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ABSTRACT

Through this study, we present a discrete nonlocal Lagrangian approach called ”tridy-

namics” which is designed at a length scale of interest to characterize the response of the

body. As a basic unit to describe the interaction, instead of two particles required to define

a bond in conventional discrete frameworks, we introduce three particles at the vertices of a

triangular surface. The main idea is to understand the dynamics of a deformable body via a

macro potential corresponding to a coupled interaction of rigid particles in the reduced di-

mension. Because the continuum limit is not taken, the framework automatically relaxes the

requirement of differentiability of field variables. The discrete Lagrangian based approach is

illustrated to derive equivalent Euler–Bernoulli beam model based upon the corresponding

potential function. We also present a set of physical quantities that explain the deformation

of Timoshenko beam and Mindlin plate, which help to derive the potential energy.

Although the construction of potential functions for basic elements such as beam and

plate might be possible, it is challenging to create it in the generic case. For example,

the behavior of carbon nanotube or a graphene sheet is very dependent upon molecular

structure. Therefore a derivative-free balance law pertaining to a higher scale of interest

has been developed based on the molecular level information, which might be useful in a

continuum or discrete setting. Derived using a probabilistic projection technique, the law

exploits certain microstructural information in a weakly unique manner. The projection

generalizes the notion of directional derivative and, depending on the application, may be

interpreted as a discrete Cauchy–Born map with the structure of the classical deformation

gradient emerging in the infinitesimal limit. As an illustration, we use the Tersoff–Brenner

potential and obtain a discrete macroscopic model for studying the deformation of a single-

walled carbon nanotube (SWCNT). The macroscopic (or continuum) model shows the effect

of chirality – a molecular phenomenon – in its deformation profile. We also demonstrate

the deformation of a fractured SWCNT, which is a first-of-its-kind simulation, and predict
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crack branching phenomena in agreement with molecular dynamics simulations. As another

example, we have included simulation results for fractured SWCNT bundle with a view to

establishing our claim regarding the efficacy of the proposed method.

The discrete Cauchy-Born rule with the principle of virtual work done are employed to for-

mulate a generalized model with the hope to unify local and nonlocal continuum frameworks.

We also found a compact mapping matrix which converts surface-based forces (stresses) to

the nonlocal body-based forces. The transformation matrix allows reconstructing continuum

models at a lower length scale in a discrete setting. Despite the conventional mapping of the

microscopic bond from the undeformed configuration, the consistent derivation requires a

transformation on the Average Deviation of Lattice (ADL) vector in the region of influence.

The new conversion proffers flexibility to the framework for the analysis of nonuniform dis-

tribution of particles in the field. To see the credibility of the model, fracture evolution in

SCB specimen made of Polymethyl methacrylate (PMMA) is simulated, and the results are

compared with experiments.
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1. INTRODUCTION

1.1 Background

A requirement of the state-of-the-art engineering application is to analyze complex phe-

nomena like deformation of nano-structures, material failure, and so on. In small scale ap-

plications, these are solved using molecular dynamics (MD) simulations, which is essentially

a discrete Lagrangian based approach. But from a practical point of view, MD simulation

is quite inefficient due to the extreme computational overhead [1, 2]. Traditionally, dif-

ferential continuum laws have been used in large scale system response analysis. As the

spatio-temporal length scale of the forcing function or the response mechanisms become

comparable to the internal length scale of the body, these classical models tend to diverge

from experimental observations [3, 4]. This led to a series of developments of their non-local

versions [5, 3, 6, 7, 8]. Samaei et al. [9] studied the effect of length scale on buckling behavior

of a single-layer graphene sheet embedded in a Pasternak elastic medium using a nonlocal

Mindlin plate theory. They also investigated the effect of small scale and van der Waals

forces between adjacent tubes on the column buckling of multi-walled carbon nanotubes [9].

Unfortunately, some of these models show anomalies in responses for certain applications.

For example, the Euler–Bernoulli beam model with Eringen type non-locality shows soften-

ing effect [10], while non-locality should ideally bring in a stiffening effect. This may be due

to a lack of correspondence between these non-local models with their respective appropriate

Lagrangian designed to represent physics of the problem.

It is important to establish correspondence between the evolution equation of a given

problem and its associated Lagrangian, without which the model may generate energy ar-

tificially, like a perpetual machine. Besides, while some of these models have been useful in

many engineering applications, they are ill-defined for problems that do not admit spatial

derivatives of the field variables, for example, in fracture. Since the issue is with the differen-
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tiability requirement of the field variable, it seems redundant to write the evolution equation

in the continuum limit. Note that for most of the practical cases these continuum models

cannot be solved analytically and they must be discretized back for simulation.

Even though we do not wish to use the microscopic potential function of material micro-

structure due to the computational restriction, some of the basic features of these functions

may be useful in designing our Lagrangian at a length scale of interest. For example, many

of them involves three-body interaction terms [11, 12]. One such potential is Brenner’s

potential [13] used to characterize deformation of graphene sheet. Under external influences,

the equilibrium angles of crystal structures get changed, which contributes to the energy.

This is typically incorporated within the potential via a three-body interaction term [14]. The

three-body effects have significant contribution in understanding solid-liquid and vapor-liquid

equilibrium of fluids [15, 16, 17, 18]. In certain protein DNA site recognition, while describing

interaction between a DNA base and a protein residue with neighboring DNA base, three-

body potential terms typically become dominant in comparison to its two-body counterpart

[19]. Similarly, many of the macroscopic phenomena, for example, bending, torsion, etc.

cannot be described by reduced dimensional models using two particle interaction without

taking help of additional variables. Hence, one must characterize the reduced dimensional

discrete Lagrangian based on three-body potential.

Silling [20] proposed a derivative-free framework capable of analyzing multi-dimensional

problems. The PD framework may be considered as an intermediate route between the clas-

sical and molecular dynamics (MD) approaches. Since it characterizes spatial interaction

via integration, a PD equation can solve problems with discontinuities without resorting to

any special treatment [20]. Based on this advantage, the PD framework finds its application

not only in mechanics [20] but also in areas like thermo-mechanics [21], electromigration

[22], heat conduction in a body involving discontinuity [23] etc. However, its original bond-

based (BBPD) version faces a serious limitation because of its restriction on Poisson’s ratio.

Besides, the BBPD does not distinguish between volumetric and distortional deformation.
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The reason behind such limitations in BBPD is traced back to its assumption of equal and

opposite pairwise forces between two particles within a bond. As an important step forward,

Silling came up with a modification of the BBPD formalism and proposed state-based peri-

dynamics (SBPD) (more precisely ordinary SBPD) in [24], which could resolve many of the

issues associated with the original BBPD approach. Unlike the BBPD, the forces in a bond

are unequal in ordinary SBPD [25]. However, the interaction forces within a bond are still

considered as collinear. The SBPD framework is successfully applied in different areas of

mechanics, e.g. plasticity [24], visco-elasticity [26], visco-plasticity [27], [28], dynamic brittle

fracture [29], delamination in composite material [30], branching phenomena [31] etc. But

owing to its assumption of collinear forces along a bond, the ordinary SBPD is not applicable

to non-linear anisotropic materials [25]. Such limitation has led to further development, and

non-ordinary SBPD has been proposed [25]. Unfortunately, the non-ordinary SBPD is also

scourged with difficulties in implementations. It may suffer from instability arising from

the weak coupling of particles in the definition of deformation gradient. Responses via the

non-ordinary SBPD may also show zero energy modes [32].

1.2 Motivation and Scope of the Study

The contribution of the proposed study is novel and significant in the following seven

respects [33, 34, 35]:

1. The new macroscopic framework provides flexibility in describing coupled dynamics of

rigid multi-particles.

2. Macroscopic description of the Lagrangian avoids microscopic analysis and its compu-

tational overhead.

3. The differentiability requirement of field variable is automatically relaxed in the new

framework since we do not take any continuum limit.

4. The new framework eliminates the necessity of any advanced mathematical tools such
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as Fréchet derivative to construct the force function.

5. A new upscaling law (Discrete Cauchy-Born Rule) was developed to build up macro-

scopic potential based on molecular information.

6. A transformation matrix is developed that maps conventional stresses to nonlocal

derivative-free body-based forces.

7. Numerical analyses are carried out to model crack propagation in carbon nanotube

and experimental specimen using developed nonlocal theories.
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2. A NONLOCAL LAGRANGIAN-BASED APPROACH TO MACROSCOPIC

MODELLING 1

2.1 Introduction

Lagrangian mechanics is typically considered as more convenient than Newtonian me-

chanics when it comes to analyzing complex dynamical behavior of rigid body systems

[36, 37]. With an increase in the number of constraints, it may become cumbersome and

error-prone to write down the laws of motion for such a system using the Newtonian ap-

proach. On the other hand, in Lagrangian mechanics, the whole information about the sys-

tem is preserved within a scalar functional, thus making it easier to handle. For conservative

systems, one can arrive at Newton’s laws of motion from the Lagrangian via perturbation

techniques. However, for non-conservative systems Lagrangian mechanics is not typically

suited, even though Newton’s equations allow non-conservative forces [38, 37]. This is ow-

ing to the fact that dissipation, being a microscopic phenomena, requires a huge number of

degrees of freedom at the microscopic level for its characterization, which is not feasible for

real-life studies. A more generic macroscopic way of handling non-conservative systems via

Lagrangian approach [39, 40] is out of the scope of this study.

In this section, we propose a novel approach to describe the problem with a suitable dis-

crete Lagrangian at a length scale of interest. The main idea is to understand the dynamics

of a deformable body via a Lagrangian characterizing coupled interaction of rigid particles.

A major advantage of adopting the Lagrangian characterization is its flexibility in describing

coupled dynamics of rigid multi-particles. For large scale simulations, a macroscopic descrip-

tion of the Lagrangian is important, since we cannot directly solve the problem via variation

of the Lagrangian defined at molecular level, owing to its computational overhead. The dif-

ferentiability requirement of field variable is automatically relaxed since we do not take the
1Reprinted with permission from ”A discrete Lagrangian based direct approach to macroscopic mod-

elling.” by Sarkar, Saikat, Mohsen Nowruzpour, J. N. Reddy, and A. R. Srinivasa. 2017 Journal of the
Mechanics and Physics of Solids 98, 172-180. Copyright 2017 by Elsivier.
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continuum limit. While constructing the Lagrangian, we must consider that a full-fledged

3D description of the body is not useful in many of the cases. Rather, for many problems, we

would look for reduced dimensional descriptions (1D or 2D) via discrete Lagrangian equiv-

alent to beam, plate, and shell models. We also have the advantage of choosing preferred

coordinate systems, since one of the major advantages of Lagrangian approach is its flex-

ibility in using a coordinate system. Even though we do not wish to use the microscopic

potential function of material micro-structure due to the computational restriction, some of

the basic features of these functions may be useful in designing our Lagrangian at a length

scale of interest. For example, many of them involves three-body interaction terms [11, 12].

One such potential is Brenner’s potential [13] used to characterize deformation of graphene

sheet. Under external influences, the equilibrium angles of crystal structures get changed,

which contributes to the energy. This is typically incorporated within the potential via a

three-body interaction term [14]. The three-body effects have significant contribution in

understanding solid-liquid and vapor-liquid equilibrium of fluids [15, 16, 17, 18]. In certain

protein DNA site recognition, while describing interaction between a DNA base and a protein

residue with neighboring DNA base, three-body potential terms typically become dominant

in comparison to its two-body counterpart [19]. Similarly, many of the macroscopic phenom-

ena, for example, bending, torsion, and so on cannot be described by reduced dimensional

models using two particle interaction without taking help of additional variables. Hence,

one must characterize the reduced dimensional discrete Lagrangian based on three-body po-

tential. Incidentally, we would like to mention that a continuum limit on our model leads

to peridynamic (PD) equations as special case [20, 24]. However, the generic structure may

be hidden in PD formulation. Besides, PD interactions are classically defined in a cartesian

coordinate system.

The rest of the section is organized as the follows. In Section 2, the inter-particle in-

teraction is given a discrete Lagrangian based characterization and the discrete strain and

kinetic energy terms are represented as summation of invariant local units (ILUs). In Section
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3, the framework is applied to obtain a discrete law corresponding to the Euler–Bernoulli

beam (EB) model. Some numerical results for the specific beam example are reported in

Section 4. In this section, we also include simulation results of micro crack propagation on

thin structures using the present formalism.

2.2 Euler-Lagrangian Equations for a Body

Consider a discrete system of N -particles {pi}Ni=1 at material points {xi}Ni=1. As a basic

unit to describe interaction, we introduce a three-particle based interaction model, keeping

in mind that the displacement information of at least three particles are required to charac-

terize bending behavior (otherwise, a rotation variable would be needed additionally). For

convenience in describing the possible coupling in the inter-particle interaction, we consider

that the three particles are at the vertices of a triangular surface (see Fig. 2.1). Since we start

with a discrete system of particles, the triangular surface is nevertheless imaginary. Note

that, such a construct has the potential of incorporating via the imaginary surface, finer

length scale information that is ignored in the original discrete model. It may be customary

to also mention that the three-particle based framework would include two-particle based

interaction models as special cases. Particle pi rests on one of the vertices of the triangle.

The other two vertices span over all the particles in the neighbourhood of pi. In Fig. 2.1,

the evolution of the triangular element from reference to deformed configuration via a map

χ is shown pictorially. The ILU, denoted herein as ωijk, represents the coupling effect of

particles pj and pk on pi, and the functional dependence is written as

ωijk = ωijk (yi,yj,yk) (2.1)

where yi is the deformation vector of pi in the deformed configuration. The discrete strain

energy density, Wi, at xi is characterized as

Wi =
N∑
j=1

N∑
k=1

1
3 (ajkωijk + akiωjki + aijωkij)VjVk (2.2)
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Here Vi is the volume associated with the particle pi. The fraction 1
3 is introduced to account

for the issue of over-counting; ajk is the contribution factor of ωijk and is computed herein

as a fraction of area as

ajk = ∆ojk

∆ijk

, aki = ∆oki

∆jki

, aij = ∆oij

∆kij

(2.3)

Point O is the centroid of the triangle ∆ijk with xi, xj and xk as its vertices (see Fig. 2.1).

This leads to a fixed value 1
3 for ajk, that is, giving each micro-potential corresponding

to triangle ∆ijk equal share of the surface area. A general way of computing ajk may be

explored by giving variable importance to different micro-potentials within a triangle, which

is not done here to maintain simplicity of exposition. The total potential energy (U) may

be written as

U =
N∑
i=1

WiVi −
N∑
i=1

fTi uiVi (2.4)

fi is the external force density applied on particle pi. ui is the displacement of pi and is

related to yi as

yi = xi + ui (2.5)

xi is the initial position of particle pi, that is, before external disturbance.

The total kinetic energy, T , of the discrete system may be generically described in terms

of ILU, τi, via the following equation:

T =
N∑
i=1

τi (u̇i)Vi (2.6)

where u̇i is the translational velocity vector at pi. Note that τi may have contribution

from its neighbouring particle velocities for some applications. This leads to the following

8



ju
Ω

kx

1

3

2

ip

kp

jp

χ

rξ
lξ

mξ
o

ip

jp

kp

ix

jx

ku

iu

Figure 2.1: Evolution from reference configuration to deformed configuration

Lagrangian:

L = T − U

=
N∑
i=1

τi (u̇i)Vi −
N∑
i=1

N∑
j=1

N∑
k=1

1
3 (ajkωijk + akiωjki + aijωkij)VjVkVi

+
N∑
i=1

fTi uiVi

(2.7)

The Euler–Lagrange equations corresponding to xi may be arrived at as follows:

∂

∂t

(
∂τi (u̇i)
∂u̇i

)
Vi +

N∑
j=1

N∑
k=1

∂

∂ui
(ajkωijk)VjVkVi +

N∑
j=1

N∑
k=1

∂

∂ui
(akiωjki)VjVkVi

+
N∑
j=1

N∑
k=1

∂

∂ui
(aijωkij)VjVkVi = fiVi

(2.8)

Equation (2.8) is the desired evolution equation. Since it is a discrete model, this equation

can be used to solve for defects. As we have mentioned earlier in this section a continuum
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limit on Eq. (2.8) is useful, because for most of the practical problems of interest analytical

solutions are not available. However, to see that, as special case, this equation recovers PD

model in the continuum limit, we refer the reader to Appendix A.

2.3 Application to EB Beam Model

Consider a chain of discrete N -particles {pi}Ni=1 at material points {xi}Ni=1. xi is taken

as a scalar, because we wish to derive a beam model that is one-dimensional. In order to

describe bending behavior of body in the present framework, the ILU for the potential energy

is defined as the following (see Fig. 2.2):

ωijk = 1
2βφjk

(
θTijkθijk + Ψijk

)
(2.9)

ωjki = 1
2βφki

(
θTjkiθjki + Ψjki

)
(2.10)

ωkij = 1
2βφij

(
θTkijθkij + Ψkij

)
(2.11)

1

3
2

kϑ jϑ
iϑ

lξ rξ
mξ

Figure 2.2: Beam element and surface normal

where φjk represents the influence of pj and pk on pi, θijk is the angle of rotation of the
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surface normal corresponding to ∆ijk at xi, and β is the material parameter to be determined

via correspondence with classical energy function. The first terms on the right hand sides

(RHS-s) of Eqs. (2.9), (2.10), and (2.11) represent pure bending effect, and Ψijk is part of the

micro-potential ωijk, effected by the translational vectors corresponding to ∆ijk. A specific

structure of Ψijk is not required in the present derivation. The angels of rotation of the

surface normals are computed for the discrete system as (see Fig. 2.2):

θijk =
(

(ϑj − ϑi)
ξr

+ (ϑk − ϑi)
ξl

)

θjki =
(

(ϑk − ϑj)
ξm

+ (ϑi − ϑj)
ξr

)

θkij =
(

(ϑi − ϑk)
ξl

+ (ϑj − ϑk)
ξm

)

Here, ϑi is the surface normal vector at point xi.

The kinetic energy of the discrete system of particles may be written as:

T =
N∑
i=1

1
2Ii

( 1
ri
ẇi + θ̇i

)2
Vi (2.12)

where wi is the displacement along axis 3, θi is the rotation along axis 2 (see Fig. 2.2), ri is

the radius, and Ii the moment of inertia per unit volume of the particle pi. Since we want to

derive a beam equation, contribution from other components would be considered negligible.

Here, we can see that a complicated structure of kinetic energy can be easily described in

the discrete Lagrangian mechanics based framework. The Lagrangian, L, may be expressed
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as
L = T − U

=
N∑
i=1

1
2Ii

( 1
ri
ẇi + θ̇i

)2
Vi

−
N∑
i=1

N∑
j=1

N∑
k=1

1
6βajkφjk

(
θTijkθijk + Ψijk

)
ViVjVk

−
N∑
i=1

N∑
j=1

N∑
k=1

1
6βakiφki

(
θTjkiθjki + Ψjki

)
ViVjVk

−
N∑
i=1

N∑
j=1

N∑
k=1

1
6βaijφij

(
θTkijθkij + Ψkij

)
ViVjVk

+
N∑
i=1

(fici) θiVi +
N∑
i=1

(fiwiVi)

(2.13)

where fi is the body force in the direction of wi, and ci is the eccentricity of the body force

fi with respect to the centre of particle pi. By taking derivative with respect to rotation of

a surface normal at a material point, the associated Euler–Lagrange equation may be found

as
Ii

( 1
ri
ẅi + θ̈i

)
= 1

3
∑
j

∑
k

βφxjxk

(
(θj − θi)
|xj − xi|

+ (θk − θi)
|xk − xi|

)
VxiVxk

− 1
3
∑
j

∑
k

βφxjxk

(
(θk − θj)
|xk − xj|

+ (θi − θj)
|xi − xj|

)
VxjVxk

− 1
3
∑
j

∑
k

βφxjxk

(
(θi − θk)
|xi − xk|

+ (θj − θk)
|xj − xk|

)
VxjVxk

+ fici

(2.14)

Under the assumption of 1
ri
>> 1, we may drop the term θ̈i from Eq. (2.14) for all practical

purposes. This leads to the EB equation in the proposed framework as:

Ii
rici

ẅi = 2
3

xi+δ∑
xi−δ

xi+δ∑
xi−δ

β̂φxjxk

(
(θj − θi)
|xj − xi|

+ (θk − θi)
|xk − xi|

)
VjVk + fi (2.15)

where β̂ is the new coefficient absorbing information regarding particle cross-sectional area

and eccentricity, δ is the radius of the influence domain, and Ii
rici

represents the mass density.

Note that if we do not drop the rotational inertia term, the equation may be called a
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discrete version of Rayleigh beam without any spatial derivative. To the best of the authors’

knowledge, this is the first derivation of non-local Rayleigh beam model. To solve Eq. (2.15),

we need to establish a map between θi and wi. This may be accomplished by the following

definition of surface normal vector, ϑi, based on its physics:

ϑi = (−I +5x−ui)× (−I +5x+ui) (2.16)

where 5x−i
ui is the gradient of ui on the left limit and 5x+

i
ui on the right limit of xi

and I := {1, 0, 0}T . This specific definition captures bending behavior of body cancelling

out other possibilities, for example, the rigid body motion. Using the formulae given by

Eq. (2.16), we can solve Eq. (2.15).

Upon Taylor’s expansion of θj and θk in Eq. (2.15) around θi and taking δ → 0, we can

solve for the material parameter as

4
3ςβ̂ξ

2
[

1
ξ2

(
5x−i

θi +5x+
i
θi
)]

= −ĒĪ ∂
4wi
∂x4 (2.17)

ς =
xi+δ∑
xi−δ

xi+δ∑
xi

φxjxkVjVk (2.18)

Here Ē and Ī are Young’s modulus of elasticity and moment of inertia of a classical EB

model, respectively [37]. Following Eq. (2.17), we can write,

β̂ = −3ĒĪ
4ξ2ς

(2.19)

2.4 Numerical Results

2.4.1 Beam Model

We consider a beam of length unit length (1 m) and cross sectional area 0.05 × 0.001

m2, and subjected to a uniform load of 5 N/m. The beam is initially at rest with zero

velocity. Mass density and Young’s modulus are taken as 8050 kg/m3 and 200× 1011 N/m2,

13



Table 2.1: Material properties and numerical parameter values for isotropic beam and plate.

Parameters Values Plate Beam
X-direction discretization 500 100
Y-direction discretization 500 1
Boundary Velocity (m/s) 50.0 0.0
Boundary Loading (N/m2) 0.0 5.0
Length (m) 0.05 1.00
Width (m) 0.05 0.05
Crack length (m) 0.01 0.0
δ (m) (Horizon radius) 3.01× 10−4 3.01× 10−4

ρ (kg/m3 ) 8000.0 8050.0
Elasticity Modulus (N/m3) 576× 109 200× 1011

Area (m2) 10−8 5× 10−8

Time constant (s) 1.4× 10−4 2× 10−3

respectively. The required parameter values are presented in Table 2.1. With varying δ, we

report the displacement profiles for three different cases: (1) simply supported (see Fig. 2.3),

(2) clamped (see Fig. 2.4), and (3) cantilever (see Fig. 2.5) boundary conditions. The results

are reported for time t = 15 s for simply supported and clamped beams and at t = 22 s for

the cantilever beam. The numerical simulation is carried out with time step ∆t = 2× 10−3

s. While the choice of weight function is a matter of further investigation, here we consider a

weight function that assumes a fixed value of unity within the influence domain and vanishes

outside. Since the proposed framework, by construct, gives non-local models, it may be worth

mentioning that the discrete EB model provides stiffer solution in comparison to classical

EB model.

2.4.2 Micro-Crack Propagation in a Thin Structure

To show that, while this framework is demonstrated with an emphasis on three-body

interaction, it includes two-body interactions as a special case, we simulate the problem

of crack propagation in a thin plate structure via an appropriate potential function. The

potential term is constructed at a length scale of interest, considering a coupled system of N
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Figure 2.3: Displacement profiles with varying δ for simply support beam
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Figure 2.4: Displacement profiles with varying δ for clamped beam
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Figure 2.5: Displacement profiles with varying δ for cantilever beam

particles. The corresponding Lagrangian is taken as

L =
N∑
i=1

1
2ρivi

TviVi −
N∑
i=1

N∑
j=1

1
2φijkijlij

(
l′ij − lij
lij

)2

ViVj (2.20)

where vi is the velocity of the particle pi, lij, and l′ij are Euclidean distances between particles

pi and pj in undeformed and deformed conditions, respectively, kij is the associated stiffness,

and φij is the weight function. Through a material correspondence with a classical 2-D plate

model, stiffness modulus may be found as, kij = 9E
πδ4(1−ν) , where ν is Poisson’s ratio. The

crack is allowed to propagate once the stretch term (s = l′ij−lij
lij

) exceeds a critical stretch (sc).

The critical stretch is computed by comparing the work required to break all the interactions

corresponding to a particle with the critical strain energy release rate (Gc) for a material.
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Specifically, sc is given as

sc = 3π

√√√√ Gc (1− ν2)
Eδ (24ν + 27π (1− ν)− 8) (2.21)

We note that only brittle fracture is considered here. A plate of initial crack length 0.01

m is placed at the middle of the structure horizontally. We consider both isotropic and

anisotropic materials. Along the y-axis (see Fig. 2.6 or 2.7), we apply 50 m/s and −50 m/s

velocities on the left and the right edges, respectively, and the other edges are kept relaxed.

The other required parameter values for the isotropic plate are given in Table 2.1. Figure

2.6 depicts the crack propagation snapshot on the isotropic material at time t = 1.4× 10−5

s. From the simulation results (see Fig. 2.6 or 2.7), we can see that the isotropic plate does

not show any micro-crack in its response.

Figure 2.6: Crack propagation in an isotropic plate
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Figure 2.7: Crack propagation in an anisotropic plate
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3. TRIDYNAMIC MODEL OF THE BEAM WITH TRANSVERSE SHEAR

DEFORMATION

3.1 Introduction

The matter is fundamentally discrete, and due to this nature, Molecular Dynamics (MD)

formulation could be employed to prognosticate the response. However, this formulation is

not practical to be used in large scale due to heavy computation. On other hands, classical

continuum theories (CCT) which assume continuity of matter has been successful in analyz-

ing a wide range of engineering problem. However, these assumptions limit the reliability

of the CCT to problems with no scale effect. Short wavelength excitation and analysis of

nanomaterial such as carbon nanotube are some examples that CCT failed to describe them

accurately [41].

The peridynamics (PD) framework is an intermediate approach between the classical and

molecular dynamics model [20]. However, its original bond-based peridynamics (BBPD)

suffers from the restriction on Poisson’s ratio. Besides, the BBPD does not differentiate

the volumetric and distortional deformation. These restrictions could be traced back to the

assumption of forces developed between two particles within a bond which are equal and

opposite. Unlike the BBPD, in ordinary State-Based PD (SBPD)[25] the forces in a bond

may not be necessarily equal, and the interaction forces within a bond are still considered as

collinear. The SBPD framework is successfully implemented in various mechanical problems,

including plasticity [24], visco-plasticity [28], dynamic brittle fracture [29]. Diyaroglu et.

al.[42] presents a comprehensive study on the BBPD model of Timoshenko beam and Mindlin

plate. However, the results are valid for a thin plate or beam with a small height. Also,

the presented approach will result in a linear behavior of frequency response in the axial

direction.

In this section, we construct a tridynamic beam model which allows for transverse shear
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deformation. Despite the prior presentation of deformation based upon surface normal as

a mathematical concept, [33], we utilized the kinematic of the beam to suggest meaningful

physical quantities in the framework. Since the interactions are described through three

particles, we call this model ”tridynamics.” The new nonlocal formulations account for scale

effects, and it permits recovering the classical model when the local limit is taken. A com-

parison of the localized equations of the tridynamics with the classical ones allows setting a

relationship between the local and nonlocal parameters.

The rest of section is organized as follows: In Section 3.2 we characterize the nonlocal

deformation basic unit based upon the kinetics of material particles within a triangular unit.

In Section 3.3, the Lagrangian of the tridynamics beam is formulated. Through Section 3.4,

we employ the Euler-Lagrange equation to derive the governing equation for the beam. We

also include localization steps of the model to determine nonlocal parameters. In Section 3.6,

we perform the dispersion analysis and find three modes of frequency and wave speed of the

beam analytically. In Section 3.7, the dispersion curve of the beam are presented through a

numerical implementation.

3.2 Tridynamic Kinematics

𝑢௝

𝑢௜

𝑢௞

𝑤௝ 𝑤௜ 𝑤௞

𝑥

𝑧

Figure 3.1: Kinematic of the discrete beam with transverse shear
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In this section, a representative kinematic is described to model Timoshenko beam in the

tridynamics framework. Unlike the previous description of Euler-Bernoulli beam through

mathematical tools such as normal surface [33], here we solely use the kinematic of the

system to define deformation of the basic unit. For that purpose, we consider a set of

particles distributed uniformly along the x-axis. Fig. 3.1 shows a portion of the beam before

and after deformation. Each particle is shown by a solid black circle where is embedded in

the center of a rectangular unit. Although we have not shown particles above and below

the central axis, the derivation throughout this section will remain valid for a beam with

larger height. In the model, we include all three type of displacement, including axial,

transverse, and rotational ones. To avoid complexity in illustration, the axial and transverse

displacements are depicted in Fig. 3.1 and the rotational deformation is illustrated in Fig. 3.2

separately.The deformation at ith particle could be described by the construction of a basic

triangular unit with three vertices i, j and k. In the tridynamics framework, the ith vertice

represents the ith particle, and it locates in the center of the influence domain. However,

the other two vertices could be any two-particle in the horizon. For more elaboration of

multi-body interaction, one may refer to [33].

In the analysis of beam, all edges of the triangle lie on x-axis before deformation. The

triangle could be visible if the curvature of the beam changes. We are noting that this surface

is imaginary and we are not going to make use of it in our analysis. However, one might use

it as a nonlocal parameter (area scale).

To capture deformations of Timoshenko beam in this framework, we introduce three quan-

tities that represent the stretch, curvature, and shear of the beam. The first quantity which

presents the axial deformation at xi could be given as:

εijk = ûij + ûik, εjki = ûjk + ûji, εkij = ûkj + ûki (3.1)

The indices j and k are referring to particles, j, and k which are located in the influence
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domain of particle i. û is the nonlocal axial strain and could be given:

ûij =uj − ui
ξij

, ûik = uk − ui
ξik

, ûjk = uk − uj
ξjk

(3.2)

Noting that uα indicates the axial displacement of particle α. The distance between

particles α and β before deformation could be shown by ξαβ as follows:

ξij =ξji = |xj − xi| , ξik = ξki = |xk − xi| , ξjk = ξkj = |xk − xj| , (3.3)

One can easily find that ûji = −ûij, ûki = −ûik, ûkj = −ûjk.
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Figure 3.2: Angular deformation of the straight line in a unit.

In the following, we present the related deformation to curvature and shear of the beam.

To avoid the complexity of figure, we illustrate rotational changes of ith, jth and kth parti-

cles in three different plots (see figure. 3.2). Following classical Timoshenko beam theory,

the straight line normal to the axis of the beam remains straight and inextensible (Timo-

shenko beam assumptions). Therefore, the curvature of the beam in this framework may be
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characterized as:

κijk = φ̂ij + φ̂ik, κjki = φ̂jk + φ̂ji, κkij = φ̂kj + φ̂ki (3.4)

Noting that καβγ is the curvature due to interaction of particle γ and β with particle α. Also

φ̂αβ is one of the constituent components of the curvature due to rotational differences of

particle β and α and can be given:

φ̂ij =φj − φi
ξij

, φ̂ik = φk − φi
ξik

, φ̂jk = φk − φj
ξjk

,
(3.5)

Here, φα is the rotation of the transverse straight line of particle α around y-axis (straight

black line in Fig. 3.2). Noting that φ̂ji = −φ̂ij, φ̂ki = −φ̂ik, φ̂kj = −φ̂jk. The transverse

shear deformation in the framework may be defined as:

ψijk = ψij + ψik =
(
θij − n̂ijφ̄ij

)
+
(
θik − n̂ikφ̄ik

)
,

ψjki = ψjk + ψji =
(
θjk − n̂jkφ̄jk

)
+
(
θji − n̂jiφ̄ji

)
,

ψkij = ψki + ψkj =
(
θkj − n̂kjφ̄kj

)
+
(
θki − n̂kiφ̄ki

) (3.6)

Where θαβ is showing the slope of the beam at particle α and could be defined as:

θij =wj − wi
ξij

, θik = wk − wi
ξik

, θjk = wk − wj
ξjk

(3.7)

and wα is the transverse displacement of the particle α. In Eq. 3.6, φ̄αβ is the average

rotation of the straight lines associated to α and β and it could be rewritten for particle i, j

and k as:

φ̄ij =φj + φi
2 , φ̄ik = φk + φi

2 , φ̄jk = φk + φj
2

(3.8)

The direction of the bond vector starting from particle α to particle β is shown by n̂αβ and
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could be express for i, j and k as:

n̂ij =xj − xi
ξij

, n̂ik = xk − xi
ξik

, n̂jk = xk − xj
ξjk

, (3.9)

The given definitions of deformations can help us to build up a proper Lagrangian of a

system that incorporates three-particle interactions. Noting that the introduction of these

physical quantities such as ε and κ could be vastly employed in other mechanical problems to

properly describe changes of the field variables in this framework (for instance, the ε could be

used as a discrete derivative-free temperature gradient in Fourier law, if we set temperature

as our field variable).

It should be noted that , θji = −θij, θki = −θik, θkj = −θjk, and φ̄ji = φ̄ij, φ̄ki = φ̄ik, φ̄kj =

φ̄jk. For the bond direction, we have; n̂ji = −n̂ij, n̂ki = −n̂ik, n̂kj = −n̂jk. We also can

show that:
εijk + εjki + εkij = 0

κijk + κjki + κkij = 0

ψijk + ψjki + ψkij = 0

(3.10)

In additions, in a three-particle basic unit, the order of interaction of two particles on the

particle of interest does not matter. In other words, if Φαβγ defines the interaction of particle

β and γ with particle α, it will be the same as Φαγβ. This remains valid for all of the

kinematical concepts in this section.

3.3 Lagrangian of the System

Consider a beam made of a chain of particles with length L, width b, and thickness h.

The Lagrangian of the system could be calculated by summing up the potential and kinetic

energy of the system. The potential energy for the structure could be divided into three

smaller sub-potentials which are due to stretch, curvature, and shear effect of the beam:

U = U ε + Uκ + Uψ (3.11)
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Here, U ε, Uκ and Uψ are respective portions of potential energies associated to the stretch,

curvature and shear deformation of the beam. They also could be physically interpreted as

the required energy to deform the edges and angles of the triangular unit. Each of these

portions could be broken up into the smaller ones to directly show the contribution of

individual particles in the basic:

U ε = U εi + U εj + U εk =
N∑
i=1

ωεii Vi +
N∑
i=1

ω
εj
i Vi +

N∑
i=1

ωεki Vi

Uκ = Uκi + Uκj + Uκk =
N∑
i=1

ωκii Vi +
N∑
i=1

ω
κj
i Vi +

N∑
i=1

ωκki Vi

Uψ = Uψi + Uψj + Uψk =
N∑
i=1

ωψii Vi +
N∑
i=1

ω
ψj
i Vi +

N∑
i=1

ωψki Vi

(3.12)

Where U εα is a part of the axial potential energy that comes from the effect of the particles

β and γ on the particle α due to stretch effect. Similarly, the corresponding curvature (κ)

and shear (ψ) potential energies can be described. Noting that U εα , U εβ and U εγ can be

rewritten in terms of their potential densities as given in Eq. 3.12. Here, Vi denotes the

volume of the ith particle. The upper bound of the series (N) indicates the total number of

particles in the beam. The potential energy density (ω) due to stretch, curvature, and shear

of the beam could be defined as:

ωεii = 1
6

M∑
j=1

M∑
k=1

AijkεijkVkVj, ω
εj
i = 1

6

M∑
j=1

M∑
k=1

AjkiεjkiVkVj, ω
εk
i = 1

6

M∑
j=1

M∑
k=1

AkijεkijVkVj,

ωκii = 1
6

M∑
j=1

M∑
k=1

BijkκijkVkVj, ω
κj
i = 1

6

M∑
j=1

M∑
k=1

BjkiκjkiVkVj, ω
κk
i = 1

6

M∑
j=1

M∑
k=1

BkijκkijVkVj,

ωψii = 1
6

M∑
j=1

M∑
k=1

CijkψijkVkVj, ω
ψj
i = 1

6

M∑
j=1

M∑
k=1

CjkiψjkiVkVj, ω
ψk
i = 1

6

M∑
j=1

M∑
k=1

CkijψkijVkVj

(3.13)

Where A(N/m8), B(N/m7), and C(N/m8) are the stretch, curvature and shear conjugate

pairs of the ε, κ and ψ. The ratio of 1/6 is in equation to avoid the overcounting of each

particle’s contribution in basic units (the ratio of 1/3) and split the potential densities

between two particles (the ratio of 1/2). Since the equations will be eventually calibrated
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by using classical or experimental data, one may drop this ratio in the analysis. One of the

clear differences of the tridynamics framework with peridynamics could be the introduction

of the nanopotential function instead of micropotential to form the Lagrangian of the system.

Such a description may help to analyze problems that need a smaller length scale. The total

kinetic energy T of the system can be written as:

T = 1
2

N∑
i=1

ρ
[
u̇i

2 + I

A
φ̇i

2 + 2ziu̇iφ̇i + ẇi
2
]
Vi (3.14)

Where ρ, A and I are the mass density, the moment of inertia and the cross-section area

of the beam, respectively. Noting that the kinetic energy does not incorporate any length

scale parameter. The ith particle that undergo the general two dimensional rigid body

motion including axial (u), transverse (w) and rotational motion (φ). Such a insight may

avoid phenomenological definition of kinetic energy with length scale parameter [43]. In

this section, the word particle refers to a cubic volume V with mass density of ρ. In Eq.

3.14, the variable z is showing coordinates of the particles in z direction. For a very thin

beam i.e. h/L << 1, the variable z could be approximated to zero, therefore, the coupling

terms vanish. For keeping simplicity of the equations and avoiding more coupling terms

in numerical part, we solely calculate the kinetic energy for particle i on the axial line.

However the following derivations will remain valid for larger height. The Lagrangian of the

Timoshenko beam in the framework could found using:

L = T − U (3.15)

3.4 Equation of Motion of Tridynamic Beam

To derive the EOM of the system, the Euler-Lagrange equations can be employed. Since

the system is conservative, the following set of equations could be derived. The time-

dependent field variable used in the Lagrangian of the system is (u, w and φ); thus, we
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have:
d

dt

(
∂L

∂u̇i

)
= ∂L

∂ui
,

d

dt

(
∂L

∂ẇi

)
= ∂L

∂wi
,

d

dt

(
∂L

∂φ̇i

)
= ∂L

∂φi
(3.16)

Noting that T is the only quantity that involves the time derivative of the field variable while

terms with displacement components appear in U . Substituting Lagrangian (Eq. 3.15) into

the Euler-Lagrange (Eqs. 3.16) equations gives:

d

dt

(
∂T

∂u̇i

)
= −∂U

∂ui
,

d

dt

(
∂T

∂ẇi

)
= − ∂U

∂wi
,

d

dt

(
∂T

∂φ̇i

)
= −∂U

∂φi
(3.17)

The left-hand side of Eq. (3.17) could be written as:

d

dt

(
∂T

∂u̇i

)
= ρüi + 2ziρφ̈i,

d

dt

(
∂T

∂ẇi

)
= ρẅi,

d

dt

(
∂T

∂φ̇i

)
= ρ

I

A
φ̈i + 2ziρüi

(3.18)

and the right-hand side could be rewritten for all degrees of freedom (u, w and φ):

∂U

∂ui
=∂U

ε

∂ui
+ ∂Uκ

∂ui
+ ∂Uψ

∂ui
∂U

∂wi
=∂U

ε

∂wi
+ ∂Uκ

∂wi
+ ∂Uψ

∂wi
∂U

∂φi
=∂U

ε

∂φi
+ ∂Uκ

∂φi
+ ∂Uψ

∂φi

(3.19)

It is clear from the mathematical description of κ and ψ that Uκ and Uψ are independent

of ui. Therefore one can conclude ∂Uκ/∂ui = 0 and ∂Uψ/∂ui = 0. Also, wi only appears in

Uψ, consequently, Uκ and U ε do not depend on wi (∂Uκ/∂wi = 0 and ∂U ε/∂wi = 0). Simi-

larly, φ shows up in both Uκ and Uψ, thus, ∂U ε/∂φi could be dropped from our calculation.
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The simplified form of the Eq. 3.19 based on potential densities could be given;

∂U

∂ui
= ∂U ε

∂ui
= ∂ωεii

∂ui
+ ∂ω

εj
i

∂ui
+ ∂ωεki

∂ui
,

∂U

∂wi
= ∂Uψ

∂wi
= ∂ωψii

∂wi
+ ∂ω

ψj
i

∂wi
+ ∂ωψki

∂wi
,

∂U

∂φi
= ∂Uκ

∂φi
+ ∂Uψ

∂φi
= ∂ωκii

∂φi
+ ∂ω

κj
i

∂φi
+ ∂ωκki

∂φi
+ ∂ωψii

∂φi
+ ∂ω

ψj
i

∂φi
+ ∂ωψki

∂φi

(3.20)

Noting that, in Eq. 3.20 the summation on i index was dropped due to taking derivative

respect to ith particle i.e. ( ∂
∂uk

∑N
i=1 ω

εi
i Vi = ∂ω

εk
k

∂uk
). Then, partial derivative for each term of

the potential energy density can be given as:

∂ωεii
∂ui

=1
6

M∑
j=1

M∑
k=1

[
∂ (Aijkεijk)

∂ui

]
VkVj,

∂ω
εj
i

∂ui
= 1

6

M∑
j=1

M∑
k=1

[
∂ (Ajkiεjki)

∂ui

]
VkVj,

∂ωεki
∂ui

=1
6

M∑
j=1

M∑
k=1

[
∂ (Akijεkij)

∂ui

]
VkVj,

∂ωψii
∂wi

= 1
6

M∑
j=1

M∑
k=1

[
∂ (Cijkψijk)

∂wi

]
VkVj,

∂ω
ψj
i

∂wi
=1

6

M∑
j=1

M∑
k=1

[
∂ (Cjkiψjki)

∂wi

]
VkVj,

∂ωψki
∂wi

= 1
6

M∑
j=1

M∑
k=1

[
∂ (Ckijψkij)

∂wi

]
VkVj,

∂ωκii
∂φi

=1
6

M∑
j=1

M∑
k=1

[
∂ (Bijkκijk)

∂φi

]
VkVj,

∂ω
κj
i

∂φi
= 1

6

M∑
j=1

M∑
k=1

[
∂ (Bjkiκjki)

∂φi

]
VkVj,

∂ωκki
∂φi

=1
6

M∑
j=1

M∑
k=1

[
∂ (Bkijκkij)

∂φi

]
VkVj,

∂ωψii
∂φi

= 1
6

M∑
j=1

M∑
k=1

[
∂ (Cijkψijk)

∂φi

]
VkVj,

∂ω
ψj
i

∂φi
=1

6

M∑
j=1

M∑
k=1

[
∂ (Cjkiψjki)

∂φi

]
VkVj,

∂ωψki
∂φi

= 1
6

M∑
j=1

M∑
k=1

[
∂ (Ckijψkij)

∂φi

]
VkVj

(3.21)

Here, Aijk, Bijk and Cijk are existing forces in i− j and i− k bonds which result in the

stretch, curvature and transverse shear of the beam. By permuting the indices, the forces in

other bonds can be captured. These multi-body forces within the element may bring more

flexibility to model other material classes, e.g., anisotropic materials. In this section, we
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assume that the forces are a linear function of the corresponding deformation as:

Aijk = Kε
ijkεijk, Ajki = Kε

jkiεjki, Akij = Kε
kijεkij,

Bijk = Kφ
ijkκijk, Bjki = Kφ

jkiκjki, Bkij = Kφ
kijκkij,

Cijk = Kψ
ijkψijk, Cjki = Kψ

jkiψjki, Ckij = Kψ
kijψkij.

(3.22)

Where Kε, Kφ and Kψ are the resistances offered by the elastic beam against deformation.

Using the chain rule, Eq. 3.21 for a linear material response could be simplified as:

∂ (Aijkεijk)
∂ui

=∂ (Aijkεijk)
∂εijk

∂εijk
∂ui

=
(
2Kε

ijkεijk
) ∂εijk
∂ui

= −2Kε
ijk

(
1
ξij

+ 1
ξik

)
εijk,

∂ (Ajkiεjki)
∂ui

=∂ (Ajkiεjki)
∂εjki

∂εjki
∂ui

=
(
2Kε

jkiεjki
) ∂εjki
∂ui

= 2Kε
jki

(
1
ξij

)
εjki,

∂ (Akijεkij)
∂ui

=∂ (Akijεkij)
∂εkij

∂εkij
∂ui

=
(
2Kε

kijεkij
) ∂εkij
∂ui

= 2Kε
kij

(
1
ξik

)
εkij

(3.23)

∂ (Bijkκijk)
∂φi

= ∂ (Bijkκijk)
∂κijk

∂κijk
∂φi

=
(
2Kφ

ijkκijk
) ∂κijk
∂φi

= −2Kφ
ijk

(
1
ξij

+ 1
ξik

)
κijk,

∂ (Bjkiκjki)
∂φi

= ∂ (Bjkiκjki)
∂κjki

∂κjki
∂φi

=
(
2Kφ

jkiκjki
) ∂κjki
∂φi

= 2Kφ
jki

(
1
ξij

)
κjki,

∂ (Bkijκkij)
∂φi

= ∂ (Bkijκkij)
∂κkij

∂κkij
∂φi

=
(
2Kφ

kijκkij
) ∂κkij
∂φi

= 2Kφ
kij

(
1
ξik

)
κkij

(3.24)

∂ (Cijkψijk)
∂wi

= ∂ (Cijkψijk)
∂ψijk

∂ψijk
∂wi

=
(
2Kψ

ijkψijk
) ∂ψijk
∂wi

= −2Kψ
ijk

(
1
ξij

+ 1
ξik

)
ψijk,

∂ (Cjkiψjki)
∂wi

= ∂ (Cjkiψjki)
∂ψjki

∂ψjki
∂wi

=
(
2Kψ

jkiψjki
) ∂ψjki
∂wi

= 2Kψ
jki

(
1
ξij

)
ψjki,

∂ (Ckijψkij)
∂wi

= ∂ (Ckijψkij)
∂ψkij

∂ψkij
∂wi

=
(
2Kψ

kijψkij
) ∂ψkij
∂wi

= 2Kψ
kij

(
1
ξik

)
ψkij

(3.25)

∂ (Cijkψijk)
∂φi

= ∂ (Cijkψijk)
∂ψijk

∂ψijk
∂φi

=
(
2Kψ

ijkψijk
) ∂ψijk
∂φi

= −Kψ
ijk (n̂ij + n̂ik)ψijk,

∂ (Cjkiψjki)
∂φi

= ∂ (Cjkiψjki)
∂ψjki

∂ψjki
∂φi

=
(
2Kψ

jkiψjki
) ∂ψjki
∂φi

= Kψ
jki (n̂ij)ψjki,

∂ (Ckijψkij)
∂φi

= ∂ (Ckijψkij)
∂ψkij

∂ψkij
∂φi

=
(
2Kψ

kijψkij
) ∂ψkij
∂φi

= Kψ
kij (n̂ik)ψjki

(3.26)

Substituting Eqs. 3.4, 3.4, 3.4 and 3.4 into Eq. 3.20, and then using the results along with
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the Eq. 3.18 in Eq. 3.17 give the EOMs for Timoshenko beam as:

ρüi + 2ziρφ̈i = 1
3

M∑
j=1

M∑
k=1

[
Kε
ijk

(
1
ξij

+ 1
ξik

)
εijk −Kε

jki

(
1
ξij

)
εjki −Kε

kij

(
1
ξik

)
εkij

]
VkVj

(3.27)

ρẅi =1
3

M∑
j=1

M∑
k=1

[
Kψ
ijk

(
1
ξij

+ 1
ξik

)
ψijk −Kψ

jki

(
1
ξij

)
ψjki −Kψ

kij

(
1
ξik

)
ψkij

]
VkVj (3.28)

ρ
I

A
φ̈i + 2ziρüi = 1

3

M∑
j=1

M∑
k=1

[
Kφ
ijk

(
1
ξij

+ 1
ξik

)
κijk −Kφ

jki

(
1
ξij

)
κjki −Kφ

kij

(
1
ξik

)
κkij

]
VkVj

+ 1
6

M∑
j=1

M∑
k=1

[
Kψ
ijk (n̂ij + n̂ik)ψijk −Kψ

jki (n̂ij)ψjki −K
ψ
kij (n̂ik)ψkij

]
VkVj

(3.29)

Assuming that the beam is made of isotropic materials, the directional dependence of inter-

action could be relaxed as:
Kε
ijk =Kε

jki = Kε
kij = Kε,

Kφ
ijk =Kφ

jki = Kφ
kij = Kφ,

Kψ
ijk =Kψ

jki = Kψ
kij = Kψ

(3.30)

Noting that Kε, Kφ and Kψ are material nonlocal parameters that should be determined

by localization of the governing equations (Eqs. 3.27, 3.28, 3.29) and comparing with the

classical counterparts.

3.5 Localization of the Equation of Motion

Since we are working with a discrete system of equations, the local limit could be ex-

plained as the case in which particles can only interact with their closest neighbors. There-

fore, one could conclude that ξij = ξik = ξ. Using Eqs. 3.10 along with other index properties

in Section 3.2, the localized form of the developed nonlocal beam equations are given as:

ρüi + 2ziρφ̈i = lim
δ→δl

(
εijk
ξ

)
Kε

m∑
j=1

m∑
k=1

VkVj (3.31)

ρẅi = lim
δ→δl

(
ψijk
ξ

)
Kψ

m∑
j=1

m∑
k=1

VkVj (3.32)
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ρ
I

A
φ̈i + 2ziρüi = lim

δ→δl

Kψ

6

m∑
j=1

m∑
k=1

[(n̂ij + n̂ik)ψijk − n̂ijψjki − n̂ikψkij]VkVj


+ lim

δ→δl

(
εijk
ξ

)
Kφ

m∑
j=1

m∑
k=1

VkVj

(3.33)

In the local limit, we change the upper bond of the series from N to m to emphasis on

the immediate neighbor. We also assume that the values of ε, κ and ψ are constant in the

local horizon. Therefore, they could be taken out of the series. To have a set of equations

that are decoupled (respect to u), we assume that the thickness of the beam is sufficiently

small in comparison to the length of the beam (h/L < 0.01), i.e., the particles are scattered

uniformly on the x-axis, and other particles above or below the x-axis have very small z

value. Thus, we are able to drop terms with z in the kinetic part of EOMs (Eqs. 3.27 and

Eq. 3.29). The details of localization of the discrete equations are given in Appendix C. It

could be easily shown the followings relations in local limit:

lim
δ→δl

(
εijk
ξ

)
=u′′i (3.34a)

lim
δ→δl

(
ψijk
ξ

)
=w′′i − φ′i (3.34b)

lim
δ→δl

(
κijk
ξ

)
=φ′′i (3.34c)

Therefore, the localized form of the equations could be given as:

ρüi = KεV 2
T u
′′
i (3.35a)

ρẅi = KψV 2
T (w′′i − φ′i) (3.35b)

ρ
I

A
φ̈i = KφV 2

T (φ′′i ) +KψV 2
T (w′i − φi) (3.35c)

Where VT denotes the total volume of the domain associated to the horizon and can be

calculated through the following:

VT =
m∑
j=1

Vj (3.36)
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Noting that VT is equal to 2V in the local limit for the beam model. The Eq. 3.36 is valid

to be used in governing equations if we have ”m” as upper bounds for both series. Noting

that the classical EOMs for Timoshenko beam theory can be given as:

ρü+ 2zρφ̈ = Eu
′′ (3.37a)

ρẅ = κsG
(
w
′′ − φ′

)
(3.37b)

ρ
I

A
φ̈+ 2zρü = EI

A
φ
′′ + κsG

(
w
′ − φ

)
(3.37c)

Where κs is the shear correction coefficient and depends on the cross-section of the beam.

This value for a rectangular cross-section is 5/6. The material parameters can be obtained by

comparing the localized form of the tridynamics beam EOMs with the classical Timoshenko

beam theory as:
Kε = E

V 2
T

Kψ =κsµ
V 2
T

Kφ = EI

AV 2
T

(3.38)

Here, E, µ, A and I are respectively Young’s modulus, shear modulus, cross-sectional area

and the second moment of inertia of the beam.

3.6 Dispersion Analysis

To see how the model performs in comparison to classical and peridynamics, we will

carry out dispersion analysis. Noting that we try to derive our dispersion equations without

setting z = 0 in the EOMs i.e. the beam is not thin. Since our equations are written in

discrete form, we are interested in using the discrete format of wave propagation for all DOFs

as follows:
ui =u(xi, t) = u0e

î(κxi−ωt+n̂iiκξii) = u0XiΛii = u0Xi

uj =u(xj, t) = u0e
î(κxi−ωt+n̂ijκξij) = u0XiΛij

uk =u(xk, t) = u0e
î(κxi−ωt+n̂ikκξik) = u0XiΛik

(3.39)
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wi =w(xi, t) = w0e
î(κxi−ωt+n̂iiκξii) = w0XiΛii = w0Xi

wj =w(xj, t) = w0e
î(κxi−ωt+n̂ijκξij) = w0XiΛij

wk =w(xk, t) = w0e
î(κxi−ωt+n̂ikκξik) = w0XiΛik

(3.40)

φi =φ(xi, t) = φ0e
î(κxi−ωt+n̂iiκξii) = φ0XiΛii = φ0Xi

φj =φ(xj, t) = φ0e
î(κxi−ωt+n̂ijκξij) = φ0XiΛij

φk =φ(xk, t) = φ0e
î(κxi−ωt+n̂ikκξik) = φ0XiΛik

(3.41)

Where κ is the wave number and ω is the wave frequency. The axial coordinate of

particles is shown by xi and the variable t indicates time. u0, w0 and φ0 are the amplitude

of the waves in the axial, traverse and rotation in y plane. Here î is showing the imaginary

part (̂i =
√
−1). It should be noted that Xi = eî(κxi−ωt) is the wave equation associate to ith

particle. The phase difference of the particle i with particle j and k could be given by κn̂ijξij

and κn̂ikξik respectively. Form the definition of Λiα = ei(κn̂iαξiαt) where α = i, j, k, one can

easily find that Λii = 1 i.e, no phase difference with the ith particle. Substituting Eq. 3.39,

in definition of stretch (Eq. 3.1) results into;

εαβγ = u0Xi

(
1
ξαβ

(Λiβ − Λiα) + 1
ξαγ

(Λiγ − Λiα)
)

= u0XiTαβγ (3.42)

Noting that Tαβγ = 1
ξαβ

(Λiβ − Λiα) + 1
ξαγ

(Λiγ − Λiα) Therefore, we could have the following

equations when α and β are i, j and k indices:

εijk =u0Xi

(
1
ξij

(Λij − 1) + 1
ξik

(Λik − 1)
)

= u0XiTijk

εjki =u0Xi

(
1
ξjk

(Λik − Λij) + 1
ξji

(1− Λij)
)

= u0XiTjki

εkij =u0Xi

(
1
ξki

(1− Λik) + 1
ξkj

(Λij − Λik)
)

= u0XiTkij

(3.43)

Similarly, we can find it for καβγ and ψαβγ by substituting 3.40 and 3.41 into their definitions
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(Eqs. 3.4 and 3.6) as:

καβγ = φ0Xi

(
1
ξαβ

(Λiβ − Λiα) + 1
ξαγ

(Λiγ − Λiα)
)

= φ0XiJαβγ (3.44)

Noting that Jαβγ = 1
ξαβ

(Λiβ − Λiα) + 1
ξαγ

(Λiγ − Λiα). We could have the followings for the

indices i, j and k:

κijk =φ0Xi

(
1
ξij

(Λij − 1) + 1
ξik

(Λik − 1)
)

= φ0XiJijk

κjki =φ0Xi

(
1
ξjk

(Λik − Λij) + 1
ξji

(1− Λij)
)

= φ0XiJjki

κkij =φ0Xi

(
1
ξki

(1− Λik) + 1
ξkj

(Λij − Λik)
)

= φ0XiJkij

(3.45)

In a similar fashion, we may get the following relations for ψαβγ

ψαβγ = w0XiPαβγ + φ0XiQαβγ (3.46)

where
Pαβγ = 1

ξαβ
(Λiβ − Λiα) + 1

ξαγ
(Λiγ − Λiα)

Qαβγ = −nαβ2 (Λiα + Λiβ)− nαγ
2 (Λiγ + Λiα)

(3.47)

The term ψijk, ψjki and ψkij can be given as:

ψijk =w0Xi

(
1
ξij

(Λij − 1) + 1
ξik

(Λik − 1)
)

+ φ0Xi

(
− n̂ij2 (1 + Λij)−

n̂ik
2 (1 + Λik)

)

ψjki =w0Xi

(
1
ξjk

(Λik − Λij) + 1
ξji

(1− Λij)
)

+ φ0Xi

(
− n̂jk2 (Λij + Λik)−

n̂ji
2 (1 + Λij)

)

ψkij =w0Xi

(
1
ξki

(1− Λik) + 1
ξkj

(Λij − Λik)
)

+ φ0Xi

(
− n̂ki2 (1 + Λik)−

n̂kj
2 (Λij + Λik)

)
(3.48)
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For sake of simplicity, we rewrite the equations in the following forms:

ψijk = w0XiPijk + φ0XiQijk

ψjki = w0XiPjki + φ0XiQjki

ψkij = w0XiPkij + φ0XiQkij

(3.49)

Substituting Eqs. 3.43, 3.45 and 3.48 in the EOMs 3.27, 3.28 and 3.29 will give:

(
ρω2 +KtA1

)
u0 +

(
A2ω

2
)
φ0 = 0(

ρω2 +KψB1
)
w0 +

(
KψB2

)
φ0 = 0(

C1ρω
2
)
u0 +

(
KψC2

)
w0 +

(
ρI

A
ω2 +KψC3 +KφC4

)
φ0 = 0

(3.50)

where:
A1 =1

3

M∑
j=1

M∑
k=1

[(
1
ξij

+ 1
ξik

)
Tijk −

(
1
ξij

)
Tjki −

(
1
ξik

)
Tkij

]
VkVj

A2 =2zi

B1 =1
3

M∑
j=1

M∑
k=1

[(
1
ξij

+ 1
ξik

)
Pijk −

(
1
ξij

)
Pjki −

(
1
ξik

)
Pkij

]
VkVj

B2 =1
3

M∑
j=1

M∑
k=1

[(
1
ξij

+ 1
ξik

)
Qijk −

(
1
ξij

)
Qjki −

(
1
ξik

)
Qkij

]
VkVj

C1 =2zi

C2 =1
6

M∑
j=1

M∑
k=1

[(n̂ij + n̂ik)Pijk − (n̂ij)Pjki − (n̂ik)Pkij]VkVj

C3 =1
6

M∑
j=1

M∑
k=1

[(n̂ij + n̂ik)Qijk − (n̂ij)Qjki − (n̂ik)Qkij]VkVj

C4 =1
3

M∑
j=1

M∑
k=1

[(
1
ξij

+ 1
ξik

)
Jijk −

(
1
ξij

)
Jjki −

(
1
ξik

)
Jkij

]
VkVj

(3.51)

For a non-trivial solution, the determinant of the coefficients u0, w0 and φ0 should be zero:
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∣∣∣∣∣∣∣∣∣∣∣∣

ρω2 +KtA1 0 A2ω
2

0 ρω2 +KψB1 KψB2

C1ρω
2 KψC2

ρI
A
ω2 +KψC3 +KφC4

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.52)

Which leads to the following sixth order polynomial equation as:

(
Iρ3 − AA2C1ρ

2
)
ω6

+
(
AC4K

φρ2 + AC3K
ψρ2 + A1IK

tρ2 +B1IK
ψρ2 − AA2B1C1K

ψρ
)
ω4

+ (AB1C3K
ψ2
ρ− AB2C2K

ψ2
ρ+ AA1C4K

φKtρ+ AA1C3K
ψKtρ

+ AB1C4K
φKψρ+ A1B1IK

ψKtρ)ω2

+
(
AA1B1C3K

ψ2
Kt − AA1B2C2K

ψ2
Kt + AA1B1C4K

φKψKt
)

= 0

(3.53)

Here we impose the assumption for thin beam; therefore, the terms in the equation with z

could be dropped (C1 and C4). Therefore, we could find axial wave frequency (mode I) as:

ω2 = KtA1

ρ
(3.54)

Noting that the dispersion analysis for peridynamics bar could be given as:

ωp = κ

√
E

ρ

[
1− κ2δ2

24

]1/2
(3.55)

The details of derivation of peridynamics and classical models could be found in C.2 and

C.3. The determinant of the coefficient for the other two equations can be given as:
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∣∣∣∣∣∣∣∣
ρω2 +KψB1 KψB2

KψC2
ρI
A
ω2 +KψC3 +KφC4

∣∣∣∣∣∣∣∣ = 0 (3.56)

which leads to the following polynomial equations.

(
Iρ2

)
ω4 +

(
AC4K

φρ+ AC3K
ψρ+B1IK

ψρ
)
ω2

+
(
AB1C3K

ψ2 − AB2C2K
ψ2 + AB1C4K

φKψ
)

= 0
(3.57)

The solution of the equation provides the mode II and mode III wave frequency of the thin

beam.

3.7 Numerical Results

In this section, we provide the results from the numerical implementation of the tridy-

namics beam and compare them other local and nonlocal Timoshenko models. The material

properties are chosen similar to reference [42]:

E = 200GPa, ρ = 7850 kg
m3 , , κs = 5/6 h = 10−7m, ν = 0.3, δ = 10−8m. (3.58)

All parameters, including A1, B1, B2, C2, C3 and C4 are calculated numerically using a

MATLAB code. Figure. 3.3 shows the variation of the wave frequency in the axial direction

for different normalized wave numbers. Noting that in the figure, the wave number has been

normalized by dividing 2π/δ. It is worth-noting that since the axial direction is decoupled,

the solution could be valid for bar element as well. Figure. 3.3 shows that both Peridynamics

and classical theory exhibits a linear behavior for shown normalized wave numbers. However,

the tridynamics model illustrates a nonlinear response.

Figure. 3.4 illustrates variation of normalized phase speed Ω/ (ζ
√
κs)versus the normal-

ized wave number. Noting that κs is the shear correction factor and ζ = κh where h is
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Figure 3.3: Variation of wave frequency (mode I) with the normalized wave number in
different frameworks.

0 5 15 2010
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

W
av
e
sp
ee
d
,
+
=
1 1p

k
2

Wave speed dispersions, mode I

Classical
Peridynamics
Tridynamics

Wave Number, 5=(2:=/)
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frameworks.
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Figure 3.5: Variation of wave frequency (mode II) with the normalized wave number in
different frameworks.

the height of the beam. The normalized frequency Ω = ωh/vs and vs =
√
G/ρ is the shear

wave speed. The figure shows that both peridynamics and tridynamics do not follow a linear

variation, however the classical shows a constant value.

Fig. 3.5 and Fig. 3.6 depict the mode II and III wave frequency as a function of the

normalized wave numbers in different frameworks. The mode II and III are being influenced

by both DOFs; (w) and φ. However, mode II is dominantly affected by w and mode III is

mostly influenced by φ. Fig. 3.5 shows that unlike the wave frequency response in mode III,

both peridynamics and tridynamics relatively have a similar response for mode II. One of

the reasons that may cause a larger difference in mode III in comparison to mode II is the

way that framework prescribes interaction of particle. In tridynamics, we associate particle

at xi with three different rotational terms κijk, κjki and κkij. However, peridynamics only

involves one rotational term at xi. The other reason could be due to the order of nonlinearity

in each case. We could have the same argument for these two figures, as it was expected.

39



0 0.1 0.2 0.3 0.4 0.5 0.6

Wave Number, 5=(2:=/)

0

2

4

6

8

10

12

14

16

W
av
e
F
re
q
u
en

cy
,
!

#1011 Wave frequency dispersions, mode III

Classical
Peridynamics
Tridynamics

Figure 3.6: Variation of wave frequency (mode III) with the normalized wave number in
different frameworks.
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Fig. 3.7 and 3.8 show the changes of phase speed as the normalized wave number varies.
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4. TRIDYNAMIC MODEL OF THE PLATE UNDER ASSUMPTION OF

FIRST-ORDER SHEAR DEFORMATION THEORY (FSDT)

4.1 Introduction

This section is in the continuation of the previous section, and we develop the tridynamic

model of the plate under the assumption of first-order shear deformation theory (FSDT).

In Section 4.2, we characterize the nonlocal deformation of the basic unit based upon the

kinematics of material particles within the triangular unit. In Section 4.3, the Lagrangian

of the tridynamics plate is formulated. Through Section 4.4, we employ the Euler-Lagrange

equation to derive the governing equation for the plate. We also include localization of the

model to determine nonlocal parameters.

4.2 Kinematics of Tridynamic FSDT Plate

Figure 4.1: Evolution of basic unit in the plate element.

In this section, a representative kinematic is described to model first-order plate in the

tridynamics framework. Let us consider a collection of particles distributed uniformly along
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the x, y, and z-axis. Fig. 4.1 shows a chunk of a discrete plate in the undeformed and

deformed configuration. Each particle is indicated by a solid black sphere. For the sake of

illustration, we only depict three layers of material particles. The deformation at ith particle

could be expressed by building a triangular unit with three vertices i, j and k. The ith vertice

represents the ith particle, and it locates in the center of the influence domain Ω. However,

the other two vertices could be any two particles in the horizon. Fig. 1 shows only the

case that ith and jth particles are from lower and upper material layers. However, i and j

could be both from the upper or lower layer. Noting that in the deformed configuration, the

influence domain turns into ellipse Ω′ . Fig. 4.1 depicts the formation of a triangle in general

three-dimensional space. However, in the following, we employ the planar triangles in x and

y plane to model the plate.

In the analysis of plate, all edges of the triangle lie on x-axis or y-axis before deformation.

The triangle could be visible if the curvature in x or y plane changes.

To capture deformations of the first-order plate in this framework, we introduce three quan-

tities that represent the stretch, curvature (in x and y plane), and shear of the plate (in x

and y plane). The first quantity which presents the axial deformation at xi (x and y-axis)

could be given as:

εxxijk = ûxij + ûxik, εxxjki = ûxjk + ûxji, εxxkij = ûxkj + ûxki

εyyijk = v̂yij + v̂yik, εyyjki = v̂yjk + v̂yji, εyykij = v̂ykj + v̂yki

(4.1)

Noting that εxxijk and εyyijk could be found through deformation of triangle i, k, j and l,m, j

respectively (see Fig. 4.1). The planar angular deformation in x-y plane could be given as;

εxyijk = 1εxyijk + 2εxyijk =
(
ûyij + ûyik

)
+
(
v̂xij + v̂xik

)
εxyjki = 1εxyjki + 2εxyjki =

(
ûyjk + ûyji

)
+
(
v̂xji + v̂xji

)
εxykij = 1εxykij + 2εxykij =

(
ûyki + ûykj

)
+
(
v̂xki + v̂xkj

) (4.2)
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The axial stretch in the x-direction could be given as;

ûxij =uj − ui
ξxij

, ûxik = uk − ui
ξxik

, ûxjk = uk − uj
ξxjk

ûyij =uj − ui
ξyij

, ûyik = uk − ui
ξyik

, ûyjk = uk − uj
ξyjk

(4.3)

Similarly, the stretch in y direction could be given as;

v̂xij =vj − vi
ξxij

, v̂xik = vk − vi
ξxik

, v̂xjk = vk − vj
ξxjk

v̂yij =vj − vi
ξyij

, v̂yik = vk − vi
ξyik

, v̂yjk = vk − vj
ξyjk

(4.4)

Noting that uα and vα indicate the displacement of particle α in x and y direction respectively.

The initial planar distance between particles α and β in direction of n could be shown by

ξeiαβ, where ei could be x or y direction and it can be given as:

ξxij =ξxji = |xj − xi| , ξxik = ξxki = |xk − xi| , ξxjk = ξxkj = |xk − xj| ,

ξyij =ξyji = |yj − yi| , ξyik = ξyki = |yk − yi| , ξyjk = ξykj = |yk − yj|
(4.5)

One can easily find that ûxji = −ûxij, ûxki = −ûxik, ûxkj = −ûxjk, v̂
y
ji = −v̂yij, v̂yki =

−v̂yik, v̂
y
kj = −v̂yjk, û

y
ji = −ûyij, û

y
ki = −ûyik, û

y
kj = −ûyjk, v̂xji = −v̂xij, v̂xki = −v̂xik, v̂xkj = −v̂xjk,.

In the following, we present the related deformation to curvature and shear of the plate. In

Fig. 4.2, transverse displacements, as well as axial and rotational deformation, are illustrated.

Following classical first-order plate theory, straight lines perpendicular to the mid-surface

(i.e., transverse normals) remains straight and inextensible. These lines are shown by solid

black lines that go through the i, j, k, l, and m particles located on the lateral side of the

plate element shown in Fig. 4.2. These lines are shown in the deformed configuration and

they make the angle φx and φy with their initial position (shown by thin dash-dot lines in
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Figure 4.2: Illustration of axial, transverse and angular deformation in plane x and y.

the deformed configurations) Therefore, the curvature of the plate may be characterized as:

κxxijk = φ̂xxij + φ̂xxik , κ
xx
jki = φ̂xxjk + φ̂xxji , κ

xx
kij = φ̂xxkj + φ̂xxki

κyyijk = φ̂yyij + φ̂yyik , κ
yy
jki = φ̂yyjk + φ̂yyji , κ

yy
kij = φ̂yykj + φ̂yyki

(4.6)

According to first-order shear deformation theory, since we also have in-plane shear effect,

the following could be defined;

κxyijk = 1κxyijk + 2κyxijk =
(
φ̂xyij + φ̂xyik

)
+
(
φ̂yxij + φ̂yxik

)
κxyjki = 1κxyjki + 2κyxjki =

(
φ̂xyjk + φ̂xyji

)
+
(
φ̂yxjk + φ̂yxji

)
κxykij = 1κxykij + 2κyxkij =

(
φ̂xykj + φ̂xyki

)
+
(
φ̂yxkj + φ̂yxki

) (4.7)

Noting that κxyαβγ is the curvature in XY-plane due to the interaction of particle γ and β

with particle α. The changes of rotation of the perpendicular lines in x plane with respect
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to both direction of x and y can be given as;

φ̂xxij =
φxj − φxi
ξxij

, φ̂xxik = φxk − φxi
ξxik

, φ̂xxjk =
φxk − φxj
ξxjk

,

φ̂xyij =
φxj − φxi
ξyij

, φ̂xyik = φxk − φxi
ξyik

, φ̂xyjk =
φxk − φxj
ξyjk

(4.8)

Similarly, we can have the following for the rotational changes in y plane with respect to y

and x direction as:

φ̂yyij =
φyj − φ

y
i

ξyij
, φ̂yyik = φyk − φ

y
i

ξyik
, φ̂yyjk =

φyk − φ
y
j

ξyjk
,

φ̂yxij =
φyj − φ

y
i

ξxij
, φ̂yxik = φyk − φ

y
i

ξxik
, φ̂yxjk =

φyk − φ
y
j

ξxjk

(4.9)

Here, φeiα is the rotation of the transverse straight line of particle α in ei-plane. Noting that

φ̂
eiej
αβ = −φ̂ejeiαβ . The transverse shear deformation in the ei-plane may be defined as:

ψxijk =
(
θxij − n̂ixijφ̄xij

)
+
(
θxik − n̂ixikφ̄xik

)
ψxjki =

(
θxjk − n̂ixjkφ̄xjk

)
+
(
θxji − n̂ixjiφ̄xji

)
ψxkij =

(
θxkj − n̂ixkjφ̄xkj

)
+
(
θxki − n̂ixkiφ̄xki

) (4.10)

In similar fashion, we could defined the shear deformation in y plane as:

ψyijk =
(
θyij − n̂i

y
ijφ̄

y
ij

)
+
(
θyik − n̂i

y
ikφ̄

y
ik

)
ψyjki =

(
θyjk − n̂i

y
jkφ̄

y
jk

)
+
(
θyji − n̂i

y
jiφ̄

y
ji

)
ψykij =

(
θykj − n̂i

y
kjφ̄

y
kj

)
+
(
θyki − n̂i

y
kiφ̄

y
ki

) (4.11)

where θeiαβ is showing the slope of the line that connects particle α to particle β in ei-plane
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and could be given as:

θxij =wj − wi
ξxij

, θxik = wk − wi
ξxik

, θxjk = wk − wj
ξxjk

θyij =wj − wi
ξyij

, θyik = wk − wi
ξyik

, θyjk = wk − wj
ξyjk

(4.12)

and wα is the transverse displacement of the particle α. In Eq. 4.11, φ̄eiαβ is the average

rotation of the straight lines associated to α and β in ei plane and it could be rewritten for

particle i, j and k as:

φ̄xij =
φxj + φxi

2 , φ̄xik = φxk + φxi
2 , φ̄xjk =

φxk + φxj
2

φ̄yij =
φyj + φyi

2 , φ̄yik = φyk + φyi
2 , φ̄yjk =

φyk + φyj
2 ,

(4.13)

The direction of the bond vector starting from particle α to particle β in e-plane is shown

by n̂ieαβ and could be express for i, j and k in x and y direction as:

n̂yij =yj − yi
ξyij

, n̂yik = yk − yi
ξyik

, n̂yjk = yk − yj
ξyjk

n̂xij =xj − xi
ξxij

, n̂xik = xk − xi
ξxik

, n̂xjk = xk − xj
ξxjk

,

(4.14)

Noting that the introduction of these physical quantities such as ε and κ could be vastly

employed in other mechanical problems to properly describe changes of the field variables in

this framework (for instance, the ε could be used as a discrete derivative-free temperature

gradient in two dimensional Fourier law, if we set temperature as our field variable).

It should be noted that , θeiαβ = −θeiβα and φ̄eiαβ = φ̄eiβα and n̂i
ej
αβ = −n̂iejβα, θeiαβ = −θeiβα

ε
eiej
αβγ + ε

eiej
βγα + ε

eiej
γαβ = 0

κ
eiej
αβγ + κ

eiej
βγα + κ

eiej
γαβ = 0

ψeiαβγ + ψeiβγα + ψeiγαβ = 0

(4.15)
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In additions, in a three-particle basic unit, the order of interaction of two particles on

the particle of interest does not matter. In other words, if Φeiej
αβγ defines the interaction of

particle β and γ with particle α in plane n, it will be the same as Φeiej
αγβ. This remains valid

for all of the kinematical concepts in this section.

4.3 Lagrangian of the FSDT Plate

Consider a plate made of a finite number of particles with the length of L and width W

and thickness of h. The Lagrangian of the system could be calculated by summing up the

potential and kinetic energy of the system. The potential energy for the structure could be

divided into smaller sub-potentials which are due to stretch, curvature, and shear effect in

different planes as:

U = U ε + Uκ + Uψ (4.16)

where each component could be described as:

U ε = U εxx + U εyy + U εxy

Uκ = Uκxx + Uκyy + Uκxy

Uψ = Uψx + Uψy

(4.17)

Here, U εxx , U εyy , Uκxx , Uκyy ,U εxy , Uψx , Uψy and Uκxy are respective portions of potential

energies associated to the stretch in x and y direction, curvature in x, y, and xy-plane, shear

deformation of the plate in x, y and xy-plane. They also could be physically interpreted

as the required energy to deform the edges and angles of the triangular unit in different

planes. Each of these portions could be broken up into the smaller pieces to directly show

the contribution of individual particles in the basic unit. For the axial stretches and in plane
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angular deformation, we could have the followings:

U εxx = U εxxi + U εxxj + U εxxk =
N∑
i=1

ω
εxxi
i Vi +

N∑
i=1

ω
εxxj
i Vi +

N∑
i=1

ω
εxxk
i Vi

U εyy = U εyyi + U εyyj + U εyy
k =

N∑
i=1

ω
εyyi
i Vi +

N∑
i=1

ω
εyyj
i Vi +

N∑
i=1

ω
εyy
k
i Vi

U εxy = U εxyi + U εxyj + U εxy
k =

N∑
i=1

ω
εxyi
i Vi +

N∑
i=1

ω
εxyj
i Vi +

N∑
i=1

ω
εxy
k
i Vi

(4.18)

The potential due to curvature can be given by:

Uκxx = Uκxxi + Uκxxj + Uκxxk =
N∑
i=1

ω
κxxi
i Vi +

N∑
i=1

ω
κxxj
i Vi +

N∑
i=1

ω
κxxk
i Vi

Uκyy = Uκyyi + Uκyyj + Uκyy
k =

N∑
i=1

ω
κyyi
i Vi +

N∑
i=1

ω
κyyj
i Vi +

N∑
i=1

ω
κyy
k
i Vi

Uκxy = Uκxyi + Uκxyj + Uκxy
k =

N∑
i=1

ω
κxyi
i Vi +

N∑
i=1

ω
κxyj
i Vi +

N∑
i=1

ω
κxy
k
i Vi

(4.19)

We also can give the potential due to shear effect in two different planes as:

Uψx = Uψxi + Uψxj + Uψxk =
N∑
i=1

ω
ψxi
i Vi +

N∑
i=1

ω
ψxj
i Vi +

N∑
i=1

ω
ψxk
i Vi

Uψy = Uψyi + Uψyj + Uψy
k =

N∑
i=1

ω
ψyi
i Vi +

N∑
i=1

ω
ψyj
i Vi +

N∑
i=1

ω
ψy
k

i Vi

(4.20)

where U ε
eiej
α is a part of the axial potential energy that comes from the effect of the

particles β and γ on the particle α due to stretches of the triangle edges eiej-plane. Similarly,

the corresponding curvature (κ) and shear (ψ) potential energies can be described. Noting

that U εα , U εβ and U εγ can be rewritten in terms of their potential densities as given in Eq.

4.18. Here, Vi denotes the volume of the ith particle. The upper bound of the series (N)

indicates the total number of particles in the plate. The potential energy density (ω) due to

stretch, curvature, and shear of the plate in different planes could be defined in Eqs. 4.21,
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4.22 and 4.23:

ω
εxxi
i = 1

6

N∑
j=1

N∑
k=1

A1
ijkε

xx
ijkVkVj, ω

εxxj
i = 1

6

N∑
j=1

N∑
k=1

A1
jkiε

xx
jkiVkVj, ω

εxxk
i = 1

6

N∑
j=1

N∑
k=1

A1
kijε

xx
kijVkVj,

ω
εyyi
i = 1

6

N∑
j=1

N∑
k=1

A2
ijkε

yy
ijkVkVj, ω

εyyj
i = 1

6

N∑
j=1

N∑
k=1

A2
jkiε

yy
jkiVkVj, ω

εyy
k
i = 1

6

N∑
j=1

N∑
k=1

A2
kijε

yy
kijVkVj,

ω
εxyi
i = 1

6

N∑
j=1

N∑
k=1

A3
ijkε

xy
ijkVkVj, ω

εxyj
i = 1

6

N∑
j=1

N∑
k=1

A3
jkiε

xy
jkiVkVj, ω

εxy
k
i = 1

6

N∑
j=1

N∑
k=1

A3
kijε

xy
kijVkVj

(4.21)

ω
κxxi
i = 1

6

N∑
j=1

N∑
k=1

B1
ijkκ

xx
ijkVkVj, ω

κxxj
i = 1

6

N∑
j=1

N∑
k=1

B1
jkiκ

xx
jkiVkVj, ω

κxxk
i = 1

6

N∑
j=1

N∑
k=1

B1
kijκ

xx
kijVkVj,

ω
κyyi
i = 1

6

N∑
j=1

N∑
k=1

B2
ijkκ

yy
ijkVkVj, ω

κyyj
i = 1

6

N∑
j=1

N∑
k=1

B2
jkiκ

yy
jkiVkVj, ω

κyy
k
i = 1

6

N∑
j=1

N∑
k=1

B2
kijκ

yy
kijVkVj,

ω
κxyi
i = 1

6

N∑
j=1

N∑
k=1

B3
ijkκ

xy
ijkVkVj, ω

κxyj
i = 1

6

N∑
j=1

N∑
k=1

B3
jkiκ

xy
jkiVkVj, ω

κxy
k
i = 1

6

N∑
j=1

N∑
k=1

B3
kijκ

xy
kijVkVj

(4.22)

ω
ψxi
i = 1

6

N∑
j=1

N∑
k=1

C1
ijkψ

x
ijkVkVj, ω

ψxj
i = 1

6

N∑
j=1

N∑
k=1

C1
jkiψ

x
jkiVkVj, ω

ψxk
i = 1

6

N∑
j=1

N∑
k=1

C1
kijψ

x
kijVkVj,

ω
ψyi
i = 1

6

N∑
j=1

N∑
k=1

C2
ijkψ

y
ijkVkVj, ω

ψyj
i = 1

6

N∑
j=1

N∑
k=1

C2
jkiψ

y
jkiVkVj, ω

ψy
k

i = 1
6

N∑
j=1

N∑
k=1

C2
kijψ

y
kijVkVj

(4.23)

where A(N/m8), B(N/m7), and C(N/m8) are the stretch, curvature and shear conjugate

pairs of the ε, κ and ψ, the ratio of 1/6 is in the equation to avoid the overcounting of

each particle’s contribution in basic units (the ratio of 1/3) and split the potential densities

between two particles (the ratio of 1/2). However, one may drop this ratio from the derivation

since the equations will be eventually calibrated by using classical or experimental data.

One of the clear differences of the tridynamics framework with peridynamics could be the

introduction of the nanopotential function instead of micropotential to form the Lagrangian

of the system. Such a description may help to analyze problems that need a smaller length

scale. Noting that due to coupling effect in the plate model, A1 contributes in the stretches

of mid-plane in the x-direction. Similarly, A2 causes the axial deformation in the y-direction.
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For the in-plane shear deformation, all forces A1, A2 play role independently. The coupling

deformation effect comes from A3. It is worth noting that A1 is a function of εxx, and A2

is a function of εyy. By a similar interpretation, B1 and B2 are the loads that result in

curvatures κxx and κyy, respectively. It should be noted that B1 is presented as a function of

κxx, and B2 is given as a function of κyy. In addition, B3 results into twisting of the plate in

XY-plane (κxy). We also introduce the C1 and C2 due to the shear effect that respectively

make ψx and ψy.

As another part of Lagrangian of the system, we need to construct the total kinetic energy

T of the system as:

T = 1
2

N∑
i=1

ρ
[
u̇i

2 + I

A
(φ̇xi )2 + 2zu̇iφ̇xi + v̇i

2 + I

A
(φ̇yi )2 + 2zv̇iφ̇yi + ẇi

2
]
Vi (4.24)

where ρ, A and I are the mass density, the moment of inertia and the cross-section

area of the plate, respectively. Noting that the kinetic energy does not incorporate any

length scale parameter. The ith particle that undergo the general two dimensional rigid

body motion including axial (u), transverse (w) and rotational motion (φ). Such a insight

may avoid phenomenological definition of kinetic energy with length scale parameter [43].

In this section, the word particle refers to a cubic volume V with mass density of ρ. In Eq.

4.24, the variable z is showing coordinates of the particles in z direction. For a very thin

plate i.e. h/L << 1, the variable z could be approximated to zero, therefore, the coupling

terms vanish. For keeping simplicity of the equations and avoiding more coupling terms in

numerical part, we solely calculate the kinetic energy for particle i on the axial line. However

the following derivations will remain valid for larger height. The Lagrangian of the FSDT

plate in the framework could found using:

L = T − U (4.25)
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4.4 Equation of Motion of the Plate

To derive the EOM of the system, the Euler-Lagrange equations can be employed. Since

the system is conservative, the following set of equations could be derived. The time-

dependent field variable used in the Lagrangian of the system is (u, w and φ); thus, we

have:
d

dt

(
∂L

∂u̇i

)
= ∂L

∂ui
,

d

dt

(
∂L

∂v̇i

)
= ∂L

∂vi
,

d

dt

(
∂L

∂ẇi

)
= ∂L

∂wi

d

dt

(
∂L

∂φ̇xi

)
= ∂L

∂φxi
,
d

dt

(
∂L

∂φ̇yi

)
= ∂L

∂φyi

(4.26)

Noting that T is the only quantity that involves the time derivative of the field variable while

terms with displacement components appear in U . Substituting Lagrangian (Eq. 4.25) into

the Euler-Lagrange (Eqs. 4.26) equations gives:

d

dt

(
∂T

∂u̇i

)
= −∂U

∂ui
,
d

dt

(
∂T

∂v̇i

)
= −∂U

∂vi
,
d

dt

(
∂T

∂ẇi

)
= − ∂U

∂wi
,

d

dt

(
∂T

∂φ̇xi

)
= − ∂U

∂φxi
,
d

dt

(
∂T

∂φ̇yi

)
= − ∂U

∂φyi

(4.27)

The left-hand side of Eq. 4.27 could be written as:

d

dt

(
∂T

∂u̇i

)
= ρüi + 2ziρφ̈xi ,

d

dt

(
∂T

∂v̇i

)
= ρv̈i + 2ziρφ̈yi ,

d

dt

(
∂T

∂ẇi

)
= ρẅi,

d

dt

(
∂T

∂φ̇xi

)
= ρ

I

A
φ̈xi + 2ziρüi,

d

dt

(
∂T

∂φ̇yi

)
= ρ

I

A
φ̈yi + 2ziρv̈i

(4.28)

and the right-hand side could be rewritten for all degrees of freedom (u, w and φ):

∂U

∂ui
=∂U

ε

∂ui
+ ∂Uκ

∂ui
+ ∂Uψ

∂ui

∂U

∂vi
= ∂U ε

∂vi
+ ∂Uκ

∂vi
+ ∂Uψ

∂vi
,

∂U

∂wi
= ∂U ε

∂wi
+ ∂Uκ

∂wi
+ ∂Uψ

∂wi
∂U

∂φxi
=∂U

ε

∂φxi
+ ∂Uκ

∂φxi
+ ∂Uψ

∂φxi
,

∂U

∂φyi
= ∂U ε

∂φyi
+ ∂Uκ

∂φyi
+ ∂Uψ

∂φyi
(4.29)

It is clear from the mathematical description of κ and ψ that the potential energy, Uκ and

Uψ are independent of ui and vi. Therefore one can conclude
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∂Uκ

∂ui
= 0, ∂Uκ

∂vi
= 0, ∂Uψ

∂ui
= 0, ∂Uψ

∂vi
= 0. (4.30)

In addition, wi only appears in Uψ, consequently, Uκ and U ε do not depend on wi:

∂Uκ

∂wi
= 0, ∂U ε

∂wi
= 0. (4.31)

Similarly, φ shows up in both Uκ and Uψ, thus:

∂U ε

∂φxi
= 0, ∂U ε

∂φyi
= 0. (4.32)

∂U

∂ui
= ∂U ε

∂ui
+ ∂U ε

∂vi
+ ∂Uκ

∂φxi
+ ∂Uκ

∂φyi
+ ∂Uψ

∂wi
+ ∂Uψ

∂φxi
+ ∂Uψ

∂φyi
(4.33)

The simplified form of the Eq. 4.29 based on potential densities could be given;

∂U ε

∂ui
=
∂ωεxxii
∂ui

+ ∂ω
εxxj
i

∂ui
+ ∂ω

εxxk
i

∂ui

+
∂ωεxyii
∂ui

+ ∂ω
εxyj
i

∂ui
+ ∂ω

εxy
k
i

∂ui

 (4.34a)

∂U ε

∂vi
=
∂ωεyyii

∂vi
+ ∂ω

εyyj
i

∂vi
+ ∂ω

εyy
k
i

∂vi

+
∂ωεxyii

∂vi
+ ∂ω

εxyj
i

∂vi
+ ∂ω

εxy
k
i

∂vi

 , (4.34b)

∂Uψ

∂wi
=
∂ωψxii
∂wi

+ ∂ω
ψxj
i

∂wi
+ ∂ω

ψxk
i

∂wi

+
∂ωψyii
∂wi

+ ∂ω
ψyj
i

∂wi
+ ∂ω

ψy
k

i

∂wi

 , (4.34c)

∂Uκ

∂φxi
=
∂ωκxii
∂φxi

+ ∂ω
κxj
i

∂φxi
+ ∂ω

κxk
i

∂φxi

+
∂ωκxyii
∂φxi

+ ∂ω
κxyj
i

∂φxi
+ ∂ω

κxy
k
i

∂φxi

 (4.34d)

∂Uκ

∂φyi
=
∂ωκyii
∂φyi

+ ∂ω
κyj
i

∂φyi
+ ∂ω

κy
k
i

∂φyi

+
∂ωκxyii
∂φyi

+ ∂ω
κxyj
i

∂φyi
+ ∂ω

κxy
k
i

∂φyi

 (4.34e)

∂Uψ

∂φxi
=
∂ωψxii
∂φxi

+ ∂ω
ψxj
i

∂φxi
+ ∂ω

ψxk
i

∂φxi

 (4.34f)

∂Uψ

∂φyi
=
∂ωψyii
∂φyi

+ ∂ω
ψyj
i

∂φyi
+ ∂ω

ψy
k

i

∂φyi

 (4.34g)

Noting that, in Eq. 4.34 the summation on i index was dropped due to taking derivative

respect to ith particle i.e. ∂
∂uk

∑N
i=1 ω

εi
i Vi = ∂ω

εk
k

∂uk
. In this section, we assume that the forces
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are a linear function of the corresponding deformation as:

A1
ijk = Kεxx

ijk ε
xx
ijk, A

2
ijk = Kεyy

ijk ε
yy
ijk, A

3
ijk = K

1εxy

ijk
1εxyijk +K

2εxy

ijk
2εxyijk

B1
ijk = Kφxx

ijk κ
xx
ijk, B

2
ijk = Kφyy

ijk κ
yy
ijk, B

3
ijk = K

1φxy

ijk
1κxyijk +K

2φxy

ijk
2κxyijk

C1
ijk = Kψx

ijkψ
x
ijk, C

2
ijk = Kψy

ijkψ
y
ijk

(4.35)

partial derivative for each term of the potential energy density can be given as:

∂ω
εxxi
i

∂ui
= 1

6

N∑
j=1

N∑
k=1

∂
(
A1
ijkε

xx
ijk

)
∂ui

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
A1
ijkε

xx
ijk

)
∂εxxijk

∂εxxijk
∂ui

VkVj

= −1
3

N∑
j=1

N∑
k=1

[
Kεxx
ijk ε

xx
ijk

(
1
ξxij

+ 1
ξxik

)]
VkVj

(4.36)

∂ω
εyyi
i

∂vi
= 1

6

N∑
j=1

N∑
k=1

∂
(
A2
ijkε

yy
ijk

)
∂vi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
A2
ijkε

yy
ijk

)
∂εyyijk

∂εyyijk
∂vi

VkVj

= −1
3

N∑
j=1

N∑
k=1

[
K
εyy
ijk ε

yy
ijk

(
1
ξyij

+ 1
ξyik

)]
VkVj

(4.37)

∂ω
εxyi
i

∂ui
= 1

6

N∑
j=1

N∑
k=1

∂
(
A3
ijkε

xy
ijk

)
∂vi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
A3
ijkε

xy
ijk

)
∂εxyijk

∂εxyijk
∂ui

VkVj

= −1
3

N∑
j=1

N∑
k=1

[(
K

1εxy

ijk
1εxyijk +

(
K

1εxy

ijk +K
2εxy

ijk

)
2εxyijk

)( 1
ξyij

+ 1
ξyik

)]
VkVj

(4.38)

∂ω
εxyi
i

∂vi
= 1

6

N∑
j=1

N∑
k=1

∂
(
A3
ijkε

xy
ijk

)
∂vi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
A3
ijkε

xy
ijk

)
∂εxyijk

∂εxyijk
∂vi

VkVj

= −1
3

N∑
j=1

N∑
k=1

[(
K

1εxy

ijk
1εxyijk +

(
K

1εxy

ijk +K
2εxy

ijk

)
2εxyijk

)( 1
ξxij

+ 1
ξxik

)]
VkVj

(4.39)

∂ω
ψxi
i

∂wi
= 1

6

N∑
j=1

N∑
k=1

∂
(
C1
ijkψ

x
ijk

)
∂wi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
C1
ijkψ

x
ijk

)
∂ψxijk

∂ψxijk
∂wi

VkVj

= −1
3

N∑
j=1

N∑
k=1

[
Kψx,w
ijk ψxijk

(
1
ξxij

+ 1
ξxik

)]
VkVj

(4.40)
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∂ω
ψyi
i

∂wi
= 1

6

N∑
j=1

N∑
k=1

∂
(
C1
ijkψ

y
ijk

)
∂wi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
C1
ijkψ

y
ijk

)
∂ψyijk

∂ψyijk
∂wi

VkVj

= −1
3

N∑
j=1

N∑
k=1

[
Kψy ,w
ijk ψyijk

(
1
ξyij

+ 1
ξyik

)]
VkVj

(4.41)

∂ω
ψxi
i

∂φxi
= 1

6

N∑
j=1

N∑
k=1

∂
(
C1
ijkψ

x
ijk

)
∂φxi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
C1
ijkψ

x
ijk

)
∂ψxijk

∂ψxijk
∂φxi

VkVj

= −1
6

N∑
j=1

N∑
k=1

[
Kψx

ijkψ
x
ijk

(
n̂i
x
ij + n̂i

x
ik

)]
VkVj

(4.42)

∂ω
ψyi
i

∂φyi
= 1

6

N∑
j=1

N∑
k=1

∂
(
C2
ijkψ

y
ijk

)
∂ψyi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
C2
ijkψ

y
ijk

)
∂ψyijk

∂ψyijk
∂ψyi

VkVj

= −1
6

N∑
j=1

N∑
k=1

[
Kψy

ijkψ
y
ijk

(
n̂i
y
ij + n̂i

y
ik

)]
VkVj

(4.43)

∂ω
κxxi
i

∂φxi
= 1

6

N∑
j=1

N∑
k=1

∂
(
B1
ijkκ

xx
ijk

)
∂φxi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
B1
ijkκ

xx
ijk

)
∂κxxijk

∂κxxijk
∂φxi

VkVj

= −1
3

N∑
j=1

N∑
k=1

[
Kφxx

ijk κ
xx
ijk

(
1
ξxij

+ 1
ξxik

)]
VkVj

(4.44)

∂ω
κxyi
i

∂φxi
= 1

6

N∑
j=1

N∑
k=1

∂
(
B3
ijkκ

xy
ijk

)
∂φxi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
B3
ijkκ

xy
ijk

)
∂κxyijk

∂κxyijk
∂φxi

VkVj

= −1
3

N∑
j=1

N∑
k=1

[
Γ1K

φxx

ijk κ
xy
ijk

(
1
ξyij

+ 1
ξyik

)]
VkVj

(4.45)

∂ω
κyyi
i

∂φyi
= 1

6

N∑
j=1

N∑
k=1

∂
(
B2
ijkκ

yy
ijk

)
∂φyi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
B2
ijkκ

yy
ijk

)
∂κyyijk

∂κyyijk
∂φyi

VkVj

= −1
3

N∑
j=1

N∑
k=1

[
Kφyy

ijk κ
yy
ijk

(
1
ξyij

+ 1
ξyik

)]
VkVj

(4.46)

∂ω
κxyi
i

∂φyi
= 1

6

N∑
j=1

N∑
k=1

∂
(
B2
ijkκ

xy
ijk

)
∂φyi

VkVj = 1
6

N∑
j=1

N∑
k=1

∂
(
B2
ijkκ

xy
ijk

)
∂κxyijk

∂κxyijk
∂φyi

VkVj

= −1
3

N∑
j=1

N∑
k=1

[
Γ2K

φyy

ijk κ
xy
ijk

(
1
ξyij

+ 1
ξyik

)]
VkVj

(4.47)

Note that all relations are written only for index i for the sake of brevity, while, the relations

can easily be generalized for indices j and k. The rest of derivations for particles jth and kth
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are given in D. Here, Aijk, Bijk and Cijk are existing forces in i − j and i − k bonds which

result in the stretch, curvature and transverse shear of the plate. By permuting the indices,

the forces in other bonds can be shown. These multi-body forces within the element may

bring more flexibility to model other material classes, e.g., anisotropic materials. Therefore,

the equation of motion of plate under FSDT assumption can be given as;

ρüi + 2ziρφ̈xi =1
3

M∑
j=1

M∑
k=1

[
Kεxx

ijk

(
1
ξxij

+ 1
ξxik

)
εxxijk −Kεxx

jki

(
1
ξxij

)
εxxjki −Kεxx

kij

(
1
ξxik

)
εxxkij

]
VkVj

+1
3

M∑
j=1

M∑
k=1

[(
2K1εxy

ijk
1εxyijk +

(
K

1εxy

ijk +K
2εxy

ijk

)
2εxyijk

)( 1
ξyij

+ 1
ξyik

)]
VkVj

−1
3

M∑
j=1

M∑
k=1

[(
2K1εxy

jki
1εxyjki +

(
K

1εxy

jki +K
2εxy

jki

)
2εxyjki

)( 1
ξyij

)]
VkVj

−1
3

M∑
j=1

M∑
k=1

[(
2K1εxy

kij
1εxykij +

(
K

1εxy

kij +K
2εxy

kij

)
2εxykij

)( 1
ξyik

)]
VkVj

(4.48)

ρv̈i + 2ziρφ̈yi =1
3

M∑
j=1

M∑
k=1

[
Kεyy

ijk

(
1
ξyij

+ 1
ξyik

)
εyyijk −Kεyy

jki

(
1
ξyij

)
εyyjki −Kεyy

kij

(
1
ξyik

)
εyykij

]
VkVj

+1
3

M∑
j=1

M∑
k=1

[(
2K2εxy

ijk
2εxyijk +

(
K

1εxy

ijk +K
2εxy

ijk

)
1εxyijk

)( 1
ξxij

+ 1
ξxik

)]
VkVj

−1
3

M∑
j=1

M∑
k=1

[(
2K2εxy

jki
2εxyjki +

(
K

1εxy

jki +K
2εxy

jki

)
1εxyjki

)( 1
ξxij

)]
VkVj

−1
3

M∑
j=1

M∑
k=1

[(
2K2εxy

kij
2εxykij +

(
K

1εxy

kij +K
2εxy

kij

)
1εxykij

)( 1
ξxik

)]
VkVj

(4.49)

ρẅi = 1
3

M∑
j=1

M∑
k=1

[
Kψx
ijk

(
1
ξxij

+ 1
ξxik

)
ψxijk −K

ψx
jki

(
1
ξxij

)
ψxjki −K

ψx
kij

(
1
ξxik

)
ψxkij

]
VkVj

+1
3

M∑
j=1

M∑
k=1

[
K
ψy
ijk

(
1
ξyij

+ 1
ξyik

)
ψyijk −K

ψy
jki

(
1
ξyij

)
ψyjki −K

ψy
kij

(
1
ξyik

)
ψykij

]
VkVj

(4.50)
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ρ
I

A
φ̈xi + 2ziρüi = +1

3

M∑
j=1

M∑
k=1

[
Kφxx

ijk

(
1
ξxij

+ 1
ξxik

)
κxxijk −K

φxx

jki

(
1
ξxij

)
κxxjki −K

φxx

kij

(
1
ξxik

)
κxxkij

]
VkVj

+1
3

M∑
j=1

M∑
k=1

[(
2K

1φxy

ijk
1κxyijk +

(
K

1φxy

ijk +K
2φxy

ijk

)
2κxyijk

)( 1
ξyij

+ 1
ξyik

)]
VkVj

−1
3

M∑
j=1

M∑
k=1

[(
2K

1φxy

jki
1κxyjki +

(
K

1φxy

jki +K
2φxy

jki

)
2κxyjki

)( 1
ξyij

)]
VkVj

−1
3

M∑
j=1

M∑
k=1

[(
2K

1φxy

kij
1κxykij +

(
K

1φxy

kij +K
2φxy

kij

)
2κxykij

)( 1
ξyik

)]
VkVj

+1
6

M∑
j=1

M∑
k=1

[
Kψx

ijkψ
x
ijk

(
n̂i
x
ij + n̂i

x
ik

)
−Kψx

jkiψ
x
jki

(
n̂i
x
ij

)
−Kψx

kijψ
x
kij (n̂ixik)

]
VkVj

(4.51)

ρ
I

A
φ̈yi + 2ziρv̈i = +1

3

M∑
j=1

M∑
k=1

[
Kφyy

ijk

(
1
ξyij

+ 1
ξyik

)
κyyijk −K

φyy

jki

(
1
ξyij

)
κyyjki −K

φyy

kij

(
1
ξyik

)
κyykij

]
VkVj

+1
3

M∑
j=1

M∑
k=1

[(
2K

2φxy

ijk
2κxyijk +

(
K

1φxy

ijk +K
2φxy

ijk

)
1κxyijk

)( 1
ξxij

+ 1
ξxik

)]
VkVj

−1
3

M∑
j=1

M∑
k=1

[(
2K

2φxy

jki
2κxyjki +

(
K

1φxy

jki +K
2φxy

jki

)
1κxyjki

)( 1
ξxij

)]
VkVj

−1
3

M∑
j=1

M∑
k=1

[(
2K

2φxy

kij
2κxykij +

(
K

1φxy

kij +K
2φxy

kij

)
1κxykij

)( 1
ξxik

)]
VkVj

+1
6

M∑
j=1

M∑
k=1

[
Kψy

ijkψ
y
ijk

(
n̂i
y
ij + n̂i

y
ik

)
−Kψy

jkiψ
y
jki

(
n̂i
y
ij

)
−Kψy

kijψ
y
kij (n̂iyik)

]
VkVj

(4.52)

Assuming that the plate is made of isotropic materials, The nonlocal material properties

could be given as:
Kεmn

ijk =Kεmn

jki = Kεmn

kij = Kεmn

Kφmn

ijk =Kφmn

jki = Kφmn

kij = Kφmn

Kψej

ijk =Kψej

jki = Kψej

kij = Kψmn

(4.53)

where m and n could be x, y.

4.5 Localization of the Equation of Motion

Since we are working with a discrete system of equations, the local limit could be imagined

when particles only interact with their closest neighbors. Therefore, one could conclude that
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ξxij = ξxik = ξx and ξyij = ξyik = ξy. Using Eqs. 4.15 along with other index properties

mentioned in Section 4.2, the localized form of the developed nonlocal plate equations are

given as:

ρüi + 2ziρε̈xi =
[
Kεxx lim

δ→δl

(
εxxijk
ξx

)
+ 2

(
1Kεxy

)
lim
δ→δl

(1εxyijk
ξy

)]
lim
δ→δl

 M∑
j=1

M∑
k=1

VkVj


+
[(

1Kεxy + 2Kεxy
)

lim
δ→δl

(2εxyijk
ξy

)]
lim
δ→δl

 M∑
j=1

M∑
k=1

VkVj

 (4.54)

ρv̈i + 2ziρφ̈yi =
[
Kεyy lim

δ→δl

(
εyyijk
ξy

)
+ 2

(
2Kεxy

)
lim
δ→δl

(2εxyijk
ξx

)]
lim
δ→δl

 M∑
j=1

M∑
k=1

VkVj


+
[(

1Kεxy + 2Kεxy
)

lim
δ→δl

(1εxyijk
ξx

)]
lim
δ→δl

 M∑
j=1

M∑
k=1

VkVj

 (4.55)

ρẅi =
[
Kψx lim

δ→δl

(
ψxijk
ξx

)
+Kψy lim

δ→δl

(
ψyijk
ξy

)]
lim
δ→δl

 M∑
j=1

M∑
k=1

VkVj

 (4.56)

ρ
I

A
φ̈xi + 2ziρüi =

[
Kφxx lim

δ→δl

(
κxxijk
ξx

)
+ 2

(
1Kφxy

)
lim
δ→δl

(1κxyijk
ξy

)]
lim
δ→δl

 M∑
j=1

M∑
k=1

VkVj


+
[(

1Kφxy + 2Kφxy
)

lim
δ→δl

(2κxyijk
ξy

)]
lim
δ→δl

 M∑
j=1

M∑
k=1

VkVj


+K

ψx

6 lim
δ→δl

 M∑
j=1

M∑
k=1

[
ψxijk

(
n̂i
x
ij + n̂i

x
ik

)
− ψxjki

(
n̂i
x
ij

)
− ψxkij (n̂ixik)

]
VkVj


(4.57)

ρ
I

A
φ̈yi + 2ziρv̈i =

[
Kφyy lim

δ→δl

(
κyyijk
ξy

)
+ 2

(
2Kφxy

)
lim
δ→δl

(2κxyijk
ξx

)]
lim
δ→δl

 M∑
j=1

M∑
k=1

VkVj


+
[(

1Kφxy + 2Kφxy
)

lim
δ→δl

(1κxyijk
ξx

)]
lim
δ→δl

 M∑
j=1

M∑
k=1

VkVj


+K

ψy

6 lim
δ→δl

 M∑
j=1

M∑
k=1

[
ψyijk

(
n̂i
y
ij + n̂i

y
ik

)
− ψyjki

(
n̂i
y
ij

)
− ψykij (n̂iyik)

]
VkVj


(4.58)
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In the local limit, we change the upper bond of the series from N to m to emphasis on

the particles in the immediate neighbor. We also assume that the values of ε, κ and ψ are

constant in the local horizon. Therefore, they could be taken out of the series. To have a set

of equations that are decoupled (respect to u), we assume that the thickness of the plate is

sufficiently small in comparison to other in-plane dimensions (h/L < 0.01), i.e., the particles

are scattered uniformly on the XY-plane, and other particles above or below the XY-plane

have very small zi. Thus, we are able to drop terms with z in the kinetic part of EOMs (Eqs.

4.48, 4.49, 4.51 and 4.52). It could be easily shown the followings relations in local limit:

lim
δ→δl

(
εxxijk
ξx

)
= u,xx , lim

δ→δl

(1εxyijk
ξy

)
= u,yy, lim

δ→δl

(2εxyijk
ξy

)
= v,xy, (4.59a)

lim
δ→δl

(
εyyijk
ξy

)
= v,yy, lim

δ→δl

(1εxyijk
ξx

)
= u,xy, lim

δ→δl

(2εxyijk
ξx

)
= v,xx (4.59b)

lim
δ→δl

(
κxxijk
ξx

)
= φx,xx , lim

δ→δl

(1κxyijk
ξy

)
= φx,yy, lim

δ→δl

(2κxyijk
ξy

)
= φy,xy, (4.59c)

lim
δ→δl

(
κyyijk
ξy

)
= φy,yy, lim

δ→δl

(1κxyijk
ξx

)
= φx,xy, lim

δ→δl

(2κxyijk
ξx

)
= φy,xx (4.59d)

lim
δ→δl

(
ψxijk
ξx

)
= w,xx − φx,x lim

δ→δl

(
ψyijk
ξy

)
= w,yy − φy,y (4.59e)

lim
δ→δl

(
ψxijk

(
n̂i
x
ij + n̂i

x
ik

)
− ψxjki

(
n̂i
x
ij

)
− ψxkij (n̂ixik)

)
= w,x − φx (4.59f)

lim
δ→δl

(
ψyijk

(
n̂i
y
ij + n̂i

y
ik

)
− ψyjki

(
n̂i
y
ij

)
− ψykij (n̂iyik)

)
= w,y − φy (4.59g)

(4.59h)
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Therefore, the localized form of the equations could be given as:

ρü+ 2zρφ̈x =
(
KεxxV 2

T

)
u,xx + 2

(
1KεxyV 2

T

)
u,yy +

[(
1Kεxy + 2Kεxy

)
V 2
T

]
v,xy (4.60a)

ρv̈ + 2zρφ̈y =
(
KεyyV 2

T

)
v,yy + 2

(
2KεxyV 2

T

)
v,xx +

[(
1Kεxy + 2Kεxy

)
V 2
T

]
u,xy (4.60b)

ρẅ =
(
KψxV 2

T

)
(w,xx − φx,x) +

(
KψyV 2

T

)
(w,yy − φy,y) (4.60c)

ρ
I

A
φ̈x + 2zρü =

(
KφxxV 2

T

)
φx,xx + 2

(
1KφxyV 2

T

)
φx,yy +

[(
1Kφxy + 2Kφxy

)
V 2
T

]
φy,xy (4.60d)

+
(
KψxV 2

T

)
(w,x − φx) (4.60e)

ρ
I

A
φ̈y + 2zρv̈ =

(
KφyyV 2

T

)
φy,yy + 2

(
2KφxyV 2

T

)
φy,xx +

[(
1Kφxy + 2Kφxy

)
V 2
T

]
φx,xy (4.60f)

+
(
KψyV 2

T

)
(w,y − φy) (4.60g)

where VT denotes the total volume of the domain associated to the horizon and can be

calculated through the following:

VT =
M∑
j=1

Vj (4.61)

Noting that VT is equal to 4V in the local limit for the plate model. The Eq. 4.61 is valid

to be used in governing equations if we have ”m” as upper bounds for both series. Noting

that the classical EOMs for first-order plate theory can be given as:

ρü+ 2zρφ̈x =
(

E

1− ν2

)
u,xx + µu,yy +

(
Eν

1− ν2 + µ
)
v,xy (4.62a)

ρv̈ + 2zρφ̈y =
(

E

1− ν2

)
v,yy + µv,xx +

(
Eν

1− ν2 + µ
)
u,xy (4.62b)

ρẅ = κsµ (w,xx − φx,x + w,yy − φy,y) (4.62c)

ρ
I

A
φ̈x + 2zρü = EI

A (1− ν2)φx,xx + µI

A
φx,yy +

(
EIν

A (1− ν2) + µI

A

)
φy,xy (4.62d)

+ κsµ (w,x − φx) (4.62e)

ρ
I

A
φ̈y + 2zρv̈ = EI

A (1− ν2)φy,yy + µI

A
φy,xx +

(
EIν

A (1− ν2) + µI

A

)
φx,xy (4.62f)

+ κsµ (w,y − φy) (4.62g)
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where κs is the shear correction coefficient and depends on the cross-section of the plate.

This value for a rectangular cross-section is 5/6. The material parameters can be obtained

by comparing the localized form of the tridynamics plate EOMs with the classical FSDT

plate theory as:
Kεxx = Kεyy = E

(1− ν2)VT 2

1Kεxy = µ

2V 2
T

, 2Kεxy = 1
V 2
T

(
Eν

1− ν2 + µ

2

)
Kψx = Kψy = κsµ

V 2
T

Kφxx = Kφyy = EI

A (1− ν2)VT 2

1Kφxy = µI

2AV 2
T

, 2Kφxy = 1
V 2
T

(
EIν

A (1− ν2) + µI

2A

)

(4.63)

Here, E, µ, A and I are respectively Young’s modulus, shear modulus, cross-sectional area

and the second moment of inertia of the plate.

4.6 Dispersion Analysis

To see how the model performs in comparison to classical and peridynamics, we will

carry out dispersion analysis. Noting that we try to derive our dispersion equations without

setting zi = 0 in the EOMs i.e. the plate has thickness. Since our equations are written

in discrete form, we are interested in using the discrete format of wave propagation for all
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DOFs as follows:

ui = u(xi, t) = u0e
î(κxi−ωt+n̂iiiκξii) = u0XiΛii, vi = v(xi, t) = v0e

î(κxi−ωt+n̂iiiκξii) = v0XiΛii

uj = u(xj, t) = u0e
î(κxi−ωt+n̂iijκξij) = u0XiΛij, vj = u(xj, t) = v0e

î(κxi−ωt+n̂iijκξij) = v0XiΛij

uk = u(xk, t) = u0e
î(κxi−ωt+n̂iikκξij) = u0XiΛij, vk = u(xk, t) = v0e

î(κxi−ωt+n̂iikκξik) = v0XiΛik

φxi = φx(xi, t) = φx0e
î(κXi−ωt+n̂iiiκξii) = φx0XiΛii, φyi = φy(xi, t) = φy0e

î(κXi−ωt+n̂iiiκξii) = φy0XiΛii

φxj = φx(xj, t) = φx0e
î(κXi−ωt+n̂iijκξij) = φx0XiΛij, φyj = φy(xj, t) = φy0e

î(κXi−ωt+n̂iijκξij) = φy0XiΛij

φxk = φx(xk, t) = φx0e
κ(iXi−ωt+n̂iikκξik) = φx0XiΛik, φyk = φy(xk, t) = φy0e

î(κXi−ωt+n̂iikκξik) = φy0XiΛik

wi = w(xi, t) = w0e
î(κxi−ωt+n̂iiiκξii) = w0XiΛii

wj = w(xj, t) = w0e
î(κxi−ωt+n̂iijκξij) = w0XiΛij

wk = w(xk, t) = w0e
î(κxi−ωt+n̂iikκξik) = w0XiΛik

(4.64)

where κ is the wave number and ω is the wave frequency. The axial coordinate of particles is

shown by xi and the variable t indicates time. u0, v0, w0 and φx0 and φx0 are the amplitude of

the waves in the x direction, y direction, z direction and rotation in x and y planes. Here î is

showing the imaginary part (̂i =
√
−1) . It should be noted that Xi = eî(κxi−ωt) is the wave

equation associate to ith particle. The phase difference of the particle i with particle j and k

could be given by κn̂iijξij and κn̂iikξik respectively. Form the definition of Λiα = ei(κn̂iiαξiαt)

where α = i, j, k, one can easily find that Λii = 1 i.e, no phase difference with the ith particle.

Substituting Eq. 4.64, in definition of stretch (Eq. 4.1) results into;

εxxαβγ = u0Xi

(
1
ξxαβ

(Λiβ − Λiα) + 1
ξxαγ

(Λiγ − Λiα)
)

= u0XiT
x
αβγ (4.65)

εyyαβγ =v0Xi

(
1
ξyαβ

(Λiβ − Λiα) + 1
ξyαγ

(Λiγ − Λiα)
)

= v0XiT
y
αβγ (4.66)
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εxyαβγ =u0Xi

(
1
ξyαβ

(Λiβ − Λiα) + 1
ξyαγ

(Λiγ − Λiα)
)

+ v0Xi

(
1
ξxαβ

(Λiβ − Λiα) + 1
ξxαγ

(Λiγ − Λiα)
)

= Xi

(
u0T

y
αβγ + v0T

x
αβγ

)
(4.67)

Noting that T eαβγ = 1
ξe
αβ

(Λiβ − Λiα) + 1
ξeαγ

(Λiγ − Λiα) where e could be x or y. The set of

equations could be rewritten in terms of particle i, j and k particle. For instance, we could

have the following equations in x direction when α, β and γ are i, j and k respectively:

εxxijk =u0Xi

(
1
ξxij

(Λij − 1) + 1
ξxik

(Λik − 1)
)

= u0XiT
x
ijk

εxxjki =u0Xi

(
1
ξxjk

(Λik − Λij) + 1
ξxji

(1− Λij)
)

= u0XiT
x
jki

εxxkij =u0Xi

(
1
ξxki

(1− Λik) + 1
ξxkj

(Λij − Λik)
)

= u0XiT
x
kij

(4.68)

Similarly, we can find it for καβγ and ψαβγ by substituting φ and w in 4.64 and into their

definitions (Eqs. 4.7 and 4.11) as:

κxxαβγ = φx0Xi

(
1
ξxαβ

(Λiβ − Λiα) + 1
ξxαγ

(Λiγ − Λiα)
)

= φx0XiJ
x
αβγ (4.69)

κyyαβγ = φx0Xi

(
1
ξxαβ

(Λiβ − Λiα) + 1
ξxαγ

(Λiγ − Λiα)
)

= φx0XiJ
y
αβγ (4.70)

κxyαβγ =φx0Xi

(
1
ξyαβ

(Λiβ − Λiα) + 1
ξyαγ

(Λiγ − Λiα)
)

+ φy0Xi

(
1
ξxαβ

(Λiβ − Λiα) + 1
ξxαγ

(Λiγ − Λiα)
)

= Xi

(
φx0J

y
αβγ + φy0J

x
αβγ

)
(4.71)
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Noting that Jeαβγ = 1
ξe
αβ

(Λiβ − Λiα) + 1
ξeαγ

(Λiγ − Λiα). For instance, we have the following for

κxx for the indices i, j and k:

κxxijk =φx0Xi

(
1
ξxij

(Λij − 1) + 1
ξxik

(Λik − 1)
)

= φx0XiJ
x
ijk

κxxjki =φx0Xi

(
1
ξxjk

(Λik − Λij) + 1
ξxji

(1− Λij)
)

= φx0XiJ
x
jki

κxxkij =φx0Xi

(
1
ξxki

(1− Λik) + 1
ξxkj

(Λij − Λik)
)

= φx0XiJ
x
kij

(4.72)

Also, we can get the following relations for ψxαβγ

ψxαβγ = w0XiP
x
αβγ + φx0XiQ

x
αβγ

(4.73)

ψyαβγ = w0XiP
y
αβγ + φy0XiQ

y
αβγ

(4.74)

where
P x
αβγ = 1

ξxαβ
(Λiβ − Λiα) + 1

ξxαγ
(Λiγ − Λiα)

Qx
αβγ = −

nxαβ
2 (Λiα + Λiβ)−

nxαγ
2 (Λiγ + Λiα)

(4.75)

P y
αβγ = 1

ξyαβ
(Λiβ − Λiα) + 1

ξyαγ
(Λiγ − Λiα)

Qy
αβγ = −

nyαβ
2 (Λiα + Λiβ)−

nyαγ
2 (Λiγ + Λiα)

(4.76)

For instance, ψxijk, ψxjki and ψxkij can be given as:

ψxijk =w0Xi

(
1
ξxij

(Λij − 1) + 1
ξxik

(Λik − 1)
)

+ φx0Xi

(
−
n̂i
x
ij

2 (1 + Λij)−
n̂i
x
ik

2 (1 + Λik)
)

ψxjki =w0Xi

(
1
ξxjk

(Λik − Λij) + 1
ξxji

(1− Λij)
)

+ φx0Xi

(
−
n̂i
x
jk

2 (Λij + Λik)−
n̂i
x
ji

2 (1 + Λij)
)

ψxkij =w0Xi

(
1
ξxki

(1− Λik) + 1
ξxkj

(Λij − Λik)
)

+ φx0Xi

(
− n̂i

x
ki

2 (1 + Λik)−
n̂i
x
kj

2 (Λij + Λik)
)

(4.77)
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Substituting Eqs. 4.68, 4.72 and 4.77 in the EOMs 4.48,4.49 ,4.50, 4.51,4.52 gives:

(
ρω2 +KεxxAx,x1 + 2

(
1KεxyAy,y1

))
u0 +

(
1Kεxy + 2Kεxy

)
Ax,y1 v0 +

(
B1ω

2
)
φx0 = 0(

ρω2 +KεyyAy,y1 + 2
(

2KεxyAx,x1

))
v0 +

(
2Kεxy + 1Kεxy

)
Ax,y2 u0 +

(
B1ω

2
)
φy0 = 0(

ρω2 +KψxCx
2 +KψyCy

2

)
w0 +

(
KψxCx

3

)
φx0 +

(
KψyCy

3

)
φy0 = 0(

B2ρω
2
)
u0 +

(
KψxCx

2

)
w0 +

(
ρI

A
ω2 +KφxxCx,x

1 + 2KCy,y
1 +KψxCy

2

)
φx0

+
[(

1Kφxy + 2Kφxy
)
Cx,y

1

]
φy0 = 0(

B2ρω
2
)
v0 +

(
KψyCy

2

)
w0 +

(
ρI

A
ω2 +KφyyCy,y

1 + 2KCx,x
1 +KψyCx

2

)
φy0

+
[(

1Kφxy + 2Kφxy
)
Cy,x

1

]
φx0 = 0

(4.78)
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where:
Ax,x1 = 1

3

M∑
j=1

M∑
k=1

[(
1
ξxij

+ 1
ξxik

)
T xijk −

(
1
ξxij

)
T xjki −

(
1
ξxik

)
T xkij

]
VkVj

Ay,y1 = 1
3

M∑
j=1

M∑
k=1

[(
1
ξyij

+ 1
ξyik

)
T yijk −

(
1
ξyij

)
T yjki −

(
1
ξyik

)
T ykij

]
VkVj

Ax,y1 = 1
3

M∑
j=1

M∑
k=1

[(
1
ξyij

+ 1
ξyik

)
T xijk −

(
1
ξyij

)
T xjki −

(
1
ξyik

)
T xkij

]
VkVj

Ay,x1 = 1
3

M∑
j=1

M∑
k=1

[(
1
ξxij

+ 1
ξxik

)
T yijk −

(
1
ξxij

)
T yjki −

(
1
ξxik

)
T ykij

]
VkVj

B1 = B2 = 2z

Cx,x
1 = 1

3

M∑
j=1

M∑
k=1

[(
1
ξxij

+ 1
ξxik

)
Jxijk −

(
1
ξxij

)
Jxjki −

(
1
ξxik

)
Jxkij

]
VkVj

Cy,y
1 = 1

3

M∑
j=1

M∑
k=1

[(
1
ξyij

+ 1
ξyik

)
Jyijk −

(
1
ξyij

)
Jyjki −

(
1
ξyik

)
Jykij

]
VkVj

Cx,y
1 = 1

3

M∑
j=1

M∑
k=1

[(
1
ξyij

+ 1
ξyik

)
Jxijk −

(
1
ξyij

)
Jxjki −

(
1
ξyik

)
Jxkij

]
VkVj

Cy,x
1 = 1

3

M∑
j=1

M∑
k=1

[(
1
ξxij

+ 1
ξxik

)
Jyijk −

(
1
ξxij

)
Jyjki −

(
1
ξxik

)
Jykij

]
VkVj

Cx
2 = 1

6

M∑
j=1

M∑
k=1

[(
n̂i
x
ij + n̂i

x
ik

)
P x
ijk −

(
n̂i
x
ij

)
P x
jki − (n̂ixik)P x

kij

]
VkVj

Cy
2 = 1

6

M∑
j=1

M∑
k=1

[(
n̂i
y
ij + n̂i

y
ik

)
P y
ijk −

(
n̂i
y
ij

)
P y
jki − (n̂iyik)P

y
kij

]
VkVj

Cx
3 = 1

6

M∑
j=1

M∑
k=1

[(
n̂i
x
ij + n̂i

x
ik

)
Qx
ijk −

(
n̂i
x
ij

)
Qx
jki − (n̂ixik)Qx

kij

]
VkVj

Cy
3 = 1

6

M∑
j=1

M∑
k=1

[(
n̂i
y
ij + n̂i

y
ik

)
Qy
ijk −

(
n̂i
y
ij

)
Qy
jki − (n̂iyik)Q

y
kij

]
VkVj

(4.79)

4.7 Conclusion

In this section, we provide the tridynamic model of FSDT plate using the a meaningful

kinematic of the element. The governing equation were derived by constructing the La-

grangian of the system and the nonlocal parameters are determined. We also provided the

polynomial equation for dispersion analysis.
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5. A DERIVATIVE-FREE UPSCALED THEORY FOR ANALYSIS OF DEFECTS 1

5.1 Introduction

With their striking mechanical properties [44, 45, 46, 47], carbon nanotubes (CNTs)

find myriad applications – from nano-engineering to large-scale engineering materials, where

they appear as impregnates [48, 49, 50, 51, 52, 53, 54]. Recently, employing advanced nano-

technology in communication circuits leads to high-performance designs for 5G and satellite

applications [55, 55, 56]. Akbarzadeh et al. [57] studied the effect of nano-step size to-

pography on flow transport behavior, e.g., surface wetting, was studied. They showed that

nano-scale steps have significant effect on flow characterestics such as shear stress on the

surface. Optimal manufacturing [58, 59, 60, 61] and utilization of CNTs in an application

demands better predictive models to determine their mechanical properties. Experiments

have thus been supplemented with numerous computational studies, mostly through molec-

ular dynamic simulations[62]. With manifold increase in the usage of CNT especially for

macroscopic systems, an accurate macroscopic predictive model is indeed a state-of-the-art

necessity. It is obvious that MD simulation being computationally intensive, may not always

be of much use in this context.

Since material properties of CNTs may vary significantly with their changing chirality,

the macroscopic law that underlies such a model must preserve the essential molecular in-

formation such as chirality. Of some relevance are the efforts by Arroyo and Belytschko [63],

Guo et al [64], Yang and Weinan [65] who have developed higher order Cauchy–Born rules

to arrive at useful continuum laws by upscaling from the molecular potential. Note that the

classical Cauchy–Born rule (CBR), suitable for bulk materials, does not capture the out-

of-plane deformation of the CNT, constructed by wrapping a single-layer graphene sheet.

This has required the development of higher-order variants of the CBR [66, 64]. Elegant
1Reprinted with permission from, ”A derivative-free upscaled theory for analysis of defects.”, by Mohsen,

Saikat Sarkar, J. N. Reddy, and Debasish Roy, 2019, Journal of the Mechanics and Physics of Solids 122,
489-501. Copyright 2019 by Elsivier.
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and useful as these approaches are, the localized continuum laws are in the form of partial

differential equations (PDEs), thus imposing strict smoothness restrictions on the field vari-

ables. The inevitable upshot is that the upscaled laws struggle to model a defective CNT

experiencing crack growth and material failure via fragmentation. Indeed, there appears to

be a conceptual gap – a rock-cleft region in need of attention. Saikat et al [33] proposed a

direct Lagrangian based approach, designed at a length scale of interest, to characterize the

response of a body within a framework which relaxes the requirement of differentiability of

field variables

We set ourselves to addressing this question based on a stochastic projection principle

that enables the macroscopic law to preserve certain microscopic information. On the basis

of the upscaled information, presently employed as a discrete Cauchy–Born rule (DCBR), we

derive, from the molecular potential, the evolution laws at a higher length scale of interest.

Specifically, while MD simulations take into account the detailed motion of each atom in

a lattice, we aim to characterize the collective behavior of atoms at a higher length scale.

Using the upscaled law, we present a macroscopic study of the CNT, which may experience

multiple cracks, crack branching and subsequent fragmentation.

5.2 The Stochastic Projection Principle

While coarse-grained variables typically evolve with slowly varying time scales, the corre-

sponding microscopic phenomena occur over faster scales and hence wider range of frequen-

cies. Accordingly, for an observer at coarser (macroscopic) spatio-temporal scales, certain

fluctuations in the microscopic quantities of relevance remain unaccounted so they may be

treated as stochastic processes. With this worldview, a microscopic displacement vector

could, for instance, be represented as a zero mean Gaussian random variable at a coarser

scale. This calls for suitable conditioning of the macroscopically evolving states, meaning-

ful in classical continuum mechanics, on such representations of any non-trivial microscopic

information. We expect such conditioning to retain some aspects of the microscopic infor-

mation even when the unaccounted fluctuations have zero mean.

68



To begin with, consider the fundamental problem of characterizing a macroscopic field

variable u (x) by exploiting its neighborhood information. Prior to conditioning based on

any microscopically inspired information, we may not have a guidance on imposing a specific

structure on the field. Thus we may simply add a zero-mean noise term, ∆η to u (x) in

order to obtain u (y), y 6= x, i.e.

u (y) = u (x) + ∆η (5.1)

In a differential setting parameterized in time t, Eq. (5.1) has an equivalent form,

d (u (yt)− u (xt)) = dηt (5.2)

The method of conditioning via representative microscopic information must act as a micro-

to-macro bridge whilst preferably encapsulating within it the notion of a representative

volume element (RVE). The constraining information from the micro-scale, sampled at a

time instant t, may be written in the following form:

dYt = h (xt,yt) dt+ σdWt (5.3)

h (·, ·) is a vector-valued function that returns, say, the undeformed, unsigned distance com-

ponents between two (macroscopic) points. Since the value of h (·, ·) is only macroscopically

resolvable, we assume that the function returns zero whenever acting on xt,yt such that

|xt − yt| ≤ |∆|; ∆ may denote the vector of atomic bonds at a lattice point, thus describing

an aspect of the material microstructure. Yt is then the noisy function value detected by a

macroscopic observer, where the source of the noise term σdWt is traced to the surjective

push-forward mapping of x−y in terms its microscopic counterpart and the macroscopically

time-sampled Yt. In this setting, the size of the RVE is given by |∆| and σ is related, via

a fluctuation relation, to kinetic-vibrational temperature. In order to introduce microscop-
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ically informed spatial variation in the field u, we describe it in terms of its conditional

expectation πt(u) = EP [u (x) |Ft], where Ft is an increasing sequence of sigma algebras

constructed using Yt up to time t. The setting as above resembles that of the well known

problem of stochastic filtering, provided we define all the processes measurable within a

probability space (Ω,F , P ) and adapted to the increasing filtration Ft, with W t being a

vector Brownian motion independent of ηt. Note that the current macroscopic time t is

only resolvable up to a microscopic time interval δt̂, and hence the integration pending in

equations (5.2) and (5.3) must be performed at least over this interval.

Since we intend to characterize u(x) through the distribution πt(u) = EP [u (x) |Ft], our

immediate goal is to obtain an expression for the latter. For this, we exploit the Kallianpur–

Striebel formula [67], a generalized Bayes’ rule which we exploit in describing the conditional

distribution under a different probability measure Q, which is absolutely continuous with

respect to P and under which the process Y(t) behaves as a drift-removed Brownian motion.

The formula states that, for a twice continuously differentiable function φ, we may express

the conditional distribution as

πt (φ) = σ (φ)
σ (1) := EQ [φtΛt|Ft]

EQ [1Λt|Ft]
(5.4)

where

Λt = dP

dQ
= exp

(∑
i

(∫ t

0
hi (xs) dYi

s −
∫ t

0
hi (xs)2 ds

))

is a Radon–Nikodym derivative [68] pertaining to the change of measures[69]; Λt may be

shown to evolve according to the following stochastic differential equation (SDE):

dΛt = ΛthTt dYt (5.5)

Based on this formalism, we may arrive at the following evolution equation for the normalized
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conditional law πt (φ) [70, 71].

dπt (φ) =
(
πt
(
φhT

)
− πt (h)T πt (φ)

) (
σσT

)−1
(dYt − πt (h) dt) (5.6)

We refer to the Appendix B for a derivation. When φ (·) = Id(·), Eq. (5.6) may be rewritten

as:

dπt (y− x) =
(
πt
(
(y− x) hT

)
− πt (h)T πt (y− x)

)
.
(
σσT

)−1
(dYt − πt (h) dt) (5.7)

On the right hand side of the equation above, the coefficient matrix multiplying the incre-

mental observation error (innovation) term dYt − πt(h)dt is called the gain matrix.

We denote by t0 the initial time when no force is applied on the body so it is undeformed.

Since, by our postulate, the macroscopic observer cannot resolve, beyond a zero-mean Gaus-

sian random variable, a vector whose length is smaller than that of |∆| – the microscopic

bond vector, Eq. (5.7) assumes the following form in the specific case of yt0 − xt0 = ∆:

(yt − xt) = (yt0 − xt0) +
∫ t̂

t̂0

(
πs
(
(y− x) hT

)
− πs (h)T πt (y− x)

) (
σσT

)−1
(dYt − 0)

(5.8)

Here the assignment h(x,y) = 0 for |x − y| ≤ |∆| has been used. In order to ensure

that solutions to the SDEs involved exist, we choose the function h smooth whilst requiring

that h(x,y) = 0 for |y − x| ≤ |∆| and that h(x,y) is non-zero otherwise. The same

function is then used to empirically compute the gain matrix by macroscopically averaging

over many points. In writing Eq. (5.8) we have adopted the specific observation Yt =

Yt′ +
∫
δt̂ ∆dŝ, where t′ is the just preceding macroscopic time at which it is possible to

sample our observation.

Following the form of Eq. (5.3), we construct an empirical approximation to the macro-

scopic observation variance as σσT = πt
(
hhT

)
δt̂. Moreover, since the integration is carried
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out within the least macroscopically resolvable time interval δt̂, macroscopic temporal vari-

ations in the integrand are unresolvable and hence driftless. Accordingly, we arrive at the

following simplified approximation.

(yt − xt) ≈ ∆ + G∆ (5.9)

where

G =
(
πt
(
(y− x) hT

)
− πt (y− x)πt (h)T

)
(Var (h))−1

. The gain matrix G may also be interpreted as a nonlocal counterpart to the deformation

gradient that governs the motion of a continuum body under external forcing[34]. Clearly,

G is a nonlocal term as it uses information from a non-infinitesimal neighborhood in its

construction and yet provides directional information to propagate a line element in the

body as it deforms. Alternatively, by way of an analogy with non-Euclidean differential

geometry, it may be considered equivalent to the connection used to transport vectors in the

material manifold. Moreover, exploiting its algebraic structure, the formula in (5.9) may

also be interpreted as a generalized CBR depending on the application. Since G does not

involve any derivatives, it admits ready computation even when there are discontinuities in

the field variable. In line with the stochastic setting, the integrals appearing in G may be

numerically evaluated through a Monte Carlo approach.

Of interest is the observation that the directionality term indeed approaches Newton’s

gradient term in the infinitesimal limit. This is readily varifiable via a Taylor’s expansion of

the neighboring deformed coordinates around the point of interest. A discussion on this is

included in Appendix A. Note that the probabilistically founded and measure-theoretically

consistent notion of various strain measures emerging out of this work provides for a basis to

quantify the modified metric, which in turn is helpful in understanding various non-classical

features of wave propagation through inherently heterogenous (and possibly discontinuous)

solids. The gain matrix, which is crucial to our theory, also indicates a novel route to parallel
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Figure 5.1: Molecular and coarse-grained computational lattices

transport of vectors, i.e. it corresponds to the notion of a connection (and hence non-

locality through higher order derivatives of strain) in non-Euclidean differential geometry.

However, unlike the differential geometric standpoint, the present approach is derivative-free

and guided through a probabilistic (i.e. measure-theoretic) notion of uncertainty that arises

in the specification of the microstructure at a higher scale. One could exploit the structure

of noise that is inherent in this formulation to suitably define ’temperature’ and thus weave

into the theory an appropriate thermodynamic framework. None of these possibilities, which

are yet to be explored, arise in an MD setting.

A separate study should ideally be carried out involving an increasing number of non-

nearest neighbours in the calculations for the derivative-free directionality term, G. As the

molecular potential is approximated using G, the upscaled potential is rendered strongly

coupled involving far-off interactions in addition to the neighboring interactions among the
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macroscopic particles. For a reduction of the computational cost, we may ignore the very

far-off interaction using an influence function with finite radius. Moreover, depending on the

level of upscaling, finer and finer discretizations (computational lattices) could be employed

with a resolution up to the actual lattice level. Such details are however left for a future

study oriented mostly along such numerical lines.

5.3 Numerical Experiments

5.3.1 Upscaled Simulation of an SWCNT

We now show the deformation profile of an SWCNT using the proposed formalism at

a larger scale. Recall that the usual CBR fails to capture such phenomena properly [72]

and, to this end, we need higher order versions of CBR. However, all these methods are

derivative based and may not be useful as fracture emerges in the body. Our simulation of the

deformation of a fractured SWCNT using a macroscopic law is a first-of-its-kind, to the best

of our knowledge. While, for bulk crystals, the link between atomistic and continuum models

is given by the well-known CBR, our primary focus is to provide a systematic generalization

of the CBR to a low-dimensional surface. Using the proposed principle, we continualize

the Tersoff–Brenner’s potential [73] and write the macroscopic law for an SWCNT. The

Tersoff–Brenner potential is written as:

V (rij) = VR(rij)−BijVA(rij) (5.10)

where Bij is an empirical function, which represents multi-body coupling from bond i to

bond j:

VR (rij) = f (rij)
De

S − 1e
−
√

2sβ(rij−re) (5.11)

VA (rij) = f (rij)
DeS

S − 1e
−
√

2/sβ(rij−re) (5.12)

The terms VR and VA are repulsive and attractive potential pairs, and f (rij) is a cutoff

function. Using the proposed projection map, the upscalled representation, rIJ of rij is
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given below.

rIJ = δij1
(
1 +GIJ

1

)
e1 + δij2

(
1 +GIJ

2

)
e2 + δij3

(
1 +GIJ

3

)
e3 (5.13)

The lower and upper case subscripts denote quantities computed at the atomistic and macro-

scopic (or coarser) scales respectively. δij := {δij1 , δij2 , δij3 }T is the microscopic lattice vector,

∆ and {e1, e2, e3} the canonical basis. GIJ
1 , GIJ

2 , GIJ
3 are the components deducible from G

in a straightforward manner.

Therefore, the upscaled form of the total potential energy (integrated over the continuum

domain Ω) may be written in the following form:

V =
∫

Ω

∫
Ω
φ (r̂IJ) (VR (rIJ)−BIJVA (rIJ)) dΩIdΩJ (5.14)

where φ is the influence function that assumes the value 1 within the radius of influence

domain r̂IJ and zero outside of it. This influence function is introduced to discard interac-

tions from very far off particles that may not contribute significantly. Note that while the

lattice parameter ∆ corresponds to microstructure length scale information, the upscaled

(i.e. macroscopic) length scale is characterized by the radius of the influence domain (r̂IJ).

Upon a discretization of the interaction terms, we can write the potential energy term as:

V =
N∑
I=1

M∑
J=1

φ (r̂IJ) (VR (rIJ)−BIJVA (rIJ))VIVJ (5.15)

Here N is the total number of macroscopic particles and M the number of neighbouring

particles interacting with the Ith particle; M is not necessarily a constant. VI is the vol-

ume assigned to particle I. We presently demonstrate the tension simulation of two giant

SWCNT-s with two different chiralities (50,50) and (30,60). A region with axial length of

50 Å is defined at the ends of each CNT to apply the boundary conditions. To simulate

the tensile test, the CNTs are stretched from both ends at a constant velocity of 1 Å/ps.
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In all of our configurations, a 4-atom vacancy defect at (L/2, R, 0) is created, where L and

R are the length and radius of the tube. To remove dependency of the simulated results

on the geometrical parameters such as radius, length of the SWCNT and radius of vacancy,

nanotubes of same length have been considered. The defect is also kept the same in all

the cases. Deformation profiles of the nanotubes are shown in Figs. 5.2,5.3,5.4 and5.5. To

see the influence of chirality on crack growth in CNTs, a series of chiral vectors have been

examined in the simulation, of which only a few are reported here. We validate the results

from the proposed discrete Cauchy-Born rule (DCBR) via molecular dynamics simulations

with LAMMPS. The molecular interactions are characterized using the Tersoff potential

Eq. (5.10). A small enough time step (0.001 ps) is selected for numerical time integration so

as to ensure quasi-static loading conditions. The damage index of one means that a particle

has lost all its links, whereas the index of zero indicates a particle that has all its links intact.

This parameter is given as:

µ = 1− R

T
(5.16)

where R is the number of remaining bonds and T the total number of bonds before the

loading is applied. The color bars in Figures 5.2, 5.3, 5.4 and 5.5 show the extent of damage

to a particle. The black tubes correspond to simulations from LAMMPS and the blue tubes

are the results via DCBR. Due to stress concentration at the location of vacancies, the crack

starts growing in the middle of the tubes. The fracture of the armchair SWCNT (50,50)

starts at a measured strain of 5%, whereas 4% strain is recorded for the tube with the chiral

vector (30,60). The brittle crack patterns from DCBR simulations in Figs. 5.2, 5.3, 5.4 and

5.5 (blue tubes) agree satisfactorily with the MD simulations (black tubes). A uniformly

rectangular arrangement of coarse-grained particles are considered for simulation, even as the

original molecular arrangement is hexagonal. The proposed scheme recovers MD results with

a reduced number of particles. Indeed, the number of coarse-grained particles may readily

be drastically reduced away from the crack zone. An elaborate demonstration addressing the

precise reduction in the computing costs and related numerical issues will be communicated
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Figure 5.2: Crack propagation in tension test of SWCNT with chiral vector of (30,60)

separately.

Figures 5.6 and 5.7 show the developed stresses for uniaxial tensile tests of SWCNTs

(30,60) and (50,50) computed through DCBR and LAMMPS. The DCBR results show tensile

strengths of 58.75 GPA and 70.124 GPA respectively for CNTs (30,60) and (50,50) which

are in agreement with the recorded numbers from LAMMPS simulation, namely 61.67 GPA

and 72.07 GPA respectively.

Irrespective of how efficient the present-day computing systems are, MD simulations

will remain limited by the very small size of the system in the foreseeable future and the

importance of suitably upscaled continuum field models can hardly be over-emphasized for

purposes of computational feasibility in the macroscale. Field theories are also very insightful

in that the notions of metric, strain, connection etc. give a transparent geometrical mean-

ing, along with a wave propagation-based perspective, to the evolving response of solids.
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Figure 5.3: Crack propagation in tension test of SWCNT with chiral vector of (30,60)

Our present work has indeed been so motivated and we have, in the process, reported a

microstructure-sensitive and probabilistically founded continuum principle – a first of its

kind – that has presently been shown to faithfully simulate fracture in agreement with MD

simulations. In the specific context of the examples presented in this work, the proposed

continuum principle relaxes the requirement of working with the original hexagonal lattice,

thus offering a scope for a drastic reduction in computation, especially by considering fewer

particles away from the crack zone. The numerical procedure for accomplishing such a task

may be readily borrowed from the quasi-continuum theory. While extensions of the basic

idea in terms of interpretations, better implementation and myriad applications are possible,

our current goal has solely been to set up a barebones mathematical framework for the basic

idea itself. For the record, a brief comparative statement with the quasi-continuum (QC)

method [74, 75, 76] will be in order. With a view to reducing the problem dimension away

78



Figure 5.4: Crack propagation in tension test of SWCNT with chiral vector of (50,50)

from the so called critical zone (e.g. a dislocation site), the QC undertakes conventional

minimization of the atomistic potential and enforces continualization of a discrete atomic

structure through deterministic interpolation of the atomic displacement vector. Unlike the

QC, our projection principle naturally obtains the directionality information strictly consis-

tent with the discrete atomic configuration, successfully works even with a coarse graining of

the critical zones and brings in the notion of temperature through the noise intensity terms.

5.3.2 Upscaled Simulation of a Bundle of SWCNT

In this section, in order to highlight the capability of the new discrete upscaling tech-

nique in the reduction of computational costs, we simulate the tensile test of two bundles of

SWCNTs with different chirality. (see Figure. 5.8 and 5.9 ). The bundles consist of seven

tubes of which the central tube is modeled in the actual molecular level, and it is surrounded

by six SWCNTs (blue tubes). The blue tubes are the upscaled model of the red tubes on a
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Figure 5.5: Crack propagation in tension test of SWCNT with chiral vector of (50,50)
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Figure 5.6: Variation of axial stress of SWCNT with the chiral vector of (30,60)

coarser mesh with a twice larger lattice distance. The center line of the surrounding tubes

lies on the vertices of a hexagon with side length of 2.2R where R is the radius of the central

tube. The central tube (red) of bundles with chiral vectors of (7,13) and (10,10) is made of

2472 and 2400 carbon atoms respectively. The red tube (in both cases) has 4 atoms vacancy

defect at (L/2, R, 0). The (7,13) and (10,10) tubes have lengths of 149.64 Åand 146.34 Å

respectively. Accordingly, the number of particles of (7,13) and (10,10) upscaled tubes are

608 and 600. The LAMMPS simulations for both cases were carried out, and the results

are shown in Figures 5.8 and 5.9. In the case of the bundle with chiral vector (7,13), the

number of degree of freedoms decreased by 65 % in comparison to LAMMPS simulation.

This reduction is computed as 63% for the bundle with the chiral vector of (10,10). With

a closer look at the changes in each tube of the bundle during tensile loading, we observe

that the failure initially starts from the central tube, with subsequent failure of the lateral
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Figure 5.7: Variation of axial stress of SWCNT with the chiral vector of (50,50)

tubes. Figures 5.10 and 5.11 show the stress-strain profile of the bundle of SWCNT with

chiral vectors of (7,13) and (10,10) for two different simulations. The results of DCBR are

compared with LAMMPS simulations which should provide a decent prediction of 7-tube

bundle behavior undergoing a tensile test. The DCBR simulation shows that the (7,13) and

(10,10) bundles reach the maximum strengths of 51.92 GPa and 58.02 GPa. However, the

LAMMPS simulation predicts 58.93 Gpa and 62.44 GPa for the (7,13) and (10,10) bundles

respectively. As the central tube starts failing, the stress decreases slightly and then fluctu-

ates around a value lower than the maximum strength. At this point, the lateral tubes carry

the major part of the tensile load. Eventually, the surrounding tubes begin fracturing which

is followed by a rapid decrease in the bundle strength.

In this study, a new nonlocal derivative-free framework based on the discrete Cauchy-

Born rule was formulated. The new approach granted a systematic procedure to generate all
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nonlocal version of classical continuum definitions such as deformation gradient, strain, and

stresses from the local counterparts. For such a purpose, a compact matrix was constructed

to transform surface-based forces to body-based ones. The new integral form of equation

enables us to investigate mechanical problems having a discontinuity in the field variables.

Instead of using conventional definition of bond, we introduced a more generic term to

represent micro-interaction of particles. As an application of this study, a mixed-mode

fracture analysis of PMMA semi-circular bend specimens was done. The results showed a

remarkable improvement in prediction of fracture toughness in comparison to MTS method.

Although GMTS performed much better than MTS, the simulation results showed that the

new development still has a better determination of mode II fracture toughness compared

to GMTS. Finally, a comparison of the experimental observation with the simulated crack

trajectory confirms an acceptable agreement.

• Bundle tensile forces are slightly less than single CNT at failure, • This indicates

inter-CNT vdW interaction in bundle does not affect the CNT tensile strength significantly.

• Failure starts at the end of the bundle with fixed displacements. End tearing also observed

in previous studies with standalone CNTs.

Figure 5.8: Tensile test of 6 tube bundle of SWCNTs with chiral vector of (7,13)
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Figure 5.9: Tensile test of 6 tube bundle of SWCNTs with chiral vector of (10,10)
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Figure 5.10: Tensile test of 6 tube bundle of SWCNTs with chiral vector of (7,13)

Figure 5.11: Tensile test of 6 tube bundle of SWCNTs with chiral vector of (10,10)
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6. UNIFICATION OF LOCAL AND NONLOCAL MODELS WITHIN A STABLE

INTEGRAL FORMULATION FOR ANALYSIS OF DEFECTS 1

6.1 Introduction

The recent advancements in developing new materials with a broader application made

scholars to revisit conventional constitutive models and frameworks. Besides, the description

of empirical data challenges them to have a closer look at materials in lower scale. Classical

Continuum Theories (CCTs) allow a continuous spread of matter in the body and sets the

equations of motion holding the local action solely. In additions, CCTs are based on partial

differential equations (PDE). These assumptions narrow the validity of the CCT to those

macro-level responses where the loading length scale is much larger than the physical length

scales. But in the case of loading with microscopic length scale, the classical prediction differs

from experimental observation. Short wavelength excitations, analysis of porous media and

state-of-the-art nanomaterial such as carbon nanotube are some examples that CCT failed

to describe them accurately. [41]. Nanotube also plays an important role in fluid transport.

In a carbon nanotubes, water molecules transport faster compared to the predicted values

from classic continuum theory [77]. Moreover, several experiments showed that mediums

with smaller cracks have higher fracture resistance than a body with a larger one, while

the CCT does not consider the effect of crack dimensions. To avoid such restrictions of the

CCT, Voigt [78] added a couple- forces to the conventional force-traction to model nonlocal

interaction. Eringen verified that a nonlocal description is proficient at predicting a broad

range of wavelengths [79]. The nonlocal theory was improved to be capable of predicting

crack growth. Eringen pointed that unlike the CCT, the stress distribution close to the crack

tip is bounded. Eringen [79] proposed a failure criterion by comparing cohesive stress to

atomic bonds strength. Although the suggested nonlocal theory points the bounded stresses
1Reprinted with permission from ”Unification of local and nonlocal models within a stable integral

formulation for analysis of defects.”, by Nowruzpour, Mohsen, and J. N. Reddy. 2018 International Journal
of Engineering Science, 132, 45-59, Copyright 2018 by Elsivier
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at the crack tips, the derivatives of the field variables are preserved in the formulation.

Eringen [80] improved their nonlocal theory to model Griffith crack and later, he [81] noted

that the results of nonlocal Griffith crack model are in a good agreement with Elliott ’s

lattice model [82]. Nevertheless, the governing equations were written based on the partial

differential equations which are still ill-defined on discontinuity. Generally, the nonlocality

comes into the picture by adding strain derivative to the standard constitutive relation

or defining strain averaging [80]. Despite other nonlocal theories which use derivative of

field variable, Rogula [83] proposed a nonlocal theory based on field variable. But the

model was written for one-dimensional problems. Silling [20] proposed a derivative-free

framework capable of analyzing multi-dimensional problems. The PD framework may be

considered as an intermediate route between the classical and molecular dynamics (MD)

approaches. Since it characterizes spatial interaction via integration, a PD equation can

solve problems with discontinuities without resorting to any special treatment [20]. Based

on this advantage, the PD framework finds its application not only in mechanics [20] but

also in areas like thermo-mechanics [21], electromigration [22], heat conduction in a body

involving discontinuity [23] etc. However, its original bond-based (BBPD) version faces a

serious limitation because of its restriction on Poisson’s ratio. Besides, the BBPD does

not distinguish between volumetric and distortional deformation. The reason behind such

limitations in BBPD is traced back to its assumption of equal and opposite pairwise forces

between two particles within a bond. As an important step forward, Silling came up with

a modification of the BBPD formalism and proposed state-based peridynamics (SBPD)

(more precisely ordinary SBPD) in [24], which could resolve many of the issues associated

with the original BBPD approach. Unlike the BBPD, the forces in a bond are unequal

in ordinary SBPD [25]. However, the interaction forces within a bond are still considered

as collinear. The SBPD framework is successfully applied in different areas of mechanics,

e.g. plasticity [24], visco-elasticity [26], visco-plasticity [27], [28], dynamic brittle fracture

[29], delamination in composite material [30], branching phenomena [31] etc. But owing
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to its assumption of collinear forces along a bond, the ordinary SBPD is not applicable to

non-linear anisotropic materials [25]. Such limitation has led to further development, and

non-ordinary SBPD has been proposed [25]. Unfortunately, the non-ordinary SBPD is also

scourged with difficulties in implementations. It may suffer from instability arising from

the weak coupling of particles in the definition of deformation gradient. Responses via the

non-ordinary SBPD may also show zero energy modes [32]. Other work done by Asadi

[84] provided framework to study two different rupturing mechanisms of a membrane under

liquid pressure loading introduced, which differ in time scale and loacation of the rupture.

Tajdari and Tai [85] implements Smoothed Particle Hydrodynamics (SPH) in solid mechanics

as a comparison to the traditional Finite Element approaches. Later, B Takabi et al [86],

implemented SPH for orthogonal cutting for ductile and brittle material and compared the

results with those obtained by FEM. Mei et al. [87] used inverse problem for partially known

elastic modulus domain. Despite all the effort to improve laws and models [88, 89, 90, 91] a

consistent connection between microscale and continuum level is not well defined. Most of the

developed continuum models are not capable of capturing the evolution of microscopic defects

such as crack within the framework. The existence of defects, such as imperfection and voids

may affect the susceptibility of structure because of inception and growth of defects from

an atomic level to the macroscopic scale. Several studies show that evolution of fracturing

of brittle materials may not be presented via linear fracture mechanics.[92, 93, 94, 95, 96].

Other novel models in literature such as stress-based [97] and strain-based [98] criteria have

been developed by Mirsayar to investigate mixed mode interfacial fracture behavior in strong

interfaces where the interface crack kinks to one of the base materials. Kramer et al. [99]

conducted an extensive study on different phenomenological numerical model to predict

stress, strain, and failure mechanisms in additively manufactured materials. The numerical

models are calibrated based on dogbone and notched samples and are applied on a new

complex geometry. Blind predictions are compared against test data. They also introduced

and provided an optimized mesh structure which is validated by experimental data [100].
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It started with bond-based peridynamics [101] which brought up some obstacles to have

realistic modeling due to the extreme simplification of particle interactions in the domain.

The concept of state in peridynamics framework was introduced to remove some of the re-

strictions [24, 102]. However, the new concept required advanced mathematical tools to be

implemented in the framework. Moreover, it has been shown that there is huge instability

in the response of the problem [32]. Our recent study proposed a discrete Lagrangian-based

framework to characterize the response of an elastic body at a length scale of interest [33]. A

great benefit of adopting the Lagrangian description is its flexibility in characterizing coupled

multibody-interaction. In this section, we present a systematic approach to constructing new

nonlocal derivative-free formulation from classical constitutive models. This study could be

an effort for the unification of local and nonlocal framework to analyze problems incorporat-

ing discontinuities and defects. In Section 6.2, we present nonlocal deformation in a body

based on Discrete Cauchy-Born Rule (DCBR). The new definition compacts the state of de-

formation at a point of a discrete system into a second-order tensor. In Section 6.3, we derive

a nonlocal derivative-free energetically-conjugate pair using nonlocal rate of work done in

the continuum. In Section 6.4, a transformation matrix is introduced to map surface-based

forces (conventional stress) to body-based ones. This transformation makes the continuum

particle capable of interacting with the nonlocal region. In Section 6.5, using peridynamics

approach for calculation of strain energy release rate (G), we present a new suitable energy-

based criterion for the framework to predicts failure in brittle materials. In Section 6.6, a

numerical investigation is done to show the credibility of the new development in analyzing

mixed-mode fracture toughness of the semi-circular bend specimen made of PMMA.

6.2 Directionality Operator

Here, we present a projection principle for upscaling microscopic information, which

allows non-trivial directional information to develop a variable in a continuous or discrete

system. The principal was obtained by employing a stochastic projection method, uses

certain microscopic details. The directionality operator can be defined as;
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G = [Θ−Λ] ·Υ (6.1)

Υ = ∆−1 (6.2)

The gain matrix, G might be described as a nonlocal equivalent of the deformation gradient

that dictates the motion of a continuum body under external loading. Numerically it can

be shown that such definition converges to conventional deformation gradient for the local

limit. A discretized version of each term in equation (6.1) can be given as;

Θnc =
(

m∑
n=1

κnc (ūni − ūci)
(
xnj − xcj

)
vn
)

ei ⊗ ej (6.3)

Λnc = 1
m∑
n=1

vn

(
m∑
n=1

κnc (ūni − ūci) vn
m∑
n=1

κnc
(
xnj − xcj

)
vn
)

ei ⊗ ej (6.4)

Υnc =
(

m∑
n=1

κnc (xni − xci)
(
xnj − xcj

)
vnei ⊗ ej

)−1

(6.5)

where, ūni can be given;

ūci = 1
m∑
n=1

vn

m∑
n=1

κncuni v
n

(6.6)

Superscripts n and c indicate the neighboring and the central particle. u and x show the

displacement and location of particles. vn is the associated volume of the nth particle. The

subscripts i and j are showing the direction of Cartesian coordinates. κ is the non-local

smoothing function. A stabilized displacement field of the cth particle is defined in Eq. (6.6)

that is dependent on the displacement of the neighbors to avoid weak coupling of particles;

Such definition stabilizes the framework and avoids zero-mode energy in the solution. A

continulized version of the Θ, Λ and Υ can be given as;

Θij =
∫
S
καiβjds

′ (6.7)
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Λij = 1
S

∫
S
καids

′
∫
S
κβjds

′ (6.8)

Υij =
∫
S
κβiβjds

′ (6.9)

where αi and βj are;

αi = u
′

i − ui

βj = x
′

j − xj
(6.10)

Here, S is the scope or influence domain of the point of interest. Note that the prime symbol

(′) implies the points in the neighborhood of central one.

6.3 Nonlocal Energetically-Conjugate Pair

Figure 6.1: Energetically representation of continuum element in a discrete model

To get the new nonlocal energetically-conjugate pair suitable for the new framework, we

go through a consistent energy approach. The rate of internal work done in a continuum in

the current configuration can be equated to the rate of stored energy in the bonds connected

from neighbors to central particle. The statement might be mathematically expressed as;

W = 1
2

∫
V

(σ : d) dv = 1
2

∫
Ω

(∫
S

Π.α̇dS
)
dΩ; d = 1

2
[
∇v + (∇v)T

]
(6.11)

where d is the symmetric part of the velocity gradient tensor, σ is the Cauchy stress tensor,
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Π is the force vector developed between the particle of interest and the neighboring particle.

The lattice deformation rate is shown by α̇. Since Π creates the micro-potential density

of a particle, and micro-potentials are defined with respect to a volume, Π may be called

Body-Based (BB) forces. On other hands, classical stresses might be renamed to Surface-

Based (SB) forces, because they are always described with respect to a surface. Due to the

symmetry of the stress tensor;

W = 1
2

∫
V
σ : ldv = 1

2

∫
Ω
P : Ḟdv (6.12)

where l is velocity gradient and could be determined via l = ḞF−1; Here F is deformation

gradient and P is the local first Piola-Kirchhoff stress. To build up a nonlocal description

of the deformation, we approximate F with the Gain function, G. Hence, the rate of work

done in a continuum can be rewritten in a nonlocal setting as;

W = 1
2

∫
Ω
ψ : ĠdV (6.13)

Accordingly, ψ might be interpreted as the nonlocal counterpart of First Piola-Kirchhoff

Stress (NFPS). Because Υ is calculated in the initial configuration, the time derivative of

the Gain function can be given;

Ġ =
(
Θ̇− Λ̇

)
Υ (6.14)

For the simplicity of summation over same indices, we use Einstein’s notation ;

(
Θ̇− Λ̇

)
= 1
S

(∫
S
κα̇iγjds

′
)

ei ⊗ ej; γj = βj −
1
τ

∫
τ
βjdτ

′ (6.15)

where γ is a new lower scale component that naturally rises in the formulation. The pa-

rameter quantifies the Average Deviation of Lattice (ADL) vector in the region of influence.

Unlike the usual practice of mapping of the undeformed bond vector into the deformed con-

figuration [25, 32, 103], here the ADL parameter will be evolved into the new configuration.
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Therefore, in our derivation, γ may represent the notion of bond in a more generic manner.

For a symmetric selection of τ , γj is equal to βj (lattice vector) which is widely used in

previous studies, mainly, Nonordinary State-Based Peridynamic (NSBP) [32, 104, 105]. But

in the case of selection of asymmetric influence domain, or an asymmetric distribution of

particle in a symmetric scope like boundaries or discontinuities, γj differs significantly from

βj. Note that τ is independent of S and could be equal or smaller than S. Using Eq.(6.9)

and (6.15) in Eq.(6.14) to get the rate of gain function and substituting the results in Eq.

(6.13) gives;

W = 1
2

∫
Ω

(
ψkiΥjk

(∫
S
κα̇iγjdS

))
dV = 1

2

∫
Ω

(∫
S

Πiα̇idS
)
dV (6.16)

From Equation (6.16), the structure of nonlocal BB force, Π, could be found. The transfor-

mation equation could be written in an indicial format as. Eq. (6.17)

Πi = ψkiΥjkγj (6.17)

The obtained equation provides a connection from nonlocal surface-based (SB) interaction

system to a nonlocal body-based (BB) one. It takes the undeformed ADL vector γ from the

initial configuration with the nonlocal stress field ψ and returns the corresponding nonlocal

BB force.

6.4 Body-Based Transformation Matrix

To facilitate the use of achieved results in previous section, we intend to prepare a matrix

that could turn the nonlocalized derivative-free model from classical theory to the nonlocal

BB model. Here, it should be noted that this framework cannot take every nonlocalized

model, instead, the models that are constructed based on Gain function are suitable to be
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implemented in this framework. The vectorial form of the Eq.(6.17) can be presented as:

Π = (Υ · ψ)T ·γ = ψ·TΥT ·γ =
(
γT ·Υ · ψ

)T (6.18)

Given the fact that definition of ψ is built on the Gain function that converges to the classical

counterpart in a localized view, to measure stresses in large deformation problems, NFPK

could be written in terms of; ψ = G.ϕ where ϕ might be interpreted as Nonlocal Second

Piola Kirchhoff (NSPK) stress. Rewriting Eq. (6.18) in gives;

ΠT = γT ·Υ ·G ·ϕ (6.19)

To find a transformation matrix capable of mapping of NSPK stress into BB forces, the

following matrices are introduced;

[
T1 T2 T3

]
=
[
γ1 γ2 γ3

]


Υ11 Υ12 Υ13

Υ21 Υ22 Υ23

Υ31 Υ32 Υ33

 (6.20)

It is noteworthy to mention that T vector solely depends upon the initial configuration of

the body. Matrix T̂ that follows from the union of the T and G can be created as;

[
T̂1 T̂2 T̂3

]
=
[
T1 T2 T3

]

G11 G12 G13

G21 G22 G23

G31 G32 G33

 (6.21)
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using the T̂, Eq. (6.18) might be shown in matrix form;


Π1

Π2

Π3

 =


T̂1 0 0 0 T̂3 T̂2

0 T̂2 0 T̂3 0 T̂1

0 0 T̂3 T̂2 T̂1 0


︸ ︷︷ ︸

T̂



ϕ11

ϕ22

ϕ33

ϕ23

ϕ13

ϕ12



(6.22)

T̂ matrix might be named as a transformation matrix that converts nonlocal classical con-

stitutive model to a generalized nonlocal derivative-free one. An evolution of SB force to BB

forces are shown in Fig.6.2. Note that Π1, Π2, Π3 should not be confused with the resultant

of stress tensor in the classical model. In fact, they are new quantities which are associated

with the volume of the body and resultant of microscopic interaction with the local and

nonlocal medium. This is in contrast to the definition of stress as a quantity that can only

communicate through the surface (local definition of interaction). The given formulation can

be directly applied to the orthotropic linear elastic material;



ϕ11

ϕ22

ϕ33

ϕ23

ϕ31

ϕ12



=



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ξ11

ξ22

ξ33

ξ23

ξ31

ξ12



(6.23)

where ξ is nonlocal derivative-free Green strain and it could be written based upon G as

follows;

ξ = 1
2
(
GT ·G− I

)
(6.24)

95



Ultimately, using the equation of motion (EOM) for a two-body interaction system, devel-

oped in the previous study, [33], EOM could be rewritten in the following form:

Figure 6.2: Conversion of local SB forces to nonlocal BB forces

φ+ f = ρü ; φ =
∫
S

(
Π−Π′)

dS (6.25)

where ρ, f and u are density, body force vector and displacement vector respectively. Π

is generalized nonlocal body-based force vector. One of the major distinctions of such a

framework with classical continuum theory is that the new nonlocal forces are not any longer

interacting through the surface, since they are volume-dependent quantity and they can fix

the restriction of reaching nonlocal region.

6.5 Failure Criteria

In this section, we try to develop an energy-based failure criterion for the framework.

Zhou and Wang [106] provided a stress-based failure criterion in a discrete system. They

proposed an extra criterion in addition to the tensile failure to incorporate shear failure of

the bonds. Silling and Askari [107] calculated the summation of the required work per unit

length to eliminate every interaction between particles on the symmetric line below the crack

surface (Pi) and particles above the crack surface (Pj) that are in the influence domain of
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particle (Pi) (see Fig. 6.3). Using this calculation, an energy-based failure approach which

relaxes the need for an extra criterion is proposed. The strain energy release rate can be

calculated once all the critical failure energy of bonds that cross the crack surface are summed

up (see colored area in Fig. 6.4 ). Note that as we move downward, the area above the crack

gets smaller. For a thin linear isotropic elastic material, the strain energy can be calculated

via:

y
sr

cos
yr
θ

=

α

sr r=

r
Broken bonds 1cos

s

y
r

α −  
=  

 

θ

Crack Surface

Unbroken bonds Pi

Pj

Figure 6.3: Calculation of nonlocal strain energy dissipated during formation of unite frac-
ture surface area

U =
∫
S
U∗dv = 1

2

∫
S
ϕijξijdv (6.26)

where U∗ is strain energy density. Note that ξij is the Green strain. For a two dimensional

analysis, G can be calculated as follows;

G = Unc = t

2

∫ y=rs

y=0

∫ θ=α

θ=−α

∫ r=rs

r= y
cos(θ)

(
ϕncij ξ

nc
ij

)
rdrdθdy (6.27)
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Figure 6.4: Areas representing particles with broken bonds connected to central particles
lying on green axis

where t is the thickness. Assuming a symmetric distribution of particles i.e. 1
τ

∫
τ βjdτ

′ =

0⇒ γj = βj, the strain energy for particles under the crack surface

G nc = t

2ϕ
nc
ij ξ

nc
ij

r2
s y cos−1

(
y

rs

)
−
rs y

2
√

1− y2

r2
s

3 −
2 r3

s

√
1− y2

r2
s

3


y=rs

y=0

= t

3r
3
sϕ

nc
ij ξ

nc
ij

= t

3r
3
s [ϕnc11ξ

nc
11 + ϕnc22ξ

nc
22 + ϕnc33ξ

nc
33 + 2 (ϕc23ξ

nc
23 + ϕc31ξ

nc
31 + ϕnc12ξ

nc
12 )]

(6.28)

Here, rs is a nonlocal parameter that emerges in the definition of the nonlocal strain energy

release rate. Since the calculation of energy can be repeated for particles on the line above

the crack surface (i.e., Gcn), the total strain energy release rate cab be given;

G = f1 (γnc)G nc + f2 (γcn)G cn (6.29)

In general, we are differentiating between the connections from n to c particle and c to n

particle. To show this difference, we use f1 and f2 function as a coefficient of G. In this

section, for f1 = f2 = 1, we are still able to get acceptable results. Here, the failure criterion

states that the connection between two bonds fails if the strain energy calculated based upon
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two ends of a bond exceeds the critical amount.

6.6 Numerical Results and Discussion

6.6.1 Calculation of Mode I/II Fracture Toughness Using SCB Specimens

Chong and Kuruppu [108] suggested semi-circular bend (SCB) specimen for measuring

mode I of brittle materials such as rock or other geological material. Many factors such

as convenient of running test, minimal machining labor for preparation of specimens and

stability of results made it a popular test specimen. The tests have been done in normal room

temperature, therefore we ignore the effect of thermal sresses. The effect of different driving

factors on induced thermal stress in geological materials is studied by Ravaji [109, 110]. They

showed how small values of thermal stress can lead to fatigue and crack propagation in rocks,

a mechanism that plays a crucial role in the surface evolution in our Solar system. Figure.

6.5 depicts a scheme of the SCB of radius R which is resting on two supports. The length of

the distance from one support to another is 2S. Each specimen has a crack of length a, that

creates an angle with the line of symmetry. With different crack inclination (α), different

crack modes or a mixture of them can be obtained. For instance, when α = 0, the specimen

is subjected to pure mode I. As we increase α, mode II contributes more to the failure of

specimen. To calculate the stress state close to the tip of the crack, stress intensity factor in

mode I and II are given;

YI

(
α,

a

R
,
S

R

)
= KI√

πa

2Rt
Pcr

(6.30)

YII

(
α,

a

R
,
S

R

)
= KII√

πa

2Rt
Pcr

(6.31)

where t and Pcr are thickness and critical applied force on the top of specimen respectively.

YI , YII are geometry factors associated with mode I and mode II. The geometry factor

parameters are a function of crack angle (α), crack length ratio, a/R, and support length

ratio S/R. Ayatollahi [111] has provided a wide range of experimental data of YI and YII for
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various geometrical ratios. Figure 6.6 shows values of YI and YII for a SCB with dimensional

ratio of a/R = 0.3 and S/R = 0.43 for different inclination angles [112]

α

2S

a
R

P

Figure 6.5: Scheme of SCB specimen with inclination crack angle, α

6.6.2 Numerical Method; Verlet Scheme

To solve equation of the motion numerically, the body is discretized into number of nodes.

a discretized form of the the governing equations could be given as;

φc + f c = ρüc ; φc =
m∑
n=1

(Πc −Πn) vn (6.32)

Πc = (Υc ·ψc)T ·γc (6.33)

Πn = (Υn ·ψn)T ·γn (6.34)

γnc = βnc − 1
S

m∑
n=1
βncvn (6.35)

100



Figure 6.6: Geometry factor values of mode I and mode II for different inclination angles.

A flowchart of the developed code is shown in Fig. 6.8. Since we have a discrete structure,

we try to pick one of the powerful methods for numerical integration of the equation of

motion. Verlet scheme is a fascinating method particularly for researchers in molecular

dynamics area. The method is offered in three version; Velocity, position [113] and Leapfrog

[114] type. This algorithm provides acceptable stability along with simplicity. To update

position at time t and velocity at time (t+ 1
2δt) and t, Taylor expansion series is employed:

X (t+ δt) = X (t) + Ẋ (t) δt+ 1
2Ẍ (t) δt2 + · · · (6.36)

Ẋ
(
t+ 1

2δt
)

= Ẋ (t) + 1
2Ẍ (t) δt+ · · · (6.37)
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Figure 6.7: Algorithm of Verlet-Velocity method

Ẍ (t+ δt) = φ (t)
ρ

(6.38)

Ẋ (t+ δt) = Ẋ
(
t+ 1

2δt
)

+ 1
2Ẍ (t+ δt) δt+ · · · (6.39)

The new configuration can be updated using position, velocity, and acceleration at the

previous step (see Fig. 6.7, a). The nonlocal forces can be calculated by updating new

position vectors (see Fig. 6.7, b). Finally, to get velocity at time (t+ δt), the velocity at the

middle of time increment is determined (Fig. 6.7, c), and then the velocity can be determined

from the updated position and velocity at previous half-step.

6.6.3 Numerical Simulation of Dynamic Crack Growth and Fracture Analysis

of SCB Rock Specimen

Failure of engineering parts due to crack propagation is a topic that attracts much at-

tention. Maiti and Prasad [115] studied the prediction of the unstable crack path using the

stress distribution before the crack starts propagating in the body. Oliver [116] developed

a numerical technique by injecting a discontinuous displacement to simulate the evolution

of crack in materials. In this model, the evolution of crack is investigated without applying

any external criteria to dictate crack path. As a benchmark problem, we implemented a

numerical simulation of a cracked SCB made of Polymethylmethacrylate (PMMA) with the
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Figure 6.8: Flowchart of the developed code.

Figure 6.9: Semi-Circular Bend specimen under mode I (α = 0) or mixed mode loading
(α 6= 0)
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different inclination angles. The mechanical properties of PMMA are given in the table6.1.

The domain is discretized into 16366 particle uniformly (∆x = ∆y) with the particle spacing

of ∆x = 0.0005.

Table 6.1: Mechanical properties of PMMA

Parameter Value Units
E (Young’s Modulus) 3.75 GPa
ν (Poisson’s ratio) 0.35 -
ρ (Density) 1.41 Mg/m3

KIc (Fracture Toughness I) 2.13 MPa
√
m

Fig. 6.9 depicts a discretized SCB with constraints and loading condition. The SCB is con-

strained vertically on both supports, and a constant displacement rate is applied on the top

of the specimen. For the sake of stability and avoiding fracture at supports, all constraints

and loading (on the top) are applied to an area of 3∆x × 3∆x. The following dimensions

and loading condition are considered for the simulation;

R = 50 mm, a = 0.3R, S = 0.43R, t = 5mm,

∆t = 5× 10−8s, Vy (0, R) = −0.005 mm/min, ux (±S, 0) = 0.0
(6.40)

Since rs is a new nonlocal parameter, it can be determined by comparison of the fracture

results for different rs with the experimental values. Fig. 6.10 displays the critical load

associated with different crack angles. It can be seen that for rs = 2∆x, the simulation’s

results have a closer prediction to experiment. Therefore, the remaining results are presented

based on rs = 2∆x = 0.001 . It is noteworthy to mention that rs is not a mesh dependent

parameter, but it is material property, and it has a unique value for each material.

Fig.6.11 and Fig. 6.12 illustrate the final status of specimens after the crack is fully

grown. The color bar in these figures shows the extent of damage to a particle. The damage
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Figure 6.10: Variation of critical load with crack inclination angles for different rs

index of one implies that a particle has missed all its links, whereas the index of zero indicates

a particle that preserves all of its connections. This parameter is given as:

µ = 1− R

T
(6.41)

where R is the number of remaining bonds and T is the total number of connected bonds

before the loading starts. When α = 0.0◦ (pure mode I), The crack starts propagating on

a straight line, along the direction of initial crack till it reaches the top of the SCB. As

the inclination angle increases, cracks trajectory deviates from the direction of initial flaw

due to the contribution of mode II loading. It can be clearly seen for angles greater than

10◦, the propagation starts from the tip, and it eventually aligns with the symmetry line
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Figure 6.11: Crack trajectory in SCB specimen made of PMMA with initial crack and
inclination angle of α = 0◦, 10◦, 20◦, 30◦

of semi-circle. This is in agreement with the Ayatollahi’s experiments[112] and Xie and

Wang’s reports [117] for SCB with length ratio a/r = 0.3. The mean values of experimental

and theoretical fracture toughness along with their corresponding critical load are listed in

table 6.2. The magnitude of the error for KIC , KIIC and P are relatively low, except at

α = 20, 43. According to the trend of Pc, it is expected to get a value more than 2.53 kN at

α = 20, but the experimental data is showing lower magnitude. Such inconsistency might

be a result of manufacturing flaws or measurement errors. Note that Ayatollahi [112] has

106



Figure 6.12: Crack trajectory in SCB specimen made of PMMA with initial crack and
inclination angle of α = 40◦, 43◦, 47◦, 50◦.

dropped these values from their graphical results to get a decent trend in their curve fitting.

Fig. 6.13 and 6.14 are showing the theoretical and experimental fracture toughness of mode

I and II for each specimen. The results are compared with the maximum tangential stress

(MTS) method[118] and generalized MTS (GMTS) [119] that are commonly used in the

analysis of mixed-mode fracture. Note that MTS only takes the first term (singular term)

of the series expansion of tangential stress around the crack tip. However, GMTS includes

singular and nonsingular terms of the series to predict the start of crack propagation. In

both developments, the crack propagates along a direction perpendicular to the maximum
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Table 6.2: Experimental and Numerical fracture results for SCB with a length ratio of
S/R = 0.43 and a/R = 0.3 subjected to a three-point bending

Experimental[112] Theorical Error %
α(◦) KI KII Pc (kN) KI KII Pc (kN) KI KII Pc (kN))

0 2.13 0.00 2.38 2.27 0.00 2.54 6.74 6.66 0.00
10 2.10 0.47 2.53 2.22 0.47 2.68 5.96 5.95 0.05
20 1.63 0.75 2.45 1.91 0.87 2.85 16.44 17.12 16.30
30 1.30 1.07 3.03 1.32 1.13 3.09 1.73 1.24 4.73
40 0.75 1.31 3.73 0.75 1.33 3.79 1.45 0.04 1.33
43 0.53 1.22 3.63 0.53 1.33 4.00 10.13 0.97 9.02
47 0.23 1.24 4.13 0.22 1.32 4.39 6.22 1.61 6.47
50 0.00 1.12 4.24 0.00 1.29 4.73 11.65 0.00 15.74

of the tangential stress, σθ. The simulation from current study predicts mode I fracture

toughness at α = 10◦, 20◦, 40◦ with better accuracy (see Fig. 6.13 ). It also performs better

in determining the magnitude of mode II fracture toughness at 20◦, 30◦, 40◦ in comparison

to both conventional and generalized MTS [112] (see Fig. 6.14).

It is common practice to present the fracture toughness results from mixed mode loading

in terms of normalized fracture toughness i.e. KI/KIc and KII/KIc. The mean value of

experimental data [112] for pure mode I fracture toughness of PMMA is 2.1258MPa
√
m.

In Fig. 6.15, the simulation results of mode I and mode II fracture toughness are plotted

along with the experimental data, MTS and GMTS simulation. Each of the green squares

is showing an initial crack inclination angle (given in the table. 6.2) that starts from zero

as we move on the curve from right to left. The red dash line is showing the average of the

experimental value (red dots) for mode I and mode II normalized fracture toughness. It can

be seen from the figure that the current study has better estimation than other two methods

(MTS, GMTS), especially, once the specimen is undergoing pure mode II (i.e., KI = 0).

This is consistent with the studies on mixed mode I/II strain-based criteria were developed

by Mirsayar to predict onset of fracture and crack propagation angle in different specimen

geometries and materials. [120, 121, 122, 123, 124, 125, 126]
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Mode I

Figure 6.13: Comparison of the mode I normalized fracture toughness of different crack
angle obtained from experiment and conventional criteria with the predicted results from
the present study
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Mode II

Figure 6.14: Comparison of the mode II normalized fracture toughness of different crack
angle obtained from experiment and conventional criteria with the predicted results from
the present study
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Figure 6.15: Comparison of mode I/II normalized fracture toughness from the experiment
and conventional criteria with the predicted results from the present study
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7. SUMMARY AND CONCLUSIONS, AND FUTURE WORK

7.1 Summary and Concluding Remarks

The dissertation mainly consists of three interconnected developments: (i) Tridynamics; a

Lagrangian-based approach to macroscopic modeling, (ii) A derivative-free upscaled theory

for analysis of defects, and (iii) Unification of local and nonlocal models within a stable

formulation. In the following, a brief review of each development is presented:

In Section 1, an general introduction on the nonlocal theories and motivation to develop

a new nonlocal framework has been given.

In Section 2, a discrete Lagrangian-based approach for dynamic systems at a length scale

of interest is presented. Another aspect of the present work is the introduction of a triangular

surface element as the basic unit to characterize interactions between particles, which might

be helpful in incorporating finer length scale information. The discrete framework is applied

to derive equivalent Euler–Bernoulli beam model. The numerical evidence suggests that

the present equation models beam as a stiffer system in comparison to its classical version.

Numerical simulations for crack propagation on isotropic and anisotropic materials have also

been included to illustrate the utility of the present approach.

In Section 3 and 4, we provide the tridynamic model of Timoshenko beam and FSDT plate

using the a meaningful kinematic of the element. The governing equations have been derived

by constructing the Lagrangian of the system. The dispersion analysis of the beam model

were carried out and the results were compared with the classical and peridynamics models.

Unlike the other approaches, the developed model predicts a nonlinear wave frequency for

the first mode of vibration which is in agreement with the molecular dynamics model.

In Section 5, a rationally grounded stochastic projection principle is proposed for upscal-

ing atomistic information, thus yielding non-trivial directional information to evolve the state

variables in a discrete or continuous setting. For completeness, some details on the stochastic
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projection used to develop the proposed method are included in the supplementary mate-

rial. The upscaling principle is strictly non-local and allows one to write the microstructure

dependent upscaled law without any spatial derivative, such as the deformation gradient in

the Cauchy–Born rule. The upscaled simulation of the fractured CNT shows the effect of

chirality – perhaps a first-of-its-kind result.

While the SWCNT modeling problem is analyzed as an illustration, it is likely that the

upscaling technique should find applications in myriad problems involving multiple scales,

wherein phenomena at the microscopic scales non-trivially affect those at a macroscopic

level. With its derivative-free directional term drawing upon the microscopic information

and enabling the construction of a discrete or continuum macroscopic model, the approach

perhaps holds the key to a resolution of the discrete-to-continuum conundrum whilst offering

a modeling route to designing engineered material with a targeted response via appropriate

inversion. The authors intend to explore this important application elsewhere.

In Section 6, a new nonlocal derivative-free framework based on the discrete Cauchy-

Born rule was formulated. The new approach granted a systematic procedure to generate all

nonlocal version of classical continuum definitions such as deformation gradient, strain, and

stresses from the local counterparts. For such a purpose, a compact matrix was constructed

to transform surface-based forces to body-based ones. The new integral form of equation

enables us to investigate mechanical problems having a discontinuity in the field variables.

Instead of using conventional definition of bond, we introduced a more generic term to

represent micro-interaction of particles. As an application of this study, a mixed-mode

fracture analysis of PMMA semi-circular bend specimens was done. The results showed a

remarkable improvement in prediction of fracture toughness in comparison to MTS method.

Although GMTS performed much better than MTS, the simulation results showed that the

new development still has a better determination of mode II fracture toughness compared

to GMTS. Finally, a comparison of the experimental observation with the simulated crack

trajectory confirms an acceptable agreement.
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7.2 Further Work

Through this dissertation, we have shown the application of the developed framework in

analyses of problems, which involves nonlocal effects or discontinuities in the field variable.

The promising results bring several exciting problems that could be carried out in the future

study:

All developed models in this study neglect the energy dissipation in the system. This is

due to the fact that the interactions of material particles were defined through elastic bonds

(Section 2, 3 and 4). However, they could be revised by introducing parallel and series

combination of springs and dash-pot to represent both elastic and viscous behaviors. The

revision may help to develop the well-known viscoelastic models such as Maxwell, Kelvin-

Voigt, and Standard Solid Model.

The presented beam and plate models in Sections 2, 3 and 4 could be extended for

inhomogeneous materials such as functionally graded or composite materials through con-

structing the forces A, B, and C. Noting that these forces are developed so that it accounts

for anisotropic materials. But it could be still challenging to determine nonlocal material

properties. Also, to model fracture and failure in FSDT plate, it is required to calculate the

critical stretch which remained unsolved in this study.

All problems through this study have been analyzed under low-speed loading (LSL)

condition. Noting that the algorithm, given in Section 6 shows stability under LSL condition.

Further study could be done to investigate the stability of the method for problems under

high-speed loading such as impact.
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APPENDIX A

DERIVATION OF PD EQUATION OF MOTION

Denoting the force states as:

F1i := − ∂

∂ui
(ajkωijk) , F2i := − ∂

∂ui
(akiωjki) , F3i := − ∂

∂ui
(aijωkij)

we take a continuum limit on Eq. (2.8) to arrive at the following integro-differential equations

involving double integrals:

∂

∂t

(
∂τ (u̇)
∂u̇

)
=
∫

Ω

∫
Ω
F1 (x,x′,x′′) dV ′dV ′′

+
∫

Ω

∫
Ω
F2 (x,x′,x′′) dV ′dV ′′ +

∫
Ω

∫
Ω
F3 (x,x′,x′′) dV ′dV ′′ + f

(A.1)

Variables u, f , x, x′, x′′, F1, F2 and F3 in Eq. (A.1) are continuum versions of their respective

discrete counterparts. dV ′ and dV ′′ are infinitesimal volume elements at x′ and x′′. Ω denotes

the influence domain. Putting:

T1 (x,x′) =
∫

Ω
F1 (x,x′,x′′) dV ′′

T2 (x,x′) =
∫

Ω
F2 (x,x′,x′′) dV ′′

T3 (x,x′) =
∫

Ω
F3 (x,x′,x′′) dV ′′

(A.2)

We can rewrite Eq. (A.1) as:

∂

∂t

(
∂τ (u̇)
∂u̇

)
=
∫

Ω
(T1 (x,x′) + T2 (x,x′) + T3 (x,x′)) dV ′ + f (A.3)
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By putting T2 (x,x′) + T3 (x,x′) as −T4 (x,x′), Eq. (A.3) may be written as,

∂

∂t

(
∂τ (u̇)
∂u̇

)
=
∫

Ω
(T1 (x,x′)− T4 (x,x′)) dV ′ + f (A.4)

T1 (x,x′) and T4 (x,x′) as a force field operator, T [.] acting on points x and x′ respectively

along a bond < x− x′ >. Hence, Eq. (A.4) may be written as,

∂

∂t

(
∂τ (u̇)
∂u̇

)
=
∫

Ω
(T [x] < x− x′ > −T [x′] < x− x′ >) dV ′ + f (A.5)

Eq. (A.5) is the PD equation of motion [24].
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APPENDIX B

DIRECTIONALITY INFORMATION BASED ON STOCHASTIC PROJECTION

TECHNIQUE

Here we derive the evolution equation for the normalized conditional law πt (φ) [70]

dπt (φ) =
(
πt
(
φhT

)
− πt (φ)πt (h)T

) (
σσT

)−1
(dYt − πt (h) dt)

where φ is a twice continuously differentiable bounded function of x and Var (h) :=
(
σσT

)
is the spatial variance of h.

Proof: The conditioned equation for a bounded and at least twice continuously differen-

tiable function φt := φ(xt) of xt may be arrived at by expanding φ(xt)Λt, where τ ∈ (ti−1, ti],

using Ito’s formula:

d (φtΛt) = φtdΛt + dφtΛt + 〈dφt, dΛt〉 (B.1)

〈·〉 denotes the quadratic covariation. A further expansion leads to:

d (φtΛt) = φtΛt∆T
t dYt + Λtφ

′
t
T
dut + 1

2Λt

〈
dut, φ

′′

t dut
〉

(B.2)

By explicitly writing out the term
〈
dut, φ

′′
t dut

〉
we get:

d (φtΛt) =φtΛt∆T
t dYt + Λtφ

′
t
T
dut

+ 1
2

n∑
j,k=1

d∑
l=1

(
∂2φ

∂uj∂uk

)
t

σjlσkldt
(B.3)

The incremental form in Eqn. (B.3) may be given the following integral representation:
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φtΛt =φi−1Λi−1 +
∫ t

ti−1
φsΛshTs dYs +

∫ t

ti−1
Λsφ

′
s
T
dus

+ 1
2

n∑
j,k=1

d∑
l=1

∫ t

ti−1

(
∂2φ

∂uj∂uk

)
s

σjlσklds

(B.4)

Taking conditional expectation with respect to Ft under Q, and using Fubini’s theorem:

EQ [φtΛt|Ft] = EQ [φi−1Λi−1] +
∫ t

ti−1
EQ

[
φsΛshTs |Fs

]
dYs

+
∫ t

ti−1
EQ

[
Λsφ

′
s
T |Fs

]
dus+

1
2

n∑
j,k=1

d∑
l=1

∫ t

ti−1
EQ

[(
∂2φ

∂uj∂uk

)
s

σjlσkl|Fs
]
ds

(B.5)

Noting that
∫ t
ti−1

EQ
[
Λsφ

′
s
T |Fs

]
dus = 0 and for notational convenience denoting the unnor-

malized conditional expectation operator, EQ ((�)tΛt|Ft) as θt (�) we arrive at the following

equation:

θt (φtΛt) =θt (φi−1Λi−1) +
∫ t

ti−1
θs
(
φsΛshTs

)
dYs

+ 1
2

n∑
j,k=1

d∑
l=1

∫ t

ti−1
θs

((
∂2φ

∂uj∂uk

)
s

σjlσkl
)
ds

(B.6)

An incremental representation of Eqn. (B.6) may be given as:

dθt (φtΛt) =θt
(
φtΛthTt

)
dYs

+ 1
2

n∑
j,k=1

d∑
l=1

θt

((
∂2φ

∂uj∂uk

)
t

σjlσkl
)
dt

(B.7)

In order to obtain the normalized conditional law, i.e. πt (φ) = θt(φ)
θt(1) , it is expanded using
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Ito’s formula as given below:

dπt (φ) = dθt (φ)
θt (1) + θt (φ) d

(
1

θt (1)

)
+
〈
dθt (φ) , d

(
1

θτ (1)

)〉
(B.8)

d
(

1
θt(1)

)
may be expanded as:

d

(
1

θt (1)

)
= − 1

θ2
t (1)dθt (1) + 1

θ3
t (1) 〈dθt (1) , dθt (1)〉 (B.9)

Putting φ = 1 in Eqn. (B.7), we get an Ito expansion for dθt (1), which is given below:

dθt (1) = θt
(
hT
)
dYt (B.10)

Using Eqn. (B.10) in Eqn. (B.9):

d

(
1

θt (1)

)
= −

πt
(
hT
)

θt (1) dYt +
πt
(
hT
)
πt (h)

θt (1) dt (B.11)

After some more calculation, we arrive at the evolution of the normalized conditional

estimate πt (φ) given in Eqn.(B.12):

dπt (φ) =
(
πt
(
φhT

)
− πt (φ)πt (h)T

)
(Var (h))−1 (dYt − πt (h) dt) (B.12)

B.1 Correspondences with Classical Strain Measures

We can recover the classical deformation gradient from our derivative-free directionality

term, G in an infinitesimal neighborhood (Ω → ω) around a spatial point xt. Upon a

Taylor’s expansion of yt around xt only up to the first order approximation we get,

yt = xt +∇xtyth (B.13)
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where ∇xt is the usual gradient operator acting on yt. Incorporating Eq. (B.13) in Eq. (5.9)

we have,

(yt − xt) ≈ ∆ + G∆ (B.14)

where

lim
Ω→ω

G = lim
Ω→ω

(
πt
(
(y− x) hT

)
− πt (y− x)πt (h)T

)
(Var (h))−1

Using Taylor’s expansion of y around x within the πt operator

lim
Ω→ω

G ≈
(
πt
(
∇xyhhT

)
− πt (∇xyh) πt (h)T

)
Var (h)−1

Since ∇xy provides point information at x, it does dont vary with different

sample points within the expectation operator πt.

Hence ∇xy comes out of πt.

lim
Ω→ω

G = ∇xy
(
πt
(
hhT

)
− πt (h) πt (h)T

)
Var (h)−1

= ∇xyVar (h) Var (h)−1

= ∇xy

(B.15)

Since ∇xty is the deformation gradient, we label it with its standard notation F for con-

venience. Similarly we can show correspondences in the infinitesimal limit among different

classical strain measures with our respective derivative-free counterparts:

lim
Ω→ω

GTG→ Right Cauchy-Green strain tensor, C = FTF

lim
Ω→ω

1
2
(
GTG− I

)
→ Green strain tensor, E = 1

2
(
CTC− I

) (B.16)

G is assumed to be nonsingular with a positive determinant. This should hold given the

specific scheme of computing sample averages using non-identical sample points. However a

detailed mathematical study on this would be carried out elsewhere. With such a property

of G, it can be uniquely written as a product of a proper orthogonal tensor GR and a
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symmetric positive tensor GU as given below [127],

G = GRGU

GU =
(
GTG

) 1
2

GR = GGU
−1

Using GU, we can show the following correspondence between classical strain measures with

our respective derivative-free counterparts:

lim
Ω→ω

1
2
(
GU

2 − I
)
→ Green strain tensor, 1

2
(
U2 − I

)
lim
Ω→ω

1
m

(GU
m − I)→ Generalized Green strain tensor, 1

m
(Um − I)

lim
Ω→ω

ln (GU)→ Hencky strain tensor, ln (U)

(B.17)

Accordingly, derivative-free stress tensor and energy of the system can be readily designed

that recover appropriate classical formulations.
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APPENDIX C

LOCALIZATION OF THE TRIDYNAMICS EQUATIONS FOR BEAM

C.1 Localization of the Tridynamics Equations for Beam

Note that M for all series in local limit is 2. A particle i interact only with a particle

before and a particle after itself. Thus, values j and k can only be equal to 1 and 2. Now,

by replacing values 1 and 2 in place of j and k, the series can be dropped and Eqs. 3.5, 3.5

and 3.5 can be written out in expanded forms as:

ρüi = Kε

ξ
(εi11 + εi12 + εi21 + εi22)V 2 (C.1)

ρẅi = Kψ

ξ
(ψi11 + ψi12 + ψi21 + ψi22)V 2 (C.2)

ρ
I

A
φ̈i = Kφ

ξ
(κi11 + κi12 + κi21 + κi22)V 2 + Kψ

ξ
[2n̂i1ψi11 − n̂i1ψ11i − n̂i1ψ1i1

+(n̂i2 + n̂i1)ψi21 − n̂i2ψ21i − n̂i1ψ1i2 + (n̂i1 + n̂i2)ψi12 − n̂i1ψ12i − n̂i2ψ2i1

2n̂i2ψi22 − n̂i2ψ22i − n̂i2ψ2i2]V 2

(C.3)

ρüi = 4KεV 2

ξ
(ûi1 + ûi2) (C.4)

ρẅi = 4KψV 2

ξ

(
θi1 + φ̄i1 + θi2 − φ̄i2

)
(C.5)

ρ
I

A
φ̈i = 4KφV 2

ξ

(
φ̂i1 + φ̂i2

)
+ KψV 2

6
(
8θ1i − 8θ2i + 8θ12 − 8φ̄1i − 8φ̄2i − 8φ̄12

)
(C.6)

Since the present formulation utilizes the interaction between particles j and k (while this

particular interaction does not exist in the other particle-based nonlocal theories), the value

of 2 should be multiplied by terms θ12 and n̂12 to remove the effect of localization. The
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following relations are exploited to obtain Eqs. C.5 and C.6:

n̂i1 = −n̂1i = n̂2i = −n̂i2 = n̂21 = −n̂12 = −1,

ψijk + ψjki + ψkij = 0

ψijk = ψikj

→ ψi11 = −2ψ11i, ψi22 = −2ψ22i

(C.7)

From the above equations, one can get:

ρüi = 4KεV 2

ξ
(u2 − 2ui + u1) (C.8)

ρẅi = 4KψV 2

ξ

(
w2 − 2wi + w1

ξ
−
(
φ2 − φ1

2

))
(C.9)

ρ
I

A
φ̈i = 4KφV 2

ξ

(
φ2 − 2φi + φ1

ξ

)
+ KψV 2

6

(
12w2 − w1

ξ
− 8φi − 8(φ2 + φ1)

)
(C.10)

Thus Eqs. C.8, C.9 and C.10 yield to the local EOMs of Timoshenko beams.

Other methods to characterize material properties are available in literature. Moham-

madsalehi et. al. [128] investigated vibration characteristics of viscoelastic nanoplates by

considering nonlocal equations. They found that the nonlocal parameter has a negative

effect on the natural frequencies of the nanoplates. Researchers have also studied the ef-

fect of thermal environments on the vibration of FG microbeams [129] and rotating FG

disks [130]. They evaluated the effect of various thickness, angular velocity, and geometric

parameters on the natural frequencies and critical speeds of these structures in thermal envi-

ronment. Furthermore, several studies showed the improvment of mechanical behavior using

micro/nano piezoelectric layers. Hosseini et. al. [131, 132] analyzed the vibration energy

harvesting through piezoelectric unimorph and bimorph structures. They found that among

different geometries, triangular cantilever beams improve the total vibration and generate

more energy than the other geometries.
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C.2 Classical Dispersion

In the case of classical theory:

u =u(x, t) = u0e
î(κx−ωt) = u0X

w =w(x, t) = w0e
î(κx−ωt) = w0X

φ =φ(x, t) = φ0e
î(κx−ωt) = φ0X

(C.11)

where X = eî(κx−ωt), substituting u,w, φ in classical EOMs yields to the following determi-

nant of coefficient:

∣∣∣∣∣∣∣∣∣∣∣∣

ρω2 − Eκ2 0 2zρω2

0 ρω2 − κsGκ2 −iκsGκ

2zρω2 iκsGκ ρ I
A
ω2 − E I

A
κ2 − κsG

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (C.12)

Therefore, the characteristic equation can be found as:

(
Gκκs

(
Iρ3 − 4Aρ3z2

))
ω6 +

(
−Gκκs

(
AGκsρ

2 + EIκ2ρ2 + AEIκ2ρ2
))
ω4

+
(
Gκκs

(
GκsρA

2Eκ2 + IρAE2κ4 − 1GκsρAκ
))
ω2 + A2EG2κ4κs

2 = 0
(C.13)

With the assumption of thin beam, we would get the following frequency for the axial

direction:

ω = κ

√
E

ρ
(C.14)

The following determinant could be defined for the rest of frequencies:
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Figure C.1: Variation of wave frequency versus the normalized wave number for classical
model.

∣∣∣∣∣∣∣∣
ρω2 − κsGκ2 −iκsGκ

iκsGκ ρ I
A
ω2 − E I

A
κ2 − κsG

∣∣∣∣∣∣∣∣ = 0 (C.15)

which conclude the following set of solutions as follows:

ω1 = 1√
2ρI

(
Sa + S

1
2
b

) 1
2

ω2 = 1√
2ρI

(
Sa − S

1
2
b

) 1
2

(C.16)

where Sa and Sb are:
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Figure C.2: Variation of wave frequency versus the normalized wave number for classical
model (mode I).

Sa =AGκs + EIκ2 +GIκ2κs

Sb =A2G2κs
2 + 2AEGIκ2κs + 2AG2Iκ2κs

2

+ E2I2κ4 − 2EGI2κ4κs +G2I2κ4κs
2

(C.17)
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Figure C.3: Variation of wave frequency versus the normalized wave number for classical
model (mode II).
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Figure C.4: Variation of wave speed versus the normalized wave number for classical model
(mode III).
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Figure C.5: Variation of wave speed versus the normalized wave number for classical model
(mode II).
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Figure C.6: Variation of wave speed versus the normalized wave number for three models:
tridynamics, peridynamics and classical model (mode III).
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C.3 Peridynamics Dispersion Analysis

The Peridynamics equation of motion for a bar can be given as;

ρü =
∫

Ω
c

(
u(x′, t)− u(x, t)

ξ

)
dV + b (C.18)

using Taylor series u(x′, t) = u(x, t)+u′(x, t)ξn+1/2u′′(x, t)ξ2n2 + ..., the equation of motion

leads to:

ρü = cu′(x, t)A
∫ δ

−δ
ndξ + 1

2cu
′′A

∫ δ

−δ
ξdξ + b (C.19)

where ξ = (x′ − x) and n = sign (x′ − x). Due to symmetry of the horizon,
∫ δ
−δ ndξ = 0 .

Comparing the localized equation with the equation of motion will gives:

c = 2E
Aδ2

(C.20)

Now to do the dispersion analysis, we find the frequency analytically as:

u(x, t) = u0e
î(κx−ωt+n̂0κξ0) = u0XΛ0 = u0X (C.21)

u(x′, t) = u0e
î(κx−ωt+n̂1κξ1) = u0XΛ1 (C.22)

substituting Eq. u and u′ in EOM gives:

−ρω2u0X = cu0XA
∫ +δ

−δ

(Λ− 1)
ξ

dξ (C.23)

We may rewrite Λ as Λ = ei(nκξ) = cos(nκξ) + i sin(nκξ), therefor due to symmetry of

interaction in the specified horizon, we could drop the odd terms in the integral as following:

∫ +δ

−δ

i sin(nκξ)
ξ

dξ = 0 (C.24)
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Noting that the Taylor series of cos term could be written as cos(nκξ) = 1− κ2ξ2

2! + κ4ξ4

4! + ...

Therefore, Eq. C.23 could be simplified to:

−ρω2u0X = 2cu0XA
∫ +δ

0

(
−κ2ξ

2! + κ4ξ3

4!

)
dξ (C.25)

Therefore the axial frequency could be found as follows;

ω =
√
cA

ρ

[
κ2δ2

2 − κ4δ4

48

]1/2

= κ

√
E

ρ

[
1− κ2δ2

24

]1/2
(C.26)

Noting that the classical wave frequency could be discover by letting δ → 0.
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APPENDIX D

DERIVATION OF THE TERMS IN EOM FOR PARTICLE JTH AND KTH PARTICLES
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