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ABSTRACT

The research outlined in this proposal has three objectives: (i) to model biological pathways
involved in cancer using data and prior knowledge; (ii) to investigate the mechanism of action for
drugs that are used in cancer therapy; and (iii) to predict the efficacies of drug combinations for
effective cancer therapy.

Several of the chemotherapeutic drugs available in the market today target the genes belonging
to the cell proliferation or cell survival pathways. However, cancer cells manage to evade death
despite being treated by these drugs. The ability of cancer cells to resist chemotherapy is called
drug resistance or chemoresistance. Design of cancer therapy involves identifying potential key
intervention points in the cell signaling pathways and looking for drug cocktails that could be
effective in controlling these points. By targeting the molecules that sensitize cancer cells to cell
death, we can devise a strategy to overcome drug resistance.

We employ mathematical modeling and simulation to first, demonstrate how drug resistance
occurs in cancer cells and second, which drugs or combinations of drugs can sensitize the cells and
achieve robust cell killing.

We modeled the biological pathways instrumental in metastatic melanoma, osteosarcoma and
glioblastoma as Boolean networks. STAT3, a signal transducer and activator of transcription factor
was identified as an important intervention point in cancer cell signaling pathways. We were able
to verify that the inhibition of STAT3 is crucial in order to increase sensitivity of the melanoma
and osteosarcoma cells to cell death. The Chinese herbal drug, Cryptotanshinone was chosen
since it is known to be an effective STAT3 inhibitor. We predicted the efficacies of different drug

combinations used in the treatment of the three cancers.

i



DEDICATION

To my mother.
To the greater good and the values I was raised with.

To the Aggie Spirit.

1l



ACKNOWLEDGMENTS

I would like to thank Dr Aniruddha Datta for his guidance and for fostering a work environment
conducive to learning and growth. Special thanks to Dr P. R. Kumar, Dr Raktim Bhattacharya and
Dr Yang Shen for their valuable contributions and support. I am also grateful to Dr Micheal Bittner,

Dr Heather Wilson-Robles and Dr Xiaoqian Jiang for being very helpful collaborators.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Aniruddha Datta,
P. R. Kumar and Yang Shen of the Department of Electrical and Computer Engineering and Pro-
fessor Raktim Bhattacharya of the Department of Aerospace Engineering.

The data analyzed for Chapters 2 and 3 was provided in part by Dr Michael Bittner of the
Center for Bioinformatics and Genomic Systems Engineering. The analyses depicted in Chapters
2 and 3 were conducted in part by Dr Jianping Hua, Dr Chao Sima and Dr Rosana Lopes of the
Center for Bioinformatics and Genomic Systems Engineering and were published in the year 2018
in an article listed in the Biographical Sketch.

The data analyzed for Chapter 3 was provided in part by Professor Heather Wilson-Robles of
the Department of Small Animal Medicine and Surgery at College of Veterinary Medicine. The
analyses depicted in Chapter 3 were conducted in part by Tasha Miller of the Department of Small
Animal Medicine and Surgery at College of Veterinary Medicine.

The data analyzed for Chapter 4 was provided by Professor Xiaogian Jiang of UT Health.
The analyses depicted in Chapter 4 were conducted in part by Shaghayegh Agah of the School of
Biomedical Informatics at UT Health.

All other work conducted for the dissertation was completed by the student independently.
Funding Sources

Graduate study was supported by the National Science Foundation under Grants ECCS-1404314,
ECCS-1609236 and ECCS-1917166 and in part by the TEES-Agrilife Center for Bioinformatics

and Genomic Systems Engineering (CBGSE) Startup Funds.



NOMENCLATURE

CT Cryptotanshinone

DR5 Death Receptor 5

GBM Glioblastoma Multiforme

GDSC Genomics of Drug Sensitivity in Cancer

oS Osteosarcoma

STAT3 Signal Transducer and Activator of Transcription 3

T™MZ Temozolomide

TRAIL Tumor Necrosis Factor Related Apoptosis Inducing Ligand

vi



TABLE OF CONTENTS

Page

AB ST R ACT o il
DEDICATION . . .ottt e iii
ACKNOWLEDGMENTS .. v
CONTRIBUTORS AND FUNDING SOURCES ...t v
NOMENCLATURE .. ..o e vi
TABLE OF CONTENTS ...ttt e vii
LIST OF FIGURES .. .. ix
LIST OF TABLES . . ..o e xii
1. INTRODUCTION. ...ttt e 1
L1 Background.. ... ... e 1
1.1.1  Introduction to Molecular Biology and Cancer .......................oooo.t. 1

1.1.2  Genetic Regulatory Networks. .........oouuuiiiiiiiiiiiiiiii i 2

1.1.3  Selection of Intervention Points ............ccoooiiiiiiiiiiiiiiiiiiiiiiii .. 2

1.2 Research Design and Methods ... i 4
1.2.1  Current State of Drug DiSCOVery ............iiiiiiiiiiiiiiiii i 4

1.2.2  Boolean Network Modeling ............coooiiiiiiiiiiiiiiiiiiiiiiiiiiii .. 6

1.2.3  Key Intervention Points .......... ... 7

1.2.4  Drug INtervention. . .......oouuuuuinee ettt ettt e e e eiaanns 7

1.2.5 Cancer Immunotherapy and its Relationship to the Proposed Research....... 8

1.2.6  Prioritization of Genetic Targets ..........cooovviiiiiiiiiiiiiiiiiiiiiiiia... 9

2. MELANOM A o 10
2.1 Current State of Cancer Therapy for Melanoma....................oiiiiiiiiiinn i 10
2.1.1 Key Intervention Points in Melanoma....................cooiiiiiiiii it 10

2.1.2 Drug Intervention in Melanoma ..............ooooiiiiiiiiiiiiii i 10

2.2 Theoretical Network Modeling and Experimental Results for Melanoma ............. 14
2.2.1 Results and DiSCUSIONS ....ovvviiiiiiiiiiiii e 14

2.2.2  Theoretical Simulation Results ..o 16

2.2.3  Experimental Results............iiiiiiiiiiiiiii i 23

Vil



3. OSTEOSARCOMA ... e e e e e e 26
3.1 Current State of Cancer Therapy for Osteosarcoma...........ccoveeeeiiiiiiiiineeennnns 26
3.1.1 Key Intervention Points in OSteosarcoma .............c.c..uuuiiiieeeieinnnnnnn... 26

3.1.1.1  Key Intervention Points in Canine Osteosarcoma ................... 26

3.1.1.2  Drugs Under Clinical Trial for Osteosarcoma ....................... 27

3.1.2  Drug Intervention in OSt€0SArCOMA ........vuuuuneeeeeeeiiiiineeeeeeenninnnnn. 27

3.2 Theoretical Network Modeling and Experimental Results for Osteosarcoma ......... 28
3.2.1 Results and DISCUSIONS . ... vvteet ettt e et e e e e e e e 28

3.2.2 Theoretical Simulation ResSults ...... ..ot e 37

3.2.3 Experimental Results...........ooiiiiiiii i 38

3.2.3.1 CT is Effective at Restoring TRAIL Sensitivity ..................... 38

3.2.3.2 Inhibition of the PI3K/mTOR Pathway Boosts CT’s Action......... 39

3.2.3.3 HIFl-alpha is a Key Intervention Point in OS Pathways............ 43

3.2.4  Prediction of Drug Efficacies ..............oooooiiiiiiiiiiiiiiiiiiiiiiin 45

3.2.5 Further Biological Experimentation ...................ooiiiiiiiiiiiiiiiinnnn.. 45

4, GLIOBLASTOMA . ..o e e e 49
4.1 Current State of Cancer Therapy for Glioblastoma.......................ooiiiia. 49
4.2 Theoretical Network Modeling for Glioblastoma .................c.coooiiiiiiiann. 50
4.2.1 Theoretical Simulation Results .........o.iiiiiiiiiii i 51

5. CON CLUSION S o e e e 66
REFE R EN CES ..o e e e e e e e 67

viil



LIST OF FIGURES

FIGURE Page
1.1 Boolean representation of the drug action countering a stuck-at-one fault............. 7
1.2 Boolean representation of the drug action countering a stuck-at-zero fault............ 7
2.1 STAT3 pathway. Reprinted from Saraf 2018 ([1])............ooooiiiiiiiiiiiiiiiiiit. 11
2.2 JNK, p53, PI3K/AKT/mTOR and MAPK/ERK pathways. Reprinted from Saraf

0] R {8 3 S 12
2.3  Extrinsic apoptosis and the nFxB pathways. Reprinted from Saraf 2018 ([1]). ....... 13
2.4 Legend showing the color coding scheme used in Figures 2.5, 2.6 and 2.7. Reprinted

from Saraf 2018 ([1]). .. cvnerii e e e e e 16
2.5 Boolean network for the DNA damage pathway. Reprinted from Saraf 2018 ([1]).... 17
2.6 Boolean network for the TRAIL, ER Stress and STAT3 pathway. Reprinted from

Saraf 2018 ([1]) e e eeeiiiiii i e 18
2.7 Boolean network for the PI3K/AKT/mTOR and MAPK/ERK pathway. Reprinted

from Saraf 2018 ([L1]). .. vvneiii it e e 19
2.8 Apoptosis ratios for when different inputs are fed into the Melanoma Boolean net-

work. Reprinted from Saraf 2018 ([1]).....coeieiiiini e 21
2.9 Apoptosis by CT in combination with a single drug in the presence of simultaneous

occurrence of all faults. Reprinted from Saraf 2018 ([1]). ......oovviiiiiiiiiiiin.t 22
2.10 All possible combinations of faults and drugs when the input is TRAIL with Cryp-

totanshinone. Reprinted from Saraf 2018 ([1]). ....oovveiiiiiiiiii i 23
2.11 All possible combinations of faults and drugs when the input is TRAIL without

Cryptotanshinone. Reprinted from Saraf 2018 ([1]).......coovviiiiiiiiiiiiiiiiiiin... 24
2.12 Experimental results for each single drug in combination with CT. Reprinted from

Saraf 2018 ([1]) e ceeeeeiiiii i 24
3.1 Legend and color scheme for Fig. 3.2-Fig. 3. 7. 29
3.2 Cellular survival pathways. .......ouuiiee et eaas 30

1X



33

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

4.1

4.2

4.3

4.4

4.5

Endoplasmic reticulum stress-related pathways and their interconnections with cel-

lular damage and the glutathione metabolism.....................ooiiiiiiiiiiiiiie, 31
StEMNESS PAtNWAYS . ..ottt ettt ettt 32
Hypoxia and angiogenesis pathway and their crosstalk with the immune system ..... 33
EXIINSIC QPOPLOSIS vttt ettt ettt et ettt e ettt e e e et 34
Mitochondrial @POPLOSIS ...ttt 35
Experimental results comparing LY294002 with CT. ..., 39
Area under the curve in Fig. 3.8. ... oo 40
Simulation results comparing LY294002 with CT. ..., 40
Experimental results for each single drug in combination with CT..................... 41
Area under the curve in Fig. 3.11. ... 42
Simulation results for each single drug in combination with Cryptotanshinone. ...... 42
Experimental results comparing PX478 with CT. ...t 43
Areaunder the curve in Fig. 3.14. ... oo 44
Simulation results comparing PX478 with CT. ... 44
All possible drug Combinations with Cryptotanshinone. ..................ccoovvennn.. 45
All possible drug combinations without Cryptotanshinone. ............................ 46
Drug combinations with Cryptotanshinone and two additional drugs. ................. 46
Drug combinations without Cryptotanshinone. ..................oooviiiiiiiiiiinnneaa.. 47

Biological experimentation to prioritize drug combinations on the basis of percent

SULVIVAL ..o 48
Cell growth and stemness pathways..........oooiuiiiiiiiiiii it 53
Cell survival, inflammation and histone deacetylation pathways ....................... 54
APOPLOSIS PANWAYS ..ttt e 55
Cell cycle arrest and angiogenesis pathways .............ooiiiiiiiiiiiiiiiiiiiinn... 56
Cell proliferation pathways .........oouuiiieiiii e 57



4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

DNA damage and repair pathways ... 58
G-coupled protein and calcium signaling pathways .............coooiiiiiiiiiiiiiin.... 59
Hypoxia and endoplasmic reticulum stress pathways ... 59
Prioritization of single targets for Glioblastoma therapy ................ccooeiiiinn.. 60
Prioritization of pairs of targets for Glioblastoma therapy ..................cooooeie.t 61
Drug sensitivity for anti-cancer drugs..............uuuuuuuuuuuuniinaaan 62
Drug sensitivity for non-cancer drugs . .........uuuuiiieeeetiiiiiiiieeeeeeiiiiiaaeeaaans 62
Temozolomide in combination with one drug ata time. ................cccovvuvnnnnn.. 63
Top performing two drug combinations for Glioblastoma .....................cooeee 64

X1



TABLE

2.1

2.2

3.1

3.2

33

34

3.5

3.6

3.7

3.8

39

4.1

4.2

4.3

4.4

LIST OF TABLES

Page

Genetic mutations in Melanoma represented as faults in the Boolean circuit. Reprinted

from Saraf 2018 ([1])..ceniniiii e e e e e e 15
Legend for Figure 2.12. Reprinted from Saraf 2018 ([1])........vvvvveiiiiiiiiinnnnn. 23
N 0107 0] 0] 8 (o 2T 0 36
Faults in the Boolean network .......... ... i 36
Drugs with their activity POINES .. ....u. ettt ettt iiieae e e eaans 37
Legend for Fig 3.8 ..o o 39
Legend for Fig 3. 11 ..o e 41
Legend for Fig 3. 14 ..o 43
Best drug combination with CT..........oooiii i 46
Best drug combination without CT. ....... ... i 47
Ranking of the drug combinations in terms of efficacy..................coooiiiiiiiit 47
F N 0T0] 01108 T 2T (0] P 52
ATTESE FACLOTS ...ttt e e 52
GBM cell lines with different mutations ..o 58
Anti-cancer and non-cancer drugs with their targets ... 65

Xii



1. INTRODUCTION

1.1 Background
1.1.1 Introduction to Molecular Biology and Cancer

Genetic information is passed from a cell to its daughter cells at the time of cell division. This
genetic information is stored in deoxyribonucleic acid (DNA) molecules in the nucleus of the cell.
Genes are short stretches of DNA, that are responsible for the synthesis of proteins [2].

Genes rely on ribonucleic acid (RNA) molecules to carry out protein synthesis. The central
dogma of molecular biology is the principle that states that the flow of genetic information in a
cell is from DNA to RNA to protein. The process of copying the DNA into the strands of RNA is
called transcription. When a gene is being transcribed, it is said to be expressed. A cell can vary
its gene expression in proportion to the need for a particular protein [2].

The signaling networks of genes in the body govern the biological processes in cells. The
receptors in the surface of a cell are responsible to detect signals from sources external to the cell.
Whenever an external stimulus is incident on the cell, it reacts with an appropriate response. The
responses of the cell are governed by the genes in the signal-transduction cascade.

Genes can give commands to cells and control cell fate. Cell death or apoptosis can be induced
by a loss of survival signals to a cell. Cell proliferation is initiated by the binding of growth factors
to the trans-membrane receptors. The balance between controlled cell proliferation and cell death
is termed as cell cycle control [2].

Abnormalities in cell cycle control are a characteristic of cancer, and this is accompanied by
uncontrolled growth or tumors [3]. The disruption in normal function of the cells could be due
to aberrant signaling among the genes. This genetic instability in tumors could be attributed to
genetic alterations and could lead to further genetic mutation [4].

Our goal is to produce a model that captures the abnormalities in cell cycle control. We inves-

tigate how gene expression is affected by mutant genes and whether that can explain how genetic



instability progresses in cancer cells.
1.1.2 Genetic Regulatory Networks

The signal-transduction cascade in the cells which leads to activation or inhibition of genes
can be modeled as a pathway [2]. Cellular signaling pathways represent the causal interconnection
between the genes. A causal relationship implies that a change in the expression of one gene affects
the other. Biological experiments and assays are able to discover direct interactions between genes.
In this manner, many of the cellular signaling pathways have been established [5, 6, 7].

Genetic regulatory networks capture the multivariate interactions between genes. Mathemat-
ical modeling is a tool that is employed by researchers to discover new or possibly hidden gene
interactions. Modeling techniques including but not limited to differential equations, Bayesian
networks and both deterministic and probabilistic Boolean networks [8, 9, 10] have been used to
study genetic regulatory networks.

We choose to model the biological pathways in cancer using deterministic Boolean networks.

Boolean networks are formalized using current biological knowledge from the literature.
1.1.3 Selection of Intervention Points

In cancer cells, genes responsible for cell growth are usually overexpressed whereas tumor
suppressor genes are inactive. The deviation from normal gene expression in cancer cells can be
attributed to genetic mutation. Mutant genes can also cause overexpression or irregular inhibition
of their downstream targets.

The irregularites of gene expression can be modeled in the genetic regulatory network as faults.
A fault can occur when a node is stuck at a particular state. A stuck node is one that does not re-
spond to upstream signaling; it stays in its current output state irrespective of the inputs it receives.
The identification of faults in a network allows us to design a cancer therapy to correct these faults
[3].

Mutations in the cell proliferation or cell survival pathways are frequently found in many can-

cers [11, 12, 1]. Conventional cancer therapies use drugs that target cell proliferation or cell sur-



vival pathways, however the cancer cells treated with these drugs manage to evade cell death. This
property of cancer cells is known as chemoresistance or drug resistance.

It is noteworthy that in both normal and cancer cells, the expression of pro-apoptotic factors can
be detected [13]. This indicates that the upstream defects in cancer most likely inhibit apoptosis
by an increase in the activity of anti-apoptotic genes. This fact is useful when trying to understand
drug resistance. A possible mechanism for drug resistance is the failure to induce apoptosis in
cancer cells. Typically, most cancer cells deactivate the pathways to cell death and simultaneously
heighten the activities of the cell proliferation and growth pathways.

In order to design an effective cancer therapy, we must look at a combination of drugs that
counters all the effects of cancer cells. Drug cocktails should activate cell death pathways while
concomitantly inhibiting cell survival pathways. Combination therapy can curb cell proliferation,
sensitize cells to apoptosis and thus, ensure robust cell death [3].

We model the cell signaling pathways responsible for drug resistance in cancer cells . Our
secondary goal is to predict the efficacies of drugs and drug combinations that can potentially

induce apoptosis in a robust fashion.



1.2 Research Design and Methods
1.2.1 Current State of Drug Discovery

Drug discovery requires the application of different conceptual and analytical approaches to
biological processes. The development of a new drug involves identifying new targets, validating
said targets, biological synthesis of drugs, considering the pharmacokinetics, studying the poten-
tial side effects of the drug, testing and clinical trials. This process incurs high costs and does
not promise great success rates [14]. Recent research shows that even non-cancer drugs can be
repurposed to treat cancer, this can offset costs and expand the therapeutic options. The functional
testing of all candidate genetic targets or candidate drug combinations becomes infeasible as the
number of candidates increases [15].

Molecular and cell biologists are responsible for identifying and evaluating potential targets in
the early stages of drug development. The traditional method of ranking drug targets depends on
extensive literature survey of current research and treatment and the knowledge of the researcher.
The mental integration of data from a variety of sources can prove to be challenging and is vulnera-
ble to human error. Once a potential target is identified, it needs to be validated through biological
experimentation. This trial-and-error method can prove to expensive in terms of resources and
time; limitations in the budget and accessibility to appropriate testing facilities can also prove to
be obstacles [16].

On the other hand, the newer methods of prioritization of drug targets require access to am-
ple amounts of data and are computationally expensive. High throughput data techniques usually
produce only one type of "-omic’ data (genomic, proteomic, metabolomic). Data-based model-
ing using such data requires specific or proprietary data processing and analysis platforms. The
correlative nature of this data makes it difficult to study the exact causal relationships between
different data points. Many genes or proteins can have dual roles in biological processes such as
the overexpression of STAT3 in several cancer cells. It might not be possible to determine through

such "-omic" approaches whether STAT3 upregulation is the cause or effect of cancer progression



[16, 17, 18]. Moreover, the results of the computational models are not easy to interpret and can
even conflict with other large-scale ranking techniques. A major drawback of such approaches is
low experimental reproducibility, which means that the ranking is subject to change each time the
algorithm is run [15].

We can take a closer look at the latest computational models that predict the drug target ranking.
Project Score [19] seems to be a promising prioritization technique, it uses a cellular fitness score
to rank targets and the data is collected using Crispr/Cas9 screens. The potential demerit of Project
Score is that it is not tailored to a specific cancer and it fails to represent all the cell line mutations
found in GBM. DrugComb [15] is a web-based portal that performs large-scale integration of
cancer drug screen data for different cell lines, however DrugComb deals with the drugs as a
whole and doesn’t provide information of how individual genetic targets in the GBM pathways
could be ranked. The Genomics of Drug Sensitivity in Cancer (GDSC) [20] database provides
information about drug sensitivity for different cell lines as well as molecular markers of drug
response. The GDSC database considers only anti-cancer drugs, however while designing optimal
cancer therapies, it makes sense to include the targets of non-cancer drugs [14].

Boolean network modeling offers a tradeoff between data-based modeling and the traditional
biological methods. Boolean networks are deterministic models that are based on established bio-
logical knowledge, and can be used to ease the computational burden of the researcher. They are
representative of the current state of information that is available about the pathways in cancer,
and can be updated with ease to reflect the latest research. Unlike data-based techniques, regen-
erating the ranking after modification does not require huge computational power. Our modeling
technique seeks to bridge the gap between designing computational models and understanding bi-
ological complexities of cancer. We include existing genetic information as well as research about
chemotherapeutic, herbal and non-cancer drugs. We seek to propose an optimal and robust strategy

to combat cancer.



1.2.2 Boolean Network Modeling

The development of chemoresistance in cancer cells involves various biological pathways. The
key lies in integrating the pathways and modeling the cross talk between them. The components
of these pathways are represented as a Boolean network with multiple inputs and multiple outputs.
The possible mutations in genes that can lead to cancer are captured by faults in a combinato-
rial circuit and the model is used to theoretically predict the effectiveness of a drug for inducing
apoptosis in cancer cell lines.

In the paradigm of Boolean network modeling, each gene is a node and its direct interaction
with another gene is represented as an edge. Gene expression is binarily quantized: a gene, if
expressed is considered to be ON (State 1) and if not expressed, is considered to be OFF (State 0).
If two or more genes interact to activate or inhibit a third gene, such relationships are modelled
with the use of logic gates. The genetic regulatory network can then be thought of as a multi-input
multi-output (MIMO) digital logic circuit.

A cancerous cell will not have the same input-output mapping as a normal one. This is due
to the anomalies that occur in the biological pathways of cancer cells. Malfunctioning genes lead
to uncontrolled cell proliferation, increased inflammation and failure of the apoptotic pathways.
These irregularities of tumor cells can be thought of as faults in the Boolean network, particularly
stuck-at faults. A stuck-at fault occurs when a node in the network is permanently set to a fixed
value of either zero (stuck-at-O fault) or one (stuck-at-1 fault) [3]. This implies that the circuit
will not change as expected when subjected to a certain set of inputs. The output vector of a
faulty network then will be independent of the other signal values in the regulatory circuit. An
over-expressed gene can be denoted as a stuck-at-1 fault. This notion is common in cancer where
oncogenes tend to display similar faulty behaviour, irrespective of what input they receive and
evade any corrective action from upstream. The effect of such a fault can be corrected by using a
drug as shown in Figure 1.1. On the other hand, a stuck-at-0 fault can result when a gene becomes
permanently inactive, independent of the activity status of its upstream regulators. For example, a

mutated p53 gene in a cancer cell will remain inactive despite being phosphorylated as a result of
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Figure 1.1: Boolean representation of the drug action countering a stuck-at-one fault
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Figure 1.2: Boolean representation of the drug action countering a stuck-at-zero fault

cellular DNA damage. This situation, common to several cancers, is one where a drug can correct

a stuck-at-0 fault as shown in Figure 1.2.
1.2.3 Key Intervention Points

Commonly known mutations can be modeled as faults. Nodes that are downstream of mutant
genes are considered as reporter nodes. The expression of reporter nodes can be measured to
quantify the effect of the mutated nodes upstream. The faults and the corresponding reporter nodes
could help us identify the key intervention points for cancer therapy. We seek to map the states of
reporter nodes as outputs corresponding to the mutated nodes as inputs.

Biological pathway information indicates that STAT3, a signal transducer and activator of tran-
scription plays a crucial role in cancer cell signaling [21, 22, 23, 24, 25, 26, 27, 28, 29]. We
examine the role that STAT3 plays in the progression of genetic instability in cancer cells. We test

whether inhibition of STAT3 produces cell death in cancerous cells.
1.2.4 Drug Intervention

Drugs used to treat cancers try to restore the normal cell cycle function through action on the

cell signaling pathways; they are used to counter the action of mutant genes. Drugs are considered



as inputs, and their effects can be estimated by observing the expression of the corresponding
output nodes downstream.

A drug can either activate or inhibit a certain target gene. Some drugs are known to have
more than one target gene. In combination therapy, we can use drugs of all kinds and in different
proportions. The goal is usually to find the optimal combination of drugs that achieve cell death in
a robust manner.

Cryptotanshinone (CT), a Chinese herbal derivate is one of the drugs that has been shown to
restore sensitivity to cell death [30]. STAT3 is a known target of CT in various cancers [31, 32]. We
study the action of CT on the various biological pathways and predict its efficacy in combination
with other drugs.

Temozolomide (TMZ) is a drug that enhances the effect of radiotherapeutic intervention in
cancer cells. The resistance to TMZ can be attributed to the DNA repair pathway [33, 34]. We
investigate the pathways that could contribute to the resistance to TMZ, and predict drug combi-

nations that could robustly kill cancer cells despite such resistance.
1.2.5 Cancer Immunotherapy and its Relationship to the Proposed Research

Chemoresistance is linked with TRAIL resistance in certain cancers [35]. TNF-related apoptosis-
inducing ligand (TRAIL) is implicated in immunosurveillance, which is the ability of the immune
system to recognize pathogens and activate the mechanisms to neutralize their effect [36]. TRAIL
is a component of the extrinsic apoptotic pathway, and is responsible for causing cell death in
response to appropriate stimuli.

The human body reacts to threats by relying on its immune system and by proper functioning
of the cellular signaling pathways. Recent immunotherapy research involves exploiting the body’s
immune system to fight against cancer. Decreasing TRAIL resistance is one of the methods em-
ployed in immunotherapy. TRAIL resistance is also associated with the mutations in cell survival
pathways [13, 35]. Treatment strategies that involve sensitization of the cancer cells to extrinsic
apoptosis have shown promise [37].

We model TRAIL resistance and its effect on chemoresistance in cancer cells. A drug that can



overcome both types of resistance will be truly effective. We estimate the efficacies of drugs that
target the pathways responsible for chemoresistance and TRAIL resistance. The model will help

us to come up with drug combinations that aid immunotherapeutic approaches to cancer treatment.
1.2.6 Prioritization of Genetic Targets

Protein or mRNA modulation techniques are employed during target validation, where the
target is altered by an external agent and the change in the cellular viability is measured [17].
Cellular viability is the measure of live, healthy cells in the population of cells under experiment,
and is inversely proportional to the efficacy of the genetic target.

As an alternative to protein or RNA modulation, we simulate the modulation of the genetic
target and measure the change in the output metric. Assume that Boolean circuit has N nodes
numbered from 1 to V. In each run of the simulation, we force a particular node in the circuit to
one, which is equivalent to inducing expression of the corresponding gene, and we measure the
change in the output. We will perform N runs with node ¢ = {T'rue V i € [1, N]}. Similarly,
we follow the same steps by forcing every node to zero, and measuring the effect of inhibition
of one gene at a time. We will perform N runs with node i = {False V i € [1,N]}. Asa
result, we have a list of 2/V measurements of the output metric each corresponding to a particular
Boolean combination in the network. Sorting the list on the basis of the output metric gives us the
key intervention points. The most potent intervention point has the maximum effect on the output
metric. This is useful while developing single-target therapies.

This technique can be extended to measure the effect of modulating more than one target at a
time. We can simulate the effect of altering combinations of targets by forcing groups of nodes to
a set of logical values in every run. This is useful while develop multiple-target therapies.

We simulate protein and mRNA modulation of various genetic targets involved in cancer pro-

gression to isolate the best possible drug combination for treatment of that cancer.



2. MELANOMA!

2.1 Current State of Cancer Therapy for Melanoma

Melanoma is one of the most prevalent and aggressive forms of skin cancer. Metastatic melanoma
cells are known to develop resistance to most of the commonly used drugs and therapy [38].
TRAIL-induced apoptosis is a desirable method to treat melanoma since, unlike other treatments,
it does not harm non-cancerous cells.

TRAIL resistance is associated with the mutations in cell survival pathways and the pro-
inflammatory nFxB pathway [13, 35, 39]. Another possible reason for the development of TRAIL
resistance is due to the lower expression of death receptors - death receptor 4 (DR4) and 5 (DRS5)

in the extrinsic apoptosis pathway [35].
2.1.1 Key Intervention Points in Melanoma

STAT3 plays a part in decreasing TRAIL cytotoxicity in metastatic melanoma cells [23]. It is
a major influence on the various pathways involved in developing TRAIL resistance, which makes
STAT3 a good candidate to induce TRAIL sensitivity [28, 29]. The STAT3 pathway is shown in

Figure 2.1.
2.1.2 Drug Intervention in Melanoma

There are several existing drugs that act at different points in the cell survival and proliferation
pathways as is shown in Figure 2.2; however none of them have been proven significantly effective
against melanoma [38].

Cryptotanshinone (CT) is a herbal compound derived from the roots of the plant Salvia milti-
orrhiza Bunge. CT can restore TRAIL sensitivity and induce apoptosis in A375 melanoma cells,
by increasing DRS expression via the induction of CHOP (CCAAT/enhancer-binding protein-

homologous protein) [30]. In addition, STAT3 plays a key role in and is upstream of many of

IParts of this chapter are adapted with permission from R. S. Saraf, A. Datta, C. Sima, J. Hua, R. Lopes, and M.
Bittner, “An in-silico study examining the induction of apoptosis by cryptotanshinone in metastatic melanoma cell
lines,”"BMC Cancer, vol. 18, no. 1, p. 855, 2018
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Figure 2.1: STAT3 pathway. Reprinted from Saraf 2018 ([1]).
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Figure 2.3: Extrinsic apoptosis and the nFxB pathways. Reprinted from Saraf 2018 ([1]).

the functions that CT affects and is a known target of CT in other cancers [31, 32]. The action of

CT on the extrinsic apoptosis pathway can be seen in Figure 2.3.

13



2.2 Theoretical Network Modeling and Experimental Results for Melanoma

The various gene interactions in melanoma can be represented by biological pathways, which
are all well documented [5, 6, 7]. Some of the interconnections derived during modelling these
pathways are based on the interpretation of different research papers [40, 41, 42, 43, 44, 13, 45,
21, 46, 47, 48, 49, 50] by the author of this work. A subset of all possible interconnections and

signaling pathways in the cell is considered, since the cancer of interest to us here is melanoma.
2.2.1 Results and Discusions

The static Boolean network considered here is used to represent a TRAIL resistant network and
also includes information about how drug intervention could allow us to sensitize the melanoma
cell lines to TRAIL. We focus on the TRAIL apoptotic pathway and on the effect the genes in the
other pathways have on extrinsic cell death. The other inputs are DNA damage, ER stress and
the growth factors that activate the pathways involved in melanoma. The outputs are all apoptotic
factors, both pro- and anti- apoptotic, the ratio of which will decide whether the cell undergoes

death. The input and output vectors are given by Equations 2.1 and 2.2 below:
Input = [ER Stress, TNFa, TRAIL, PTP, IL6, DNA Damage, IGF, EGF] 2.1

Output = [Casp8, Bid, Bad, Bim, Bak/Bax, Casp12, Bcl-XL, Bcl2, XIAP, Mcll| 2.2)

For A375 melanoma cells, we consider 6 possible faults in our model. These correspond to the
common mutations in the involved pathways and especially those that have been shown to cause
TRAIL resistance [12]. All possible combinations of the faults have been simulated, that is 64
different configurations of the fault vector are considered. It is important to note that each com-
ponent of the fault vector is either zero or one based on whether a particular fault is present or
not. A one in the fault vector can denote a stuck-at-one fault or a stuck-at-zero fault, whichever
is consequential for that particular gene. For instance, if the fault vector is {1 00 0 0 0],

this implies that the Ras gene is faulty. Since it is a stuck-at-one type of fault, it means that Ras

14



is being constitutively expressed. On the other hand, presence of a stuck-at-zero fault represents
the downregulation of the gene. For instance, when the fault vector equals {0 0100 0] , it
means that PTEN is faulty and its suppressing action has failed. The fault vector components are

given by Equation 2.3 and the types of faults are as listed in Table 2.1.

Fault = [Ras, Raf, PTEN, p53, STAT3, DR5] (2.3)

Table 2.1: Genetic mutations in Melanoma represented as faults in the Boolean circuit. Reprinted
from Saraf 2018 ([1]).

Stuck at 1 Stuck at 0

Ras PTEN
Raf pS3
STAT?3 DRS5

The activity points of the different drugs on the pathways have already been shown in Figures

2.2 and 2.3. The components of the drug vector are displayed in Equation 2.4.

Drugs = [CT, LY294002, Temsirolimus, UO126, Lapatinib, SH5-07, AG1024| 2.4)

Each component of the drug vector corresponds to whether or not that drug is applied, so a zero in
the i’ column indicates that the i*" drug is not applied and vice versa. Since a major goal of this
paper is to evaluate the action of Cyrptotanshinone, either by itself, or for enhancing the activity
of other drug combinations, the combination of drugs considered here is limited to Cryptotanshi-
none alone and Cryptotanshinone in combination with the other drugs. Since there are six other
drugs in the vector, a total of 2° drug combinations were tested. For instance, the drug vector
1 0 0 0 0 0 0] indicates that only Cryptotanshinone is applied.
For clarity of exposition, the entire Boolean network will be split up into three different compo-

nents. Each component will follow the colour scheme shown in Figure 2.4 and the interconnections
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Figure 2.4: Legend showing the color coding scheme used in Figures 2.5, 2.6 and 2.7. Reprinted
from Saraf 2018 ([1]).

between the three component networks will be indicated by the gray blocks. The three components
are shown in Figures 2.5, 2.6 and 2.7. Figure 2.5 shows the relationship between the DNA damage
input and how the apoptotic factors are affected upon the incidence of DNA damage, and this fig-
ure also helps in closely studying the effect of a p53 fault. Similarly, Figures 2.6 and 2.7 represent

the gene interactions in the major pathways involved in melanoma.
2.2.2 Theoretical Simulation Results

We ran several rounds of simulations to test how Cryptotanshinone acts in combinations with
the other drugs. To check the effectiveness of CT in increasing TRAIL cytotoxicity, we monitor its
influence on the apoptosis induced. We are testing a TRAIL resistant static Boolean network. Here,
it should be pointed out that a network can display trail resistance even in the absence of TRAIL,
the resistance in that case having been residually left over from an earlier TRAIL induction event.

The metric used to calculate the degree of apoptosis is:

> Pro-Apoptotic factors
> Anti-Apoptotic factors

Apoptosis Ratio =

The apoptosis ratio is a measure of the relative change in apoptosis upon a change in conditions.
The apoptosis ratio will change depending on different factors such as the values of the inputs,

the presence of certain faults or the application of a drug. Changing the input combination to the
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Boolean network will change the value of the apoptosis ratio.
Simulation 1 : Apoptosis ratios for different inputs

Figure 2.8 presents three different states of the Boolean network, when the input vectors are :

1. 70000000’ : ’No Input’ which means that no growth factors, cytokines or stress signals are

present.

2. 70010000 : *"TRAIL-induced apoptosis’ which means that the TRAIL apoptotic pathway is

active.

3. 71000000° : "ER Stress induced Apoptosis’ which considers ER Stress as the only active

input.

Each color in the figure represents a different fault and drug combination. Blue stands for the
situation where there is no fault and no drug; orange means that the DRS and STAT3 faults are
present; yellow shows the apoptosis induced by SH5-07 in the presence of these faults; and violet
shows the apoptosis induced by CT in the presence of the two faults.

From Figure 2.8, we can see that the apoptosis ratio is 1.67 when there is ’No Input’ and "No
Fault’. Moreover, we observe that CT is inducing apoptosis even in the absence of TRAIL or other
apoptosis-inducing factors. This means that CT must be down-regulating the anti-apoptotic factors
through its action on STAT3, thus leading to a relatively greater value of the apoptosis ratio.

A similar situation can be seen for the ’ER Stress induced apoptosis’ case, where the apoptosis
value increases upon application of CT. However, only its effect on STAT3 is not enough to explain
the increased TRAIL sensitivity. This is clear by looking at the action of the other STAT3 inhibitor
SHS5-07, which is unsuccessful in inducing further apoptosis in the presence of the faults. Here, it
is evident that the upregulation of DRS by CT plays a role in increasing the apoptosis ratio.

Looking at the "TRAIL-induced apoptosis’ condition in the absence of a fault, we observe that
the apoptosis ratio is large. DR5 and STAT3 faults reduce the value to almost half. The STAT3

inhibitor SH5-07 is unable to counter these faults. Cryptotanshinone though not able to regain the
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Figure 2.8: Apoptosis ratios for when different inputs are fed into the Melanoma Boolean network.
Reprinted from Saraf 2018 ([1]).

fault-free value of apoptosis, is effective in increasing apoptosis despite the presence of faults. This
seems to imply that the upregulation of DRS is instrumental to restoring TRAIL sensitivity.
Simulation 2 : In the presence of simultaneous occurrence of all faults

The next simulation was run to test which single drug is the most effective in combination with
CT. We considered the input to be TRAIL so that the input vector is ’0010000° and assumed that all
6 faults are simultaneously present. The results are shown in Figure 2.9. The effect of LY294002,
a PI3K inhibitor in combination with Cryptotanshinone seems to be better than the other combi-
nations considered. The role of the cell survival pathway in TRAIL resistance is confirmed by the
increase in TRAIL cytotoxicity via inhibition of PI3K, which is a major intervention point in the
pathway.
Simulation 3 : All possible combinations of faults and drugs

The final simulation evaluates all fault combinations with all the drug combinations with and
without Cryptotanshinone in Figures 2.10 and 2.11 respectively, when only the TRAIL input is
active. Each row corresponds to a different drug combination (indicated by the corresponding
drug vector) while each column corresponds to a different fault combination (indicated by the

corresponding fault vector). The apoptosis value in each cell in the figure, thus, is the action that
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Figure 2.9: Apoptosis by CT in combination with a single drug in the presence of simultaneous
occurrence of all faults. Reprinted from Saraf 2018 ([1]).

a drug vector has on that particular fault vector. Both the figures follow the same color scale.
The red areas show regions of low apoptosis (apoptosis ratio=0.67) while the green areas show
regions of maximum apoptosis (apoptosis ratio=5). A visual inspection shows that CT is successful
in increasing TRAIL cytotoxicity for most combinations of faults. It is our conjecture in this
paper that the effect of Cryptotanshinone on TRAIL resistance is through its action on STAT3 and
DRS. The simulations seem to support this as they show that even in the presence of faults in
other cell signaling pathways, such as p53, CT can solely through its action on STAT3 and DRS5
diminish TRAIL resistance. Figure 2.10 does not have a single red cell, which means that CT is
more effective in inducing apoptosis than any other drug combination considered in this paper.
In contrast, Figure 2.11 has fewer green cells, which seems to point towards Temsirolimus, an
mTORCI inhibitor [48] to perform better than the other drugs in the absence of Cryptotanshinone.
LY294002 in combination with CT seems to be the most effective drug among the ones considered
in this paper. This is also what was seen in Figure 2.9. The red regions in Figure 2.11 correspond to
a PTEN fault being active and the PI3K inhibitor LY294002 seems to keep the apoptosis ratio away
from the red region despite the presence of PTEN faults. This adds to the argument that the cell

survival pathway contributes to TRAIL resistance, and its inhibition increases TRAIL sensitivity.
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Figure 2.10: All possible combinations of faults and drugs when the input is TRAIL with Cryp-
totanshinone. Reprinted from Saraf 2018 ([1]).

The cell survival pathway is also known as the mTOR/PI3K/AKT pathway.
2.2.3 Experimental Results

The cellular apoptosis occurring in A375 melanoma cells with respect to time is displayed
in Figure 2.12. The Y-axis shows the apoptotic fraction, which corresponds to the percentage of
apoptosis occurring in the cell line in the given time [51]. Table 2.2 explains the legend in Figure

2.12 in greater detail.

Table 2.2: Legend for Figure 2.12. Reprinted from Saraf 2018 ([1]).

Abbreviation Drug Combination
Cry Cryptotanshinone 50u M
+Ly LY294002 10p M+ Cryptotanshinone 50uM
+Tem Temsirolimus 10pM + Cryptotanshinone 50 M
+U0 U0126 10uM+ Cryptotanshinone 50 M
+Lap Lapatinib 10 M+ Cryptotanshinone 50uM
+SH SH5-07 10 M+ Cryptotanshinone 50p M
+AG AG1024 10p M+ Cryptotanshinone 50pM
Untreat Untreated
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Figure 2.11: All possible combinations of faults and drugs when the input is TRAIL without
Cryptotanshinone. Reprinted from Saraf 2018 ([1]).
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Figure 2.12: Experimental results for each single drug in combination with CT. Reprinted from
Saraf 2018 ([1]).
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It can be seen that CT in combination with the drugs one at a time is successfully inducing
apoptosis in the melanoma cell lines. The final value of apoptosis is similar for each combination

as is also shown in Figure 2.9.
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3. OSTEOSARCOMA

3.1 Current State of Cancer Therapy for Osteosarcoma

Osteosarcoma (OS) is the most common primary malignant bone tumor of both children and
pet canines. OS is characterized as a pediatric cancer since of the new cases diagnosed each year,
more than half are children or adolescents [52, 53].

The genetic mutations or pathway alterations that could be responsible for the pathogenesis of

OS have not been identified, which makes development of targeted therapies difficult [54].
3.1.1 Key Intervention Points in Osteosarcoma

There is a large set of potential candidate genes which must be evaluated to characterize molec-
ular targets in order to develop new strategies [55, 56]. Our approach to narrow the search space is

two-pronged:

1. we study OS in dogs to identify statistically significant mutations that could be associated

with the bone cancer.

2. we investigate the drugs that have been successful in clinical trials and evaluate their targets

as potential intervention points.

3.1.1.1 Key Intervention Points in Canine Osteosarcoma

Genetically, osteosarcoma is the same in humans and canines; they share dysregulation of
many of the same biological pathways [57, 58, 59]. The higher incidence and more rapid disease
progression seen in pet dogs allows for faster and more cost effective data collection making them
an excellent model for studying this disease for the mutual benefit of both the species [60].

An evaluation of OS in dogs tells us that the pathways involved in the glutathione and aspar-
tate metabolism may have an important role to play in the early spread of this cancer [57]. We
will incorporate the relevant interconnections and cross talk with the metabolic pathways into our

model.

26



3.1.1.2  Drugs Under Clinical Trial for Osteosarcoma

Conventional drug therapies that target the mutated tumor suppressor pathways fail in the late
stages of the clinical trials [61]. Recent success in OS therapy has been through trials that target
the stemness pathways, namely Wnt/3-Catenin and Hedgehog pathways through the use of natural
compounds. Sulforaphane is one of the natural compounds being used to treat OS cell lines; the
drug increases the expression of death receptors and induces tumor necrosis factor (TNF)-related
apoptosis-inducing ligand (TRAIL) apoptosis [56, 55, 62].

TRAIL therapy is a therapeutic strategy that inhibits tumor growth and increases chances of
survival in preclinical studies for OS. Since TRAIL-induced cell death is known to only kill cancer
cells and not affect normal cells, it is one of the popular emerging strategies in pediatric cancer
care and another pathway that warrants investigation [62, 63]. We model the stemness pathways

and their interaction with the various pathways involved in TRAIL sensitivity for OS.
3.1.2 Drug Intervention in Osteosarcoma

We study the action of Cryptotanshinone (CT), a derivative of the herb Salvia milthorrhiza
Bunge and a known STAT3 inhibitor that has been used to eradicate tumor-initiating cells in other
cancers [64, 65, 32, 31]. Additionally, CT is known to be effective in increasing TRAIL cytotoxic-
ity by upregulating death receptor 5 (DRS5) and inducing cell death in cancer cells[30, 28]. Through
its action on dynamin-related protein 1 (DRP1), CT controls mitochondrial function which could

inhibit OS cell growth [66].

27



3.2 Theoretical Network Modeling and Experimental Results for Osteosarcoma

We use a Boolean network model to capture the causal interconnections between the differ-
ent genes from the different biological pathways. The candidate biological pathways for OS,
namely angiogenesis (JAK/STAT), immune system (KEAP1/NRF2), inflammation(NK«xB), hy-
poxia (HIF1a), stemness (Wnt/3-Catenin and Hedgehog) and the metabolic pathways, are all
well documented [7, 5, 6]. Some of the interconnections derived during modeling these pathways
are based on the interpretation of different research papers [56, 54, 62, 67, 47,48, 2, 68, 69, 24, 44,
43,42, 41, 13, 50, 45, 70, 66] by the author of the present dissertation. We consider only a subset
of all possible interconnections and signaling pathways in the cell, since the cancer of interest here

is OS.
3.2.1 Results and Discusions

For clarity of exposition, the entire Boolean network has been divided into six components.
The legend and color scheme given in Fig. 3.1 applies to each component from Fig. 3.2 to Fig. 3.7;
the crosstalk between the different pathways is denoted by the blue blocks. Fig 3.2 shows the cell
survival pathways; this figure shows the activity points of many conventional drugs. Cancer cells
hijack the cell survival mechanism to evade cell death and to promote the growth of the tumor.
Fig. 3.3 shows the interconnections between the endoplasmic reticulum stress-activated pathway
and cellular damage and their cumulative effect on the glutathione metabolism. The hypoxic (low
oxygen) conditions associated with cancer cause endoplasmic reticulum stress to initiate the un-
folded protein response; the low oxygen condition also initiates the switch to anaerobic metabolism
[69, 57]. The stemness pathways are modeled in Fig. 3.4; mesenchymal stem cells are controlled
by stemness-related genes and could play an important role in osteosarcoma pathogenesis [64].
Hypoxia and angiogenesis pathways are displayed in Fig. 3.5, the gene STAT3 and its influence on
the immune system, inflammation, angiogenesis as well as hypoxia can be studied in this figure.
Fig. 3.6 and Fig. 3.7 show the extrinsic and mitochondrial apoptotic pathways respectively. The

induction of TRAIL apoptosis by CT can be seen in Fig. 3.6.
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Figure 3.1: Legend and color scheme for Fig. 3.2-Fig. 3.7.

The static Boolean network considered in this work is subject to a certain set of inputs whose
effect on the network can be evaluated through a set of outputs; the input and output vectors are
given in Eq. 3.1 and Eq. 3.2 below. The inputs are a mix of growth factors, interleukins, interferons
and stress signals which activate the pathways relevant to the pathogenesis of OS. The value of
these inputs manipulate cell growth and death by controlling the state of the nodes downstream.
The outputs are a set of genes that give information about cell death or apoptosis. The outputs can
be classified into two categories: pro-apoptotic and anti-apoptotic, which promote and inhibit cell
death respectively. The Table. 3.1 shows this classification of outputs. The fate of the cell depends

on the value of these apoptotic factors.

Inputs = [IGF, TRAIL, CaLM, EGF, TNF «,

IL6, TGF3,IFN, Hh, WNT, cAMP, ROS] 3.1)

Outputs = [BAKX, BAD, CASP8, CASP12, BID,
BIM, STING, DRP1, BCL2, BCLxL,

MCL1, XTAP, XBP1, survivin, EPO, Al] (3.2)

We consider a total of 7 faults in our network. PTEN, p53, MDM?2 and CXCR4 mutations are

commonly found in OS cell lines; PTEN and CXCR4 faults can lead to a decrease in TRAIL
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Figure 3.2: Cellular survival pathways.
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Figure 3.3: Endoplasmic reticulum stress-related pathways and their interconnections with cellular
damage and the glutathione metabolism.

31



uruaye))d

Figure 3.4: Stemness pathways
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Figure 3.5: Hypoxia and angiogenesis pathway and their crosstalk with the immune system
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Figure 3.6: Extrinsic apoptosis
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Table 3.1: Apoptotic factors

Pro-apoptotic factors

Anti-apoptotic factors

BAK/BAX
BAD
CASP8
CASP12
BID
BIM
STING
DRP1

BCL2
BCLxL
MCLI1
XIAP
XBP1
survivin
EPO
Al

Table 3.2: Faults in the Boolean network

Fault Type
CXCR4 | Stuck at 1
SLC1A3 | Stuck at 0

IL8 Stuck at O
MDM?2 | Stuck at 1
pS3 Stuck at O
PTEN | Stuck atO
STAT3 | Stuck at 1

sensitivity [61, 54, 56, 71, 12]. OS cell survival and drug resistance can be attributed to STAT3
overexpression, which can be characterized as a stuck-at-1 fault [64]. Furthermore, the study of
canine gene expression identifies SLC1A3 and IL8 as the two mutations that could be responsible
for OS progression in humans and dogs [57]. The faults and their corresponding types are displayed
in Table 3.2 and the fault vector can be seen in Eq. 3.3. The components in the fault vector are
either one or zero depending on whether a particular fault is present or not. A one in the fault
vector denotes a stuck-at-0 or stuck-at-1 fault, whichever is applicable for that particular gene. For
example, if the fault vector is [0, 0, 0, 0, 1], this implies that the STAT3 gene is mutated. Since it is

a stuck-at-one type of fault, it means that STAT3 is being constitutively expressed.

Faults = [CXCR4, SLC1A3, IL8, MDM?2, p53, DR5, STAT3)] (3.3)
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Table 3.3: Drugs with their activity points

Abbreviation Drug Target
Cry Cryptotanshinone | STAT3, DRS
Ly LY294002 PI3K
Lap Lapatinib EGFR
NT NT157 PTP
SH SH-4-54 STAT3
Tem Temsirolimus mTOR
uo U0126 MEK1
PX PX-478 HIFl«

The drugs with their activity points are shown in Table 3.3 and the components of the drug vector

are given in Eq. 3.4.

Drugs = [Cry, Ly, Lap, NT, SH, Temsirolimus, UO126, PX] (3.4)

A one in the 7' column of the drug vector indicates that the i** drug is applied and vice versa. We
evaluate combinations of Cryptotanshinone with the other drugs, since a major goal of this work
is to evaluate CT’s action on OS cells. Since there are seven other drugs in the vector, a total of
27 drug combinations were tested. For instance, the drug vector [1,0,0,0, 0,0, 0, 0] indicates that

only Cryptotanshinone is applied.
3.2.2 Theoretical Simulation Results

We ran simulations under different combinations of drugs and faults to compare the results
of the model and the biological experiment. We predict the theoretical drug efficacies of drug
combinations with and without Cryptotanshinone. We fix the values of the inputs for all the sim-
ulations as [1,1,0,0,0,0,0,0,0,0,0,0,0,0] , where the IGF and TRAIL inputs are active, since
TRAIL sensitivity is of us interest to us. TRAIL sensitivity is the ability of a cancer cell to respond
to death signals. TRAIL resistance is observed in OS cells and is said to occur when an active
TRAIL input is unable to induce apoptosis in cancer cells [72]. IGF activates the PI3K/mTOR

pathway which has been implicated in decreasing TRAIL cytotoxicity [12]. The metric used to
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calculate the degree of apoptosis is given in Eq. 3.5.

> Pro-Apoptotic factors

Apoptosis Ratio =
poptosis Ratio >~ Anti-Apoptotic factors

(3.5)

The apoptosis ratio measures the relative change in cell death for each different set of inputs. The
active faults and drugs will also affect the apoptosis ratio. We assume that all faults are active, i.e.

the fault vectoris [1,1,1,1,1,1,1].
3.2.3 Experimental Results

Cellular apoptosis is tracked using high-content fluorescent protein reporter imaging with the
previously immortalized ABRAMS canine OS cell line to study how it reacts to different combi-
nations and concentrations of drugs. A two-part data processing technique is applied to extract the
cell dynamics from the images. First, image processing is performed on the fluorescent images
to recognize individual cells and quantify their transcription activity levels. Second, an algorithm
for data representation summarizes the results into expression profiles in order to facilitate further
evaluation [51]. This method produces a plot of cellular apoptosis versus time for a given drug

combination.
3.2.3.1 CT is Effective at Restoring TRAIL Sensitivity

First, we compare the action of Cryptotanshinone alone with the action of the PI3K inhibitor
LY294002. The cellular apoptosis occurring in ABRAMS OS cells with respect to time is dis-
played in Fig 3.8. The Y-axis shows the apoptotic fraction, which corresponds to the percentage
of apoptosis occurring in the cell line in the given time. Table 3.4 explains the legend in Fig 3.8 in
greater detail. The curve in Fig. 3.8 shows the effect of CT and LY294002 on OS cells. It is clear
from the Fig. 3.8 that Cryptotanshinone is more effective than LY294002 in inducing apotosis.
The area under the curve for each of the curves in Fig. 3.8 is plotted in Fig. 3.9 as a bar graph for
ease of comparison. Fig. 3.10 shows the simulated effect of the drugs CT and LY294002 on the
Boolean network. The *Untreated’ condition 1s simulated by passing a drug vector of zeros. The

Boolean network subject to Cryptotanshinone outputs a greater apotosis ratio than the one subject
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Figure 3.8: Experimental results comparing LY294002 with CT.

Table 3.4: Legend for Fig 3.8

Abbreviation Drug Combination
Cry Cryptotanshinone 10 M
Ly LY294002 10pM
Untreat Untreated

to LY294002. Upon comparison of the Fig. 3.9 and Fig. 3.10, it is evident that the two graphs are
similar. The simulation shows us that CT can induce apoptosis on its own, whereas the inhibition

of PI3K alone is not sufficient to restore TRAIL cytotoxicity.
3.2.3.2 Inhibition of the PI3K/mTOR Pathway Boosts CT’s Action

Next, we test the combination of Cryptotanshinone with one drug at a time. We have five drugs
in different concentrations mixed with equal dosage of Cryptotanshinone. The cellular apoptosis
occurring in ABRAMS OS cells with these conditions is displayed in Fig 3.11. Table 3.5 explains
the legend in Fig 3.11 in greater detail. = The curve in Fig. 3.11 shows how all the drug combi-
nations successfully lead to apoptosis. Note that since every combination has Cryptotanshinone as

a component, it could imply that Cryptotanshinone is responsible for the effectiveness of the drug
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Figure 3.10: Simulation results comparing LY294002 with CT.
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Figure 3.11: Experimental results for each single drug in combination with CT.

Table 3.5: Legend for Fig 3.11

Abbreviation Drug Combination
Cry Cryptotanshinone 50 M
+Ly LY294002 10 M+ Cryptotanshinone 50p M
+Lap Lapatinib 5p M+ Cryptotanshinone 50 M
+NT NT157 10uM + Cryptotanshinone 50p M
+Tem Temsirolimus 10 M+ Cryptotanshinone 50 M
+U0 U0126 10uM+ Cryptotanshinone 50u M
Untreat Untreated

23

cocktail. We can see that the combination of CT with Temsirolimus, the MTOR inhibitor is the

most effective. The area under the curve for each of the curves in Fig. 3.11 is plotted in Fig. 3.12

as a bar graph for ease of comparison. The output of the Boolean network shows that LY294002,

the PI3K inhibitor in combination with CT is the best performing combination. We can also see

that all the combinations lead to high values of the apoptosis ratio. Both Fig. 3.12 and Fig. 3.13

seem to indicate that the inhibition of PI3K/mTOR pathway amplifies the effect of CT and helps

overcome TRAIL resistance.
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Figure 3.13: Simulation results for each single drug in combination with Cryptotanshinone.
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3.2.3.3 HIFI-alpha is a Key Intervention Point in OS Pathways

The third experiment was performed with Cryptotanshinone and other two drugs at a time. All
the drug combinations in this experiment have Cryptotanshinone and HO-3867 (a STAT?3 inhibitor)
in the mix. The cellular apoptosis occurring in ABRAMS OS cells with respect to time is displayed

in Fig 3.14. Table 3.6 explains the legend in Fig 3.14 in greater detail. =~ As seen in Fig 3.14, both
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Figure 3.14: Experimental results comparing PX478 with CT.

Table 3.6: Legend for Fig 3.14

Abbreviation Drug Combination
Cry Cryptotanshinone 20 M
+PX PX478 10 M+ Cryptotanshinone 25 M + HO-3867 10 M
+SH SH-4-54 53 M+ Cryptotanshinone 50 M + HO-3867 10 M
Untreat Untreated

the drug combinations successfully induce cell death in the OS cell line, and the combination with

PX-478 is slightly more effective than the one with SH-4-54. The area under the curve for each of
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Figure 3.16: Simulation results comparing PX478 with CT.
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FAULTS

Figure 3.17: All possible drug Combinations with Cryptotanshinone.

the curves in Fig. 3.14 is plotted in Fig. 3.15 as a bar graph for ease of comparison. The simulation
results show a similar trend as the one in the biological experiment. The results of this experiment
show that inhibition of HIF1a enhances the activity of CT. The Boolean model predicts that the
combination of CT with PX-478 is the best combination with two other drugs at a time, which

implies that HIF1« is a significant intervention point in OS treatment.
3.2.4 Prediction of Drug Efficacies

The final simulation was performed to test the effect of all possible combinations of faults and
drugs with and without Cryptotanshinone. Fig. 3.17 shows all the drug combinations containing
CT and Fig. 3.18 considers the possible combinations of drugs without CT. The cells that are
green indicate high levels of apoptosis (6.5) and the red cells denote low levels of apoptosis (0.3).
Fig 3.18 has several red cells, implying that most of the conventional drug combinations fail to
induce apoptosis. Fig. 3.17 has no red cells, which implies that no combination with CT in mix
has a low apoptosis ratio. Our model predicts that every combination with CT should be able to

increase TRAIL sensitivity and induce robust cell death in OS cells despite the presence of faults.
3.2.5 Further Biological Experimentation

We predict the best drug cocktail with three drugs for treatment of OS. The ranking of the drug
combination is performed on the basis of the corresponding apoptosis ratio. We ran a simulation
for drug combinations of three drugs at a time, with or without Cryptotanshinone.

The top drug combinations with CT as seen in Figure. 3.19 are given in Table. 3.7 and the top

45



Figure 3.18: All possible drug combinations without Cryptotanshinone.
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Figure 3.19: Drug combinations with Cryptotanshinone and two additional drugs.

drug combinations without CT as seen in Figure. 3.20 are given in Table. 3.8.

Table 3.7: Best drug combination with CT.

Drug Combination Apoptosis Ratio
CT + PX478 + Ly294002 5.53

Biological experimentation was performed to compare the combinations of CT+PX478+Ly294002,

SH454+1y294002+PX478 and CT+SH454 to see whether CT outperforms SH-4-54. We measured
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Figure 3.20: Drug combinations without Cryptotanshinone.

Table 3.8: Best drug combination without CT.

Drug Combination Apoptosis Ratio
SH454 + Ly294002 + PX478 4.17

the percent survival rate of the Abrams canine OS cell line when it was subjected to a drug com-
bination. Percent survival is inversely proportional to the efficacy of the drug combination. The

results of the experiment can be seen in Figure. 3.21. The resultant ranking is listed in Table.3.9.

Table 3.9: Ranking of the drug combinations in terms of efficacy.

Drug Combination Rank
CT + Ly294002 + PX478 1
CT + SH454 2
SH454 + Ly294002 + PX478 3

It can be seen that CT + Ly294002 + PX478 performs better than SH454 + Ly294002 + PX478,

which implies that the success of this drug combination can be attributed to the effectiveness of
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Figure 1: Percent survival of Abrams canine OS cell line after exposure to SH4-54 (5 uM), PX—478
(25 uM), LY2494002 (10 uM) and Cryptotanshinone (20 uM) after 24 hours of incubation. The SH
+ CRY treatment group was the most effect combination (mean percent viability 35.4% (SEM
0.55)) and was significantly lower than the control (p<0.0001) and the SH+PX+LY (p=0.0017)
treatment groups. The PX+LY+CRY treatment group was the next most effective combination with
mean viability of 41.37% (SEM 0.24) and was significantly lower than the control (mean viability
85.5% (SEM 9.5), p=0.02). The SH+PX+LY treatment group had a mean viability of 49.93% (SEM
1.2) and was not signficantly different from the control (p>0.99).
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Figure 2: Percent survival of Abrams canine OS cell line after exposure to SH4-54 (5 uM),
PX-478 (25 uM), LY2494002 (10 uM) and Cryptotanshinone (20 uM) after 48 hours of
incubation. The PX+LY+CRY treatment group was the most effect combination (mean percent
viability 4.34% (SEM 0.2)) and was significantly lower than the control (p<0.0001) and the
SH+PX+LY (p=0.0076) treatment groups. The SH+CRY treatment group was the next most
effective combination with mean viability of 4.95% (SEM 0.2) and was significantly lower than
the control (mean viability 93.67% (SEM 0.26), p=0.0003). The SH+PX+LY treatment group
had a mean viability of 44% (SEM 0.6) and was not significantly different from the control
(p>0.42).

Figure 3.21: Biological experimentation to prioritize drug combinations on the basis of percent
survival.

CT. It is evident from the results of the biological experiment that CT outperforms SH-4-54. Next,
it can also be seen that CT + SH454 is a close second, which makes an even stronger case for CT

as a promising drug for treatment of OS.
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4. GLIOBLASTOMA

4.1 Current State of Cancer Therapy for Glioblastoma

Glioblastoma or Glioblastoma Multiforme (GBM) is the most aggressive primary brain tu-
mor with median overall survival (OS) of 14.6 months to 20.9 months in clinical trial setting and
11 months in all GBM population [73, 74] Current standard of care (SOC) treatments for GBM
include maximum safe surgical resection, radiation, temozolomide (TMZ) chemotherapy and re-
cently FDA approved tumor treating fields (Optune) for newly diagnosed patients as well as be-
vacizumab (Avastin) for recurrent disease [74, 75] However, GBM still stays as one of the most
challenging cancers to treat due to its complexity or tumor heterogeneity, infiltrative nature and
low efficacy of current treatment modalities which results in short-term survival rate. Therefore,
novel approaches in the field of GBM drug discovery are needed to overcome current challenges
in medication results [76]

Few of the main challenges to GBM treatment are resistance to temozolomide and recurrence
of the cancer after radiation therapy. Understanding the genetic causes of this resistance to temo-
zolomide is essential while designing therapies to robustly kill GBM tumor cells [77]. Studying
the genetic makeup of GBM tumors is also essential while choosing drug combinations for post-
radiation chemotherapy. By prioritizing the key genetic targets involved in the progression of

GBM, the best drug combination can be predicted.
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4.2 Theoretical Network Modeling for Glioblastoma

To aid the design of targeted therapy for GBM, it is necessary to model the cell signaling
pathways involved in the development of the cancer. The biological pathways responsible for cell
survival and proliferation are dysfunctional in GBM. Genetic aberrations in the cell cycle such
as those originating from mutations in CDK2NA, p53, PTEN and EGFR are commonly found in
GBM cell lines [78]. Additionally, genes associated with the Fas pathway, that is responsible for
extrinsic apoptosis, are also a feature of GBM tumors. Isocitrate dehydrogenase (IDH) mutations
can determine prognosis of a GBM patient and the involvement of IDH means the involvement
of hypoxia-related and anaerobic metabolic pathways [78, 79]. Finally, the resistance to TMZ
can be attributed to the DNA repair pathway which governs the methylation of Methylguanine-
DNA Methyltransferase (MGMT); this motivates the investigation of DNA methylation and his-
tone deacetylation pathways [33, 34]. The Boolean network model for GBM should include the
interconnection between these pathways and the other pathways known to be active in cancer cells
like the calcium signalling, endoplasmic reticulum stress-related and stemness (Wnt, Hedgehog
and Notch) pathways [6, 7, 5].

Our objective is to show the effect of a gene on cancer cell fate. If a particular target gene or
drug is said to be effective in terms of cancer treatment, it should have at least one of the following

qualities :

e it should robustly kill cancer cells.

it should stymie cancer cell growth or proliferation.

it should abate tumor invasion and metastasis.

it should curb tumor angiogenesis.

it should attack the tumor-initiating cells.

To study the effect of the various genes on cancer cell fate, we include the pathways responsible

for angiogenesis, inflammation and mitochondrial apoptosis.
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4.2.1 Theoretical Simulation Results

The static Boolean network in this work maps a set of inputs to a set of outputs; the input
and output vectors are given in Eq. 4.1 and Eq. 4.2 below. The inputs to the Boolean network are
the growth factors, cytokines and extracellular stimulants relevant to the development of GBM. A
change in input can cause a change in the output metric. The outputs are a mixture of apoptosis
factors as seen in Eq. 4.3 and genes involved in the cell cycle arrest shown in Eq. 4.4. For all
vectors, i.e input, output, fault and drug vectors, a one in the i** column of the vector implies that

the it" element is active.

Inputs = [Shh, Wnt, GF, IL17, Cytokine, TNF, PSEN, TGFb, S1P, Antigen, 4.1)
Dopamine, GABA, Ach, HT, PGE2, EDN1, Norepinephrine, F2,

Estrogen, Testosterone, Progesterone, NF1]

The Tables 4.1 and 4.2 shows the classification of the apoptotic and arrest factors respectively.

The fate of the cell depends on the value of these apoptotic and arrest factors.

Outputs = [Apoptotic Factors, Arrest Factors] 4.2)

Apoptotic Factors = [BAK, BAX, BID, NOXA, PUMA,

CASP12, CASP8, DNADamage] (4.3)

Arrest Factors = [DNADamage, CHK1, HDAC, CDK4, CCND1, AR (4.4)

For clarity of exposition, the Boolean network is divided into 8 parts as shown in Figures

4.1 through 4.8. The yellow blocks in the figures represent the inputs to the cells, the magenta
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Table 4.1: Apoptotic factors

Pro-apoptotic factors | Anti-apoptotic factors
BAK/BAX BCL2
BID BCLxL
NOXA MCL1
PUMA XIAP
CASP12 CFLIP
CASPS8 TERT
DNADamage

Table 4.2: Arrest factors

Pro-Arrest factors | Anti-Arrest factors
DNADamage HDAC
CHK1 CDK4
CCND1
AR

blocks represent the genetic mutations commonly found in GBM cell lines and the blue blocks
represent the interconnections between the different pathways. Figure. 4.1 shows the cell growth
pathways and their cross talk with the stemness pathways namely Wnt-3Catenin, Hedgehog and
Notch. The histone deacetylation pathway and its interaction with PI3K/mTOR and inflammation
pathways is shown in Figure. 4.2. The output factors that control cell proliferation, cell cycle arrest,
angiogenesis and cell death are found in Figure. 4.3, Figure. 4.4 and Figure. 4.5 respectively. The
DNA damage and repair network in Figure. 4.6 captures the commonly occurring faults in GBM.
Figure. 4.7 shows how the g-coupled protein receptors influence calcium signaling and cAMP-
PKA pathway in the brain. The hypoxia and endoplasmic reticulum stress-related pathways are

active in several cancers including GBM are shown in Figure. 4.8.
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Output Metric

The output factors have been combined into one output metric to calculate the efficacy of the

drug or target. The metric used is given in Eq. 4.7 and is a combination of the apoptosis ratio in
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Eq. 4.5 and the arrest ratio in Eq. 4.6.

Pro-Apoptotic fact
Apoptosis Ratio = 2 TOTAPOPIOTIE AT Rapo (4.5)
> Anti-Apoptotic factors

> Pro-Arrest factors

Arrest Ratio = = Rarr 4.6

frest Ratlo > Anti-Arrest factors (4.6)
Na Lo} Narr

Convex Sum = TpRapo + TRarr (47)

The apoptosis ratio R,,, denotes the relative change in cell death for each different set of inputs
and N, 1s the number of pro-apoptotic factors and anti-apoptotic factors in total. The arrest ratio
R, denotes the relative change in cell cycle progression for each different set of inputs and N,

is the number of pro-arrest factors and anti-arrest factors in total. Finally, N = N, + Ny, is the
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total number of output factors. In both the Equations 3.5 and 4.6, the symbol > stands for the
average of the factors. The Convex-Sum metric as a whole measures the influence of a particular

node on both cell death and cell cycle arrest.
Simulation Results

Each GBM cell line has different genetic mutations. We consider 9 GBM cell lines and their
corresponding cellular mutations are given in Table 4.3. This information has been obtained using
the GDSC database [20].

The set of input conditions should reflect that the stemness pathways are active in the cancer

cells and the immune system has started to respond to the cancer. The stemness-related genes
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Table 4.3: GBM cell lines with different mutations

Cell Line Name Genetic Mutations
42-MG-BA pl6INK4a, pl4ARF, PDGFR, PTEN, p53

Al172 pl6INK4a, pl14ARF, EGFR, p53

AM-38 pl6INK4a, p14ARF, BRAF

CCF-STTG1 EGFR, MDM2, PTEN

LN-229 FasL, pl6INK4a, pl4ARF, EGFR,48

T9I8G FasL, pl6INK4a, p14AREF, p53
U-87-MG FasL, pl6INK4a, pl4ARF, PTEN, NF1
YKG-1 pl6INK4a, pl4ARF, p53, PTEN, PI3K, NF1

Shh and Wnt are responsible to activate the stemness pathways as can be seen in Figure. 4.1. The
immune system response is controlled by cytokines including IL17, TNF and TGFb as shown

in Figures 4.2 and 4.7. For this purpose, the input vector for the simulations has been assigned
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the value [1,1,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]; this implies that Shh, Wnt, 117,

Cytokine, TNF, TGFb and NF1 are all set to one and the other inputs are set to zero.
Prioritization of Genetic Targets for the GBM Cell line U-87 MG

For our first simulation, we choose one GBM cell line *U-87 MG’. There are 5 faults in the cell
line and the corresponding faults vector is shown in Eq. 4.8. All the faults in this fault vector are
stuck-at-0 faults. We shall assign the value [1,1,1, 1, 1] to the fault vector, which means that all

the 5 faults are active and that FasL, p16INK4a, p14ARF, PTEN and NF1 are all down-regulated.

Fault = [FasL, p16INK4a, pl4ARF, PTEN, NF1] (4.8)

We will demonstrate the results of our ranking technique given the genetic profile of the cell line.
Figure. 4.9 shows the results of prioritization for single genetic targets; the darker shade of purple
implies greater priority of the target. For instance, NFKB and BCL-XL are two targets that have
the same priority as each other, but have lower rank than p53. Similarly, in Figure. 4.10, the pairs
of (fos, p53), (Jun, p53) and (CDK4, p53) are the best pairs to target. In both the Figures 4.9 and
4.10, a red cell implies that the target should be inhibited and a green cell implies that a target
should be expressed. We can use these results to find drugs that act on these genetic targets and
have the desired action on those targets. For example, if we want to design a single target therapy
with the best efficacy for a patient with genetic mutations similar to U-87 MG, we should look for a

drug that activates p53. Using this functionality, we could move towards a personalized medicine

Genetic Targets

p53
NFKB BCLxI
pls fos PCNA  pl6INK4a  CDK4 CCND1 jun p21

TRAF2 Mcl1 XIAP

ConvexSum

Bax Bak noxa puma

Figure 4.9: Prioritization of single targets for Glioblastoma therapy
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Figure 4.10: Prioritization of pairs of targets for Glioblastoma therapy

approach. The patient’s genetic mutations could be fed into the algorithm as faults, and we could
perform the prioritization task to identify the key intervention points specifically effective for that

patient. We could use the prioritization results to design new drugs or drug therapies to treat GBM.
Drug Sensitivity for Anti-cancer and Non-cancer drugs

The second simulation is run to test drug sensitivity for each different GBM cell line. This
functionality is similar to the one available in GDSC. We only included this functionality to plot
the drug sensitivity for non-cancer drugs. The data for the drugs and their targets is from the
GDSC database and DrugBank [20, 80]. Table. 4.4 shows the drug with its corresponding targets.
Figure. 4.11 shows the drug sensitivity for anti-cancer drugs as predicted by the Boolean model;
each row corresponds to a GBM cancer cell line and each column is a drug. Figure. 4.12 shows the
drug sensitivity for non-cancer drugs as predicted by the Boolean model. In both Figures 4.11 and
4.12, ared cell implies that the drug does not work on that particular cell line and a green cell stands
for a drug with a high efficacy. We can see that Aspirin seems to work on many GBM cell lines, but
it fails to induce cell death or stop proliferation in AM-38 or LN-229. Yellow cells are the drugs
that do not cause a significant change in the value of the Convex-Sum metric. Temozolomide, in
Figure. 4.11, does not have much effect on any of the GBM cell lines; this might indicate that these

cell lines have developed resistance to TMZ.
Increasing Sensitivity to Temozolomide

We ran a simulation for the cell line U-87 MG to test whether it is possible to reduce the

resistance to TMZ. Figure. 4.13 shows that only the combination of Aspirin and TMZ is able to
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Figure 4.11: Drug sensitivity for anti-cancer drugs
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Figure 4.12: Drug sensitivity for non-cancer drugs

increase sensitivity of the cancer cells to TMZ. LC161 has only a slight effect on increasing the
sensitivity to TMZ, but the rest of the drugs seem to be unable to have any effect. This tells us that

while treating a patient with a genetic profile similar to U-87 MG, we might need to look at other

two-drug or multi-drug therapies.
Best Two-drug Combinations for GBM Treatment

We can predict the best two-drug combination of anti-cancer and non-cancer drugs that can
work for the U-87 MG GBM cell line. Figure. 4.14 shows only the top 35 two-drug combinations;
the darker shade of green implies higher efficacy. For instance, the combination of LC-161 and
Aspirin is yellowish green, which corresponds to a lower efficacy than the rest of the combinations

shown in the figure. The best two combinations are Ruxolitinib + Palbociclib and Ruxolitinib +
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DRUG PAIR
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Figure 4.13: Temozolomide in combination with one drug at a time.

AT7519; both these combinations have equal efficacy and perform 37% better than the next best
combination. It is interesting to note that Aspirin features in the top 35 combinations, it is a non-
cancer drug and not usually considered while designing drug therapies for GBM treatment. This

functionality could be extended to test the combination of n number of drugs and then to find
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Ruxolitinib Rucaparib
Ruxolitinib Motesanib
Ruxolitinib BMS536924
Ruxolitinib BAY613606
Ruxolitinib CI1033
Ruxolitinib  Midostaurin
Ruxolitinib  WYE125132
Ruxolitinib CUDC101
Ruxolitinib Dacinostat
Ruxolitinib Foretinib
Ruxolitinib Pazopanib
Ruxolitinib TW37
Ruxolitinib  Bicalutamide
Ruxolitinib Everolimus
Ruxolitinib Lomustine
Ruxolitinib  Bevacizumab
Rucxolitinib Ibuprofen
Ruxolitinib Ketorolac
Ruxolitinib Furosemide
LCL161 Aspirin

Figure 4.14: Top performing two drug combinations for Glioblastoma

the optimal drug combination (from the existing drugs available in the market) customized to the
patient’s genetic profile. It could also be used to predict the efficacies of multi-drug therapies that

could potentially kill GBM cells or stop the spread of the cancer.
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Table 4.4: Anti-cancer and non-cancer drugs with their targets

Number Drug Genetic Target
1 XMD1499 ALK, CDK4
2 CP724714 ERBB2
3 Afatinib ERBB2, EGFR
4 LCL161 XIAP
5 Ruxolitinib JAK1
6 Tamoxifen ESRI1
7 Voxtalisib PI3K, MTOR
8 Amuvatinib KIT, PDGFR, FLT3
9 LFMA13 BTK
10 Palbociclib CDK4
11 Linifanib VEGF, KDR, FLT3, FLT4, KIT
12 Masitinib KIT, PDGFR
13 GSK269962A ROCK
14 Cabozantinib KDR, MET, KIT, FLT1, FLT3, FLT4
15 Rucaparib PARP1
16 Motesanib KDR, KIT, PDGFR
17 AT7519 CDK4
18 BMS536924 IGF1R
19 BAY613606 SYK
20 CI11033 EGFR, ERBB2
21 Midostaurin PKC,FLT1
22 WYE125132 mTOR
23 CUDC101 HDACI1, EGFR, ERBB2
24 Dacinostat HDACI1
25 Foretinib MET, KDR, FLT4, PDGFR, FGF2, EGFR
26 Pazopanib KIT, PDGFR
27 TW37 BCL2, BCL-XL, MCL1
28 Bicalutamide AR
29 Everolimus MTOR
30 Lomustine IDHI1, MGMT
31 Bevacizumab FasL
32 Temozolomide 0]€;
33 Ibuprofen THBD, Gp1BA, COX2, PPARa, PPARg, BCL2
34 Aspirin EDNRA, ERK, NFKB, AMPK, RSK2, COX2, cMYC, p53, PCNA
35 Ketorolac COXx2
36 Furosemide CA
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5. CONCLUSIONS

We modeled the TRAIL resistant metastatic melanoma network using a Boolean network. The
effects of Cryptotanshinone in combination with a few other drugs were studied. Simulations
were run to study the effectiveness of Cryptotanshinone in increasing TRAIL sensitivity. The
theoretically predicted efficacies seem to be borne out by the experimental results.

We modeled the induction of apoptosis by Cryptotanshinone in OS using a Boolean network.
The effects of Cryptotanshinone in combination with other drugs were evaluated. The PI3K/mTOR
pathway plays an important role in decreasing TRAIL sensitivity in OS. The results of the simu-
lation indicate HIF1« as a key intervention point in inducing apoptosis in OS cell lines. Upon
further biological investigation, we were able to make a strong case for CT as an effective STAT3
inhibitor and a valid candidate for OS therapy.

We modeled the biological pathways instrumental in glioblastoma and identified drug therapies
that could prove to be effective for GBM treatment. We predicted a prioritization of genetic targets
given the genetic profile of a patient. The Boolean model predicts that Aspirin, a non-cancer drug,
could potentially reduce the resistance to Temozolomide in GBM patients; it could also be effective
in combination with other chemotherapeutic drugs. Finally, we predicted two-drug therapies that

could be more successful than the currently used treatment strategies.
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