
A STUDY ON MACHINE LEARNING-BASED

HARDWARE BUG LOCALIZATION

A Thesis

by

SANJAY RAJASHEKAR

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jiang Hu

Co-Chair of Committee, Aakash Tyagi

Gwan Choi Committee Member,

Head of Department, Miroslav M. Begovic

May 2020

Major Subject: Computer Engineering

Copyright 2020 Sanjay Rajashekar

ii

ABSTRACT

Simulation-based verification is a very essential technique in ensuring the correct

functionality of any digital integrated circuit design before it goes on silicon. One of the major

challenges of running simulation-based verification on complex designs is the tradeoff between

simulation time and the time taken for failure localization or to root cause. This is because the

simulation run times could be very high when there are many checkers used per cycle of execution.

However, when lesser checkers are turned on, the amount of time for manual debug increases

because, after failure, the verification engineer has to manually analyze the failure and turn on the

more granular checkers individually and re-simulate; or invest lots of time, memory and resources

to manually go through the simulation cycles dumps before the failure which is not good given the

current complexity of designs.

Machine learning has emerged to be a popular technique to construct mathematical models

that can understand the expected patterns from a given dataset. To address the aforementioned

trade-off problem, an idea is investigated to use the failing signatures from fewer active high-level

checkers during simulation to train a machine learning model to predict the location of the bug in

the design. This information would in turn be used to turn on relevant checkers in the design before

re-simulation. Other methods to analyze the signals in design after failure to predict bug location

were also studied. This idea is implemented and tested on a MIPS processor with total of ~ 700

bugs injected in 15 different units to distinguish them with good accuracy.

iii

I am dedicating this page to my mother for her immense support & encouragement

throughout my journey at Texas A&M University.

iv

ACKNOWLEDGEMENTS

 I would like to thank my committee chair, Dr. Jiang Hu, for constantly guiding me with

attention to detail, which has pushed me many times to rethink the problem under consideration

from many different angles. The many discussions I have had with him have proven to be

instrumental in completing my research work.

I would also like to thank my committee co-chair, Dr. Aakash Tyagi for being a constant

motivational influence for my research. He has always been very patient and supportive in

discussing and critically evaluating some of the ideas and the limitations associated with them.

I would also like to thank Prof. Mike Quinn, for introducing me to the world of hardware

verification via two great courses at A&M and for being very helpful in the discussions of

evaluating this work.

I would like to thank Dr. Gwan Choi for being a part of my thesis committee and providing

constructive feedback on my thesis. I also convey my thanks to my friends and the department

faculty and staff for making my time at Texas A&M University a great experience.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Prof. Jiang Hu [advisor] and

Prof. Gwan Choi of the department of ECE and Prof. Aakash Tyagi [co-advisor] of the department

of computer science.

The MIPS CPU design used for this thesis work is leveraged from the lab syllabus of the

course ECEN 651 microprogrammed control of digital systems offered at Texas A&M.

The rest of the work conducted for the thesis was independently completed by the student.

Funding Sources

Graduate study was partly supported through a scholarship from the ECE department at

Texas A&M University.

vi

NOMENCLATURE

ASIC – Application Specific Integrated Circuit

RTL – Register Transfer Level

HDL – Hardware Description Language

EDA – Electronic Design Automation

VLSI – Very Large Scale ICs

HAS – High-level Architecture Specification

ATPG – Automatic Test Pattern Generation

GDS – Graphic Data System

DRC – Design Rule Check

LVS – Layout vs Schematic

LEC – Logical Equivalence Check

DV – Design Verification

DUT – Design Under Test

DUV – Design Under Verification

SBV – Simulation-based Verification

FV – Formal Verification

ISA – Instruction Set Architecture

GPR – General Purpose Registers

vii

TABLE OF CONTENTS

Page

ABSTRACT .. ii

ACKNOWLEDGEMENTS.. iv

CONTRIBUTORS AND FUNDING SOURCES ... v

NOMENCLATURE ... vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... ix

LIST OF TABLES ... x

1. INTRODUCTION .. 1

1.1 Front End Design .. 2

1.2 Back End Design .. 3

1.3 Design Verification .. 3

2. BACKGROUND.. 7

2.1 Simulation Based Verification .. 7

2.2 MIPS Design .. 10

2.3 Machine Learning ... 14

3. PREVIOUS WORKS ... 19

4. PROPOSED IDEA AND IMPLEMENTATION .. 21

4.1 Preliminary Experiments .. 21

4.2 Proposed Solution and Setup .. 28

DEDICATION.. iii

viii

5. EXPERIMENTAL RESULTS .. 40

5.1 Testing with BugMD environmental features .. 40

5.2 Testing with added Observation of internal signals of ALU 41

5.3 Testing with added Observation of internal signals of Control Unit........................... 42

5.4 Testing with added Observation of internal signals of ALU_Ctrl Unit 43

5.5 Results Summary .. 44

6. CONCLUSION .. 46

REFERENCES .. 47

ix

LIST OF FIGURES

FIGURE Page

1 Digital IC Design Cycle ... 1

2 Trend of # Bugs & Cost w.r.t Time .. 4

3 32-bit MIPS Processor Block Diagram .. 10

4 32-bit MIPS I Instruction Format ... 11

5 An Example Confusion Matrix .. 15

6 Definition of Metrics for ML ... 18

7 Idea of Bug Localization for a Simple Design .. 21

8 A Full Adder Circuit .. 22

9 Generic Idea of Bug Localization... 23

10 A 4 bit Adder Circuit with 4 Series Full Adders ... 23

11 Block Diagram of ALU Unit.. 25

12 Confusion Matrix of ALU Test 1 ... 27

13 Confusion Matrix of ALU Test 2 ... 28

14 Process of Regular Debug Flow(top) vs Proposed Bug Localization Process(bottom) . 30

15 16 Bug Injected Blocks in the Design .. 32

16 Error Injection Framework... 36

17 XGBoost BugMD Confusion Matrix ... 40

18 XGBoost Confusion Matrix of added ALU Observation .. 41

19 XGBoost Confusion Matrix of added Control unit Observation 42

20 XGBoost Confusion Matrix of added ALU_Ctrl unit Observation 43

x

LIST OF TABLES

TABLE Page

1 A Full Adder Circuit Error Injection .. 22

2 Exp1 Classification numbers for All 4 Classes (L) and Only Error Classes (R) 22

3 Exp2 Classification numbers for All 5 Classes (L) and Only Error Classes (R) 24

4 ALU Control Line Mapping... 25

5 ALU Error Injection Map .. 26

6 Sample Mismatches ... 38

7 Compressed Error Signatures ... 39

8 BugMD Results ... 41

9 Results of Observing ALU ... 42

10 Results of Observing Control Unit ... 43

11 Results of Observing ALU_Ctrl Unit ... 44

12 Summary of Results for XGBoost algorithm .. 45

13 Summary of Results for Random Forest algorithm ... 45

14 Summary of Results for Neural Network ... 45

1

1 INTRODUCTION

In the 21st century our lives have been dominated by the use of electronic devices like

smartphones, laptops, PCs, smartwatches and other IoT & health equipment, etc. To enable the

functionality of every single of these devices, we have at its heart a small piece of silicon designed

by the efforts of hundreds of engineers. The process of designing an ASIC (application specific

integrated circuit) is tedious and involves several important steps, evolving from a concept to

specification to final tape-outs. Given that the final product is typically quite small (measured in

mm/cm), this long journey is filled with many engineering challenges which makes it interesting.

Figure 1: Digital IC Design Cycle

The design flow of an ASIC is a well-tested and proven IC design process which includes

various steps like conceptualization of design, efficient verification, optimization of chip

performance/power/area, logical/physical implementation, and extends to post silicon validation.

2

Figure 1 gives a brief overview of the ASIC design flow. Digital circuits are designed using the

top-down approach. There are two main parts of the design.

a) Front end design

b) Back end design

1.1 Front End Design

Based on the custom product requirements of the chip, architecture & design experts come

together to put forth a design specification required for their product. This specification of the

architecture & design is captured as an abstract specification document, also called high level

architecture specification (HAS). After understanding the design specifications, the engineer’s task

is to partition the entire ASIC into multiple hierarchical modules (functional blocks), while

keeping in mind ASIC’s best performance, resource allocation and technical feasibility in terms of

power, area, time & budgets. Once all the modules are designed in the architectural document, the

engineers tend to discuss the partitioning ASIC design by reusing IPs from previous projects or

designing them from scratch as needed. The HAS specifications are then translated to HDL code

by the RTL designers.

Functional verification verifies the functionality and logical behavior of the circuit by

performing simulation on a design entry level. This is an important stage where the design team

and verification team come into the cycle where they verify RTL code using test-benches. This is

done on different hierarchical levels from block to the entire system on chip. After this step, there

are some DFT insertions either by scan or ATPG methods. Then, the HDL code is synthesized into

a netlist of logic gates which is done by EDA tools. There are some preliminary timing

verifications done in the front-end phase.

3

1.2 Back End Design

This process starts with the floor-planning and partitioning. In back-end design, this is the

first step in transformation towards GDSII from the RTL design. It is the process of physically

placing different blocks in the chip. It includes, design portioning, block placement, power

optimization and efficient pin placement. Clock tree synthesis is a process of designing the clock

paths to ensure that the specification requirements of power, timing and area are met. It is a

challenge to provide the clock connection to the clock pin of a sequential element within the

constraints of time and area and low power consumption. The next step is routing all the

connections within the chip. Following this, a series of physical verification steps including LEC,

DRC and LVS are run using EDA tools. Final timing checks are done based on extracted parasitic

values and the chip is ready for tape-out.

1.3 Design Verification

Design verification (DV), also sometimes referred to as functional verification or logic

verification, is a process to verify thoroughly that the intent of the design under test (DUT) matches

with the architectural specifications. It is the one of the biggest factors influencing the trade-off

among the triple constraints:

• Timing/Schedule of chip design completion.

• Costs incurred to complete the chip design.

• Quality of design after testing.

Fewer revisions through the fabrication process means lower costs and faster time to

market. Only companies who get it right in fewer revisions will survive the competition. This is

4

becoming increasingly challenging due to the enormous rise in complexity of the designs. Figure

2 gives a good depiction of the general trend of how the cost of fixing bugs can accumulate very

quickly over time.

A bug found early (during simulation) has low cost of fixing it. The same bug found during

on-chip testing has relatively higher cost, since it requires more isolation time and debug time and

that needs readjusting of schedule. Finding a bug during system level validation, where the chip is

combined with other designs and tested together as a complete system, requires much higher bug

fixing costs. The worst possibility of sensing a bug in customer’s environment can damage the

reputation of the company apart from costing millions of US Dollars. For these reasons, design

verification deserves and often receives the most attention for efficiency improvement measures.

 Figure 2: Trend of # Bugs & Cost w.r.t Time

Specification

Design

Simulation

On-Chip

Validation

System

Validation

Customer

Time

5

A typical SoC chip would contain many different individual IPs with several million

flipflops. Verifying this enormous state-space takes a lot of effort and intelligent planning. To

ensure the correctness of a design, hardware verification is performed majorly in two ways.

a) Simulation-based verification (SBV)

b) Formal verification (FV)

In simulation-based verification, the verification engineer must carefully analyze the DUT

specifications and come-up with a set of testcases(stimulus) that could efficiently verify the DUT.

To verify the correctness, we make use of an error-free high-level model of the same DUT. The

chosen stimulus is simulated in both the DUT and the error-free model. The output values are

compared to verify the correct functionality of the DUT.

However, in formal verification, these are handled differently. Formal verification is the

way to prove or disprove the correctness of a certain specification or property in the design

mathematically. Formal verification exhaustively checks for correctness of the property in the

design, with no concern of input stimulus. Hence, the DV engineer need not put effort to create

specialized stimulus as in case of SBV. However, the property or specification needs to be entered

accurately. FV has a few downsides. Primarily, the testing time can be very high when the design

is complex. Secondly, owing to complicated designs, some properties could be very difficult to be

captured accurately. Hence, it becomes difficult to map the complex features of the design to

formal mathematical property. Due to these drawbacks of FV and relatively practical scalability

of SBV, SBV is one of the most widely used verification technique in the industry.

Hence, this research is focused on the simulation-based verification approach. As chip

complexity continues to grow, simulation-based functional verification is becoming a bottleneck

6

in the overall chip design cycle. In this research, some applications of machine learning are applied

to reduce the overall debug time and improve debug quality, potentially reducing verification costs

and time to market.

7

2 BACKGROUND

2.1 Simulation Based Verification

 As discussed in the previous section, simulation-based verification (SBV) is the most

widely used technique for verifying RTL designs. SBV is based on the principle of applying a set

of stimuli to exercise the design and then checking that the design behaves as expected. Due to the

complexity of current designs in industry, the ratio of human resources for verification to design

is around 2-3 :1. This just explains how important verification is in the design process of a chip.

For an SBV to be efficient and successful, a few main aspects need to be understood.

2.1.1 Stimulus Generation

Stimulus generation mainly refers to the process of generating a set of desirable input

sequences that could exercise the design under verification (DUV) effectively. In other words, it

is a phase where relevant input stimuli vectors are generated and applied to the design to verify

the implementation against the specification. The hierarchy for different types of stimulus is as

follows:

a) Transaction: Input with the highest granularity of stimulus generation. Each transaction

is an atomic operation on the design, for e.g., adding 2 registers and storing result into

another register.

b) Sequence: It can be defined as a set of serial transactions at a data port, for e.g., running

a set of instructions on a single core of a CPU.

c) Test: Input with a set of sequences that are generally executed parallelly to create more

complex stimuli involving more than one data ports.

8

For larger designs, it becomes extremely complicated to manually write transactions or

sequences. Generally, a constrained random generation of stimuli is employed. It is important that

tests are designed or constrained such that they exercise all the design’s properties & specifications

in the least test count.

2.1.2 Checker Generation

Checking is a process to monitor the activity of the design and indicate any erroneous

behavior. It is responsible for creating failing conditions, which would guide in finding bugs in the

design. An ideal checker would point directly to the bug, making debugging easy. One way to

perform checking is to code checkers called assertions within the RTL designs. An assertion is an

‘if’ statement with an error condition that throws error when the condition is not met. System

Verilog provides constructs to write temporal and concurrent assertions. Such checking is done

online, while the simulation is running.

Another popular way for checking is using reference model or a scoreboard.

Scoreboard/reference model is a golden model (generally designed in simple and non-HDL

language) that maintains the correct functionality of one or more design features from the

specification. The scoreboard is provided the same set of input vectors as the DUT. The output of

the golden model and the DUT output are compared for any inconsistency. Unlike assertions, here,

the checking is done offline, at the end of the simulation. One of the advantages of this method

over assertions is that having many assertions in the RTL design tends to slow down the simulation.

9

2.1.3 Coverage

 Coverage is a metric that is utilized to gauge the progress & assess the effectiveness of the

stimuli & checkers used for verification. Hence, it is very crucial in determining when the design

is robust enough for tape-out. The coverage results provide the guidance to make critical decisions

on the next steps in the verification cycle. Coverage driven verification, is a popular methodology

that is built around coverage metrics which are used as primary gauge to manage verification.

Coverage is represented by a set of models, both simple and complex, that capture the design

intent. There are mainly 2 types of coverage.

a) Code coverage: It measures the extent to which the code in design is exercised during the

simulation.

b) Functional coverage: It measures the extent to which all the important features and

functionality of any design are verified, and hence is of interest in most of the cases.

Coverage closure is the point of time at which nearly 100% of the design intent has been verified

(or covered).

2.1.4 Debugging

 There are two main challenges of simulation-based verification. The first one is to find the

right set of stimuli to exercise the design efficiently. The second one is to efficiently debug,

localize, and root cause the bug after there is a failure seen in the simulation runs. Although

debugging strategies aren’t necessarily included in verification plan, it is a very important step

which affects the schedules of the hardware design. In many cases, verification engineers end up

needing to depend on logic traces of all the relevant signals for many cycles. This is naïve and very

inefficient. A common methodology to better aid debugging includes simulating the design under

10

verification in conjunction with a golden model, while checking the RTL & golden model output

values at regular points in time(intervals). If the golden model used is high-level only, then there

are fewer compare operations and thus the penalty on RTL simulation time is reduced. However,

this makes the task of debug much harder as there could be more than one unchecked block where

the error could have occurred. The manifestation could also have happened at a different design

unit or cycle depending on the frequency of checking. On the other hand, if the golden model is

very granular, then most of the internal signals are checked at every step which would improve the

debug time but greatly penalize the simulation time due to the additional checks every cycle. There

is a clear trade-off between simulation time and debug time, given the ever-increasing complexity

of functionalities expected on the ASIC. Achieving this tradeoff is the focus of my thesis work.

2.2 MIPS Design

Figure 3: 32-bit MIPS Processor Block Diagram.

(Reprinted from [11] ECEN 651 Lab Texas A&M University)

11

The design used in the current thesis is based on the popular MIPS architecture. This

section introduces MIPS microarchitecture & ISA. MIPS (Microprocessor without Interlocked

Pipelined Stages) is a reduced instruction set computer (RISC) instruction set architecture (ISA)

developed by MIPS Computer Systems, now MIPS Technologies, based in the United States [10].

There are multiple versions of MIPS since its introduction in 1985.

The one used in this thesis is the 32-bit only version named MIPS I. MIPS is a load/store

architecture (also known as a register-register architecture); except for the load/store instructions

used to access memory, all instructions operate on the registers. The following sections discuss

more on the MIPS Architecture.

2.2.1 Registers

MIPS has total of thirty-two 32-bit general-purpose registers (GPR). Register 0 is

hardwired to zero and writes to it are discarded. The program counter has 32 bits. The two low-

order bits always contain zero since MIPS I instructions are 32 bits long and are aligned to their

natural word boundaries.

2.2.2 Instruction Formats

Figure 4: 32-bit MIPS I Instruction Format.

(Reprinted from [10] MIPS Wikipedia)

12

Instructions are divided into three types: R, I and J. Every instruction starts with a 6-bit

opcode. In addition to the opcode, R-type instructions specify three registers, a shift amount field,

and a function field. I-type instructions specify two registers and a 16-bit immediate value. J-type

instructions follow the opcode with a 26-bit jump target.

2.2.3 Load and Stores

MIPS I has instructions that load and store 8-bit bytes, 16-bit halfwords, and 32-bit words.

Only one addressing mode is supported: base + displacement. Since MIPS I is a 32-bit architecture,

loading quantities fewer than 32 bits requires the data to be either signed or zero-extended to 32

bits. The load instructions suffixed by "unsigned" perform zero extension; otherwise sign

extension is performed. Load instructions source the base from the contents of a (GPR) general-

purpose register (rs) and write the result to another GPR (rt). Store instructions source the base

from the contents of a GPR (rs) and the store data from another GPR (rt). All load and store

instructions compute the memory address by summing the base with the sign-extended 16-bit

immediate. MIPS I requires all memory accesses to be aligned to their natural word boundaries.

2.2.4 ALU

MIPS I has instructions to perform addition and subtraction. These instructions source their

operands from two GPRs (rs and rt) and write the result to a third GPR (rd). Alternatively, addition

can source one of the operands from a 16-bit immediate (which is sign-extended to 32 bits).

MIPS I has instructions to perform bitwise logical AND, OR, XOR, and NOR. These

instructions source their operands from two GPRs and write the result to a third GPR. The AND,

https://en.wikipedia.org/wiki/Addressing_mode

13

OR, and XOR instructions can alternatively source one of the operands from a 16-bit immediate

(which is zero-extended to 32 bits).

The “Set on relation” instructions (e.g., SLT) write one or zero to the destination register

if the specified relation is true or false. These instructions source their operands from two GPRs

or one GPR and a 16-bit immediate (which is sign-extended to 32 bits). The result is written to a

third GPR. By default, the operands are interpreted as signed integers. The variants of those

instructions, that are suffixed with "unsigned", interpret the operands as unsigned integers (even

those that source an operand from the sign-extended 16-bit immediate).

 The load upper immediate (LUI) instruction copies the 16-bit immediate into the high-

order 16 bits of a GPR. It is used in conjunction with the Or Immediate instruction to load a 32-bit

immediate into a register.

MIPS I has instructions to perform left and right logical shifts and right arithmetic shifts.

The operand is obtained from a GPR (rt), and the result is written to another GPR (rd). The shift

distance is obtained from either a GPR (rs) or a 5-bit "shift amount" (the "shamt" field).

2.2.5 Control Instructions

There are two types of control instructions in MIPS, branch & jump. The branch

instructions compare the contents of a GPR (rs) against zero or another GPR (rt) as signed integers

and branch if the specified condition is true. Control is transferred to the address computed by

shifting the 16-bit offset left by two bits, sign-extending the 18-bit result, and adding the 32-bit

sign-extended result to the sum of the program counter (instruction address) and 4.

Jumps are unconditional branch instructions which are resolved after instruction decode

rather than after the ALU as compared to branch. The final address is calculated by shifting the

14

26-bit “address” left by two bits and concatenating the 28-bit result with the four high-order bits

of PC+4.

2.3 Machine Learning

 Machine learning (ML) can be defined as a scientific study of statistical models and

algorithms that is used to perform specific tasks by computer systems, without explicitly using

instructions and relying on inferences from different patterns instead. It is seen as a subset of

artificial intelligence. Machine learning algorithms build a mathematical model based on sample

data, known as "training data", in order to make predictions or decisions without being explicitly

programmed to perform the task. Machine learning algorithms have been used widely in many

applications such as image recognition, face recognition, disease diagnosis, etc., where it is

infeasible or difficult for a conventional algorithm to effectively complete the task.

2.3.1 Machine Learning Terminologies

Here are some of the common terms used in machine learning[9].

a) Dataset: For any machine learning application, data is the most important part. All machine

learning systems would require the user to either get the data (for e.g., from online open

sources) or collect it with custom designed experiments. The term dataset refers to all data that

is used for either building or testing the ML model. Datasets are divided into 3 groups:

Training data: The data used during training phase. The ML model learns to detect patterns

from the data and determines which features are more relevant during prediction.

Validation data: The data is used for comparing different models in order to determine the

best ones and for tuning model parameters.

15

Test data: Test data is completely unseen data, used for inference purposes for gauging the

performance of ML algorithm.

b) Input Attribute: Features extracted from training dataset and used for output prediction.

c) Target Label: Output values/labels to be predicted. This is also called Class.

d) ML Algorithm: Program that provides a model for prediction suitable for the training

Dataset.

e) ML model: The artifact created by applying the algorithm on training dataset.

f) Labelled data: It consists of a set of attributes coupled with the respective target label data, an

example would include all the labelled cats or dogs’ images in a folder, all the prices of the

house based on size, etc.

g) Classification: Separating the data into discrete groups having unique characteristics, e.g., dog

or cat, 1 or 0.

h) Regression: Estimating the most probable values or relationship among variables, e.g.,

estimation of the price of the house based on size.

i) Confusion Matrix: It is a common form of evaluation of a ML algorithm by analyzing how

many samples of a known class X are classified as X. This analysis is done for all samples of

every class in the dataset and expressed in the form of a matrix. Figure 5 shows a simple

example where samples of each class(row) are classified among the available classes

(columns).

Figure 5: An Example Confusion Matrix

16

There are four major types of machine learning techniques.

a) Supervised learning: The outcome or output for the given training input is known and the

machine must be able to map or assign the given input to the output. For example, multiple

images of a cat, dog, orange, apple, etc., here the images are labelled. It is fed into the machine

for training and the machine must identify the same. Just like a human child is shown a cat and

told so, when it sees a completely different cat among others it still identifies it as a cat. The

same method is employed here.

b) Unsupervised learning: The outcome or output for the given inputs is unknown, i.e., there is

no label for the given input data. Here, the goal for the ML algorithm is to study the relative

structure of various data elements and group them into different bins with similar features. The

main algorithms include clustering algorithms.

c) Semi-supervised learning: It is in-between that of supervised and unsupervised learning, where

the combination is used to produce the desired results and it is the most important in real-world

scenarios where all the data available are a combination of labelled and unlabeled data.

d) Reinforced learning: The machine is exposed to an environment where it gets trained by trial

and error method. It is trained to make a specific decision. The machine learns from past

experience and tries to capture the best possible knowledge to make accurate decisions based

on the feedback received. Its practical applications include computer playing board games such

as chess and Go, self-driving cars also use this learning.

2.3.2 Why Use ML to Aid Verification Tasks?

 Manual debug and root cause of bugs based on human judgment are time consuming and

prone to errors. Machine learning has proven to be a very good way to train models to learn

17

relevant information pattern from huge datasets and perform specific tasks. Although machine

learning algorithms existed from decades ago, only in the recent years have we been able to provide

the necessary processing power to produce the results in a practical time span. This motivated me

to incorporate ML to the task of bug localization.

2.3.3 Metrics to Gauge Performance of an ML Algorithm

There are many metrics available to gauge the performance of an ML algorithm. It really

depends on the requirement of the application and our dataset to choose the most relevant.

Misclassification error (or classification accuracy) alone makes sense when given a uniform

distribution of class labels. Also, we need to understand the importance of other metrics like

Precision (PRE), Recall (REC) & F1-score. Figure 6 captures the definition of what each metric

means. Different metrics assume importance in different applications. Precision is important for

applications which require high penalty for false positives, e.g., an automated missile launcher

falsely predicting a hostile element could be devastating. When PRE is high, false positives are

low. On the other hand, Recall is important for applications which require to highly penalize false

negatives, e.g., predicting the presence of a deadly disease like HIV as absent could result in further

misdiagnosis with serious consequences. When REC is high, false negatives are low. F1 is a

combined score of both PRE & REC. These metrics are based on binary classifications (2 classes).

However, they can be easily extended to multiclass classification tasks. Generalizing this to multi-

class, while assuming we have a 1 vs all classifier, we can go with either the “macro” or the “micro”

average.

18

In micro averaging, we would calculate the performance, e.g., precision, from the

individual true positives, true negatives, false positives, and false negatives of the k-class model.

In macro-averaging, we average the performances of each individual class as shown in Figure 6.

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝐸𝐶 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃

𝐹1 = 2 ∙
𝑃𝑅𝐸 ∙ 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶

𝑃𝑅𝐸𝑚𝑖𝑐𝑟𝑜 =
𝑇𝑃1 +∙∙∙ + 𝑇𝑃𝑘

𝑇𝑃1 +∙∙∙ + 𝑇𝑃𝑘 + 𝐹𝑃1 +∙∙∙ + 𝐹𝑃𝑘

𝑃𝑅𝐸𝑚𝑎𝑐𝑟𝑜 =
𝑃𝑅𝐸1 +∙∙∙ + 𝑃𝑅𝐸𝑘

𝑘

Figure 6: Definition of Metrics for ML

True

Positives

(TP)

False

Negatives

(FN)

False

Positives

(FP)

True

Negatives

(TN)

P N

P

N

Actual

Class

Predicted

Class

19

3 PREVIOUS WORKS

 In this section, I discuss the previous works in hardware bug localization or root cause

analysis. The work [1] by Park, et al., proposed an automated way to analyze the post-silicon

failures offline. The data passing through every design block is stored in trace buffers during

program execution. Next, using the design structure, a graph with designs units as nodes is

constructed and the behavior of each node is verified using the input and output signals. Links in

the graph are traversed back until the failure is found. Although, this provides good root cause, it

needs high memory and time to store and backtrack every stimulus that was executed.

Another work [2] by D. Lin, et al., proposed an approach to post-silicon validation and

debug using symbolic quick error detection (QED). Here the stimulus is edited on the fly to re-

simulate the same operation on a different set of registers and compare the result in both the cases.

This process would cause the bug manifestation, if any, to occur much earlier than without QED.

Though it helps to get the bug occurrence & manifestation in the same cycle, it increases the total

instructions to be tested and needs more register space to trigger the duplicate execution.

Machine learning was used in more recent works [3] like the one by Valeria Bertacco, et

al., where they propose a pre-silicon bug localization technique (which was extended from their

previous work [4], on Post Silicon bug-diagnosis). They relied on only architectural state

(registers, memory & PC) mismatches to extract signatures to train a machine learning model to

predict the bug location. They also resync the golden model with DUV state to prevent cascading

failures. However, this work doesn’t utilize information from the internal signals that could help

improve localization. It also doesn’t provide a realistic error injection methodology since the errors

are injected on the already available error-free netlist. It is logically not possible to have error-free

netlist, before the design phase is complete, to create ML error models in the first place. This work

20

leaves more room for improvement in pre-silicon design verification when considering the above

disadvantages. Other works like [5][6] which weren’t a direct application to bug localization were

also studied to understand newer techniques to adopt ML into the current problem statement.

21

4 PROPOSED IDEA AND IMPLEMENTATION

4.1 Preliminary Experiments

In this section, we see how the capabilities of ML algorithms are gauged and understood

by running some preliminary experiments. The rudimentary idea is that given a simple design one

could use the combinations of input-output value pairs along with some internal signals as features

to train a machine learning model. This is depicted in Figure 7. This means that different errors

are injected in different parts of the good design to create data points that help the ML algorithm

to classify different error cases.

Figure 7: Idea of Bug Localization for a Simple Design

A simple example is considered to analyze this method. A full-adder circuit is considered

as DUT as shown in Figure 8. The error injection in the sum & carry out calculation is injected as

shown in the table 1. A total of 4 different classes good, error 1,2 & 3 are considered.

IN Vector

OUT Vector Simple

Design

Features = {In, Out}

Trained

ML Engine

Possible Bug

Location

22

Table 1: A Full Adder Circuit Error Injection

For the dataset, 10 random inputs are generated, and the output is captured for all the 4

cases. The inputs & outputs are used as features. This dataset for the good and the 3 error-cases is

trained on many well-known ML engines with 2:1 split for training and testing. The top two

performing ones are captured in the Table 2 (left) below.

The same experiment is repeated to classify only among the 3 error injected cases, since

the bug localization needs to happen only among the error cases. Table 2 (right) summarizes the

result. The idea of this experiment is to understand how well ML algorithms can pick-up the

Full Adder Sum Carry (Co)

Good A^B^Cin (A&B)|(B&Cin)|(Cin&A)

Error Case 1 A&B&Cin (A&B)|(B&Cin)|(Cin&A)

Error Case 2 A^B^Cin (A|B)&(B|Cin)&(Cin|A)

Error Case 3 (A&B)|(B&Cin)|(Cin&A) A^B^Cin

Classifier Accuracy%

Random Forest 56

Multilayer Perceptron 45

Classifier Accuracy%

Random Forest 55

Multilayer Perceptron 65

B

Sum

A

Cin
Co

Full

Adder

Table 2: Exp1 Classification numbers for All 4 Classes (L) and Only Error Classes (R)

Figure 8: A Full Adder Circuit

23

relationship between the inputs and the outputs given a large number of data points. It is seen that

the ML algorithms performed pretty well when compared to the random guessing accuracy (= 1 /

total #classes = 25% & 33% for Exp1 Left & Right respectively). This in turn motivated me to

extend this idea to a more generic case as shown in Figure 9, where a set of simple designs are

combined to form a more complex one.

Figure 9: Generic Idea of Bug Localization

The motivation is that the same idea could be used to identify bugs or errors in different

parts of an integrated design. For the initial tests a simple system of 4 bit adder using 4 series full

adders is considered as shown in Figure 10.

Figure 10: A 4 bit Adder Circuit with 4 Series Full Adders

IN

Vector
OUT

Vector

3rd

Simple

Design

Features = {In,

Internal Signals, Out}

Trained ML

Engine

Label(e.g., {3rd})

of buggy logic

S0 S2

Ci
n

C0

C2

A0 B0
C2

A1

1
B1 A2

C0

B2 A3 B3

S1

C1

S3

C3

F
FA1 FA2 FA3 FA4

24

 For the dataset, along with the inputs A[0:3], B[0:3] & Ci and outputs S[0:3],C3, even the

intermediate signals C0,C1,C2 are monitored and used as features. The bug used is a switch in

functionality of sum and carry operation. This bug is activated in all full adder circuits one at a

time. A total of 100 random vectors are simulated for all 5 classes (good + 4 errors). The results

for the classification are tabulated in Table 3 (left). The classification is repeated considering only

the 4 error cases, where the accuracy increased as shown in Table 3 (right). This could be due to

the reduction in total number of classes.

The previous two experiments show that for a simple system, using an ML algorithm could

be beneficial to capture the expected properties of the design. However, this needs to be tested on

more complex designs with higher range of input space. Also, there are other useful aspects in the

verification environment that could be made use of. For instance, the golden value output from

the golden model could be used to better enhance the decision process. This step is incorporated

in the next experiment.

 The MIPS CPU design as shown in Figure 3 seemed to be an apt choice given its fairly

decent complexity. Before using the complete design, the ALU unit is tested first. As per the design

ALU unit has 2 input buses A & B of 32 bit width and an output result W of 32 bit width. It also

has a 0-indicator output bit which is set when the output value on Bus W is 0. It has a 4 bit

Classifier Accuracy%

Random Forest 35

Multilayer Perceptron 74

Classifier Accuracy%

Random Forest 60

Multilayer Perceptron 84

Table 3: Exp2 Classification numbers for All 5 Classes (L) and Only Error Classes (R)

25

ALUCtrl bus that is used to control the type of operation performed by the ALU unit. Figure 11

shows the block diagram of the ALU Unit.

Operation ALU Control Line

AND 0000

OR 0001

ADD 0010

SLL 0011

SRL 0100

SUB 0110

SLT 0111

ADDU 1000

SUBU 1001

XOR 1010

SLTU 1011

NOR 1100

SRA 1101

LUI 1110

 Table 4: ALU Control Line Mapping

Figure 11: Block Diagram of ALU Unit.

(Reprinted from [11] ECEN 651 Lab Texas A&M University)

26

The ALU Unit supports 14 operations as listed in the Table 4. For the error injections the scheme

depicted in Table 5 is used.

Original Operation Error Injection Substituted Operation

AND OR, ADD, SUB

ADD SUB, AND, OR

ADDU SUB, XOR, AND

LUI LLI

NOR NAND, OR, XNOR

OR AND, SUB, ADD

SLL SRA, SRL

SRA SLL, SRL

SRL SLL, SRA

SLT GT

SLTU GT

SUB ADD, OR, XOR

SUBU ADD, AND, XOR

XOR AND, OR, XNOR

 Table 5: ALU Error Injection Map

The errors injected are kept as close as possible to the logical mistakes that the designer

could make. For the dataset, since the number of error cases are much higher than the single good

cases, this imbalance is fixed by simulating 10X more inputs than the individual error cases. The

inputs A, B & ALUCtrl are generated randomly and simulated for 100K data points for the good

(no error) case and 10K data points for each of the error mapping as mentioned in Table 5.

27

The data element used for training consisted of {Inputs AB, Output W, Expected_Out,

Class}. The Expected_Out is obtained from the golden model. Using the ML algorithms with the

standard 2:1 split for training and test, J48 decision tree gives the best results upto 65%(as

compared to 6.6% when randomly classified). The confusion matrix for the same is captured in

Figure 12.

Figure 12: Confusion Matrix of ALU Test 1

However, when the ALUCtrl is also used as one of the features, the classification accuracy

by J48 decision tree went up to 88%. This can be understood by the fact that ALUCtrl signal

contains information that is strongly correlated to the bug location. The confusion matrix for this

Test 2 is captured in Figure 13.

28

Figure 13: Confusion Matrix of ALU Test 2

At the end of this experiment, it is convincing that the ML engines can handle a reasonably

complex design by learning from the inputs & outputs when aided with the comparison data from

the golden model.

4.2 Proposed Solution and Setup

Given the complex nature of the problem of bug localization, there is a need to aptly specify

the assumptions of the verification environment to understand the challenges and how the proposed

solution helps to solve these challenges correctly.

4.2.1 Assumptions of the Environment

 The assumptions mentioned here are applicable to any generic digital design that would

want to use the techniques proposed in this thesis.

29

1. All the checkers in the design are implemented.

This means that the checkers at the outputs of various points in the design are ready

to be used during simulation tests. This is a practical assumption as most of the important

checkers would be needed to run the test vectors and verify the design effectively. This

assumption is linked to the next point which helps to understand the challenges involved

in such a case of having all the checkers turned on during simulation.

2. During regular simulation only the primary(high-level) checkers are active.

This assumption explains about the hierarchical importance of checkers. Out of all

the checkers in the design, there are some checkers that are of higher importance, for e.g.,

in a CPU design executing an ALU, the checker that checks the state changes, i.e., register

file, memory & PC is much more important that the checker used for sign extend enable.

Of course, there are chances that the error in sign extend could cause the failure in the state

errors, but in the initial stages of simulation it is important to enable checkers that flag all

the major errors that affect the system. Based on this, it would be more important to monitor

the state of the CPU. There is also a tradeoff between the simulation speed and the

localization accuracy which has already been explained in detail in the Section 2.1.4.

4.2.2 Proposed Solution

In modern designs whose complexities are ever increasing, it proves to be temporally

impractical to run the simulation with all the checkers in the design turned on. Hence, during the

process of simulation, the key is to enable only the high-level (or primary) checkers to speed up

simulation. For the complete simulation, data is collected for mismatches at these high-level

30

checkers when there are failures. If the checker failure causes a state change (i.e., change in the

register file, instruction/data memory, PC), the golden model adjusts itself to match the DUV state

to prevent further cascading of the same error in the upcoming cycles. This method of resyncing

golden model with DUV is inspired by [3]. However, in [3], the assumption of low observability

prevents using data from the internal signals. It is important to note that for the pre-silicon design

verification, this limitation doesn’t exist.

Figure 14: Process of Regular Debug Flow(top) vs Proposed Bug Localization Process(bottom)

31

The key improvement attributed to the proposed approach is that along with the state level

mismatches, few important internal signals would also be monitored. The information from these

extra signals gives more insight to provide better features that classify the errors into different

units. Figure 14 highlights the process in the form of a comparison between regular debug flow

and proposed changes. The other improvement is in the proposed error injection methodology

which is discussed in Section 4.2.5.

4.2.3 Setup

 For the experimental setup, a 32 bit MIPS processor design is used. There is a separate

instruction memory and data memory. The properties of this design are explained in detail in

Section 2.2.

There is a total of 16 different regions in the design which are selected for bug injection to

create possible error scenarios. These are highlighted in Figure 15. The error injections are made

such that only one bug in a single unit is active per simulation run. More about this is explained in

the later section.

A total of around 700 bugs are injected in this system. The details of bug types are discussed

below.

• Multiplexers (4,9,10,13,16):

o Invert the mapping of select

o Mimic output as though select line is stuck at 0

o Mimic output as though select line is stuck at 1

32

Figure 15: 16 Bug Injected Blocks in the Design.

(Modified from [11] ECEN 651 Lab Texas A&M University)

• Pc + 4 Adder (1):

o PC+8

o PC+12

o PC+16

o PC

o PC – 4

• Jump Addr Shift (2):

o >>2

o >>4

o <<4

o <<1

o >>1

1

2

3

4
5

6

7
8 9

10

11

12

13 14

15

16

33

o No Shift

• Control Unit (3): The main function of this unit is to map the 6-bit OpCode to 9 single bit

control signals (RegDst, Jump, Branch, MemRead, MemtoReg, MemWrite, ALUSrc,

RegWrite, SignExt) and a 4 bit ALUOp. There are a total of 13 OpCodes & 15 ALUOp

codes supported. The bugs are injected such that for every OpCode, there is a bit flip for

each of the control signals generated for that OpCode, one at a time. Hence, an independent

single bit flip in any outputs for a particular OpCode is modelled as 1 bug. Following this

process, a total of 299 bugs are injected in the control unit.

• Register File (5):

Read path

o Swap of read reg 1 and read reg 2

o Both read reg 1

o Both read reg 2

o Reg 1 reads wrong register(reg1<<1)

o Reg 1 reads wrong register(reg1>>1)

o Repeat prev 2 steps for reg 2

Write path

o Ignore writes

o Write to wrong register (WReg>>1)

o Write to wrong register (WReg<<1)

o Invert write enable behavior

o Always write irrespective of write enable

• Sign Ext (6):

34

o Skip sign extension

o Invert sign extension function on sign extend enable

o Invert sign extension function on MSB bit

o SignExt by 1 if sign extend enable is 1(irrespective of MSB bit)

o SignExt by 1 if MSB is 1(irrespective of sign extend enable bit)

o Always sign extend by 1

• Branch path shift left (7):

o >>2

o <<1

o >>1

o No Shift

o >>3

o <<3

• Branch path addr calculation/addition (8): ADD operation substituted by

o SUB

o XOR

o NOR

o NAND

o OR

o AND

• Branch path branch enable check (11): AND substituted by:

o OR

o NOR

35

o NAND

o XOR

• ALU Ctrl (12): This unit maps different ALUOp inputs to 13 different ALUCtrl based on

FUNC bits. Based on the same single point mismatch error scheme as discussed in control

unit error injection, there are a total of 155 independent errors injected.

• ALU Unit (14): This unit performs 14 different operations on the two 32-bit inputs and

returns a 32bit output with a zero-value indicator bit. Following the single point mismatch

error scheme, a total of 185 bugs are injected.

• Memory (15):

Read Path

o Read from wrong addr (addr<<1)

o Read from wrong addr (addr>>1)

o Read enable function inverted

o Always read without checking on read enable

Write Path

o Ignore writes to data memory

o Write to wrong address in data memory (addr>>1)

o Write to wrong address in data memory (addr<<1)

o Allow write to instruction memory

o Write enable function inverted

o Always write without checking on write enable

36

4.2.4 Stimulus

A set of 5 programs with each 10K instructions are used to execute on the design with

single bug activated at a time. The ratio of the type of instructions is set to be ALU (40%), Control

(20%) & Load/Store (40%). Each of these 5 programs are generated to randomize the following:

• Source registers/Memory addr

• Destination registers/Memory addr

• ALU operation to be performed

• Jump/branch target addresses

4.2.5 Bug Injection Framework

 Figure 16: Error Injection Framework

The machine learning model is built on data collected by injecting errors into an error free

design. During the early stages of verification, the RTL wouldn’t be mature enough and it would

be logically wrong to assume that RTL would be error free. However, mature RTL designs from

previous generations can be used quite well to an extent if there are minor changes with respect to

Stimulus Golden
Model

Error Loc 1

Golden
Model

Error Loc 2

Golden
Model

Error Loc N

Fe
at

u
re

 E
xt

ra
ct

io
n

Train
Classifier

37

current design. But for a generic case, a software model of the correct design needs to be prepared

by the verification engineer. Since the model would be coded in a simpler language when

compared to HDLs, they would be relatively easier to model them since they don’t have to deal

with the semantic complications like concurrent executions, non-blocking statements, etc. Once

this is ready, a variety of bugs can be injected into different units of the model to create a database

of bugs. This helps to selectively train and validate the machine learning classifier’s performance.

This process is captured in Figure 16. For this work, the whole design is modeled in Python. The

choice of Python is made because it is easier to collect & manipulate data and also provides very

good integration with well-known machine learning packages[7][8].

4.2.6 Error Signatures

 The error signatures are extracted from the data mismatches from the golden model and

the DUV for all the state-level checkers and internal signal checkers enabled. The mismatches

are grouped as follows:

a) Register Value Mismatch

b) Register Address Mismatch

c) Memory Value Mismatch

d) Memory Address Mismatch

e) PC Value Mismatch

f) Internal Signal Checker Output Mismatch

Each of these mismatches are coupled with the type of Instruction that is executed which is one

of the following:

38

a) ALU

b) Load

c) Store

d) Branch/Jump

 As already discussed, for every mismatch in the state checkers, we readjust the DUV’s

state to prevent cascading failures. The simulation termination reasons would give valuable

information and hence are noted. They are labelled under one of the following:

a) No failures

b) Data Memory Out of Bounds

c) Instruction Memory Out of Bounds

d) Unknown Instruction Opcode

 The difference and Hamming distance for every mismatch are compressed by using mean

and standard deviation of those respective distributions, for e.g., consider sample mismatches

throughout a single test as shown in Table 6.

No. Instruction Type Mismatch type Model Value DUV Value

1 ALU Register Value 64 32

2 ALU Register Value 128 32

3 ALU Register Addr 2 4

Table 6: Sample Mismatches

 The distribution in this table is converted into a compressed form as shown in Table 7,

which uses the mean & standard deviation of the arithmetic difference and the Hamming distance

between the mismatched values. These 4 values are used as features to capture any errors resulting

from register value mismatches. These are further divided based on which instruction is simulated

39

when the error manifested. Hence, there are 16 such features for the 4 types of instructions as

discussed earlier. Along with this, the fraction of number of mismatches that belonged to this

category is also captured. When combined, there are a total of 127 features.

Register Value Features

Mean Standard Deviation

Fraction Difference Hamming

Distance

Difference Hamming

Distance

64 2 32 0 2/3

Table 7: Compressed Error Signature

40

5 EXPERIMENTAL RESULTS

This section discusses the results obtained for the proposed solution & provides analysis

on how the results change when the choice of the internal signals monitored are changed. Training-

testing split of 2:1 is used. Three main classifiers are used, Random Forest (100 trees), XGBoost

(100 trees) & Neural Network (hidden layer size=100, #layers=1).

5.1 Testing with BugMD [3] environmental features

Figure 17: XGBoost BugMD Confusion Matrix

41

Algorithm Macro Micro

PRE REC F1 PRE = REC = F1

XGBoost 48.1 38.8 40.3 65.8

Random Forest 42.9 35.9 37.8 65.3

Neural Network 35.07 30.93 32.8 41.41

Table 8: BugMD Results

5.2 Testing with added Observation of internal signals of ALU

Figure 18: XGBoost Confusion Matrix of added ALU Observation

42

Table 9: Results of Observing ALU

5.3 Testing with added Observation of internal signals of Control Unit

 Figure 19: XGBoost Confusion Matrix of added Control unit Observation

Algorithm Macro Micro

PRE REC F1 PRE = REC = F1

XGBoost 54.1 43.7 45.8 89.25

Random Forest 47.2 41.7 43.4 89.4

Neural Network 26.5 18.9 22.06 40.79

43

Algorithm Macro Micro

PRE REC F1 PRE = REC = F1

XGBoost 56.3 55.4 53.7 83.7

Random Forest 55.9 50.8 50.35 81.9

Neural Network 47.37 37.9 42.11 43.08

Table 10: Results of Observing Control Unit

5.4 Testing with added Observation of internal signals of ALU_Ctrl Unit

 Figure 20: XGBoost Confusion Matrix of added ALU_Ctrl unit Observation

44

Algorithm Macro Micro

PRE REC F1 PRE = REC = F1

XGBoost 51.9 41.6 43.7 77.6

Random Forest 46.5 39.8 42 76.7

Neural Network 29.64 22.08 25.3 42.4

Table 11: Results of Observing ALU_Ctrl Unit

5.5 Results Summary

To summarize the results, the 2 best classifiers that provided the highest classification

accuracy were decision tree-based algorithms, XGBoost and Random forest. It is also noted that

choosing to observe the control unit checker was more helpful in macro average F1 than any other

units that were tested. There seems a logical explanation to the same. This is because the macro

average performance depends on the classification accuracy of the individual classes rather than

the overall performances of the system. When we look at the normalized confusion matrix of the

vanilla BugMD approach, we see that there are many misclassifications happening from other units

into control unit (observe the highly populated 3rd column). But when the control unit checker is

turned on, this inherently reduces the misclassification happening into control unit class. This

could be one of the reasons why observing control unit seemed to provide maximal improvement

of the macro classification performance when compared to the other two units. On the other hand,

ALU unit provides maximal improvement in the micro average F1 score, i.e., it improves overall

accuracy maximally. This could be mainly due to the position of the ALU unit’s checker when

compared to ctrl unit or ALU_Ctrl Unit. The data flowing through ALU Unit has gone through the

other 2 units already. This means that it has more valuable data about all its previous units’

behavior which could be helping to obtain the better accuracy. Since micro F1 score only depends

on the accuracy of the overall system, choosing ALU checker increases it by the maximum amount.

45

Design Macro Micro

PRE REC F1 PRE = REC = F1

BugMD 48.1 38.8 40.3 65.8

ALU_Chkr 54.1 43.7 45.8 89.25

Ctrl_Chkr 56.3 55.4 53.7 83.7

ALUCtrl_Chkr 51.9 41.6 43.7 77.6

Ctrl_ALU_ALUCtrl_Chkr 57.8 61.8 58.4 96.3

 Table 12: Summary of Results for XGBoost algorithm

Design Macro Micro

PRE REC F1 PRE = REC = F1

BugMD 42.9 35.9 37.8 65.3

ALU_Chkr 47.2 41.7 43.4 89.4

Ctrl_Chkr 55.9 50.8 50.35 81.9

ALUCtrl_Chkr 46.5 39.8 42 76.7

Ctrl_ALU_ALUCtrl_Chkr 57.5 56.8 55.1 94.7

 Table 13: Summary of Results for Random Forest algorithm

Design Macro Micro

PRE REC F1 PRE = REC = F1

BugMD 35.07 30.93 32.8 41.41

ALU_Chkr 26.5 18.9 22.06 40.79

Ctrl_Chkr 47.37 37.9 42.11 43.08

ALUCtrl_Chkr 29.64 22.08 25.3 42.4

Ctrl_ALU_ALUCtrl_Chkr 40.27 28.7 33.51 42.7

Table 14: Summary of Results for Neural Network

46

6 CONCLUSION

In this thesis, we have seen that use of machine learning in design verification planning

could reduce the effort involved in localizing design bugs which would eventually expedite finding

the root cause of the failure. There is an added effort from the verification engineer to model the

error injection and collect the data samples for the failing cases. But, across generations, many of

the designs require only incremental changes. Hence, the initial effort could prove to be worthy

because for every incremental change in the design, the model could potentially be reused within

an error margin. With the growing complexity of ASIC functions, there is a high demand to reduce

the verification effort in both time and engineer resources. For future work, implementing the same

idea on more complex and industry standard designs (like RISC V) & experimenting with more

complicated bugs would be a good exploration to understand the abilities or limitation of this work.

This thesis work explored an idea where the resources required for debugging a failure could be

reduced by the use of a bug localization technique based on machine learning.

47

REFERENCES

[1] S. B. Park, S. Mitra, et al., “BLoG: Post-Silicon Bug Localization in Processors using Bug

Localization Graphs”, Proc. Design Automation Conf, 2010.

[2] T. Hong, D. Lin, et al., “QED: Quick error detection tests for effective post-silicon validation”,

Proc. IEEE Int. Test Conf., 2010.

[3] B. Mammo, V. Bertacco, et al., “BugMD: Automatic mismatch diagnosis for bug triaging”,

Proc. IEEE/ACM Int. Conf. Computer Aided Design, 2016.

[4] A. DeOrio, V. Bertacco, et al., “Machine learning-based anomaly detection for post-silicon

bug diagnosis”, Proc. Design Autom. Test Europe, 2013.

[5] Y. Ma, et al., “High Performance Graph Convolutional Networks with Applications in

Testability Analysis”, Proc. Design Automation Conference, 2019.

[6] S. Vasudevan, D. Johnson, et al., “GoldMine: Automatic assertion generation using data

mining and static analysis”, Proc. Conf. Design Automation Test Europe, 2010.

[7] Fabian, et al., “Scikit-learn: Machine learning in python,” Journal of Machine Learning

Research, vol. 12, 2011.

[8] A. Liaw and M. Wiener, “Classification and regression by random forest,” R News, vol. 2/3,

December 2002.

[9] Machine Learning Basics, Terminologies & Definitions, Random Forest, XGBoost

https://towardsdatascience.com.

[10] MIPS Architecture Wikipedia https://en.wikipedia.org/wiki/MIPS_architecture.

[11] ECEN 651 Lab Syllabus, MIPS Design, Texas A&M University, Spring 2019.

https://towardsdatascience.com/
https://en.wikipedia.org/wiki/MIPS_architecture

