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ABSTRACT 

 

 Void growth is known to nucleate from pre-existing defects or particles in a 

matrix material. When these voids coalesce, ductile failure occurs. Rolled metals can 

have highly anisotropic particle geometries whose effects are not accurately captured by 

existing void growth models.  This work seeks to better understand ductile damage that 

is nucleated from particle geometries present in real microstructures. 

 This work presents calibrated sets of GTN model parameters that match the 

uniaxial stress response of direct numerical simulations using real, explicitly modeled, 

particle geometries. Then a method of generating a representative unit cell from a real 

particle microstructure is presented. This method idealizes real second-phase particles as 

a distribution of ellipsoids, and generates a representative unit cell from those ellipsoids’ 

sizes and nearest-neighbor spacings. The representative unit cell is then rotated to obtain 

a unit cell for a certain loading direction.  

 The nearest-neighbor spacing algorithm has limitations for certain particle 

spacings, and also tends to over-predict the porosity of the original unit cell compared to 

the original particle distribution. An improved method of spacing estimation is presented 

using a Voronoi tessellation which more closely reproduces porosity. The unit cells 

derived from the Voronoi tessellation were compared to direct numerical simulations of 

their source void distributions, and more closely reproduce the stress strain response of 

the direct numerical simulations than the nearest neighbor algorithm. 



 

iii 

 

 This process allows any microstructure to be idealized as a representative unit 

cell. These unit cell calculations are much less computationally expensive than directly 

simulating a real particle distribution, and can be used both for existing microstructures 

or for microstructural design. 
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NOMENCLATURE 

 

CRSS Critical Resolved Shear Stress 

DNS Direct Numerical Simulations 

GLD Gologanu-Leblond-Devoux Model 

GTN Gurson-Tvergaard-Needleman Model 

HCP Hexagonal Close Packed 

ND Normal Direction 

RD Rolling Direction 

RVE Representative Volume Element 

TD Transverse Direction 
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INTRODUCTION & BACKGROUND 

 

Ductile failure of metals occurs through the nucleation, growth, and coalescence 

of voids. As voids grow, they coalesce to form microcracks, and eventually macroscopic 

cracks [1]. Coalescence of voids can occur by necking in the matrix material between 

voids [2] [3], or by void sheeting due to the presence of smaller, secondary voids [4] [5]. 

Eventually, these cracks cause macroscopic failure. Voids may already exist in a 

material, or be nucleated at defects such as precipitates [3]. For voids nucleated at 

defects, they may nucleate by separating from the inclusion, or due to fracture of the 

second phase particle inclusion [2]. Since voids tend to nucleate from second phase 

particles, the particle size and spatial distributions, play a significant role in void 

nucleation and growth.  Better understanding of void nucleation is of interest to many 

industries that use ductile metals, as knowledge of the impacts of microstructure on 

ductile failure can enable better microstructural design and selection for a particular 

application. Of particular interest is the ductile failure of metals subjected to ballistic 

impacts, specifically for armor material applications. 

Recent developments in homogenized ductile damage modeling have focused on 

extending void growth models to account for non-spherical voids and uneven void 

spacing ([6],[7]). While these more recent works have made important extensions to the 

original Gurson-Tvergaard-Needleman (GTN) model ([8]), they all assume voids to be 

evenly distributed throughout a material, and generally assume all voids to be the same 
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size. In a real microstructure, voids tend to nucleate from second phase particles, which 

can have a wide range of sizes in a single material. Depending on the processing route, 

void nucleating particles can be relatively evenly distributed, or highly aligned with very 

different spacings in different directions. While the current models may be sufficient for 

modeling real microstructures that contain similarly sized second phase particles that are 

relatively evenly distributed, they still require selection of a characteristic particle size, 

aspect ratio, and spacing. In a real microstructure these parameters may vary greatly 

within the material, particularly for rolled materials which may contain very small 

spherical particles, along with much larger, more elongated. Correctly tuning these 

parameters to match the model response to that of the real microstructure requires 

comparison of the model response to complex and costly direct numerical simulations of 

a real microstructure. 

The goal of this work is to provide a method of estimating the effects of 

elongated second phase particle orientation, without explicitly modeling the geometry of 

those particles. Chapter 2 focuses on the calibration of GTN model parameters to fit the 

stress strain curves of rolled AZ31B at different orientations that were generated through 

DNS of the particle geometry. Then, Chapter 3 suggests a method for directly estimating 

the geometry of a single representative unit cell from a real distribution of second phase 

particles. Chapter 4 then evaluates the accuracy of those estimated unit cells compared to 

the DNS, and Chapter 5 suggests an improved method of estimating the representative 

spacing of particles.  
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1.1 Magnesium 

Magnesium is currently not widely used in structural applications where lightweight 

metals are needed. Instead aluminum and titanium are often favored. While magnesium 

has a high specific strength, it is limited by its low ductility compared to other structural 

metals [9]. Its relatively low density makes it potentially advantageous in applications 

where weight is important such as in vehicle armor, or spacecraft shielding.  However, 

magnesium also presents certain challenges due to its complex behavior.  

 Magnesium has a hexagonal-close-packed crystal structure (HCP) with large 

variations in the critical resolved shear stress (CRSS) along the different slip systems 

[10]. The primary slip system is basal slip, which has the lowest CRSS. Magnesium also 

deforms by twinning, where the crystal lattice is reoriented to create a mirror of the 

original parent lattice [11]. The left and center panels of Figure 1 illustrate the HCP slip 

systems, and the right panel illustrates the twinning modes [10].  

 

 

Figure 1: Deformation mechanisms in Mg (a) Basal and prismatic slip (b) 
Pyramidal slip and (c) Deformation twinning. Reprinted from [10]. 
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 When magnesium is rolled, the c-axes of the grains tend to align in the normal 

direction, which induces strong plastic anisotropy [12]. In addition to this plastic 

anisotropy, second phase particles present in the matrix material may have anisotropic 

geometries, particularly in the case of a rolled material, which induce anisotropy in 

failure strains [9]. Strong anisotropy is also seen in the spall strength, a measure of 

ballistic performance, of magnesium. Higher spall strengths are generally seen for shock 

compression along the a-axis, while c-axis compression sees a lower spall strength [10]. 

This is thought to be influenced by increased twinning for tension along the c-axis [10].  

This work studies a special case of magnesium where basal slip and twinning modes are 

suppressed. This can be achieved through alloying or processing methods and essentially 

removes the plastic anisotropy, while anisotropic ductility remains due to anisotropic 

particle geometries.   

1.2 Literature review of existing void growth models 

The most commonly used void growth model is the GTN, based on the model for 

the growth of spherical voids by Gurson [13] later modified by Tvergaard and 

Needleman [8] to include a basic model for loss of stress carrying capacity during 

coalescence.  While commonly used in finite element calculations, the GTN model does 

have some limitations. It assumes a population of spherical voids that are all the same 

size and dispersed evenly though the matrix. While Tvergaard and Needleman 

introduced the “q” parameters that can be tuned to account somewhat for void shape 

effects, these effects are not well captured [8].  Since real materials may have voids that 

are not spherical and may be distributed differently in different directions, more recent 
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models have been proposed to capture more of the effects of void shape and distribution 

([6],[14]). 

 The Gologanu-Leblond-Devaux  (GLD) model captures the effects of void shape 

on void growth.  The GLD model captures the growth of spheroidal voids, both prolate 

and oblate ([15],[16],[6]), and retains the same form as the Gurson model, with the 

addition of a void aspect ratio parameter to capture the void shape effects and a modified 

yield surface.  The GLD model was initially derived for a confocal unit cell assuming 

axisymmetric loading, and was later extended to an arbitrary loading case [6].  Later 

Gologanu extended the GLD model to include coalescence in layers or columns when 

subject to uniaxial loading ([17],[18]).  

 Pardeon and Hutchinson  extended the GLD model to include a coalescence 

criterion that accounts for the distribution of voids [14]. They introduced a spacing 

aspect ratio, and proposed a coalescence model for axisymmetric loading that predicts a 

critical stress at which localization occurs and account for effects of void spacing and 

void shape. 

 Perrin and Leblond additionally proposed a modification of the Gurson model 

accounting for two populations of voids of different sizes and spacings [19]. Garajeu 

proposed a model that accounts for ellipsoidal shape effects as well, but also includes 

void distribution effects by identifying a “void rich” zone and assuming that the matrix 

is continuous between void rich zones [20]. This model however, does not retain the 

same functional form as the original Gurson model.   
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A few different models have been proposed for ellipsoidal voids. Madou and 

Leblond proposed a model for fully ellipsoidal voids, as opposed to the spheroidal voids 

assumed by the GLD model [21],[22],[23],[24]. This model includes evolution equations 

for the orientation of the void axis; however, it is significantly more complex than either 

the GLD or the Gurson models.  Ponte Casteneda and Zaidman proposed a model for 

aligned ellipsoidal voids and allows for void rotation during deformation [25].  

While these models account for various void geometries, they all assume that 

voids are evenly distributed throughout a material, and do not directly account for 

distributions where voids may be highly aligned in certain areas where characteristic 

void sizes and spacing may vary throughout a material. 

1.3 Literature review of methods of generating representative volume elements 

from real microstructures 

Recent attempts have been made to capture the effects of particle distribution on 

the stress-strain response of a material. Pinz et. al. developed a methodology for 

generating statistically equivalent representative volume elements (RVEs) , by 

generating a statistical description of the distribution of precipitates in a real 

microstructure [26]. Then statistically equivalent RVEs can be constructed which have 

the same statistical description as the full microstructure but contain far fewer 

precipitates for ease of future simulation [26].  Other methods have also been proposed 

for generating statistically equivalent RVEs including by using two-point correlation 

functions to describe distributions [27], [28], [29], and in reconstruction of 

microstructural features through various tools [30], [31], [32]. 
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Gosh generated statistically equivalent RVEs for a composite material by using 

Voronoi cells to describe the region around each fiber location, allowing the material to 

be described by a small sample of the full material with edges described by the Voronoi 

cells [33].  Gosh also employed Voronoi cells to describe the effects of particle 

distribution by using finite samples of particles, bounded by their Voronoi cells, as a 

RVE to calibrate a homogenized model similar to the anisotropic GTN model [34]. 

These current methods of generating RVEs still have limitations for finite 

element modelling as they still contain a distribution of multiple voids, rather than 

reducing to a unit cell with a single void. More complicated RVEs are more time 

consuming and difficult to use as a potential tool for calibrating model parameters to be 

used in a ballistic simulations, or other more complex, calculation. 
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CALIBRATION OF GTN MODEL TO AZ31B DNS 

 

2.1 Review of AZ31b Direct Numerical Simulations. 

Rolled magnesium is a highly anisotropic material. This comes from two 

different sources. The first is anisotropy in the HCP crystals, which tend to align with 

their c-axes in the normal direction which induces plastic anisotropy. The second is 

anisotropy in the distribution of precipitates, that tend to align in long stringers along the 

rolling direction as illustrated by Figure 2. These stringers do not affect the plastic 

response of the material, but rather induce anisotropy in the damage evolution.  

 

 

Figure 2: Rolled AZ31B precipitate morphology from a micro-CT scan. Reprinted 
from [9]. 
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Lloyd [9] conducted uniaxial stress simulations using explicitly modeled realistic 

second phase particles at various orientations. In these simulations, 𝜃௟ = 0° corresponds 

with the loading axis aligned with the normal direction (across the second phase particle 

stringers), and 𝜃௟ = 90° corresponds with the loading axis aligned with the rolling 

direction (along the second phase particle stringers) as illustrated by Figure 3. 

 

 

Figure 3: Schematic of simulation loading orientation with respect to rolling and 
normal directions. Reprinted from [9]. 

 

To isolate the effects of the precipitate morphology, an isotropic plasticity model 

was used, while explicitly modeling the second phase particles. The fracture surfaces for 

these simulations are shown in Figure 4 from [9].  
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Figure 4: Simulated fracture surfaces under uniaxial stress loading using explicitly 
modeled precipitates. Reprinted from [9]. 

 

 While the matrix stress strain behavior for each orientation is the same, damage 

is nucleated from the particles, and the different particle orientations lead to different 

fracture behavior. The failure strains are higher for greater 𝜃௟ (loading direction more 

aligned with the RD) where the projected area of the second phase particle stringers is 

lowest [9].  
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Figure 5: DNS results using isotropic plasticity and realistic, explicitly modeled, 
precipitates showing orientation dependence. Reprinted from [9]. 

 

2.2 Fit of GTN model parameters to AZ31B DNS 

While the direct numerical simulations (DNS) with explicitly modeled particles 

accurately captures the orientation effects, this method is not sustainable for 

incorporating into a ballistics calculation because of the number of elements required. 

Instead, a model is needed that captures the effects of orientation without the 

computational demands of a DNS calculation. To capture these effects, without having 

to explicitly model the individual particles, a set of GTN model parameters can be fit to 

each stress strain curve given in Figure 5 for uniaxial stress of an isotropic matrix with 

realistic microstructure.  
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2.2.1 GTN model parameter effects 

The GTN model yield condition is given by  

 

2

* *2
1 2 3

3
2 cosh (1 ) 0

2y y

q p
q f q q f

 
   

            
   

 (1) 

where the yield strength is a function of plastic strain. 

  pl
y y m    (2) 

The hydrostatic pressure, p , is given by 

 
1

:
3

p   σ I  (3) 

where σ is the Cauchy stress tensor. The von Mises stress, q , is given by 

 
3

:
2

q  S S  (4) 

where  

 p S I σ . (5) 

The constants 1q , 2q , and 3q  were selected to be 1 1.5q  , 2 1q  , and 2
3 1 2.25q q  . 

The void growth rate has two components, the growth rate of existing voids grf , and the 

void nucleation rate nuclf . 

 gr nuclf f f     (6) 

The void nucleation rate is given by 
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 pl
nuclf A   (7) 

where A is given by 

 

2
1

22

pl
N N

NN

f
A exp

ss

 


  
    
   

. (8) 

The nucleation strain has a normal distribution with a mean 𝜀ே and standard deviation 

𝑠ே. Voids are nucleated in tension with a volume fraction of 𝑓ே.  Figure 6 shows possible 

effects of precipitate orientation on the void nucleation function. The peak stress is 

reached at a lower strain for the 0° (Normal Direction) orientation, so voids likely begin 

nucleating at a lower strain.  Figure 6 illustrates how the void nucleation parameters may 

vary with orientation. 

 

 

Figure 6: Proposed dependence of void nucleation function of precipitate 
orientation 
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Coalescence is governed by two porosities: critical porosity, 𝑓௖, and failure 

porosity, 𝑓ி. The function 𝑓∗ models the loss of stress carrying capacity during void 

coalescence between 𝑓௖ and 𝑓ி. 

   F

F

                                 if   

   if   

                               if   

F c
c c

F
c

c

c

F

f f

f f
f f f f f f

f f

f f f

f

f

 


     
 

 (9) 

Ff  is a constant determined by the parameters 1q , 2q , and 3q . 

 
2

1 1 3

3
F

q q q
f

q

 
  (10) 

In an ABAQUS, an element is considered failed and is deleted when Ff f . 

If a material has a higher critical porosity, it will reach a higher strain before the 

stress starts to drop. For the same critical porosity, a higher failure porosity means the 

slope between the initial stress drop and total failure (zero stress) will be less steep and 

the failure strain will be higher. Figure 7 shows how the void coalesce parameters may 

vary with orientation. 
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Figure 7: Proposed dependence of coalescence function on precipitate orientation 

 

2.3 Fitting to DNS stress-strain curve 

For each precipitate orientation, a set of GTN model parameters was fit to the 

corresponding engineering stress-strain curve in Figure 5. Single element, uniaxial 

stress, simulations were run in ABAQUS at 4 110 s   using the same isotropic 

plasticity model as in Lloyd 2019 [9], given in Equation 11, and using the GTN damage 

model.  

 1,
0, 1 exp s pl

s s s
s

h
   






         
    

 (11) 

The values of the parameters in Equation 11 are given in Table 1. 
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Table 1: Isotropic strain hardening model parameters 

Parameter Value Units 

0,s  40 MPa 

s   180 MPa 

1,sh  2500 MPa 

 

 

For each orientation, 𝑓ி, 𝜀ே, and 𝑆ே were independently calibrated to fit the strain 

at peak stress and strain to failure of the DNS calculations with realistic precipitates. 𝑓௖ 

and 𝑓ே were fixed for all orientations.  

 

Table 2: Calibrated GTN model parameters as a function of orientation 

l  0 15 30 45 
 

60 75 90 

𝑓ி 0.08 0.11 0.108 0.075 0.07 0.048 0.06 

𝑓௖ 0.008 0.008 0.008 0.008 0.008 0.008 0.008 

𝜀ே 0.18 0.14 0.15 0.25 0.4 0.5 0.5 

𝑠ே 0.05 0.025 0.015 0.045 0.15 0.2 0.2 

𝑓ே 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
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Figure 8: Simulation results using isotropic plasticity and homogenized damage, 
with 𝒇𝑭, 𝜺𝑵, and 𝑺𝑵 parameters fit to the results of Figure 5 

 

Figure 8 shows the stress strain responses for each orientation using the 

calibrated GTN parameters. The strain at peak stress and strain to failure are reproduced 

accurately for each orientation. Although there are some slight discrepancies in the exact 

slopes between the peak stress and total failure, the overall trends between orientations 

are accurately reproduced. Figure 9 compares the strain at peak stress and strain to 

failure of the calibrated GTN stress strain curves (Figure 8) to those of the DNS using 

isotropic plasticity and realistic precipitates (Figure 5). 



 

18 

 

 

 

Figure 9: Comparison of calibrated GTN model to DNS simulations with realistic 
precipitates 

 

 The error between the strains of the calibrated model and the strains of the direct 

numerical simulations is small for both the strain at peak stress and strain-to-failure. The 

errors in the strains for each material orientation are tabulated in Table 3. 
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Table 3: Error between strains of calibrated model and DNS 
 

Engineering Strain at Peak Stress Engineering Strain at Failure 

l  Current 

Model 

Lloyd 2019 

[9] 

Error 

(%) 

Current 

Model 

Lloyd 2019 

[9] 

Error 

(%) 

0° 0.20 0.19 5.3 0.36 0.38 -5.2 

15° 0.18 0.18 -2.2 0.41 0.42 -2.8 

30° 0.20 0.20 0.0 0.41 0.41 -0.4 

45° 0.30 0.29 2.1 0.43 0.45 -4.0 

60° 0.37 0.35 5.1 0.62 0.62 -0.6 

75° 0.43 0.40 8.0 0.61 0.61 -0.1 

90° 0.43 0.40 8.0 0.68 0.71 -4.2 

 

 

2.3.1 Generalizing the anisotropic damage model 

The anisotropic GTN parameters outlined above are applicable for the special 

case in which the uniaxial tensile loading axis is fixed, i.e. 𝒆௓ = 𝒆ே஽𝑐𝑜𝑠𝜃௟ + 𝒆ோ஽𝑠𝑖𝑛𝜃௟, 

with 𝜃௟ being a fixed loading axis. For any fixed loading axis, the appropriate GTN 

parameters for AZ31B may be obtained via interpolation of values in Table 2. The 

question becomes, what GTN parameters are appropriate in the case of a tensile loading 

axis that changes during deformation. For example, consider a forming process in which 

the loading axis is initially along the rolling direction (𝒆௓ = 𝒆ோ஽ with 𝜃௟ = 90°) until the 

accumulated plastic strain is 50%, then the tensile loading axis is abruptly changed to 
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align with the normal direction (𝒆௓ = 𝒆ே஽ with 𝜃௟ = 0°). In this case, is it appropriate to 

abruptly convert the GTN parameters from the 𝜃௟ = 90° values to the 𝜃௟ = 0° values? 

With respect to the nucleation parameters, this can be argued to be adequately 

representative of the actual physics. In this case, the revectoring of the loading axis from  

𝜃௟ = 90° to 𝜃௟ = 0° would simply result in accelerated void nucleation rates.  

On the other hand, there are serious logic issues with this approach in handling 

the orientation dependence of the coalescence porosity 𝑓௖ and the failure porosity 𝑓ி . 

Consider for example, a forming process in which the material is first loaded in tension 

along 𝜃௟ = 15° until the porosity reaches 𝑓 = 6%. At this point, the material has roughly 

40% of its load carrying capacity since 𝑓ி = 11%, i.e. 1 − 𝑓௖/𝑓ி  ~ 40%. Subsequently, 

assume the material is unloaded, then reloaded along the rolling direction (𝜃௟ = 90°) 

with an infinitesimally small tensile stress, e.g. 1 Pa. Since 𝑓 = 𝑓௖ = 6%, prior to this 

reloading, the material now has no load carrying capacity. Clearly this is a logical flaw 

in this simple approach of selecting orientation dependent values of the coalescence 

porosity 𝑓௖ and the failure porosity 𝑓ி  based only on the current tensile axis. To 

overcome this flaw, it is necessary to introduce a parameter to capture the history 

dependence of the loading axis, which is proposed below.  

For any general stress state 𝝈, we denote the eigenvectors of the stress tensor as 

𝒆ଵ, 𝒆ଶ, and 𝒆ଷ, which correspond to the three principal stresses 𝜎ଵ, 𝜎ଶ, and 𝜎ଷ, 

respectively. Here we adopt the typical ordering convention of the principal stresses such 

that 𝜎ଵ ≥ 𝜎ଶ ≥ 𝜎ଷ. Thus, for the special case of uniaxial tension discussed above, the 

loading angle can be equivalently defined as the projection of the eigenvector associated 
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with the largest principal stress onto the rolling direction unit vector, i.e. 𝒆ଵ ∙ 𝒆ோ஽ =

𝑠𝑖𝑛𝜃௟. We utilize this same definition, to define the dominant tensile loading axis under 

any arbitrary general loading state. Even for three-dimensional stress states, 𝒆ଵ and thus 

𝜃௟ are constant for any proportional loading, e.g.  𝝈(𝒕) = 𝛽(𝑡) 𝝈𝒓𝒆𝒇, where 𝜷(𝒕) is any 

time-varying scalar that proportionally amplifies the stress tensor from a reference time 

denoted here as  𝝈𝒓𝒆𝒇. For non-proportional loading, 𝒆ଵ and thus 𝜃௟ are varying with 

loading, and a history dependent effective loading angle (denoted here as 𝜃̅௟) is required. 

Unfortunately, the authors are unaware of any non-proportional loading experiments or 

DNS simulations of AZ31B that could be utilized to inform the construction of 𝜃̅௟. For 

lack of any better formulation, we propose the following expression to compute the 

effective loading angle 

 
*

0

* 1 * 1 *
1 0( ))

f

RD lf
f df f f sin       e e  (12) 

where 𝛼 ≠ 0 is a scalar exponent that can be tuned to non-proportional loading data, if 

available. In particular, 𝛼 can be selected in such a way that 𝜃̅௟ is uniformly depends on 

the history of 𝑓∗, i.e. 𝛼 = 1. Alternatively, 𝛼 < 1 can be selected such that 𝜃௟ and 𝜃̅௟ 

deviate most starkly at large 𝑓∗. Note that the above expression is constructed such that   

𝜃̅௟ = 𝜃௟ for any proportional loading case. For any time increment, we propose using 𝜃̅௟ 

to update the anisotropic values of the coalescence porosity 𝑓௖ and the failure porosity 

𝑓ி. For AZ31B, this can be achieved via interpolation of the values in Table 2. Note that 

this procedure will avoid the logic issues discussed above, because 𝜃̅௟ is a smoothly 

varying function for any arbitrary loading path. On the other hand, as discussed earlier, 
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we recommend selecting nucleation parameters (𝑓ே , 𝜖ே, 𝑠ே) based on the instantaneous 

value of the dominant loading angle 𝜃௟ . In the following section, we will carry out some 

impact simulations under more general loading states. Even though these cases are not 

necessarily proportional loading, they are special cases in which the dominant tensile 

direction, i.e. 𝒆ଵ, is known a priori with respect to the impact velocity vector.  

2.4 Ballistic performance as a function of material orientation 

2.4.1 Spherical impactor 

To capture the effects of orientation on the ballistic response of magnesium, for 

each orientation the corresponding GTN model was used in ABAQUS to simulate a 

magnesium plate impacted by a steel sphere at a velocity of 300 m/s. The boundary 

conditions of these axisymmetric finite element simulations are shown in Figure 10. The 

steel projectile had a diameter of 3.5 mm and the magnesium plate had a thickness of 3.5 

mm. 
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Figure 10: Diagram of ballistics problem 

 

The mesh size was chosen such that the elements had a similar size (0.5mm) to 

the dimensions of the simulation domain used in the Lloyd et al. DNS simulations. In 

doing so, we can ensure that energy dissipated in the complete failure of particular 

volume of a material is approximately the same for both DNS and the homogenized 

GTN model. In particular, this choice of element size ensures that the energy dissipated 

in macroscopic crack formation in the homogenized simulation is never less than the 

corresponding energy dissipated in the DNS simulations. This energy argument does not 

necessarily hold for significantly finer meshes, which could lead to an artificial mesh-

dependence, in which the material is artificially more brittle at finer mesh sizes.  
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After impact, damage accumulates in the elements on the back face, which are 

eventually deleted for the weaker orientations. Elements are deleted when the void 

volume fraction reaches the failure porosity, 𝑓ி. The damaged plates at 0° and 90° are 

shown in Figure 11. 

 

 

Figure 11: (a) Deformed plate using 0° material model showing void volume 
fraction (b) Deformed plate using 90° material model showing void volume fraction 

 

Figure 12 shows the free surface velocity taken at the center node on the back 

face of the magnesium plate. The free surface velocity is plotted as constant after the 

element has been deleted. The weaker material orientations (0°-30°) reach the highest 

free-surface velocity, while the stronger orientations reach a lower velocity. 
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Figure 12: Free surface velocity at the center of the plate for each orientation 
subjected to impact by steel sphere 

 

Figure 13 plots the number of deleted elements as a function of time for each 

material model. The strongest orientations never have an element accumulate enough 

damage to be deleted. In general, the weaker orientations have more deleted elements. 

This implies that the orientations showing no element deletion (75° and 90°) are better 

for armor applications since they would not result in any flaking off of material on the 

back face of a plate of armor. 
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Figure 13: Number of elements deleted for different material orientations subjected 
to impact by steel sphere 

 

2.4.2 Plate impact 

Similar axisymmetric finite element simulations to those in the previous section 

were also conducted for the case of a steel plate impacting a magnesium plate. For these 

simulations a circular steel plate of 3.5mm thick impacts a 7mm thick magnesium plate 

at a velocity of 300 m/s. A diagram of the plate impact problem is shown in Figure 14.  
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Figure 14: Diagram of plate impact problem 

 

 Figure 15 shows the damaged magnesium plate for the 0° material model. 

Damage develops near the center line of the plate until the elements fail and the back 

face of the magnesium plate separates. There are some edge effects seen at the contact 

between the two plates that are due to the coarseness of the mesh. The damage pattern is 

similar for the other material orientations.  
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Figure 15: Deformed plate using 0° material model showing spall failure. Color 
scale denotes void volume fraction 

 

 The free surface velocities of the center node on the back face of the magnesium 

plate is plotted in Figure 16. The responses for each different material model are the 

same up until the point where the plate separates. The separated piece of the back face is 

ejected from the plate at a higher velocity that the initial impact due to the difference in 

mass of the two plates. 
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Figure 16: Free surface velocity at the center of the plate for each orientation 
subjected to impact by steel plate 

 

After separation, the final velocities of the back face were the highest for the 75° 

and 90° models. The lowest final velocity occurred for the 30° orientation, which also 

experienced the most damage. This is because for that orientation the back face does not 

fully separate from the rest of the plate. Overall, the rest of the orientations have similar 

velocities. 

The spall strength is related to the pull-back velocity in a plate impact simulation 

by Equation 13, where fsU is the pull-back velocity. 
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 *
0 0

1

2 fsC U    (13) 

The spall strengths for each orientation are listed in Table 4 for the density 

3
0 1770 /kg m   and wave speed 0 4540 /C m s . The predicted spall strength is 

slightly lower along the rolling direction (90°) than the normal direction (0°), with the 

highest spall strengths occurring between l = 15° and l = 45°. 

 

Table 4: Spall strength as a function of material orientation 

l  *  (MPa) 

0° 615 

15° 643 

30° 643 

45° 643 

60° 603 

75° 602 

90° 602 

 

 

 The strain rate of the magnesium plate during impact is given by Equation 14, 

where t  is the pullback velocity history duration from the peak to the local minimum 

[10].  The strain rate for this plate impact problem was approximately 8.6x 4 110 s . 

 

 
0

1

2
fsU

C t






  (14) 
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As shown in the results of Mallick et. al. [10] in Figure 47, spall strength increases 

with strain rate. The results of Figure 47 range from a spall strength of 0.4 GPa at a 

strain rate of 4 110 s  to a spall strength of about 1.8 GPa at a strain rate of 6 110 s .  The 

blue dashed line shows the trend in AZ31B. The spall strengths in Table 4 lie 

approximately along the blue line.  

 

 

Figure 17: Spall strength of polycrystalline pure and alloyed magnesium. The blue 
line denotes the trend in AZ31b, while the red line denotes the trend in Ma2-1. 

Reprinted from [10]. 
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Figure 18 shows the number of deleted elements as a function of time for each 

orientation.  The plates experience a rapid increase in the number of deleted elements 

when failure occurs at the spall plane, followed by a slower increase as elements 

continue to accumulate enough damage to be deleted.  

 

 

Figure 18: Number of elements deleted for different material orientations subjected 
to impact by steel plate 
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CONVERSION OF MICROSTRUCTURE TO REPRESENTATIVE UNIT CELL 

 

In the previous section, the effects of anisotropic particles were captured by 

calibrating GTN model parameters to stress-strain curves from direct numerical 

simulations with explicitly modeled particles.  In this section, a method for determining 

a representative unit cell directly from a real particle distribution will be outlined. This 

will enable skipping the time-intensive step of directly modeling the particles 

individually and instead using results from the representative unit cell to calibrate model 

parameters to.  

3.1 Fit of ellipsoid distribution to real microstructure 

To convert a real microstructure into a representative, axisymmetric, unit cell 

with an ellipsoidal void, the microstructure needs to be reduced to four representative 

dimensions, 𝐿௭, 𝐿௥, 𝑅௭, and 𝑅௭ as shown in Figure 19. 

 

 

Figure 19: Axisymmetric unit cell geometry 
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A MATLAB algorithm was created to fit ellipsoidal shapes to real microstructure 

data and extract the spatial and size distribution of those ellipsoidal shapes. 2D images of 

a real microstructure are obtained from μ-CT scans of a material. These binary image 

slices showing the second phase particles present in the matrix material are then stacked 

together to reconstruct the 3D microstructure as illustrated in Figure 20.  

 

 

Figure 20: Reconstruction of 3D microstructure from μ-CT binary slices 
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The MATLAB code uses a function that will find all connected regions in a 

binary volume, and determine the centroid and axis lengths of the ellipsoid which has the 

same centroid and second moment as the original particle as illustrated in Figure 21. 

Additionally, the MATLAB algorithm also calculates the orientation of each individual 

ellipsoid with respect to the material axes.  

 

 

Figure 21: Fit of ellipsoids to real second phase particles 

 

Each particle is defined by a connected region of voxels in the binary volume. 

Pixels are considered connected only if their faces are in contact as shown in Figure 22. 

If two voxels are connected by only an edge or a corner, they are considered separate 

connected regions representing separate particles. 
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Figure 22: Voxel connectivity conditions 

 

 The MATLAB function regionprops3 converts each arbitrary connected binary 

region to an ellipsoid with the same normalized second central moment as the original 

region [35]. The ellipsoid orientations and axis lengths are determined from the 

covariance matrix of the binary connected region. In 2D, the central moments,  , are 

given by 

 ( ) ( ) ( , )
p q

pq
x y

x x y y b x y     (15) 

and ( , )b x y  is equal to 1 if the voxel is part of the region, and 0 if not [36]. The 

coordinates  ,x y represent the centroid of the connected binary region. The covariance 

of the image, I, is given by Equation 16 [37]. 

 20 11

11 0200

1
cov[ ( , )]I x y

 
 

 
  

 
 (16) 
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The eigenvectors of the covariance matrix correspond to the directions of the major and 

minor axes of the ellipse, and the eigenvalues represent the squared length of the major 

and minor axes. The three axes of an ellipsoid representing a 3D binary region are 

extracted in a similar manner, but there will instead be a set of three eigenvectors and 

eigenvalues corresponding to the three axes’ directions and lengths.  

Figure 23 and Figure 24 shows a single particle converted to a representative 

ellipsoid. 

 

 

Figure 23: Front and right view of single particle and corresponding ellipsoid 

 

 

Figure 24: Top view of single particle and corresponding ellipsoid 
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 As shown in Figure 25, Figure 26, and Figure 27 the MATLAB algorithm 

accurately reproduces the approximate shape, size, and orientation of the real second 

phase particles. Figure 28 shows a cross section of the original 2D binary volume, and a 

cross section of the binary volume of the corresponding ellipsoid distribution. The 

algorithm maintains the exact number of individual particles, since each connected 

region is assigned an ellipsoid, and the new ellipsoidal microstructure has approximately 

the same total porosity as the original microstructure.  

 

 

Figure 25: Front view of particles and corresponding ellipsoids 
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Figure 26: Right view of particles and corresponding ellipsoids 

 

 

Figure 27: Top view of particles and corresponding ellipsoids 
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Figure 28: Cross section showing particle and ellipsoid areas at z = 160 voxels 

 

 To determine the spacing distribution of the second phase particles, a simple 

nearest neighbor algorithm was implemented. For each ellipse, the MATLAB algorithm 

finds the neighboring ellipse which has the shortest radial distance between the ellipse 

centers.  

For a particular ellipse, i , the distances, ( )r j ,between its centroid and the centroid of all 

other ellipses is calculated. 

 2 2 2( ) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))r j x i x j y i y j z i z j       (17) 

The coordinates of the centroids of the ellipses are given by  , ,x y z . Then, the 

neighboring ellipse with the nearest centroid is selected by taking the minimum of the 

distances ( )r j . The spacings in each direction for the nearest ellipsoid are then 

extracted. 

    min min min min min min, , ( ) ( ) , ( ) ( ) , ( ) ( )x y z x i x j x i y j z i z j     (18) 
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This process is repeated for each ellipsoid, so that the distance in each direction from 

each ellipse to its nearest neighbor is recorded. This gives a distribution of spacings in 

the x, y, and z directions, which can be correlated to the RD, ND, and TD for a given 

material.  

The second-phase particles are assumed to have no strength, and as such the 

particles are treated as pre-existing pores with the same size, shape, and spacing 

distribution. There are; however, several potentially important factors which are not 

captured by approximating the microstructure as a distribution of ellipsoids. While the 

ellipsoids capture the approximate size and shape of the second-phase particles, the real 

particles have sharp corners which could act as stress concentrators. In addition, there 

may be additional particles dispersed throughout the material which are smaller than 1 

voxel and are not detected. Since these particles are smaller than what can be detected by 

the micro-CT, there is no way to capture them using this method. Since the 

microstructures are constructed from micro-CT scans, which detect second phase 

particles, pre-existing pores in the matrix material are also not captured by this method. 

The particles are all assumed to be the same precipitate material; however, it is possible 

that they could be different types of intermetallics, or be composed of different alloying 

or impurity elements. This could cause different particles to behave differently, perhaps 

debonding from the matrix material more easily and promoting void growth at that 

particle. 
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Two separate microstructures were analyzed using this approach. The first is 

rolled magnesium AZ31B, discussed previously in Chapter 2, and the second is 

aluminum 5059.  

3.1.1 Rolled AZ31B microstructure 

The AZ31B microstructure from Chapter 2 is shown in Figure 29. It has a 

distribution of small, evenly dispersed second phase particles, as well as long stringer 

particles that are aligned in the rolling direction. 

 

 

Figure 29: Rolled AZ31B microstructure showing second phase particles 
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Figure 30 shows the distribution of second phase particle major and minor axis 

lengths for the rolled AZ31B sample. The majority of the particles have major axis 

lengths of less than 10 μm, and are approximately spherical. Very few minor axes are 

greater than 50 μm, while there are several particles with significantly longer major axes 

which is consistent with the presence of several large, elongated stringer particles. 

 

 

Figure 30: (a) AZ31B second phase particle size distribution. (b) detail of (a) 

 

 Figure 31 shows the particle spacing distribution of the AZ31B sample using the 

nearest neighbor spacing algorithm discussed previously.  These spacings are generally 

small compared to the major axis length since this algorithm by design finds the closest 

particles to each other. In general, the spacings in the rolling direction are slightly higher 

than in the normal or transverse directions.  
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Figure 31: AZ31B second phase particle spacing distribution 

 

 Since the nearest-neighbor algorithm by definition locates the closest possible 

spacing between one void and its neighbor, the spacings in a particular direction can be 

smaller than the size of the particle in some cases. This may be the case when a large, 

elongated particle has a much smaller particle located near its centroid, so the nearest-

neighbor spacing is smaller than would be expected for the size of the particle. However, 

when the radial spacing is compared to the smallest minor axis length, Figure 32, it is 

clear that the particles are not generally intersecting and the spacings are always larger 

than the smallest axis length.  
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Figure 32: AZ31B smallest minor axis length compared to radial particle spacing 

 

The average, standard deviation, minimum and maximum of the axis lengths, and 

spacings are tabulated in Table 5. 

 

Table 5: AZ31B size and spacing statistics 
  

RD ND TD 

Size Average 10.12 5.19 2.66 

St. Deviation 22.98 11.15 3.30 

Minimum 1.15 1.15 1.15 

Maximum 244.59 127.54 42.72 

Spacing Average 11.45 9.26 10.62 

St. Deviation 11.46 12.24 11.78 

Minimum 0.00 0.00 0.00 

Maximum 68.64 75.66 59.94 
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 Figure 33 shows the orientations of each of the particles’ principal axes. The pole 

figure plots axes aligned along the RD, ND, and TD as points closer to the 

corresponding poles. The TD corresponds to the center.  The color scale denotes the 

major axis length. Particles with an axis length of only 1 voxel are not plotted since the 

orientation of a cube is not meaningful. The smallest particles are not strongly oriented 

in any particular direction. However, the largest particles (blue) have major axes which 

are aligned along the RD-TD plane, corresponding to the long stringers seen in Figure 

29. 

 

 

Figure 33: Pole figure showing orientation distribution of AZ31B second phase 
particles. Color scale denotes major axis length. 

 

3.1.2 Al 5059 microstructure 

A sample of rolled Al 5059 was also analyzed. As shown in Figure 34, the 

microstructure consists of evenly dispersed, approximately ellipsoidal second phase 

particles. It also does not contain the long stringer particles seen in AZ31B. Figure 35 

shows the distribution of second phase particles sizes for the Al 5059 microstructure. 
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The majority of the particles have major axes of less than 50 μm, and minor axes of less 

than 20 μm.  

 

 

Figure 34: Rolled Al 5059 microstructure showing second phase particles 

 

 

Figure 35: (a) Al 5059 second phase particle size distribution. (b) detail of (a) 
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 Figure 36 shows the distribution of particle spacings. The particles are also fairly 

evenly distributed. The spacings in the rolling and normal directions are similar, while 

the spacing is generally smaller in the transverse direction.  

 

 

Figure 36: Al 5059 second phase particle spacing distribution 

 

 Figure 37 compares the radial spacing to the smallest axis length. As in the case 

of the AZ31B microstructure, the major axis lengths are generally much longer than the 

nearest-neighbor spacings due to the arrangement of the particles and the algorithm’s 

bias towards the smallest possible spacing between centroids.  
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Figure 37: Al 5059 smallest minor axis length compared to radial particle spacing 

 

The average, standard deviation, minimum and maximum of the axis lengths, and 

spacings are tabulated in Table 6. 

 

Table 6: Al 5059 size and spacing statistics 
  

RD ND TD 

Size Average 3.64 1.71 1.11 

St. Deviation 3.45 1.57 0.81 

Minimum 0.43 0.43 0.43 

Maximum 71.94 22.57 9.85 

Spacing Average 4.33 3.84 2.49 

St. Deviation 3.57 3.40 3.72 

Minimum 0.00 0.00 0.00 

Maximum 33.50 29.14 27.32 
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 Figure 38 shows the orientation distribution of the particles. The major axes are 

all aligned generally aligned along the rolling direction, with the minor axes distributed 

about the ND-TD plane. The larger particles, shown in yellow, are more strongly aligned 

in the rolling direction. 

 

 

Figure 38: Pole figure showing orientation distribution of Al 5059 second phase 
particles. Color scale denotes major axis length. 

 

3.2 Conversion of ellipsoidal distribution to representative unit cell 

As in Chapter 2, we are interested in the effects of orientation on the stress strain 

response of the material. To capture the effects of changing the loading orientation, the 

average spacings and axis lengths were extracted with the Z axis (loading axis) aligned 

with the rolling direction, and the unit cell was rotated to capture the other orientations. 

The rotation of the RD-ND into radial coordinates is shown in Figure 39. 
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Figure 39: Representative unit cell orientation compared to particle orientation 

  

The average ellipsoidal axis lengths, (𝑅ோ஽
௔௩௚, 𝑅ே஽

௔௩௚, 𝑅்஽
௔௩௚) and spacings (𝐿ோ஽

௔௩௚, 

𝐿ே஽
௔௩௚, 𝐿்஽

௔௩௚)  were extracted at an orientation of 𝜃௟=90°.  For each orientation, the 

spacings are converted from the material coordinate system (RD-ND-TD) to the loading 

coordinate system (X-Y-Z). 

 avg avg avg
Z ND l RD lL L cos L sin    (19) 

 avg avg avg
X ND l RD lL L sin L cos    (20) 

 avg avg
Y TDL L  (21) 

The radii are transformed similarly. 
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 avg avg avg
Z ND l RD lR R cos R sin    (22) 

 avg avg avg
X ND l RD lR R sin R cos    (23) 

 avg avg
Y TDR R  (24) 

To form an axisymmetric unit cell, the X and Y dimensions are averaged for both the 

average spacing and average radii. 

 
1 1

2 2
avg avg avg
R X YL L L   (25) 

 
1 1

2 2
avg avg avg
R X YR R R   (26) 
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REPRESENTATIVE UNIT CELL STRESS-STRAIN RESPONSE 

 

4.1 AZ31B microstructure 

For the rolled AZ31B microstructure, the average spacings and radii were 

extracted in the rolling, normal, and transverse directions. At l =90°, the stringer 

particles (along the RD) are aligned along the loading (Z) axis, and the average unit cell 

that is slightly elongated in the Z direction ( / 1.2z rL L  ) with a much more elongated 

void ( / 2.6z rR R  ). This reproduces the effect seen in the true microstructure where 

many small particles are stacked very closely in the rolling direction, shown in Figure 

40, such that the spacing between the edges of particles is small. 

 

 

Figure 40: Small particles forming long stringers in rolled AZ31B 
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 At l =0°, the representative unit cell is wider ( / 0.8z rL L  ), with a more disk 

like void ( / 0.8z rR R  ). This is due to modeling the unit cell as axisymmetric about the 

Z-axis. In the real microstructure at l =0° the stringer particles are aligned across the 

loading axis. Table 7 details the representative unit cell geometry for each orientation. 

 

Table 7: AZ31B representative unit cell geometry 

l  0 15 30 45 60 75 90 

ZR  5.19 7.63 9.55 10.82 11.36 11.11 10.12 

RR  6.39 6.89 7.01 6.74 6.11 5.15 3.93 

ZL  9.26 11.91 13.74 14.64 14.55 13.46 11.45 

RL  11.03 12.04 12.58 12.63 12.18 11.26 9.94 

/Z RR R  0.81 1.11 1.36 1.61 1.86 2.16 2.58 

/Z RL L  0.84 0.99 1.09 1.16 1.19 1.19 1.15 

0f  (%) 12.53 13.99 14.38 14.04 13.08 11.50 9.19 

 

 

 The porosities of the unit cells in Table 7 are significantly higher than the 

porosity of the AZ31B DNS, listed in Table 8. However, the higher porosities in each 

case occurs for the 30° through 60° orientations. 
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Table 8: Porosity as a function of orientation from Lloyd results [9] 

l  0 15 30 45 60 75 90 

0f  (%) 0.630 0.633 0.634 0.632 0.657 0.603 0.586 

 

 

 As shown in Figure 41, the unit cell is elongate at 90°, and gradually becomes 

more square with a more oblate void as the unit cell rotates towards 0°. 

 

 

Figure 41: Representative unit cell geometry generated from AZ31B 
microstructure 

 

 These unit cells do not look like a pure rotation because the rotation is done in 

the X – Z plane, and the spacing in R is an average of the Y (TD) and X spacings.  To 

illustrate what the unit cells would look like if only the rolling direction and normal 
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direction dimensions accounted for, the unit cells without the transverse direction 

included are illustrated in Figure 42.  In this case the unit cells for 0° and 90° have the 

same dimensions in opposite directions. Note that without the TD effect, the void 

becomes spherical at 45°. 

 

 

Figure 42: Representative unit cell geometry without TD averaging 

 

These representative unit cells were used to run axisymmetric uniaxial stress 

finite element simulations with parallel lateral boundaries to compare with the results of 

Figure 5. These simulations are done with a prescribed strain in the Z direction. The 

boundary conditions are illustrated in Figure 43.  
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Figure 43: Axisymmetric uniaxial stress boundary conditions 

 

The results of these simulations are shown in Figure 44. While the strains to 

failure do not match the DNS results exactly, the trends are similar in that the 0°-30° unit 

cells had the lowest strains to failure while the higher angle orientations had higher 

strains to failure. The discrepancy in strain-to-failure is likely because these unit cell 

calculations do not include necking. In the DNS calculations of Figure 5, necking is seen 

and the maximum true strain in the necked region will be much higher than the nominal 

strain. 
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Figure 44: AZ31B representative unit cell engineering stress - strain under uniaxial 
stress loading 

 

The representative unit cells defined in Table 7 were also simulated under 

uniaxial strain loading to approximate the conditions seen during a ballistic impact. 

These boundary conditions are illustrated in Figure 45. 
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Figure 45: Axisymmetric uniaxial strain boundary conditions 

 

As seen in Figure 46, the 90° orientation, which had the highest strain to failure 

in the DNS (Figure 5), saw the highest peak stress. Similarly, the orientations with lower 

failure strains reached a lower peak stress. 
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Figure 46: AZ31B representative unit cell engineering stress - strain under uniaxial 
strain loading 

 

Peak z in the uniaxial strain unit cell calculations (Figure 46) is essentially spall 

strength at low strain rate and very low shock pressure. The spall strengths seen are low 

compared to the experimental results in Figure 47, which is likely due to the high initial 

porosities of these unit cells ( 0 12%f  ). The highest spall strength for these unit cells 

was 247 MPa for the 90° orientation, while the lowest was for the 15° and 30° unit cells 

at 190 MPa. 
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Figure 47: Spall strength of polycrystalline pure and alloyed magnesium. The blue 
line denotes the trend in AZ31b, while the red line denotes the trend in Ma2-1. 

Reprinted from [10]. 

 

 To compare the spall strength estimates for a more realistic initial porosity, the 

unit cell size and void aspect ratio were kept the same, while the void size was adjusted 

to use the real porosities given in Table 8. These adjusted unit cell geometries are given 

in Table 9. 
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Table 9: AZ31B unit cell geometries with real porosity 

l  0 15 30 45 60 75 90 

ZR  1.92 2.72 3.38 3.85 4.19 4.16 4.04 

RR  2.36 2.45 2.48 2.40 2.25 1.93 1.57 

ZL  9.26 11.91 13.74 14.64 14.55 13.46 11.45 

RL  11.03 12.04 12.58 12.63 12.18 11.26 9.94 

/Z RR R  0.81 1.11 1.36 1.61 1.86 2.16 2.58 

/Z RL L  0.84 0.99 1.09 1.16 1.19 1.19 1.15 

0f  (%) 0.630 0.633 0.634 0.632 0.657 0.603 0.586 

 

 

 The stress-strain responses under uniaxial strain loading for these adjusted unit 

cells are given in Figure 48. The spall strengths for these unit cells range from 389 MPa 

(60°) to 401 MPa (0°), which more closely agrees with the experimental results of 

Figure 47. 
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Figure 48: AZ31B representative unit cell with true porosity engineering stress - 
strain under uniaxial strain loading 

 

4.2 Al microstructure 

To determine the response of AZ31B if it had a more dispersed microstructure, 

the representative unit cells for the Al 5059 microstructure in Chapter 3 were extracted. 

This microstructure has a more dispersed distribution of particles that are generally 

smaller, and does not have the long stringer particles seen in rolled AZ31B. For the 

aluminum microstructure, the average radii and spacings used to construct the unit cells 

were the volume-weighted averages, to better capture the influence of the larger 

ellipsoidal particles.  

The geometries of the representative unit cells used are given in Table 10. As 

illustrated in Figure 49, the unit cells generated from the Al microstructure range from 

very short and wide at 0°, to long and narrow at 90°. 
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Table 10: Al microstructure representative unit cell geometry 

l  0 15 30 45 60 75 90 

ZR  2.28 4.77 6.92 8.61 9.70 10.14 9.89 

RR  6.64 6.77 6.55 6.00 5.16 4.08 2.84 

ZL  5.42 8.35 10.72 12.35 13.14 13.03 12.04 

RL  11.01 11.50 11.56 11.16 10.35 9.17 7.70 

/Z RR R  0.34 0.70 1.06 1.43 1.88 2.48 3.48 

/Z RL L  0.49 0.73 0.93 1.11 1.27 1.42 1.56 

0f  (%) 10.23 13.17 13.84 13.44 12.25 10.29 7.46 

 

 

 

Figure 49: Representative unit cell geometry generated from Al microstructure 
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The representative unit cell geometries for Al 5059 were simulated using the 

material properties of AZ31B. Figure 50 shows the response of the Al microstructure 

unit cells under uniaxial stress loading, with boundary conditions as described in Figure 

43.  For these unit cells, the 30° had the lowest strain to failure, while the 75° and 90° 

unit cells never saw the same sharp drop in stress seen in the other unit cells. This may 

be because the 30° unit cell consisted of a nearly spherical void in a nearly spherical unit 

cell, while the unit cells for 75° and 90° were very elongated in the Z direction.  

 

 

Figure 50: Al microstructure representative unit cell engineering stress - strain 
under uniaxial stress loading 

 

Figure 51 shows the engineering stress – engineering strain response of the unit 

cells under the uniaxial strain boundary conditions shown in Figure 45.  As with the unit 

cells generated from the AZ31b microstructure, the ordering of strains to failure of the 
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uniaxial strain response with orientation are similar to those of the response under 

uniaxial strain. For these unit cells, the peak stress was lowest for the 30° unit cell, and 

highest for 90°. 

 

 

Figure 51: Al representative unit cell engineering stress - strain under uniaxial 
strain loading 
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IMPROVEMENTS TO SPACING STATISTICS 

 

In the previous chapters, the void spacing distribution was determined by finding 

the smallest radial distance between particle spacings [38]. While this method is a simple 

algorithm, it has limitations. For example, if microstructure consists of horizontal lines 

of voids, the nearest-neighbor algorithm breaks down.  

 

 

Figure 52: Example of microstructure geometry for which the simple nearest-
neighbor algorithm breaks down 

 

Since the algorithm finds the void with the smallest radial distance, then 

calculates the distance between voids in each direction, the nearest voids will always be 

directly aligned in the X-direction. This will result in an average spacing of zero in the z-

direction, instead of a more intuitive unit cell that has a short avg
RL  and long avg

ZL . Even if 
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the voids are slightly staggered in the Z-direction, this can result in an average spacing 

that is smaller than the void radius. Because of this problem, an improved method of 

estimating the representative void spacing is needed. 

5.1 Voronoi tessellation approach 

The Voronoi tessellation is an algorithm that takes a set of points and calculates a 

region around each point that is closer to that point than any other [38]. This will 

produce a set of polygons that encompass the entire region and can be used to 

approximate a representative unit cell that will reproduce the stress strain curve of the 

void distribution. 

 

 

Figure 53: Voronoi diagram showing rectangular spacing extracted from midpoints 
of the Voronoi polygons. Red dots denote void centers.  
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 To use the Voronoi diagram to extract a representative unit cell, the Voronoi 

regions need to be converted to rectangular regions. To do this, the regions were 

approximated as the smallest rectangle that can encompass all of the midpoints of the 

polygon edges, as shown in Figure 53. This yields a representative spacing for each void 

in the region. This distribution of spacings yields several potential unit cells, including 

the average spacing, minimum spacing, maximum spacing, or a combination of the 

average spacing and the standard deviation. 

 To evaluate the accuracy of using this method to generate a representative unit 

cell, and determine which unit cell is best, three different distributions of circular voids 

were generated. The three different void distributions result in unit cell spacing aspect 

ratios, 𝜆 = 𝐿௭/𝐿௫, of approximately 3, 1, and 0.3.  

 

 

Figure 54: Three void distributions with different spacing aspect ratios 𝝀 ≅ 𝑳𝒛/𝑳𝒙 
1) 𝝀 ≅ 𝟑 2) 𝝀 ≅ 𝟏 and 3) 𝝀 ≅ 𝟎. 𝟑 
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The Voronoi diagrams for each void distribution are shown in Figure 55. For 

void distributions 1, and 3, the Voronoi regions are generally long and skinny, capturing 

the close spacing of the voids in one direction and larger spacing in the other. 

 

 

Figure 55: Voronoi diagrams for three void distributions 

  

 Six potential unit cells were selected using the distribution of unit cell sizes 

extracted from each void distribution’s Voronoi diagram. These potential unit cells are 

listed in  

Table 11. These potential unit cell formulations use the sizes of the Voronoi unit cells of 

a particular distribution of circular voids to construct a single, representative, unit cell. 
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Table 11: Potential unit cell geometries 

Unit Cell 
XL  ZL  

1 g
X
avL  g

Z
avL  

2 min
XL  min

ZL  

3 max
XL  max

ZL  

4 ( )av
X X

g stdevL L  ( )av
Z Z

g stdevL L  

5 ( )av
X X

g stdevL L  XL  

/avg avg
Z XL L   

6 1
( ( ) ( ))

2X Z
avg

XL eLstdev std v L   XL  

/avg avg
Z XL L   

 

 

5.2 Accuracy of Voronoi unit cells 

 For the three void distributions in Figure 54, the potential unit cell geometries 

extracted from their Voronoi diagrams are listed in Table 12. The unit cells in Table 12 

were calculated for each void distribution using the formulations in Table 11.  The initial 

porosities for all of the random distributions were 1%.  The Voronoi unit cells produce 

porosities that are similar to the initial porosity of the random distribution. This is a 

significant improvement over the nearest-neighbor approach which produced unit cells 

in Chapter 4 with significantly higher porosities than the original microstructures. 
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Table 12: Unit Cell dimensions 

 
Void distribution 1 Void distribution 2 Void distribution 3 

 
XL  ZL    

0f

(%) XL  ZL    

0f

(%) XL  ZL    

0f

(%) 

1 14.26 27.64 1.94 0.8 18.81 17.02 0.90 0.9 27.64 14.26 0.52 0.8 

2 8.60 24.23 2.82 1.5 16.73 11.88 0.71 1.4 24.23 8.60 0.36 1.5 

3 27.48 32.66 1.19 0.3 21.92 20.42 0.93 0.6 32.66 27.48 0.84 0.3 

4 6.92 24.11 3.49 1.9 16.70 13.67 0.82 1.2 24.11 6.92 0.29 1.9 

5 6.92 13.40 1.94 3.4 16.70 15.11 0.90 1.1 24.11 12.44 0.52 1.0 

6 8.82 17.10 1.94 2.1 16.08 14.55 0.90 1.2 22.20 11.45 0.52 1.2 

 

 

Each of the three void distributions shown in Figure 54 were modeled in 2D in 

ABAQUS under uniaxial strain loading, using plane strain elements. The void radius 

was selected such that the total porosity was 1%.  Figure 56 shows the stress strain 

responses of each of the three void distributions. Void distribution 2 has voids which are 

the most evenly distributed, and as expected sees the highest peak stress.  
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Figure 56: Comparison of stress-strain response of DNS of three void distributions 
under uniaxial strain 

 

Each of the unit cells in Table 12 were also simulated under uniaxial strain with 

the same initial void radius.  Figure 57, Figure 58 and Figure 59 show the stress-strain 

curves for the DNS of each void distribution in Figure 54 compared to its representative 

unit cell results. 
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Figure 57: Z-direction stress strain curve for void distribution 1 

 

 

Figure 58: Z-direction stress strain curve for void distribution 2 
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Figure 59: Z-direction stress strain curve for void distribution 3 

 

 While the unit cell results are not exact matches for the results of the DNS of the 

void distributions, they do provide a close approximation of the peak stresses.  Unit cells 

5 and 6 most closely approximate the results of the realistic void distribution for all 3 

void geometries. As shown in Figure 60, the error between the peak stress (Σ௭
௠௔௫) of the 

unit cells and the void distribution is lowest for these unit cells. Unit cell 5 has an 

average error for all three void geometries of 6.2%, and unit cell 6 has an average error 

of 8.3%. 
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Figure 60: Difference in peak stress between unit cell and realistic void distribution 

 

 The error in the stress at higher strains is generally greater than the error in peak 

stress as illustrated in Figure 61.  At 5% strain, unit cell 4 has the lowest average error 

for all three void geometries of 19.7%; however, unit cell 5 provides the second closest 

approximation at 29.5% average error. 
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Figure 61: Difference in stress at 5% strain between unit cell and realistic void 
distribution 

 

 This method of using the Voronoi tessellation to generate the representative unit 

cell dimensions for a distribution of void locations produces unit cells which reasonably 

match the peak stress of the original void distribution. This method also avoids the 

problems encountered by the simple nearest-neighbor approach when voids are arranged 

in closely spaced lines.  
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SUMMARY AND CONCLUSIONS 

 

This work provides a method of accounting for the effects of precipitate 

orientation on the stress-strain response of a material by modeling second phase particles 

as pre-existing voids. Chapter 2 attempts to capture the effects of particle geometry by 

calibrating a set of GTN parameters to stress strain curves generated by explicitly 

modelling the particles for each orientation. While the stress-strain response of the 

calibrated models is very accurate, this method requires complex DNS to generate the 

stress-strain curves for calibration, which is time and computationally intensive. Chapter 

3 presents a method of converting a real microstructure to a distribution of ellipsoids, 

and using that distribution to generate and average representative unit cell geometry. 

That unit geometry is then rotated to obtain a set of unit cells for each loading 

orientation. In Chapter 4 the stress strain response of the unit cells generated using the 

method in Chapter 3 for both the microstructure of rolled AZ31B and for an aluminum 

alloy are compared to the stress-strain response of the DNS of AZ31B. While the exact 

strains to failure are not the same, the trends in strain to failure of the AZ31B unit cells 

and the DNS are similar. In Chapter 5 an improved method of estimating the 

representative spacing using Voronoi unit cells is presented. This method avoids 

problems inherent in the simpler nearest-neighbor approach used in the previous section. 

The Voronoi unit cell approach also accurately approximates the peak stress under plane 

strain loading compared to DNS of a distribution of spherical voids used to generate the 
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unit cells. To accurately describe a three-dimensional distribution of particles, the 

Voronoi spacing algorithm would need to be extended to 3D in the future. Using the 

presented methods of generating representative stress-strain curves directly from a given 

microstructure allows the effects of second phase particle geometry to be estimated 

without having to explicitly model the precipitates. This enables stress-strain curves to 

be generated directly from any real microstructure, with any primary loading direction, 

which can then be used for calibration of a homogenized model for ballistics calculations 

such as the GTN model.  

This process may also be useful for future microstructural design applications, 

since it can be used to generate a wide range of potential representative unit cells. These 

unit cell calculations can be completed quickly to determine a possible “ideal” particle 

size and spacing, which could then be used as a target for material scientists aiming to 

manufacture the best microstructure for a particular application. 
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APPENDIX A 

MATLAB CODES 

 

Fit of ellipsoid distribution to 2nd phase particle CT scans: 

run.m 
 
file_names = 'file_names.xlsx'; %file containing list of 
image names 
size = [471,472,479]; %[[size of binary images] number of 
images] 
 
  
bw = assemble_slice_data(size,file_names); 
 

%fit ellipses 
conn = 6; % connectivity paramter: 6 = faces only, 18 = 
edges, 26 = corners 
CC = bwconncomp(bw2,conn); 
[s,angles] = fit_ellipses(CC); 
[avg_dist,dist_xyz] = spacing_stats(s); 
 
 
assemble_slice_data.m 
 
function [bw] = assemble_slice_data(size,file_names) 
%Read slice data and assemble into 3D binary data 
%   size: size of image to be assembled (1x3 array) 
%   file_names: string name of excel file containing base 
image name in column 1 and 
%               image numbers in column 2 (including .xlsx 
extension) 
  
bw = zeros(size(1),size(2),size(3)); 
  
%start with matrix of file names to be read in 
names=importdata(file_names); 
n = length(names); 
  
count=0; 
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for i=1:n 
    file = names{i}; 
    bw1 = imread(file); 
    bw2 = logical(floor(double(bw1)./255)); 
        dp = 1; 
        count=count + dp; 
        bw(:,:,count)=bw2; 
end 
end 
 
fit_ellipses.m 
 
function [s,angles] = fit_ellipses(CC) 
%Fit ellipses to binary 3D data 
%   bw: 3D binary data  
%   s: ellipse statistics 
%   angles: rotation angles of ellipses in the order: 
%           gamma (about z), beta (about y), alpha (about 
x) 
  
s=regionprops3(CC,"Centroid","PrincipalAxisLength","EigenVa
lues","EigenVectors"); 
  
n=height(s); %number of voids identified 
  
angles = zeros(n,3); 
for i=1:n 
    %Update this to get angles for all regions 
    eigs = s.EigenVectors{i,1}; 
    Rnew = zeros(3,3); 
    Rnew(1,:)=eigs(2,:); 
    Rnew(2,:)=eigs(1,:); 
    Rnew(3,:)=eigs(3,:); 
    Rnew =Rnew'; 
    %Calculate rotation angles 
    angles(i,:) = rad2deg(rotm2eul(Rnew,'ZYX')); 
end 
  
end 
 
spacing_stats.m 
 
function [avg_dist,dist_xyz] = spacing_stats(s) 
%Gets Spacing Statistics of Voids in each direction x y z 
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%   For each void centroid - find distance to each other 
void centroid 
%       dist_xyx: array of distances in each coordinate to 
nearest neighbor void 
%       min_dist_e: average distance in each coordinate to 
nearest neighbor void 
  
n = height(s); 
  
dist_xyz = zeros(n,3); 
for i =1:n 
    x1 = s.Centroid(i,1); 
    y1 = s.Centroid(i,2); 
    z1 = s.Centroid(i,3); 
    %reinitialize min. distances 
    min_dist = inf; 
    for j=1:n 
        if i==j 
            continue 
        else 
            x2 = s.Centroid(j,1); 
            y2 = s.Centroid(j,2); 
            z2 = s.Centroid(j,3); 
            dist_x = abs(x2-x1); 
            dist_y = abs(y2-y1); 
            dist_z = abs(z2-z1); 
            dist = sqrt(dist_x^2+dist_y^2+dist_z^2); 
            if dist < min_dist 
                %finds closest void by euclidian dist, 
                %then get the x, y, and z spacings. 
                min_dist = dist; 
                dist_xyz(i,:) = [dist_x dist_y dist_z]; 
%distance in x,y,z coords to nearest void 
            end 
        end 
    end 
end 
  
avg_dist = mean(dist_xyz); 
  
  
end 
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Voronoi spacing algorithm: 
 
Voronoi_UC.m 
 
name = 'coords.xlsx'; %file containing coordinates of void 
centers 
xy = importdata(name); 
  
ux = 100; 
uy= 100; 
n_void = 8; 
  
x = xy(:,1)'; 
y = xy(:,2)'; 
  
figure 
[VX,VY] = voronoi(x,y); 
h = plot(VX,VY,'-b',x,y,'.r'); 
xlim([-50,ux+50]) 
ylim([-50,uy+50]) 
  
% Assign labels to the points X. 
nump = size(x); 
plabels = arrayfun(@(n) {sprintf('X%d', n)}, (1:nump)'); 
hold on 
   
% Compute the Voronoi diagram. 
dt = delaunayTriangulation(x',y'); 
[V,R] = voronoiDiagram(dt); 
hold on 
triplot(dt,'--r'); 
hold off 
  
  
% Assign labels to the Voronoi vertices V. 
% By convention the first vertex is at infinity. 
numv = size(V,1); 
vlabels = arrayfun(@(n) {sprintf('V%d', n)}, (2:numv)'); 
hold on 
axis square 
xline(0,'m'); xline(ux,'m'); 
yline(0,'m'); yline(uy,'m'); 
hold off 
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%Smallest rectangle encompassing voronoi polygon 
max_min = zeros(n_void,4); 
for i = 1:n_void 
    vertices = R{i}; 
    coords = V(vertices,:); 
    max_min(i,1:4) = [max(coords(:,1))  min(coords(:,1)) 
max(coords(:,2))  min(coords(:,2))]; 
        % max x   min x   max y   min y 
end 
cell_max = [max_min(:,1)-max_min(:,2) max_min(:,3)-
max_min(:,4)]./2; 
  
%Rectangle encompassing midpoints of polygon edges 
mdpts_extrema = zeros(n_void,4); 
for i=1:n_void 
    vertices = R{i}; 
    coords = V(R{i},:); 
    n=length(coords); 
    mdpts=zeros(n,2); % midpoints x y coords 
    for j = 1:n 
        if j < n 
            mdpts(j,1) = (coords(j,1)+coords(j+1,1))/2; 
            mdpts(j,2) = (coords(j,2)+coords(j+1,2))/2; 
        else %j=n 
            mdpts(j,1) = (coords(j,1)+coords(1,1))/2; 
            mdpts(j,2) = (coords(j,2)+coords(1,2))/2; 
        end 
    end 
    mdpts_extrema(i,1:4) = [max(mdpts(:,1))  
min(mdpts(:,1)) max(mdpts(:,2))  min(mdpts(:,2))]; 
        % max x   min x   max y   min y 
    if i == 7 
        hold on  
        plot(mdpts(:,1),mdpts(:,2),'g*') 
        hold off 
    end     
end 
cell_mid = [mdpts_extrema(:,1)-mdpts_extrema(:,2) 
mdpts_extrema(:,3)-mdpts_extrema(:,4)]./2; 
  
  
% Unit Cell Dimensions 
 
%Using Max Rectangle  
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mean_y = mean(cell_max(:,2)); 
std_y = std(cell_max(:,2)); 
mean_x = mean(cell_max(:,1)); 
std_x = std(cell_max(:,1)); 
max_unit_cells = [min(cell_max(:,1)) min(cell_max(:,2)); 
... 
                  mean_x-std_x mean_y-std_y; ... 
                  mean_x mean_y; ... 
                  mean_x+std_x mean_y+std_y; ... 
                  max(cell_max(:,1)) max(cell_max(:,2)) ]; 
max_lambdas =max_unit_cells(:,2)./max_unit_cells(:,1); 
%Using Midpoint Rectangle  
mean_x = mean(cell_mid(:,1)); 
std_x = std(cell_mid(:,1)); 
mean_y = mean(cell_mid(:,2)); 
std_y = std(cell_mid(:,2)); 
mid_unit_cells = [min(cell_mid(:,1)) min(cell_mid(:,2)); 
... 
                  mean_x-std_x mean_y-std_y; ... 
                  mean_x mean_y; ... 
                  mean_x+std_x mean_y+std_y; ... 
                  max(cell_mid(:,1)) max(cell_mid(:,2)) ]; 
mid_lambdas =mid_unit_cells(:,2)./mid_unit_cells(:,1); 
 




