mechanism based on cs and cu that determines the relevance

of the previous system utterance in the current turn. We concatenate cs and cu and use a linear layer

with sigmoid activation to calculate the score α (Equation 3.3). Then, we use attention from cv over

Hs and Hu to calculate context summaries (ls, lu), and combine the summary vectors by taking

their normalized weighted sum based on α. We finally apply a single linear layer to calculate the

score yf that determines the likelihood of the candidate slot-value based on both the current user

utterance and the previous system utterance (Equation 3.4).

fc = Wfc(c
s ⊕ cu) + bfc

α = σ(Wαtanh(fc) + bα)

(3.3)

ls = Q(Hs, cv) ; lu = Q(Hu, cv)

lf = αls + (1− α)lu ; yf = Wlf l
f + blf

(3.4)

3.1.5 System Act Scorer

The System Act Scorer is the same as the action scorer proposed by (27). Specifically, The

scorer uses attention from cu over Ca to calculate action summary followed by a linear layer with

sigmoid activation to calculate the score ya that determines the relevance of the candidate slot-value
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based on the previous system actions (Equation 3.5).

la = Q(Ca, cu) ; ya = (la)>cv (3.5)

It then calculates the final score of the candidate slot-value by taking weighted sum of the four

scores (yup , yvp , yf , ya) followed by a sigmoid layer, where weights are learned in the network.

3.2 Evaluations

The following setup was used for conducting empirical analysis for the model described in

Section 3. However, similar setup is also applicable for the sparse factor graph model.

3.2.1 Experimental Setup

We primarily use WoZ 2.0 (3) restaurant reservation task dataset that consists of 1200 dialogues

for training and evaluation. Each dialogue has an average of eight turns, where each turn contains

system utterance transcript, user utterance transcript, turn label and belief state. All the dialogue

states and actions are based on a task ontology that supports three different informable slot-types

namely price range with 4 values, food with 72 values, area with 7 values, and requests of 7

different types like address and phone. Following the standard settings, we use 600 dialogues for

training, 200 for validation and the remaining 400 for testing.

We also use dialogues from restaurant domain in MultiWoZ 2.0 dataset (7) for secondary eval-

uation. It banks on a significantly complex ontology covering seven informable slot types with 276

different values (food, price range, restaurant name, area, book time, book day and book people

with 97, 6, 105, 8, 43, 8 and 9 values respectively). We use standard training, validation and test

splits of 1199, 50 and 61 dialogues respectively.

All the models on WoZ 2.0 are evaluated on the two standard metrics introduced in (69). First,

Joint Goal Accuracy is the percentage of turns in a dialogue where the user’s informed joint

goals are identified correctly. Joint goals are accumulated turn goals up to the current dialog turn.

Second, Turn Request Accuracy calculates the percentage of turns in a dialogue where the user’s
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WoZ 2.0
Model Joint Goal Turn Request

Delexalisation-Based Model + SD 83.7% 87.6%
NBT - DNN 84.4% 91.2%
NBT - CNN 84.2% 91.6%
GLAD † 86.4% 97.1%
Global biLSTM based GLE 85.0% 96.8%
Global biLSTM based GLE + RC 87.4% 97.0%
Global biLSTM based GLE + RC + FS 88.4% 97.0%
GLAD + RC + FS 89.2% 97.4%

Table 3.1: Test accuracy of baselines and proposed models on WoZ 2.0 restaurant reservation
dataset. Reprinted with permission from (4).

requests were correctly identified. Models on MultiWoZ 2.0 dataset are evaluated using joint goal

and turn inform accuracies, as used by (70).

3.2.2 Implementation Details

We use pretrained GloVe word embeddings (71) concatenated with character n-gram embed-

dings (72) which are kept fixed during the training. Each of bi-LSTMs use 200 hidden dimensions.

All the models are trained using ADAM optimizer (73) with the initial learning rate of 0.001.

Dropout rate (74) is set to 0.2 for all biLSTM modules and the embedding layer. The models are

trained for a maximum of 100 epochs with a batch size of 50. The validation data was used for

early stopping and hyperparameter tuning.

3.2.3 Results

Table 3.1 compares the performance of our proposed models with different baselines, including

delexalisation-based model + SD (3), DNN and CNN variants of neural belief tracker (22) and

the previous state-of-the-art GLAD systems (27) on WoZ 2.0 dataset. We also implement a sim-

plified variant of GLAD, Global BiLSTM based GLE, by removing slot-specific local biLSTMs
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MultiWoZ 2.0 (Restaurant)
Model Joint Goal Turn Inform

GLAD 43.95% 76.99%
GLAD + RC 45.72% 77.87%
GLAD + RC + FS 46.31% 78.76%

Table 3.2: Test accuracy of GLAD and proposed models on MultiWoZ 2.0 restaurant domain
dataset. Note that we considered all 276 slot-values for evaluating models. (7) reported joint goal
accuracy of 80.9 on MultiWoZ 2.0 (restaurant) dataset. We believe they didn’t include restaurant
name slot in their evaluation and only considered presence of three slot-types—book time, book
day and book people—and not their values. Reprinted with permission from (4).

from the GLE encoder. We then successively combine it with referential context (Global biLSTM

based GLE + RC) and the fused previous system utterance (Global biLSTM based GLE + RC

+ FS). Finally, we directly incorporate the referential context and gate selected system utterance

into the GLAD system (GLAD + RC + FS).

Irrespective of the underlying system, utilizing appropriate context from the previous turns

improves the overall performance of a dialogue state tracker on both joint goal and turn request

accuracies on WoZ 2.0 dataset. First, incorporating relevant referential utterances to identify im-

plicitly mentioned slot-value improves the accuracy of global biLSTM based GLE model on joint

goal task by 2.4%. Then, gating based mechanism to augment user utterance with relevant in-

formation from the previous system utterance further improves the joint goal accuracy by 1.0%.

Together, they improve joint goal and request accuracy of the global biLSTM based GLE model by

3.4% and 0.2% respectively. Furthermore, as evident from the results in Table 3.2, both referential

context and fused system utterance proportionally improve performance on MultiWoZ 2.0 dataset

as well with overall improvement of 2.36% and 1.77% on joint goal and turn inform accuracies

respectively. Performances of all models on MultiWoZ 2.0 are significantly inferior compared to

WoZ 2.0 owing to higher complexity, with richer and longer utterances and considerably more
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Model Approx. # of parameters

Global biLSTM based GLE 1.2 million
Global biLSTM based GLE + RC + FS 6 million
GLAD 17 million
GLAD + RC + FS 28 million

Table 3.3: Number of learnable parameters for different models on WoZ 2.0 dataset. Reprinted
with permission from (4).

slot-values in the former dataset.

3.3 Analysis and Discussion

The utilization of relevant context results in significant reduction in the number of learnable

parameters in the model as shown in Table 3.3. Relevant context with the baseline model is able

to outperform GLAD while using only one third of the number of learnable parameters. The

parameters added due to using relevant context are the parameters for encoding the antecedent

referential user utterance and the previous system utterance as well as the past utterance and past

slot-value scorers. However, we also observe high variance in the joint goal accuracy. Since joint

goal is calculated by accumulating turn goals, an error in predicting a turn goal is propagated to all

the downstream turns.

3.4 Conclusion

We have proposed a novel method for identifying the relevant historical user utterance as well

as determining the relevance of the system utterance from the last turn to enrich the current user

utterance and improve goal tracking in dialogue systems. Specifically, we use a mixture of user

utterance and system utterance fused together by their relative importance and the utterance and

predicted slot-value pair from a past turn where the slot type under consideration was last modified.

The experimental results show that the extracted context is able to capture details, from both user

and system utterance, discerning relevant context from the dialog history is crucial for tracking
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dialog states. More importantly, the previous turn utterances allow the system to refer back to

prior turns in dialog history, which helps in implicit reference resolution. By using the proposed

relevant context, we are able to achieve joint goal accuracy of 89.2% and 97.3% turn request

accuracy on WoZ 2.0 data-set. We also conducted experiments on restaurant domain of MultiWoz

dataset to achieve joint goal accuracy of 46.31% and turn inform accuracy of 76.76%.
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4. DIALOG CONTEXT TO TEXT

In this chapter, we talk about dialog generation for task-oriented dialog agents. One of the

problems that we address in this work is the one-to-many problem in dialog generation. There are

multiple responses possible for the same dialog context comprising of the dialog state, last user

utterance and the system act. For instance, in turn 2 in Figure 1.2 the system could also have

responded by saying "Which city do you live in? And, do you have any particular restaurant in

mind?" instead of "In what city and at what restaurant?".

4.1 Approach

We study two generative models for the task of dialog generation. The first model is a trans-

former encoder-decoder model (5) which uses multiple layers attention mechanism in both the

encoding and decoding process. It uses scaled dot-product attention which can be described as

follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4.1)

HereQ is a matrix containing a set of queries, K and V are metrics for keys and values. Unlike

an RNN which processes the text in sequential manner, a transformer model processes the text in

feed-forward manner. The input to the transformer model comprises of the dialog state, last user

utterance and the system act, which are concatenated together separated by special tokens from the

vocabulary.

The second generative model is a conditional variational encoder (CVAE) (6). Dialog genera-

tion can be defined as a conditional distribution:

p(x, z|c) = p(x|z, c)p(z|c) (4.2)

Here, x is the system response, z is a latent variable, and c is the context comprising of the
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dialog state, last user utterance and the system act. p(x|z, c) and p(z|c) are parametrized by neural

networks with parameters θ. As shown in figure 4.1, pθ(z|c) is the prior network and pθ(x|z, c)

is the response decoder. Then to sample a dialog response, first a latent variable z is sampled

from pθ(z|c), and then x is generated through the response decoder pθ(x|z, c). The true posterior

p(z|x, c) is approximated by a recognition network qφ(z|x, c) where there is an assumption that z

follows multivariate Gaussian distribution with diagonal covariance matrix. The lower bound can

be written as:

L(θ, φ;x, c) = Eqφ(z|c,x)[logpθ(x|z, c)]−KL(qφ(z|x, c)||pθ(z|c)) (4.3)

The network is trained with the stochastic gradient variational bayes framework (52) to maxi-

mize the above lower bound.

The advantage of the CVAE is that, unlike transformer encoder-decoder model, we can use the

latent variable z to sample different responses for the same dialog input context.

4.2 Dataset

We use the schema-guided dialog state tracking dataset (2) for empirical analysis of our models.

The dataset consists of conversations between a virtual assistant and users. The data collection

setup used a dialog simulator to generate dialog outlines first and then paraphrasing was done

via crowdsourcing to obtain natural utterances. The dataset contains over 16000 dialogues in the

training set with 16 different services (domains). Some examples of services are banks, calendar,

flights, hotels, movies, restaurants etc. Each dialog has an average of 20 turns. The dialog ontology

contains 214 slot types and over 14000 slot values.

4.3 Results

We use perplexity as a metric to evaluate both of the generative models.

PP (x) = P (x1x2x3...xn)
1/n (4.4)
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Dialog State Last User Utterance System Act

Could you help me with a 
restaurant reservation?

service: Restaurant 
intent: reserve restaurant

request: [ city, restaurant_name ]
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Figure 4.1: The dialog state, last user utterance, and system act are concatenated, separated by
special tokens, to form the input context, c, which is fed to the response generation model. On the
left is a transformer encoder-decoder model (5) which takes in the input context and outputs the
system response. On the right is a CVAE (6) which has an encoding and and decoding process
similar to the transformer model, but also has a recognition network for qφ(z|x, c) and a prior
network for pθ(z|c). The recognition network is only used during training and for testing z is
sampled from the prior network.

Table 4.1 shows the perplexity score for the transformer encoder-decoder and the conditional

variational auto-encoder. The models were trained for 10 epochs each. Greedy decoding was used

for the transformer for generating responses. The perplexity score for CVAE was higher than that

of the transformer. One of the reasons may be because of the need for sampling from the prior

distribution of the latent variable z. For calculating perplexity, z was sampled three times and the

reported score is an average of those three samples. Like the decoding in the transformer model,

the CVAE also utilized greedy decoding for generating responses.
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Model Perplexity

Transformer encoder-decoder 46.7
Conditional VAE 48.3

Table 4.1: Perplexity scores for the transformer encoder-decoder and CVAE on schema-guided
dialog state tracking dataset.

4.4 Discussion

As mentioned in the previous section, the CVAE model scores a higher perplexity than the

transformer model. However, there is an advantage to the CVAE that we want to highlight. Since

CVAE has a latent space z, it is possible to sample from the latent space distribution. This ability to

sample in the latent space allows the generated system response to be a paraphrased version of the

system response for the input context. This is not possible in case of the transformer model. The

transformer outputs the same system response for a single input context. The only way to change

the output of the transformer is by changing the decoding procedure, which is also possible in the

CVAE decoder. Prior works have utilized a CVAE to model the discourse level characteristics with

the latent space. However, here all the discourse level information is given in the input context to

the model, and the model just learns to paraphrase. Since modeling discourse level characteristics

is a much complex problem than paraphrasing, the latent space is quite effective in paraphrasing

the system response. Furthermore, it is pretty resourceful to have the paraphrasing ability in the

system response generation model since the response is not always the same for a fixed input

context in a conversation.

4.5 Conclusion

In this chapter, we studied two generative models, namely, transformer and CVAE, for learning

to generate system response from the input context. The input context to the model was composed

of the dialog state, last user utterance and the system act. We used perplexity to compare the two
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Input: <|START|> i am feeling hungry so i would like to find a place to eat .<|END|> <|ACTSTART|> request city <|ACTEND|>

Output: <|START|> what city do you want to look in ? <|END|>

Actual: <|START|> do you have a specific which you want the eating place to be located at ? <|END|>

Input: <|SVSTART|> city is san jose <|SVEND|> <|START|> i would like for it to be in san jose .<|END|> <|ACTSTART|> 
request cuisine is mexican italian <|ACTEND|>

Output: <|START|> what kind of food do you like ? mexican , italian , or something else ? <|END|>

Actual: <|START|> is there a specific cuisine type you enjoy , such as mexican , italian or something else ? <|END|>

Input: <|SVSTART|> city is san jose cuisine is american <|SVEND|> <|START|> is there some other restaurant which you 
can suggest ? <|END|> <|ACTSTART|> offer restaurant name is bazille offer city is san jose <|ACTEND|>

Output: <|START|> in san jose i have found a nice restaurant called bazille restaurant . <|END|>

Actual: <|START|> how would you like bazille restaurant which is situated in san jose . <|END|>

Figure 4.2: System response samples from the transformer encoder-decoder.

Input: <|SVSTART|> city is san jose cuisine is american <|SVEND|><|START|> is there some other restaurant which you 
can suggest ? <|END|> <|ACTSTART|> offer restaurant name is bazille offer city is san jose <|ACTEND|>

Output 1: <|START|> in san jose i have found a nice restaurant called bazille restaurant . <|END|>

Output 2: <|START|> there is a restaurant in san jose called bazille restaurant . <|END|>

Output 3: <|START|> you can like bazille restaurant in san jose. <|END|>

Actual: <|START|> how would you like bazille restaurant which is situated in san jose . <|END|>

Input: <|SVSTART|> city is palo alto cuisine is american price range is moderate restaurant name is bird dog <|SVEND|> 
<|START|> alright , that seems good . i would like to make a booking at this restaurant . <|END|> <|ACTSTART|> 
request time <|ACTEND|>

Output 1: <|START|> can you tell me the time when you want to book the table for ? <|END|>

Output 2: <|START|> i require a time before booking a table . <|END|>

Output 3: <|START|> when is your booking table ? <|END|>

Actual: <|START|> how would you like bazille restaurant which is situated in san jose . <|END|>

Figure 4.3: System response samples from the conditional variational auto-encoder.

models and found that both the models have comparable performance. Furthermore, CVAE allows

the ability to paraphrase the system response which is not possible in the transformer model.
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5. CONCLUSION

In this work, we proposed a novel technique for dialog state tracking which uses heuristics to

pick relevant turns from the dialog history (4). We showed how this heuristics based approach

can be applied with LSTM and self-attention encoders to improve the DST performance on two

datasets, namely, WoZ 2.0 and MultiWoZ 2.0 (Restaurant domain). We also presented a new way

to combine user and system utterances with a weighted sum to obtain a single vector representa-

tion for the dialog turn. Combining system and user utterance, and utilizing that for DST further

improved the performance of the model.

Secondly, we studied two generative models for dialog generation in a task-oriented setting.

More specifically, we used transformer encoder-decoder and CVAE for generating system re-

sponses in schema-guided DST dataset.

In future, we plan to extend the latent space models like CVAE for dialog generation with

normalizing flows (75).
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