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ABSTRACT 

Construction mat design is currently experiencing an update to modern polymer 

composite materials. The new designs lack optimization, sacrificing structural integrity 

for cost of production or vice versa. This thesis focuses on the optimization of polymer 

composite-steel construction mats via a multicomponent model. Model components 

include an analytical model, formulated via Euler-Bernoulli beam theory, and a series of 

both 3-D and 2-D finite element models to approximate local and global structural 

abilities. Modeling validation stemmed from available experimental data. Optimization 

is achieved by comparing structural design against material costs. Additionally, potential 

application of resulting design to ocean engineering structures, namely coastal 

infrastructure, is explored. 
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INTRODUCTION 

Construction mat design has recently undergone an update to modern, engineered 

materials. These new-to-market construction mats, still in product-infancy in comparison 

to traditional designs, are in need of further optimization to make them a superior 

alternative amongst their market competitors. 

Construction mats, whether modern or traditional, are comprised of beam 

components fastened together to form a working platform. These mats are also 

commonly referred to as crane mats, access mats, timber mats, digging mats, or bridge 

mats. Reusable and relocatable, construction mats are purpose-built as work platforms 

for equipment such as cranes and large stationary pumps, or implemented as general 

temporary infrastructure e.g. an access road for excavation and earth-moving. These 

mats must be able to adapt and operate in all environments, with both ideal and nonideal 

working conditions. Overall, these mats aid in the efficient and safe completion of 

construction projects, while leaving minimal impact on the worksite and surrounding 

environment. Figure 1 below depicts typical construction mat usage. 
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Figure 1 Example operation of construction mat 

In traditional construction mats, the primary beam components consist of milled 

hardwoods. Depending on specific application, secondary reinforcing beam components 

may also be incorporated into the mat in the form of steel interleaves, also known as 

flitch plates. Fastening of the beam elements is accomplished mechanically (nut and 

bolt), chemically (laminated), or both. A cross-section view of a typical traditional 

construction mat design is presented below in Figure 2. 

Figure 2 Cross-section view of traditional construction mat design 
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Modern construction mats are seeing an update in material choice of the primary 

beam components. Readily available polymer composites offer a vastly superior primary 

beam component alternative compared to current hardwoods. Hardwoods yield and or 

fail under lower magnitude loads relative to available polymer composites, and fatigue 

faster under cyclical loading (Wood handbook: wood as an engineering material, 2011). 

Additionally, they degrade at substantially higher rates in working environments, 

especially with common saturated conditions, creating little to no ability for reuse across 

multiple projects. On the other hand, polymer composites are comparable in raw 

materials and manufacturing costs, but retain more value in the long-term with the 

superior operational ability and durability described above. Moreover, ease of 

manufacture of the polymer composites allows for not only standard modular 

configurations similar to traditional hardwood mats, but also purpose-designed 

configurations for specific project needs. From an environmental standpoint, chemically 

stable and inert polymer composites, many containing at least some partially recycled 

constituents, provide a much more sustainable alternative to hardwoods. With all of the 

above benefits of new polymer composite materials in construction mats, design life for 

the structures has been extended. No longer a structure to be used, abused, and thrown 

away on a per project basis, it is now viable and necessary to maximize the structural 

integrity of the modern construction mat. 

To accomplish the above task, an optimization was carried out on a typical mat 

structure, parameterizing structural integrity against materials costs. Optimization efforts 

were accomplished via the formulation of a multicomponent model. The components of 
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this model included: experimental testing and resulting data, an analytical model, and 

various numerical, finite element models. Modeling and optimizations were tailored to 

the available experimental data for purposes of this thesis. However, it should be noted 

that the overall modeling and optimization procedure established here is more widely 

applicable to elastic behavior of any general construction mat design that utilizes 

discreet homogeneous components.  
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POTENTIAL APPLICATION TO OCEAN ENGINEERING 

STRUCTURES 

Given the superior material and structural properties polymer composite-steel 

construction mats provide, and the simple yet robust modular design they possess, an 

easy translation can be made to Ocean Engineering structures. Specifically, the 

respective structure could be a cost-effective alternative to many coastal infrastructure 

applications. These applications include seawalls and port/harbor installations. An 

example of a contemporary seawall structure and port/harbor installation are pictured 

below in Figures 3 and 4.  

Figure 3 Contemporary seawall 
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Figure 4 Contemporary port/harbor installation, quay wall 

Coastal regions are highly morphological in nature making implementation of any 

infrastructure very site-specific. Additionally, the environment presents taxing loading 

situations, with constant random waves, frequent storm events, and highly corrosive 

saltwater. The implementation of the structure contained in this thesis would present 

several advantages for the above coastal infrastructure application. First, adaption of the 

structure to fit most site-specific needs would be easy and cost effective. An example of 

this would be a variable minimum depth needed for a seawall installation to fit local soil 

conditions and accompanying moisture diffusion conditions. Current use of reinforced 

concrete walls, pictured in Figure 3 above, present significantly large installation costs in 

comparison to the easy manufacture of unit mat segments with different required 



7 

lengths. Another example of this, related to Figure 4 above, would be the use of the mat 

structure as a quay wall, where high frequency of docking ships presents the need for a 

modular, cheap, easily replaced/installed structure, which the mat would readily provide. 

Lastly, with regards to any possible coastal infrastructure application, the inert, stable, 

and partially recycled materials the mat is comprised of, would provide not only a long-

lasting salt-water resilient structure, but also an environmentally friendly solution. 

Overall, the mat structure detailed in this thesis could provide a unique and superior 

infrastructure alternative for coastal environments. 



8 

MODELING METHODOLOGY 

Optimization efforts of the construction mat design were centered around 

development, validation and employment of a multicomponent model. The components 

of the model included: experimental testing and resulting data, an analytical model 

formed via Euler-Bernoulli beam theory and validated against the experimental data, and 

various numerical finite element models, also validated against the experimental data. 

Altogether, the components of the model formed the predictive tools that were later used 

in optimization efforts.  

EXPERIMENTAL TESTING 

Experimental data was needed to serve as a foundation for modeling efforts and 

later, validation purposes. Experimental data was sourced and utilized from full-scale 

four-point bend tests completed on several configurations of a commercially available 

modern construction mat. Testing was completed at Texas A&M University’s High-Bay 

Lab, under the purview of the Center for Railway Research. Figure 5 below shows 

photographic documentation of one of the tests, post-failure.  
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Figure 5 Photographic documentation of experimental four-point bend test, post-failure 

Testing included six different mat configurations; all utilized primary beam components 

made of a glass fiber-high density polyethylene (HDPE) polymer composite, and 

secondary beam components made of A36 structural steel. Beam components in all six 

configurations were mechanically fastened with specialized nut and bolt hardware.  Two 

of the configurations tested were composed solely of polymer composite primary beam 

components. The other four configurations tested included both polymer composite 

primary beam components, and steel interleaves. Table 1 below lists the six different 

configurations of mats, along with key geometric attributes of each.  
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Mat Desig. 

Beam 

Height 

[in.] 

Beam 

Width 

[in.] 

Steel 

Plate 

no./Thick. 

[in.] 

Number 

of 

Beams 

Approx. 

Mat 

Width 

[in.] 

Mat 

Length 

[ft] 

# 

tests

(7x9) x 5 x 

(NS) 

7 1/16 8 15/16 None 5 45 18 2 

(9x7) x 7 x 

(NS) 

8 15/16 7 1/16 None 7 49 18 2 

(7x9) x 5 x 

(4x¼) 

7 1/16 8 15/16 4x1/4 5 46 20 3 

(7x9) x 5 x 

(4x½) 

7 1/16 8 15/16 4x1/2 5 47 20 3 

(9x7) x 7 x 

(6x¼) 

8 15/16 7 1/16 6x1/4 7 50.5 20 3 

(9x7) x 7 x 

(4x½) 

8 15/16 7 1/16 4x1/2 7 51 24 4 

Table 1 Configurations and essential geometric properties of experimentally tested construction mats 

It should be noted that all glass fiber-HDPE beams used in all configurations were 

manufactured with a seven and 1/16 inch by eight and 15/16 inch (7.0625”x8.9375”) 

cross-sectional area, with a one-inch radius on all corners. The primary beam 
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components have a uniform cross section. The 7 or 9 listed at the beginning of each mat 

designation refers to the vertical orientation of the glass fiber-HDPE beam in the 

respective configuration. An example cross-sectional depiction of the primary beam 

components in all configurations, with a 9 orientation is shown below in Figure 6, to aid 

reader interpretation. 

Figure 6 Cross section of primary beam component with 9 orientation 

The full mat designation for each configuration is as follows: 

(Cross Section Dimensions of Primary Beam, vertical orientation first) x Total # 

of primary beam comps. x (Number of steel flitch plates x Thickness of steel flitch plate, 

or NS for no steel) 

1” 

(fillet) 
Radius 

𝟖 𝟏𝟓
𝟏𝟔ൗ "

𝟕 𝟏
𝟏𝟔ൗ "
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Each configuration was comprised of different orientations and numbers of 

polymer composite beams, along with four of the six configurations using either ½” or 

¼” steel flitch plates interlaid between the glass fiber-HDPE beams. Note that not all 

configurations contained consistent alternation of polymer composite beams to steel 

flitch plates. Steel flitch plates were also one inch shorter in height than the adjacent 

polymer composite beam components. For example, isometric and cross-sectional 

depictions of mat configurations (7x9) x 5 x (4x½) and (9x7) x 7 x (4x½) are presented in 

Figures 7-10. 

Figure 7 Cross section, (7x9) x 5 x (4x½) experimental mat configuration 
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Figure 8 Isometric view, (7x9) x 5 x (4x½) experimental mat configuration 
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Figure 9 Isometric view, (9x7) x 7 x (4x½) experimental mat configuration 
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Figure 10 Cross section view, (9x7) x 7 x (4x½) experimental mat configuration 

Regarding the testing procedure, the total span for each useable test, i.e. the 

distance between the two bottom supports of the test frame, was 120 inches. The 

distance between the load platens was 36 inches.  Force was measured directly from the 

load cell and displacements were measured via two string pot sensors, one located at the 

center of each outermost beam in the mat, as can be seen in Figure 5 above. A slight 

variation in each sensor reading was accounted for by taking the average between the 

two, and using that as the final experimental displacement for analysis purposes. Values 

for elastic load and displacement were taken within the linear range of each output load-

displacement curve. It should be noted from the data in Table 1 that a total of 17 tests 

were performed. For model formulation only 13 of those tests were utilized. 

Configuration (7x9) x 5 x (NS) was removed from analysis, resulting in a loss of two data 

sets. Configuration (7x9) x 5 x (NS) was subjected to adaptations of the testing procedure 

that resulted in unusable data. Specifically, the original total span in the 4-point load 

frame was 180 inches but after the stroke limit of the testing frame’s actuator was 

reached during the first tests, the total span length was decreased to 120 inches as 
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detailed above, and used for the rest of the specimens. The other two data sets that were 

removed from the total original population of 17 were tests that underwent procedural 

error present during testing, resulting in error in the collected results. Table 2 presents 

the key results of the 13 useable data sets. As a final note pertaining to both (NS) 

configurations, due to the lack of steel flitch plates in the mat structures, the material 

behavior cannot be considered linear elastic. Both exhibited viscoelastic material 

behavior, and thus the time-dependent rate of loading would also have to be taken into 

account. As such, configuration (9x7) x 7 x (NS) is included in the presented results, but 

was only used for ancillary analysis and comparison, which is discussed in further detail 

in the next sub-section. Lastly, note the asterisk and value of the average experimental 

stiffness for the (9x7) x 7 x (4x½) configuration. For that configuration the highest 

stiffness value was used, instead of averaging the values across all tests. This was done 

in compensation for procedural error that occurred with the tests of that configuration. 



17 

*see paragraph above for details

Table 2 Tabulated experimental results 

CONFIG. Test 

No. 

Elastic 

Force 

[lbs] 

Elastic 

Disp. 

[in.] 

Exp. 

Stiffness 

[lbs/in.] 

Average 

Exp. 

Stiffness 

[lbs/in.] 

Failure 

 Load 

[kips] 

Average 

Failure 

Load 

[kips] 

(9x7) x 7 x 
(NS) 1 57,650 3.002 19,210 19,160 93.68 93.31 

2 57,450 3.005 19,120 92.93 
(7x9) x 5 x 

(4x¼) 2 35,060 1.159 30,270  27,860 88.82 86.99 

3 35,290 1.387 25,450 85.16 
 (7x9) x 5 x 

(4x½) 1 49,920 1.178 42,380 
40,530 

104.69 
105.52 

2 50,310 1.245 40,430 101.03 

3 49,810 1.284 38,800 110.84 
 (9x7) x 7 x 

(6x¼) 

1 
79,730 1.156 68,970 

67,960 
180.65 

170.72 2 
79,810 1.218 65,560 161.44 

3 
79,960 1.153 69,350 170.08 

(9x7) x 7 x 
(4x½) 

2 
100,290 1.486 67,490 

80,630* 

182.83 

180.93 
3 

100,140 1.377 72,750 179.03 
4 

100,340 1.245 80,630 196.24 
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The raw data itself was generated via load-displacement curves for each test, an example 

of which is presented below in Figure 11 and 12, for the third test of configuration (9x7) 

x 7 x (6x¼). 

Figure 11 Load vs. Displacement, test #3, configuration (9x7) x 7 x (4x½) 
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Figure 12 Load vs. Displacement, test #3, configuration (9x7) x 7 x (4x½), linear region only 

ANALYTICAL MODEL 

The analytical model was based on Euler-Bernoulli beam theory and, to compare 

to the experimental data, was formulated using conditions and geometry representative 

of a four-point bend test. The choice of Euler-Bernoulli beam theory for an analytical 

model was based on the design and material properties of the experimentally tested mats, 

and the method and procedure of the testing, i.e. the applied loads, geometry and 

material properties of the experimental specimens. First, given the nature of the expected 

loading on said mats, and the heterogenous composition of glass fiber-HDPE in 

conjunction with A36 steel, the assumption and employment of elastic material 

properties and pertaining theory is valid. Secondly, although the physical geometry of 
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the mats classifies them as plate structures, again the nature of the loading and test 

procedure, that being a four-point bend test, instead allows for modeling of the mats as a 

heterogenous beam consisting of discreet regions of homogeneous makeup (Allen and 

Haisler, 1985). Those discreet regions being the glass fiber-HDPE and A36 steel, 

respectively. This is valid as elastic plate structures experiencing loading and 

deformation in one coordinate direction can be represented as elastic beam structures 

instead, with minimal loss of accuracy and beneficial trade-off of analytical model 

simplification (Blodgett, 1966). This previous concept also required use of modulus 

weighted properties within supporting theory and model development, which will be 

expanded upon further below.  

The principal assumptions of Euler-Bernoulli beam theory are: the beam must 

have relatively small deformation under applied loading, and planar cross-sections of the 

beam must remain planar, and normal to the deformed axis (Allen and Haisler, 1985). 

Figures 13 and 14, below, demonstrate these two assumptions. 
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    Figure 13 Euler-Bernoulli deformed beam                  Figure 14 Diagram of Euler-Bernoulli deformed      

                                                                                                                         beam  

Expanding upon the above assumptions with regards to the above figures, 

assumption one requires that 𝜃௭ and u(x,y) in Figure 14 are relatively small. Assumption 

two is demonstrated in Figure 13, and is present in Figure 14, wherein the solid-lined 

plane of the deformed beam is marked with a right-angle annotation referenced to the 

deformed horizontal axis. 

Returning to analytical model development, several different configurations were 

experimentally tested as detailed above, but for purposes of applying analytical theory, 

necessary parameters will remain in variable form. A representative graphical depiction 

was created of the above experimental testing. This is presented in Figures 15 and 16 

below. Note, the interval for the depiction starts the domain of the beam at the location 
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of the outer support of the test frame, and purposefully excludes the extra portions of the 

mat on either end, outside the supports. Both those regions non-load bearing and thus 

were neglected within the analytical model. The coloring and quantity of the beam 

components in Figure 16 are arbitrary.  

Figure 15 Isometric view, FBD depiction of 4-point bend test 

Figure 16 Cross-sectional view, FBD depiction of 4-point bend test 
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It should be noted with regards to the above depictions that boundary conditions 

were chosen representative of a simply supported beam. The experimental testing 

however had two supports limiting y-direction displacement only, and possessed 

geometry that created a large degree of friction between the supports and the mat during 

testing. This difference between the analytical model and experimental data is a possible 

source of error in the model, and had to be addressed again during numerical modeling.  

Before continuing, Table 3 is presented below. This table lists all used variables 

and respective descriptions that will be employed in the remainder of this sub-section. 

Each variable will remain unitless for simplification of formulation. Table 3 is redundant 

in nature as all variables will be defined in text, but serves more as a quick reference for 

the reader. 

VARIABLE DESCRIPTION 

F Applied transverse force from 4-point bend test-frame actuator 

L Test length of beam 

s Platen spacing of 4-point bend test-frame 

Mz Internal bending moment about z-axis within beam
𝑣 Displacement component, y-coordinate direction 

𝐸ோ Reference Young’s modulus, (𝑁𝑜𝑡𝑒: 𝐸ோ = 𝐸஼) 

𝐸஼ Young’s modulus polymer composite plastic beam 

𝐸௜ Young’s modulus for material at which point equation is applied 

𝑦 Centroidal distance and moment arm, y-coordinate direction 

n Number of discreet homogeneous portions of heterogenous beam 
𝐼௭௭೔

 Standard area moment of inertia the ith homogenous portion of beam 

𝐼௓௓
∗  Modulus weighted area moment of inertia of mat cross-section 

𝑐௡ Constant of integration 

Table 3 Employed variables and descriptions for sub-section 
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From the above depictions, shear and bending moment diagrams can be created, 

which are presented in Figure 17 below.  

Figure 17 Shear (top) and bending moment (bottom) diagrams of 4-point bend test utilizing Euler-

Bernoulli beam theory 

Next, the classic Euler-Bernoulli relation of beam deformation to loading, 

geometry and material properties, is presented below in Eqn. (1), and is already 

formulated with regards to a heterogeneous beam of discreet homogeneous regions 
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(Allen and Haisler, 1985). This relation is derived from the governing equations for 

Euler-Bernoulli pure bending of a beam, which in turn are derived from Newton’s First 

Law. This derivation is not covered here as it is already widely published and available. 

ௗమ௩

ௗ௫మ
=

ெ೥

ாೃூ೥೥
∗ Eqn. (1) 

With regards to Eqn. (1) above, 𝑀௭ is the internal bending moment about the z-

axis within the beam, 𝑣 is the displacement of the beam along the y-axis, 𝐸ோ is the 

reference modulus, which in this case is equal to 𝐸஼, the modulus of the polymer 

composite and 𝐼௓௓
∗  the modulus weighted area moment of inertia of the portion of the 

beam being evaluated.  

Before continuing, modulus weighted properties must be discussed for use in 

formulation of the analytical model. As previously mentioned, a heterogeneous beam 

made of discreet homogenous portions may have physical and geometric properties 

calculated via use of a reference modulus, in this case the modulus of the polymer 

composite, acting as a weighting modulus (Allen and Haisler, 1985). Properties can then 

be formed in a summation fashion, as is demonstrated below in the calculation of the 

modulus weighted area moment of inertia of the ith portion of the beam cross-section, 

Eqn. (2). 

𝐼௭௭
∗ = ∑

ா೔

ாೃ
𝐼௭௭೔

௡
௜ୀଵ Eqn. (2) 
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In Eqn. (2), 𝑛 is the number of homogenous portions within the heterogenous beam and 

𝐼௭௭೔
 is the standard area moment of inertia the ith homogenous portion and 𝐸௜ the modulus 

of the ith homogeneous portion of the heterogenous beam. The parallel axis theorem need 

not be applied here as all discreet regions in the mat shared the same centroidal axis. 

Returning to the analytical model formulation, first piecewise intervals were 

created along the domain of the beam. Due to the symmetry of the beam and loading, only 

two discreet intervals were needed. Utilizing Figs. (3b.8) above, the acting moments were 

determined for each interval in variable form. Substituting the intervals and their 

respective moments into Eqn. (1) creates the piecewise Eqns. (3) below: 
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 Eqn. (3) 

Taking Eqn. (3), double integration was performed on each interval, creating four 

unique constants of integration. This process is represented by Eqns. (4) and (5) below.  
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 Eqn. (5) 

Next, the constants of integration were determined. First the essential condition 

represented by Eqn. (6) was applied to Eqn. (5) to solve for constant 𝑐ଷ.  



27 

𝑣(𝑥 = 0) = 0  Eqn. (6) 

𝑐ଷ = 0  Eqn. (7) 

Second, the essential condition represented by Eqn. (8) was applied to Eqn. (4) to solve 

for constant 𝑐ଶ. 

ௗ௩

ௗ௫
(𝑥 = 𝐿/2) = 0  Eqn. (8) 

𝑐ଶ = −
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ଶ
)  Eqn. (9) 

Next, two different matching conditions were applied, both at the location of the left 

platen, i.e. the platen closest to the coordinate system origin, where one of the 

symmetrically applied point loads was located. Those two conditions are: 
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Utilizing Eqns. (4), (9) and (10), constant 𝑐ଵ was resolved: 
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Utilizing Eqns. (5), (7), (9), (11) and (12), constant 𝑐ସ was resolved: 

𝑐ସ =
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ଷ
 Eqn. (13) 
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Next, the exact Euler-Bernoulli solution of the deflection of the beam within each 

domain interval was determined, Eqn. (14) is representative of the second domain 

interval solution, where the point of interest was located. 
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Displacements of the experimental mat tests were measured via two sensors, one located 

at the mid-span of each outermost beam component in the mat, as detailed previously. 

This now becomes the point of interest within the domain of our free-body diagrams 

presented above. In variable form this point is x(L/2). Plugging in the point of interest of 

the domain into Eqn. (14) resulted in Eqn. (15), representing the final analytical model 

representative of the experimental testing presented previously. Note in Eqn. (15), F 

represents the total force applied by the frame.  
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Rearranging terms, Eqn. (15) becomes: 

𝑣(𝑥 =
௅

ଶ
) =

ி

ா೎ூ೥೥
∗ ൤−

ଵ

ସ
ቀ

௅ି௦

ଶ
ቁ ቀ

௅

ଶ
ቁ

ଶ
+

ଵ

ଵଶ
ቀ

௅ି௦

ଶ
ቁ

ଷ

൨ Eqn. (16)



29 

Plugging in 120 inches for L and 36 inches for s, i.e. the geometry representative of the 

experimental testing presented above, and rearranging terms to isolate 𝐹/𝑣 on the LHS, 

the final analytical model of the structure’s stiffness, 𝑆௧ℎ is as follows:

ி

௩(௫ୀ
ಽ

మ
)

=  𝑆௧ℎ ቀ
௅

ଶ
ቁ  =  𝐸௖𝐼௭௭

∗  [−31626]ିଵ  Eqn. (17) 

The above mat stiffness analytical formulation was chosen for direct comparison 

to experimental results, and later, numerical results. Note the negative value formed 

from the test geometry constant due to the chosen coordinate system used in the free 

body diagrams above. Next, correlation of the analytical model was carried out. 

Correlation of the analytical model was performed via comparison of the 

experimental data to respective calculated values from the analytical model. Specifically, 

the construction mat stiffness, or applied force over correlating displacement, was used. 

Below in Table 4 are the tabulated results comparing the experimental mat configuration 

stiffnesses to analogous stiffnesses calculated via the Euler-Bernoulli analytical model. 

Note the calculated modulus weighted properties for each mat configuration, formed as 

detailed above. 



30 

Reference Modulus/Polymer Composite Modulus, 𝐸௖ = 203,500 𝑝𝑠𝑖 

CONFIGURATION 𝑰𝒛𝒛
∗  [𝒊𝒏𝟒] 

Flexural 

Rigidity, 

𝑬𝒄𝑰𝒛𝒛
∗  [𝒍𝒃𝒔

∗ 𝒊𝒏𝟐] 

Avg. 

Exp. 

Stiffness, 

 𝑺𝒆𝒙𝒑,𝒂𝒗𝒈 

[𝒍𝒃𝒔
𝒊𝒏ൗ ]

Theoretical 

Stiffness, 

𝑺𝒕𝒉  [𝒍𝒃𝒔
𝒊𝒏ൗ ]

Percent 

Difference 

[%] 

(9x7) x 7 x (NS) 2,977 605,769,000 19,160 19,150 0.05 

(7x9) x 5 x (4x¼) 3,851 783,752,000 27,860 24,780 12.41 

(7x9) x 5 x (4x½) 6,416 1,305,752,000 40,530 41,290 1.83 

(9x7) x 7 x (6x¼) 12,097 2,461,769,000 67,960 77,840 12.69 

 (9x7) x 7 x (4x½) 15,137 3,080,435,000 80,630 97,400 17.22 

Table 4 Tabulated data, experimental mat stiffnesses and correlating analytical stiffness 

A graphical correlation between the experimental data and analytical model is presented 

in Figure 18 below. 
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Figure 18 Analytical model correlation, experimental and analytical mat stiffness comparison 

As can be seen from Figure 18 the analytical model compared reasonably well to the 

experimental data. Variation between results can be attributed to the difference between 

the analytical model and experimental procedure. Specifically, first, the analytical model 

used a simply supported boundary conditions for the beam, with one pinned-end and one 

roller-end. In reality, the supports of the test, pictured in Figure 5 above, were both 

roller-type supports, but with a degree of friction between the support and mat structure. 

The friction generated at the supports during experimental testing would be the first 

source of variation between the results. The second source regards the mechanical 

fastening method of the beam components in the mat. The analytical model assumed the 

beam components that form the mat to be fully bonded, i.e. the curvature of all beam 
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components in the mat, during deformation, is the same. In reality, and in the 

experimental testing, a degree of partial interaction occurs between the beam 

components. This partial interaction is the second source of variation between the 

results. The phenomena of partial interaction between beam components will be 

addressed again, and covered in more detail, in the Optimization section. A third source 

of variation was the assumed elastic behavior of the polymer campsite material, in 

reality the material is viscoelastic. 

Before continuing, detail must be provided on the reference modulus value presented 

and used above in Table 4. That value was calculated as an effective modulus of the 

glass fiber-HDPE material, utilizing the (9x7) x 7 x (NS) configuration results and the 

formulated analytical model. Although present in the data in the previous section and 

this one, the (9x7) x 7 x (NS) configuration was only used to form the effective modulus 

value, which was used as the modulus of the polymer composite throughout this thesis. 

Use of a calculated effective modulus stems from applicable theory regarding 

functionally graded materials (Miyamoto, 1999). Use of that theory was necessary as the 

internal structure of the polymer composite beam changes from a hard-outer shell layer 

to a more porous-soft core. Figure 19 depicts a cross-section of a polymer composite 

beam, and highlights the phenomena referenced above. 
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Figure 19 Physical cross section of polymer composite beam 

With the analytical model established, numerical models were then generated to create 

another point of comparison for modeling methodology purposes. 

porous 
core 

Hard, 

outer shell 
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NUMERICAL MODELING 

The next step in modeling methodology was to generate numerical finite element 

models representative of the experimental testing completed, to provide another point of 

comparison against the experimental results and the analytical model. Three-dimensional 

numerical models were created in the commercially available ANSYS program. These 

models were generated utilizing the same geometry, material properties, and boundary 

conditions employed in the experimental testing. 

Regarding the numerical boundary conditions employed, constant force was 

applied along lines representative of the imprint of the test frame platens, each line 

assigned half the total applied load.  For supports, two cylindrical rigid-body, ground-

fixed supports were modeled and employed. These supports were used to create a 

convex, frictionless contact region against the mat, and provide the necessary essential 

boundary conditions for the numerical model. Each mat configuration that contained 

secondary beam components was modeled. The (9x7) x 7 x (NS) configuration, having 

served the purpose of ancillary calculation of material effective modulus as detailed 

above, was not modeled numerically. Contact surfaces between beam components were 

defined as fully bonded, thus no fastening hardware or partial interaction was included in 

the numerical models (ANSYS Contact Technology Guide,2004). All models used 

quadratic shape functions and quadrilateral or tetrahedron elements with two-inch side 

lengths. Both regions of each mat outside the support locations were neglected within 

the analytical model, but were included in the numerical model, for confirmation of their 

negligible effect. Vertical displacement of the midspan was used for comparison to 
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experimental and analytical results. Table 5 below is the key tabulated parameters and 

results of each numerical model. Figures 20 – 28 provide visualization, and more 

detailed results, of each configuration. 

CONFIGURATION Nodes Elements 

Total 

applied 

force 

[lbf] 

Vertical 

midspan 

displacement 

[in.] (y-

direction) 

Mat 

stiffness 

[lbf/in.] 

(7x9) x 5 x (4x¼) 127,280 21,870 35,200 1.5242 23,094 

(7x9) x 5 x (4x½) 116,236 20,214 50,000 1.3293 37,614 

(9x7) x 7 x (6x¼) 192,240 32,617 79,800 1.1923 66,929 

 (9x7) x 7 x (4x½) 141,040 37,395 100,260 1.1901 84,245 

Table 5 Tabulated numerical model results 
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Figure 20 (7x9) x 5 x (4x¼) Configuration CAD model, isometric view 

Figure 21 (7x9) x 5 x (4x¼) Configuration numerical model, vertical displacement, [in.] 
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Figure 22 (7x9) x 5 x (4x½) Configuration CAD model, isometric view 

Figure 23 (7x9) x 5 x (4x½) Configuration numerical model, vertical displacement, [in.] 
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Figure 24 (9x7) x 7 x (6x¼) Configuration CAD model, isometric view 

Figure 25 (9x7) x 7 x (6x¼) Configuration numerical model, vertical displacement, [in.] 
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Figure 26 (9x7) x 7 x (4x½) Configuration CAD model, isometric view 

Figure 27 (9x7) x 7 x (4x½) Configuration numerical model, vertical displacement, [in.] 
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The numerical modeling results were then graphed similar to Figure 18, seen below in 

Figure 28. 

Figure 28 Numerical models correlation, experimental and numerical mat stiffness comparison 

As can be seen, the numerical modeling efforts show good correlation with the 

experimental results. Differences can be attributed to the support conditions and 

interaction of beam components. Specifically, the rigid-body, ground-fixed, frictionless 

cylindrical supports used in the numerical modeling once again do not accurately reflect 

the experimental testing support conditions. The fully-bonded contact regions between 

beam components also diverge from the conditions within the experimental testing. 
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MODELING VALIDATION 

The last step in the modeling methodology was to compare the different 

modeling components for validation. This is represented in Table 6 and Figure 29, 

below. Both include amalgamations of data from the previous three sub-sections. Note 

that the (9x7) x 7 x (NS) configuration is completely absent, as discussed previously. 

CONFIGURATION 

Experimental Mat 

Stiffness [lbs/in.] 

Analytical Mat 

Stiffness [lbs/in.] 

Numerical 

Mat 

Stiffness 

[lbs/in.] 

(7x9) x 5 x (4x¼) 27,858 24,782 23,094 

(7x9) x 5 x (4x½) 40,533 41,287 37,614 

(9x7) x 7 x (6x¼) 67,960 77,840 66,929 

 (9x7) x 7 x (4x½) 80,630 97,402 84,245 

Table 6 Modeling validation, tabular results 
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Figure 29 Modeling validation, graphical results, Mat Stiffness vs. Mat Flexural Rigidity 

With the above comparison completed, the analytical and numerical modeling efforts 

were then adapted into predictive tools, and used for the purpose of optimizing the 

general polymer composite-steel construction mat design. 
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OPTIMIZATION 

Optimization efforts focused on employing the models described in the previous 

sections, to manipulate the geometry of local components within the mat structures. 

Optimizations sought to maximize structural strength and minimize material costs. 

Considering the design of any engineered structure, constraints and parameters fall into 

three encompassing categories: loads, geometry and material properties. For purposes of 

this analysis, loads were set to control values to allow for comparison of optimized 

designs, more detail will be provided below. Material properties of the structure were 

also constrained as a control, being glass fiber-HDPE polymer composite and A36 

structural steel.  Geometry, i.e. the number, placement and dimension of components in 

the structure, encompassed the bulk of optimization efforts. As a last note, this section 

serves as a general guideline for how this structure should be optimized and analyzed, as 

such it does not represent a perfect and complete analysis, but instead a guideline for 

improving the mat design. 

PROPOSED INITIAL DESIGN 

To begin optimization efforts, some initial constraints and parameters were 

established. Two major constraints, besides the use of material properties detailed above, 

were established from the experimental tested designs. First, the primary beam 

components within optimization efforts were kept constant, representative of the primary 

beam components within the experimental test mats. These beams, as detailed in the 

previous sections, are made of a glass fiber-HDPE blend and have a constant prismatic 
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cross section of seven and 1/16 inches by eight and 15/16 inches (7.0625”x8.9375”) with 

a one-inch radius on all corners. This choice was made for economic purposes; The 

primary beam components were originally manufactured as a multi-purpose structural 

component, and due to manufacturing economics, the use of those as the primary beam 

components served as a design constraint. Second, is the method of fastening of the 

beam components together into a rigid plate structure. The fastening method for the 

experimental tested mats was mechanical, as mentioned previously, utilizing specialized 

nut and bolt hardware. For the given length of the structure at 240 inches, mechanical 

fasteners with one-inch diameters were used (the actual mounting holes in the structure 

were tolerance slightly above one inch and were oval in shape, both to allow for ease of 

installation of the fastening hardware, but for ease of representation in the designs to 

follow, the mounting hardware holes are all denoted as one inch in diameter). The 

locations of the fastening hardware began six inches in from either end of the beam, with 

a uniform spacing of approximately 33 inches. Depictions of example primary and 

secondary beam components are presented below in Figures 30 and 31. This constraint 

provided established locations of fastening hardware within the structure for the given 

length. 
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Figure 30 Cross-section view, primary and secondary beam components, unoptimized design 

Figure 31 Side view, fastening hardware design constraint 

To expand, the method of fastening of the beam components together into a rigid 

plate structure is determined by the degree of interaction between the beam components. 

A36 steel flitch plate 

Glass fiber-HDPE beam 

L 

1” radius 
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Optimal fastening is achieved by ensuring full interaction (or at least close enough to 

assume negligible partial interaction effects) between beam components, while applying 

the least amount of fastening hardware for economic reasons. For purposes of this thesis, 

that hardware and its implementation in the structure remained as established by the 

above design constraint. In other words, the fastening hardware was assumed to be 

sufficient and creating full interaction between components within the structure as long 

as the above design constraint was satisfied. In support of that decision, a literature 

review was performed into partial interaction of composite beam structures. References 

(5) through (8) and (10) through (11) in the citations section represent that literature

review. The summary of that review concluded that from the loading and geometry of 

the given structure, the dominating partial interaction occurs in the transverse direction, 

with longitudinal partial interaction having minimal impact. The dominating transverse 

partial interaction is determined by the difference in curvature between beam 

components under pure bending. From the experimental data and results, it was 

determined that while effects of partial interaction between beam components in the 

structure were present, they were also negligible for modeling and optimization purposes 

as long as the above constraint was satisfied. 

With the above constraints considered, the majority of optimization efforts were 

then encompassed by the design and implementation of the secondary beam 

components, the steel flitch plates. To review, unoptimized secondary beam components 

were implemented as basic prismatic flitch plates, with height h, constant thickness t. 

This unoptimized design is presented below in Figures 32 and 33. 
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Figure 32 Cross-section view, unoptimized secondary beam component 

Figure 33 Side view, unoptimized secondary beam component 

Conceptual optimized designs were wide ranging, with consideration given to 

minimized-mass plates, to I-beam and built-up girder type designs. As an example, a 

conceptual built-up girder design is presented. This built-up girder consisted of steel 

angle components to form both flanges, and connecting plates in the locations of the 

fastening hardware to serve as the web. This design is classic structural optimization, 

changing the geometry of the component to increase the structural properties. A 

graphical depiction of the conceptual built-up girder design is presented below in several 

𝟐𝟒𝟎" 
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views. Note, the only dimensions present in the depictions are representative of the 

fastening hardware locations as discussed above, no other dimensions are included as the 

depictions serve conceptual purposes only. Figure 34 is the side view of the built-up 

girder, Figure 35 the cross-section view, and Figures 36 an isometric view. 

Figure 34 Side view, conceptual secondary beam component design, built-up girder 

Figure 35 Cross-section view, conceptual secondary beam component design, built-up girder 

L 
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𝟐𝟒𝟎" 
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Figure 36 Isometric view, conceptual secondary beam component design, built-up girder 
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Due to purposes of this thesis being to establish a procedure for modeling and 

optimization, only one secondary beam component design was chosen for analysis and 

establishment of process. It should be emphasized however that the overall process 

established could be applied to any desired secondary beam component design, 

including both geometry and material property manipulation.  The design used is 

presented below, and represents an I-beam type design. Figure 37 is a side view, Figure 

38 a cross-section view and Figure 39 an isometric view. All units are in inches.

Figure 37 Side view, proposed secondary beam component design 

Figure 38 Cross-section view, proposed secondary beam component design 
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Figure 39 Isometric view, proposed secondary beam component design 
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Again, the above proposed design served as a starting point to detail the 

optimization process, to follow in the next section. It should be noted from the 

dimensions in the figures above that this process was applied to composite beams in the 

(7x9) orientation, and due to the height of the web, would also require the composite 

beams to be slightly modified with a ¼” inch radius on top and bottom to accommodate 

the flange. This was utilized in order to accommodate operational usage of the mat itself. 

The flange should not protrude from the operational-side surface of the mat, as the 

protruding steel flange would induce excessive wear on any treaded equipment 

maneuvering on top of it. As such the resulting mating of the above proposed design, 

and the modified composite beam, appeared as depicted in the cross-sectional view in 

Figure 40, below.  

Figure 40 Cross-section view, mat with proposed secondary beam component 

OPTIMIZATION OF SECONDARY BEAM COMPONENTS 

Optimization of the secondary beam components, or more broadly the 

optimization procedure itself, was carried out in three phases. The first phase employed 

use of another numerical modeling tool, a two-dimensional, linear-elastic finite element 

frame code, that employed beam-type elements. The second phase, returned to use of 
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ANSYS for a three-dimensional stress analysis of a single secondary beam component 

for a localized analysis. Finally, the third and last phase, utilized ANSYS again to 

implement the secondary beam component back into the overall mat structure, and 

perform a global three-dimensional stress analysis. 

The first phase of optimization efforts utilized an open source 2-D, linear-elastic 

finite element frame code, written in the Python 3 programming language. This tool was 

established for the optimization procedure, as it served to quickly evaluate structural 

strength of single secondary beam components, without having to do more time 

intensive 3-D modeling. With this tool, a wide range of designs could be quickly 

implemented and evaluated, allowing for a narrowing-down of designs before moving 

into more complex 3-D modeling. Standard modeling conditions were set up for use in 

the frame code numerical model. This included geometry and boundary conditions. First, 

modeling geometry was set up to represent the same conditions as the experimental four-

point bend tests. Applied total force was set to a fixed amount at 2,000 pounds force, 

applied as two, 1,000-pound force point loads. For geometric properties, an area moment 

of inertia value was calculated using Figure 38 above, and Eqn. (18) below. Eqn. (18) 

utilizes summation of individual area moment of inertias in conjunction with parallel 

axis theorem.  

𝐼௭௭ = 2 ቀ
௕௛య

ଵଶ
+ 𝐴𝑑ଶቁ

௙௟௔௡௚௘
+ ቀ

௕௛య

ଵଶ
ቁ

௪௘௕
 Eqn. (18) 
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An input file was then generated for the secondary beam component, comprised of seven 

nodes and six elements. Figure 41 below depicts a nodal map representative of the single 

proposed secondary beam component. 

Figure 41 Nodal map, frame code numerical model, proposed secondary beam component design 

Figure 42 below shows a graphical representation, for visualization purposes only, of the 

Python frame code input and output. Note, axis values are in inches.  

x 

y 
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Figure 42 Frame code numerical model graphic input/output, proposed secondary beam component 

design, units in inches 

Results were compared to the analytical Euler-Bernoulli beam theory model established 

previously, utilizing material properties and geometry of the single secondary beam 

component design, and results were an almost perfect match, with negligible variation 

stemming from computing round-off error. Similar analysis was done for the 

unoptimized secondary beam components, those being the (7x9) orientation steel flitch 

plate, both ½” and ¼” thick. Total mass for each secondary beam component was 

calculated and Figure 43 below was generated, comparing the single secondary beam 
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component stiffness with total applied load of 2,000 pounds force, to the total 

component mass. 

Figure 43 Phase one optimization, secondary beam component design comparison 

As can be seen from the figure above, the total mass of the proposed secondary beam 

component design has significantly less material mass than the ½” unoptimized flitch 

plate, yet has much greater structural test stiffness than either the ¼” or ½” plate. 

Utilizing current market prices for A36 plate steel, material mass can be translated to 

material cost (North American Carbon Steel Price Index, 2019). The proposed secondary 

beam design cost was approximately 60 USD per unit, compared to approximately 34 

USD for the ¼” unoptimized SBC and approximately 69 USD for the ½” unoptimized 

secondary beam component. 
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Next, phase two was carried out within the ANSYS finite element program, 

specifically a three-dimensional stress analysis. Phase two was paramount as phase one, 

and the above Python frame code, do not account for local stress concentrations and 

buckling. Specifically, for a structural component such as the proposed secondary beam 

component design above, shear stress at the junction of the flange and web are a serious 

concern for component failure, along with buckling of the web itself, both of which 

would require separate analysis through finite element ANSYS models, or a similar 

modeling tool with appropriate capabilities. Similar boundary conditions were set up for 

the ANSYS model as presented in the numerical modeling section, above, however the 

applied force was changed to 2,000 pounds force to match the phase one modeling 

efforts. Figure 44 below depicts the ANSYS modeling setup. 

Figure 44 Phase two optimization, proposed secondary beam component CAD model 
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Directional displacement was predicted in inches, and is depicted by Figure 45 below. 

The mesh for the approximation totaled 58,900 nodes and 27,836 quadratic elements. 

Figure 45 Phase two optimization, proposed secondary beam component numerical model, vertical 

displacement [in.] 

Taking the above midspan displacement approximation of 0.12989 [in.] and dividing 

2,000 pounds force by that value, a stiffness approximation of 15,398 [lbf/in.] was 

determined, which was comparable to the Python frame code value of 16,838 [lbf/in.]. 

Next the stress approximation was analyzed using the Von Mises yield criterion. This 

failure criterion was chosen as Von Mises equivalent stresses are a conservative failure 
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analysis for ductile materials, in this case A36 structural steel. Figure 46 below depict 

the Von Mises stresses approximation of the above model in units of [psi]. 

Figure 46 Phase two optimization, proposed secondary beam component numerical model, Von Mises 

stresses [psi] 
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As can be seen from the above figure, the maximum approximated Von Mises stresses 

were 10,205 pounds per square inch, well below the yield point of A36 steel at 36,000 

pounds per square inch.  

It should be highlighted that this second phase of the optimization analysis was 

established more as a necessary step in the overall procedure. The main purpose of this 

step is to emphasize the importance of local analysis of any secondary beam component 

design. Recommendations for more thorough analysis would include subjecting the 

model to various loadings, and studying shear stresses and local component buckling, as 

mentioned at the beginning of this step. This step is especially crucial when evaluating a 

design similar to the one presented in Figures 34-36 above, to determine possibility of 

local web failure. With the proposed secondary beam component design above, a full 

web was implemented and thus the possibility of local web shear failure is less 

significant. As for buckling, while analysis must be done, implementation of the 

secondary beam component back into the global structure would significantly decrease 

the possibility of local web buckling failure as the primary beam components to either 

side would act in support. 

The third and final phase of the optimization procedure was to reincorporate the 

new secondary beam component design back into the overall mat structure for global 

analysis and compare it to the previous designs to ensure an optimization was achieved. 

The mat geometry itself is already presented above in Figures 37-40. That geometry was 

put into a three-dimensional ANSYS numerical model with the boundary conditions 

established in the section above. Due to the proposed secondary beam component design 
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being compared to the 7” orientation of both the ¼” and ½” plates, two approximation 

were carried out. The first with natural boundary conditions comparative to that of the 

¼” plate, in configuration (7x9) x 5 x (4x¼), seen in Figures 20-21 and row one of Table 

5. The second with natural boundary conditions comparative to that of the ½” plate, in

configuration (7x9) x 5 x (4x½), seen in Figures 22-23 and row two of Table 5. Figure 

47-48 below represent the results of the numerical model, which contained 267,924

nodes and 140,379 quadratic elements. 

Figure 47 Phase three optimization, global numerical model, midspan displacement [in.], (7x9) x 5 x 

(4x¼) boundary conditions 
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Figure 48 Phase three optimization, global ANSYS numerical model, midspan displacement [in.], (7x9) x 

5 x (4x½) boundary conditions 

Taking the above results and comparing against appropriate unoptimized designs 

resulted in Table 7 below. 
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CONFIG. Total applied 

force in model 

[lbf] 

Approx. midspan 

displacement [in.] 

Approx. mat 

stiffness [lbf/in.] 

(7x9) x 5 x (4x¼) 35,200 1.5242 23,094 

(7x9) x 5 x (4x½) 50,000 1.3293 37,614 

(7x9) x 5 x (4x PSBC) 35,200 0.54346 64,770 

(7x9) x 5 x (4x PSBC) 50,000 0.76583 65,289 

Table 7 Phase three optimization results comparison 

As can be seen from Table 7 above, the global mat strength was significantly increased 

in both comparative loading cases with the implementation of the proposed secondary 

beam component design. As the last part of this third step, global failure analysis must 

be included, represented by Figures 49 and 50 below. These figures represent 

approximated Von Mises Equivalent Stresses for the same models detailed above, units 

in pounds per square inch. 
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Figure 49 Phase three optimization, global numerical model, Von Mises equivalent stresses [psi], (7x9) x 5 

x (4x¼) boundary conditions 
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Figure 50 Phase three optimization, global numerical model, Von Mises equivalent stresses [psi], (7x9) x 5 

x (4x½) boundary conditions 

As can be seen from the figures above, while for the (7x9) x 5 x (4x¼) configuration load 

case, the proposed secondary beam component design was a useable and sufficient 

optimized design. Maximum global Von Mises stresses of about 34,000 [psi] occurred in 

the flanges of the secondary beam components, with the yield strength of A36 steel at 

36,000 [psi]. However, for the (7x9) x 5 x (4x½) configuration load case, maximum 
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global Von Mises stresses occurred in the same location but reached about 49,000 [psi], 

well beyond the yield strength of A36 steel. This indicated the proposed secondary beam 

component design would not be a sufficient replacement for the unoptimized secondary 

beam components within that configuration. 
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CONCLUSIONS 

Modern construction mats and the advanced materials they are comprised of, 

present ample opportunity for optimization of structural design and by consequence, 

product cost. The above methodology established this concept, and detailed the 

groundwork necessary to complete such an analysis. A large variety of designs can be 

readily explored and developed without the need for further experimental testing.  

While the tools developed and contained in this thesis represent the majority of 

the necessary procedure to manipulate and evaluate such a structure, it must be restated 

that depending on the design being evaluated, various local analysis of components may 

or may not be necessary. This would include for example, local buckling, and local and 

global fatigue life. 

Some considerations are also deserving of mention as this research moves 

forward. First would be an in-depth look at the applied loadings to this structure. While 

the work in this thesis focused on replicating the experimental four-point bend test for 

modeling purposes, a study should be performed focusing on operational load cases for 

the structure. Namely, load cases representative of the structure’s use in the field, so that 

driving cases could be established for proper redesign and optimization. This would 

include load cases across various pieces of equipment, i.e. excavators, cranes, trucks, etc. 

In addition, because these mats are placed in various locations with a wide range of soil 

conditions, the load cases would also have to include soil-spring boundary conditions, 

e.g. a Winkler model. Another area of exploration, one invoked in the research above,
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would be the method of fastening the beam components together into a plate structure. 

While largely outside the scope of analysis in the work above, the effects of partial 

interaction between beam components should be studied, and by association optimal 

component fastening. 
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