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ABSTRACT

Ambulatory devices and Image-based IoT devices have permeated our every-day life. Such

technologies allow the continuous monitoring of individuals’ behavioral signals and expressions in

every-day life, affording us new insights into their emotional states and transitions, thus paving the

way to novel well-being and healthcare applications. Yet, due to the strong privacy concerns, the

use of such technologies is met with strong skepticism as they deal with highly sensitive behavioral

data, which regularly involve speech signals and facial images and current image-based emotion

recognition systems relying on deep learning techniques tend to preserve substantial information

related to the identity of the user which can be extracted or leaked to be used against the user itself.

In this thesis, we examine the interplay between emotion-specific and user identity-specific infor-

mation in image-based emotion recognition systems. We further propose a user anonymization

approach that preserves emotion-specific information but eliminates user-dependent information

from the convolutional kernel of convolutional neural networks (CNN), therefore reducing user

re-identification risks. We formulate an iterative adversarial learning problem implemented with

a multitask CNN, that minimizes emotion classification and maximizes user identification loss.

The proposed system is evaluated on two datasets achieving moderate to high emotion recognition

accuracy and poor user identity recognition accuracy, outperforming existing baseline approaches.

Implications from this study can inform the design of privacy-aware behavioral recognition sys-

tems that preserve facets of human behavior, while concealing the identity of the user, and can be

used in various IoT-empowered applications related to health, well-being, and education.
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1. INTRODUCTION

1.1 Privacy risks in IoT devices

Image and video-capturing devices have become increasingly ubiquitous and pervasive. From

the millions of surveillance cameras installed all over the world to the newly introduced smart

home devices, such ambulatory recording technologies allow the continuous monitoring of indi-

viduals over long periods of time rendering ecologically valid data of human emotional, mental,

and psychological states [1, 2, 3]. Such “high-volume" and “high-velocity" data can be integrated

with Artificial Intelligence (AI) methodologies resulting in smart sensing technologies to promote

various healthcare applications beyond well-established applications related to security monitoring

and community safety. For example, the monitoring of facial expressions and body gestures in a

continuous manner can capture momentary and longitudinal patterns of human emotion, which can

be reflective of users’ stress, depression, or even suicidal risk, therefore rendering such informa-

tion a valuable biomarker for predicting and potentially intervening upon individuals’ mental and

emotional health [2].

Recent advances in ambulatory sensing and Internet-of-Things (IoT) technologies allow the

continuous monitoring of behavioral signals in everyday life, applications [4, 5, 6, 7]. Speech

signals captured by voice-enabled smart-home devices can track prosodic, spectral, and temporal

characteristics of human speech in high time-granularity, yielding valuable biomarkers of serious

mental conditions [2, 8].

Despite the premises, the barrier of confidentiality and anonymity inherent in these smart-

monitoring applications is an issue with various social and cultural implications preventing their

wide adoption. Users are often skeptical of such technologies, since they are afraid that facial

information relevant to their identity will be permanently stored in third-party servers or will be

abused by hacker attacks [9]. User authentication and authorization is a significant challenge

in IoT devices with well-established user authentication protocols to identify potential privacy
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breaches [10, 11]. Data anonymization has also been one of the basic mechanisms of the Health

Insurance Portability and Accountability Act of 1996 (HIPAA) privacy rule [12], attesting to the

significance and timeliness of this topic.

These do not come as a surprise: behavior recognition systems rely on rich speech spec-

trotermporal patterns and facial features. The Mel-Frequency Spectral Coefficients extracted from

speech capture subtle spectrotermporal characteristics of the human voice which can be directly

associated with both user state and user identity [13, 14]. The Histogram of Oriented Gradi-

ents (HoG) incorporates rich textural information of the facial image [15], eigen-faces [16] rely

on the most significant eigen-vectors that preserve much of the total energy of an image, while

other approaches leverage the frequency characteristics of an image through Gabor filters and

Wavelets [17] which respond to change in illumination and texture. In addition, state-of-the-art

representation learning models, such as convolutional neural networks (CNN) [18], and recent ad-

vancements, such as the Resnet, MobileNet and Inception network [19], whose input is the 2D

speech spectrogram or 3D image tensor, are often trained on massive datasets containing sensi-

tive data [18], therefore tend to preserve significant amount of facial information related to the

user identity, social content, and emotional expression [20, 21]. For example, CNNs are known to

capture general and highly reusable information in their convolutional basis, which may be useful

for another target task. This results in both the desired utility-based information (e.g., emotional,

mental, and psychological state) as well as the undesired privacy-sensitive information (e.g., user

identity) being preserved in the convolutional base and the subsequent fully-connected layers. For

this reason, even when CNNs are trained on a specific task of interest, the information required for

a new similar task might be embedded in the pre-trained convolutional base, therefore the CNN

can easily be fine-tuned on the new task [20]. This renders data privacy a major barrier for collect-

ing and sharing human behavioral signals, stalling the research progress and preventing the wide

adoption of smart health and well-being systems. This privacy compromising landscape renders

essential the design of novel machine learning systems that conceal one’s identity, while at the

same time preserve useful information for emotion recognition.
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1.2 User anonymization and differential privacy

As human behavioral signals become more and more ubiquitous and prevalent, there is a need

to appropriately define privacy and design computationally rigorous algorithms that satisfy the con-

sidered privacy constraints. The current paper will focus on user anonymization, which refers to

the problem of removing identifiable information that may lead to user identification, with an ulti-

mate goal for the user of the device to remain as much anonymous as possible. Data anonymization

is typically viewed as protecting the privacy of a user, concealing user-dependent information that

might be preserved in the internal structure of the IoT mechanism, and maintaining anonymized

traffic on data packets transferred between the devices [22, 23]. There has been an extensive

prior work on cryptographic techniques that prevent an unauthorized attacker from gaining access

into a set of data [24]. Various computational solutions have been further proposed that build

machine learning models without sharing patient-level data and support privacy-preserving dis-

semination of data, including homomorphic encryption mechanisms [25, 26], secure multiparty

computation [27, 28], and federated learning [29, 30]. Another line of work follows the field of

differential privacy, which refers to describing patterns related to a utility-based information in a

dataset, while withholding patterns relevant to privacy sensitive aspects that put users at-risk of

re-identification, such as characteristics revealing the unique identifiability of the user.

Differential privacy methods have proposed to add controlled noise to the data to render user

identification hard and have integrated a privacy-policy criterion to the loss function of well-known

classifiers (e.g., logistic regression, support vector machine) [31, 32, 33, 34]. Despite the encour-

aging progress, the majority of approaches on privacy-preserving machine learning are highly

focused on con-signal-based data, such as Electronic Health Records (EHR) and genomic data. In

contrast, signal-based data have been sparsely explored with most of the work focusing on gen-

eral human activity recognition [35, 36], which involves visual frames of the full body from one

or multiple individuals captured from a long distance. The problem of privacy-preserving human

emotion recognition from signal-based data, such as images, presents an additional set of unique

challenges, since it involves the learning of subtle highly personalized emotional expressions. Im-
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ages depict high spatial dependency compared to discrete EHR or genomic data, rendering the

privacy-preserving emotion recognition problem much more challenging.

This thesis will focus on user anonymization, which refers to the problem of removing iden-

tifiable information that may lead to user identification, with an ultimate goal for the user of the

device to remain as much anonymous as possible.

1.3 Prior work

IoT devices are prone to privacy threats at every step of the data life cycle, from the collection

of the data to its final disposal. This has fostered significant concerns among users, developers, and

researchers, who acknowledge that information about individuals must be protected and should not

be exposed without explicit consent under any circumstance [37]. Prior work has outlined ways

to promote user privacy through mutual user authentication, encryption of data communication,

and user anonymization [37, 38]. Mutual user authentication aims to grant access to a user at the

registered IoT services considering inter-device authentication and session-key distribution sys-

tems [39, 40]. Encryption promotes security of data and sensitive information when transmitted

through the network with numerous techniques, such as homomorphic encryption, which have

been proposed over the years [41]. Finally, user anonymization is the process of removing infor-

mation that may lead to the identification of the user [22]. With the advent of real-life multimodal

behavioral data collected by IoT devices, user anonymization has become a prevalent challenge.

The most well-known user anonymization techniques include the k-anonymity model, and

its extenstions of l-diversity and t-closedness, as well as differential privacy approaches. The

k-anonymity model is one of the pioneer user anonymization methods [42]. K-anonymity aims

to guarantee that a user’s privacy information cannot be distinguished from at least k − 1 indi-

viduals. l-diversity and t-closedness principles have extended k-anonymization by reducing the

representation granularity of the data through suppression and generalization, mostly employed

in EHR and genomic sequence data. For example, a multidimensional suppression technique

has been proposed that combines data attributes in EHR through feature selection [43]. Yoo et

al. [44] proposed a generalization method based on conditional entropy for measuring the loss
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of information of sensitive features. Heatherly et al. [45] attempted to anonymize clinical pro-

files of patients in a hypothyroidism study by employing a k-anonymization algorithm at three

medical centers. The study demonstrated that record generalization was lower when anonymiza-

tion was performed on the entire EHR record, compared to anonymization focused on a specific

cohort of patients. Martínez et al. [46] developed a generalized framework which leveraged se-

mantic properties of non-numerical attributes in EHR records. Tamersoy et al. [47] used sequence

aligning and clustering methods to support secure sharing of patient-specific longitudinal data by

aggregating temporal and diagnostic information while preserving data utility. Kim et al. [48]

designed privacy-preserving “data cubes" based on global and local generalization and bucketi-

zation. Loukides Gkoulalas-Divanis [49] proposed a method to anonymize diagnosis codes with

generalization and suppression, taking into consideration that a patient’s identity could be linked

with genome sequences using diagnosis codes. Hughes et al. [50] developed an online system

using replacement and suppression to anonymize patient-level clinical trial data with an objective

to maximize the utility for research. Finally, Poulis et al. [51] presented an alternative approach in

which users had the ability to specify utility constraints on their data.

Differential privacy is a principled approach of user anonymization aiming to control the de-

gree of user re-identification by embedding predefined noise in the data, thus creating a trade-off

between data utility and user re-identification risk [52]. This framework has been well-explored in

biomedical research, including EHR data [53, 31, 54], with the lack of an objective approach for

determining the right amount of noise to achieve an acceptable balance between privacy protection

and utility being a significant challenge. Ji et al. [32] proposed a distributed logistic regression

model that synthesizes public and private data across different sites in a differentially private man-

ner. Li et al. [33] presented a hybrid support vector machine based on a radial basis function (RBF)

kernel to handle non-linearly separable cases. Simmons et al. [55, 34] tested a differential privacy

framework on a rheumatoid arthritis dataset.

Data anonymization techniques have also been extensively used in the area of computer vision

and IoT. Pre-defined image transformation approaches have attempted to increase the amount of
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uncertainty in an image by adding noise [56] or performing filtering operations [57], such as image

blurring. Wang et al. [58] introduced a scalable privacy-aware IoT architecture that degraded facial

characteristics. Other approaches have attempted to encode the change in successive images as the

input to the system, rather than the image pixels themselves. For example, Steil et al. [59] detected

changes in users’ eye movements to approximate potentially privacy-sensitive image frames. The

authors used the inner camera of eyewear devices, such as head-mounted displays or augmented

reality glasses, to track eye movements. Information from the secondary camera was subsequently

encoded in the privacy-preservation system and used as a signal to control for the amount of in-

formation to be preserved in the primary camera. Another set of methods have formulated data

anonymization in signal-based data as an optimization problem, according to which data transfor-

mations are learned based on the antagonistic criteria of preserving utility-based information and

suppressing user-related characteristics. The ideal transformation would increase a target utility

metric and minimize a privacy-based metric [60, 61, 62, 63, 64]. Wu et al. [61], for example, pro-

posed an adversarial learning framework for privacy-preserving human activity recognition with

promising results. Prior work has also attempted to combine the two approaches. Bertran et

al. [65] used adversarial learning to generate a domain-preserving transformation of the input im-

age. Toward this, they used very deep convolutional neural networks, such as the Xception Net,

to generate a transformed image that performs well on a utility function, but underperforms on the

privacy-sensitive function. While this approach yielded promising results, the domain-preserving

constraint becomes challenging when the information related to the utility and the sensitive tasks

are highly inter-dependent. The results obtained in prior work are further highly dependent of the

type of utility and sensitivity functions used, which makes the proposed system hard to generalize

to unseen contexts and conditions. Moreover, it is not clear how the domain-preserving adversarial

approach can be implemented with a shallow rather than a very deep network, which is necessary

for the limited-memory IoT devices. Feutry et al. proposed the problem of privacy-preserving

image transformation, in which an autoencoder architecture was trained in an adversarial manner

to yield a new image that does not retain user-specific characteristics. The authors evaluated their
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approach on the task of handwritten digit recognition and emotion classification with promising

results. Finally, user anonymization has been implemented in automatic speech recognition and

speech-based emotion recognition [66, 67, 68].

1.4 Proposed thesis contributions

This thesis advances existing literature in the following ways: (1) In contrast to the majority

of previous work on privacy preservation for tasks which are not highly dependent on user iden-

tity, such as general human activity recognition, this paper proposes a privacy-preservation system

specifically for the task of emotion recognition. Image-based emotion recognition is highly depen-

dent on subtle facial characteristics, for which it is much more difficult to learn appropriate degra-

dation transformations of the facial images while preserving the emotion dependent information;

(2) While previous work has focused on data obtained with surveillance cameras or distant cam-

eras capturing the entire body from one or multiple users [61, 62, 63], this thesis relies on cameras

placed in close proximity to a user’s face, therefore preserving a high amount of identity-specific

information; (3) Most of the work does not provide a clear method for evaluating the trade-off be-

tween the degradation of utility-based information and preservation of user identity [57, 56, 61, 64].

The proposed adversarial learning framework results in a convolutional transformation that at-

tempts to degrade user-specific information for any of the subsequent fully-connected layers. The

output of the convolution is fed into two classifiers, one for emotion recognition and the other for

face identification and the corresponding accuracies are recorded. These accuracies can quantify

the amount of identity- and emotion-specific information preserved in the convolutional layers of

the CNN.

1.5 Research objectives and contributions of this research

1.5.1 Research aims

In the light of the above challenges, this thesis will focus on three main research questions:

1. Can we understand and quantify the interplay between user identification risks and emotion

utility in images?
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2. Can we develop a privacy-preserving machine learning model to limit user identification

risks while retaining emotion inference capability?

1.5.2 Proposed approach

First, we will explore the extent to which user identity is preserved in image-based emotion

recognition systems. We implement this through a CNN initially trained on the task of emotion

classification. We then freeze its convolutional layers and fine-tune its fully-connected layers on

the task of user identification in order to quantify the extent to which the convolutional basis of

the emotion-specific CNN is able to retain user-specific information. We evaluate our results on

both unblurred and blurred images in order to determine whether image blurring can be effective

for user anonymization in emotion recognition. We also compare our results with classical feature

extraction and image classification methods such as SIFT and SVM. Such comparison would al-

low us to demonstrate the importance of using CNN architectures over classical and simple ML

classification models. In an attempt to design a privacy-aware emotion recognition model, we fur-

ther propose a multitask CNN architecture composed of a convolutional basis, which is followed

by two parts of fully-connected layers, one for emotion classification and another for face identity

recognition. The convolutional layers are shared among the two fully-connected parts and the cor-

responding weights are learned in an adversarial way to preserve emotion-specific information and

degrade information related to users’ identity. We follow an alternate weight freezing approach, in

which the convolutional and emotion-specific weights are re-trained conditioned on user-specific

weights that are effective for the task of user identification. In this way, we aim to eliminate user-

related information in the convolutional basis so that it cannot be re-trained and employed for user

re-identification. The alternate weight freezing is compared against no weight freezing during

the adversarial learning. The final evaluation of our system is performed by adding a new set of

fully-connected layers on the already learned convolutional basis, and re-training the new weights

for the user classification task. Our quantitative and qualitative results obtained in the Japanese

Female Facial Expression (JAFFE) database [69] and the Yale Face Dataset (YALE [70]) will be

discussed and examined to check if they demonstrates the feasibility of the proposed framework
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for promoting user privacy in image-based emotion recognition.
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2. METHODOLOGY

In the following, we will describe our work on quantifying user anonymity and designing a

privacy-aware machine learning system for emotion recognition. We first use classical feature

extraction and image classification algorithms such as SIFT and SVM to generate results for both

face and emotion recognition that will serve as baseline for our Convolutional neural network based

feature extractor and classifier (Section 2.1). Then, we examine the interplay between emotion-

and identity-specific information in the convolutional transformation learned by CNNs (Section

2.2). Following this, We describe our proposed adversarial learning approach, which learns a

convolutional transformation in a CNN that preserves of emotional information and suppresses

identity-specific information (Section 2.3). The convolutional transformation is learned by op-

timizing an adversarial loss function. Optimization is implemented through an alternate weight

freezing approach: the user-specific weights are learned in order to achieve a good user classifi-

cation model and are subsequently frozen so that the convolutional and emotion-specific weights

are learned toward a successful privacy-preserving emotion classification system, which is being

compared against many possible effective user identification schemes. We further outline quantita-

tive ways to evaluate the effectiveness of our system and describe how to demonstrate convergence

of the proposed algorithm by computing the utility and privacy-related loss over multiple training

iterations, as well as through the visualization of the resulting image transformations (Section 2.4).

2.1 Quantifying user-related and emotion-related information retained by classical feature

extractors

We will first examine the features captured by classical feature extraction methods such as the

Scale Invariant Feature Transform (SIFT) [71]. These features are not task dependent and hence

would be same for both emotion recognition and face recognition task. We use combination of

Bag of Features (BOF) extracted using SIFT and Support Vector Machine (SVM) classifier which

has been successfully implemented in various classification tasks such as hand gesture and vehicle
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Figure 2.1: A visual representation of key points of an image as selected by SIFT descriptors

images.It is applied to both face and emotion classification task.

SIFT algorithm initially locates the position of key points in an image using extreme values in

scale space. This step aims at getting rid of low contrast regions and edges which is followed by

finding the most prominent regions of key points using direction of gradient of its neighbouring

pixels. These steps make sure that SIFT features are both scale and rotation invariant as shown in

Figure: 2.1. Each key point is then represented as a 128 dimensional SIFT vector. SIFT features

can describe an image as a bundle of these 128 dimensional key points.

Since, the number of key points may vary from image to image, the dimensions of the image

representation may not be consistent. We use Bag of Features or Visual Bag of Words to cluster

together the descriptors which represents the same or similar feature of the image/object. This

is performed using K-Means Clustering algorithm over all the descriptors of the dataset. Similar

descriptor vectors are clustered together forming K clusters in total. Finally, each image is rep-

resented as a K dimensional vector where each dimension represents the number of descriptors

present in the image belonging to a particular cluster.

These k dimensional representation of images are the trained for both emotion recognition

task and face recognition task using SVM. We perform an extensive grid search on SVM hyper-

parameters including ’c value’, ’gamma value’ and ’type of kernel’ and the model with best test

accuracy is reported. The number of clusters is also considered as another hyper parameter and it is
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included in the final grid search where the best model for each K is selected and the corresponding

accuracy is reported.

2.2 Quantifying user-related information on emotion-specific CNN models

In this section, We will examine the degree to which user-specific information is embed-

ded in image-based emotion recognition models (CNN). Let x ∈ RD×D be an input image and

fWc : RD×D → RD′×D′ , D′ ≤ D be a transformation function parameterized with Wc, which

translates the image x into another image x′ = fWc(x) ∈ RD′×D′ of same or lower dimension-

ality. Also let fWe : RD′×D′ → R be a function that translates the transformed image x′ into

an emotion decision ye = fWe (fWc(x)) ∈ R. The latter can be implemented through a CNN,

denoted as “Emotion" (Fig. 2.2a), whose convolutional layers approximate the transformation fWc

and subsequent fully-connected layers approximate the transformation fWe . Our goal is to exam-

ine the degree of user-specific information embedded in the network. Given that the convolutional

layers are the ones that usually enable transfer of prior knowledge between tasks [72, 73, 74],

we will explore the amount of user-dependent information that is embedded in the convolutional

transformation fWc(x) of the Emotion model. We will do this by adding an additional function

fWi
: RD′×D′ → R, that translates the transformed image x′ = fWc(x) learned for the task of emo-

tion classification to the task of user recognition. This can be implemented by freezing the convo-

lutional layers of the Emotion model and further adding a set of fully connected layers to be learned

for the task of user recognition, yielding the corresponding decision yi = fWi
(fWc(x)) ∈ R. This

model will be referred to as “Emotion2Face" (Fig. 2.2b), since its convolutional layers are learned

based on emotion classification and subsequent fully-connected layers for user recognition. We

will compute the user recognition accuracy of the Emotion2Face model. High accuracy would

indicate that a large degree of user-specific information is embedded in the emotion-based convo-

lutional transformation, while low accuracy would reflect the opposite. We will further compare

the performance of Emotion2Face model with a CNN fully trained for face recognition, referred to

as “Face" (Fig. 2.2c). The Face model will serve as a baseline to quantify the amount of informa-

tion specific to the user identity captured through the convolutional layers of a CNN fully trained
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(a) Emotion model (c) Face model

(b) Emotion2Face model (d) Hybrid model

Figure 2.2: Schematic representation of the: (a) Emotion model, trained on emotion recognition;
(b) Emotion2Face model, trained on emotion and fine-tuned on face identification; (c) Face model,
trained on face identification; and (d) Hybrid model, trained on an iterative adversarial framework
for privacy-preserving emotion recognition.

for face identification, as measured by the corresponding face identification accuracy.

In accordance to prior work which has proposed image blurring as an attempt to conceal a

person’s identity [75], we will further train the same models with blurred images as the input.

We will use 2-dimensional Gaussian blurring with kernel size of (5, 5) and (7, 7) to train CNNs

on emotion classification and user identification. We will also fine-tune the CNNs pre-trained

on emotion recognition to the task of user identification, so that we can examine the degree of

user-related information embedded in emotion recognition models trained with blurred images.
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2.3 User anonymity-preserving emotion classification

We will design an image-based emotion classification model, which can degrade the identity

of the user, while performing well for the task of emotion classification. For this we will use a

multitask CNN architecture trained in an adversarial manner. The goal of the proposed framework

is to learn an image transformation which can reduce the identity-specific information relevant to

the privacy-aware (or sensitive) task, while preserving the information required for the utility task

of emotion recognition.

In the following, let x ∈ RD×D be an input image, gUc : RD×D → RD′×D′ the convolutional

transformation of the original image, gUe : R
D′×D′ → R the transformation that leads to the emo-

tion decision ye ∈ R, and gUi
: RD′×D′ → R the transformation that provides the user decision

yi ∈ R. These are implemented with a multitask CNN architecture containing a convolutional

basis that approximates transformation fUc and is common among the two tasks. The convolu-

tional basis is followed by two distinct sets of fully-connected layers, one for the task of emotion

classification and the other for the task of user identification, implementing transformations gUe

and gUi
, respectively. The proposed architecture will be denoted as “Hybrid" and is schematically

represented in Fig. 2.2d.

Given that the convolutional layers of the CNN are able to preserve a high degree of information

reproducable across many tasks [72, 73, 74], the multitask CNN architecture of the Hybrid model

will be learned so that the convolutional transformation fUc can withhold as less information as

possible for the task of identity recognition and preserve as much information as possible for the

task of emotion classification. In this way, the convolutional transformation will ultimately be

useful as the input to the subsequent emotion-specific fully-connected layers fUe , but will not be

useful to the user-specific layers fUi
for the task of user identification. Taking these into account,

the weights Uc, Ue, and Ui of the CNN should be learned such that:

min
{Uc,Ue,Ui}

{Le (gUe(gUc(x)), ye)− αLi (gUi
(gUc(x)), yi)} (2.1)
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where α is the hyper-parameter that balances the trade-off between minimizing the emotion loss

Le(·, ·) and maximizing the user identity loss Li(·, ·).

The optimization of (2.1) involves an inherent limitation which lies in the fact that in order to

maximize the user identity loss, or minimize the user classification accuracy, it might be enough for

the system to just assign zero to the combination of weights Ui of the user-specific transformation

gUi
, which will result in an “artificially" successful adversarial learning. However, we would like

to learn a convolutional transformation gUc that can degrade the identity of the user no matter how

good the user-specific fully-connected layers gUi
are in the user recognition task. For this reason,

we will employ an iterative adversarial procedure to learn a convolutional transformation against a

number of good face recognition models and obtain a final transformation based on which there is

no fully connected layer able to extract user identity-specific information. We will implement these

by first freezing the user-specific weights Ui and jointly learning the weights of the convolutional

transformation and the emotion-specific weights {Uc,Ue}:

min
{Uc,Ue}

{Le (gUe(gUc(x)), ye)− βLi (gUi
(gUc(x)), yi)} (2.2)

where β balances between positive emotion loss and negative face identity loss. We will then

freeze {Uc,Ue} and learn the user-specific weights Ui, such that:

min
{Ui}
{Li (gUi

(gUc(x)), yi)} (2.3)

This prevents Ui from becoming zero and allows us to obtain a competent user-specific transforma-

tion, which can then serve as a basis to re-learn a privacy-preserving convolutional transformation

Uc based on (2.2). The process of alternating between the learning of weights {Uc,Ue} and Ui

using (2.1) and (2.2) is repeated T times, until the emotion and user identity losses Le(·, ·) and

Li(·, ·) converge, as outlined in Algorithm 1.

After learning a convolutional transformation U∗c, we will further evaluate its ability to elimi-

nate user-specific information. We will do this by adding a set of new fully-connected layers that
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Require: Image x, emotion label ye, user label yi, hyperparameters α, β, T
1: Initialize Uc (convolutional weights), Ue (emotion classification weights), Ui (face

identification weights) with multitask learning:
min{Uc,Ue,Ui}{Le (gUe(gUc(x)), ye) + αLi (gUi

(gUc(x)), yi)}
2: for t = 1, . . . , T do
3: Freeze Ui

4: Learn Uc and Ue using adversarial loss:
min{Uc,Ue}{Le (gUe(gUc(x)), ye)− βLi (gUi

(gUc(x)), yi)}
5: Freeze Uc and Ue

6: Learn Ui using user identity loss: min{Ui}{Li (gUi
(gUc(x)), yi)}

7: end for
Algorithm 1: Adversarial learning for anonymity-preserving emotion recognition

implement transformation hVi
, which will yield a user-specific decision hVi

(gUc(x)). The new

weights Vi will be learned such that they minimize the user classification loss Li (hVi
(gUc(x)), yi).

Through this model, which will be referred to as “Hybrid2Face," we will be able to quantify the

degree of user-specific information preserved in the learned convolutional transformation. A con-

volutional transformation which is successful in eliminating user-related information will yield

low accuracy in the Hybrid2Face model.

We note that the proposed training approach with alternate weight freezing is slightly differ-

ent compared to previous work on anonymized human activity recognition [61, 62, 63], in which

all weights were simultaneously learned during training according to (2.1). This previously pro-

posed approach is slightly more prone to local minima, can yield unstable solutions, and takes

more time to propagate the error is propagated to the convolutional layers, therefore requiring a

larger number of iterations. We will compare our proposed approach, that involves alternate weight

freezing, with previously proposed training in which weight freezing was not included as part of

the process [61, 62, 63], also denoted as “HybridNoFreeze." We will further concatenate a new

set of user-dependent weights to the learned convolutional transformation of the HybridNoFreeze

model, which will be learned based on the task of user identification. This will be called “Hy-

brid2FaceNoFreeze" and will give us an estimate of the amount of user-dependent information

that is being preserved in the convolutional transformation of the HybridNoFreeze model.
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2.4 Evaluation

We evaluate the proposed approach in both a quantitative and qualitative way. We will first

compute the emotion classification and user identification accuracy for the proposed Hybrid model

and compare this against the baseline models that use image blurring (i.e., Emotion-Blur-5, Emotion-

Blur-7), as well as against the hybrid model that was trained without an alternate freezing of the

weights (i.e., HybridNoFreeze). We will further evaluate the stability of the proposed training

mechanism using alternate weight freezing by plotting the emotion and user identity loss functions,

Le(·, ·) and Li(·, ·), across the number of iterations. The desired result would be that the emotion

loss increases over time, while the user identity loss increases and remains consistently high as

iterations progress. Our results will be also evaluated through visual inspection. We will visualize

the transformed image resulting by the proposed training framework and compare it against the the

hybrid model that was trained without an alternate freezing of the weights (i.e., HybridNoFreeze).

Ideally, the transformed image that has completely lost the identity specific information should

contain only the regions that are necessary for emotion recognition, which likely correspond to the

eyes and mouth [76].
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3. EXPERIMENTS

In this chapter, we first outline the data used in our experiments (Section 3.1). We then describe

the experimental setting of our approach and the baselines that were used (Section 3.2). We present

our findings on the user-specific information embedded in emotion recognition CNNs, as well as

in comparison to the baseline approaches that employ image blurring (Section 4.2). Finally, we

present the results of the proposed privacy-preserving multitask CNN trained with an adversarial

loss (Section 4.3). We compare the proposed alternate weight freezing of the adversarial learning

approach to an adversarial learning trained without any weight freezing.

3.1 Data description and pre-processing

Our experiments involve two datasets of facial images, the Japanese Female Facial Expression

(JAFFE) database [69] and the Yale Face Dataset (YALE) [70]. We chose those two datasets,

since they provide a constrained framework to evaluate our approach, since they include images

taken by cameras in close proximity to the user’s face preserving a high amount of identity-specific

information and containing both emotion and identity labels. In JAFFE dataset, we have 10 female

users and 7 emotions (neutral, sadness, surprise, happiness, fear, anger, and disgust), with a total

of 213 static images. All images in the dataset included labels for both emotion and user identity,

therefore they were all used. For the YALE dataset, we used only the images which included both

the user and emotion labels, resulting in a total of 60 images of 15 male and female users and 4

emotion classes (happy, sad, normal, surprised). Since the number of images in both datasets was

small for a CNN model to be adequately trained, we used data augmentation techniques related

to random rotation, horizontal flip, and random noise addition. This resulted in 3038 and 3033

images for JAFFE and YALE datasets, respectively [77].

3.2 Experimental setting

We used a hybrid grid search for generating baseline results using SIFT and SVM keeping ’c

value’, ’gamma value’, ’type of kernel’ and ’number of clusters’ as tunable hyper-parameters. For
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CNN based models, we used 10-fold cross-validation for our experiments retaining the same set of

train and test images for each fold across all systems. We also made sure that no samples generated

from the same original image after data augmentation are concurrently present in the test set and

train set. Based on the way our problem was formulated, we needed images from the same user in

both the train and the test set, in order to perform the user identification task. For this reason, we

were not able to perform a leave-one-subject-out cross-validation, which would involve separating

users between the train and test sets. All architectures which were used to quantify identity-specific

information in emotion recognition models (i.e., Emotion, Face, Emotion2Face, and their blurred

counterparts) as well as the anonymity-preserving models of emotion recognition (i.e., Hybrid,

Hybrid2Face, HybridNoFreeze, Hybrid2FaceNoFreeze) included 3 convolutional layers followed

by 3 fully-connected layers. The ReLU activation function was used for all the hidden layers,

while the output layer had a softmax activation. A 3× 3 convolutional filter with a stride length of

3 was further employed. The number of nodes for each layer is depicted in Fig. 2.2. The hyper-

parameters balancing the ability of the Hybrid and HybridNoFreeze models to learn between the

emotion classification and the user identity recognition tasks, as depicted in (2.1) and (2.2), were

empirically set to α = 0.5 and β = 1, respectively. The number of iterations for the adversarial

learning optimization was T = 70 and T = 40 for the JAFFE and YALE datasets, respectively.

Each iteration took 608 seconds using the NVIDIA GTX 1060 graphics card.
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4. RESULTS

4.1 Quantifying user-related and emotion- related information captured by SIFT represen-

tation of image

We explore the quality of the features extracted by classical feature extraction methods such as

Scale Invariant Feature Transformation (SIFT) for privacy preservation and emotion recognition

(Section 2.1). The features extracted using such techniques are not task dependent and hence the

transformation obtained using such extractors would be same for emotion and face recognition

task. An ideal feature for privacy preservation would consistently achieve low face recognition

accuracy and high emotion recognition accuracy. The results obtained are plotted for both YALE

as shown in Figure 4.1 and JAFFE dataset as shown in Figure 4.2. We can see that we were able to

achieve high face recognition accuracy for both YALE (Figure 4.1) and JAFFE dataset (Figure 4.2)

while the emotion recognition accuracy was consistently low for both datasets. These accuracies

would serve as baseline for deep learning models and our proposed algorithm. The best face

recognition accuracy achieved using SIFT and SVM on YALE and JAFFE dataset was 84.46% and

99.50% respectively and the best emotion recognition accuracy achieved was 28.07% and 85.50%

respectively.

4.2 Quantifying user-related information in emotion-specific models

We explore the degree of user identity information which is embedded in the convolutional lay-

ers of an emotion-specific CNN (Section 2.2). Results obtained in the YALE and JAFFE datasets

with unblurred and blurred images as the input are shown in Table 4.1. All results reflect simple

classification accuracies, since the distribution of samples for the user and emotion categories was

balanced for both datasets. High face recognition accuracy was achieved in both datasets (i.e.,

96.25% and 99.26% for YALE and JAFFE, respectively) indicating that the corresponding task is

relatively easy. Emotion classification on the other hand depicts higher accuracy for JAFFE com-

pared to YALE, potentially due to the high variability of the latter. Still, the accuracies obtained
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(a) Face recognition accuracy (b) Emotion recognition accuracy

Figure 4.1: Classification accuracy on YALE dataset for (a) face recognition (b) emotion recog-
nition using the Scale Invariant Feature Transformation (SIFT) features with Support Vector Ma-
chines (SVM). SIFT descriptors were extracted using K-Means with varying number of clusters.

(a) Face recognition accuracy (b) Emotion recognition accuracy

Figure 4.2: Classification accuracy on JAFFE dataset for (a) face recognition (b) emotion recog-
nition using the Scale Invariant Feature Transformation (SIFT) features with Support Vector Ma-
chines (SVM). SIFT descriptors were extracted using K-Means with varying number of clusters.

were consistently higher than the corresponding accuracies of model trained using SVM on fea-

tures extracted using SIFT. This shows that the CNN models can help improve the classification

accuracy and thus, the use of such models are indispensable. But, when the Emotion model is

fine-tuned for face identity recognition, the corresponding accuracies of the Emotion2Face model

remain high (i.e., 98.77% for JAFFE, 74.18% for YALE) suggesting that there is a substantial

amount of identity-specific information in the convolutional layer of the Emotion model and sup-
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(a) YALE Dataset
Model No Blur Blur (5× 5) Blur (7× 7)
Emotion 47.34 37.09 37.34
Face 96.24 98.24 97.74
Emotion2Face 74.18 80.70 81.45

(b) JAFFE Dataset
Model No Blur Blur (5× 5) Blur (7× 7)
Emotion 89.95 82.55 87.22
Face 99.26 99.754 99.75
Emotion2Face 98.77 99.75 99.26

Table 4.1: Emotion and user classification accuracies in YALE and JAFFE datasets, as obtained
from a convolutional neural network (CNN) trained for the emotion-specific task (Emotion), a
CNN trained for the user identity task (Face), as well as the CNN initially trained on emotion
and fine-tuned on user identification (Emotion2Face). Experiments are performed without image
blurring (No Blur), as well as using a 2-dimensional Gaussian kernel of 5× 5 and 7× 7 to blur the
original images (Blur (5× 5) and Blur (7× 7)).

porting user re-identification concerns.

When we use blurred images as an input to the models, we observe a decrease on emotion

recognition accuracy for the YALE dataset (i.e., 10% absolute decrease). Similar results were

obtained for JAFFE with the corresponding drop in performance ranging between 2% to 7%. These

indicate that the blurring of the original images degrades the task of emotion classification, since

the emotional information can be sensitive to fine-grain fluctuations in the image, which tend to

vanish with blurring. On the other hand, the face recognition accuracy does not appear to decrease

(i.e., 1-2% and 0.5% absolute difference for YALE and JAFFE, respectively), which suggests that

the identity-specific information might also depend on more coarse image characteristics, which

are preserved even after blurring. These indicate that image blurring might not be an effective

approach to the problem of anonymity-preserving emotion recognition, since blurring appears to

degrade emotion recognition performance while allowing for user re-identification.
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4.3 Evaluating user anonymity-preserving emotion classification

We further report the emotion and user classification performance that was achieved using the

proposed multitask CNN architecture with adversarial learning and alternate weight freezing (i.e.,

Hybrid), as well as the baseline model that was trained without freezing any of its weights (i.e.,

HybridNoFreeze) (Table 4.2). The proposed approach (i.e., Hybrid) yields high emotion classifi-

cation accuracy (i.e., 62.65% for YALE, 92.62% for JAFFE) and low user classification accuracy

(i.e., 0% for YALE, 5.65% for JAFFE), which was the desired outcome. In contrast, the baseline

model that did not use the alternate weight freezing training (i.e., HybridNoFreeze) was not able

to eliminate user-related information yielding high user classification accuracies in both datasets

(i.e., 67.41% in YALE, 98.77% in JAFFE). We further evaluate the ability of the learned convo-

lutional layers of the Hybrid and HybridNoFreeze models to preserve user-specific information

when new fully-connected layers are re-trained on the user classification task. The correspond-

ing user classification accuracy of the Hybrid2Face architecture remained fairly low (i.e., 1.25%

for YALE, 31.31% for JAFFE), while the same metric for the Hybrid2FaceNoFreeze was high

(i.e., 84.46% for YALE, 99.26% for JAFFE). This indicates the ability of the proposed training

with alternate weight freezing not only to eliminate user-specific information during training, but

also to prevent re-identification of the user even after additional user-based learning. On the other

side, the baseline model achieved an “artificially" successful adversarial learning with substantial

face-dependent information still remaining in its convolutional base. We note that Table 4.2 does

not report emotion classification accuracy for the Hybrid2Face and Hybrid2FaceNoFreeze models,

since these are trained for user identification.

The ability of our proposed Hybrid model to converge is further depicted by plotting the emo-

tion and user identity loss functions against the number of learning iterations T (Fig. 4.3). We can

see that the Hybrid model was able to achieve high user identification loss after approximately 20

iterations. We further observe that the proposed model was able to keep emotion classification loss

consistently low, attesting to its ability to successfully recognize emotions.

Once we have an indication that our model has converged, it is important to also demonstrate
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(a) YALE Dataset
Model Emotion classification accuracy User classification accuracy
HybridNoFreeze (baseline) 25.06 67.41
Hybrid (proposed) 62.65 0
Hybrid2FaceNoFreeze (baseline) N/A 84.46
Hybrid2Face (proposed) N/A 1.25

(b) JAFFE Dataset
Model Emotion classification accuracy User classification accuracy
HybridNoFreeze (baseline) 86.27 98.77
Hybrid (proposed) 92.62 5.65
Hybrid2FaceNoFreeze (baseline) N/A 99.26
Hybrid2Face (proposed) N/A 31.13

Table 4.2: Emotion and user classification accuracies in YALE and JAFFE datasets obtained by
the proposed anonymity-preserving emotion recognition model with alternate weight freezing (Hy-
brid), as well as by the anonymity-preserving emotion recognition model without freezing of its
weights during training (HybridNoFreeze). The ability of the proposed model to degrade user
identity information is further evaluated by adding a set of new fully-connected layers on the
learned convolutional transformation and fine-tuning for user identification. For the latter task,
adversarial learning is performed with and without alternate weight freezing (Hybrid2Face and
Hybrid2FaceNoFreeze, respectively).

that the model can converge to a good solution. For this reason, apart from the quantitative results

(Table 4.2, Fig. 4.3), we also visualize the convolutional output. Results are depicted in Fig. 4.4.

We can see that the output of the convolutional base trained using our proposed framework (Hy-

brid) is more concentrated towards the eyes and mouth region, whereas all other information seems

to be completely lost. This aligns with previous findings which suggest that the emotion informa-

tion tends to be depicted in a person’s mouth and eye region of the face [76]. Moreover, it can

be sometimes deceiving for the network to focus on other areas of the face, potentially further

justifying the relatively higher emotion accuracy of our proposed model compared to the Hybrid-

NoFreeze baseline. In contrast to these, the output of the convolutional base of the Emotion model

has retained almost all facial information, including the contour of the face, which was not retained

by the Hybrid model. This is also the case for rotated images, suggesting that our model is not re-

stricted to the value of pixels at a particular location of an image and has actually learned the shape

of important facial landmarks irrespective of their relative position.
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(a) Validation loss per iteration for emotion recognition(b) Validation loss per iteration for face recognition

Figure 4.3: Schematic representation of the loss function for (a) emotion recognition (b) face
recognition of the proposed privacy-preserving emotion recognition models (Hybrid), which was
trained on an adversarial manner and included alternate freezing between the convolutional and
emotion-specific weights {Uc,Ue} and the user-specific weights Ui.
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(a) YALE dataset

(b) JAFFE dataset
Figure 4.4: Examples of the original and transformed images obtained from the YALE and JAFFE
datasets after applying a convolutional transformation learned by a convolutional neural network
(CNN) solely trained for the emotion-specific task (Emotion), the proposed anonymity-preserving
emotion recognition model with alternate weight freezing (Hybrid), and the baseline anonymity-
preserving emotion recognition model without freezing of its weights during training (Hybrid-
NoFreeze).
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5. DISCUSSION

In this thesis, we studied the interplay between user identification risks and emotion utility

in images using two datasets. We observed that user-dependent information is highly embed-

ded in emotion recognition models learned using state-of-the-art representation models, such as

CNNs. We further proposed an anonymity-preserving emotion recognition model that learns a

convolutional basis able to perform well for emotion recognition, but poorly for user classifica-

tion. Our results indicate that the proposed approach can achieve these goals and minimize user

re-identification risks. Despite the promising results, the current study depicts the following limita-

tions. We presented a first proof-of-concept that privacy-preservation through user anonymization

is possible in emotion recognition models. For this reason, we evaluated our approach on two

small datasets, the YALE [70] and JAFFE [69], which were collected in laboratory conditions and

included acted emotions, therefore the considered data are clean and potentially not representing

natural emotional expression. It would be beneficial to test the proposed approach in real-life appli-

cations with spontaneous emotional expressions obtained “in-the-wild" and using a larger number

of more noisy samples. Examples of such datasets that could be used as part of future work in-

clude the CAS-PEAL Face Database [78] and the Indian Movie Face database [79], which contain

approximately 33,000 and 99,000 images with a large number of users and conditions. Another

limitation of this study lies in the fact that static images were taken into account. However, emotion

is dynamically changing, therefore future work will concentrate on extending these techniques to

video signals. The inherently unstable nature of adversarial learning can present various challenges

related to finding the optimal number of iterations during the optimization to achieve a close-to-

optimal solution. We used techniques like alternate weight freezing to tackle this, but additional

experimentation would be useful in order to obtain more robust results. Finally, this work pre-

sented an experimental study on how emotion and user identity are inter-related to each other and

embedded in image information. Providing a theoretical framework with privacy guarantees was

outside the scope of this work. As part of our future work, we plan to provide a formal approach
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on user anonymity and identify potential privacy guarantees of our approach.

Although the thesis is focused on privacy-preserving emotion recognition system, our approach

might not be necessarily limited to this particular application. Privacy and user anonymization

are inherent issues in several behavioral studies involving psychological and cognitive outcomes.

For example, leveraging publicly available data, we can develop privacy-aware systems for stress

detection, cognitive demand recognition, and performance prediction [80, 81]. Beyond the image-

based behavioral recognition, the proposed privacy-aware adversarial framework could be used for

speech-based emotion recognition [66, 67, 68]. Instead of learning a convolutional transformation

of an input facial image, we can learn a anonymity-preserving convolutional transformation of the

2-dimensional speech spectrogram. This might yield more reliable emotion recognition systems

compared to current practices, which use 1-dimensional spectrotemporal acoustic features. The

interplay between facial and acoustic information is also of high interest, especially in behavioral

applications, where multimodality is an inherent part of the phenomenon that is being studied.

Multimodal anonymity-preserving behavior recognition systems can be particularly helpful in real-

life applications that involve IoT devices, such as hospitals, work offices, and classrooms [82, 83,

84].

Privacy-preservation is particularly relevant to IoT devices. The proposed framework was

computationally and storage-wise quite expensive, since the Hybrid model involved the learning

of approximately 1.6 million parameters. Despite the high computational capability and storage

capacity of today’s IoT devices, efficiency is a prominent issue. Designing compressed privacy-

preserving behavior recognition systems remains an open problem, which will be explored in depth

as part of our future work. Potential solutions toward this include the use of shallow neural net-

works and larger convolutional kernels, which can compress the input images without preserving

high spatial granularity as presented in this work.
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6. CONCLUSIONS

We have examined the interplay between emotion and user identity specific information in

image-based CNNs trained for the task of emotion recognition. Our results indicate that CNNs,

even when trained for a different task, tend to preserve a significant amount of user-related in-

formation, therefore presenting high user re-identification risks. We have also designed a user

anonymity-preserving emotion recognition model using a multitask CNN architecture trained with

an adversarial learning approach. Training of the proposed CNN was performed in an iterative

way with alternate weight freezing so that the convolutional part of the network gUc learns to

eliminate user identity related information from any potential user-related transformation gUi
. Re-

sults obtained on two publicly available datasets, YALE [70] and JAFFE [69], indicate the feasi-

bility of our proposed approach in learning anonymity-preserving convolutional transformations

which can perform well for the task of emotion recognition. Implications of our work can inform

privacy-preserving machine learning across the span of various behavioral applications, including

psychological and cognitive outcomes, where utility-based and sensitive information are highly

inter-dependent, providing a foundation toward more secure and anonymous behavior recognition

systems.
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