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ABSTRACT 

 

In crop harvesting, a combine travels around in the field to collect grain while a 

grain cart commutes between the combine and a semi-trailer by the roadside to transport 

the grain. There are several problems associated with human-operated grain carts: labor 

shortage and increasing labor cost, operational imprecision and inefficiency as well as 

safety hazards. All of these problems can potentially be addressed if grain carts were 

autonomous. To facilitate full autonomy of grain carts, this study develops a motion 

planning algorithm, featuring a novel integration of Artificial Potential Field (APF) with 

Fuzzy Logic Control (FLC). In addition, this study proposes a high-level software and 

hardware solution to building the navigation systems for implementing the developed 

motion planning algorithm on autonomous grain carts, covering sensor selection, 

communication options, control technique and actuation plan.  

A set of simulation tests featuring the comparison between the proposed 

APF+FLC planner and a simple APF planner were carried out in MatLab Simulink. The 

simulation tests demonstrated that the proposed motion planning algorithm and the 

associated task scheduling strategy could promptly direct an autonomous grain cart to 

intelligently perform the logistical tasks in harvesting operations where unharvested 

crops were the only obstacles as well as when random static or dynamic obstacles 

existed, outperforming the simple APF planner in trajectory length and smoothness by 

roughly 15% to 20%. In addition, another set of simulation tests comparing the proposed 

APF+FLC planner with a Vector- Field-Histogram (VFH) planner were conducted to 
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further evaluate the performance of the proposed algorithm. It was shown that although 

the VFH planner tended to plan smoother paths, the APF+FLC planner was superior in 

terms of generating shorter paths with less computational cost (shorter and less both by 

as much as 60%). Results of the two sets of simulation tests verified the effectiveness, 

robustness, efficiency and computational ease of the proposed motion planning 

algorithm. Following the simulation tests, a set of mobile robot tests implementing the 

proposed navigation solution were conducted, in which the proposed algorithm was 

effective in directing the grain cart to intelligently accomplish the logistical tasks in 

harvest operations. Additionally, the mobile robot tests included a variety of more 

general obstacle avoidance cases, in which the proposed algorithm was always effective 

in leading the robot to efficiently accomplish the navigation tasks, outperforming a 

simple APF planner in trajectory length by as much as 25% and in smoothness by as 

much as three times. The mobile robot tests verified the effectiveness and practicality of 

the proposed navigation solution as well as the effectiveness, robustness, and especially 

efficiency of the proposed motion planning algorithm. 
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1. INTRODUCTION  

 

1.1. Background 

1.1.1. Autonomous Agricultural Vehicles 

1.1.1.1. Motivations 

With global population predicted to exceed nine billion by 2050, the demand for 

food and other agricultural products is expected to increase by 50% compared with that 

in 2012 [1]. Meanwhile, this production should ideally consume fewer resources, 

including arable farmland, labor, water and energy as their availability is limited. The 

concept of producing more with less provides a catalyst for development and 

deployment of autonomous agricultural vehicles (AAVs) [1]. AAVs have the potential to 

increase agricultural productivity by addressing the issues associated with human 

operated machines, including labor shortages, increasing labor costs, operational 

imprecision and inefficiency as well as safety hazards. Below is a more detailed 

description of the benefits of AAVs. 

First, finding and keeping skilled farm laborers is becoming a greater challenge, 

and the labor costs are increasing. From 2002 to 2014, the number of available field and 

crop workers in the U.S. dropped by more than 20% (i.e., at least 146,000 people) while 

their wages increased by 12% [2]. Over a longer span, the real (i.e., inflation-adjusted) 

wage for nonsupervisory farm workers in the U.S. increased by approximately 30% from 

1989 to 2017 [3]. Even with higher wages, farm work is still less attractive than the 

expanding number of well-paid jobs in other industries that are less physically intensive. 



 

2 

 

The average age of agricultural producers in the U.S. has increased from 53.2 in 2002 to 

57.5 in 2017 [4]. When the older farmers exit, there will be fewer producers as not many 

young farmers are entering. The labor shortage, cost growth and farmers’ aging all 

contribute to the dearth of inexpensive operators that can reliably and efficiently operate 

the large and technologically-advanced farming machines in use today. However, if the 

agricultural vehicles were autonomous, they could potentially operate without an 

operator in the cab, addressing the labor issues. Theoretically, AAVs could operate all 

day every day. Unlike human workers, AAVs would not need rest to maintain high 

performance as long as fuel/energy was resupplied, which would be a particularly 

valuable advantage during busy seasons like planting and harvesting. With AAVs, farm 

workers with computer skills could scan multiple monitors remotely in a control room or 

in the field to supervise and/or control the farming operations, running large farms more 

efficiently [5]. 

Second, if equipped with a system of sophisticated sensors, well-designed 

controllers and high-precision actuators, AAVs could potentially “see”, “think” and 

“act” with high precision and efficiency. With the help of navigation technology, AAVs 

could self-locate with only centimeter-level errors. High-accuracy localization can not 

only ensure all crop rows are straight and precisely plowed or planted, but also prevent 

the frequent problem of either covering the same area twice or missing patches, 

improving the uniformity and effectiveness of activities like spraying and planting. With 

optimized path planning, nonoverlapping coverage saves both time and fuel (by as much 

as 40% in some cases) [6]. If coupled with other technologies such as Geographic  
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Information System (GIS), AAVs could apply just the right amount of water, fertilizer, 

pesticides, etc., using resources appropriately and responsibly [7]. In addition, AAVs 

could support real-time communications with farmers and other machines, which would 

promote more effective coordination and more efficient cooperation. In fact, it has been 

estimated that advances in agricultural technology, primarily ground and air AAVs that 

would facilitate precision farming and help farmers make more informed decisions, 

could lead to a more than 70% rise in farm yields globally by the year 2050 [8]. 

Last but not least, farming is considered one of the most hazardous occupations 

in the U.S. With transportation incidents (including tractor overturns) being the leading 

cause, there were 417 farm work-related deaths in 2016, resulting in a fatality rate of 

21.4 per 100,000 workers [9]. While humans have inherent limitations (e.g., reaction 

time, vision, fatigue, potential impairments such as alcohol) and could choose to operate 

improperly (e.g., take a shortcut or ignore a warning), AAVs have the potential to 

enhance operational safety of farming machines as they could be equipped with blind-

spot-free sensors and responsive actuators and, most importantly, they could be 

programmed to never take risky actions. 

Providing nonstop operations with reduced labor and improved precision, 

efficiency and safety, AAVs could potentially bring about higher productivity and great 

economic benefits to agriculture. 

1.1.1.2. Status 

Tractors equipped with automated steering systems that can follow pre-

programmed routes are already being utilized on large farms around the world [10], 
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while agricultural robots are beginning to be deployed to automate various agricultural 

processes, including harvesting, fruit picking, ploughing, soil maintenance, weeding, 

planting and irrigation [11]. GPS guidance, auto-steering systems and GIS software, 

along with many other technologies, are being employed to make farming machines 

operate with less human involvement. It is estimated that guidance systems are now 

supporting 60% to 70% of the crop harvest in North America and more than 90% in 

Australia [12]. Given this technological foundation, leveraging commodity components 

and advanced software, the transition to full autonomy in agriculture may happen faster 

than it is happening in other domains [13]. That being said, most semi-autonomous and 

autonomous farming machines are still under development and/or testing. Some 

researchers [5] believe the automated technology in agriculture is now in the second of 

four stages: (i) automation of individual functions and (ii) auto-steering under operator 

control have been achieved, but (iii) unguided operation and (iv) fully autonomous 

farming are yet to be mastered. Although systems like auto steering have been very 

successful in terms of increasing productivity, operators are still required to be behind 

the wheel to handle complex situations, e.g., trash buildup on an implement or a 

mechanical failure that cannot be handled by an automated system [14]. In fact, it is one 

of the biggest challenges in AAV technology to develop systems that can promptly 

identify and properly react to complex and unpredictable situations in farming 

operations.  

AAV technology, though still at an early stage, has a large market that is rapidly 

increasing [15]: valued at USD 55 billion in 2016, the autonomous farm equipment 
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market is predicted to surpass USD 180 billion by 2024. The market growth is primarily 

driven by the wide use of tractors and harvesters, the labor shortage and demand for 

higher productivity; meanwhile, the market growth is supported by the implementation 

of Internet-of-Things (IoT) and precision farming technologies like autosteering. While 

tractors are anticipated to contribute over 50% of the revenue share by 2024, harvesters 

and UAVs are also predicted to exhibit significant growth in the market share. 

Regionally, North America dominates the global AAV market mainly due to the strong 

presence of well-established industry players. Europe is estimated to grow by about 20% 

by 2024, growth that is propelled by the use of products that offer better fuel efficiency 

and higher productivity. Asia Pacific, led by China, is anticipated to grow by over 25% 

by 2024. Case IH, Agribotix, Agrobot, AGCO, John Deere, Harvest Automation, 

Autonomous Tractor Corporation, CLAAS and Mahindra are among the prominent 

manufacturers and service providers in the AAV arena. 

1.1.1.3. Challenges 

1.1.1.3.1. Human Factor 

Handing over the steering wheel is a major difficulty for farmers in the 

transitioning through the stages of autonomy in agriculture. It may take them years to 

feel comfortable stepping out of the cab and letting the technology take control. 

Additionally, farmers’ ability to interact with these advanced yet complex computational 

systems is limited and needs improvement [14]. Operators need to be taught how to 

work with highly automated systems, just like pilots need to be trained for flying 

airplanes. Requirements for such training may slow down the penetration of AAVs. 
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1.1.1.3.2. Regulations 

The new automated technology brings about unpredictability of potential legal 

changes. For most farm activities, including tillage and harvesting, no current law would 

apply restrictions on an AAV when it is performing farming tasks out in the field. 

Besides, having a farmer remotely monitor the machine in a control room may or may 

not qualify as working under a licensed or certified applicator [16]. Moreover, regulation 

and licensing for AAVs will probably not be available until the liability issue has been 

addressed. Some researchers believe that wide adoption of AAVs will depend on new 

laws that determine the liability in accidents involving AAVs. AAVs may sometimes be 

required to travel on the highways between fields due to the widely dispersed nature of 

the blocks of land farmed by many individuals; an AAV may also deviate from the 

planned track and accidentally gets onto the road nearby due to a malfunction of the 

control software [14]. In either case, if the AAV hits a car, is it the liability on the owner 

of the machine, the manufacturer that developed the software, or some other entity? 

1.1.1.3.3. Reliability 

While AAVs have the potential to dramatically change and benefit agriculture, it 

is a great challenge to design AAVs that can perform safely in every situation of every 

farming task [14]. Any malfunction of hardware or software could result in performance 

degradation or even a severe accident. Hence it is essential for the equipment 

manufacturers to ensure that AAVs and the software controlling them are reliable. 

Software companies are exploiting various techniques, such as formal code inspection, 
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unit testing, regression testing, and large-scale simulation to validate their software 

before real-world applications [13]. 

1.1.1.3.4. Technical Issues 

First, drive trains present a problem. Traditional drive train vendors have 

generally not provided the key precondition for autonomous driving functions, drive-by-

wire. Therefore, some auto tech companies have turned to electric drive trains, as 

Google and Tesla have for their autonomous cars [5]. A traditional drive train is based 

on cables, mechanical transfer of forces, hydraulic pressure and other ways to provide 

direct physical control, while drive-by-wire consists of servomotors or 

electromechanical actuators that are controlled through electric wires. Therefore, in the 

case of retrofitting an old farming machine into self-driving equipment, the big 

difference between traditional mechanical connections and drive-by-wire mechanism 

could be an issue. 

Second, sensing presents a problem. Many driverless cars use cameras, radar, and 

lidar to sense the surrounding environment. Yet in agricultural fields, fewer recognizable 

objects or structures exist to provide obvious cues for decisions. Besides, compared to 

laboratories, agricultural environments have more uncertainties. Algorithms for 

computer vision and radar or lidar sensing are commonly developed on highly structured 

data, like a camera focusing on stationary, readily identifiable objects in a building. 

However, in the field, leaves fly around, lighting conditions vary, dust and dirt cover 

camera lenses, which can all affect sensing algorithms. Thus, algorithms designed for 

and tested in a laboratory environment may not work as well in a much more 
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unstructured farming environment [5]. There are some navigation systems that are 

exclusively reliant on GPS [17][18], but it cannot be ignored that GPS signals tend to be 

affected by sunspots, reflections from objects, tree coverage and ionospheric interference 

[16]. To increase the accuracy of conventional GPS navigation systems, additional 

technologies such as Differential GPS (DGPS) and Real-Time Kinematic GPS (RTK-

GPS) have been employed; yet both require a base station to be located within the 

receiving range of the rover receiver mounted on the AAV [19].  

Last, field surveys present a problem. Although some studies have looked at 

autonomous navigation based on ad-hoc localization and online motion planning, a large 

number of navigation solutions [20] rely on a priori knowledge of the field for offline 

path planning before motion, which requires a high-precision field survey in advance. 

This may require a great amount of work as the survey results need to include the 

accurate shape and coordinates of the field boundaries, longitude and latitude of the rows 

as well as the division between headlands and arable lands. 

1.1.2. Autonomous Grain Carts 

1.1.2.1. Overview 

The combine harvester is the principal machine for harvesting grain crops. As 

shown in Figure 1.1, crops are first gathered in by the header at the front, then travel up 

the grain conveyor to feed into the threshing cylinder, following which the separating 

cylinder separates the grain from the straw. The grain, after being sieved, will be 

temporarily stored in the grain tank while the waste straw passes along the straw walkers 
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towards the back of the machine, where a straw spreader throws the straw over a wide 

area of ground behind the combine. 

 

 

Figure 1.1 Combine harvester. Reprinted from [21]. 

 

Cooperating with the combine, a grain cart is a trailer towed by a tractor, and the 

term “grain cart” is used herein to encompass the system including both the tractor and 

the trailer, whose large capacity allows it to service single or, although not discussed in 

this work, multiple combines [22][23] in harvest operations. When harvesting crops such 

as wheat, soy and corn, a combine follows a specific route to cover the field while a 

grain cart performs a series of supporting logistical tasks. When the combine’s tank fills 

up, the grain cart will approach and drive alongside the combine to unload the grain 

without interrupting the harvesting (Figure 1.2). Then the grain cart will travel to an in-

field storage station, which is typically a semi-trailer parked by the roadside for later 

road transport. After transferring the grain to the semi-trailer, the grain cart will either 

stand by or go to the combine for the next work cycle. 
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Figure 1.2 Grain cart unloading grain from combine. Reprinted from [24]. 

 

If the grain cart is autonomous, it can perform all the above logistical tasks 

without an operator, which would solve the aforementioned problems associated with 

human-operated machines; i.e., labor shortage and increasing labor cost, operational 

imprecision and inefficiency as well as safety hazards. To develop an autonomous grain 

cart that can intelligently navigate in the field and efficiently cooperate with the 

combine, the following challenges need to be addressed. 

1.1.2.2. Challenges 

1.1.2.2.1. Temporal Constraints 

The objective in harvest is to maximize crop quantity and quality while 

minimizing the inputs of fuel, time and labor. Doing so requires the combine to operate 

nearly nonstop throughout the harvest, requiring the grain cart to meet the combine when 
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the combine reaches full capacity. These temporal constraints mean that the grain cart 

operator must carefully schedule and sequence the operations. Otherwise, the combine 

may fill up and be forced to stop before the grain cart arrives, interrupting the 

harvesting; or the grain cart may arrive too early and have to follow the combine before 

unloading starts, resulting in extra fuel consumption and nonproductive time [25]. This 

important meeting timing is currently determined by the combine’s operator based on 

experience, which can be inconsistent and often suboptimal. 

1.1.2.2.2. Spatial Constraints 

The cooperation of the combine and grain cart must account for the dynamic 

nature of the harvesting environment. As the combine travels along the rows cutting the 

crop plants, harvested areas that are traversable for the grain cart are constantly 

changing. Routes planned in the last work cycle could have become suboptimal and need 

updating. Additionally, when the combine needs to be unloaded, only the track to the left 

of the combine’s path can be used by the grain cart, as almost all combines have the 

unloading auger on the left [26]. 

1.1.2.2.3. Real-time Adaptation 

Besides the two major challenges above, unexpected obstacles and/or events may 

occur during harvesting, such as the varying yield of different field areas that can change 

the combine’s speed and fill rate, or another vehicle’s passing through the field and 

interfering with the harvest. Thus, motion planning for grain carts is inherently a 

dynamic problem that needs real-time adaptation, raising the requirement for 

computational efficiency [27]. 
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1.1.2.2.4. Numerous Parameters 

The cooperation of the combine and the grain cart is made particularly difficult 

by the inherent complexity of harvest operations, primarily stemming from the numerous 

parameters to take into account [27] such as dimensions, pose (i.e., position and 

orientation), speed, grain tank capacity and unloading rate of the combine; geometry and 

yield of the field; locations of obstacles or restricted areas in the field; and dimensions, 

pose, speed, unloading rate and kinematic constraints of the grain cart. 

1.2. Literature Review 

1.2.1. Industry 

1.2.1.1. Kinze 

Iowa-based Kinze, a manufacturer of grain carts and planters, has been working 

with Jaybridge Robotics on the Kinze Autonomous Grain Harvesting System (Figure 

1.3). During the multiyear project, Kinze has improved from the first system in which a 

combine controlled a single grain cart to the most recent system in which a combine can 

control multiple grain carts. The latest system keeps track of all vehicles in operation and 

orchestrates their paths to ensure the grain carts always take the safest and most efficient 

route to the combine [14]. 

The software by Jaybridge Robotics runs on the embedded computer onboard the 

tractor and is capable of performing key tasks including path planning, control, collision-

free navigation and vehicle-to-vehicle (V2V) communication, which all take place in 

real-time during harvest. Via a touch-screen tablet, the user interface (Figure 1.4) allows 

operators to remotely coordinate the vehicles in four modes. Offload drives the grain cart 
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alongside and in sync with the combine to unload the grain; Follow keeps the grain cart 

following along behind the combine; Park orders the grain cart to return to a designated 

location where it transports the grain to a semi-trailer; Idle simply makes the grain cart 

stop and await further instruction [13]. 

 

 

Figure 1.3 Kinze testing Autonomous Grain Harvesting System. Reprinted from 

[13]. 

 

 

Figure 1.4 User interface of Jaybridge Robotics’ software. Reprinted from [13]. 
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The Kinze Autonomous Grain Harvesting system was first unveiled to the public 

in 2011, soon after which the system was tested in actual harvests in Illinois. In the 

following years, Kinze has continued their work on enhancing the capabilities and 

robustness of the system, preparing for future commercialization [13]. 

1.2.1.2. Smart Ag 

The Iowa-based software company, Smart Ag, released the AutoCart system in 

2018. This cloud-based software application is designed for automating tractors pulling 

grain carts, allowing farmers to use tablets to set unloading locations, adjust speeds, 

monitor locations and command the grain cart to sync motions with the combine. This 

technology is expected to be able to automate existing equipment regardless of the 

manufacturer. Using AutoCart in a harvest operation, the combine can signal the grain 

cart to approach and unload the grain. Once the unloading is finished, the system 

automatically directs the grain cart to the grain transfer point in the field [28]. The 

software calculates in real time everywhere the grain cart can go before planning the 

most efficient path. The software can detect crops, humans, vehicles, etc., and will stop 

the grain cart before it hits an obstacle [29]. 

1.2.1.3. Autonomous Tractor Corporation 

Autonomous Tractor Corporation (ATC) has engineered retrofit kits named 

eDrive and AutoDrive. While the former equips tractors with diesel-electric technology 

using diesel generator sets and wheel motors, the latter upgrades tractors to be fail-safe 

and autonomous by providing navigation functions, safety features and implement 

management. ATC’s retrofit kits allow farmers to “train” the tractor and the implement 
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by manually performing the tasks first, after which, the tractor will replicate and 

extrapolate the training carefully. ATC has released a series of application packages, 

including tilling, grain cart shuttling (between combine and semi-trailer), manure 

spreading, spraying, land leveling and planting. As a supplement, ATC also developed 

and patented its Laser-Radio Navigation System, which incorporates multiple sensors to 

achieve accurate and reliable navigation, better supporting autonomous and safe 

movements and operations [30]. 

1.2.1.4. CNH Industrial 

In 2016 CNH Industrial unveiled an autonomous concept tractor (Figure 1.5) 

under their brand Case IH. As CNH continues to improve the design, the autonomous 

tractor, which is fully functional and can already work in the field, is scheduled to be 

commercially available as early as 2020 [8], assuming legislation issues for autonomous 

vehicles do not hinder progress. 

 

 

Figure 1.5 Case IH concept autonomous tractor. Reprinted from [31]. 
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New Holland Agriculture, another subsidiary of CNH Industrial, released their 

autonomous tractor NHDrive (Figure 1.6) at the same time. Carrying the same 

technology from the same external company (i.e., Autonomous Solutions Incorporated), 

NHDrive differs from the Case IH’s autonomous tractor by maintaining a fully equipped 

cab so a human operator can handle those tasks too challenging for complete autonomy. 

Similar to Kinze’s case, operators can use a tablet to plan and adjust paths for the 

CNH Industrial tractors, and even manage multiple tractors to run various operations in 

separate fields [32].  

 

 

Figure 1.6 NHDrive autonomous tractor. Reprinted from [33]. 

 

Before the concept autonomous tractor, Case IH introduced in 2011 a V2V 

system with which a combine could request a grain cart to approach for unloading. Once 

close enough, the combine could take control of the grain cart, coordinating both 
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machines for more precise and efficient unloading. Besides increased efficiency, 

adoption of the V2V system lowers the required skill level of operators as well [34]. 

1.2.1.5. John Deere 

John Deere’s AutoTrac system integrates multiple sensors to provide an assistive 

system that automatically steers the machine through the field. AutoTrac offers benefits 

including less operator fatigue, reduced overlaps and misses, less wear and tear on 

equipment, and fuel savings [35]. 

John Deere’s Machine Sync connects up to ten machines within a three-mile 

radius, and it can not only synchronize the movements of the combine and grain cart for 

grain transfer, but also improve overall harvest logistics. Installing Machine Sync 

requires a set of communication hardware and software, which all work together to 

provide real-time communication capability between farm workers so that they are 

aware of each other’s locations as well as the fill levels of the combines [34]. 

1.2.1.6. AGCO 

AGCO in 2011 unveiled a prototype of Fendt’s GuideConnect, a system that 

pairs vehicles as a single unit to improve productivity in farming operations. The leading 

tractor is driven by a human operator, and the following tractor is unmanned and 

directed and monitored via satellite navigation and radio communications. Using the 

GuideConnect system when two tractors are supposed to perform an operation together, 

the unmanned tractor can follow the leading tractor at a predefined distance and offset, 

not only in straight lines, but also for turns at the end of the field. When navigating 

around obstacles in the field, the human driver can command the following tractor to 
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travel straight-behind until the obstacles are passed. When the satellite signal is 

interrupted, the following vehicle stops automatically. AGCO is continuing to improve 

the system via additional field tests [34]. 

1.2.1.7. Yanmar 

In 2018, Yanmar launched two tractors with autonomous features in Japan, 

namely the semi-autonomous Auto Tractor and the unmanned Robot Tractor. Both 

tractors rely on Yanmar’s unique Information and Communications Technology (ICT) 

that combines advances in industrial robotics with precise positioning data provided by 

the onboard RTK-GPS. A waterproof, ruggedized tablet is employed for the human 

operator to program driving routes and track the machines. In operation, two modes are 

available to control the tractor: in “Auto” mode, the tractor handles all driving operations 

(i.e., forward, reverse, turn and stop), while in “Linear” mode, the tractor only handles 

moving back and forth across the field during cultivation, offering more flexibility so 

that human operators can take over to deal with more difficult terrain and/or complex 

situations. The ICT system also gathers data through a sensor network to facilitate farm 

management [36][37]. 

1.2.2. Academia 

1.2.2.1. Coordination/Cooperation 

Numerous academic studies have been carried out to develop leader-follower 

systems for the purposes of higher working efficiency and lower labor requirement. For 

example [38], two robot tractors were used to form such a system in which they could 

either work separately or together in a certain spatial arrangement during the operation. 
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When turning on the headland, they coordinated without keeping the spatial arrangement 

to make the best use of available space and avoid collisions. Field experiment results 

showed that the two robot tractors could work safely together with minor lateral 

navigation errors and improved efficiency. A number of other studies have focused on 

only one automated tractor that would follow a human-driven tractor. One study 

implemented an Extended Kalman Filter that fused an odometer and a laser range finder 

(LRF) for stable tracking in noisy conditions [39], while another study involved 

designing a monocular vision-based sensing system that worked with a PID controller 

for maintaining the required distance between two vehicles [40]. Simulation results of 

the former technique verified high accuracy and stability, while field test results of the 

latter technique indicated satisfactory accuracy and the potential for application in grain 

harvest operations. Another study [41] focused on the development of two motion 

control algorithms named GOTO and FOLLOW and had the similar objective of 

coordinating two farming vehicles. The specific concern was that if there were a 

potential collision due to path overlap, the slave (follower) would automatically slow 

down or change paths to yield to the master (leader). The FOLLOW algorithm 

incorporated a nonlinear sliding mode controller that guided the slave to follow, 

regardless of the traveling speed and direction, the master at the specified distance and 

angle. This study further validated that the sliding mode controller could outperform PD 

controllers with lower lateral offset and better spacing controls.  

Some studies considered coordinating more than two farming machines. For 

example, one study focused on a distributed control framework to coordinate teams of 
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agricultural vehicles to operate in proximity [42]. This framework supported peer-to-

peer operation mode in addition to master-slave mode. Equipped with a nonlinear model 

predictive controller, each vehicle incorporated the other vehicles’ motion plans in the 

computation of optimal control actions for collision-free path tracking. Simulation tests 

showed that the minimization of the tracking error enabled the controller to accurately 

track all paths, even those with sharp turns. A system architecture presented in another 

study [43], also designed to synthesize a fleet of agricultural robots, integrated software 

from different developers. For validation, the architecture was applied in a fleet of 

ground-based mobile units based on a commercial tractor chassis. In general, the 

proposed architecture was determined to be efficient in terms of integrating new sensors, 

implements, and innovative algorithms in a fleet of agricultural robots.  

Another study [44] took a very different approach, as no vehicle was automated, 

and a multi-agent coordination and control system for a combine and a grain cart 

involved in a crop harvesting process was deployed. The system generated detailed 

instructions and guidance for the operator of each vehicle via a graphical user interface 

(GUI). The actual execution of the operations was monitored in case of any variations or 

disturbances, and the control instructions were updated to remain valid and effective 

throughout the process. 

The above studies focused on connecting two or more agricultural vehicles to 

enable them to achieve collision-free cooperation when performing farming tasks 

together. They placed more importance on the efficient and safe local coordination of the 
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vehicle motions, while the complex navigation and scheduling tasks in the large-scale 

dynamic farming environment were not addressed. 

1.2.2.2. Motion Planning 

As described previously, motion planning in complex and dynamic agricultural 

environments is a difficult task, which a few studies have addressed. One study [45] 

considered an optimized coverage planning approach for farming operations in the fields 

where obstacles were present. The approach featured four planning steps: (i) generation 

of field tracks, (ii) clusterization of the tracks into blocks considering the obstacle areas, 

(iii) generation of headland paths, and (iv) sequence optimization for farming vehicles to 

visit the blocks. This approach was tested and proved to be able to provide necessary 

information for navigation of farming machines in complex fields with obstacles. 

Another study [46] that also considered obstacles proposed an algorithmic approach for 

optimal path generation for service units. The approach abstracted a field as a two-

dimensional grid. The grid cells had different states in both the representation domain 

(i.e., obstacle, free, initial, or goal region) and action domain (i.e., service unit to move 

one cell up, down, left, or right). Based on this concept, a discrete transition graph was 

created, and finally the optimal path was generated by a graph search algorithm. 

According to the simulation results, the proposed approach increased the overall 

efficiency of the cooperative operations, reduced soil compaction, and could be applied 

in large scale cooperative operations, thanks to its low computational requirements. 

Using a different method, another study [47] that developed a randomized motion 

planner for mobile robots in agricultural environments also achieved high computational 
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efficiency. The highlight of the proposed approach was splitting planning into two 

phases to reduce computational time. Phase I was primary path planning with Rapidly-

exploring Random Tree (RRT), and Phase II was path smoothening and refining with B-

spline curves. Results of the numerical experiments validated the practicality and 

effectiveness of the planner. 

Although the techniques proposed in the above studies showed promise for 

motion planning in complex environments, they were not feasible for online 

applications. They were able to generate efficient paths for the vehicle to cover an entire 

field with obstacles, but the computations relied on the full knowledge of the field and 

were performed before the vehicle started any motion. However, to enable a grain cart to 

navigate autonomously, the motion planning needs to be conducted in real-time while 

the grain cart is moving around and the environment is changing. 

1.2.2.3. Task Scheduling 

A number of studies have approached the problem of optimal task scheduling in 

farming operations from different perspectives. One study [48] addressed the dynamic 

vehicle routing problem considering time constraints on servicing demands. The main 

contribution of this work was that it provided insight into how temporal information on 

location of demands could be converted into a reachability graph, based on which 

optimal routing policies could be designed for a service vehicle. A performance analysis 

of the optimal policy was conducted, and the results justified the analytic claims 

presented. An earlier study [49] proposed two optimization methods for vehicle routing 

problems under time constraints. The first method featured a K-Tree relaxation and the 
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second a Lagrangian decomposition. Both algorithms could provide optimal solutions to 

problems with up to 100 visiting points. Another study [50] did not focus on algorithms 

yet contributed to this research field by proposing a novel taxonomy that categorized 

problems with temporal and ordering constraints. The taxonomy emphasized the 

differences between temporal and ordering constraints, and it organized the reviewed 

literature accordingly. A variety of topics related to task allocation were covered by this 

study, including vehicle routing and scheduling problems. 

The task scheduling techniques presented above could address various servicing 

demands at many locations. However, the scheduling problems they dealt with were 

static, as the servicing demands and visiting points were invariant over time. In harvest 

operations, the task scheduling problem is dynamic, as the combine’s fill rate and speed 

vary with time, and unexpected events/obstacles occur, which affect the temporal 

constraints in unpredictable ways. 

1.2.3. Research Gaps 

From the standpoint of industry, numerous farm equipment manufacturers and 

startups have ongoing projects that involve AAVs. Most AAV systems being developed 

or marketed (e.g., remote control with tablet computers, leader-follower systems, and 

driving assistance) may be practical for today’s farming operations, but they are better 

described as remote-controlled or semi-autonomous instead of fully autonomous, as 

human supervision and/or control is still required.  

From the standpoint of academic research, a number of studies involving 

planning for AAVs have been published. However, the majority of AAV studies have 
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tried to solve simplified generic problems without focusing on specific farming 

operations that are often of higher complexity. The interactions between combines and 

automated/autonomous grain carts that are characterized by tight interleaving of 

temporal and spatial constraints have been scarcely investigated [51]. Most production-

level harvesting with combines and grain carts is still performed without detailed 

planning, and harvesting efficiency heavily relies on the operators’ experience [52]. 

Therefore, the existing motion-planning approaches, although shown to be 

effective and efficient in many applications, cannot be used without modifications or 

improvements for autonomous grain carts that service combines in harvest operations. 

Ideally, a good planning algorithm for an autonomous grain cart can promptly generate 

the most efficient motions to direct the grain cart to reach the combine at the right time 

in the right pose, taking into account the pose, speed and fill level of the combine, the 

dynamic environment, and the kinematic constraints of the grain cart. To the best of the 

author’s knowledge, such motion planning algorithms are still to be developed. 

1.3. Objectives 

To address the research gaps noted above, this study attempts to develop a 

motion planning algorithm that can facilitate full autonomy of grain carts for intelligent 

navigation in crop fields and efficient service to combines in harvest operations. This 

overall goal can be divided into the following two specific objectives. 

The first objective is to develop a motion planning algorithm and an associated 

task scheduling strategy for autonomous grain carts to intelligently navigate in the field 

and accomplish the logistical tasks in harvest operations. This objective takes into 
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account the spatial constraints (i.e., environmental dynamics caused by crop rows and 

other static and dynamic obstacles) and temporal constraints (i.e., meeting timing 

between grain cart and combine). The solution procedure involves performing 

simulation tests to verify the effectiveness (i.e., accomplishment of navigation tasks), 

robustness (i.e., effectiveness in simple and complex test cases), efficiency (i.e., 

generation of short and smooth paths) and computational ease (i.e., low consumption of 

CPU time) of the motion planning algorithm and the associated task scheduling strategy. 

The second objective is to provide a high-level software and hardware solution to 

building navigation systems on autonomous grain carts for implementing the proposed 

motion planning algorithm. This objective covers sensor selection, communication 

options, control technique, and actuation plan. The solution procedure involves carrying 

out mobile robot tests to first verify the effectiveness and practicality (i.e., effectiveness 

in real-world setups) of the navigation solution, then further verify the effectiveness, 

robustness, and especially efficiency of the proposed motion planning algorithm. 
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2. SOLUTION PROCEDURE 

 

This study accounts for the following technology components, which are 

indispensable to building an AAV: sensors that perceive the environment and measure 

the vehicle’s states; communication between the vehicles for information sharing; 

decision-making algorithms for planning and control; and actuators for implementing the 

control commands [1]. Figure 2.1 illustrates a general architecture of navigation systems 

on AAVs that can be extracted and summarized from other studies [2][3][4][5][6]. 

Following this architecture, this section explores the solution procedure to address the 

objectives noted in the previous section. Specifically, this section focuses on the 

development of the motion planning algorithm and provides a high-level solution to 

building the associated navigation system, covering sensor selection, communication 

options, controller technique and actuation plan. 

 

 

Figure 2.1 General architecture for navigation systems on AAVs. 
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2.1. Sensor Selection 

As the first link of the technology chain of the navigation system, sensors collect 

essential data on environmental variables and vehicle states and feed them to the 

planner. To replace the sophisticated human sensing system based on the eyes, ears and 

most importantly, the brain, sensing systems on autonomous grain carts need to be 

accurate, reliable and robust. Popular sensors used for automating agricultural vehicles 

include Real-Time Kinematic Global Positioning System (RTK-GPS) receivers, 

cameras, Inertial Measurement Units (IMUs), Geomagnetic Direction Sensors (GDSs), 

radar systems, Fiber Optic Gyroscopes (FOGs), Light Detection and Ranging (LIDAR) 

sensors, optical encoders, potentiometers, Radio Frequency (RF) receivers, piezoelectric 

yaw rate sensors and Near Infra-Red (NIR) sensors [6]. 

Among these, GPS based systems are the most extensively adopted. Having been 

in practical use for many years though, GPS based systems are primarily employed only 

for global localization and cannot provide any information about the environmental 

dynamics caused by nature or humans. Therefore, more research has been devoted 

recently to guiding agricultural vehicles with local sensors that observe the vehicles’ 

surroundings in real time [7], in which the major challenge is the reliable obstacle 

detection and traversability assessment in the complex unstructured agricultural 

environment. Traversability assessment mainly differentiates soil surfaces covered by 

crop plants from traversable land where crop plants have been harvested. Meanwhile, a 

variety of other types of obstacles can be encountered in the field, including static 

obstacles (e.g., trees, utility poles and storage buildings) and dynamic obstacles (e.g., 
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people, animals and other farming machines). In this subsection, a number of sensors are 

compared, and some of them are selected to form the perception system of autonomous 

grain carts, whose functions include global localization, local perception and vehicle 

states measurement [1][8]. 

2.1.1. Global Localization 

Global Navigation Satellite Systems (GNSS) refer to all satellite-based global 

localization systems that can be publicly used for vehicle positioning (e.g., GPS, 

GLONASS, Galileo, Beidou). Including its applications in precision farming and 

agricultural automation, GPS has been extensively used in modern agricultural 

production. Knowing the accurate location of a farming machine in the field can 

facilitate a variety of activities, including yield monitoring, variable rate application and 

automated navigation. 

To improve localization accuracy of basic GPS, Differential GPS (DGPS) has 

been devised, which corrects original GPS signals with signals emitted by a reference 

receiver at a well-known location. Differential corrections improve localization data 

considerably by cancelling satellite ephemeris and clock errors, reaching a centimeter-

level accuracy with commercial differential signal providers in case of the best 

implementations. Global localization of an autonomous grain cart requires centimeter-

level accuracy as it needs to carefully cooperate with the combine in close proximity to 

unload the grain evenly and precisely into the cart. More importantly, the localization 

needs to be performed in real-time as an autonomous grain cart navigates in the field 

during a harvest operation. Fortunately, this can be achieved with RTK-GPS. An RTK-



 

36 

 

GPS set consists of two receivers, namely a base and a rover, a radio link for data 

transmission between receivers, and computer software that calculates differential 

corrections from the base receiver, which is placed in proximity to the operating location 

of the rover receiver. Allowing the vehicle to be as far as ten kilometers away from the 

base, RTK-GPS can provide accuracy as high as two centimeters, which fulfills the 

requirement for global localization of autonomous grain carts. 

2.1.2. Local Perception 

Considering the large scales of crop fields and the parking locations of semi-

trailers, autonomous navigation of grain carts in complex harvest operations in large 

crop fields would require a sensing range of hundreds of meters to detect distant 

unharvested crop rows and other random static or dynamic obstacles. Meanwhile, 

centimeter-level accuracy and resolution are needed so that obstacles like individual crop 

plants and utility poles would not be missed in the obstacle detection. Different 

alternatives for local perception are available, but each has advantages and 

disadvantages. 

Monocular or stereo computer vision provides high resolution, high sampling 

rate and rich content (e.g., color, texture and range), yet the sensing range is relatively 

short (i.e., 15 to 30 m) and the required processing algorithms tend to be complex. 

Besides, cameras are sensitive to lighting and visibility conditions (e.g., rain, fog, smoke, 

etc.). Radar is more robust to diverse environmental conditions and has a longer 

detection range (i.e., 100 to 150 m), but its low resolution produces difficulties in signal 

processing and interpretation. Lidar has drawn much attention recently for sensing on 
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autonomous vehicles. Although it is somewhat sensitive to dust, fog and rain, lidar 

provides high accuracy, high resolution and fast detection over a reasonable range (up to 

250 m). Lidar employs a laser optical scanner that emits pulsed laser beams and receives 

the beams reflected from the detected object to determine the distance by measuring the 

time interval between the emission and reception of the laser beams. Reports from 

several studies [1][5][6] have discussed the superiority of lidar over other widely used 

sensors in robustness, range, response speed and cost in AAV applications. 

Considering that (i) most harvests take place in weather conditions without rain 

or fog, and (ii) the primary task of the grain cart is to navigate through crop rows (i.e., 

obstacle avoidance with no need for identification of traffic lights or signs), 2D lidar 

should be able to deliver sufficient local perception for an autonomous grain cart. 

2.1.3. Vehicle States Measurement 

Real-time measurement of grain carts’ states of motion is also essential to 

autonomous navigation. While RTK-GPS can provide an estimate of global location of a 

grain cart, IMUs (i.e., electronic devices that combine accelerometers and gyroscopes) 

can capture a grain cart’s instantaneous linear acceleration and velocity as well as yaw 

rate and heading. While accelerometers detect accelerations along the three orthogonal 

Cartesian axes (which can be integrated to obtain linear velocities), the gyroscopes 

measure instantaneous angular rates experienced by the vehicle around the Cartesian 

axes (which can be integrated to obtain attitude angles yaw, pitch, and roll). 

The most notable problem with IMUs is the error accumulation over time, i.e., 

sensor drift, which can be addressed by a variety of sensor fusion methods. For example, 
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fluxgate compasses can be incorporated complementarily to IMUs for more robust 

heading detection; meanwhile, magnetic counters (which count the number of rotations 

of a driven wheel) and radar sensors can be employed to support more accurate linear 

velocity measurement. 

2.2. Communication Options 

Establishment of V2V communication is imperative for efficient cooperation 

between a combine and grain cart. Specifically, the grain cart needs to know the 

combine’s pose, speed and fill level for planning when and where to go for meeting. Cell 

Global System for Mobile communications (GSM), Wireless Local Area Network 

(WLAN), Bluetooth and ZigBee are popular means used for V2V communications in 

agricultural operations involving two or more vehicles [9][10]. These technologies 

compete with each other in bit rate, signal quality, coverage area, cost and power 

consumption. 

GSM networks are known for their broad coverage and good signal quality, but 

they are far more expensive to establish and maintain than WLANs. WLAN is a flexible 

data communication protocol implemented to extend or substitute for a wired local area 

network. Operating in the 2.4 GHz frequency band, WLAN consumes much less energy 

than GSM while providing a signaling rate (11Mbps) high enough for fast transfers of 

video, audio, graphics and files. Although the distance between the transmitter and 

receiver has a great influence on WLAN’s signal quality and bit rate, the typical 

transmission range of 100 m can be extended to ten times longer with the technology of 

long-range Wi-Fi. Bluetooth is a wireless protocol that uses the 2.4 GHz, 915 and 868 
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MHz radio bands to communicate among relatively simple devices, transferring audio, 

graphics and files at 1 Mbps but only within very short distances (i.e., typically less than 

10 m). Bluetooth consumes relatively minimal power. Finally, ZigBee, featuring low bit 

rate (250 kbps), power consumption and latency as well as a simple network 

configuration, is suitable for small data packet transfer in wireless control and 

monitoring applications. The ZigBee transmission distance can also be enlarged to 

thousands of meters by establishing a mesh network with intermediate devices.  

The above comparison shows that WLAN and ZigBee meet the following 

communication requirements for an autonomous grain cart: (i) capability for real-time 

transmit of pose, velocity and fill level, (ii) low energy consumption, (iii) 1000-meter-

level range to cover larger fields, and (iv) inexpensive and simple networking 

configuration. 

2.3. Planner Development 

2.3.1. Existing Planning Techniques 

Motion (path) planning has been a popular subject of study in mobile robotics. 

Researchers have categorized planning techniques in different ways. For example, some 

compared conventional algorithms with heuristic algorithms [11][12]. Conventional 

algorithms (e.g., Artificial Potential Field, Roadmaps) have solved a wide variety of 

planning problems, yet they all have drawbacks like computational complexity, sub-

optimality and path infeasibility under certain constraints. Consequently, many heuristic 

algorithms (e.g., Fuzzy Logic, Neural Networks) have been developed to address these 

issues, aiming at higher efficiency and enhanced intelligence. Although heuristic 
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algorithms do not guarantee a solution, whether utilized independently or as a 

complement to conventional approaches, when they do find the solution they are 

normally significantly faster than conventional methods. Some researchers have 

differentiated offline approaches from online approaches [13][14][15]. While offline 

planning is completed before the motion based on a priori information about the field 

and operation, online planning takes place incrementally during motion based on the 

real-time sensing information. Some of the most widely used planning techniques are 

discussed below, noting whether they are conventional or heuristic. For the conventional 

techniques, offline or online is also noted. Heuristic techniques can be both online and 

offline as they are often employed as a complement to conventional techniques. 

2.3.1.1. The Bug Algorithm (conventional, online) 

The Bug Algorithms are among the earliest and simplest sensor-based planners 

that address online planning in unknown environments. The basic Bug Algorithm 

(Figure 2.2) navigates an area and controls a robot equipped with touch sensors such that 

it circumvents a detected obstacle clockwise or counterclockwise until reaching a 

straight line to the goal, which is then followed by the robot to either reach the goal or 

another obstacle. The basic Bug Algorithm can be upgraded to the Tangent Bug 

Algorithm when the robot is equipped with long range sensors, which allows the robot to 

follow the tangent line to the next obstacle lying on the straight line to the goal. The Bug 

Algorithms are known for simplicity and low memory consumption. However, they have 

drawbacks such as long and suboptimal paths as well as potential collisions. 
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Figure 2.2 Robot circumventing obstacle with Bug Algorithm. Reprinted from [16]. 

 

2.3.1.2. Artificial Potential Field (conventional, online) 

Artificial Potential Field (APF) refers to the potential field constructed by the 

potential functions artificially assigned to the goal and the obstacles in a navigation task. 

The potential functions are specifically designed such that taking the gradient of them 

generates attractive forces towards the goal and repulsive forces from the obstacles. The 

farther from the goal, the greater the attractive forces; the closer to the obstacles, the 

greater the repulsive forces. The vehicle is assumed to navigate under the influence of 

the resultant forces, which will lead the vehicle to the goal while keeping it away from 

the obstacles (Figure 2.3). APF is known for its mathematical elegance and simplicity as 

well as its computational efficiency, which makes it suitable for online feedback 

planning and control. However, this technique suffers from a major drawback that often 

compromises the plan’s rationality and efficiency; when there is a cancellation of 

attractive and repulsive forces, the vehicle may become stagnant at or wander around 

points other than the goal, a situation known as being trapped in local minima (Figure 
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2.4). Due to the force cancellation or contradiction, the robot may also experience 

oscillations in long narrow corridors and not be able to pass between closely spaced 

obstacles [17]. 

 

 

Figure 2.3 Artificial Potential Field with repulsive and attractive forces. Reprinted 

from [18]. 
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A 

 
B 

Figure 2.4 Local minima caused by force cancellation and contradiction. (A) 

Obstacle in between and obstacle behind goal. Reprinted from [19]. (B) No pass 

through narrow gap. Reprinted from [20]. 

 

2.3.1.3. Roadmaps (conventional, offline) 

The roadmap approach is built on the concept of configuration space (i.e., C-

space, the set of all positions the robot can attain). While physical obstacles are 

represented by forbidden regions in the C-space, the process of searching for a collision-

free path is reduced to constructing a continuous route connecting start and target points 

in the free region. In other words, with the geometric representation of the environment, 
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the planning task becomes a graph-searching problem, which enables many offline 

planning techniques to produce a globally optimal solution. Well-known roadmaps 

include the visibility graph, Voronoi diagram and cell decomposition, which capture 

topology of the free space in different ways (Figure 2.5). 

A visibility graph is drawn by connecting two vertices of mutually visible 

polygonal obstacles. The shortest path is then identified through the connecting lines in 

the visibility graph. Because the number of lines is determined by the number of 

obstacles and their edges, this approach is more efficient in sparse environments. The 

Voronoi diagram is constructed by connecting points equidistant from two or more 

adjacent obstacles. Consequently, the path is safer but normally longer. The cell 

decomposition approach decomposes the C-space into cells and then searches for a route 

in the cell graph. The main difficulty lies in the determination of size of the cells. The 

smaller the size, the more accurately the environment is modeled. However, smaller 

sizes consume more memory and exponentially raise search complexity. 

 

 
                     A                                        B                                              C 

Figure 2.5 Popular roadmap approaches. (A) Visibility graph. Reprinted from [16]. 

(B) Voronoi diagram. Reprinted from [21]. (C) Cell decomposition. Reprinted from 

[22]. 
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Once the roadmap is constructed, standard graph search techniques such as the 

well-known Dijkstra’s Algorithm and A-Star (A*) Algorithm family can be used to 

solve for the shortest path. Dijkstra’s Algorithm is a graph searching algorithm that finds 

the single-source shortest path in the graph. In automated driving, it has been 

implemented in multi-vehicle simulations as well as in the 2007 DARPA Urban 

Challenge. The A* Algorithm, as an extension of Dijkstra’s Algorithm, is a graph 

searching algorithm that enables a fast node search with the implementation of 

heuristics. The algorithm is suitable for searching spaces mostly known a priori by the 

vehicle and is costly in terms of memory and speed for vast areas. The A* Algorithm has 

been modified in several applications, and some of the improved versions are D, Field 

D*, Theta*, ARA* and AD*. The A* Algorithm family has been used for planning in 

unstructured spaces and parking lots and was adopted by the teams of Stanford 

University and Karlsruhe Institute of Technology (KIT) for their vehicles in the 2007 

DARPA Urban Challenge, where the winning vehicle “Boss” used AD*. 

2.3.1.4. Sampling-Based Methods (conventional, online/offline) 

The basic idea behind sampling-based approaches is to randomly sample the C-

space while looking for connectivity inside it. The most well-known methods are 

Probabilistic Roadmap (PRM) and Rapidly-exploring Random Tree (RRT). The PRM 

method first uses coarse sampling to obtain nodes of the roadmap and then fine sampling 

for the edges, which are the collision-free paths between nodes. Once the roadmap is 

constructed, planning queries are answered by connecting the start and goal. Basic PRM 

uses a uniform random distribution for node sampling and works well for many 
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problems. However, PRM is a multi-query planner and may not be able to solve single-

query problems sufficiently fast, in which case, other sampling-based planners such as 

RRT and Expansive-Spaces Tree (EST) can be adopted. The RRT method searches the 

route to the goal by randomly probing the C-space and incrementally expanding a “tree” 

from the start point while avoiding obstacles. Without any orientational preference, the 

planner explores the search space uniformly. This method is efficient, because while 

extending, the “tree” does not attempt to cover all nodes of the entire free space, but 

rather terminates the search immediately when the goal is reached. Able to solve very 

complex problems (e.g., MIT used RRT to navigate their vehicle at the DARPA Urban 

Challenge), the sampling-based methods suffer from a major drawback: the generated 

path is not optimal and quite jerky. An extension of RRT called RRT* was developed by 

adding a lower bound estimate to the RRT search, with which asymptotic optimality 

may be achieved with greater computational costs. The same technique has also been 

applied to develop the improved form of PRM, namely PRM*, which is illustrated along 

with RRT* in Figure 2.6. In addition to automotive applications, the sampling-based 

planners are known to outperform many other planners when solving high dimensional 

problems, such as motion planning for humanoids and robotic arms of many degrees of 

freedom. 
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                                      A                                                                B 

Figure 2.6 Path searching with sampling-based methods. Reprinted from [23]. (A) 

PRT* takes random samples from search space, tests occupancy, and connects free 

configurations. (B) RRT* incrementally constructs space-filling tree towards 

unsearched space by connecting random samples from search space. 

 

2.3.1.5. Fuzzy Logic (heuristic) 

Fuzzy Logic (FL) resembles the human decision-making methodology and is 

known for its simplicity, efficiency, and robustness in spite of uncertainty and imprecise 

information. Any event, process, or function that evolves continuously cannot be 

characterized simply in terms of either true or false conditions; therefore, compared with 

binary logic that only looks at absolute truth (1) or falseness (0), FL deals with 

membership values in the range of [0, 1]; closer to 0 means a higher tendency towards 

falseness; closer to 1 means a higher tendency towards truth. Thus, FL can often be more 

practical in solving real-world problems. As a matter of fact, FL is not logic that is fuzzy 

but logic that deals with fuzziness, uncertainty and imprecision. FL solves problems in a 

perception-reaction fashion in the sense in which it first breaks down the problem into a 

number of simple tasks and then addresses each task, applying the associated set of 
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fuzzy rules developed based on human experts’ heuristic knowledge, experience, or 

intuition, which normally take the form of IF...THEN...  When an input does not 

precisely correspond to any predefined rule, partial matching of the input is used to 

interpolate an answer. 

2.3.1.6. Neural Network (heuristic) 

Inspired by biological nervous systems (e.g., human brain), the Neural Network 

(NN) is an information-processing paradigm whose procedures can be expressed as first 

receiving inputs, then multiplying each input by a predefined weight and finally applying 

an activation function to the sum of the results. During information processing, the 

weights are regularly updated according to the experience learned by the numerous 

highly interconnected collaborating neurons, namely the processing elements. NNs may 

sound complicated, but the technique requires fairly simple calculations, which normally 

do not involve searching for free C-space, optimization of any cost function, or local 

collision checking procedures. 

2.3.1.7. Genetic Algorithm (heuristic) 

As a problem-solving strategy, the Genetic Algorithm (GA) mimics biological 

evolution. The evolution typically starts from a set of randomly generated candidate 

solutions, whose properties, or “genes”, can be employed to produce better solutions. By 

applying genetic operators such as mutation and crossover, new generations of solutions 

are created, each of which is evaluated by a metric called a fitness function specified by 

the objective of the computation. In this iterative process, only parent solutions of high 

fitness are selected to produce new generations of solutions, thus, optimal solution is 
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reached when the iteration is completed. In planning applications, GA is often utilized 

along with NN techniques. 

2.3.1.8. Ant Colony Optimization (heuristic) 

Ant Colony Optimization (ACO) is a probabilistic computational technique that 

was based on the behavior of ants searching a path from their colony to a food source. 

When ants wander around for food, they lay down pheromone trails, which other ants 

tend to follow. The denser the pheromone, the more attractive the trails. When the ants 

find a short path between their colony and the food source, the pheromone density on 

this path becomes higher as the ants commute along it more frequently, leaving more 

pheromone each time. On the other hand, pheromone on longer paths tends to evaporate 

before being marched over again. Thus, shorter paths are followed by more and more 

ants while longer paths become less and less attractive, which eventually leads all the 

ants to follow the shortest path. Figure 2.7 illustrates this process. 

 

 

Figure 2.7 Shortest path between food (F) and nest (N) found by Ant Colony 

Optimization. Reprinted from [24]. 
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2.3.1.9. Particle Swarm Optimization (heuristic) 

Particle Swarm Optimization (PSO) attempts to solve an optimization problem in 

the C-space by iteratively improving the quality of a population of candidate solutions, 

namely the particles (because these candidate solutions, or in other words, the potential 

optimal position points, look like particles wandering around the C-space). The 

improvement is achieved by moving the particles around in the search-space, whose 

directions are simultaneously influenced by their local best-known positions and guided 

towards better positions found by other particles. Thus, the iteration leads the swarm to 

the optimal solution. PSO techniques have proven beneficial for avoiding undesirable 

situations such as congestion and deadlocks. 

2.3.1.10. Simulated Annealing (heuristic) 

Simulated Annealing (SA) models the physical process of heating and cooling a 

material to alter its physical properties by changing its internal structure and minimizing 

its internal energy. Instead of energy, SA aims at minimizing (or maximizing) the 

objective function of the optimization problem. To simulate the physical annealing, a 

temperature variable is adopted, which is first set high and then slowly decreased as the 

algorithm executes. At each iteration, a new point is randomly generated whose distance 

from the previous point (i.e., the search scope) is to some extent proportional to the 

temperature variable. When searching for the shortest path, new points that lower the 

value of the objective function are accepted, but with a certain probability, points that 

raise the value are adopted as well, for the purpose of preventing the computation from 

being trapped in local minima. The probability of accepting “bad” points is higher when 
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the temperature variable is high in the beginning and gradually reduced as the 

temperature cools down later in the process, by which time, ideally, the search has 

converged to a small area containing the optimal solution. SA’s principal benefit is that 

the gradual cooling process makes it remarkably effective when planning in large C-

spaces with many local minima. 

2.3.1.11. Interpolation 

Whether using conventional or heuristic planning techniques, the generated path, 

which is normally composed of a set of way points, could be infeasible for vehicles to 

follow under certain kinematic and/or dynamic constraints. Therefore, interpolations are 

sometimes adopted as path smoothing solutions, which take into account the feasibility, 

comfort, vehicle dynamics and other parameters for improving the trajectory. 

Specifically, interpolation constructs and inserts a new set of data within the range of the 

given set of way points, generating a new path to improve the trajectory continuity and 

smoothness. The interpolation implements different curves and/or shapes to smooth the 

path, among which the most commonly used are straight and circular shapes, clothoid 

curves, polynomial curves, Bézier curves and spline curves. A broad range of 

interpolation examples can be found in [15]. 

2.3.2. Planning for Autonomous Grain Carts 

2.3.2.1. Theoretical Basis and Rationale 

After exploring and comparing the features of existing planning techniques, 

Artificial Potential Field (APF) and Fuzzy Logic Control (FLC) were selected to form 

the basis of the planning algorithm for autonomous grain carts. As previously described, 
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APF features mathematical elegance and simplicity as well as computational efficiency 

that supports online feedback planning. However, the potential force cancellation or 

contradiction can cause serious problems like local minima traps and oscillations, which 

degrade the rationality and efficiency of the generated plans. To fully exploit the 

advantages of APF and overcome its limitations, the following two improvement 

strategies were proposed and implemented together to construct a new algorithm with 

upgraded performance. (i) To reduce the probability for local minima traps, the influence 

range of the repulsive forces from the obstacles was to be set to be small so that they 

would only be effective when the grain cart traveled dangerously close to the obstacles; 

when the grain cart was at safe distances from the obstacles, another algorithm should be 

able to generate rational and efficient motion plans, taking into account the total travel 

distance. (ii) Force cancellation or contradiction that degrades APF’s performance is a 

simple mathematical problem not necessarily arising from complex environments or 

situations. A human operator can expertly navigate a grain cart to commute between the 

semi-trailer and the combine while avoiding different types of obstacles, so their 

operational knowledge, experience, and intuition can be leveraged to perform efficient 

motion planning. FL is a simple, efficient and robust approach to solving problems with 

fuzziness, uncertainty and imprecision, and it resembles the human decision-making 

methodology, leveraging human knowledge, experience, and intuition. Navigation in 

dynamic agricultural environments requires fast reactions to uncertainties, while the 

behaviors of agricultural vehicles are often too complex to be modeled accurately, Fuzzy 

Logic Control (FLC) can directly leverage knowledge and experience and intuition as 
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well as the imprecise reasoning and decision-making mechanism of human operators to 

provide planning solutions quite efficiently. FLC is thus a good choice for overcoming 

the deficiencies of APF. 

As popular planning techniques, both APF and FLC have been investigated for 

decades, during which a number of studies employed FLC to address the drawbacks of 

APF for upgraded performance. While conventional APF depends only on the distance 

between the robot (vehicle) and obstacle, the scheme proposed in [25] introduced a 

fuzzy variable that specified the level of influence each obstacle had over the robot’s 

future path; an obstacle was more influential when it was closer to the robot, in front of 

the robot and when the robot was moving fast. This variable improved the planning by 

scaling the APF produced by the obstacle (a similar concept is found in [26]). 

Satisfactory results were obtained in simple simulation tests. The APF+FLC planner 

introduced in [27] enabled navigation of a two-wheel mobile robot in unknown 

environments. APF generated the initial path, which was temporarily ignored when the 

FLC detected a potential collision and took reactive actions. When collisions were no 

longer possible, APF took back the control. Taking into account the distances to 

obstacles, as well as the heading and velocity errors (i.e., difference between the current 

and desired values), 15 fuzzy rules estimated the collision probability and derived the 

FLC output, namely the rotating speed of each wheel. Efficiency of this method was 

verified via simulations in various static and dynamic environments. Similarly, another 

study [28] combined planned and reactive behaviors for real-time navigation of a mobile 

robot by associating an Electrostatic Potential Field (EPF) path planner with a two-
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layered FL inference engine. While the first layer estimated collision probabilities, the 

second layer guaranteed collision avoidance by taking corrective maneuvers, temporarily 

overriding the initial EPF-generated path. Satisfactory results were obtained both in 

simulations and real-world experiments with a mobile robot. In [29], the APF and FLC 

concepts were integrated into a common framework termed Potential Fuzzy Controller. 

The intelligence and robustness of the approach came from the 15 collision-avoidance 

fuzzy-rules, as well as the synthesis of both heuristic knowledge and the sampled sensor-

input-actuation-output data pairs. Ten tests were conducted, which demonstrated that the 

proposed hybrid algorithm outperformed FL alone and the conventional APF+FL 

method. Also integrating APF with FLC for path planning, another study [30] compared 

two navigation schemes: while the first one had an APF planner and a PID controller, 

the second one had a Fuzzy-APF planner and a Fuzzy controller. Although both schemes 

produced good results, the latter supported more smooth and efficient motions, as well as 

faster reactions to obstacles. The effectiveness and robustness of the proposed method 

was validated in simulations and physical tests with a small simple robot. The APF + 

FLC planner developed in [31] made use of an FLC expert system to guide a mobile 

robot with the most appropriate heading towards a target. The key highlight of the 

approach was specifying APF repulsive forces with IF-THEN fuzzy rules. Simulation 

results verified the feasibility and computational efficiency of this approach in both 

static and dynamic environments. 

It has been shown that a number of studies have incorporated APF with FLC for 

motion (path) planning of vehicles or mobile robots in various simulated and/or physical 
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environments. Satisfactory test results demonstrated the great potential of this approach, 

including effectiveness, robustness and efficiency. However, among all these studies, 

none has investigated agricultural environments, not to mention harvest operations, 

whose planning task is distinctive and complex due to the challenges described 

previously: temporal constraints for meeting timing of the grain cart and combine, 

spatial constraints from the dynamic environment, need for real-time adaptation to 

unexpected events and obstacles, and numerous parameters of the combine, grain cart 

and crop field. In this study, APF and FLC are integrated in an innovative way for the 

development of the motion planning algorithm for autonomous navigation of grain carts 

in crop harvest operations, addressing the aforementioned challenges. 

2.3.2.2. Construction of Artificial Potential Field 

In real-time implementations, APF-based planning is an iterative process in 

which the resultant artificial force is computed at the current pose of the vehicle, then the 

vehicle takes a small step forward in the direction of this force. Incremental computation 

and movement are repeated until the goal is reached. The scope of this study is limited to 

a plain field (i.e., no significant slopes or curves) that can be represented by a 2D C-

space. The vehicle position is symbolized by 𝑞 = (𝑥, 𝑦). Correspondingly, the attractive 

and repulsive potentials at 𝑞 as well as their summation are 𝑈𝑎𝑡𝑡(𝑞), 𝑈𝑟𝑒𝑝(𝑞), and 𝑈(𝑞), 

respectively. With 𝑈(𝑞) being differentiable for every 𝑞 in the C-space, the resultant 

artificial force is 

�⃗�(𝑞) = −∇𝑈(𝑞) = −∇𝑈𝑎𝑡𝑡(𝑞) − ∇𝑈𝑟𝑒𝑝(𝑞), 
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where ∇𝑈(𝑞) denotes gradient of 𝑈 at 𝑞, namely a vector pointing at the direction of 

fastest change of 𝑈 at (𝑥, 𝑦). In a 2D C-space, the gradient can be calculated as 

∇𝑈(𝑞) =

[
 
 
 
𝜕𝑈

𝜕𝑥
𝜕𝑈

𝜕𝑦]
 
 
 

. 

Looking at the attractive potential first, the farther away the vehicle from the 

goal, the greater the 𝑈𝑎𝑡𝑡(𝑞). Therefore, a possible form of the attractive potential is 

𝑈𝑎𝑡𝑡(𝑞) =
1

2
𝜉𝜌2(𝑞𝑔𝑜𝑎𝑙), 

where 𝜉 is a constant scaling factor and 𝜌(∙) represents the distance between the vehicle 

and something. 𝜌(𝑞𝑔𝑜𝑎𝑙) is the distance between the vehicle and the goal. In a general 

C-space which is not necessarily 2D, 

𝜌(𝑞𝑔𝑜𝑎𝑙) = ‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖ = √∑(𝑥𝑖 − 𝑥𝑔𝑖)
2
, 

where 𝑞 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑞𝑔𝑜𝑎𝑙 = (𝑥𝑔1, 𝑥𝑔2, … , 𝑥𝑔𝑛) are the coordinates of the 

vehicle and the goal, respectively. Therefore, the attractive force can be derived as 

follows. 

�⃗�𝑎𝑡𝑡(𝑞) = −∇𝑈𝑎𝑡𝑡(𝑞) = −∇
1

2
𝜉𝜌2(𝑞𝑔𝑜𝑎𝑙) = −𝜉𝜌(𝑞𝑔𝑜𝑎𝑙)∇𝜌(𝑞𝑔𝑜𝑎𝑙), 

where 

∇𝜌(𝑞𝑔𝑜𝑎𝑙) = ∇√∑(𝑥𝑖 − 𝑥𝑔𝑖)
2
=

∑(𝑥𝑖 − 𝑥𝑔𝑖)

√∑(𝑥𝑖 − 𝑥𝑔𝑖)
2
=

𝑞 − 𝑞𝑔𝑜𝑎𝑙

‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖
. 
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Therefore, we obtain the attractive force as a vector whose direction is from 𝑞 to 

𝑞𝑔𝑜𝑎𝑙, attracting the vehicle to the goal: 

�⃗�𝑎𝑡𝑡(𝑞) = −𝜉‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖
𝑞 − 𝑞𝑔𝑜𝑎𝑙

‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖
= 𝜉(𝑞𝑔𝑜𝑎𝑙 − 𝑞). 

This equation indicates that the magnitude of the attractive force is proportional 

to the distance between the goal and the vehicle; when the vehicle approaches the goal, 

�⃗�𝑎𝑡𝑡(𝑞) converges to zero, which is reasonable, yet when the vehicle moves away from 

the goal, �⃗�𝑎𝑡𝑡(𝑞) grows without a bound, which could be unstable. To keep �⃗�𝑎𝑡𝑡(𝑞) 

bounded, a hybrid concept can be adopted that replaces 
1

2
𝜉𝜌2(𝑞𝑔𝑜𝑎𝑙) with 𝜉𝑑𝜌(𝑞𝑔𝑜𝑎𝑙) 

for 𝑈𝑎𝑡𝑡(𝑞) when the distance between the vehicle and the goal is greater than the 

predefined threshold 𝑑, meaning 

�⃗�𝑎𝑡𝑡(𝑞) = −∇𝑈𝑎𝑡𝑡(𝑞) = −𝜉𝑑
𝑞 − 𝑞𝑔𝑜𝑎𝑙

‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖
. 

Thus, the complete representations of the attractive potential and force are as 

follows. 

𝑈𝑎𝑡𝑡(𝑞) = {

1

2
𝜉𝜌2(𝑞𝑔𝑜𝑎𝑙)        if 𝜌(𝑞𝑔𝑜𝑎𝑙) ≤ 𝑑

𝑑𝜉𝜌(𝑞𝑔𝑜𝑎𝑙)           if 𝜌(𝑞𝑔𝑜𝑎𝑙) > 𝑑
, 

�⃗�𝑎𝑡𝑡(𝑞) =

{
 
 

 
 −𝜉‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖

𝑞 − 𝑞𝑔𝑜𝑎𝑙

‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖
        if ‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖ ≤ 𝑑

−𝜉𝑑
𝑞 − 𝑞𝑔𝑜𝑎𝑙

‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖
                            if ‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖ > 𝑑

. 
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In contrast to the attractive potential, the repulsive potentials are expected to 

increase as the vehicle moves closer to the obstacles. Consequently, a repulsive potential 

can be simply structured as 

𝑈𝑟𝑒𝑝(𝑞) = {

1

2
𝜂 (

1

𝜌(𝑞𝑜𝑏𝑠)
−
1

𝜌0
)
2

        if 𝜌(𝑞𝑜𝑏𝑠) ≤ 𝜌0

0                                           if 𝜌(𝑞𝑜𝑏𝑠) > 𝜌0

, 

where 𝜂 is a scaling factor, 𝜌(𝑞𝑜𝑏𝑠) is the distance between the vehicle and the detected 

obstacle, and 𝜌0 is a positive constant standing for the obstacles’ influence range. Note 

that 𝜌0 should be properly small (based on specification of safety distance) for the crops, 

combine and semi-trailer as the grain cart sometimes needs to travel extremely close to 

them; meanwhile, 𝜌0 can be large for other random static and dynamic obstacles that the 

grain cart should stay safely away from. Similar to the attractive potential, the repulsive 

potentials are formed in a hybrid fashion so that the influences of the distant obstacles 

are neglected. Taking gradient of 𝑈𝑟𝑒𝑝(𝑞) when it is not 0, the repulsive force is 

obtained as below. 

�⃗�𝑟𝑒𝑝(𝑞) = −∇𝑈𝑟𝑒𝑝(𝑞) = −∇
1

2
𝜂 (

1

𝜌(𝑞𝑜𝑏𝑠)
−
1

𝜌0
)
2

= 𝜂 (
1

𝜌(𝑞𝑜𝑏𝑠)
−
1

𝜌0
)

1

𝜌2(𝑞𝑜𝑏𝑠)
∇𝜌(𝑞𝑜𝑏𝑠). 

By analogy with the derivation of ∇𝜌(𝑞𝑔𝑜𝑎𝑙), 

∇𝜌(𝑞𝑜𝑏𝑠) =
𝑞 − 𝑞𝑜𝑏𝑠
‖𝑞 − 𝑞𝑜𝑏𝑠‖

, 
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where 𝑞𝑜𝑏𝑠 is the position of the obstacle. Thus, ∇𝜌(𝑞𝑜𝑏𝑠) is a unit vector directed from 

𝑞𝑜𝑏𝑠 to 𝑞, “pushing” the vehicle away from the obstacles. The complete representation of 

the repulsive forces is 

�⃗�𝑟𝑒𝑝(𝑞) = {
𝜂 (

1

𝜌(𝑞𝑜𝑏𝑠)
−
1

𝜌0
) (

1

𝜌2(𝑞𝑜𝑏𝑠)
)
𝑞 − 𝑞𝑜𝑏𝑠
‖𝑞 − 𝑞𝑜𝑏𝑠‖

        if 𝜌(𝑞𝑜𝑏𝑠) ≤ 𝜌0

0                                                                                 if 𝜌(𝑞𝑜𝑏𝑠) > 𝜌0

. 

In this study, the resultant artificial potential force is converted to motion 

planning via one of the most popular conversion techniques, force to velocity [32], 

where the magnitude and direction of the resultant force, respectively, determine the 

desired linear velocity and heading for the grain cart. 

2.3.2.3. Formulation of Fuzzy Logic Control 

A more detailed description of FL [2][33][34] is presented here, followed by the 

formulation of the FLC part of the proposed motion planning algorithm. In most cases, 

traditional planning and control requires a set of model equations derived from physical 

laws to generate feedback control rules to regulate the behavior of the controlled system. 

This method works well for simple cases, but struggles as the system becomes complex. 

Meanwhile, FL is capable of dealing with complex nonlinear processes involving noisy 

input data. It provides intuitive solutions by drawing conclusions from vague, 

incomplete or imprecise information. Construction of an FL planner or controller is 

normally faster than that of a traditional one, and in general its operation requires less 

memory and computational power.  

To use FLC, the behavior of the system to be controlled is described 

linguistically with ambiguous statements such as very hot, fairly fast and slightly left, 
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which can be easily dealt with based on fuzzy reasoning with the concept of degrees of 

membership. As mentioned previously, traditional logic based on classical set theory 

works with variables whose values are either TRUE or FALSE (i.e., a given element is 

either a member of a set or not a member of a set). FLC based on fuzzy set theory allows 

elements to be partial members of a set, and the degree of membership ranges from 0 to 

1 (i.e., from no membership to full membership). 

Figure 2.8 illustrates how a typical closed-loop FLC process is formulated. In 

response to actuation, the process to be controlled generates the output, which is sampled 

and measured by the sensors. This measurement is usually a precise quantity and is first 

“fuzzified” into a fuzzy quantity that, with different degrees of membership, belongs to a 

number of fuzzy sets. Following a set of predefined linguistic fuzzy rules, the fuzzy 

controller then makes decisions based on the fuzzified measurement. The fuzzy decision 

is also in the form of a number of fuzzy sets (with different degrees of membership) and 

is eventually converted into a precise quantity with defuzzification methods. Finally, the 

defuzzified control command is carried out by the actuation system to regulate the 

behavior of the process, starting a new control cycle. 

In this study, the sensors take measurements of the linear velocity and heading 

error. The FLC part of the proposed planner uses the measurements to calculate the 

desired steering angle as the planner output, based on which the controller will 

determine control commands. Last, the actuators will carry out the control to regulate the 

behavior of the autonomous grain cart. 
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Figure 2.8 Typical closed-loop FLC process. 

 

Fuzzy rules are the core of FLC and leverage human operators’ knowledge, 

experience, and/or intuition. In this study, it makes intuitive sense that the grain cart 

steers fast to avoid the obstacles efficiently; yet, it should not steer so fast that the 

stability of the tractor as well as the comfort and safety of the human supervisor in the 

cab, if any, can be ensured. Considering the complexity and nonlinearity of the grain 

cart’s behavior traveling in the field over unpredictably uneven and slippery terrain, 

finding the optimal balance between steering efficiency and stability (as well as safety 

and comfort) is challenging. However, from the human operator’s point of view, the 

solution to this planning problem is simple and clear; the larger the difference between 

the desired and current headings (i.e., heading error), the greater the steering angle; 

meanwhile, the higher the linear velocity, the smaller the steering angle. 

Compared with the measurement of linear velocity, the determination of heading 

error is complex (Figure 2.9); when a single obstacle blocks the straight path to the goal, 

the vehicle should go around it from the closer side (i.e., the side closer to the goal); 

when multiple obstacles block the straight path to the goal, the vehicle should deal with 
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them one by one (starting from the closest) from the closer side, exploring the openings 

between the obstacles. 

 

         
A                                                                  B 

Figure 2.9 Heading error determination. (A) Single obstacle. (B) Multiple obstacles. 

 

Following the FLC process in Figure 2.8, the precise measurements of linear 

velocity and heading error are first fuzzified into fuzzy quantities. While linear velocity 

can be described as Slow, Normal and Fast, heading error can be characterized as Far 

Right, Right, Front, Left, and Far Left, which indicate the direction of the desired 

heading relative to the current heading (left being positive, right being negative). The 

membership functions associated with these two measurement quantities are shown in 

Tables 2.1 and 2.2 and Figures 2.10 and 2.11. Note that different operators with different 

driving habits and experience have different judgements on the membership values. The 

following values were determined by the author based on (i) his own driving experience 

and observation of a real harvest operation, (ii) discussion from online forums on crop 

harvesting, and (iii) the scaling of the simulation tests. 
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Table 2.1 Membership values of linear velocity. 

Linear velocity (ft/s) 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Slow 1 1 1 1 1 1 1 0.75 0.5 0.25 0 0 0 0 0 0 0 0 0 0 0 

Normal 0 0 0 0 0 0 0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 0 0 0 0 0 0 

Fast 0 0 0 0 0 0 0 0 0 0 0 0.25 0.5 0.75 1 1 1 1 1 1 1 

 

 

Figure 2.10 Membership functions of linear velocity. 

 

Table 2.2 Membership values of heading error. 

 Heading error (rad) 

 −
8

32
 −

7

32
 −

6

32
 −
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32
 −
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32
 −
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32
 −

2

32
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1

32
 0 
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32
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32
 

3

32
 

4

32
 

5

32
 

6

32
 

7

32
 

8

32
 

Far 

Right 
1 0.75 0.5 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 

Right 0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 0 0 0 0 0 0 0 0 

Front 0 0 0 0 0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 0 0 0 0 

Left 0 0 0 0 0 0 0 0 0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 

Far 

Left 
0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.5 0.75 1 
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Figure 2.11 Membership functions of heading error. 

 

Before formulating the fuzzy rules, fuzzy sets and membership functions of the 

fuzzy decision need to be defined. As the output of the FLC part of the planner, the 

desired steering angle is expressed in terms of Sharp Right, Gentle Right, Straight, 

Gentle Left, and Sharp Left (left being positive, right being negative), whose 

membership functions are shown in Table 2.3 and Figure 2.12. 

 

Table 2.3 Membership values of steering angle. 

 Steering angle (rad) 

 −
8
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Sharp 

Right 
1 0.75 0.5 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 

Gentle 

Right 
0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 0 0 0 0 0 0 0 0 

Straight 0 0 0 0 0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 0 0 0 0 

Gentle 

Left 
0 0 0 0 0 0 0 0 0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 

Sharp 

Left 
0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.5 0.75 1 
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Figure 2.12 Membership functions of steering angle. 

 

Given the fuzzy sets of both the input (heading error and linear velocity) and 

output (desired steering angle) of the fuzzy planner, the linguistic fuzzy rules are 

tabulated in Table 2.4. 

 

Table 2.4 Fuzzy rules for steering angle planning. 

 Heading error 

Linear velocity Far Right Right Front Left Far Left 

Slow Sharp Right Sharp Right Straight Sharp Left Sharp Left 

Normal Sharp Right Gentle Right Straight Gentle Left Sharp Left 

Fast Gentle Right Gentle Right Straight Gentle Left Gentle Left 

 

Finally, the fuzzy steering decision in Table 2.4 can be defuzzified into a precise 

steering angle in radians and input to the controller. Various defuzzification techniques 

are available (e.g., max membership principle, centroid method, weighted average 

method and mean-max membership), among which weighted average method is adopted 

herein for its computational simplicity [35]. 
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Following the rules in Table 2.4, steering motion plans can be generated given 

any linear velocity and heading error. For example, if the grain cart travels at 9 ft/s, we 

know the linear velocity has 0.75 as the degree of membership for being Normal, and 

0.25 for Slow; meanwhile, if the heading error is −
3

32
𝑝𝑖 rad, the heading error has 0.25 

as the degree of membership for being Front, and 0.75 for Right. According to Fuzzy Set 

Theory [34], the following inference produces the output steering angle. 

IF linear velocity is Normal (0.75) AND heading error is Front (0.25), THEN 

steering angle is Straight (0.25). 

IF linear velocity is Normal (0.75) AND heading error is Right (0.75), THEN 

steering angle is Gentle Right (0.75). 

IF linear velocity is Slow (0.25) AND heading error is Front (0.25), THEN 

steering angle is Straight (0.25). 

IF linear velocity is Slow (0.25) AND heading error is Right (0.75), THEN 

steering angle is Sharp Right (0.25). 

Therefore, the fuzzy decision is Straight (0.25), Gentle Right (0.75) and Sharp 

Right (0.25), which can be converted to a precise steering angle as output: 

0.25 × 0 + 0.75 × (−
4
32) + 0.25 × (−

8
32)

0.25 + 0.75 + 0.25
= −0.125 𝑟𝑎𝑑 

2.3.2.4. Integration Mechanism 

As described above, APF is based on elegant mathematical concepts and 

operations that support fast planning in real-time applications, yet simply following the 

equations could generate irrational or inefficient motion plans. Meanwhile, FLC 
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leverages human intelligence that can take into account the rationality and efficiency of 

the plan, complementing APF. That being said, some cases are so intractable that 

formulating fuzzy rules becomes complex and impractical. For example, dynamic 

obstacles in a farm field may move around randomly, interfering with the grain cart’s 

motion, in which case APF’s attractive and repulsive forces can provide more direct 

guidance to the grain cart. Integrating APF and FLC is a hybrid approach that is 

expected to exploit the merits of both techniques while overcoming their limitations. 

Figure 2.13 illustrates how APF and FLC are integrated. The attractive forces of APF 

always decide the heading towards the goal. When the grain cart is safely away from 

obstacles, FLC applies simple and effective human-intelligence-based rules to generate 

collision-free motion plans that account for the GLOBAL optimality of the motion (i.e., 

total travel distance). When the grain cart gets dangerously close to the obstacles that 

FLC has not handled (e.g., closely surrounding static and/or fast approaching dynamic 

obstacles), the repulsive forces of APF enable prompt avoidance of these LOCAL 

obstacles. As discussed previously, in parallel with the planning for steering angle, APF 

is also responsible for determining the linear velocity. One may argue that properly 

adjusting the influence ranges of the goal and obstacles can upgrade the APF algorithm, 

but developing explicit rules to adapt the APF to the agricultural environment that is 

largely unconstructed and unpredictable can be a great challenge. 
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Figure 2.13 Integration mechanism of Artificial Potential Field and Fuzzy Logic 

Control. 

 

2.3.2.5. Task Scheduling 

As previously described, the grain cart should ideally meet the combine exactly 

when the combine reaches its capacity, a difficult and often impractical challenge. 

Therefore, to guarantee that harvesting is not interrupted, a grain cart typically arrives 

early and follows the combine before unloading starts. To reduce this non-productive 

following time, a special task scheduling strategy was proposed for grain carts: after 

transferring the grain to the semi-trailer, a grain cart should neither stay still waiting for 

the combine’s unloading request nor go and follow the combine until unloading starts; 

instead, the grain cart should drive to the boundary of the working area where the 

combine is harvesting, then stand by in a pose from which a clear path to the combine is 

available. “Clear” simply implies that between the grain cart and the combine, there are 

no blocking obstacles (not even unharvested crop rows), allowing the grain cart to 

approach the combine via a straight route (additional maneuvers might be needed for 
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heading alignment). Thus, a motion plan that meets the temporal requirement can be 

easily computed based on the relative poses and velocities of the two vehicles as well as 

the fill level of the combine transmitted to the cart via wireless communication. 

Following this strategy, a full work cycle for grain carts in harvest operation is illustrated 

in Figure 2.14. It can be seen that, in addition to unloading grain from the combine, the 

logistical tasks in harvest operations for grain carts include go to semi-trailer, transfer 

grain to semi-trailer, return to standby point, standby and go to combine. To sequence 

and schedule these tasks, the following constraints and triggers, expressed in pseudo 

code, are utilized. 

(i) Go to combine: 

IF standing by AND combine harvesting in field AND estimated meeting point in field 

AND combine will be full by arrival of grain cart 

THEN go to combine 

(ii) Unload grain from combine 

IF close to combine AND aligned with combine 

THEN drive alongside combine in sync 

(when to start and finish unloading grain is determined by combine) 

(iii) Go to semi-trailer: 

IF unloading finished OR grain cart full 

THEN go to semi-trailer 

(iv) Transfer grain to semi-trailer: 

IF going to semi-trailer AND close to semi-trailer AND aligned with semi-trailer 
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THEN transfer grain to semi-trailer 

(v) Go to standby point: 

IF transferring grain AND grain cart empty 

THEN go to standby point 

(vi) Stand by 

IF going to standby point AND close to standby point AND facing specified direction 

THEN stand by 

 

 

Figure 2.14 Full work cycle of autonomous grain carts in harvest operations. 

 

2.4. Control Technique 

2.4.1. Grain Cart Modeling 

As stated previously, one of the objectives of this study is to investigate the 

performance of the proposed motion planning algorithm using simulation tests, in which 

a mathematical model that represents grain carts’ motion dynamics is required. Since the 

grain cart (i.e., tractor and trailer) model has been widely used in many studies, this 

project does not spend effort on developing new models. The following introduction and 

derivation are based on [36] and [37]. 
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Vehicle dynamics refers to a vehicle’s responses (position, velocity and/or 

acceleration) to various control inputs. Theoretically the responses in all possible 

degrees of freedom should be considered, but the scope of this study has been limited to 

a plain field (i.e., no significant slopes or curves), constraining the vehicle’s motions in a 

2D plane. 

Two types of vehicle models have been commonly adopted for controller 

development, namely dynamic models and kinematic models. While a dynamic model 

uses tire lateral forces to excite the lateral and yaw dynamics of the vehicle and applies 

Newton’s second law of motion to construct the force and moment balance, a kinematic 

model assumes that the vehicle’s tires travel only in the direction they face (i.e., no slip), 

and the vehicle’s responses to steering inputs are determined by only the geometric 

parameters, which compromises the fidelity of transient behaviors of the vehicle in favor 

of simplicity. Noting that this study focuses on motion planner development for a low-

speed tractor trailer, the relatively simple and mathematically elegant kinematic model 

was employed for the controller design.  

As a typical example of off-road vehicles, a tractor can be simplified and 

represented by a so-called bicycle model with just one tire each on front and rear axles 

(Figure 2.15), neglecting the load transfer between right and left wheels. 
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Figure 2.15 Bicycle model. 

 

As shown in Figure 2.15, the geometric relationship between the variables is 

simple and straightforward, giving the velocity of the center of the tractor’s rear axle as 

{
�̇� = 𝑢1 cos 𝜑1
�̇� = 𝑢1 sin𝜑1

, 

where 𝑢1 is the tractor’s linear velocity and 𝜑1 is the tractor’s heading angle (i.e., the 

angle between the x-axis and the vehicle’s longitudinal axis). 

Also, from Figure 2.15, with the counterclockwise direction being positive, the 

yaw rate (i.e., the tractor’s angular velocity) is given by 

�̇�1 =
𝑢1
𝑟
, 

where 𝑟 is the turning radius of the tractor. And with 

tan 𝛿 =
𝐿1
𝑟
, 

the yaw rate can be expressed as 



 

73 

 

�̇�1 =
𝑢1
𝐿1
tan 𝛿, 

where 𝛿 is the steering angle of the front wheel (i.e., the angle between headings of the 

tractor body and front wheel), and 𝐿1 is the wheelbase (i.e., the distance between the 

front and rear axles). Thus, the kinematic model of the tractor can be represented by the 

following set of equations. 

{

�̇� = 𝑢1 cos 𝜑1
�̇� = 𝑢1 sin𝜑1

�̇�1 =
𝑢1
𝐿1
tan 𝛿

. 

As shown in Figure 2.16, linking the tractor and a trailer with a revolute joint at 

the hitch point (circled in Figure 2.17), the velocities of the tractor and trailer are 

coupled to each other. In Figure 2.16, 𝜑2 and 𝜆 are, respectively, heading angle of the 

trailer (i.e., the angle between the x-axis and the trailer’s longitudinal axis) and the 

difference between the heading angles of the tractor and trailer. 

 

 

Figure 2.16 Tractor trailer model with key angles. 
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Figure 2.17 Hitch points on grain carts. Reprinted from [38]. 

 

As illustrated in Figure 2.18, yaw motions of the tractor are centered at the rear 

axle, giving the hitch point a lateral velocity in the direction opposite to that of the 

tractor’s center of gravity (CoG). Denoted by 𝜃, the angle between the resultant velocity 

and the longitudinal velocity of the hitch point can be used along with 𝑟 =
𝐿1

tan 𝛿
  to 

derive the lateral velocity of the hitch point as follows. 

𝑣1 = 𝑢1 tan 𝜃 = 𝑢1
𝐿2
𝑟
=
𝑢1𝐿2
𝐿1

tan 𝛿, 

where 𝐿2 is the distance between the center of the rear axle and the hitch point. With a 

rigid body, the tractor has the same longitudinal velocity 𝑢1 at the hitch point and the 

center of rear axle. 
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Figure 2.18 Tractor model with hitch point. 

 

As shown in Figure 2.19, taking into account the angle between the tractor 

heading and trailer heading, denoted by 𝜆 = 𝜑1 − 𝜑2, the longitudinal and lateral 

velocities of the trailer at the hitch point are given by 

{
𝑢2 = 𝑣1 sin 𝜆 + 𝑢1 cos 𝜆
𝑣2 = 𝑣1 cos 𝜆 − 𝑢1 sin 𝜆

, 

 

 

Figure 2.19 Trailer model. 
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Finally, the above expression for the lateral velocity of the hitch point is used to 

define yaw rate of the trailer as (again, with the counterclockwise direction being 

positive) 

−�̇�2 =
𝑣2
𝐿3
=
1

𝐿3
(𝑣1 cos 𝜆 − 𝑢1 sin 𝜆) =

𝑢1𝐿2
𝐿1𝐿3

tan 𝛿 cos 𝜆 −
𝑢1
𝐿3
sin 𝜆. 

Adding this equation to the equation set of the tractor’s kinematic model, the 

dominant motion dynamics of the entire tractor trailer system can be represented by the 

following set of equations. 

{
 
 

 
 

�̇� = 𝑢1 cos 𝜑1
�̇� = 𝑢1 sin 𝜑1

�̇�1 =
𝑢1
𝐿1
tan 𝛿

�̇�2 =
𝑢1
𝐿3
sin 𝜆 −

𝑢1𝐿2
𝐿1𝐿3

tan 𝛿 cos 𝜆

. 

2.4.2. Controller Design 

To implement the motion plans generated by the motion planner to regulate the 

behavior of the grain cart, Proportional, Integral and Derivative (PID) control, a very 

commonly used feedback control technique, has been adopted in this study. A brief 

description of PID control technique is presented below [39][40][41]. 

PID has played a dominant role in process control since the inception of 

automation because it is simple, efficient, and generally applicable to most control 

systems. PID has the potential to provide optimal control solutions for vehicle motion 

control, which is characterized by nonlinear dynamics, unmeasured disturbances, noise, 

measurement delays and lags. Studies have shown that PID can efficiently solve both 
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regulator problems (i.e., rejection of disturbances) and servo problems (i.e., setpoint 

response). 

As illustrated in Figure 2.20, all three components of a PID controller work 

together to produce the control output based on the measured error; i.e., the difference 

between the desired and actual states of the system. Ideally, when the three PID 

components function and cooperate properly, any variation in error caused by setpoint 

change or process disturbance can be quickly eliminated. 

 

 

Figure 2.20 PID controller in a control system. 

 

Proportional is the simplest component, whose output is the product of the 

proportional gain 𝐾𝑃 and measured error 𝑒(𝑡). Therefore, larger 𝐾𝑃 or 𝑒(𝑡) leads to 

larger control actions. While a large 𝐾𝑃 normally provides fast and sufficient responses 

to errors, it also causes the controller to repeatedly overshoot the setpoint, making the 

system oscillate and become unstable. A Proportional-only control loop has a major 

drawback: when the error becomes so small that the control action generated by 𝐾𝑃 is 
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negligible, the error is sustained even though the system has reached steady state; in such 

case, the error becomes an offset. 

To address the offset, the Integral component stores all measured errors and takes 

actions accordingly. Specifically, even though 𝑒(𝑡), the error at each instant, is so small 

that the Proportional component is not effective, the Integral component keeps collecting 

the errors until they are large enough to be significant. As errors can be positive or 

negative, sometimes errors fill the Integral storage (i.e., positive added to positive or 

negative added to negative), and sometimes they empty the storage (i.e., errors with 

opposite signs cancel out). The storage stays nearly empty when the Integral factor 

functions properly. Effective for eliminating steady-state errors though, the Integral 

component makes a considerable contribution to overshoot. 

The Derivative component deals with the change rate of the error. The faster the 

error changes, the larger the control actions the Derivative component produces, 

counteracting the overshoot that can be caused by P and I. To be more specific, when the 

error is large, P and I generate large control actions, making the error change quickly, 

which leads D to counteract the actions more aggressively in favor of overshoot 

reduction. 

In summary, the PID controller deals with the value of the current error, the 

cumulative errors over a period of time, and the change rate of the error, then determines 

how much correction to apply. The controller keeps updating the computation and 

applying the correction until the controlled system has reached the setpoint. 
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Designing a PID controller essentially consists of the process of tuning the three 

control parameters (i.e., the P, I and D gains) in pursuit of optimal control performance, 

which refers to rise time, overshoot, settling time and steady-state error. Before 1942, 

tuning was performed through trial and error, but in that year, the Ziegler-Nichols 

method was published, which has been a popular heuristic PID tuning technique in the 

last few decades. 

The Ziegler-Nichols method first sets the I and D gains to zero, then increases 𝐾𝑃 

from zero until it reaches the ultimate gain 𝐾𝑈, at which time the controlled system has 

stable and consistent oscillations with the oscillation period 𝑇𝑈. 𝑇𝑈 is then adopted to 

update the P, I, and D gains based on the rules in Table 2.5. 

 

Table 2.5 PID tuning rules by Ziegler-Nichols method. 

 𝐾𝑃 𝑇𝐼  𝑇𝐷 

Classic PID 0.6𝐾𝑈 𝑇𝑈/2 𝑇𝑈/8 

Pessen Integral Rule 0.7𝐾𝑈 𝑇𝑈/2.5 3𝑇𝑈/20 

Some overshoot 0.33𝐾𝑈 𝑇𝑈/2 𝑇𝑈/3 

No overshoot 0.2𝐾𝑈 𝑇𝑈/2 𝑇𝑈/3 

 

where 𝐾𝑃, 𝑇𝐼 and 𝑇𝐷 are used to establish the control action 𝑢(𝑡) from the measured 

error 𝑒(𝑡) in the form of 

𝑢(𝑡) = 𝐾𝑃 (𝑒(𝑡) +
1

𝑇𝐼
∫ 𝑒(𝜏)
𝑡

0

𝑑𝜏 + 𝑇𝐷
𝑑𝑒(𝑡)

𝑑𝑡
) 
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To clarify, the Ziegler-Nichols method is not the optimal solution to all control 

applications because different criteria are adopted to evaluate the control performance. 

For example, some may desire fast responses while others may be strict on overshoot. 

As a more general reference, the rules of thumb for tuning PID controllers are given in 

Table 2.6. 

 

Table 2.6 General rules for tuning PID controllers. 

 Rise time Overshoot Settling time 

Steady-state 

error 

Stability 

Increase 𝐾𝑃 Decrease Increase 

Minor 

change 

Decrease Degrade 

Increase 𝐾𝐼 =
𝐾𝑃

𝑇𝐼
 Decrease Increase Increase Decrease Degrade 

Increase 𝐾𝐷 = 𝐾𝑃𝑇𝐷 

Minor 

change 

Decrease Decrease No change 

Improve if 𝐾𝐷 

small 

 

In Table 2.6, rise time is the amount of time the controlled system takes to go 

from 10% to 90% of the steady-state (or final value). Settling time is the time required 

for the controlled process variable to settle within a certain deviation range (commonly 

5%) from the final value. 

In this study, the motion planner provides the control setpoint, the desired linear 

velocity and steering angle. The sensors measure the vehicle’s actual linear velocity and 

steering angle. The differences between the desired and actual values are the errors that 
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are input to the PID controller, which performs the computation and outputs the steering 

rate and acceleration or deceleration to regulate the behavior of the grain cart.  

2.5. Actuation Plan 

Most traditional drive trains are mechanical and provide the operator with direct, 

physical control over the speed or direction of the vehicle, which is not always practical 

to deliver actuation functions in autonomous driving. In contrast, drive-by-wire 

powertrains can support the automation of farming vehicles because they are primarily 

composed of servomotors or electromechanical actuators that are directly controlled 

through electric wires instead of mechanical connections. Drive-by-wire functionalities 

like steer-by-wire, throttle-by-wire, and brake-by-wire are already available from major 

farm equipment manufacturers like John Deere, CNH, AGCO, CLASS and Kubota [42]. 

In fact, the increasing trend toward AAVs is making agriculture tractors one of the 

fastest growing among the off-highway vehicle segment in the drive-by-wire market 

[43]. 

2.6. Experimental Procedure 

To validate the design of the planning algorithm and the associated navigation 

solution, three sets of experiments were carried out: first two in a virtual environment 

with MatLab Simulink simulations, and another one in the real world with mobile 

robots. The simulation tests were for verification of the effectiveness, robustness, 

efficiency and computational ease of the proposed motion planning algorithm and the 

task scheduling strategy. The mobile robot tests were for verification of the effectiveness 
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and practicality of the navigation solution, and further verification of the effectiveness, 

robustness and efficiency of the motion planning algorithm. 

2.6.1. Simulation Tests: APF+FLC vs. Simple APF 

2.6.1.1. Experimental Setup 

This set of simulation tests features the comparison between the proposed 

APF+FLC planner and a simple APF planner. Running on an Intel Core i7-8650U CPU 

@ 1.90 GHz, MatLab Simulink R2019a was employed as the simulation platform. To 

imitate a real-world crop harvest, a 2D virtual harvest operation was modeled, executed 

(at 50 Hz) and plotted (Figure 2.21): a semi-trailer (in pink) waited nearby, a trapezoidal 

crop field (in orange) was harvested row by row by a combine (in green) following a 

specific route; a grain cart (in blue) unloaded and transferred the grain, commuting 

between the semi-trailer and the combine; real-time fill levels of the combine and grain 

cart were shown on the bottom left of the plot. The simulated harvest was downscaled 

from real harvest operations in terms of crop row lengths and combine capacity. The 

goal was to use shorter times and smaller spaces to showcase the effectiveness of the 

proposed motion planning algorithm in different scenarios that could be encountered by 

grain carts in harvest operations. 
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Figure 2.21 2D virtual harvest operation in MatLab Simulink. 

 

2.6.1.2. Field Data 

A set of yield monitor data from a corn field in Minnesota were incorporated into 

the simulation tests. The dataset contained all the information collected by a combine 

throughout a harvest operation, including the latitude-longitude coordinates, the crop 

flow in mass and volume, the yield mass and volume (each dry and wet), the moisture, 

the combine’s speed, etc. For the simulation tests, the crop flow and combine speed from 

the dataset were processed and utilized to validate the specification of the fill rate and 

speed of the simulated combine. The data processing procedure mainly consisted of 

filtering out the data collected out of crop rows (e.g., during end-of-row turns) and 

modeling the selected data. Because the simulation tests were downscaled from real 

harvest operations, instead of the actual mean and standard deviation, the coefficients of 
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variation of the crop flow and combine speed were employed, which reflect the extent of 

variability in relation to the mean. The coefficients of variation of the crop flow and 

combine speed were 5.61% and 3.24%, respectively. 

2.6.1.3. Test Design 

The following simulation tests were designed and conducted: (i) simple 

harvesting with no obstacles other than unharvested crop rows; (ii) harvesting with static 

obstacles located between the crop rows and the semi-trailer; (iii) harvesting with 

dynamic obstacles moving around between the crop rows and the semi-trailer; and (iv) 

the same tests as the above but with a simple APF planner guiding the grain cart for 

comparison. 

2.6.1.3.1. Simple Harvesting 

As illustrated in Figure 2.14, a simple harvest operation in which unharvested 

crop rows are the only obstacles can be broken down into the following tasks for an 

autonomous grain cart: (i) stand by when the combine is harvesting; (ii) navigate through 

the field to meet the combine when unloading is needed; (iii) keep the same velocity 

travelling alongside the combine while the grain is being unloaded; (iv) navigate to the 

semi-trailer; (v) transfer the grain to the semi-trailer; (vi) return to the standby point. In 

simple harvesting, the grain cart was expected to follow the motion plans generated by 

the proposed planner and autonomously accomplish all the tasks above. 

2.6.1.3.2. Static Obstacles 

As mentioned previously, various static obstacles can be present in the harvesting 

environment, blocking the straight route between the grain cart and the goal. The grain 
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cart was expected to navigate around the obstacles and accomplish the logistical 

activities. No obstacles were located inside the crop rows, but six square static obstacles 

were placed between the crop rows and the semi-trailer. For a more rigorous test of 

robustness, the configuration of the obstacles varied every work cycle. 

2.6.1.3.3. Dynamic Obstacles 

Compared to static obstacles, the presence of dynamic obstacles makes 

autonomous navigation of the grain cart more challenging. Ideally, the grain cart can 

anticipate all potential collisions, avoid them and eventually find its way to the goal. 

This simulation involved the wandering motion of two rectangular obstacles (one 

circling, one back and forth) between the crop rows and the semi-trailer, intermittently 

impeding the grain cart. 

2.6.1.3.4. Simple APF Tests 

Another group of three simulation tests like those above (i.e., simple harvesting, 

static obstacles and dynamic obstacles) were conducted with a simple APF planner 

guiding the grain cart. Data from both groups of tests were collected and compared for 

the evaluation of the efficiency of the proposed planning algorithm. 

2.6.1.4. Data Collection and Results Analysis 

2.6.1.4.1. Effectiveness and Robustness 

The first aspect considered in the results was whether the proposed planner and 

the associated task scheduling strategy successfully directed the grain cart to 

autonomously accomplish the logistical tasks in the harvest operations. Accomplishment 

of all the logistical tasks in simple harvesting and harvesting featuring static and 
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dynamic obstacles (in addition to unharvested crop rows) would verify the effectiveness 

as well as the robustness of the proposed motion planning algorithm and the task 

scheduling strategy. This analysis provided a qualitative result.  

As mentioned previously, to guarantee uninterrupted harvesting, a grain cart 

typically meets the combine early and follows the combine before unloading starts. The 

focus of the proposed task scheduling strategy is on improving this meeting timing by 

reducing the non-productive following time, which is measured from the moment the 

grain cart reaches the left side of the combine until the unloading starts. The less the 

following time, the more effective the task scheduling strategy. This analysis provided a 

quantitative result. No comparison between the proposed planner and simple APF 

planner was conducted herein because meeting timing was exclusively dependent on the 

design of the task scheduling strategy, which was not involved in the simple APF at all. 

In addition, when random static or dynamic obstacles were present, they interfered with 

the grain cart in unpredictable ways, hindering it from performing the tasks on time. 

Therefore, meeting timing was not considered for these cases. 

2.6.1.4.2. Efficiency 

In this study, efficiency is the most important indicator for evaluating the 

performance of the proposed motion planning algorithm. The evaluation was based on 

the comparison between the proposed planner and the simple APF planner in the length 

and smoothness of the grain cart’s trajectory. In simple harvesting, the comparison ran 

through the entire harvest operation. In the harvest cases involving static and dynamic 

obstacles, the comparison was focused on how differently the two planners dealt with 
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the static or dynamic obstacles between the crop rows and the semi-trailer. Therefore, 

only when the grain cart was out of the crop rows, either going to the semi-trailer or 

returning to the standby point, the trajectories were measured and compared; the 

trajectories of the grain cart when it was going to the combine, unloading and going to 

the semi-trailer but still between the crop rows, were not included in the comparison. In 

these comparisons, the shorter and smoother the trajectory, the higher the efficiency, as a 

shorter trajectory required less consumption of fuel and time, and a smoother trajectory 

improved traveling stability and comfort. To measure the trajectory length, coordinates 

of the grain cart in each simulation step were logged. Since the simulation was discrete 

with very small time steps (20 ms), the curves the grain cart traveled within each 

simulation step were approximated as straight lines. Therefore, given the coordinates of 

the grain cart in each step, the lengths of the small segments of the trajectory were easily 

calculated, and their summation would be the approximate length of the entire trajectory. 

To measure the smoothness of the trajectory, the following formula was used. 

𝜅′ =
1

𝑛
∑ 𝛼𝑖

2
𝑛

𝑖=2
, 

where 𝜅′ represents the smoothness, 𝛼𝑖 is the angle between two consecutive segments 

of the trajectory, and 𝑛 is the total number of segments the trajectory consists of. 

Assuming the mean of 𝛼𝑖 is zero, 𝜅′ is the variance of 𝛼𝑖 with a unit of rad2. A smaller 

𝜅′ indicates smaller angles between consecutive segments of the trajectory in general, 

meaning the entire trajectory is smoother. Measurements of both length and smoothness 

of the trajectory provided quantitative results.  
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2.6.1.4.3. Computational Expense 

In each simulation step, the motion planner took states of the grain cart and the 

combine, performed a series of computations and generated the desired motion plan. The 

time this process consumed in each simulation step was additional important data to 

collect. A short time implied computational efficiency, while a long time indicated a 

heavier burden for the processor. With the MatLab function cputime, CPU time 

consumed by a piece of code in each simulation step was easily measured. These data 

provided a quantitative result. Computational efficiency has been discussed in many 

studies [11][13][14] as a key advantage of APF over other techniques, demonstrating 

that APF is suitable for real-time applications. Since the proposed motion planning 

algorithm incorporated FLC into APF, it was expected to be more computationally 

expensive than the simple APF. 

2.6.2. Simulation Tests: APF+FLC vs. VFH 

2.6.2.1. Experimental Setup 

This set of simulation tests compared the proposed APF+FLC planner with a 

Vector-Field-Histogram (VFH) planner. As one of the most popular real-time motion 

planning algorithms in mobile robotics, VFH uses a statistical representation of the 

surrounding obstacles. Specifically, VFH (i) uses data from the range sensors to 

construct and update in real time a 2D Cartesian histogram grid, (ii) reduces the 

histogram to a 1D polar histogram with different obstacle densities in the histogram 

sectors, and (iii) selects consecutive sectors with a polar obstacle density below a 

predefined threshold and in proximity to the target direction. The center of the selected 
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sectors will be the desired steering angle. The linear velocity is planned based on the 

obstacle density in front of the vehicle and the current steering rate of the vehicle. The 

higher the obstacle density and the steering rate, the lower the linear velocity. The VFH 

algorithm has proven to be computationally efficient and robust, yet it is more powerful 

for local collision avoidance and global path optimality is not guaranteed. 

On the same simulation platform (i.e., MatLab Simulink R2019a on Intel Core 

i7-8650U CPU @ 1.90 GHz), five different test cases were modeled, executed (at 50 Hz) 

and plotted. Figure 2.22 is an example: a grain cart (in blue) started traveling from the 

bottom left of the figure while multiple obstacles (in red) lay between the grain cart and 

the goal point (blue circle) at the top right of the figure. 

 

 

Figure 2.22 Simulation test case: closely spaced static obstacles in the middle. 

 

2.6.2.2. Test Design 

The following simulation tests were designed and conducted with the APF+FLC 

planner: (i) long static obstacle with a narrow gap for the grain cart to go through; (ii) 

multiple static obstacles close to the goal; (iii) closely spaced static obstacles with a 
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narrow gap in between for the grain cart to go through; (iv) sparsely spaced static 

obstacle groups for the grain cart to go around one by one; (v) two dynamic obstacles 

that moved around potentially blocking the grain cart; and (vi) the same tests as (i) 

through (v) above but with a VFH planner guiding the grain cart for comparison. Note 

that key parameters of the VFH planner, namely the histogram thresholds and cost 

function weights, were tuned to potentially improve the performance, and the best results 

were collected.  

2.6.2.2.1. Long Static Obstacle with Gap 

Four static rectangular obstacles formed a long static obstacle (Figure 2.23), 

resembling a crop row, the most common obstacle a grain cart faces in harvest 

operations. A narrow gap in the obstacle provided a shortcut towards the goal. The grain 

cart was expected to take a more efficient route by making use of the gap, rather than 

going all the way around the entire long obstacle. 

 

 

Figure 2.23 Simulation test case: long static obstacle with gap. 
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2.6.2.2.2. Static Obstacles Close to Goal 

In harvest operations, a grain cart is sometimes required to approach a goal that is 

in close proximity to obstacles. For example, when driving in synchronization with the 

combine unloading the grain, and when transferring the grain to the semi-trailer that is 

parked by the roadside. Four static square obstacles were placed around the goal, yet 

none of them was actually blocking the straight path of the grain cart from the origin 

(Figure 2.24). The grain cart was expected to go directly towards the goal, ignoring the 

surrounding obstacles. 

 

 

Figure 2.24 Simulation test case: multiple static obstacles close to goal. 

 

2.6.2.2.3. Closely Spaced Static Obstacles 

Four static square obstacles were placed between the origin of the grain cart and 

the goal (Figure 2.22). Overall, the four obstacles were evenly spaced. The most efficient 

route from the origin to the goal was between the two obstacles in the middle. However, 

the wider gaps on the two sides could be misleading. In harvest operations, a grain cart 
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sometimes needs to pass through narrow gaps, for example, when traveling between the 

unharvested crop rows on the two sides to meet the combine. 

2.6.2.2.4. Sparsely Spaced Static Obstacle Groups 

Two groups of static square obstacles were located on the grain cart’s way 

towards the goal (Figure 2.25). The two obstacle groups created a wide gap in between, 

representing sparsely spaced random obstacles in the crop field. The grain cart was 

expected to identify the large space between the obstacle groups, make use of it and 

reach the goal. The locations of the two obstacle groups relative to the grain cart’s origin 

were misleading in the sense that the wide gap could not be directly identified at the 

beginning of the run. 

 

 

Figure 2.25 Simulation test case: sparsely spaced obstacle groups. 

 

2.6.2.2.5. Dynamic Obstacles 

The existence of dynamic obstacles can often make a motion planning task more 

complex and challenging. Two square obstacles moved around between the origin and 

the goal, potentially blocking the grain cart (Figure 2.26). While one obstacle moved 
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back and forth, the other one went in a circle, revolving around the goal 

counterclockwise. The grain cart was expected to take an efficient route towards the goal 

while making fast reactions to avoid collisions with the dynamic obstacles. 

 

 

Figure 2.26 Simulation test case: dynamic obstacles. 

 

2.6.2.2.6. VFH Tests 

Another group of five simulation tests like those above were conducted with a 

VFH planner guiding the grain cart. Data from both groups of tests were collected and 

compared to evaluate the efficiency of the motion plans generated by the proposed 

planning algorithm. 

2.6.2.3. Data Collection and Results Analysis 

2.6.2.3.1. Effectiveness and Robustness 

The first aspect considered in the results was whether the proposed planner 

successfully directed the grain cart to accomplish the navigation tasks involving different 

configurations of static or dynamic obstacles. Accomplishment of the navigation tasks in 



 

94 

 

all the different test cases would verify the effectiveness as well as the robustness of the 

proposed motion planning algorithm. This analysis provided a qualitative result. 

2.6.2.3.2. Efficiency 

Just like the first set of simulation tests (i.e., APF+FLC vs. simple APF), 

efficiency is the most important indicator of performance. The evaluation was based on 

the comparison between the proposed planner and the VFH planner in the length and 

smoothness of the grain cart’s trajectory. The comparison was focused on how 

differently the two planners dealt with the static or dynamic obstacles between the origin 

and the goal. Again, the shorter and smoother the trajectory, the higher the efficiency. 

The procedures for measuring the length and smoothness have been discussed above. 

The efficiency analysis provided a quantitative result. 

2.6.2.3.3. Computational Expense 

The average CPU time consumed by the proposed planner and the VFH planner 

in each simulation step was calculated. Given the same navigation tasks, the planner that 

took longer to process the sensing information and generate collision-free motion plans 

would be considered more expensive in the computations. Again, the function cputime 

was adopted for measuring the CPU time in each simulation step. These data provided a 

quantitative result. 

2.6.3. Mobile Robot Tests 

2.6.3.1. Experimental Setup 

The mobile robot tests consisted of harvest operations and general collision 

avoidance tasks. The harvest operation tests included two autonomous robots, one 
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representing a grain cart and one representing a combine. As shown in Figures 2.27 and 

2.28, different devices were mounted on the robots. A detailed description follows. 

 

Figure 2.27 Robot representing grain cart. 

 

 

Figure 2.28 Robot representing combine. 



 

96 

 

2.6.3.1.1. Grain Cart Representation 

As shown in Figure 2.29, the mobile robot employed in this study to represent 

the grain cart was a Jackal, a field robotics platform produced by Clearpath Robotics, 

Inc. (Kitchener, ON, Canada). The Jackal is small with a length of 508 mm, width of 430 

mm and height of 250 mm. It has an onboard computer, which is fully integrated with 

Robot Operating System (ROS) for out-of-the-box autonomous capability. The Wi-Fi 

connectivity of Jackal allows for navigation algorithms (e.g., sensing, planning and 

control) to execute remotely, in this study, on a laptop. The flat top surface of Jackal’s 

waterproof casing provides a simple mounting platform for sensors and other devices. 

The Jackal features a sturdy aluminum chassis with a high torque 4×4 drive-by-wire 

drive train. 

 

 

Figure 2.29 Jackal by Clearpath Robotics, Inc. Reprinted from [44]. 
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2.6.3.1.2. Combine Representation 

The mobile robot employed in this study to represent the combine was a 

TerraSentia (Figure 2.30), produced by EarthSense, Inc. (Champaign, IL, USA). This 

robot is similar in size to the Jackal, equipped with multiple cameras and an onboard 

computer, and designed for in-field plant trait data collection, especially for under-

canopy traits that cannot be obtained by other technologies. TerraSentia uses deep 

learning and computer vision software to phenotype and detect variations for crop 

breeders and researchers. Because the focus of this study was motion planning for 

autonomous grain carts, the TerraSentia, representing the combine, was remotely 

controlled by a human with the tablet computer paired with the TerraSentia to move 

around in the tests.  

 

 

Figure 2.30 TerraSentia by EarthSense, Inc. Reprinted from [45]. 
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2.6.3.1.3. Semi-Trailer Representation 

Unlike the grain cart or the combine, the semi-trailer does not need to move in 

this study. After unloading the grain from the combine, the grain cart will simply go to 

the semi-trailer, park alongside and transfer the grain. Therefore, for simplicity, a 

cardboard box was employed to represent the semi-trailer. 

2.6.3.1.4. Local Perception 

As discussed previously, a 2D lidar sensor should be able to deliver sufficient 

local perception for an autonomous grain cart. A scanning laser rangefinder (Model 

UTM-30LX, Hokuyo, Japan; Figure 2.31) was employed and mounted on top of the 

Jackal. This 2D lidar is able to detect objects at ranges from 100 mm to 30 m with 1 mm 

resolution in a 270° arc (with 0.25° angular resolution) at a frequency as high as 40 Hz, 

specifications that are sufficient for the scaled indoor experiments in this study. 

 

 

Figure 2.31 Scanning laser rangefinder Hokuyo UTM-30LX. Reprinted from [46]. 
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2.6.3.1.5. Global Localization and Vehicle States Measurement 

While RTK-GPS supports high-precision global localization, it is designed for 

use in outdoor environments. For the localization of the indoor mobile robots, two 

identical tracking cameras (Model RealSense T265, Intel Corp., Santa Clara, CA, USA; 

Figure 2.32) were employed, one for the Jackal and one for the TerraSentia. The T265 

tracking camera is a stand‑alone simultaneous localization and mapping (SLAM) device. 

SLAM involves constructing or updating a map of an unknown environment based on 

sensor data while simultaneously keeping track of the sensor location within that 

environment. The T265 tracking camera consists of two fisheye lens sensors, a visual 

processing unit (VPU) and an IMU. The built-in vision-based SLAM (V-SLAM) 

algorithms that runs on the VPU uses visual features in the environment for location 

tracking. The IMUs were used to measure the linear velocities and headings of the Jackal 

and TerraSentia. 

 

 

Figure 2.32 Intel RealSense Tracking Camera T265. Reprinted from [47]. 

 

2.6.3.1.6. Computing Devices 

A mini PC (Model NUC6i5SYK, Intel Corp., Santa Clara, CA, USA; Figure 

2.33) was employed to run the sensors on the Jackal. The mini PC has an Intel Core i5-
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6260U processor, a weight of 2.3 pounds and dimensions of 5.5×5×4 inches for length, 

width and height, which allowed it to be easily mounted on top of the Jackal. Connected 

with the 2D lidar and tracking camera, the mini PC was operated remotely via wireless 

connection to run the required sensor programs and send the sensing information to the 

laptop running the navigation algorithms. 

 

 

Figure 2.33 Intel NUC6i5SYK mini PC. Reprinted from [48]. 

 

A gaming laptop (Model G5, Dell Corp., Austin, TX, USA; Figure 2.34) was 

mounted on top of the TerraSentia to run the tracking camera as well as interact with the 

mini PC remotely. 

 

 

Figure 2.34 Dell G5 gaming laptop. Reprinted from [49]. 
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A laptop (Model ThinkPad T580, Lenovo Corp., Quarry Bay, Hong Kong; 

Figure 2.35) served as the computation hub, executing the core planning and control 

algorithms. With an Intel Core i7-8650U processor, the laptop communicated wirelessly 

with the computer onboard the Jackal, the Intel mini PC on the Jackal and the Dell 

laptop on the TerraSentia. 

 

 

Figure 2.35 Lenovo ThinkPad T580 laptop. Reprinted from [50]. 

 

2.6.3.1.7. V2V Communication 

TAMULink, Texas A&M University’s campus wireless network based on WPA 

Enterprise, was adopted for the wireless communication between the computing devices 

on the Jackal and TerraSentia.  

2.6.3.1.8. Power Sources 

Two power banks (XTPower Model MP-16000, Jauch Quartz America Inc., 

Seattle, WA, USA; Figure 2.36) were employed to power the Intel mini PC and the lidar 
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on the Jackal. These power banks have a capacity of 16000 mAh/59.2Wh. While the 

mini PC runs on 19V, the lidar runs on 12V, both of which are available as outputs of 

the power banks. The power banks are small and lightweight and were easily mounted 

on top of the Jackal. 

 

 

Figure 2.36 XTPower power bank MP-16000. Reprinted from [51]. 

 

2.6.3.1.9.  Crop Row Representation 

Cardboard sheets were employed to represent the crop rows. As shown in Figure 

2.37, the cardboard sheets were placed vertically on the ground with certain angles 

relative to each other. Slightly folded on the side and attached to the ground with duct 

tape, the cardboard sheets stayed upright by themselves, and they were easily run over 

by the TerraSentia robot, representing the combine. When standing upright, the 

cardboard sheets resembled unharvested crop rows that could potentially block the 

Jackal; when run over, the cardboard sheets resembled harvested areas that could be 
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traversed by the Jackal. Note that when mounted on an actual grain cart for real-world 

implementations, the lidar would not be on top of the tractor cab. Instead, it would be 

mounted at a level lower than the height of the crop plants being harvested. For example, 

on the front hitch point of the tractor.  

 

 

Figure 2.37 Crop rows represented by cardboard sheets. 

 

2.6.3.1.10. ROS Network 

As mentioned previously, control of the Jackal was realized via the ROS 

programs running on the Jackal’s onboard PC. As a flexible framework for writing 

robotics software, ROS is a collection of tools, libraries, and conventions that aim to 

simplify the creation of complex and robust robot behaviors [52]. ROS’s built-in 

messaging system saves time by managing the communication between distributed 

nodes via a publication and subscription mechanism, where “node” is the ROS term for 
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an executable program that is connected to the ROS network. Specifically, when a ROS 

node publishes a ROS message to a virtual ROS topic, any other node(s) can subscribe 

to this topic and receive the message. The structure of the ROS network built on the 

TAMULink was centered at the ROS node of the motion planner running on the 

ThinkPad laptop (Figure 2.38).  

On top of the Jackal, the mini PC running lidar and camera drivers served as two 

ROS nodes, which published to a topic the messages containing the Jackal’s information 

of the lidar-based local perception, the camera-based global localization and the IMU-

based vehicle states measurement. On top of the TerraSentia, the Dell laptop running the 

camera driver served as another ROS node. The messages containing the pose and linear 

velocity of the TerraSentia, which were provided by the Intel tracking camera, were also 

published to a ROS topic. The core planning algorithm, coded and executed in MatLab 

Simulink, subscribed to the aforementioned topics and received the information about 

the Jackal and TerraSentia. After a series of computations, the planner published the 

planned motions to another topic, to which the Jackal’s onboard PC subscribed. Because 

all Jackal robots come with a built-in low-level controller, the planned motions in the 

form of ROS messages can be directly implemented to control the movement of the 

Jackal, and no separate controller design is needed.  

All the ROS messages were transmitted wirelessly to each ROS node in the ROS 

network. With the add-on Simulink toolbox, namely the Robotic System Toolbox, the 

interface between MatLab Simulink and ROS were easily established. 



 

105 

 

 

Figure 2.38 ROS network for mobile robot tests. 

 

2.6.3.2. Test Design 

The following mobile robot tests were designed and conducted. (i) Simple 

harvesting where the Jackal and the TerraSentia faced first the same direction and then 

opposite directions when meeting for unloading; (ii) single long static obstacle for the 

Jackal to go around; (iii) single static obstacle very close to the goal; (iv) two closely 

spaced static obstacles for the Jackal to go between; (v) two sparsely spaced obstacles 

for the Jackal to go around one by one; (vi) multiple static obstacles randomly spaced for 

the Jackal to navigate through; (vii) dynamic obstacle with no threat; (viii) dynamic 

obstacle that moved around blocking the way; (ix) malicious dynamic obstacle that 

chased and blocked the Jackal; (x) same tests as (ii) through (vi) but with a simple APF 

planner guiding the Jackal for comparison. The default repulsive range of obstacles in 

the APF was set to 0.5 m. 
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2.6.3.2.1. Simple Harvesting 

Two very common cases of simple harvesting were tested. With the grain cart 

(Jackal) and the combine (TerraSentia) meeting for unloading, (i) they traveled in the 

same direction (Figure 2.39), and (ii) they faced opposite directions (Figure 2.40). When 

facing the same direction, the grain cart could directly approach the combine and drive 

alongside the combine on the left for unloading the grain. When facing opposite 

directions, the grain cart needed to make a U-turn to align its heading with that of the 

combine before unloading started. Beginning at the standby point, the grain cart needed 

to accomplish all the logistical tasks described previously; i.e., go to combine, unload 

grain, go to semi-trailer, transfer grain and return to standby point. The combine was 

manually controlled by a human with a joystick, and the linear velocity fluctuated 

slightly, resembling the speed variation of a real combine in a real harvest operation. 

Although simple harvesting was already included in the simulation tests, carrying out the 

same test with mobile robots was for verification of the effectiveness and practicality of 

the proposed navigation solution. Note that the comparison between the APF and 

APF+FLC planners was not conducted in this test, primarily because the obstacle 

avoidance tasks herein were relatively simple and would not help showcase the 

advantage of the proposed algorithm. 
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Figure 2.39 Simple harvesting: grain cart and combine faced same direction. 

 

 

Figure 2.40 Simple harvesting: grain cart and combine faced opposite directions. 
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2.6.3.2.2. Long Static Obstacle 

A single long static obstacle was constructed by a row of cardboard sheets 

(Figure 2.41). The long static obstacle represented an unharvested crop row, which is the 

most common obstacle a gain cart faces in harvest operations. The Jackal was expected 

to go around the long obstacle and reach the goal behind it (green dot). Long static 

obstacles could cause oscillations with the simple APF planner. 

 

 

Figure 2.41 Long static obstacle. 

 

2.6.3.2.3. Static Obstacle Close to Goal 

In simple harvesting, the task of approaching and parking alongside the semi-

trailer for grain transfer can be considered a general test case: to reach the goal with a 
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specific heading when there is an obstacle in close proximity to the goal. Figure 2.42 

shows such an obstacle (cardboard box) close to the goal (green dot). The Jackal was 

supposed to approach the goal and park alongside it facing right. This may not seem a 

challenging task, but a simple APF planner may experience difficulty due to force 

contradiction or cancellation. 

 

 

Figure 2.42 Obstacle close to goal. 

 

2.6.3.2.4. Closely Spaced Static Obstacles 

Two closely spaced static obstacles were constructed by two groups of cardboard 

sheets. As shown in Figure 2.43, the Jackal needed to go through the gap and reach the 

goal (green dot) behind the obstacles. This test case is also common in harvest 
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operations; when a grain cart enters the crop rows, many times it has to make it through 

the relatively narrow gap between the unharvested crop rows on the two sides. Closely 

spaced obstacles can potentially cause problems to a simple APF planner by creating 

local minima. 

 

 

Figure 2.43 Closely spaced obstacles. 

 

2.6.3.2.5. Sparsely Spaced Static Obstacles 

The same two groups of cardboard sheets employed for closely spaced static 

obstacles were placed farther away from each other, representing random obstacles that 

are sparsely spaced (Figure 2.44). The Jackal thus needed to go around the obstacles one 
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by one and reach the goal (green dot) behind them. This test highlighted the human-like 

intelligence incorporated in the proposed APF+FLC planning algorithm. 

 

 

Figure 2.44 Sparsely spaced obstacles. 

 

2.6.3.2.6. Multiple Randomly Spaced Static Obstacles 

To verify the robustness of the proposed planning algorithm, the Jackal must be 

able to navigate between a number of randomly spaced static obstacles and reach the 

goal behind (green dot). To raise the difficulty of the motion planning task, (i) the 

obstacles were designed to be concave rather than convex, “embracing” the Jackal, and 
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(ii) small gaps were intentionally left between some of the obstacles, which could be 

misleading as possible passable openings (Figure 2.45). 

 

 

Figure 2.45 Multiple randomly spaced static obstacles. 

 

2.6.3.2.7. Dynamic Obstacle with No Threat 

The existence of dynamic obstacles can often make the motion planning task 

more complex and challenging. Fast response to dynamic obstacles is critical for 

collision avoidance. Meanwhile, overreacting to dynamic obstacles that are actually of 

no threat to the host vehicle (always the Jackal in this study) is not desired. In this test, 

when the Jackal traveled straight towards the goal immediately in front of it, the 

dynamic obstacle, represented by the TerraSentia, traveled in a direction that crossed the 

Jackal’s path. However, the linear velocity of the TerraSentia was so low that it would 
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never actually block or hit the Jackal. Note that in this general test case, the TerraSentia 

was not necessarily representing the combine as in the harvest operation test. Instead, the 

TerraSentia could be any (farming) vehicle or even a large animal that traversed the 

field. As explained in the APF+FLC integration mechanism, it was typically the APF 

part of the algorithm that handles dynamic obstacles, because their behaviors are often 

unpredictable and can easily get dangerously close to the vehicle. This and the following 

tests involving dynamic obstacles were designed simply to further verify the 

effectiveness and robustness of the proposed algorithm. Therefore, the comparison 

between the APF+FLC and a simple APF planner was omitted. 

2.6.3.2.8. Dynamic Obstacle in the Way 

The planner’s response was also tested when the TerraSentia crossed the Jackal’s 

straight path to the goal in front and actually blocked the way. Two specific cases were 

considered: when the TerraSentia met the Jackal relatively early, and when the 

TerraSentia met it relatively late. This test was to investigate whether the proposed 

algorithm can generate the most efficient motion plans when encountering dynamic 

obstacles in different relative poses. 

2.6.3.2.9. Malicious Dynamic Obstacle 

To verify the robustness of the proposed algorithm in handling dynamic 

obstacles, the TerraSentia in this test maliciously chased the Jackal that was going 

straight ahead. Specifically, the TerraSentia (i) intentionally blocked the way, forcing the 

Jackal to make sharp turns; (ii) chased the Jackal and pressed hard on the side, forcing 

the Jackal to turn around; and (iii) sabotaged the navigation in both the above ways. 



 

114 

 

2.6.3.2.10. Simple APF Tests 

Just like the simulation tests, another set of tests identical to tests (ii) - (vi) were 

conducted with a simple APF planner guiding the Jackal. Performances of both the 

simple APF planner and the proposed APF+FLC planner were logged and compared for 

evaluating the efficiency of the proposed algorithm. To better illustrate the advantage of 

the proposed algorithm, in some tests, the key parameter of the APF planner, i.e., the 

repulsive range of obstacles, was adjusted to potentially improve the performance of the 

APF planner and further compare it with that of the APF+FLC planner. 

2.6.3.3. Data Collection and Results Analysis 

2.6.3.3.1. Effectiveness and Practicality of Navigation Solution 

As stated in the Objectives, the first consideration with the mobile robot tests was 

whether the proposed navigation solution was effective and practical, which would be 

primarily reflected by the results of the simple harvesting test. If the grain cart (Jackal) 

could autonomously accomplish all the logistical tasks, following the motion plans 

generated by the APF+FLC planner, it would be reasonable to declare that the proposed 

navigation solution, featuring 2D-lidar-based local perception, IMU-based vehicle states 

measurement, Wi-Fi-supported V2V communication and drive-by-wire actuation, was 

effective and practical in implementing the developed motion planning algorithm. This 

provided a qualitative result. 

2.6.3.3.2. Effectiveness and Robustness of Planning Algorithm 

Another important subobjective of the mobile robot tests was to further verify the 

effectiveness and robustness of the proposed motion planning algorithm. While 
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accomplishment of the logistical tasks in the simple harvesting test would be a positive 

result, more importance was placed on the results of the other tests involving static or 

dynamic obstacles. Specifically, in these tests, if the Jackal could always intelligently 

handle the static obstacles with different configurations and the dynamic obstacles with 

different levels/types of threats, successfully reaching the goal, the effectiveness and 

robustness of the proposed motion planning algorithm would be verified. This also 

provided a qualitative result.  

2.6.3.3.3. Efficiency 

Again, as the most important aspect of the performance of the proposed motion 

planning algorithm, efficiency was evaluated based on the comparison between the 

proposed planner and the simple APF planner. While the efficiency was still mainly 

dependent on the length and smoothness of the Jackal’s trajectory from the origin to the 

goal, the rationality of the motion plans was also considered an important indicator. The 

same methods employed in the simulation tests were used to measure the length and 

smoothness of the trajectory: approximate the tiny curves traveled by the Jackal within 

each sampling step as straight lines and sum up all the small segments for the length, and 

calculate the variance of the angles between consecutive segments of the trajectory and 

take it as the smoothness. Like before, measurement of the trajectory length and 

smoothness was quantitative, while comparing the rationality of the motion plans was 

qualitative. 
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3. RESULTS AND CONCLUSIONS 

 

3.1. Results by Objective 

3.1.1. Simulation Tests: APF+FLC vs. Simple APF 

3.1.1.1. Simple Harvesting 

3.1.1.1.1. Effectiveness 

When no obstacles other than unharvested crop rows were present, with the 

proposed task scheduling strategy, both the APF+FLC and APF planners were able to 

navigate the autonomous grain cart in the crop field and accomplish all the logistical 

tasks without any collisions. Figure 3.1 exemplifies a work cycle of the autonomous 

grain cart, in which it (i) stood by, (ii) went to the combine, (iii) unloaded the grain, (iv) 

went to the semi-trailer, (v) transferred the grain, and (vi) returned to the standby point. 

For the six unloading operations that took place during the entire harvest, the grain cart 

spent an average of only 5.38 s following the combine before unloading started. This 

non-productive following time was less than 0.6% of the total time of the simulated 

harvest operation, which was 15 minutes. Therefore, the effectiveness of the proposed 

motion planning algorithm and the task scheduling strategy was verified. 
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A                                              B                                              C 

       
D                                             E                                              F 

Figure 3.1 An example work cycle of grain cart in simple harvesting. (A) Standby. 

(B) To combine. (C) Unload. (D) To semi. (E) Transfer. (F) To standby. 
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3.1.1.1.2. Efficiency 

The two planners differed from each other in two scenarios: (i) each time the 

grain cart left the combine for the semi-trailer, the APF planner tended to drive the grain 

cart unnecessarily close to the crop rows while the APF+FLC planner, leveraging 

human-like intelligence, kept the grain cart safely away from the rows (Figure 3.2); (ii) 

due to its inherent limitations, the APF planner made the grain cart oscillate when it was 

traveling between the crop rows (Figure 3.3.), while the APF+FLC had no such issue. 

Therefore, in terms of rationality of the motion plans, the APF+FLC planner 

outperformed the APF planner. In terms of the trajectory length and smoothness, the 

APF+FLC trajectory was slightly smoother (0.00062 rad2) while slightly longer 

(1590.89 m) than the simple APF trajectory (0.00063 rad2 for smoothness and 1583.37 

m for length). These results imply that, overall, the two planners generated similar 

motion plans. Two major reasons for the lack of difference in performance between the 

planners in this test were (i) the obstacle avoidance task was relatively simple when 

unharvested crop rows were the only obstacles, and (ii) as shown in Figure 3.1 A, the 

standby point was deliberately selected such that a straight route to the unloading 

location was always available, further simplifying the obstacle avoidance task. 

 

                            
A                                 B                                 C                                 D 

Figure 3.2 Grain cart left combine for semi-trailer in first two work cycles. (A) APF 

1st cycle. (B) APF 2nd cycle. (C) APF+FLC 1st cycle. (D) APF+FLC 2nd cycle. 
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A                     B                     C                     D                     E                     F 

Figure 3.3 Grain cart with APF planner oscillated between crop rows. Sequential 

motion from (A) to (F). 

 

3.1.1.1.3. Computational Expense 

As mentioned previously, computational efficiency has been discussed in many 

studies as a key advantage of APF over other techniques, demonstrating that APF is 

suitable for real-time applications. Upgraded from APF, the proposed APF+FLC planner 

consumed an average CPU time of 0.74 ms in each computation step. Although this 

computation expense was over two times greater than that of the simple APF planner, 

which was 0.28 ms, the APF+FLC computations were still very fast. Note that employed 

in the simulation was an ordinary CPU (Intel Core i7-8650U CPU @ 1.90 GHz), thus it 

is reasonable to declare that the proposed algorithm is sufficiently expeditious for real-

time motion planning. 
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3.1.1.2. Static Obstacles 

3.1.1.2.1. Effectiveness and Robustness 

Both the APF+FLC and APF planners have the same task scheduling strategy 

and thus were similarly able to direct the autonomous grain cart to accomplish the 

logistical tasks in the harvest operation where static obstacles other than crop rows 

existed, verifying the effectiveness and robustness of the proposed motion planning 

algorithm and the associated task scheduling strategy. 

3.1.1.2.2. Efficiency 

A major difference between the efficiencies of the motions generated by the two 

planners was observed. Figures 3.4 and 3.5, respectively, show how the APF+FLC and 

APF planners handled five sets of static obstacles that blocked the straight route when 

the grain cart was going to the semi-trailer. Taking early actions to smoothly go around 

the obstacles from the side closer to the goal enabled the APF+FLC planner to deal with 

the static obstacles more rationally and efficiently, with a trajectory length of 436.74 m 

and smoothness of 0.0014 rad2. In contrast, without a global view, the APF planner 

steered the grain cart only to avoid imminent collisions with local obstacles, resulting in 

a trajectory with length of 553.13 m and smoothness of 0.0016 rad2. Thus, the APF+FLC 

trajectory was 21.04% shorter and 12.50% smoother than that of the simple APF 

planner. 
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Figure 3.4 Grain cart with APF+FLC planner handled five sets (from A to E) of 

static obstacles. 
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Figure 3.5 Grain cart with APF planner handled five sets (from A to E) of static 

obstacles. 
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3.1.1.2.3. Computational Expense 

Although the static obstacles made the environmental condition more complex, 

this fact did not increase the computational expense of the proposed planner as well as 

the simple APF planner. The average CPU times consumed in each computation step 

were basically the same as those in the previous test. 

3.1.1.3. Dynamic Obstacles 

3.1.1.3.1. Effectiveness and Robustness 

The dynamic obstacles constantly changed the environment between the crop 

rows and the semi-trailer (Figure 3.6). As described previously, when the grain cart 

approached this type of obstacles, the APF+FLC planner first made use of FLC and 

attempted to drive the grain cart around the obstacles based on their real-time 

configuration, and it updated the motion plan accordingly in each computation step. 

When dangerously close to the obstacles, the planner relied on APF to promptly avoid 

potential collisions. As shown in Figure 3.7, in some cases the grain cart went around the 

obstacles from the side, while in other cases the grain cart navigated through the obstacle 

zones when the gap between them was wide enough to provide more efficient routes. 

Because of the dynamic nature of this test, the “go-around” plans generated by the FLC 

part of the planner were often overruled as the obstacles typically moved very close to 

the grain cart, making APF dominate the planning. Both the APF and APF+FLC 

planners successfully handled the dynamic obstacles, and with the task scheduling 

strategy they accomplished the logistical tasks in the harvest operation, further verifying 

their effectiveness and robustness. 



 

131 

 

 

Figure 3.6 Trajectories of two dynamic obstacles: one circled, one moved back and 

forth. 

 

       
A 

       
B 

Figure 3.7 Grain cart with APF+FLC planner handled dynamic obstacles in five 

working cycles (from A to E). Each row for each cycle. Sequential motion from left 

to right. 
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Figure 3.7 Continued. 

 

3.1.1.3.2. Efficiency 

The APF planner was effective and prompt in avoiding collisions with dynamic 

obstacles but ended up with a trajectory that was 831.18 m in length and 0.0012 rad2 in 

smoothness, compared with the APF+FLC trajectory that was 18.76% shorter (675.27 

m) and 16.67% smoother (0.0010 rad2). The primary reason for these differences was 

that, with the APF planner, the grain cart occasionally got trapped in a local minimum. 
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In these instances, when the dynamic obstacle was wandering close to the standby point 

although not really blocking the grain cart, its repulsive forces hindered the grain cart 

(which just finished transferring the grain to the semi-trailer) from approaching the 

standby point in the specified heading. Therefore, the grain cart had to make U-turns to 

adjust its pose, only to fail again until the dynamic obstacle moved away, by which time 

the grain cart was already late for unloading and had to go to the combine immediately 

(Figure 3.8). In contrast, the APF+FLC planner had no such issue since it has the 

intelligence to ignore the dynamic obstacle, which actually never blocked the way to the 

standby point. Compared with the APF planner, the APF+FLC planner exhibited higher 

efficiency dealing with dynamic obstacles in this study.  

 

       
A                                              B                                              C 

       
D                                              E                                              F 

Figure 3.8 Grain cart with APF planner had trouble approaching standby point 

(blue circle). Sequential motion from (A) to (F). 
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3.1.1.3.3. Computational Expense 

Similar to the previous test, dealing with the dynamic obstacles did not add 

significant extra calculation requirements to the CPU, leaving the computational 

expenses of both planners similar to those in the previous tests. 

3.1.2. Simulation Tests: APF+FLC vs. VFH 

3.1.2.1. Long Static Obstacle with Gap 

Figure 3.9 shows how the APF+FLC and VFH planners dealt differently with the 

long static obstacle with a narrow gap. The APF+FLC planner was able to identify the 

more efficient route through the gap and directed the grain cart to take the shortcut 

towards the goal. Meanwhile, the VFH planner led the grain cart to travel all the way 

around the long obstacle without making use of the gap, because the VFH planner 

decided that the space at the end of the long obstacle had a lower obstacle density than 

the narrow gap, meaning going around the long obstacle would have lower probability 

for the grain cart to be blocked by obstacles. Although this decision resulted in a 

trajectory that was over two times smoother (0.00036 rad2) than the APF+FLC trajectory 

(0.00091 rad2), the length for APF+FLC (122.19 m) was 24.47% shorter than that for 

VFH (161.78 m). In terms of computational expense in each simulation step, the 

APF+FLC planner consumed an average of 0.42 ms while the VFH planner consumed 

an average of 0.62 ms, indicating that the APF+FLC planner was 32.26% faster in the 

computations. In summary, when handling the long static obstacle with a narrow gap, 

the APF+FLC planner accomplished the navigation task with a shorter travel distance 

and less computational consumption. 
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Figure 3.9 Grain cart dealt with long static obstacle with narrow gap. (A) 

APF+FLC. (B) VFH. 

 

3.1.2.2. Static Obstacles Close to Goal 

As shown in Figure 3.10, the APF+FLC planner was effective in directing the 

grain cart to approach the goal, ignoring the obstacle on the way that hardly blocked the 

straight path from the origin to the goal as well as the three obstacles closely surrounding 

the goal. However, these obstacles, especially the three that generated high obstacle 

density around the goal, caused major problems for the VFH planner. Instead of 

approaching the goal directly, the grain cart with the VFH planner had to go around all 

the three surrounding obstacles before identifying the path towards the goal. Thus, the 

APF+FLC trajectory (109.16 m length and 0.00065 rad2 smoothness) was 61.34% 

shorter and 32.29% smoother than the VFH trajectory (282.37 m length and 0.00096 

rad2 smoothness). In terms of average computation time, the APF+FLC planner 

consumed 0.53 ms while the VFH planner consumed 0.69 ms, meaning the APF+FLC 

planner was 23.19% more efficient in the computations. 
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A                                                                      B 

Figure 3.10 Grain cart dealt with multiple obstacles close to goal. (A) APF+FLC. 

(B) VFH. 

 

3.1.2.3. Closely Spaced Static Obstacles 

Of the three gaps between the four closely spaced static obstacles, the narrow one 

in the middle provided the most efficient route towards the goal. The APF+FLC planner 

was effective in making use of this narrow gap and directed the grain cart to efficiently 

navigate to the goal (Figure 3.11 A), resulting in a trajectory length of 109.51 m and a 

smoothness of 0.00091 rad2. On the other hand, the VFH planner was not able to make 

use of the narrow gap in the middle, and instead, it directed the grain cart to go through 

one of the two wider gaps which was considered safer with lower obstacle density 

(Figure 3.11 B). The VFH trajectory had a length of 133.33 m and a smoothness of 

0.00064 rad2, which was 29.67% smoother but 21.75% longer than the APF+FLC 

trajectory. Additionally, the computational expense of the APF+FLC planner (0.36 ms) 

was 58.62% less than that of the VFH planner (0.87 ms). 
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A                                                                      B 

Figure 3.11 Grain cart dealt with closely spaced obstacles. (A) APF+FLC. (B) VFH. 

 

3.1.2.4. Sparsely Spaced Static Obstacle Groups 

The two groups of sparsely spaced static obstacles hardly blocked the straight 

path between the starting and target points. The APF+FLC was effective in directing the 

grain cart to smoothly steer towards the wide gap between the two obstacle groups, pass 

through it and reach the goal (Figure 3.12 A). In contrast, the VFH planner did not 

enable the grain cart to travel with a global view, so it went around the obstacle group on 

the right to approach the goal (Figure 3.12 B). The VFH planner did not adopt the 

obvious shortcut, because the locations of the obstacle groups relative to each other and 

relative to the grain cart made it challenging for the VFH planner to identify the large 

space in between at the beginning of the run. Meanwhile, going around the obstacle 

group from the righthand side where the obstacle density was lower seemed more 

promising to the VFH planner. Again, the APF+FLC compromised trajectory 
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smoothness (i.e., VFH 0.00030 rad2 vs. APF+FLC 0.00066 rad2; VFH was 54.55% 

smoother) for a reduction in trajectory length (APF+FLC 107.62 m vs. VFH 141.70 m; 

APF+FLC was 24.05% shorter). In addition, the computational expense of the 

APF+FLC planner (0.35 ms) was only about half of that of the VFH planner (0.71 ms). 

 

    
A                                                                      B 

Figure 3.12 Grain cart dealt with sparsely spaced obstacle groups. (A) APF+FLC. 

(B) VFH. 

 

3.1.2.5. Dynamic Obstacles 

As shown in Figure 3.13, when directed by the APF+FLC planner, the grain cart 

was able to efficiently approach the goal. While the grain cart attempted to follow the 

most efficient route (i.e., straight line from origin to goal), it adjusted the motions to 

avoid collisions with the dynamic obstacles. Specifically, the grain cart went around the 

first obstacle from the left, then tried to circumvent the second obstacle from the right. 

However, as the second obstacle circled counterclockwise, the grain cart steered left to 
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let the obstacle pass by, and approached the goal more efficiently. As shown in Figure 

3.14, when guided by the VFH planner, the grain cart encountered major problems. Just 

like the previous test (i.e., sparsely spaced obstacle groups), the grain cart did not 

attempt to make use of the momentary large space between the two dynamic obstacles, 

and went around the first obstacle from the right. After that the grain cart encountered 

the second obstacle, which traveled between the grain cart and the goal for almost half of 

the circle around the goal. Eventually, when the relatively faster obstacle passed the 

grain cart, leaving a clear space between the grain cart and the goal, the grain cart was 

able to steer towards the goal. The VFH planner failed to prevent the grain cart from 

following alongside the dynamic obstacle, which led to a trajectory (182.47 m) much 

longer than that of the APF+FLC planner (114.50 m, 37.25% shorter). On the other 

hand, the smoothness of the VFH trajectory (0.00092 rad2) was 23.33% higher than that 

of the APF+FLC trajectory (0.0012 rad2). Just like the previous tests, the APF+FLC 

proved to be much faster (25.93%) computationally than the VFH planner (APF+FLC 

0.60 ms vs. VFH 0.81 ms).  
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Figure 3.13 Grain cart with APF+FLC planner dealt with dynamic obstacles. 

Sequential motion from (A) to (D). 
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Figure 3.14 Grain cart with VFH planner dealt with dynamic obstacles. Sequential 

motion from (A) to (D). 

 

3.1.3. Mobile Robot Tests 

3.1.3.1. Simple Harvesting 

In both test cases -- when the grain cart (Jackal) and combine (TerraSentia) faced 

the same direction or opposite directions when meeting for unloading -- the proposed 

navigation solution, implementing the APF+FLC planner along with the task scheduling 
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strategy, was able to direct the autonomous grain cart to accomplish all the logistical 

tasks. Illustrated in Figures 3.15 and 3.16, where the grain cart and combine faced the 

same direction or opposite directions, respectively, the autonomous grain cart stood by, 

went to the combine, unloaded the grain, went to the semi-trailer, transferred the grain, 

and returned to the standby point. Therefore, the effectiveness and practicality of the 

proposed navigation solution were verified. 
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E                                                                   F 

Figure 3.15 Grain cart accomplished logistical tasks in simple harvesting (combine 

had same facing). (A) Standby. (B) To combine. (C) Unload. (D) To semi. (E) 

Transfer. (F) To standby. 
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Figure 3.16 Grain cart accomplished logistical tasks in simple harvesting (combine 

had opposite facing). (A) Standby. (B) To combine. (C) Unload. (D) To semi. (E) 

Transfer. (F) To standby. 
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Figure 3.16 Continued. 

 



 

146 

 

3.1.3.2. Long Static Obstacle 

As shown in Figure 3.17, when the Jackal faced the long static obstacle, the 

APF+FLC planner was effective in directing it to go around the obstacle smoothly and 

reach the goal behind it. The path the Jackal took was simple and efficient with a safe 

distance away from the long obstacle. Meanwhile, as shown in Figure 3.18, when the 

APF planner was in charge, the Jackal tended to go straight to the goal until it was 

dangerously close to the long obstacle and had to steer away. Every time an imminent 

collision was avoided, the Jackal tended to steer back to the original heading and 

proceeded, only to run into another imminent collision and had to steer away again. This 

tendency caused the Jackal to oscillate all the way until it eventually passed the long 

obstacle. The trajectory length in the two cases was, respectively, 8.77 m and 9.00 m. 

Although the lengths of the APF and APF+FLC trajectories were almost the same, the 

latter was considered more efficient, as it was more rational and over three times 

smoother (APF+FLC 0.015 rad2 vs. simple APF 0.047 rad2). 
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Figure 3.17 Jackal with APF+FLC planner went around long static obstacle. 

Sequential motion from (A) to (F). 
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Figure 3.18 Jackal with APF planner oscillated going around long static obstacle. 

Sequential motion from (A) to (L). 
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3.1.3.3. Static Obstacle Close to Goal 

In simple harvesting, the grain cart (Jackal) accomplished all the logistical tasks, 

including approaching and parking alongside the semi-trailer to transfer the grain. This 

task was separated to be a general test in which the goal was very close to a static 

obstacle. As shown in Figure 3.19, the APF+FLC planner was effective in directing the 

Jackal to approach the obstacle and stop right in front of it, just like the grain cart went 

to the semi-trailer and parked alongside in the simple harvesting test. This seemingly 

simple task turned out to be a great challenge for the APF planner. The goal was so close 

to the static obstacle that the attractive and repulsive forces created local minima around 

the area in front of the obstacle. Whenever the Jackal with the APF planner approached 

the goal, the obstacle behind it would “push” the Jackal away, preventing it from 

reaching the goal. As shown in Figure 3.20, after failing two times in approaching the 

goal by the obstacle, the Jackal was turning around for more attempts, which would 

always end up with the same failure. 
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Figure 3.19 Jackal with APF+FLC planner approached goal close to obstacle. 

Sequential motion from (A) to (F). 
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Figure 3.20 Jackal with APF planner failed approaching goal close to obstacle. 

Sequential motion from (A) to (L). 
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3.1.3.4. Closely Spaced Static Obstacles 

The APF+FLC planner was effective in making use of the narrow gap between 

the two closely spaced static obstacles and directed the Jackal to efficiently pass through 

the gap to reach the goal (Figure 3.21), resulting in a trajectory length of 5.59 m and 

smoothness of 0.043 rad2. To first go around the closer obstacle on the right with a safe 

distance, the Jackal inevitably got a little too close to the relatively farther obstacle on 

the left, where the repulsive force immediately steered the Jackal away from potential 

collisions, forcing it to make a relatively sharp turn to go through the gap. Illustrated in 

Figures 3.22, 3.23 and 3.24, the Jackal faced the same two obstacles but the directing 

APF planner had different repulsive ranges for the obstacles. In Figure 3.22, the 

obstacles were defined such that they had a repulsive range of 0.5 m, which did not 

repulse the Jackal until it traveled extremely close to the obstacles. Making sharp turns at 

the last minute, the Jackal eventually made it through the gap and reached the goal with 

a trajectory of 6.12 m in length and 0.088 rad2 in smoothness, which made the 

APF+FLC trajectory 8.66% shorter and 51.14% smoother in comparison. When the 

repulsive range was increased to 1.0 m, the Jackal had similar behavior (Figure 3.23); it 

attempted to go straight towards the goal until it had to circumvent the obstacle to avoid 

imminent collisions. In addition, with the longer repulsive range of the obstacles, the 

Jackal experienced oscillation caused by the force contradiction passing through the gap. 

The APF trajectory with longer repulsive range was 7.00 m in length and 0.061 rad2 in 

smoothness, while the APF+FLC trajectory was 20.14% shorter and 29.51% smoother. 

Illustrated in Figure 3.24, when the repulsive range was set to 1.5 m, the Jackal did not 
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wait until the last minute to make sharp turns to avoid collisions, which seemed at first to 

be an improvement. However, the long repulsive range of the two obstacles prevented 

the Jackal from passing through the narrow gap, forcing the Jackal to go around the 

farther obstacle on the left to approach the goal. Compared with the resulting trajectory 

(APF, 1.5-m repulsive range) of 7.48 m in length and 0.085 rad2 in smoothness, the 

APF+FLC trajectory was 25.27% shorter and 49.41% smoother. 
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Figure 3.21 Jackal with APF+FLC planner went between closely spaced obstacles. 

Sequential motion from (A) to (F). 
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Figure 3.22 Jackal with APF planner went between closely spaced obstacles 

(repulsive range = 0.5 m). Sequential motion from (A) to (F). 
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Figure 3.23 Jackal with APF planner went between closely spaced obstacles 

(repulsive range = 1.0 m). Sequential motion from (A) to (L). 
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Figure 3.24 Jackal with APF planner went between closely spaced obstacles 

(repulsive range = 1.5 m). Sequential motion from (A) to (F). 
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3.1.3.5. Sparsely Spaced Static Obstacles 

As shown in Figure 3.25, when the two obstacles were farther away from each 

other, the APF+FLC planner was effective in directing the Jackal to handle the obstacles 

one by one, taking a smoother path to reach the goal. In this test, because of more 

available space, the Jackal was always able to take early actions to efficiently go around 

the obstacles without making sharp turns. On the contrary, when the APF planner was in 

charge, the Jackal traveled without a global view, always going straight towards the goal 

until a collision was imminent. For the APF planner, the repulsive range of the obstacles 

was first set to 0.5 m (Figure 3.26), and then 1.5 m (Figure 3.27). In either case, the 

Jackal only changed directions when it was “sufficiently” close to the obstacles. In the 

1.5 m case, the Jackal took steering actions a little earlier than in the 0.5 m case, which 

seemed at first to be an improvement. However, in the 1.5 m case, the Jackal 

circumvented the obstacles with an unnecessarily large gap in between, resulting in a 

trajectory of 7.52 m in length and 0.085 rad2 in smoothness, while the 0.5 m case had a 

length of 6.80 m and a smoothness of 0.159 rad2. Compared with these results, the 

APF+FLC trajectory of 6.32 m in length and 0.045 rad2 in smoothness, was 15.96% and 

7.06% shorter, and 47.06% and 71.70% smoother, in the 1.5 m and 0.5 m cases, 

respectively. Hence, the APF+FLC planner was more efficient than the APF planner in 

this test. 
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Figure 3.25 Jackal with APF+FLC planner went between sparsely spaced obstacles. 

Sequential motion from (A) to (F). 
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Figure 3.26 Jackal with APF planner went between sparsely spaced obstacles 

(repulsive range = 0.5 m). Sequential motion from (A) to (F). 
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Figure 3.27 Jackal with APF planner went between sparsely spaced obstacles 

(repulsive range = 1.5 m). Sequential motion from (A) to (F). 
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3.1.3.6. Multiple Randomly Spaced Static Obstacles 

Even facing a number of concave obstacles with misleading small gaps in 

between, the APF+FLC planner was effective in leading the Jackal with the most 

efficient motions to tackle the navigation task and eventually reach the goal (Figure 

3.28). The length and smoothness of the trajectory were 8.96 m and 0.052 rad2, 

respectively. Illustrated in Figures 3.29 and 3.30, the APF planner led the Jackal into the 

“embraces” of the obstacles. With either 0.5 m or 1.0 m repulsive range, the three 

cardboard sheets in the very front, which the Jackal ran into first, caused the Jackal to 

deviate from the most efficient path and to oscillate. Directed by the APF planner, the 

Jackal kept running towards the obstacles and made sharp turns at the last minute. The 

trajectory length of the APF+FLC planer was 21.68% shorter than that of APF in the 0.5 

m case (11.44 m) and 25.95% shorter than that in the 1.0 m case (12.10 m). The 

trajectory smoothness of the APF+FLC planner was 70.79% higher than that of APF in 

the 0.5 m case (0.178 rad2) and 51.85% higher than that in the 1.0 m case (0.108 rad2). 

Hence, both the superior robustness and efficiency of the APF+FLC planner were 

verified. 

 



 

163 

 

    

A                                B                                C                                D 

    

E                                F                                G                               H 

Figure 3.28 Jackal with APF+FLC planner navigated between multiple static 

obstacles. Sequential motion from (A) to (H). 
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Figure 3.29 Jackal with APF planner navigated between multiple static obstacles 

(repulsive range = 0.5 m). Sequential motion from (A) to (L). 
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Figure 3.30 Jackal with APF planner navigated between multiple static obstacles 

(repulsive range = 1.0 m). Sequential motion from (A) to (L). 
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3.1.3.7. Dynamic Obstacle with No Threat 

As shown in Figure 3.31, the APF+FLC planner was effective in leading the 

Jackal directly towards the goal in front, neglecting the TerraSentia that was traveling 

across the space. Although the dynamic obstacle could potentially run into the Jackal, 

based on its relative position the APF+FLC planner determined that the obstacle was 

neither blocking the straight path to the goal, nor actually threatening the Jackal. 

Successfully dealing with the approaching dynamic obstacle without overreacting to it 

verified the robustness and efficiency of the APF+FLC planner. 

 

    

A                                                                   B 

    

C                                                                    D 

    

E                                                                    F 

Figure 3.31 Jackal with APF+FLC planner dealt with dynamic obstacle with no 

threat. Sequential motion from (A) to (F). 
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3.1.3.8. Dynamic Obstacle in the Way 

In this test, the APF+FLC planner was effective in directing the Jackal to go 

around the dynamic obstacle (TerraSentia) and reach the goal in front. In Figure 3.32, 

although the obstacle was moving across the path and could potentially crash into the 

Jackal, the APF+FLC planner determined that circumventing the obstacle from the front 

was still safe and more efficient. In contrast, in the case of Figure 3.33, the Jackal 

encountered the dynamic obstacle slightly earlier, which made the APF+FLC planner 

first try the path in front of the obstacle, but eventually direct the Jackal to go around the 

obstacle from the behind, a safer and more efficient path. This test also verified the 

robustness and efficiency of the APF+FLC planer. 
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C                                                                    D 

Figure 3.32 Jackal with APF+FLC planner went around dynamic obstacle from 

front. Sequential motion from (A) to (F). 
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Figure 3.32 Continued. 
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Figure 3.33 Jackal with APF+FLC planner went around dynamic obstacle from 

behind. Sequential motion from (A) to (F). 
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3.1.3.9. Malicious Dynamic Obstacle 

In this test involving a dynamic obstacle that intentionally impeded the Jackal, 

the APF+FLC planner was effective in handling the dynamic obstacle (TerraSentia). The 

planner directed the Jackal to reach the goal in all three cases, in which the malicious 

dynamic obstacle (i) intentionally blocked the way, forcing the Jackal to make sharp 

turns (Figure 3.34); (ii) chased the Jackal and pressed hard on the side until the Jackal 

turned around (Figure 3.35); and (iii) sabotaged the navigation in both of the above ways 

(Figure 3.36). Being able to handle dynamic obstacles with unpredictable malicious 

behaviors, the APF+FLC planner was verified to be effective and robustness. 
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Figure 3.34 Jackal with APF+FLC planner dealt with malicious dynamic obstacle: 

forced sharp turns. Sequential motion from (A) to (F). 
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Figure 3.35 Jackal with APF+FLC planner dealt with malicious dynamic obstacle: 

forced turnaround. Sequential motion from (A) to (F). 
 

    

A                                                                   B 

Figure 3.36 Jackal with APF+FLC planner dealt with malicious dynamic obstacle: 

constant chasing. Sequential motion from (A) to (J). 
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Figure 3.36 Continued. 
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3.2. Conclusions 

This study focused on the development of a motion planning algorithm for 

autonomous grain carts to intelligently navigate in crop fields and efficiently service 

combines in harvest operations. A high-level navigation solution was also proposed for 

implementing the motion planning algorithm.  

Based on the results of the simulation tests, it can be concluded that the 

developed motion planning algorithm and the associated task scheduling strategy for 

autonomous navigation of grain carts were effective, robust, efficient and 

computationally expeditious.  

(i) Effectiveness. The autonomous grain cart was able to navigate in the field 

intelligently and accomplish all the logistical tasks in the harvest operations, including 

standby, go to combine, unload grain, go to semi-trailer, transfer grain, and return to 

standby point. Navigating in the field, the grain cart was able to circumvent the crop 

rows when they were unharvested and leverage the harvested areas for efficient traverse. 

When meeting the combine for unloading, the autonomous grain cart spent negligible 

time following the combine before unloading started, preventing excessive fuel 

consumption or interruption of the harvest operation. In summary, the motion planning 

algorithm and the task scheduling strategy have addressed both the spatial and temporal 

constraints. In addition, the proposed motion planning algorithm was effective in guiding 

the grain cart to accomplish more general navigation tasks like going around long 

obstacles, passing through narrow gaps, and avoiding collisions with dynamic obstacles. 
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(ii) Robustness. In addition to simple harvesting where unharvested crop rows 

were the only obstacles, harvest operations involving random static and dynamic 

obstacles as well as more general test cases were also simulated. The autonomous grain 

cart, directed by the proposed motion planning algorithm, successfully handled the 

different configurations of static and dynamic obstacles and managed to accomplish the 

navigation tasks. 

(iii) Efficiency. In the tests comparing the proposed APF+FLC planner with the 

simple APF planner, either simple harvesting or more complex harvesting involving 

static or dynamic obstacles, the motion plans generated by the APF+FLC planner were 

always smoother and more rational, leading the autonomous grain cart to take more 

efficient routes with shorter travel distance. In contrast, the simple APF planner 

experienced problems such as oscillations and local minima traps, which significantly 

degraded the navigation performance of the autonomous grain cart. In the more general 

tests comparing the proposed APF+FLC planner with the VFH planner, the motion plans 

generated by the APF+FLC planner tended to be less smooth than those in the VFH 

cases, but they were more rational and efficient as their trajectory lengths were much 

shorter. In contrast, the VFH planner was often unable to take advantage of shortcuts and 

tended to be misled by tricky obstacle configurations. 

(iv) Computational ease. Running on an ordinary CPU that can be easily 

accessed with a reasonable cost, the motion planning algorithm consumed little time in 

each computation step to process the sensing information and generate updated motion 

plans. This computational expense was greater than that of the simple APF planner (as 
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expected), but much less than that of the VFH planner, and was sufficiently low for real-

time applications. 

Based on the results of the mobile robot tests, it can be concluded that the 

proposed high-level navigation solution for implementing the motion planning algorithm 

was effective and practical. Additionally, the effectiveness, robustness and efficiency of 

the motion planning algorithm were further verified. 

(i) Effectiveness and practicality of the navigation solution. The autonomous 

grain cart (Jackal) was able to navigate between the crop rows (cardboard sheets) and 

accomplish the logistical tasks in the harvest operations. When the combine 

(TerraSentia) was traveling in the same direction, the grain cart approached directly to 

meet for unloading; when the combine was traveling in the opposite direction, the grain 

cart made a U-turn to approach and align heading for unloading. Therefore, the proposed 

navigation solution featuring 2D-lidar-based local perception, IMU-based vehicle states 

measurement, Wi-Fi-supported V2V communication and drive-by-wire actuation has 

been verified to be effective and practical. 

(ii) Effectiveness and robustness of the motion planning algorithm. Besides the 

simple harvesting test, a number of more general tests with various obstacle avoidance 

tasks were carried out. These tasks included single long static obstacle, single static 

obstacle close to the goal, two closely spaced and two sparsely spaced static obstacles, 

multiple randomly spaced static obstacles, dynamic obstacle with no threat, dynamic 

obstacle crossing the space, and malicious dynamic obstacle intentionally sabotaging the 

navigation. Dealing with this variety of navigation tasks with different obstacle 
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configurations, the proposed motion planning algorithm experienced no difficulty and 

was always able to generate intelligent motion plans for the Jackal to accomplish the 

tasks, verifying the effectiveness and robustness of the proposed motion planning 

algorithm. 

(iii) Efficiency. In some of the aforementioned general test cases, the APF+FLC 

planner was compared with a simple APF planner. The simple APF planner sometimes 

ran into problems such as oscillations and local minima traps. Adjusting the repulsive 

range of obstacles did not solve the problems, but instead raised other issues. 

Meanwhile, the APF+FLC planner was always able to generate efficient motion plans 

for the Jackal to accomplish the navigation tasks. Being smoother and more rational than 

the APF paths, the APF+FLC paths were always shorter, verifying the efficiency of the 

proposed motion planning algorithm. 

3.3. Practical Implications 

The simulation tests verified the effectiveness, robustness, efficiency and 

computational ease of the proposed motion planning algorithm and the associated task 

scheduling strategy. The mobile robot tests first verified the effectiveness and 

practicality of the proposed navigation solution, and then further verified the 

effectiveness, robustness and efficiency of the proposed motion planning algorithm. 

These test results imply that the motion planning algorithm, the task scheduling strategy 

and the navigation solution can be potentially adopted to facilitate full autonomy of real 

grain carts in actual harvest operations. When a combine harvests crops like wheat, soy 

and corn, an autonomous grain cart could perform the supporting logistical tasks by 
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itself, including standby, go to combine, unload grain, go to semi-trailer, transfer grain 

and return to standby point. Especially when the combine’s tank fills up, the autonomous 

grain cart would approach in time and drive alongside the combine to unload the grain 

without interrupting the harvesting. With autonomous grain carts, harvest operations 

would require less or even no human labor, overcoming the issues of labor shortages and 

increasing labor cost. Implementing the proposed motion planning algorithm, 

autonomous grain carts could navigate in crop fields with high efficiency and service 

combines with high precision, saving time and fuel while improving productivity. The 

proposed motion planning algorithm would also enhance the operational safety of 

autonomous grain carts by providing smooth and safe motion plans, preventing grain 

carts from traveling too fast or steering too sharply. 

3.4. Further Research 

With the long-term goal of implementing the proposed motion planning 

algorithm for developing real autonomous grain carts, further research should focus on 

testing the algorithm with real grain carts in actual harvest operations. Although the 

simulation tests and mobile robot tests have produced satisfactory results, there are 

differences between the tests and actual harvest operations, which could be more 

complex and challenging. For example, more sensing noise, uneven and slippery terrain, 

animals with fast and sudden movements, mechanical malfunctions, software failures, 

etc. That being said, the major challenge of real harvest tests would lie in the process of 

setting up and actually conducting the experiments. Specifically, it could take great 

effort to install and configure the sensors, computing devices and communication 
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networks. If the grain cart was a relatively old model, a retrofit might be necessary to 

convert the traditional drive train to drive-by-wire. In actual tests, a human operator 

would be required to drive the combine in the field, harvesting real crop plants during 

harvest seasons, an expensive and time-consuming scenario. That being said, real 

harvest tests would be significant in verifying the actual effectiveness, robustness and 

efficiency of the proposed motion planning algorithm as well as the effectiveness and 

practicality of the associated navigation solution. Satisfactory results of real harvest tests 

would facilitate the actual implementation of the outcome of this research for the 

development of autonomous grain carts. 


