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ABSTRACT 

Voltage collapse is a risk to power systems that arises when a system is loaded to near its power 

transfer limits. As grids are operated closer to their limits, the risk of this phenomenon occurring 

increases. This research is an effort to build upon the concepts of the Voltage Instability Device 

(VIP) to improve predictions about proximity to voltage collapse. The principle behind the VIP 

device is to linearize the power system using simplifying assumptions and current and voltage 

measurements local to a load. An issue encountered by using this method is that the predictions 

by VIP devices throughout the system tend to vary considerably. A sensor-fusion framework is 

presented that makes use of multiple inputs from a network of nearby sensors to attempt to 

improve prediction accuracy. The sensor-fusion framework employed is known as Dempster-

Shafer Evidential (DSE) Theory. This theory relies on the assignment of probabilities to 

represent the support for the evidence presented by each “sensor” (i.e. VIP device) location. In 

this work, a consensus algorithm is developed using measurements nearby and a centrality 

algorithm is used to rate how central a VIP location is in the system. The consensus algorithm is 

shown to consistently improve the overall error in prediction by a moderate amount. The 

centrality algorithm improves the prediction in some cases, but not in larger systems. Overall the 

research presents a positive, albeit limited, improvement in VIP accuracy. The DSE framework 

employed shows promise as a method to combine data, however, improvements on the 

algorithms for assigning evidence would be needed for truly successful implementation. 
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1 INTRODUCTION 

AND LITERATURE REVIEW 

1.1 Overview 

The primary operational concern in real-time reliability management of power systems is making 

sure that sufficient power is available to meet demand without violating the physical constraints 

of the equipment on the system. These constraints are thermal limits (constraints on the amount 

of power that can flow through devices), voltage limits (constraints to ensure that connected 

devices operate at their rated voltages) and contingency constraints (constraints to ensure that if 

any piece of equipment fails the system will not violate any constraints before re-dispatching can 

occur). Alongside constraint management, a risk more difficult to identify exists which, if 

unmitigated, can bring about system collapse. In certain circumstances, this can occur without 

even violating any serious physical constraints or contingencies. This is known as voltage 

instability. 

The problem of voltage instability stems from the maximum power transfer problem which every 

engineering student learns about in their introductory circuits class. The problem, simply stated, 

is that given a system with an internal (or Thévenin) impedance and a load with a varying 

impedance, the maximum amount of power that can be transferred to the load occurs when the 

load impedance is equal to the Thévenin impedance of the system. In power systems, when 

demand increases the effective impedance of the load decreases. Under stable conditions, the 

demand is met simply by increasing the output of available units that do not violate constraints. 

However, if the load impedance decreases to a point that it matches the Thévenin impedance of 

the power system, the demand cannot be met regardless of the availability of generation. Under 

these conditions, voltage collapse can ensue. While it is a simple phenomenon to describe, it can 
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be difficult to predict since it does not depend on easily observable metrics, such as the 

availability of power to meet demand or physical line limits. The difficulty with predicting 

voltage stability arises since it generally requires a full network representation [1] to model the 

phenomenon. 

In a simple linear circuit, a Thévenin equivalent can be calculated through network reduction: 

using the properties of the system components derived from Kirchoff’s Laws, the individual 

components with impedance can be modeled as ideal electrical components (resistors, capacitors 

and inductors) and lumped together to form one equivalent impedance. In power systems, the 

impedances of the system are represented by an admittance1 matrix, 𝑌, commonly referred to as 

the Ybus matrix. The Ybus matrix can be inverted to give the Zbus matrix, 𝑍, of which the 

diagonal elements, 𝑍𝑘𝑘, give the Thevenin impedance at bus k [2]. However, as researchers in [3-

5] point out, Thevenin’s theorem does not hold exactly for power systems since they behave as 

non-linear systems. They overcome this problem by linearizing the system around the operating 

point by substituting generators’ and loads’ active and reactive power flows with admittances 

before inverting the Ybus matrix. Therefore, this technique involves, not only complete 

knowledge of the system topology, but also complete knowledge of the real-time operating 

points of every generator and load on the system. 

 

1 Admittance, 𝑦, is the inverse of impedance, 𝑧.  𝑦 ≔ 1/𝑧. The impedances of a power system 

are usually represented by the admittance Ybus matrix instead of its inverse, the Zbus matrix. 

Not only is it simpler to calculate, but also because it is a sparse matrix for large systems, which 

is easier to store and perform calculations on. Its inverse, the Zbus matrix, is most decidedly not-

sparse. 
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The Thévenin impedance of a black-box system can also be estimated by taking voltage and 

current measurements at various operating points. If the black-box operates linearly or close to 

linearly around the observed operating points, then the equivalent internal resistance can be 

calculated. The Voltage Instability Prediction (VIP) device uses this approach to calculate 

Thevanin parameters without knowledge of full network representation while still offering robust 

protection against voltage collapse. Using this linear approximation, the VIP continually 

estimates the margin of safe operation of the system. In this way the stability of the system can 

be quickly estimated using only local measurements. 

However, as will be seen in this study, the predictions of this operating margin vary depending 

on the location where the measurements are taken. In order to overcome this problem of 

disagreement, the goal of this research is to incorporate predictions from nearby buses in order to 

improve the accuracy of the VIP margin estimate. While the measurements are no longer strictly 

local, the calculations to improve the accuracy of the predictive ability of the VIP should be 

simple and fast relative to a centralized voltage stability prediction that requires full system 

knowledge and computationally intensive simulation. 

Sensor fusion is a class of data analysis techniques that use multiple data sources in a similar 

way that humans' cognitive processes continuously make deductions around observations of the 

environment [6],[7]. For example, sensory information in the form of sight, smell and touch 

combine to tell us if food is delicious or rotten. Since information from one sensor might be 

incomplete or inaccurate, sensor fusion is an attempt to take the advantage of the multiplicity of 

data to fill in these gaps. Applications are widespread ranging from image-processing [8], 

medical imaging, target-tracking and identification[9], and robotics [10]. 
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The sensor fusion technique that will be used in this research comes from Dempster-Shafer (D-S) 

evidential theory. D-S evidential theory allows sensors to contribute detection or classification 

information based on the extent of their individual knowledge. D-S theory can be interpreted as a 

generalization of probability theory in which probabilities are assigned to sets instead of 

mutually exclusive propositions [11]. 

A key feature is that it allows the assignment of a portion of a sensor's knowledge to uncertainty. 

Therefore, D-S theory allows decisions about fused data based on an incomplete probabilistic 

model. Because of its flexibility, D-S theory provides a powerful tool for multi-sensor fusion. 

For example, a sensor can report with 10% confidence that it is detecting event A, with 50% 

confidence that it is detecting event B, and with 40% confidence that it has no idea what it is 

detecting. These confidence measures are referred to as basic probability assignments (BPAs). 

One of the key challenges in implementing D-S data fusion techniques lies in successfully 

identifying a technique for determining BPAs. The resulting fused data is only useful if the BPAs 

represent confidence in the associated measurements with a degree of accuracy. In this research, 

various approaches to assigning BPAs were tried and their effectiveness will be judged based on 

how well they perform on IEEE 39 bus and 118 bus test systems. 

1.2 Voltage Stability 

When power is insufficient to meet demand, the system frequency drops and generators on 

automatic generation control use this information as a signal to increase output. The difficulty 

with voltage stability arises since it requires a full network representation [1].  

The problem of voltage instability stems from the maximum power transfer problem. While it is 

simple phenomenon to describe, it can be difficult to predict since it does not depend on the 
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availability of power to meet demand. Moreover, the maximum power problem is derived from 

an infinite bus model, the name itself implying that the power source not limited. 

 

Figure 1: A single-load infinite bus system. 

Figure 1 shows a single-load infinite bus system consisting of a generator of infinite capacity, a 

transmission line and an arbitrary load. The same system is represented as a per-phase single-line 

diagram showing equivalent impedances of the transmission line and the load. 

 

Figure 2: Per-phase representation with equivalent impedances 

The maximum power problem is a classical electrical engineering problem and can be found in 

any introductory primer on circuit theory. The basic problem statement is that, given a system 
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with an internal ideal impedance, 𝑍𝑇ℎ =  + 𝑗 , and an internal ideal voltage source,  , there is 

an absolute maximum amount of power that can be transferred to an external load impedance, 

𝑍 . It can be shown that the power consumed by the load 𝑍  is maximized when the load 

impedance is equal to the complex conjugate of the system impedance, i.e. when 𝑍 = 𝑍𝑇ℎ
∗ . 

With some additional derivation, it can also be shown [1] that under a constant power factor, the 

power consumed by the load is maximized when the magnitudes of the load impedance and the 

system impedance are equal, when |𝑍 | =  |𝑍𝑇ℎ|. Conceptually, this property is illustrated in 

Figure 3 below. 

 

Figure 3: Load impedance approaching the off-limits region in complex impedance space 

The family of P-V curve in Figure 4 illustrates the power output and the corresponding voltages 

from the load flow solutions. Note that for any given power output, there are exactly two, one, or 

zero voltage solutions when the power factor is held constant.  
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Figure 4: P-V Curves at various power factors  Reprinted from [1] 

 The no solution case domain, to the right of the curve, represents power levels beyond the 

maximum power transfer point which are not physically possible. The point at the tip of the 

curve represents the maximum power transfer case discussed above. In power systems literature, 

this is often referred as the bifurcation point since, to the left of this point, there are two possible 

solutions for any power level delivered to the load. This point is also the stability limit of the 

system since, to the right of it, there are no solutions. The upper region of the curve is the stable 

region; the system is operating as designed and the voltage is relatively stable. Since current is 

related to real power by 𝑃 =  𝐼 cos𝜃, at a given power factor (constant 𝜃) the higher voltage 

corresponds to a lower current. The lower region represents the unstable region. At any point on 

in this region the power system will tend to deteriorate. The lower voltage solution requires more 

current, which will lead to equipment overloads, generators automatically tripping and constant 

power loads demanding more current. Since the demands cannot be met, without corrective 

action, the system will deteriorate until it collapses. 
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Figure 5, bellow, illustrates two ways in which a system can enter voltage collapse. In the first 

illustration (Figure 5a), the load increases until it has surpassed the loadability limit of the 

system. In the stable region, as the load demand increases, the equivalent load impedance, 𝑍 , 

decreases. Once the stability limit has been reached, further decrease in 𝑍  results in higher 

current but lower power delivered. In the second illustration (Figure 5b), a disturbance changes 

the characteristic of the system so that the load that was previously sustainable is no longer a 

possible solution. 

 

Figure 5: System conditions leading to voltage collapse. (a) The demand increases past the ability of the system to 

supply power. (b) System disturbance causes system stability limit to decrease below demand.  

Voltage stability is defined by IEEE as the ability to maintain system voltage such that when the 

load admittance increases, the power delivered to the load will increase accordingly [12]. Such 

events are characterized by a progressive fall in voltages and a shortage of reactive power [13]. 

As the transmission system becomes ever more loaded, the risk of voltage collapse increases. In 

reality, the collapse will start with heavy loading (the situation illustrated in Figure 5a) followed 

by an unplanned switching action such as a generator trip, relays protecting an overloaded line, 

or a fault [14]. The culprits behind voltage instability are usually loads. Post-disturbance, loads 
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tend to be restored with a higher current demand than the pre-disturbance equilibrium, due to 

many motors spinning up, or loads controlled by thermostats, which normally operate 

intermittently all coming on at once. This increase stress on the network by increasing reactive 

power consumption causing further reduction in voltage. When the dynamics of the loads being 

restored attempt to consume power beyond the capability of the transmission system, the system 

can spiral into a state of voltage collapse [12]. 

As discussed above, the reactances of transmission lines restrict the flow of power since an 

increase in real and reactive power flow across lines also increases the voltage drop across the 

lines. In addition to the inherent limit due to the maximum power transfer, the capability to 

supply load is further reduced when generators hit their field or armature limits or current limits. 

Once this happens the generators effectively “run out” of reactive power and lose their ability to 

control the voltages at their terminals. Mathematically, this means that the voltage at the bus is 

no longer and independent variable in the load-flow equation set. When the generator is able to 

control power (P) and voltage (V) at the bus it is known as a PV bus. Once the generator can 

only inject power (P) and a constant reactive power (Q) the bus is known as a PQ bus. This is 

referred to as a PV-PQ transition. From a power-flow solution perspective, the generator has the 

same properties as a load bus except that power is injected rather than delivered, and both are 

referred to as PQ-type buses. 

In practice, methods for voltage collapse protection involve a combination of planning studies, 

centralized system monitoring and simulation. For example, in the Texas grid, the Electric 

Reliability Council of Texas (ERCOT), which is the regional system operator and reliability 

coordinator, protects against voltage instability through a multi-stage approach [15]. At the 

planning stage, system changes such as new generation, unit retirements, or infrastructure 
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upgrades are studied regularly. In these studies, planning engineers model adverse system 

conditions and perform simulations to determine if system changes might lead to instability. If a 

potential for instability is found, a Generic Transmission Constraint is developed that is used in 

operations as an additional constraint for determining real-time dispatch. Since these studies are 

performed far in advance, they are not able to account for real-time system conditions, such as 

the availability of reactive power or outaged equipment that will have a direct effect on the 

loadability of the system. To account for this, a simulation is performed hourly that finds voltage 

collapse limits by increasing power transfer to specific areas of the grid until collapse occurs. 

Since the simulation is performed hourly, it is able to consider current system conditions to make 

a more accurate assessment of the system’s proximity to a voltage collapse event. Additionally, 

in areas that are known to be vulnerable to voltage collapse, under-voltage protection relays are 

installed by the transmission operators which can react quickly to shed load. 

Voltage collapse events tend to be relatively slow system events occurring over a period of 

minutes or hours. [13]. This long-term voltage stability typically involves slow-acting equipment 

such as tap-changing transformers and generator current limiters [12]. However, short-term 

voltage stability responsiveness is needed since fast acting components, such as HVDC 

converters and electronically controlled loads, can lead to rapidly occurring instability as well. 

Additionally, as the grid moves away from large synchronous machines towards fast-acting 

inverter-based resources, the need for fast response to voltage stability is likely to increase. 

Undervoltage load shedding relays that are typically employed as a mechanism to quickly 

respond to potential voltage instability pose a few problems. Choosing a setpoint is problematic 

because voltage is often a poor indicator of instability. Thus, a fixed set-point for relay operation 

may lead to unnecessary shedding or, worse, failure to operate when voltage instability occurs. 
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[16, 17]. The need for fast-acting voltage stability analysis leads to the use case for the VIP 

device or a similar fast-acting device, discussed in the next section. 

1.2.1 Voltage Instability Predictor (VIP) 

Originally described as the "Stability Monitoring and Reference Tuning Device 

(SMARTDevice)" [18], the Voltage Instability Predictor (VIP) uses an estimated Thévenin 

equivalent of the system to make predictions about the proximity to voltage collapse. This 

technique only requires local measurements of bus voltage and current to make its estimates.  

VIP devices make use of the maximum power transfer theorem to track the proximity of a 

system to voltage collapse. These devices measure local voltage and current phasors and use 

these measurements to approximate the system as a two-bus network using Thevenin principles. 

Since the VIP device uses only local measurements, it does not rely on a system-wide 

communications infrastructure to make decisions about voltage collapse proximity (margin). 

Additionally, the simplicity of the calculation and possibility of automatic actions means that the 

device is capable of responding faster than other methods of protection against voltage collapse. 

While VIP might not be a replacement for centralized system assessment, in the event of an 

unforeseen voltage collapse event, it would be able to respond faster than operating instructions 

from a centralized system operator. Indeed, the inventors of the device propose two 

complementary roles for such a device: 1) it could be used as an alert system when it detects 

locally weak system conditions and 2) it could operate as a relay as it encounters more severe 

conditions[19]. 

The estimation of the Thevenin parameters is key to determining the stability margin at a 

measurement location. Generally, once two or more measurement sets are available, the 
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estimation can be performed [20]. Researchers in [21-23] use a recursive least-squares (LS) 

method to estimate the parameters, while other researchers employ Tellegen’s theorem to derive 

an equation for estimating the parameters using two sets of operating points. The advantage of 

this approach, along with being computationally simpler, is that the estimated parameters are 

faster to update if a dynamic event occurs as opposed to LS methods, which require a 

significantly large data window to suppress oscillations. Other more creative and complex 

methods of estimating Thevenin parameters are examined in the literature review of this 

manuscript. The method used primarily through the course of this research is based on the 

approach using two operating points and is most succinctly described by the authors of [19]. The 

Methodology section (2) and appendices of this report gives an overview of the computations 

involved. 

One of the main advantages of a VIP device is that it only uses local measurements and therefore 

doesn’t require system-wide knowledge to operate. However, the idea of using networked VIP 

devices to improve stability margin estimates has also been proposed by various researchers [24, 

25]. Combining evidence from multiple VIP devices implies some form of knowledge beyond its 

own observations. This is not a contradiction because a communication scheme between VIP 

devices doesn't mean that each device would need total system knowledge, requiring large 

bandwidth, computational power and communications infrastructure investment. If nearby VIP 

devices can be used to improve the predictive accuracy or the confidence of the prediction, then 

the net benefits of the non-centralized approach to voltage stability prediction are preserved and 

only a minimal communication network would be needed. Communications might be limited to a 

very narrow set of data such as the predicted stability limit along with a measure of the device's 

confidence in its predictions. The localized and autonomous nature of the VIP device would thus 
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be preserved. It is in this vein that the research presented here attempts to demonstrate distributed 

algorithms whereby neighboring VIP devices might work together for a more accurate solution. 

Depending on the desired implementation scheme the VIP device could be used to add a layer of 

reliability to communication. System-wide communication could be through a less reliable 

medium, for example a fiber-optics link with a centralized control center. Communication with 

nearby VIP devices might be through a decentralized communication scheme which would be 

less vulnerable to a single point of failure. If system-wide communication is lost, the device can 

still operate. 

1.2.2 VIP Literature Review 

In [26] the authors solve the Newton-Raphson power flow problem at operating points, watching 

the Jacobian for zero-crossings. They observe that if there is no change in sign in a continuously 

variable iterative process and that the starting point of the iteration is stable, then the solution 

will also be stable. Since the iterative process is necessarily executed in discrete steps, the 

possibility of an unobserved double zero-crossing (while rare in practice) could falsely indicate a 

stable system. To counter these problems, researchers propose a modified Newton’s algorithm 

which makes it possible to approach the point of voltage collapse with accuracy. In order to find 

a robust solution, the authors develop a technique that changes the iterative step size. In effect by 

decreasing the step of Δ𝑃, according to the tolerance of the load flow solution, they determine 

the proximity of 𝑃 to the stability limit and the last operating condition computed by their 

method will correspond to the stability limit. For large systems, this method could become quite 

time consuming, especially with the technology available at the time of publication in 1975. 
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In [27] researchers examine the problems of multiple load flow solutions when the solutions are 

similar (i.e. near the point of bifurcation) to determine which operating point is stable. In their 

study on a 6-bus system, they find the flat start solution to be more stable than the solution given 

by the exhaustive search. They also found that by examining the signs of the sensitivity matrix 

for voltage and reactive power control defined by [28], they are able to determine which solution 

is the stable one. In addition, by using the concept of stored energy in a system, they can make a 

similar determination based on whether the stored energy increases or decreases as frequency 

changes. They point out that the methods proposed by [26], which rely on the Jacobian solution 

method, have the disadvantage that it requires knowledge of a stable operating point, while the 

methods they propose using the sensitivity matrix and stored power concepts do not require this 

a priori information. 

In [29] and [30], Lof et al. use singular value decomposition of the Jacobian to determine the 

stability limit. For a real symmetric matrix, the absolute values of the eigenvalues obtained in an 

eigenvalue decomposition are equal to the singular values of that matrix. The singular values are 

fairly insensitive to perturbations of matrix elements and are, thus, said to be well-conditioned. A 

fast algorithm for finding the minimum singular value is proposed. 

Chiang et al. [31] delve into dynamic factors that influence the voltage stability problem. They 

assert that, in particular, classical load models such as constant P-Q, constant impedance, and 

constant current models are insufficient for capturing severe collapse dynamics. Researchers use 

the center manifold voltage collapse model to capture system dynamics after bifurcation and 

investigate how interaction between loads and generators may cause voltage collapse. The 

authors conclude that voltage collapse could be avoided by manipulating system parameters such 

that the bifurcation point is outside of the normal operating region. 
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Hawkins et al. [32] propose an algorithm for assessing the margin of a power system to the 

voltage collapse point. This margin is expressed as the additional active power transfer which 

could be sustained. The algorithm monitors the voltage sensitivity elements of the Jacobian 

elements, 𝜕 𝑖/𝜕𝑃𝑖 and 𝜕 𝑖/𝜕𝑄𝑖. The researchers state that a sign change in the inverse Jacobian 

(which heralds the system collapse) can be the result of a generator reaching its reactive power 

limit or could occur when the voltage droops as the load increases. Their proposed method 

predicts the precise collapse point by the following: (1) After observing a sign change, the 

inverse Jacobian is recalculated with the most recently limited generator restored back to a 

voltage-controlled (PV) bus. (2) If the elements are still negative, then they linearly interpolate 

between the current point and the point of the previous PV-PQ transition. 

Vu, et. al describe a system which uses only local measurements to predict the proximity to 

voltage collapse. This system calculates the Thévenin equivalent of the system as seen from a 

particular bus along with an equivalent impedance of the load. Modeling the system as this two-

bus equivalent network, the system can be described by the equation, 

   =   𝑇ℎ  – 𝑍𝑇ℎ𝐼  . 

Since  𝑇ℎ  and 𝑍𝑇ℎ are not directly observable and are complex numbers, the system contains 

four unknowns and is not directly solvable. Vu, et al. propose the use of a least-square algorithm 

to find the best solution based on this equation with multiple measurements. The system 

described by these researchers will become known as the Voltage Instability Predictor (VIP) 

which forms the basis for much of the research contained in this study. 

A difficulty of the VIP method pointed out by Corsi et al. is that the equation (above) has infinite 

results unless the assumption is made that throughout the interval between two measurements, 
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 𝑇ℎ  and 𝑍𝑇ℎ remain constant. However, when measurements are taken too close together, the 

corresponding matrix equation has a high risk of being singular if there is no variation in 

observable parameters. An accurate result is only produced when there is significant system 

variation, which often happens too close to collapse for any meaningful action to be taken. As 

such, Corsi et al. propose an algorithm to speed up the identification of Thevenin parameters. In 

this algorithm, the direction of change and the amount of variation in the Thevenin voltage are 

taken into account. 

1.3 Sensor Fusion 

Sensor fusion is a class of data analysis techniques that use multiple data sources in a similar 

way that humans' cognitive processes make deductions based on observations about the 

environment [6, 7]. We are constantly performing a form of data fusion in our daily lives, 

updating previously held beliefs based on new data which may be incomplete or unreliable 

Sensory information in the form of sight, smell and touch combine to tell us if food is delicious 

or rotten. Since information from one sensor might be incomplete or inaccurate, sensor fusion is 

an attempt to take the advantage of the multiplicity of data to fill in these gaps. Applications are 

widespread ranging from image processing [8], medical imaging, target tracking and 

identification [9], and robotics and artificial intelligence[10]. 

More formally, sensor fusion is the “acquisition, processing and synergistic combination of 

information” [7] gathered by a multiplicity of sources with the aim of providing a better 

understanding of the phenomenon being examined. If successfully implemented, sensor fusion 

can offer the following benefits when compared to data from only one sensor or multiple sensors 

examined separately: 
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•  —multi-sensor systems are inherently redundant. With data available from multiple 

sources, the system can operate with the failure of one or more sources, albeit with 

reduced performance. From a power systems perspective, this is important because 

planned and unplanned outages often occur. 

• Coverage area—multiple sensors can be arranged over a wide area to allow observations 

for a region larger than what any single sensor could observe. For making observations 

about system voltage stability, this is important because voltage collapse is a system-wide 

phenomenon. 

• Confidence—sensors that agree can confirm each other’s observations, increasing 

confidence in the fused observation. 

• Response time—since more data is collected simultaneously, observations can be made 

with high confidence in a shorter time interval than they might be from one sensor 

collecting data alone. 

• Accuracy—multiple sensors observing the same phenomenon can result in a more 

accurate observation than any single sensor could. 

Techniques for sensor fusion include sequential estimation methods such as Kalman filtering, 

pattern recognition techniques based on clustering algorithms or neural networks, and decision-

based techniques such as Bayesian inference or Dempster-Shafer’s method [9]. Classical 

inference gives the probability that an observation can be assigned to a particular object or event 

given a hypothesis if the probability distribution function (PDF) is known. However, classical 

inference has some difficulty when trying to fuse different events [33]. It is difficult to obtain the 

probability density function of the observable parameter. Furthermore, classical inference has the 

ability to assess only two hypotheses at a time: the test hypothesis and the null hypothesis. 
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1.3.1 Dempster-Shafer Evidential Theory 

Dempster-Shafer (D-S) evidential theory allows sensors to contribute detection or classification 

information to the extent of their knowledge. D-S theory can be interpreted as a generalization of 

probability theory in which probabilities are distributed to sets of propositions instead of 

mutually exclusive singleton propositions [11]. These probabilities are summed together as 

“Belief” functions, annotated 𝐵𝑒𝑙( ), which represent the total confidence that can be placed in 

the proposition or subset. The set of all propositions under consideration are called the “focal 

frame”, which sums to 

Uncertainty problems can be classified into two types of uncertainty: aleatory uncertainty and 

epistemological uncertainty [11]. Aleatory uncertainty results from the stochastic nature of 

systems, in other words, randomness. This type of uncertainty can be dealt with through the 

frequentist approach to probability. Given a set of data with random noise and a sufficiently large 

sample size, we can construct a probability distribution function to describe the expected result 

of a parameter. The second type of uncertainty, epistemic uncertainty, arises from lack of 

knowledge about a system. This is a property of the observers (which will frequently be referred 

to as sensors in this study) and not of the system itself. 

If an observer (sensor) reports based on its observations, that it believes with a 70% confidence 

that it has witnessed event A, does this imply that it has 30% confidence that it did not observe 

event A? Or does it simply mean that it has 30% confidence that it does not know what it was a 

witness to? Moreover, are these confidence assignments based on statistical data? Or are they 

based on a heuristic using imperfect information? If an observer believes it witnessed A with 

100% certainty, does that mean that it is 100% certain that A happened, or can the observer be 
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wrong? Can we ever really have complete knowledge of anything? Epistemological musings 

aside, these are types of questions which traditional probability struggles to answer and D-S 

theory attempts to provide a framework for by incorporating two main concepts: The Theory of 

Belief and the Combination Rule. 

These types of questions were pondered by Bernoulli2 in the foundational text on probability, Ars 

Conjectandi. Bernoulli distinguishes two types of arguments: “pure” and “mixed” [34]. A pure 

argument can prove something in such a way that it does not prove anything in other cases. A 

mixed argument proves something in such a way that it will prove the contrary in other cases. He 

provides an example illustrating these argument types concerning the misfortune of Gracchus, 

which is here annotated with equivalent D-S Belief functions following Yager and Lui[35]. 

Suppose a person was stabbed in a crowd and reliable witnesses say that the perpetrator was 

wearing a black cloak. Gracchus and three others in the crowd were observed to be wearing a 

black coat. Upon subsequent questioning, Gracchus pales. The fact that Gracchus is wearing a 

black coat is a mixed argument. It provides evidence both for his guilt and for his innocence (if 

he wasn’t wearing it). Additionally, we can write the belief function for this argument. Since 

there are four total suspects wearing a black coat and only one of the suspects is the murderer, 

the amount of belief it contributes to his guilt is 𝐵𝑒𝑙(𝑔𝑢𝑖𝑙𝑡𝑦) = 1/4 and 𝐵𝑒𝑙(𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡) = 3/4. 

Since he must be either guilty or innocent, the belief in the set of all propositions, 𝜃 =

{𝑔𝑢𝑖𝑙𝑡𝑦, 𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡}, is 𝐵𝑒𝑙(𝜃) = 1. This belief function is additive since all beliefs sum to 1. 

Gracchus’ pallor is a “pure” argument. Since he might have turned pale for any number of 

 

2 Interestingly, not the Bernoulli who developed Bernoulli’s principle of fluid dynamics, but his 

uncle. 
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reasons (guilt, sickness, cold, fear, anger, etc.). It only proves his guilt if he pales from a guilty 

conscience, but it does not prove his innocence if he pales for another reason. Thus, the evidence 

contributed by this observation 𝐵𝑒𝑙(𝑔𝑢𝑖𝑙𝑡𝑦) < 1 and 𝐵𝑒𝑙(𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡) =  , while 𝐵𝑒𝑙(𝜃) = 1, as 

before. The beliefs no longer add to 1, thus 𝐵𝑒𝑙(𝑔𝑢𝑖𝑙𝑡𝑦) and 𝐵𝑒𝑙(𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡) cannot represent 

probabilities that Gracchus is guilty or innocent. 

A key feature of D-S theory is that it allows the assignment of a portion of a sensor's knowledge 

about a proposition to uncertainty instead of assigning it to negation of the proposition. This 

allows decisions about fused data which might be based on an incomplete probabilistic model. 

Because of its flexibility, D-S theory provides a powerful tool for multi-sensor fusion. For 

example, a sensor gathers evidence that suggest with a 10% confidence that it is detecting event 

A, with 50% confidence that it is detecting event B. Under probability theory, the remaining 40% 

confidence is assigned to the negation of A and B, in other words, the lack of evidence for either 

A or B is interpreted as evidence against A and B. Under D-S theory the remaining 40%, is 

assigned to uncertainty. These confidence measures are referred to in D-S theory as basic 

probability assignments (BPAs) or probability mass assignments. In this work, the term BPA is 

employed. 

1.3.2 Basic Probability Assignments 

D-S theory relies on BPAs to rate the amount of belief a sensor can contribute to the optimal 

hypothesis selection. Even if a sensor ascribes low BPA to an observation, the observation can 

still turn out to be the best hypothesis if the sensor ascribes high BPA to its uncertainty (or if it is 

outvoted by its peers). The BPA assignment of set 𝐴 can be referred to as the probability mass of 

𝐴 and written 𝑚(𝐴). It defines a mapping of each set within the power set ℙ (the set of all 



21 

subsets of the range of hypotheses) to a value between 0 and 1. The value that is assigned to 

𝑚(𝐴) is the support for the evidence of only the set 𝐴 and does not include the BPAs of any 

subsets of 𝐴. The criteria for BPA can be formally defined by the following relationships [11]: 

𝑚:ℙ( ) → [ ,1] 

(BPA for every proposition is a value between 0 and 1.) 

𝑚(∅) =   

(The BPA assigned to the empty set is 0.) 

∑ 𝑚(𝐴) = 1

𝐴∈ℙ(𝑋)

 

(The BPAs of every subset of propositions within the set of all propositions must sum to 1. It’s 

still probability, after all.) 

A given set of propositions under examination is often referred to as the focal frame and notated 

by θ (not to be confused with the empty set symbol, ∅). Since the focal frame is a subset of itself, 

BPA can be assigned to the focal frame just like any other subset. The focal frame plays and 

important role in D-S theory because it represents the lack of evidence towards any specific 

proposition or proper subset of the focal frame. This ability to assign BPA to a lack of 

knowledge is central to D-S theory and plays a key role in the data fusion mechanism. 

1.3.3 Theory of Belief Functions 

D-S theory uses the concepts of Belief and Plausibility as a way of contextualizing uncertainty. 

The belief function arises from assigning probabilities to a set of propositions rather than to 
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individual points. Belief in a hypothesis does not measure the probability that it is correct, but 

rather the sum of the BPAs of the evidence that are in support of the proposition. Belief is 

defined as the total BPAs assigned to a subset of compatible propositions. If 𝐴 is the set of 

compatible propositions and 𝐵 represents subsets of those propositions, then 

𝐵𝑒𝑙(𝐴) =  ∑ 𝑚(𝐵)

𝐵|𝐵⊂𝐴

 

The upper bound of the probability interval, Plausibility (𝑃𝑙) is the sum of all BPAs of the sets 

that intersect the set of interest. Using the same notation with sets 𝐴 and 𝐵, the expression for 𝑃𝑙 

can be formally written as 

𝑃𝑙(𝐴) = ∑ 𝑚(𝐵)

𝐵|𝐵∪𝐴≠∅ 

 

Plausibility can also be defined by the complimentary relationship, which is the total confidence 

not assigned to the negation of Belief [36]. 

𝑃𝑙(𝐴) = 1 − 𝐵𝑒𝑙(�̅�) 

Historically, the Belief and Plausibility functions define the lower and upper bounds of the 

probability interval, as mentioned above. These functions were initially referred to by Dempster 

as the upper and lower probabilities in his foundational work on the topic [37]. Within this 

framework, the range defined by (𝐵𝑒𝑙(𝐴), 𝑃𝑙(𝐴)) bounds the “true” probability of A. In other 

words, if A is a subset of events with 𝑃(𝐴), then 𝑃(𝐴) should fall within the range bounded by 

the Bel and Pl functions. 
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Shafer’s interpretation abandons the concept of lower and upper probability in favor of a 

semantic interpretation: The “belief” that we have in a hypothesis is the amount of “evidence” 

that we can find in support. The “plausibility” of a hypothesis is defined by the lack of evidence 

against it (but not necessarily for it). In other words, Shafer[36] viewed belief in a hypothesis not 

as a measure of the probability that it is true or not, but rather of the strength of the arguments 

that are in support of it. 

The applicability of belief functions can be boiled down to three separate uses when applied to 

problems containing multiple or incomplete sets of information[38]: 

1) Representing incomplete knowledge. Belief functions can be used to represent partial 

knowledge in cases where information is incomplete. When Bel(A) is interpreted to mean 

the strength of the evidence in favor of A and the Pl(A) is interpreted to mean the lack of 

evidence against 𝐴, then the probability masses or BPAs can be assigned as 𝑚(𝐴) 

(probability of arguments for A) and 𝑚(�̅�) (likelihood of arguments against A) where, 

crucially, 𝑚(𝐴) + 𝑚(�̅�) is not necessarily equal to 1. 

2) Belief updating. Belief functions provide a method of incorporating new evidence into 

partial or incomplete knowledge of a state. The method for updating a 𝐵𝑒𝑙(𝐴1) with 

𝐵𝑒𝑙(𝐴2) for a new combined function, 𝐵𝑒𝑙(𝐴12) is given by the orthogonal sum rule 

known as Dempster’s rule, the procedure for which is explained in the following section. 

3) Pooling evidence from multiple sources. When there is evidence available observing the 

same event from multiple sources, the individual bits of evidence can be combined using 

Dempster’s rule as well. Every piece of evidence towards a proposition can used to 

update the belief function and reduce uncertainty. Collecting evidence from multiple 
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sources also requires a way to handle conflicting information. Support for conflicting 

evidence is assigned to the measure of uncertainty. Dempster’s rule then uses 

renormalization to redistribute the weights to compatible propositions. 

In this study, the hypotheses are formulated by asking which measurement location is best for 

determining the stability margin. Since only one location can be the “best,” the propositions 

represented by these hypotheses are incompatible (non-overlapping). Therefore, any belief in a 

proposition is equivalent to the BPA assigned to the corresponding sensor. The methodology for 

choosing the BPAs at each measurement location is discussed in Chapter II. 

1.3.4 Combination of Evidence 

Since D-S theory often deals with multiple evidence sources, there needs to be a formal rule for 

combination of evidence. This rule is called Dempster's rule which calculates the aggregate of 

evidence given by BPAs from two sources.  

The general form for the combination of evidence from two sensors which assign BPAs 𝑚1 and 

𝑚2 onto a set of propositions 𝐴 and 𝐵, respectively, is the orthogonal sum of the BPAs which is 

often written with the notation,  𝑚12 = 𝑚1⨁𝑚2. The combined set of evidence, 𝑚12(𝐶) is the 

sum of the product of the BPAs of compatible (intersecting) propositions: {𝐶|𝐴 ∩ 𝐵 = 𝐶}. The 

sum is multiplied by a normalizing factor, 𝐾, which is calculated from the inverse of the one 

minus the sum of incompatible propositions, or when the intersection of the proposition set A 

and proposition set B results in the empty set. The resulting equations are 

𝑚12(𝐶) = ( ∑ 𝑚1(𝐴)𝑚2(𝐵)

𝐴∩𝐵=𝐶

)𝐾 
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where 

𝐾 =
1

1 − ∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴∪𝐵=∅
  . 

For larger values of 𝐾, there are fewer compatible propositions, and the overlap between A and 

B contains less information. 𝐾 =     implies complete contradiction between A and B. 

In order to understand the fusion algorithm and explore its implications, it is instructive to 

consider a simple example using concepts which are already familiar. In this scenario, medical 

doctors, Dr. Alice and Dr. Bob, are attempting to diagnose a patient who is experiencing certain 

symptoms. For this example, there are two possible mutually-exclusive conditions, Condition X 

and Condition Y. Since there are two propositions, the focal frame is 𝜃 = { , 𝑌} 

Dr. Alice is 90% confident that she has seen the condition before, but thinks it equally likely to 

be a result of condition X or condition Y. Since, she is confident that she knows that the cause is 

condition X or Y, she assigns only a 10% to proposition that she does not know what condition is 

the root cause (𝑚𝐴(𝜃) =  .1). The rest she splits evenly between condition X and condition Y 

(𝑚𝐴( ) =  .45 and 𝑚𝐵(𝑌) =  .45).  The assignment of BPA to θ does not imply 10% support 

that the condition is neither X or Y, but that a 10% belief that it could be either one or neither. 

While this seems to contradict the BPA rule in the previous section since, the support assigned to 

the empty-set (∅) should be 0. However, there can easily be a 3rd unknown condition or set of 

conditions (call it condition Z) which would have 0 support and not change the outcome of the 

belief and plausibility functions that we use to describe Dr. Alice’s diagnostic evaluation. D-S 

belief theory allows us to make the following statements about Alice’s views, pre-fusion. 
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Belief that condition A is true is 45%. This is apparent, since the only support for A comes from 

the BPA for A: 

𝐵𝑒𝑙𝐴( ) = ∑ 𝑚(𝑥)

𝑥|𝑥⊂𝑋

=  .45 

Where X is an element of the power set of θ: 

𝑥 ∈ ℙ(𝜃) and ℙ(𝜃) = {{ }, {𝑌}, { , 𝑌}} 

Plausibility that condition A is true is 55%. Plausibility describes the lack of evidence or support 

for against. Since X and Y are mutually exclusive propositions ( ∪ 𝑌 = ∅), the support for Y 

implies evidence against X, while support for θ is not evidence against any specific proposition 

( ∪ 𝜃 =  ): 

𝑃𝑙𝐴( ) = ∑ 𝑚(𝑥)

𝑥|𝑥∪𝑋≠∅ 

= 𝑚( ) +𝑚(𝜃) =  .45 +  .1 =  .55 

Similarly, the belief that Dr. Alice the condition is one that she has seen before is 90%: 

𝐵𝑒𝑙𝐴({ , 𝑌}) = ∑ 𝑚𝐴(𝑥)

𝑥|𝑥⊂{𝑋,𝑌}

= 𝑚𝐴( ) +𝑚𝐴(𝑌) =  .45 +  .45 =  .9 

The plausibility that it is either X or Y is 100%, since she has no evidence to the contrary: 

𝑃𝑙𝐴({ , 𝑌}) = ∑ 𝑚𝐴(𝑥)

𝑥|𝑥∪{𝑋,𝑌}≠∅ 

= 𝑚𝐴( ) +𝑚𝐴(𝑌) +𝑚𝐴(𝜃) =  .45 +  .45 +  .1 = 1 

Dr. Bob is rather uncertain. He suspects that the symptoms are caused by condition X, but is not 

familiar with condition Y. Since he has little faith in his response the assigns 80% to the 
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proposition that he does not know (𝑚𝐵(𝜃) =  .8) and 20% to support of the diagnosis for 

condition X. Since he does not have any knowledge of condition Y, he assigns 0% (𝑚𝐵(𝑌) =  ). 

This assignment to 𝑚𝐵(𝑌) does not mean that he thinks that there is a 0% chance that condition 

Y is the correct answer, he simply has no evidence to support this (and only this) proposition. 

Using the same equations applied to Dr. Alice, we can make the following statements about Dr. 

Bob’s diagnostic beliefs: 

𝐵𝑒𝑙𝐵( ) = 𝑚𝐵( ) =  .2 

𝑃𝑙𝐵( ) = 𝑚𝐵( ) +𝑚𝐵(𝜃) = 1 

𝐵𝑒𝑙𝐵(𝑌) = 𝑚𝐵(𝑌) =   

𝑃𝑙𝐵(𝑌) = 𝑚𝐵(𝑌) +𝑚𝐵(𝜃) =  .8 

𝐵𝑒𝑙𝐵({ , 𝑌}) = 𝑚𝐵( ) + 𝑚𝐵(𝑌) =  .2 

𝑃𝑙𝐵({ , 𝑌}) = 𝑚𝐵( ) + 𝑚𝐵(𝑌) +𝑚𝐵(𝜃) = 1 

There are two takeaways from these results: 1) the plausibility of condition Y is non-zero even 

though it was assigned no BPA and 2) the addition of a proposition with no BPA (in this case, Y) 

does not affect the outcome of the other propositions. If condition Y was left out of the focal 

frame, then we would still get the result that {𝐵𝑒𝑙𝐵( ), 𝑃𝑙𝐵( ) } = { .2,1}. 

In order to perform the fusion operation, it is helpful to make a reference table which shows 

which propositions are compatible (their union results in result in a non-empty set) and which are 

incompatible (their union results in empty set), 
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   𝑌 𝜃 

   ∪  =    ∪ 𝑌 = ∅  ∪ 𝜃 =   

𝑌  ∪ 𝑌 = ∅ 𝑌 ∪ 𝑌 = 𝑌 𝑌 ∪ 𝜃 = 𝑌 

𝜃 𝜃 ∪  =   𝜃 ∪ 𝑌 = 𝑌 𝜃 ∪ 𝜃 = 𝜃 

 

and to summarize the BPA assignments,. 

 Dr. Alice Dr. Bob 

𝑚( ) 0.45 0.2 

𝑚(𝑌) 0.45 0 

𝑚(𝜃) 0.1 0.8 

 

The fusion algorithm is best visualized (and easiest to perform) in matrix fashion where each 

element of matrix 𝑀𝑖𝑗 is the product of 𝑚𝐴(𝑖)𝑚𝐵(𝑗). The last row and column are reserved for 

the BPA assigned to the focal frame. This approach is also convenient since it can be performed 

as multiplication of a row and column matrices given by the sets of BPA assignments. The 

resulting table is below. 

 𝑚𝐵( ) =  .2 𝑚𝐵(𝑌) =   𝑚𝐵(𝜃) =  .8 

𝑚𝐴( ) =  .45 𝑚𝐴( )𝑚𝐵( ) =  . 9 𝑚𝐴( )𝑚𝐵(𝑌) =   𝑚𝐴( )𝑚𝐵(𝜃) =  .36 

𝑚𝐴(𝑌) =  .45 𝑚𝐴(𝑌)𝑚𝐵( ) =  . 9 𝑚𝐴(𝑌)𝑚𝐵(𝑌) =   𝑚𝐴(𝑌)𝑚𝐵(𝜃) =  .36 

𝑚𝐴(𝜃) =  .1 𝑚𝐴(𝜃)𝑚𝐵( ) =  . 2 𝑚𝐴(𝜃)𝑚𝐵(𝑌) =   𝑚𝐴(𝜃)𝑚𝐵(𝜃) =  . 8 

 

Using �̅� to denote the un-normalized BPA after fusion, we can calculate, 

�̅�𝐴𝐵( ) = ∑ 𝑚𝐴(𝑥)𝑚𝐵(𝑦)

𝑥∩𝑦=𝑋

= 𝑚𝐴( )𝑚𝐵( ) + 𝑚𝐴(𝜃)𝑚𝐵( ) + 𝑚𝐴( )𝑚𝐵(𝜃) 

=  . 9 +  . 2 +  .36 =  .47 

 

�̅�𝐴𝐵(𝑌) = ∑ 𝑚𝐴(𝑥)𝑚𝐵(𝑦)

𝑥∩𝑦=Y

= 𝑚𝐴(𝑌)𝑚𝐵(𝑌) +𝑚𝐴(𝜃)𝑚𝐵(𝑌) +𝑚𝐴(𝑌)𝑚𝐵(𝜃) 

=  +  +  .36 =  .36 



29 

�̅�𝐴𝐵(𝜃) = ∑ 𝑚𝐴(𝑥)𝑚𝐵(𝑦)

𝑥∩𝑦=θ

= 𝑚𝐴(𝜃)𝑚𝐵(𝜃) =  . 8 

As expected, the total BPA of the un-normalized probabilities does not sum to 1. To solve this, 

we employ Dempster’s normalization factor, K, which redistributes the BPA that has been 

assigned to the empty set after fusion. 

𝐾 =
1

1 − 𝑚𝐴(𝑌)𝑚𝐵( ) −𝑚𝐴( )𝑚𝐵(𝑌)
=

1

1 −  . 9
= 1. 989 

After normalizing, the fusion results are 

𝑚𝐴𝐵( ) =  .516 

𝑚𝐴𝐵(𝑌) =  .396 

𝑚𝐴𝐵(𝜃) =  . 88 

𝐵𝑒𝑙𝐴𝐵( ) =  .516 

𝑃𝑙𝐴𝐵( ) = 𝑚𝐵( ) + 𝑚𝐵(𝜃) =  .6 4 

𝐵𝑒𝑙𝐴𝐵(𝑌) = 𝑚𝐵(𝑌) =  .396 

𝑃𝑙𝐵(𝑌) = 𝑚𝐵(𝑌) + 𝑚𝐵(𝜃) =  .483 

𝐵𝑒𝑙𝐵({ , 𝑌}) = 𝑚𝐵( ) + 𝑚𝐵(𝑌) =  .912 

𝑃𝑙𝐵({ , 𝑌}) = 𝑚𝐵( ) + 𝑚𝐵(𝑌) +𝑚𝐵(𝜃) = 1 

1.3.5 Handling Conflicting Data 

As a number of researchers [11, 38-40] and theorists have pointed out, handling datasets with 

large degrees of conflict can be problematic and produce counter-intuitive results. Of course, the 

purpose of performing fusion is to incorporate various sources of evidence which disagree to a 
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certain extent. If there is no conflicting evidence, there would be no need for fusion as every 

source of information would be complete and correct. In case of complete disagreement in which 

there is no uncertainty, the Dempster’s rule calculation is undefined. Suppose that 𝑚1(𝐴) =

1 and 𝑚2(𝐵) = 1. The fusion would result in 𝑚12(𝐴) = 𝑚12(𝐵) =
1

0
⋅  . Since all BPA would 

be assigned to empty-set propositions (100% disagreement) and no BPA would be assigned to 

non-empty sets (no agreement), the normalization factor is 𝐾 =
1

1−1
. The failure to find a 

solution is a shortcoming, but this result is not necessarily count-intuitive. After all, without 

being provided with any other information, any algorithm aimed at reconciling two completely 

contradictory pieces of information will fail to provide meaningful results. 

Yager [40] demonstrates how the D-S fusion algorithm can produce results which are indeed 

counterintuitive under high degrees of disagreement. Given a scenario with three propositions 

over the frame 𝜃 = {𝑎, 𝑏, 𝑐} and two sensors reporting the belief assignment sets 𝑚1 and 𝑚2, the 

following results are reported: 

𝑚1(𝑎) =  .99 𝑚2(𝑏) =  . 1 

𝑚1(𝑏) =  . 1 𝑚2(𝑐) =  .99 

The resulting output from the fusion algorithm will be: 

𝐾 = 1 4 

𝑚12(𝑎) =   

𝑚12(𝑏) = 1 

𝑚12(𝑐) =   



31 

A rational observer examining the sensor outputs would likely conclude the opposite result: 

proposition b is the least likely to be true since both sensors agree with a high degree of 

confidence that b is not true. The complete contradiction between propositions a and b and the 

resulting high normalization factor lead to all BPA being assigned to b. However, in this case the 

rational observer would not be able to determine which proposition is correct since the evidence 

for a and c is equally strong.  

In a similar vein, a single faulty sensor, could cause results which are invalid even in a system 

containing many sensors which are in strong agreement. Given a three-sensor system with the 

focal frame 𝜃 = {𝑗, 𝑘} the following outputs are reported: 

𝑚1(𝑗) =  .99 𝑚2(𝑗) =  .99 𝑚3(𝑘) = 1 

𝑚1(𝜃) =  . 1 𝑚2(𝜃) =  . 1  

The result of the fusion between 𝑚1 and 𝑚2 produces strong agreement as one would expect. 

𝐾12 = 1 

𝑚12(𝑗) =  .9999 

𝑚12(𝑘) =   

𝑚12(𝜃) =  .   1 

However, further fusion with sensor 3, the faulty sensor, which is reporting 100% support for k, 

reverses the result: 

𝐾123 = 1 5 
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𝑚123(𝑗) =   

𝑚123(𝑘) = 1 

𝑚123(𝜃) =   

In this example, a ration observer or even some type of polling algorithm, would likely have 

easily concluded that j is most likely correct since two sensors have agreed on this proposition 

with a high degree of certainty. Furthermore, this example could be extended to an arbitrarily 

large set of sensors reporting a high level of agreement. Still, it would only require one faulty 

sensor reporting 100% confidence in the incorrect reading, to overrule every other sensor. 

By now, the astute reader might have noticed the counterintuitive results obtained in the 

examples presented above manifest themselves when one or more sensors reports no uncertainty 

(i.e. assigns no BPA towards the focal frame, θ). If D-S fusion is an engine, then uncertainty is 

the oil that allows the parts to move and produce meaningful action. In Yager’s example, adding 

even a small amount of uncertainty to the evidence gathered by the sensor provides entirely 

different—and much more reasonable—results. Instead of the sensor outputs defined above, 

consider a case where the mass assignments are modified to take 1% BPA from the proposition 

with the highest confidence and reassign it to the focal frame: 

𝑚1(𝑎) =  .98 𝑚2(𝑏) =  . 1 

𝑚1(𝑏) =  . 1 𝑚2(𝑐) =  .98 

𝑚1(𝜃) =  . 1 𝑚2(𝜃) =  . 1 

The new result is 
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𝐾 = 5  

𝑚12(𝑎) =  .49 

𝑚12(𝑏) =  . 15 

𝑚12(𝑐) =  .49 

𝑚12(𝜃) =  .  5 

This result set intuitively makes sense with the input data. Support for a and c are equal and 

much larger than support for b, which is very small. By adding a small amount of structural 

uncertainty to the problem, we were able to produce reasonable results. 

Another approach, which was developed for this study, is to divide every BPA assigned to a 

proposition by the total number elements in the focal frame before performing the fusion 

operation. This has the added benefit, that it allows the BPAs to be assigned arbitrarily to any 

value on the range [0 1] without having to worry about the total probability of a proposition set 

exceeding 1 (which would violate the rules establishing the concept of BPA). We can 

demonstrate this approach by modifying the “faulty sensor” example. Since there are two 

elements in the focal frame, the highest initial BPA that any proposition can be assigned is 𝑚 =

1

2
. We obtain the following assignments: 

𝑚1(𝑗) =
1

2
=  .5 

𝑚2(𝑗) =  .5 𝑚3(𝑘) =  .5 

𝑚1(𝜃) = 1 −  .5 =  .5 𝑚2(𝜃) =  .5 𝑚2(𝜃) =  .5 

Which results in an output of 

𝐾123 = 1.6 
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𝑚123(𝑗) =  .6 

𝑚123(𝑘) =  .2 

𝑚123(𝜃) =  .2 

Now the support for j is the strongest as expected, but there is also a good bit of uncertainty as 

well as support assigned to k. This is reasonable given that there are only 3 sensors and one is in 

strong disagreement. Lacking any knowledge on the functionality of sensor 3, we have no 

evidence to suspect it other than its outlier measurement. It is still plausible (Pl = 0.4; Bel = 0.2), 

given the data that we have, that the two sensors in agreement are faulty. If we add additional 

sensors to the problem and they are in agreement with the first two sensors, the results will 

converge towards complete confidence in the proposition j. If we add two additional BPA sets, 

{𝑚4(𝑗),𝑚4(𝜃)} = { .5,  5} and {𝑚5(𝑗),𝑚5(𝜃)} = { .5,  5} the next two fusion results will be 

𝐾1234 = 1.111 

𝑚1234(𝑗) =  .778 

𝑚1234(𝑘) =  .111 

𝑚1234(𝜃) =  .111 

𝐾12345 = 1. 59 

𝑚12345(𝑗) =  .882 

𝑚12345(𝑘) =  . 588 

𝑚12354(𝜃) =  . 588 

The as additional sensors are added, the support for proposition j is strengthened beyond the 

support given by any one sensor and the effect of the faulty sensor are diminished. This approach 

forms the basis for the methodology employed in this study which is presented in Chapter II of 

this document. 
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1.3.6 Sensor Fusion Literature Review 

Researchers, Xiao et al. [41], propose an iterative scheme, using the nodal average consensus to 

compute a maximum-likelihood (ML) estimate from distributed sensor data. Information is 

diffused across the network by updating each node with a weighted average from connected 

nodes. Local weighted least-squares estimates are then computed at each node. This approach 

avoids the difficulty of a centralized sensor fusion scheme wherein each sensor must send data to 

a data fusion center. In this distributed scheme, there is no single fusion sensor, and each node 

does not contain knowledge of the network topology. The researchers use the concepts of 

maximum-degree weights and Metropolis weights adapted from Markov chain construction 

methods when computing the distributed consensus. They show that after sufficient iterations, 

the individual nodes will reach consensus on a parameter (for example, a global average) that a 

centralized data fusion center would reach given complete knowledge of the system. 

In [42], Olfati-Saber examines the problem of distributed Kalman filtering (DKF). Kalman 

filtering refers to a set of equations that provide an efficient recursive solution to the least-

squares method, which was first described by R.E. Kalman 1960 [43]. Olfati-Saber proposes a 

method to divide the DKF problem into two separated dynamic consensus problems. The first 

involved decomposing the problem into a network of collaborative “micro-Kalman filters” with 

local communication. The second problem involves implementation of consensus filtering. He 

proposes a solution to the DKF problem which does not require a network with complete all-to-

all links (which is rather impractical), as had been proposed by prior researchers. He employs a 

low-pass consensus filter for the fusion of time-varying measurements at a node and a band-pass 

consensus filter for the fusion of the inverse covariance matrices. The outputs of these filters feed 

into the distributed “micro-Kalman filters” which are able to collaboratively provide a state of 
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the observation. He concludes that the proposed DKF solution provides almost identical 

estimates to the centralized algorithm and is much more scalable. 

He, et al. [44] use a modified form of DS theory to estimate the remaining useful life (RUL) of 

lithium ion batteries. Model parameters are computed by combining sets of measurements and 

sets of training data. The researchers record the capacity curves of three batteries and use a 

parametric fit to calculate model parameters and the 95% confidence intervals of each parameter. 

Dempster’s rule is applied by first assigning the same probability mass to each parameter’s 

“correctness,” implying that each parameter estimate is equally credible. If a parameter 

estimate’s confidence interval is observed to fall inside the confidence interval of another 

parameter’s estimate, then the masses are summed. This is similar to Dempster’s rule in which 

probability masses of subsets of a given set are summed during sensor fusion. Rather than 

selecting parameters based on the greatest probability, as is done in traditional DS fusion, the 

model parameters are calculated by weighted arithmetic mean with the resultant probability 

masses as the weights. Since the results rely on data-driven methods, the technique does not 

require specific knowledge of battery materials or properties to predict its RUL. He, et al. [44] 

then employ Bayes’ rule with Monte Carlo sampling to update the parameter estimate after each 

fused observation. 

A key problem in DS theory is the calculation of the mass function based on information 

provided by the sensors. As researchers in [45] point out, the definition of a probability mass 

assignment function remains a largely unsolved and the assignments are usually performed 

heuristically. 
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Researchers, Basir and Yuan [46], use Dempster-Shafer theory to help with engine fault 

diagnosis. The effectiveness of such a mechanism depends on how complimentary the 

information obtained by the sensors is. It is difficult to identify the correct results from data 

produced by sensors when it contains a wide array of contradictory information. Basir and Yuan 

[46] propose two methods for probability mass assignments. One such method is in terms of a 

feature vector which defines a vector of length M corresponding to measurements from M 

sensors. The measurements can be of mixed type. For example, one element may represent the 

RMS value of one sensor and another element could represent the kurtosis of the same sensor or 

a different sensor.  If there are N fault states, an N by M matrix can be defined with each row 

corresponding to the known sensor outputs representative of each state. The inverse of the 

Minkowski distance between the measurement vector and the rows of the fault matrix are 

normalized and treated as probability mass assignments. The researchers are able to demonstrate 

that the fused information provides a more accurate engine fault diagnosis than individual 

sensors. 

Xu, et al. [45] propose a method to determine probability mass assignments using properties of 

normal distributions from training data. They first perform a normality test and then a Box-Cox 

transformation as needed to ensure that the training data is normally distributed. From the 

transformed mean and standard deviation, a normal curve is obtained for each class in the data 

set. Thus, for each attribute, the set of normal distribution curves can be plotted for each class. 

For example, the researchers use a dataset which contains measurements for different types of 

iris flowers. One plot shows the normal distributions of sepal lengths for three iris species. Xu, et 

al. [45] show that the probability of a specific sample belonging to a class is proportional to the 

intersection point of the normal curve with the corresponding value of the sample. An algorithm 
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is developed that takes advantage of this property to assign probability masses. The researchers 

conclude that this is an effective method for probability mass assignment when training data is 

available. 
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2 METHODOLOGY AND SIMULATIONS 

As discussed in the previous chapter, the simplicity of the VIP device provides advantages, but 

these advantages come at a cost: as shown in this study, the predictions made at each VIP sensor 

throughout the system tend to disagree. The purpose of this study is to take advantage of the 

multiplicity of data in order attempt to reconcile the data and make a better prediction about the 

actual stability limits of the system. With this goal in mind, in this chapter the modeling and 

implementation of the VIP devices are described. The techniques to combine evidence from 

multiple VIP devices are described as well. 

2.1 Software 

The simulations performed in this study are primarily performed in MATLAB using the 

MATPOWER v6.0 package. The MATPOWER package provides a suite of tools for solving 

power-flow cases in MATLAB. VIP modeling and data fusion methods were implemented using 

custom MATLAB scripts developed for this study. Additionally, Microsoft Excel was used for 

algorithm prototyping and ad-hoc data analysis. 

2.2 Modeling the VIP Device 

2.2.1 Thévenin estimation 

In its most basic form, Thévanin's Theorem states that any two-terminal (i.e. single port) network 

of resistors and voltage sources can be simplified to a single resistor and voltage source. Under 

steady-state conditions, this theorem can be extended to include inductive and capacitive 

elements [47]. In this commonly used circuit simplification technique, the "Thévenin 

Equivalent" consists of an ideal Thévenin voltage source,  𝑇ℎ , in series with an internal 
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Thévenin impedance 𝑍𝑇ℎ, and an applied external impedance 𝑍   . Figure 6 shows a system 

modeled as a Thévenin equivalent from the perspective of a load bus. 

 

Figure 6: Thevenin equivalent model 

Voltage collapse occurs when the power system infrastructure can no longer supply the power 

demanded by the load. The Thévenin equivalent is instructive because, it shows that voltage 

collapse is a simple phenomenon at its most basic level. It demonstrates that there is a physical 

limit to the amount of power that can be supplied to a load even if neither transmission nor 

generation limits have been exceeded. The components in an ideal Thevenin equivalent have no 

theoretical power limits of their own, yet there exists an inherent limit to the amount of power 

that can be transferred from the source to the load. As any student in an introductory circuits 

class can (hopefully) attest, this limit, the maximum power transfer, occurs in a purely resistive 

circuit when     =  𝑇ℎ . While the derivation is a bit more complicated, the equivalent holds 

true for a reactive circuit: maximum apparent power (𝐒𝐦𝐚𝐱  ) occurs when |𝑍   | = |𝑍𝑇ℎ|. 

The simplest way to determine the Thévenin parameters of a system is to measure the open-

circuit voltage across the terminals and the short-circuit current with the terminals connected 

directly together. The Thévenin voltage is equivalent to the open-circuit voltage measured and 

𝑍𝑇ℎ

𝑍   
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-
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the Thévenin impedance is the ratio of the open-circuit voltage to the short-circuit current, i.e. 

 𝑇ℎ =  𝑜𝑐   and 𝑍𝑇ℎ =  𝑜𝑐 𝐼𝑠𝑐⁄ . 

In power systems, however, we do not have the luxury of being able to remove loads and/or 

short-circuit buses in the name of measuring the Thevenin parameters, so other methods must be 

used. Researchers discussed in the literature review have used a variety of methods. The most 

common are estimation by least-squares (LS) and a simple two-sample difference method. 

2.2.1.1 Least-Squares Method 

In this method of tracking 𝑍𝑇ℎ, researchers use new measurements to update the previous 

Thevenin equivalent values. This method was proposed in the original [18] "SMARTdevice" 

proposal for what is now referred to as a VIP device. The advantage of using this method is that 

it provides stable measurements that do not change wildly with new, potentially inaccurate, 

readings. However, decisions about whether or not a load is rapidly causing the system to 

approach voltage instability need to be made quickly, so the smoothing effect of the least-squares 

method isn't necessarily desirable. 

While this method was explored in the preliminary research leading up to this study, it was 

ultimately discarded in favor of the Difference method (discussed in the next section). The L-S 

estimate does not respond quickly to sudden system changes and it requires significant 

processing power, which conflicts with the purpose of a distributed, fast-acting device. 

2.2.1.2 Difference Method 

The difference method is a simple method based on the premise that if the system is nearly 

constant, then the Thevenin parameters can be calculated from two measurements as the load is 



42 

varied. In practice, the measurements should be close enough together, so the system parameters 

do not have time to change significantly but are far enough apart that the load has time to vary 

meaningfully. 

 = 𝑍𝑇ℎ𝐼1 +  1   

 = 𝑍𝑇ℎ𝐼2 +  2 

Equating these two equations and solving for 𝑍𝑇ℎ results in 

𝑍𝑇ℎ =
 2 −  1
𝐼1 − 𝐼2

 

Figure 7 shows trajectories of 𝑍  and 𝑍𝑇ℎ  at bus 4 of the IEEE 39-bus test case as the system 

loading increases. 

 

Figure 7: Thévenin impedance and load impedance as load factor increases for the first 9 load buses in the 39-bus 

case 
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2.2.2 Margin Estimation 

2.2.2.1 Impedance Margin 

Since the Thevenin-to-load impedance ratio is the marker for the point of maximum power 

transfer, the most natural way to represent the system stability margin is to directly describe the 

extent to which the impedances can change before collapse in terms of impedance itself. Simply 

put, the difference between the impedances is the amount of impedance “left” at a load bus 

before voltage collapse. This stability measure is referred to as the Impedance Margin. While this 

metric might be straightforward mathematically, it is not necessarily intuitive from a system 

operator’s perspective as impedance is not a directly measured quantity like MW and MVA 

flows. 

The margins can also be calculated from the difference between the measured load impedance 

and the Thévenin impedance. In this example, the maximum power is calculated from a linear 

extrapolation of two subsequent measurements of Δ𝑍𝑘 = 𝑍 ,𝑘 − 𝑍𝑇ℎ,𝑘. 

Expressing the system loading factor at step 𝑘 as 𝜆𝑘, let  𝜆𝑐 be the point of collapse where 

Δ𝑍𝑘=𝑐 =  . In other words, when 𝑘 → 𝑐 then 𝑍 ,𝑐 → 𝑍𝑇ℎ,𝑐. Using the point-slope form of a linear 

function, gives 

Δ𝑍𝑘 − Δ𝑍𝑐 = (
Δ𝑍𝑘 − Δ𝑍𝑘−1
𝜆𝑘 − 𝜆𝑘−1

)𝜆𝑘 − 𝜆𝑐  . 

When solved for the margin in terms of the load factor, 𝜆𝑐 − 𝜆𝑘, and substituting Δ𝑍𝑐 =  , the 

impedance margin is, 
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𝑀𝑍 = 𝜆𝑐 − 𝜆𝑘 =
Δ𝑍𝑘

Δ𝑍𝑘 − Δ𝑍𝑘−1
(𝜆𝑘 − 𝜆𝑘−1) 

 

Figure 8: Impedance margin estimates on the 39-bus study case 

The challenge of this method lies in estimating the impedance trajectories. In the above 

formulation a linear extrapolation is used. The trajectories can also be estimated by using a 

regression technique, and the coefficients of the resulting polynomial can be fitted by linear least 

squares or nonlinear least square techniques. The accuracy of the regression is impacted by the 

number of data samples used for estimating the curve. The Thevenin equivalent impedance is 

mostly constant, except when events such as PV-PQ transitions, topology-changing 

contingencies or generator trips take place. 

2.2.2.2 Power Margin Method 

In light of the difficulty conceptualizing the Impedance Margin, an alternative method is 

proposed by [19] and employed in this study which characterizes the system stability margin in 
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terms of apparent power, S. This Power margin, 𝑀𝑃, is defined as the difference between the 

power consumed at bus 𝑘 and the maximum predicted power at that bus before voltage collapse. 

Δ𝑆 = 𝑆𝐷 − 𝑆𝐷,max    

After Julian et al. the power margin is calculated using a linear extrapolation of the slope of the 

V-I curve calculated at a given iteration, 𝑘, to its maximum forecast [19, 23]. 

The slope of the V-I curve is calculated using the current and previous iteration’s measurements. 

Incidentally, this is equal to the negative of Thevenin impedance: 

 𝑘 −  𝑘−1
𝐼𝑘 − 𝐼𝑘−1

= −𝑍𝑡ℎ 

A linear forecast satisfies the following relationship: 

( −  𝑘) = −𝑍𝑡ℎ(𝐼 − 𝐼𝑘) 

Thus, the forecast power is quadratic with respect to 𝐼 

𝑆𝐷 =  𝐼 = −𝑍𝑡ℎ𝐼
2 + (𝑍𝑡ℎ𝐼𝑘 +  𝑘)𝐼 

The maximum will occur at the bifurcation point that occurs when the discriminant goes to zero 

𝑆𝐷,max  =
( 𝑘 + 𝑍𝑡ℎ𝐼𝑘)

2

4𝑍𝑡ℎ
 

Thus the difference is between the current an maximum power is, 

Δ𝑆 =
( 𝑘 + 𝑍𝑡ℎ𝐼𝑘)

2

4𝑍𝑡ℎ
−  𝑘𝐼𝑘  



46 

Which reduces to, 

Δ𝑆 =
( 𝑗 − 𝑍𝑡ℎ,𝑗𝐼𝑗)

2

4𝑍𝑡ℎ,𝑗
 

Which is the power margin defined in [19]. 

For comparison across all buses, the margin is calculated in terms of the loading factor 𝜆 using 

the relationship, 𝜆𝑘 ≜ 𝑆𝑗,𝑘 𝑆𝑗,0⁄ . Where 𝑆𝑗,0 is the power at bus 𝑗 when 𝜆0 = 1. Thus the 

normalized power margin at bus 𝑘 is 

𝑀𝑃,𝑘 =
Δ𝑆

𝑆𝑗,0
 

Figure 9 shows the results of the linear power margin estimation method applied to the IEEE 39 

bus system. For comparison the true margin determined by simulating increasing loads until non-

convergence is shown by the dotted line. 

 

Figure 9:Power margin estimates on the 39-bus study case 
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2.3 Determining the Critical Load Factor 

2.3.1 Continuation Power Flow 

The MATPOWER package includes a continuation power flow (CPF) algorithm that, starting 

from a base scenario, uses continuation or branch tracing methods to determine steady state 

stability limits. The algorithm employs a predictor-corrector method to track voltage profiles at 

each bus as power increases. The program can be used to find the bifurcation point and establish 

a baseline maximum load factor (fig. Figure 10). 

 

Figure 10: PV curves in the 9-bus and 39-bus test case calculated using CPF with reactive limits disabled 

In the preliminary stages of this study, the CPF algorithm implementation in MATPOWER 5.0 

had a shortcoming that hampered its usefulness to this study: it did not take into account PV-PQ 

transitions that occur when generator buses hit their reactive power limits. Even when a solution 

to the base case would include a PV-PQ transition for a solution, the CPF algorithm's 

implementation of the power flow solver ignores generator reactive limits. 
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Since MATPOWER 6.0, the CPF algorithm can process PV-PQ bus transitions that occur when 

generators reach their reactive limits. Therefore, this method can be used to accurately determine 

the maximum load factor. 

2.3.2 Stepping Method 

Due to the limitation of CPF at the outset of the study, alternate approaches were developed to 

find simulated system power margins when generator reactive limits are modeled. The simplest 

approach is to increase the load-factor and corresponding generator MW outputs by a small fixed 

per-unit amount and running N-R power flow until the system collapses. As the step sizes used 

in this study are usually rather small (0.0001 to 0.001) this process can be quite time-consuming, 

especially for large systems with buses that number in the 1000s. The maximum load-factor 

algorithm needs to be able to quickly determine the system limits since it will have to be 

repeated many times with different generator limits to determine the true margin. The algorithm 

for finding the true margin is described the next section (D). Using the results of the previous 

case rather than starting from the initial case when increase the load-factor improves the speed of 

this algorithm and simulates a realistic scenario since aggregate system load tends to increase 

incrementally in real-time. The drawback of this approach is that it is relatively time consuming, 

requiring many iterations to find the critical value. 

2.3.3 Half-Interval Search Method 

The algorithm employed in this study uses a binary search function or half-interval search 

function. This function works by incrementing the generation and load in the base case until the 

solution fails to converge. Once the first failure is encountered, the step size is halved and the 

generation and load are stepped back. If a convergence is found, the step size is halved, and the 
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power is incremented upwards. If the solution once again fails to converge, the step size is 

halved and the power is stepped backwards. This continues until the step size is smaller than the 

desired tolerance and the solution converges. 

 

Figure 11: Half-interval search illustration 

The advantage of this method is that it requires fewer N-R solutions, however it can result in a 

different solution than the stepping-method in the previous section since the steps between the 

solved cases are necessarily larger. For this reason, and since the CPF-based algorithm became 

available, this method was ultimately discarded. 

2.3.4 Jacobian Zero-Crossing 

An unanswered question in discussing the above methods for iterating towards the critical 

loading factor is what constitutes the system “failing to converge”. Mathematically, this occurs 

when the Jacobian matrix becomes singular and can no longer be inverted. In a stepped iterative 

computation, it is not trivial to observe this condition exactly. Due to the iterative nature of the 

Newton-Raphson method, simplifying assumptions which are used to speed up the solution and 

inaccuracies that arise when inverting large matrices, the actual point of collapse where the 

1.0 2.0 3.0λ = 2.52.25

2.375
2.3125

Actual value
λ = 2.32

Value found 
within tolerance

= solution converged

= solution did not converge
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Jacobian is singular might not be observed directly. This can lead to the N-R solver finding un-

physical solutions after point of collapse where the “knee” of the P-V curve bends towards 

unstable operation. A good example of this phenomenon is the IEEE 39-bus case that was 

examined in this study. As the loads in the system are increased the P-V curve (Figure 12, Figure 

13) displays the characteristic voltage droop associated with the power transfer limit being 

reached but instead of the power flow solver failing, the voltages abruptly spike and continue to 

rise until the solution finally fails to converge. Clearly, this voltage spike is not a real solution, 

but rather a mathematical artifact of the solution method. 

 

Figure 12: 39 bus case voltage profile 

 

While a simple assumption may be that after X iterations, if the system does not converge, then it 

does not have a solution. However, this assumption is problematic, since a) the value if X is 

Apparent point of bifurcation 
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arbitrary and b) the system may converge to a bad solution after sufficient iterations. Indeed, in 

this study, it was found that for certain cases, arbitrarily selecting a value of 10 max iterations vs 

20 max iterations changed the maximum load factor determination. When performing power-

flow analysis, especially of large, difficult to solve cases there are times when 50 iterations of the 

N-R algorithm might not converge, but 51 iterations might. For this reason, it was determined 

that using an iteration limit as an indicator of system instability was not a desirable methodology. 

An alternative methodology is to examine the Jacobian matrix for zero-crossings. A solution 

proposed by [26] is to watch the Jacobian elements for a sign change which would indicate the 

stability limit has been reached. While this might be true theoretically, the N-R algorithm 

employed by MATPOWER does not produce Jacobian element zero-crossings when the system 

enters the point of collapse. Upon examination of the Jacobian elements of the 39-bus system as 

the load-factor was increased, it was determined that there were three points at which a sign 

change was observed in the Jacobian, none of which appear to occur when voltage collapse is 

observed by inspection. Two points at LF = 1.0130 and 1.2140 occur before the point of collapse 

and one (at LF = 1.234) occurs shortly after. 
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Figure 13: Minimum bus voltage and corresponding Jacobian zero-crossings 

2.3.5 Jacobian Eigenvalue Analysis 

A similar approach is to analyze the eigenvalues of the Jacobian matrix to determine the critical 

loading point. This method [48] involves tracking the minimum real eigenvalues of the Jacobian 

matrix as the system loading is increased. This was found to be a reliable method to determine 

the critical loading point that corresponds to the saddle-node bifurcation point. Figure 14 shows 

the behavior or the minimum eigenvalues in relation to the observed voltage and the load and 

Thevenin impedances for the 39-bus and 118-bus case. In both of these systems, the first 

eigenvalue zero-crossing (dotted vertical line) corresponds to the visual indicator of saddle-node 

bifurcation in the voltage graph and the point at which the trajectories of the load impedance 

(calculated directly) and the Thevenin impedance (estimated as described above) intersect. This 

Apparent point of bifurcation 
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point occurs before the simulation actually fails to solve, and we can deduce that the continued 

solutions of the N-R power flow are mathematical artifacts rather than physical solutions. 

Case 39 Case 118 

  

Figure 14: The zero-crossing of the reduced Jacobian minimum eigenvalue indicates the point of voltage collapse, 

not the convergence failure point. 

The drawback of this method, at least in its implementation in this study, is that it is extremely 

time consuming when scaled to larger systems. In the according the MATPOWER 

documentation, when the Jacobian is requested, it must be reconstructed from scratch every time. 

Additionally, the MATLAB sparse matrix eigenvector solver (eigs) has difficulty converging 

with large matrices adding additional time to the computation. Ultimately, it the computationally 

intense nature of the implementation of this method becomes prohibitively time consuming when 

it must be iterated many thousands of times. Table 2 shows the observed time for the critical load 

factor determination. As will be discussed in the next section, the real-margin calculation 

requires that the critical load factor be determined calculated every time a generator reaches a 
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reactive limit. In the 1354-bus case, there are 260 generators, therefore we can extrapolate that 

using this method the true-margin calculation might take two weeks or more to complete!  

2.3.6 Comparison 

Tables Table 1 and Table 2 show the critical loading factor that each method described above 

found and the time consumed to reach this solution. Based on these results, the CPF algorithm 

was chosen as the most efficient and effective at finding the critical loading factor. Visually, it 

matched well with the bifurcation point, without carrying the risk of over-estimating the margin 

that the N-R method carries in some cases. It was also by far the fastest algorithm for finding the 

critical loading which is important because the algorithm must be iterated many times in order to 

account for generator reactive limits. 

Table 1: Critical load factors determined by each method 

 Case 9 Case 39 Case 118 Case 1354 

NR 10 iteration limit 2.4307 1.3563 2.1147 1.1843 

NR 20 iteration limit 2.4307 1.3563 2.1147 1.1883 

First eigenvalue crosses zero 2.4305 1.2265 2.056 1.166 

CPF with PQ limits enforced 2.430472 1.2342 2.1145 1.1842 

 

Since there was little control over the computing environment (the simulations were performed 

on a shared server), the values in Table 2 should be interpreted as relative measures of 

computational efficiency. Regardless, the CPF algorithm is the clear winner being orders of 

magnitude faster than the next fastest algorithm. 

Table 2: Time consumed to determine the critical load factor 
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Case 9 

Case 

39 

Case 

118 

Case 

1354 

NR 10 iteration limit 26.8 s 10.3 s 39.2 s 59.4 s 

NR 20 iteration limit 26.9 s 10.1 s 39.1 s 61.2 s 

Smallest eigenvalue passes 

0 42.4 s 447.3 s 446.0 s 5059.3 s* 

CPF with PQ limits 

enforced 0.14 s 0.17 s 0.77 s 10.15 s 

 *Value estimated based on a load-factor step size of 0.001 instead of 0.0001 

2.4 True Margin Determination 

In order to have a methodology to compare various margin estimation methods, it's important to 

establish a baseline or reference margin that can be used as an evaluation criterion. In the above 

charts the “Actual margin” is shown to evaluate the performance of the margin estimates. This 

section outlines the methodologies tested and employed to calculate the critical load “Actual” or 

“True” margin. 

It might seem a straightforward affair to determine the true system margin, since after all we 

have discussed at length how the maximum system loading can be determined. Why not draw a 

straight line on the margin vs. load-factor chart from the known point of collapse of the y-axis to 

the known critical loading factor on the x-axis? That is exactly how the chart would look if no 

generator reactive limits were enforced. It can be seen in the margin estimation charts (Figure 
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9:Power margin estimates on the 39-bus study case, Figure 16: True margin algorithm output) in 

this report that the margin predictions exhibit a step-like behavior. This is caused when generator 

reactive limits are reached and the generator can no longer control voltage. As we might expect, 

the system voltage response to increased load changes and, consequently, the estimated Thevenin 

equivalent impedances will be different  after the PV-PQ transitions. Since, in this analysis, we 

are not expecting the margin estimation to be able to predict when the and where the next 

generator reactive limits will be reached, it would not be reasonable to judge the measurements 

to be in error based on future system conditions. Therefore, the algorithm which is employed to 

determine the “true” margin should only consider system conditions as they exist at the system 

operating point being examined. This iterative algorithm to accomplish this is shown in the flow 

chart in Figure 15. The premise is that the system is solved as the load-factor in incremented 

until a generator reactive limit is reached, indicating a PV-PQ transition. The reactive limits for 

all PV buses are disabled and the critical load factor is determined using one of the methods 

described in the previous section. 

 

 

Figure 15: Algorithm for determining true margin 

Initialize
Set power flow options
Run NPF to verify base 
case has a solution
Find critical load factor 
for initial conditions
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Figure 16: True margin algorithm output 

Figure 16 above shows the result of the true margin calculation algorithm for the 39-bus, 118-bus 

and 1354 bus cases. As expected, they show the stair-step behavior due to the discontinuous 

change in system strength when a generator reactive limit is reached. 

2.5 Sensor Fusion Modeling 

This section describes the methods by which data fusion parameters were chosen in order to 

implement the Dempster-Shafer Evidential Theory model into a power systems framework. 

Appendix A contains a sample fusion calculation for a small network. 

2.5.1 Probability Mass assignments (BPA) 

For any location in the power system that is performing sensor fusion, there must be some way to 

ascribe a probability mass to the measurements of the nearby measurements, as well as to its own 

measurement. In our case, an electrical bus which is measuring the stability margin needs a way 

to assign probability to the measurements at surrounding buses. Once it has made a 
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determination about the probability that the measurements are correct, it can fuse the calculated 

or collected set of probability masses using Dempster’s rule in order to decide which 

measurement (or sensor) to believe. 

2.5.1.1 Consensus Algorithm 

A simple method to assign probability masses, 𝑚(𝑆), to a set of sensors, 𝑆, that requires no a 

priori knowledge of the system is to look at the degree of agreement of one sensor to other 

sensors in the system. In this analysis, an algorithm is implemented at each node that compares 

its own measurements to that of its neighbors. An obvious downside to any such method is that it 

does not use any independent criteria to make assessments about the validity of its observations. 

If a majority of surrounding measurements are inaccurate, the algorithm will assign the highest 

measure of belief to an inaccurate measurement. However, it can serve to eliminate outliers and 

remove noise from the result set. If the most accurate measurement happens to have a large 

disagreement with the majority of sensors and appears to be an outlier, its results will tend to be 

ignored in such an algorithm. Therefore, this algorithm can only be said to be useful if we know 

based on prior experimental results that the best margin estimate tends not to be an outlier. 

For the purposes of this study, I explored two different methods for comparing a measurement to 

its surrounding measurements. The first uses a simple cutoff to determine agreement. If we 

consider an electrical bus, 𝑏, and its set of nearby buses with sensors, 𝑆, then the margin 

measurements, 𝑀, can be said to have agreement when 

|
𝑀(𝑏) − 𝑀(𝑆𝑗)

𝑀(𝑏)
| ≥ 𝑥 , 
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where {𝑥 ∈ ℝ| < 𝑥 < 1} is an arbitrary threshold for agreement. For example, if 𝑥 =  .1 then 

the measurements, 𝑀(𝑏) and 𝑀(𝑆𝑗), will be said to agree if the neighboring bus measurement is 

within 10% of the node 𝑏. If the measurements are found to disagree, then the bus 𝑏 will assign a 

probability mass of 𝑚 =   to the measurement at 𝑆𝑗 . 

If the buses’ measurements agree, the probability mass of the measurement at 𝑆𝑗 is normalized 

based on the total number of measurement buses in the system so that the total assigned 

probability masses can never exceed 1, even if the set of measurements includes all of the 

measurement nodes in the system. If the measurement of node 𝑏 agrees with its neighbor, 𝑆𝑗, 

then it assigns a probability mass of 1/𝑁 where 𝑁 is the total number of buses in the system.  

The second method uses an exponential mapping of the disagreement factor between the 

measurement and its neighbors’ measurements to assign probability masses. The mass 

assignment is calculated by the equation: 

𝑚(𝑆) =
𝑒−|𝜅(𝑀(𝑏)−𝑀(𝑆𝑗)) 𝑀(𝑏)⁄ |

𝑁
 . 

The constant 𝜅 sets the rate at which the probability function decays to 0.  Since the argument of 

the exponent is always negative, the value of the numerator will always be between 0 and 1. If 

the buses’ measurements are in complete agreement, then the result is equivalent to the threshold 

method since 𝑒0 = 1. 
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2.5.1.1.1 Applications to D-S theory 

 

Figure 17: Relationship between disagreement and prediction error: 39-bus test case 

Figure 17 illustrates the potential of employing a method to remove or discount the predictions 

of outliers from the data set. In this chart, the sum of the disagreement between each bus and its 

neighbors was summed over each iteration in the simulation and compared to the sum of the 

error in predicting the margin over the whole simulation. The chart provides evidence for a 

correlation between measurement locations with high cumulative disagreement. The correlation 

appears to fall apart for measurement locations with less disagreement, therefore the selection of 

a threshold or 𝜅 should appropriate to the system. 
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Figure 18: BPA distribution vs disagreement 

2.5.1.2 Eigenvector Centrality 

An additional method of assigning the probability mass to a measurement at a node looks at the 

degree of connectivity or “centrality” of a node as a proxy for trusting the accuracy of the 

measurement. Eigenvector centrality (EC) is a way of calculating the degree to which a node in a 

system is connected to other nodes in the system. EC was originally developed as a technique to 

gauge the popularity of individuals in social networks [49]. In [49], Bonacich describes a process 

by which each person’s contribution to the popularity of others is weighted by their own 

popularity. 

An adjacency matrix is constructed by first numbering the nodes of a network. If there are N 

nodes, then the matrix will be an N × N matrix. For every element 𝐴𝑖𝑗 if node 𝑖 is connected to 

node 𝑗, then 𝐴𝑖𝑗 = 1. If the connections are bidirectional, as they are in our case, the adjacency 
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matrix shall be symmetric, that is, 𝐴𝑖𝑗 = 𝐴𝑗𝑖. The diagonal elements 𝐴𝑖𝑖 are 0 since there is no 

need to define a node’s connection to itself. 

Let 𝐴 be the adjacency matrix that defines a node network, then the centrality of unit 𝑖 is given 

by the eigenvector function, 

𝜆𝑒𝑖 =∑𝐴𝑖𝑗𝑒𝑗
𝑗

 

Or in matrix notation, 

𝜆𝑒 = 𝐴𝑒 

where 𝑒 is the eigenvector and 𝜆 is the eigenvalue. 

The centrality of a node is defined as the sum of each measure of centrality connected to adjacent 

nodes. This sum would tend towards infinity as the solution iterates. In order to avoid this, for 

each iteration, the centrality measure is normalized by the maximum eigenvalue. The centrality, 

𝐶𝑒, can be then calculated by iterating the following equation beginning with an arbitrary column 

vector (usually vector of ones): 

𝐶𝑒 = 𝑒𝑖 =
1

𝜆𝑚 𝑥
∑𝐴𝑖𝑗𝑒𝑗
𝑗

 

 

For a power flow case, the matrix 𝐴 can be constructed from the nodal admittance matrix (𝑌𝑏𝑢𝑠). 

The 𝑌𝑏𝑢𝑠 matrix contains information about the admittance, 𝑦𝑖𝑗 , (inverse of the impedance) 
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between each node, 𝑖 and 𝑗, in a power system. If there is no connection between the nodes, then 

the corresponding entry in the matrix is 0. The 𝑌𝑏𝑢𝑠 matrix is given by 

𝑌𝑖𝑗 = {
𝑦𝑖 + ∑ 𝑦𝑖𝑘

∀𝑘|𝑘≠𝑖

if 𝑖 = 𝑗

−𝑦𝑖𝑗 if 𝑖 ≠ 𝑗 

 

Since the 𝑌𝑏𝑢𝑠 matrix is readily available in many power flow software applications, it is a 

convenient starting point to construct the adjacency matrix. This is done by setting the non-zero 

matrix elements equal to 1 and the diagonal elements to 0. To express this in equation form, we 

can take advantage of the sign function which returns a 1 or a -1 for a non-zero input and 0 when 

the input is 0. The admittance between nodes should be positive for any realistic power flow 

case, but the elementwise absolute value is taken as well for good measure: 

𝐴 = sgn|Im(𝑌𝑏𝑢𝑠 − 𝑑𝑖𝑎𝑔(𝑌𝑏𝑢𝑠))| 

Where sgn(𝑦) is the sign function defined as 

sgn(𝑥) = {
−1: 𝑥 <  
 : 𝑥 ≤  
1: 𝑥 >  
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and diag(𝑥) is a function3 that returns the matrix with only its diagonal elements, setting all 

other elements to zero. Im(𝑥) returns the imaginary part of the complex number such that 

Im(𝑎 + 𝑗𝑏) = 𝑏. 

When applying the eigenvector centrality algorithm to analyzing power systems, we can take the 

theory one step further since not all connections in power systems are equal. If we posit that a 

stronger connection between two nodes means that they exert more influence over one another, 

then the strength of the connection should be considered when calculating centrality. Consider a 

system of nodes and connections described by the adjacency matrix 𝐴. Now imagine creating 

and additional connection between two already connected nodes 𝑖 and 𝑗. Instead of 𝐴𝑖𝑗 = 𝐴𝑗𝑖 =

1, we would have 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 2. Alternatively, 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 1  might retain its value while all 

other connections would be represented by ½. Since the connection strength is a relative 

measure, either of these would give the same result after applying the EC algorithm. If we were 

describing an electrical system of identical conductors, we would observe that the impedance of 

the double connection has been halved, or equivalently, that the admittance has been doubled. At 

this point, it is probably obvious to the reader that the 𝑌𝑏𝑢𝑠 matrix of a power flow case, which is 

a matrix of the admittance between each connected node, contains precisely this information 

about relative strength of connections. Indeed, researchers Wang, et al [50] reach this exact same 

conclusion of how EC can relate to power systems. Since admittance is expressed as complex 

number and the reactance of lines dominates the impedance of transmission lines, the imaginary 

 

3 In MATLAB the “diag” function serves a dual purpose. When the argument is a vector of 

length N, it returns an N×N matrix with the values of the vector along the matrix diagonal. When 

the argument is an N×N matrix, it returns a vector of length N containing the diagonal elements. 

Thus the function described above can be accomplished by calling “diag(diag(Ybus))”. 



65 

parts of the 𝑌𝑏𝑢𝑠 can be substituted in into the admittance matrix as a simplifying assumption for 

the EC calculation: 

𝐴Ybus = |Im(𝑌𝑏𝑢𝑠 − 𝑑𝑖𝑎𝑔(𝑌𝑏𝑢𝑠))| 

The resulting EC calculation can be expressed as 

𝐶𝑒 = 𝑒𝑖 =
1

𝜆max
∑𝐴Ybus,𝑖𝑗𝑒𝑗 .

𝑗

 

2.5.1.2.1 Applicability to a Distributed Computational Scheme 

It is worth noting that the EC algorithm translates naturally to a distributed computation 

framework. For the purposes of this study, it is convenient to use the modified admittance matrix 

or adjacency matrix when performing the EC calculation since the system is being examined and 

simulated as a whole. From a single node’s perspective, the calculation involves summing the 

centrality measures of the nodes which are directly connected to it, optionally weighting the sum 

by the impedances of the connections between them. Therefore, a node does not require any 

special knowledge of system-wide topology. The only system-wide parameter needed is 

maximum eigenvalue for the normalization step of the algorithm. Since the centrality is 

determined purely by the system topology, it would change relatively slowly compared to other 

system parameters. Only when there is a nearby physical topology change, such as a line outage, 

a switching event, or a tap setting change (in the case of the Y-weighted EC calculation) would 

there be any change in the EC parameter. Therefore, the maximum eigenvalue could be updated 

fairly infrequently. Examples of such schemes could be by point-to-point relaying across the 
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system or perhaps hourly updates from a centralized server. Or the node performing the EC 

calculation could request on-demand updates when it becomes aware of a topology change. 

Additionally, it would be impractical to install a device that calculates EC at every single system 

node. This can be solved by performing EC calculations at various distributed nodes throughout 

the system which are responsible for tracking a subset of nearby nodes and the connectivity 

between them. 

2.5.1.2.2 Centrality Algorithm Output Example 

In this section the EC algorithms described above are applied to the IEEE 14-bus test case and 

the results are discussed. The test case consists of high- and medium-voltage levels. High-

voltage in this context refers to 345-kV buses, and medium-voltage refers to anything above 60 

kV but below 345-kV. In this case, MV buses are 138-kV buses. 

Table 3: IEEE 14 bus test case eigenvector centrality algorithm results 

 Unweighted Ybus Weighted 

Bus Centrality Rank Centrality Rank 

1 (HV) 0.5034 7 0.5311 4 

2 (HV) 0.8584 2 0.7039 3 

3 (HV) 0.5515 5 0.2991 5 

4 (HV) 1.0000 1 0.9984 2 

5 (HV) 0.8373 3 1.0000 1 

6 (MV) 0.4591 8 0.1670 8 

7 (MV) 0.5209 6 0.2377 6 

8 (MV) 0.1546 14 0.0478 10 
9 (MV) 0.6004 4 0.1696 7 

10 (MV) 0.2401 11 0.0678 9 

11 (MV) 0.2077 13 0.0349 12 

12 (MV) 0.2197 12 0.0220 13 

13 (MV) 0.2795 9 0.0397 11 

14 (MV) 0.2615 10 0.0215 14 
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Figure 19: Unweighted Centrality measure of 14-bus system contour plot 

 

 

Figure 20: Ybus weighted centrality measure of 14-bus system contour plot 
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We observe from the results of this small test case that, buses which are ranked highly central in 

the unweighted centrality calculation tend to also be highly ranked in the Y-weighted calculation. 

As we would might expect, in the weighted calculation, all of the top 5 buses are the 5 high-

voltage buses In the unweighted calculation, four of the five highest central buses are HV buses. 

The preference given to high voltage buses reflects to the topology of power systems; HV buses 

tend to be more centrally connected and have more connections to them as high-voltage parts of 

an interconnection form the backbone of the grid. In the case of the weighted calculation, the 

preference is reinforced since higher voltage parts of the system will tend to have larger 

transmission lines and lower impedance values, although they may also tend to be longer which 

would result in higher impedance values. 

Table 4: Top ten centrality values, 39 bus case 

Bus Unweighted Bus Weighted 

16 1 6 1 

4 0.71866 5 0.938183 

17 0.717655 7 0.41546 

26 0.679329 11 0.414372 

6 0.674446 8 0.379972 

5 0.671674 10 0.294881 

14 0.669835 4 0.172684 

3 0.654868 13 0.163916 

2 0.609579 31 0.08165 
15 0.600269 14 0.065072 

 

Table 5:Top ten centrality values 118 bus case 

Bus Unweighted Bus Weighted 

49 1 68 1 

69 0.924705 116 0.945578 

77 0.710505 65 0.246948 
54 0.656763 81 0.191977 

75 0.649447 69 0.111974 

80 0.587372 64 0.033246 

100 0.586579 66 0.027819 

59 0.583738 80 0.022241 

47 0.539054 38 0.009749 

70 0.530949 77 0.006938 
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Figure 21: Eigenvector centrality distribution. For larger systems, the Y-weighted centrality measure falls off 

extremely rapidly.  
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2.5.1.2.3 Usefulness for D-S Combination 

 

Figure 22: Margin error vs Y-weighted centrality 

 

 

Figure 23: Margin error vs unweighted centrality 

 

The purpose of applying this algorithm is in hopes that it can be used to help identify buses with 

better margin estimates. The assumption being tested in this case is that buses that are more 

central to the system will have a better measure of the stability of the system than a remote, less 

central bus. To this end, if it can be observed that there is a positive correlation between the 

eigenvector centrality (EC) assignment and the bus accuracy, then it might be a useful parameter 

in assigning a probability mass, or BPA. As a cursory check on whether or not the variable has 

potential to be useful in BPA determination the centrality is plotted against the prediction error 

for each bus in the 118-bus case at an arbitrary loading factor in Figure 22 an Figure 23. Since 

the centrality assignments decay extremely rapidly when using the modified Ybus matrix in 

place of the adjacency matrix, the y-axis is plotted on a logarithmic scale. There appears to be a 
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negative correlation between the centrality and the error, which suggests that a higher centrality 

assignment would tend to correspond to a better margin prediction at a VIP bus. 

In this study EC was incorporated into the BPA as a simple weight. The way in which the range 

is defined, { 𝐶 ∈ 𝑥 |  < 𝑥 ≤ 1}, means that it requires no additional normalization to be 

applied to the BPAs. The range of BPAs is defined as {𝐵𝑃𝐴 ∈ 𝜃 |  ≤ 𝜃 < 1 𝑁⁄ } where 𝑁 is the 

cardinality of the set of BPAs so that the sum of all BPAs in a set cannot exceed unity. With the 

range of the EC variable as defined above, this requirement is preserved: { 𝐶 × 𝐵𝑃𝐴 ∈ 𝑦 |  ≤

 𝑦 ≤ 1 𝑁⁄ }. 

The Y-weighted EC calculation was not used in subsequent simulations. Although, on its face, it 

would seem to be a more physically representative value of the system configuration, in practice 

(as can be observed in Figure 21) the EC assignment decays too quickly with the rank of the EC 

assignment maximum value to be practically applied as a weight to for BPA calculation. For 

larger systems the rate of decay is even faster. For example, in the 1354-bus system studied in 

this report, the median Y-bus weighted EC value is 9.3 × 10-18
 and the minimum value is 7.1× 

10-21. In this dataset, only the top 2.5% of buses have a Y-weighted EC value greater than the 

minimum unweighted EC value observed (9.5 × 10-8). Thus, if the Y-weighed EC was applied, it 

would effectively be multiplying most BPAs by approximately 0. 

2.5.2 Simulation Results 

In this section the simulation results that were generated by employing the models and method 

described in this text. The simulations were run with variations in model parameters to produce 

fused datasets which were compared to the predictive performance of the VIP prediction results 

that has not undergone any data fusion. The main criteria for evaluation of the performance of 
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the data fusion algorithm is the prediction accuracy at each bus post-fusion as compared to pre-

fusion. To this end, the prediction results reported by each VIP bus are averaged over each 

system load-factor step. The averages are plotted in the charts below. Both average absolute error 

and average per-unit error are presented in the charts below. While the relative rank of the 

performance of each dataset does not change, both methods are useful in understanding the 

performance. Generally, a per-unit or percent error would be preferred, however the per-unit 

error tends to blow up as the load-factor approaches the critical loading since the denominator of 

the percent error calculation is the “true” margin which approaches zero at this operating point. 

In addition to the plots the total average per-unit errors have been calculated for evaluating the 

performance of the dataset and the total average per-unit error of the un-fused data is evaluated 

as well. 
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2.5.2.1 39-Bus Test Case 

 

Figure 24: Average absolute error for 39-bus simulation datasets 

using the threshold BPA method 

 

Figure 25: Average per-unit error for 39-bus simulation datasets 

using the threshold BPA method 

Datasets: 

 

Unfused avg. per unit error: 

0.932103 

No. T Weight Avg tot 

err 

1 0.1 UW 0.743278 
2 0.2 UW 0.700525 

3 0.1 CW 0.631375 

4 0.2 CW 0.649171 

Key 

T – Agreement threshold 

UW – unweighted BPA 

CW – centrality weighted 

BPA 
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Figure 26: Average absolute error for 39-bus simulation datasets 

using the exponential BPA method 

 

Figure 27: Average per-unit error for 39-bus simulation datasets 

using the exponential BPA method 

Datasets: 

Unfused average per unit error: 

0.932103 

No. κ Weight Avg tot err 

1 1 UW 0.737657 

2 2 UW 0.735485 

3 5 UW 0.722999 

4 10 UW 0.871838 

5 1 CW 0.601064 

6 2 CW 0.603016 

7 5 CW 0.627928 

8 10 CW 0.62282 

Key 

κ – exponential scale factor  

UW – unweighted 

CW - centrality weighted 
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2.5.2.2 118-Bus Test Case 

 

Figure 28: Average absolute error for 118-bus simulation datasets 

using the threshold BPA method 

 

Figure 29: Average per-unit error for 118-bus simulation datasets 

using the threshold BPA method 

Datasets: 

 

Unfused avg. per unit error: 

0.784232 

No. T Weight Avg. Err 

1 0.1 UW 0.650873 

2 0.2 UW 0.648125 
3 0.1 CW 0.529967 

4 0.2 CW 0.542833 

Key 

T – Agreement threshold 

UW – unweighted BPA 

CW – centrality weighted BPA 
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Figure 30: Average absolute error for 118-bus simulation datasets 

using the exponential BPA method 

 

Figure 31: Average relative error for 118-bus simulation datasets 

using the exponential BPA method 

Datasets: 

Unfused average per unit 

error: 0.784232 

No. κ Weight Avg Err. 

1 1 UW 0.641734 

2 2 UW 0.649887 

3 5 UW 0.651438 

4 10 UW 0.654892 

5 1 CW 0.496938 

6 2 CW 0.547722 

7 5 CW 0.548194 

8 10 CW 0.531628 

Key 

κ – exponential scale factor  

UW – unweighted 

CW - centrality weighted 
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2.5.2.3 1354-Bus Test Case 

 

Figure 32: Average absolute error for fusion methods with 1354-bus test case (left) and detail near the critical 

loading (right) 

 

Figure 33: Average per-unit error for fusion methods with 1354-bus test case (left) and detail near the critical 

loading (right) 
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Table 6: Dataset descriptions for Figure 32 and Figure 33 

Dataset Method parameters Average per unit error 

Unfused Simple average  2.20798 

1 Exponential BPA, unweighted κ = 1 1.47211 

2 Exponential BPA, unweighted κ = 2 1.48698 

3 Exponential BPA, unweighted κ = 5 1.68066 

4 Exponential BPA, unweighted κ = 10 1.93657 

5 Exponential BPA, centrality-weighted κ = 1 3.67127 

6 Exponential BPA, centrality-weighted κ = 2 3.61608 

7 Exponential BPA, centrality-weighted κ = 5 11.3815 

8 Exponential BPA, centrality-weighted κ = 10 13.4548 

9 Threshold BPA, unweighted T = 0.1 1.78412 

10 Threshold BPA, unweighted T = 0.2 1.70768 
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3 CONCLUSIONS 

Overall, sensor fusion techniques were found to be able to reduce the prediction error in the 

systems studied. Table 7 summarizes the best data fusion runs from the set above. Based on the 

observed simulations, the exponential BPA calculation for the consensus algorithm with a scale-

factor (κ) of 1 was the best performing approach. Across the board, the consensus algorithm on 

its was able to reduce the prediction error in every data fusion run that was performed. In each 

case, data fusion was able to reduce the prediction error by between 33.3% and 36.6%. While the 

practical value of reducing prediction error from, say, 220% to 147% (as in the 1354-bus case) 

might be debatable, it is evident that the data fusion consensus algorithm was able to consistently 

reduce prediction error. 

The addition of the eigenvector-centrality weighting was not consistently able improve 

prediction performance. While it did incrementally improve the performance in the 39- and 118-

bus cases, it caused the error to increase in the 1354-bus case. The reason for this is reversal 

unclear, but it implies that the better-connected buses in the 1354-bus case are not more reliable 

than other buses. One possibility is that in the 1354-bus case, generators tend to be more 

centrally connected thus reducing voltage variations of nearby simulated VIPs, leading to more 

inaccurate Thevenin parameters being favored. 

Table 7: Best performing models for each case 

Case 
Unfused 

average error 

Best observed 

average error after 

fusion 

Percent 

improvement 
Method/Parameters with best result 

39-bus 0.932103 0.601064 35.5% 
Exponential BPA, centrality weighted, 

κ = 1 

118-bus 0.784232 0.496938 36.6% 
Exponential BPA, centrality weighted, 

κ = 1 

1354-bus 2.20798 1.47211 33.3% Exponential BPA, unweighted, κ = 1 
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3.1 Opportunities for Future Study 

While the results of this study are far from groundbreaking, I believe the data fusion approaches 

explored in this work present an interesting and useful framework upon which other studies 

could be based. The main hinderance here is that a reliable method for estimating a buses’ 

margin prediction accuracy based on a topological or electrical parameter was never identified. 

In fact, a great deal of time in the research that preceded this study was spent searching a 

parameter or combinations of parameters that would have some predictive accuracy. As the 

number of buses in a network increases, the data becomes increasingly difficult to analyze. The 

nature of this problem makes the methods explored here an ideal candidate for a machine-

learning framework to identify predictive parameters since machine learning tends to excel at 

solving “big data” problems. 

In this study’s algorithm to determine confidence measures, the fused BPAs are discarded every 

iteration and recalculated from scratch. This was approach was chosen so that the VIPs would 

respond instantaneously to a change in system conditions. However, each measurement node 

could remember the prior results of the data fusion and feed this into the next calculation. Using 

this approach, the system would eventually converge to a single consensus value. In principle, if 

an accurate correct predictive method is found, the system could converge to a single correct 

value. However, in a dynamic system, the success of this approach would depend on how 

quickly the correct prediction would be able to propagate through the system. 

Another opportunity for improvement could be to allow margin estimates to be a range of values. 

In this study, the margin predictions are treated as singular, incompatible propositions. In other 

words, if the estimated margin is X, it cannot be Y. Dempster-Shafer theory provides a 

framework for fusing compatible propositions by representing the margin estimates as range 
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instead of a single value. In this case if the margin estimate X is a range of values, then the 

margin estimate Y can also be correct or overlap with Y. One approach could be to interpret the 

Z-margin and the P-margin as upper and lower limits of the range of likely margin values. If it 

can be shown that the true margin is likely to fall within the range bordered by these two values, 

this could be a promising approach. 
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APPENDIX 

A Numerical Calculation Examples 

A.1 Unweighted Eigenvector Centrality 

 

Figure 34: System topology for EC calculation example 

The modified adjacency matrix is for nodes, 

�̂� =

[
 
 
 
 
 1 1 1  
1     
1   1 1
1  1   
  1   ]

 
 
 
 

 

The beginning eigenvector is 

𝑒 =

[
 
 
 
 
1
1
1
1
1]
 
 
 
 

 

The first iteration produces 

1 

2 3 

4 

5 
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�̂�𝑒 =

[
 
 
 
 
3
1
3
2
1]
 
 
 
 

 

Normalized to the eigenvalue which is the maximum term of the eigenvector, 𝜆 ≡ max 𝑒, 

𝜆𝑒 = 3

[
 
 
 
 
 
1
1
3⁄

1
2
3⁄

1
3⁄ ]
 
 
 
 
 

 

The error, 𝜀, is the maximum difference between the sides of the eigenvector equation, or 

equivalently, the difference in the RHS or LHS calculation between two iterations: 

𝜀 = max |𝜆𝑒(𝑖) − (�̂�𝑒)
(𝑖)
| = max|𝜆𝑒𝑘

(𝑖) − 𝜆𝑒𝑘
(𝑖+1)| 

Since the maximum of 𝑒 is always 1 therefore max(𝜆𝑒) = 𝜆 and error term is simply the 

difference between two consecutive eigenvalues. 

𝜀 = |𝜆(𝑖) − 𝜆(𝑖+1)| 

Continued iterations are shown in Table 8: Unweighted EC steps for 5-node example Note that 

superscript (𝑖) denotes the iteration of the variable and is not an exponent. 
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Table 8: Unweighted EC steps for 5-node example 

Iteration, 𝒊  Operation 

  

Node 𝝀 𝜺 

  1 2 3 4 5 

0 

𝑒(0) 1.000 1.000 1.000 1.000 1.000 1.000 
 

𝑒(0)�̂� 3.000 1.000 3.000 2.000 1.000 3.000 2.000 

1 

𝑒(𝑖) = 𝑒(𝑖−1)�̂� 𝜆(𝑖−1)⁄  1.000 0.333 1.000 0.667 0.333  
 

𝑒(𝑖)�̂� 2.000 1.000 2.000 2.000 1.000 2.000 1.000 

2 

𝑒(𝑖) = 𝑒(𝑖−1)�̂� 𝜆(𝑖−1)⁄  1.000 0.500 1.000 1.000 0.500  
 

𝑒(𝑖)�̂� 2.500 1.000 2.500 2.000 1.000 2.500 0.500 

3 

𝑒(𝑖) = 𝑒(𝑖−1)�̂� 𝜆(𝑖−1)⁄  1.000 0.400 1.000 0.800 0.400  
 

𝑒(𝑖)�̂� 2.200 1.000 2.200 2.000 1.000 2.200 0.300 

4 

𝑒(𝑖) = 𝑒(𝑖−1)�̂� 𝜆(𝑖−1)⁄  1.000 0.455 1.000 0.909 0.455  
 

𝑒(𝑖)�̂� 2.364 1.000 2.364 2.000 1.000 2.364 0.164 

5 

𝑒(𝑖) = 𝑒(𝑖−1)�̂� 𝜆(𝑖−1)⁄  1.000 0.423 1.000 0.846 0.423  
 

𝑒(𝑖)�̂� 2.269 1.000 2.269 2.000 1.000 2.269 0.094 
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6 

𝑒(𝑖) = 𝑒(𝑖−1)�̂� 𝜆(𝑖−1)⁄  1.000 0.441 1.000 0.881 0.441  
 

𝑒(𝑖)�̂� 2.322 1.000 2.322 2.000 1.000 2.322 0.053 

7 

𝑒(𝑖) = 𝑒(𝑖−1)�̂� 𝜆(𝑖−1)⁄  1.000 0.431 1.000 0.861 0.431  
 

𝑒(𝑖)�̂� 2.292 1.000 2.292 2.000 1.000 2.292 0.030 

8 

𝑒(𝑖) = 𝑒(𝑖−1)�̂� 𝜆(𝑖−1)⁄  1.000 0.436 1.000 0.873 0.436  
 

𝑒(𝑖)�̂� 2.309 1.000 2.309 2.000 1.000 2.309 0.017 

9 

𝑒(𝑖) = 𝑒(𝑖−1)�̂� 𝜆(𝑖−1)⁄  1.000 0.433 1.000 0.866 0.433  
 

𝑒(𝑖)�̂� 2.299 1.000 2.299 2.000 1.000 2.299 0.010 

 

After 10 iterations the maximum 𝜀 between the steps is less than 0.01 and the calculation has 

reached the desired tolerance. The resulting centrality eigenvector is 

𝐶𝑒 ≈ 𝑒(9) =

[
 
 
 
 

1
 .433
1

 .866
 .433]

 
 
 
 

 

And the final eigenvalue is 

𝜆 = max(�̂�𝑒) ≈ 2.3 9 

Which satisfies the relationship 
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𝜆𝑒 = �̂�𝑒 

(2.3 9)

[
 
 
 
 

1
 .433
1

 .866
 .433]

 
 
 
 

≈

[
 
 
 
 
 1 1 1  
1     
1   1 1
1  1   
  1   ]

 
 
 
 

[
 
 
 
 

1
 .433
1

 .866
 .433]

 
 
 
 

 

[
 
 
 
 

1 × 2.3 9
 .433 × 2.3 9
1 × 2.3 9

 .866 × 2.3 9
 .433 × 2.3 9]

 
 
 
 

≈

[
 
 
 
 
 .433 + 1 +  .866

1
1 +  .866 +  .433

1 + 1
1 ]

 
 
 
 

 

[
 
 
 
 
2.3 9
1.   
2.3 9
2.   
 .433]

 
 
 
 

≈

[
 
 
 
 
2.299
1.   
2.299
2.   
1.   ]

 
 
 
 

 

 

 

A.2 Dempster-Shafer Combination 

In this example, the fusion is centered at sensor 1 which ascribes probability mass assignments 

𝑚1. The meaning of “centered” is that sensor only has contact with its neighbors at sensors 2, 3, 

4. In this case, the focal frame is  

𝜃 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5} 

The variable ℎ𝑖 represents the hypothesis that sensor 𝑖 is the best measurement of the actual 

value of the item being measured. In the application of this framework to this study, the 

measurement would be the voltage collapse margin, 𝑀 . The portion of the network under 

analysis could be represented by the following diagram (Figure 35), 
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Figure 35:Representation of network for the sensor fusion example 

 

Even though the fusion is centered at sensor 1, the focal frame 𝜃 contains a probability mass 

assignment for sensor 5 since it gains information about sensor 5 from sensor 3. The probability 

mass assigned to the focal frame at-large is the probability mass which has not been assigned to 

any specific hypothesis: 

𝑚(𝜃) = 𝑚(ℎ1 ∩ ℎ2 ∩ ℎ3 ∩ ℎ4 ∩ ℎ5) 

Note that the probability mass, 𝑚(𝑎) is the belief that one commits exactly to the subset 

{𝑎|𝑎 ⊂ 𝜃 } and does not include any probability mass assignments 𝑚(𝑏) of any subsets 𝑏 of 𝑎, 

{𝑏|𝑏 ⊂ 𝑎}.  Thus, the probability mass assignment to the focal frame 𝜃 is the probability mass 

not assigned to any subsets of 𝜃, or, equivalently, the unassigned probability mass. It is not the 

total belief that is committed to 𝜃; this would be expressed as 𝐵𝑒𝑙(𝜃) = 1 which corresponds to 

1 

2 3 

4 

5 
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the familiar Bayesian result 𝑃(𝜃) = 1 or the truism that we can state with 100% certainty that 

probability that at least one measurement in the set is the best measurement of the set. 

 

The initial probability assignments are given in Table 9  below. 

Table 9: Initial probability assignments 

 𝑚1 𝑚2  𝑚3 

ℎ1 0.1 0.4 0.1 

ℎ2 0.1 0.5 0 

ℎ3 0.1 0 0.2 

ℎ4 0 0 0.4 

𝜃 0.7 0.1 0.4 

 

The form for an event, 𝑐, specified by the combination of evidence from A and B is 

𝑚12(𝑐) = 𝐾 ∑ 𝑚1(ℎ𝑖)𝑚2(ℎ𝑗)

ℎ𝑖∩ ℎ𝑗=𝑐

 . 

The normalization factor, 𝐾, is the inverse of one minus the sum of the masses of the empty sets 

which result from the combination of all observations in the power set: 

𝐾−1 = 1 − ∑ 𝑚𝐴(𝑎𝑖)𝑚𝐵(𝑏𝑗)

 𝑖∩ 𝑏𝑗=∅

 

If the evidence set is specified by a column vectors 𝑀𝐴 and 𝑀𝐵, then the combination terms can 

be expressed as a matrix 𝑀𝐴𝐵 which is the vector product of 𝑀𝐴 𝑀𝐵
𝑇. This is illustrated 

graphically in Table 10 below. 

𝑀𝐴 𝑀𝐵
𝑇 = 𝑀𝐴𝐵 
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Table 10: Combination of m1 and m2 

 𝒎𝟐(𝒉𝟏)

= 𝟎. 𝟒 

𝒎𝟐(𝒉𝟐)

= 𝟎. 𝟓 

𝒎𝟐(𝒉𝟑)

= 𝟎 

𝒎𝟐(𝒉𝟒)

= 𝟎 

𝒎𝟐(𝜽)

= 𝟎. 𝟏 

𝑚1(ℎ1)

=  .1 

𝑚(ℎ1)

=  . 4 

𝑚(∅)

=  . 5 

𝑚(∅) =   𝑚(∅) =   𝑚(ℎ1)

=  . 1 

𝑚1(ℎ2)

=   

𝑚(∅) =   𝑚(ℎ2) =   𝑚(∅) =   𝑚(∅) =   𝑚(ℎ2)

=  . 1 

𝑚1(ℎ3)

=  .1 

𝑚(∅)

=  . 4 

𝑚(∅)

=  . 5 

𝑚(ℎ3) =   𝑚(∅) =   𝑚(ℎ3)

=  . 1 

𝑚1(ℎ4)

=   

𝑚(∅) =   𝑚(∅) =   𝑚(∅) =   𝑚(ℎ4) =   𝑚(ℎ4) =   

𝑚1(𝜃)

=  .7 

𝑚(ℎ1)

=  .28 

𝑚(ℎ2)

=  .35 

𝑚(ℎ3) =   𝑚(ℎ4) =   𝑚(𝜃)

=  . 7 

 

 

Since our hypotheses are non-overlapping and the uncertainty mass is the last element in the 

vectors, the normalization factor is the inverse of one minus the sum of all of the off-diagonal 

elements of the 𝑁 × 𝑁 matrix, 𝑀12, which are not elements of the last row or column. 
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𝐾−1 = 1 − ∑ 𝑚1(ℎ𝑖)𝑚2(ℎ𝑗)

𝑁−1

𝑖=1; 𝑗=1
 𝑖≠ 𝑗𝑖

 

= 1 − ( . 5 +  . 4 +  . 4 +  . 5) =  .82 

 

The probabilities assigned to each element are the corresponding diagonal plus the corresponding 

element of the last row and column: 

𝑚12(ℎ𝑖) =  𝐾
−1( 𝑀𝑁𝑖 +𝑀𝑖𝑖 +𝑀𝑖𝑁  ) 

𝑚12(ℎ1) =
 . 4 +  .28 +  . 1

 .82
≈  .4 2 

𝑚12(ℎ2) =
 .35 +  . 5 +  . 1

 .82
≈  .5 

𝑚12(ℎ3) =
 . 1

 .82
≈  . 122 

𝑚12(ℎ4) =   

𝑚12(𝜃) =
 . 7

 .82
≈   . 854 

 

Since the fusion process is associative, the output of the next sensor $m_3$ is fused with the 

output of the first combination 𝑚12. 

 



93 

 𝑚3(ℎ1) =  .1              𝑚3(ℎ2)

=   

𝑚3(ℎ3) =  .2 𝑚3(ℎ4) =  .4 𝑚3(𝜃) =  .3 

𝑚12(ℎ1)

=  .4 2 

𝑚(ℎ1)

=  . 4 2 

𝑚(∅) =   𝑚(∅)

=  . 8 5 

𝑚(∅)

=  .161 

𝑚(ℎ1)

=  .121 

𝑚12(ℎ2) =  .5 𝑚(∅) =  . 5 𝑚(ℎ2)

=   

𝑚(∅) =   𝑚(∅) =  .2 𝑚(ℎ2)

=  .15 

𝑚12(ℎ3)

=  . 122 

𝑚(∅)

=  .  12 

𝑚(∅) =   𝑚(ℎ3)

=  .  24 

𝑚(∅)

=  .  49 

𝑚(ℎ3)

=  .  37 

𝑚12(ℎ4) =   𝑚(∅) =   𝑚(∅) =   𝑚(∅) =   𝑚(ℎ4) =   𝑚(ℎ4) =   

𝑚12(𝜃)

=  . 854 

𝑚(ℎ1)

=  .  85 

𝑚(ℎ2)

=   

𝑚(ℎ3)

=  . 171 

𝑚(ℎ4)

=  . 342 

𝑚(𝜃)

=  . 256 

 

 

The final output of the sensor fusion in this example is 

𝐾−1 ≈  .4 2 

𝑚123(ℎ1) ≈  .421 

𝑚123(ℎ2) ≈  .373 

𝑚123(ℎ3) ≈  . 576 

𝑚123(ℎ4) ≈  . 849 
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𝑚123(𝜃) ≈  . 636 

The results of this three sensor combination example are summarized in the table [TABLE] 

 

 𝑚1 𝑚2 𝑚3 𝑚123 

ℎ1  .1  .4  .1  .421 

ℎ2  .1  .5    .373 

ℎ3  .1    .2  . 576 

ℎ4      .4  . 849 

𝜃  .7  .1  .4  . 636 

 


