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ABSTRACT

This dissertation presents methods for the prediction of the rotordynamic coeffi-

cients of annular gas seals using computational fluid dynamics (CFD). Improvements 

to an in-house Navier–Stokes solver for the purpose of investigating seal flows are 

discussed in this work. These improvements include an implicit method using an 

iterative linear solver. Additionally, a novel domain-decomposition preconditioner 

is developed in this work.

The solver improvements are demonstrated on small test problems. Simulations 

are then presented for the prediction of seal rotordynamic coefficients. The results 

are compared with experimental data from the literature.
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CHAPTER I

INTRODUCTION

I.1. Statement of the Problem

In high-speed turbomahinery, clearances must necessarily exist between the ro-

tating and stationary components to mitigate friction and machine wear. A true

seal is therefore impossible, and the designer can, at best, hope to limit the leakage

flow using non-contacting seals. If a perturbation causes the shaft to become off-

set from the centerline, the leakage flow creates a non-uniform pressure distribution

around the seal, which results in lateral forces on the shaft. These lateral forces

may act to amplify the initial perturbation, leading to expensive maintenance and,

in the most extreme cases, machine failure. Historical examples of problems caused

by these forces may be found in [Childs, 2013]. The turbomachine designer, there-

fore, requires methods to predict the stability characteristics of a rotor-seal system

in order to ensure reliable, safe, and efficient operation of the machine under de-

sign conditions; the study and development of these methods is part of the field of

rotordynamics.

The most popular method of quantifying the stability characteristics of a seal-

rotor system is to model the forces on the shaft using a two-dimensional mass-spring-

damper system with displacement- and velocity-independent (but possibly frequency-

dependent) coefficients, although the mass coefficients are often neglected. Since this

model is linear with respect to the displacements, it inherently assumes that the
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displacements will be small. If the seal is assumed to be axisymmetric and the shaft

is nominally centered, this model leads to four coefficients (neglecting mass) that can

quantify the stability of the seal-rotor system; these are the direct stiffness, cross-

coupled stiffness, direct damping, and cross-coupled damping. The direct stiffness

and cross-coupled damping have little effect on the stability of the system, and

instead influence the natural frequencies and critical speeds of the system. The

cross-coupled stiffness and direct damping, on the other hand, determine whether

the perturbations grow or decay. These two coefficients are often combined into one,

called the effective damping coefficient, that functions as a quantititative measure

of the stability of the system. If everything else is held equal, the best seal from

the perspective of reducing subsynchronous whirl is the one that has the largest

(positive) effective damping [John Vance, 2010].

The most common type of annular gas seal is the labyrinth seal, which uses mul-

tiple teeth, or “blades”, to create a winding path for the fluid to follow, thereby reduc-

ing leakage. They are popular because of their simplicity and ease of manufacture;

however, they are also known to have poor rotordynamic properties [John Vance,

2010]. Experiments conducted in the 1970’s [Benckert & Wachter, 1980] established

a link between the tangential velocity of the fluid entering the seal, known as swirl,

and the cross coupled stiffness coefficients. In particular, positive swirl (that is, in the

same direction as the shaft rotation) tends to result in large positive cross-coupled

stiffness coefficients, which degrades the stability of the system. Three common

options exist for addressing this issue. First, the designer may choose a more sophis-

ticated type of seal, such as a honeycomb, hole pattern, or pocket damper seal, that
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is designed to prevent the large swirl velocities within the cavities of the seal, thereby

mitigating the follower force. This will solve the vibration issue at the expense of

higher manufacturing costs. Second, an auxiliary flow may be injected opposite the

direction of shaft rotation, thereby imbuing the fluid entering the seal with nega-

tive swirl. This method is known as shunt injection. This will result in the desired

negative cross-coupled stiffness at the expense of additional design complexity. Fi-

nally, small vanes, known as preswirl brakes, may be mounted upstream of the seal

to create negative swirl. This will improve the stability of the system with a lower

manufacturing cost than that of the more sophisticated seal types, and with less

design complexity than that of shunt injection. However, the flow around a swirl

brake is necessarily separated and difficult to predict, and guidelines for choosing

the dimensions of a swirl brake to match a particular application do not currently

exist.

Bulk flow models are routinely used for predicting the rotordynamic coefficients

for annular gas seals. However, they rely on certain problem-specific parameters that

must be tuned using experimental data from similar geometries and conditions, and

therefore are not entirely predictive in nature. They also do not give insight into the

features of the flow within the seal. Computational fluid dynamics (CFD) simula-

tions are becoming more common in the academic rotordynamics community, but are

widely recognized as too computationally expensive for routine calculations [Childs,

2013]. The most common simulations take place in a reference frame attached to

the whirling rotor. These are sometimes referred to as “quasi-steady” simulations,

because in this reference frame the geometry does not change with respect to time;
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however, the fluid motion may still be inherently unsteady even within this reference

frame. Quasi-steady simulations necessitate that the fluid domain remain static. If

the whirling shaft is assumed to move in a circular orbit with a constant period, the

problem may be expressed in a coordinate system attached to the whirling rotor,

thus creating a static fluid domain. However, this technique requires an axisymmet-

ric stator geometry, and therefore does not apply to the more advanced types of seals

mentioned above, nor to seals equipped with a swirl brake. It also precludes the use

of shaft orbits that are not circular. For those cases the analyst must resort to fully

unsteady time-domain simulations of the full Navier-Stokes equations with an appro-

priate turbulence model. Simulations for predicting the rotordynamic coefficients of

a seal equipped with a swirl brake are noticeably lacking from the literature, likely

due to the enormous computational burden involved and low likelihood of matching

experimental data. As a result, most CFD simulations of swirl brake flows have

fixated on predicting the swirl at the entrance to the seal. This is more computa-

tionally tractable due to the assumption of spatial periodicity, which is not valid

for the computation of rotordynamic coefficients because it requires that the shaft

be centered. However, these simulations that only predict the seal-entrance swirl

are not experimentally verifiable, as the clearances involved are too small to permit

direct measurement of the swirl velocity generated by the swirl brake. Hence, the

state of the art is split between two extremes: relatively cheap but unverifiable pre-

dictions of the swirl generated by a preswirl brake, and computationally intractable

(but verifiable) predictions of the full rotordynamic coefficients of a seal equipped

with a swirl brake. To the author’s knowledge, the second type of simulation has
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never been attempted.

As a step toward this kind of simulation, this work is focused on the prediction

of the full set of rotordynamic coefficients for seal flows using in-house CFD software.

Given the computational burden of these simulations, several smaller cases are used

to gauge the effectiveness of the software before the largest simulations are attempted,

and all results will be compared to experimental data. A novel domain-decomposition

preconditioner is developed that, in combination with an implicit time-integration

method, will be leveraged to make these simulations possible.

Background

The foundational experiments of Benckert & Wachter [1980] established a strong

link between the swirl velocity of the fluid entering a labyrinth seal and the associated

cross-coupled stiffness coefficients. In particular, positive swirl (in the same direction

as shaft rotation) leads to positive cross-coupled stiffness coefficients, which have a

destabilizing effect. They also demonstrated that swirl brakes mounted upstream

of the seal can dramatically improve the situation by reducing the swirl velocity

entering the seal. In extreme cases, the swirl direction can be completely reversed

along with the sign of the stiffness coefficients, leading to improved effective damping.

Since then, swirl brakes have been used extensively to help solve stability problems

with various kinds of turbomachinery, although cases in which instabilities were

completely eliminated by the introduction of a swirl brake appear to be rare [Childs,

2013].
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Iwatsubo [1980] and Kurohashi [1980] published the earliest useful one-control-

volume models for labyrinth seals [Childs, 2013]. Childs & Scharrer [1986] expanded

on these methods, and Wyssmann et al. [1984] and Scharrer [1988] developed two-

control-volume methods. These models are very computationally cheap, but lack

flow detail and require parametric tuning from experimental data for a similar seal

under similar conditions.

CFD techniques are slowly becoming accepted in the rotordynamics community.

Most authors use a “quasi-steady” framework, in which the reference frame is at-

tached to the whirling rotor. Within this reference frame, the geometry does not

change with respect to time, and therefore moving meshes are unnecessary. Rhode

et al. [1992] performed a quasi-steady analysis of a tooth-on-rotor labyrinth seal with

three teeth, showing excellent agreement with experiment; however, only one flow

condition was evaluated. Moore [2003] examined a tooth-on-stator labyrinth seal.

His CFD predictions showed only modest agreement with the Pelletti’s experiments

[Pelletti, 1990]; however, the two bulk flow methods that he considered fared no bet-

ter. Hirano et al. [2003] examined several tooth-on-stator labyrinth seals, with only

moderate agreement with bulk flow models.

For non-axisymmetric geometry, the only recourse is a full 3D transient analysis.

Chochua & Soulas [2007] performed a transient analysis of a hole pattern seal and

showed good agreement with experiment. Yan et al. [2011] also examined a hole-

pattern seal with moderate agreement. Li et al. [2013] analyzed several kinds of

seal in this manner; while the predicted coefficients agreed only modestly with the

experiment for the labyrinth seal, the effective damping agreed very well at high
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frequencies.

For seals equipped with a swirl brake, the CFD analyses to date have focused

on predicting the swirl at the entrance to the seal, rather than the rotordynamic

coefficients of the combined seal and swirl brake. This has the additional benefit of

permitting the assumption of spatial periodicity, thus reducing the cost of the simu-

lation by approximately two orders of magnitude. Soghe et al. [2013]), Baldassarre

et al. [2014], Matula & Cizmas [2017], and Nielsen et al. [2001]) considered the effect

of various geometric design parameters on seal entrance swirl.

I.2. Original Contributions

The goal of this dissertation is to develop novel computational methods to im-

prove the performance of a given flow solver, and use the improved solver to facilitate

the prediction of the rotordynamic coefficients of seal flows. This dissertation builds

on the work of previous students, including Kim [2003], Gargoloff [2007], Brown

[2016], and Carpenter [2016].

A grid generator for turbomachinery flows was developed in collaboration with Car-

penter [2014]. It uses a five-block structured topology to generate the blade-to-blade

grid around typical turbomachinery blades and vanes, and includes an additional

two structured blocks to capture the clearance region. The five blocks are generated

in tandem in order to provide smooth transitions across the block boundaries. In

addition, several smaller grid generation codes were written to handle the various

seal geometries encountered in this work.

A novel preconditioner was developed for the linear system arising from a lin-
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earized backward Euler discretization of the governing equations. The preconditioner

is based on a non-overlapping Additive-Schwarz method with an auxiliary coarse

space to couple the subdomains. The novel aspect of the preconditioner lies in its

use of a Quasi-Newton method to solve the coarse-grid problem without requiring

the generation or storage of said coarse-grid problem, and without requiring any ad-

ditional function evaluations beyond those already needed by the primary iterative

method.

Two sets of experimental results for seal flows are considered for demonstrating

the ability of the flow solver to adequately predict rotordynamic forces in annular

gas seals. The first case is a straight (smooth seal), and the second is a labyrinth

seal.

I.3. Dissertation Outline

Chapter I discusses the governing equations of the physical model. Chapter

II discusses the grid generator, and the discretization and solution methods used

in the flow solver. This chapter ends with a discussion of the new preconditioner.

Chapter III presents results of several small cases that demonstrate the effectiveness

and correct implementation of the implicit solver and new preconditioner. This

chapter then discusses the results of the three seal validation cases. Finally, Chapter

IV presents conclusions that may be drawn from the results of Chapter III, and

Chapter V provides recommendations for future work.
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CHAPTER II

PHYSICAL MODEL

This chapter begins with a statement the governing equations for the motion of

compressible Newtonian fluid. The equations are then spatially averaged to facilitate

the computation of turbulent flows. Finally, an appropriate turbulence model is

discussed.

II.1. Navier–Stokes Equations

The flow of a compressible fluid is governed by the conservation of mass, mo-

mentum, and energy. Under the continuum assumption, these may be written as

a system of partial differential equations (PDEs). When written for a Newtonian

fluid, some authors refer to the momentum conservation equation as the Navier–

Stokes equation, while some use that name to refer to the complete set of equations;

we take the latter approach here. The full set of equations in three spatial dimensions

may be written as

∂ρ

∂t
+∇ · (ρu) = 0

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = ρf −∇p+∇ · τ

∂ (ρE)

∂t
+∇ · (ρHu) = ∇ · (k∇T + τ · u) + q̇,

(2.1)

where ρ is the density, u = (u, v, w)ᵀ is the velocity expressed in an inertial reference

frame, f is the vector of mass-specific volume forces, p is the pressure, τ is the viscous
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stress tensor, E is the mass-specific total energy, H is the mass-specific stagnation

enthalpy, T is the thermodynamic temperature, k is the thermal conductivity coef-

ficient, and q̇ includes the work done by the volume forces and the energy addition

due to any source other than conduction. The total energy and stagnation enthalpy

are

E = e+
u2

2
, H = h+

u2

2 (2.2)

where e and h = e/ρ are the internal energy and static enthalpy, respectively. For a

Newtonian fluid, under the assumption of Stokes’ hypothesis, the stress tensor is

τ = µ

[
∇u + (∇u)ᵀ − 2

3
(∇ · u) I

]
, (2.3)

where µ is the dynamic viscosity coefficient.

For a calorically perfect gas the equation of state is the ideal gas law,

p = ρRT . (2.4)

where R is the specific gas constant. For dry air we use the value R =287.16 J
kg·K . The

mass-specific static enthalpy and internal energy are proportional to temperature for

a calorically perfect gas:

h = cpT, e = cvT (2.5)

where cp is the specific heat capacity at constant pressure, and cv is the specific heat

capacity at constant volume.

At this point, we have 12 unknowns: ρ, u, v, w, p, T, e, E, h,H, k, µ. The five

governing equations, together with Eqs. 2.2-2.5, form a total of 10 equations. In
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order to close the system, we require two more equations. The dynamic viscosity

may be related to temperature using Sutherland’s law, which may be written as

µ(T ) =
CT 3/2

T + S
, (2.6)

where C and S are constants. For air, the values used were C = 1.458 × 10−6 and

S = 110.4 K. The thermal conductivity coefficient may be related to the dynamic

viscosity using

k = cp
µ

Pr
, (2.7)

where Pr is the Prandtl number, which is assumed to have a constant value of 0.72

for air.

II.2. Favre– and Reynolds–Averaged Navier–Stokes Equations

The flow is turbulent in most cases of practical interest. The grid resolution and

solution time requirements for the direct solution of the Navier–Stokes equations scale

with Re9/4 and Re3, respectively [Blazek, 2005, p. 227], which is prohibitive for most

engineering problems. Hence, direct solution of realistic engineering configurations

remains out of reach for the foreseeable future. An averaging procedure is typically

used to produce an approximation of the governing equations with more modest

resolution requirements.

Reynolds averaging is used to decompose the flow variables into mean and fluc-

tuating parts. Several different interpretations exist for the “mean” [Blazek, 2005,
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p.231], but here, the mean is defined with respect to time:

w =
1

T

∫ t+T

t

wdt,

where T is as small as possible while still being large relative to the charactistic

time scales of the turbulent fluctuations, w is a generic scalar variable, and w is the

Reynolds average of w. The decomposition is then

w = w + w′,

where w′ indicates the fluctuating part of w. In the event that density also fluctuates,

an additional averaging procedure, called Favre averaging, is often used to simply

the form of the averaged governing equations. The Favre average is

w̃ =
1

ρT

∫ t+T

t

ρwdt,

and the associated decomposition is

w = w̃ + w′′,

where w̃ indicates the Favre average of w, and w′′ indicates the fluctuating part.

Most often, Reynolds averaging is used for the density and pressure, and all other

variables are treated with Favre averaging [Blazek, 2005, p.232]. Several rules may
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be derived for the averaging procedures:

w′ = 0,

w̃′′ = 0,

v′w′ 6= 0,

˜v′′w′′ 6= 0,

ρ̃w = ρw̃,

ρw′′ = 0,

w′′ 6= 0.

Using Reynolds averaging for the pressure and density, and Favre averaging to

all other variables, the Navier–Stokes equations become [Blazek, 2005, p. 234]

∂ρ̄

∂t
+∇ · (ρ̄ũ) = 0

∂ (ρ̄ũ)

∂t
+∇ · (ρ̄ũ⊗ ũ) = ∇p̄+∇ · (τ̃ + τR)

∂
(
ρ̄Ẽ
)

∂t
+∇ ·

(
ρ̄H̃ũ

)
= ∇ ·

(
k∇T̃ + (τ̃ + τR) · ũ− fR

)
,

(2.8)

Together these are known as the Favre- and Reynolds-Averaged Navier–Stokes equa-

tions. Note that the key difference between these and the original equations is the

presence of additional stresses, τR, and an additional component of the heat flux,

fR. The specification of these additional terms is the responsibility of the turbulence

model.

The Boussinesq hypothesis is used to relate the Reynolds stress to the mean
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velocity gradient, as:

τR = µT [∇ũ + (∇ũ)ᵀ]− 2

3
(∇ · ũ) I, (2.9)

where µT is the eddy viscosity. The turbulent heat flux is likewise related to the

mean temperature gradient, as:

fR = −kT∇T̃ (2.10)

where kT is the turbulent thermal conductivity coefficient, which is calculated as:

kT = cp
µT
PrT

(2.11)

where PrT is the turbulent Prandtl number. The turbulent Prandtl number is as-

sumed to maintain a constant value of 0.9 throughout the flow. The only remaining

difficulty is the prescription of the eddy viscosity coefficient, which is the responsi-

bility of the turbulence model.

II.3. Turbulence Modeling

The Boussinesq hypothesis used in the previous section introduces a new variable

into the governing equations (the eddy viscosity, µT ), but did not introduce any

further information, leading to an underdetermined system. Supplemental equations

must be used to close the system. Two equation models provide the simplest complete

models of turbulence [Wilcox, 2010, pg. 122], in the sense that the models are free

from flow-dependent specifications [Pope, 2000, pg. 338]. The two most common

two-equation turbulence models are the κ − ε and κ − ω models. The κ − ω is

known to perform well in the boundary layer, but is sensitive to farfield conditions.
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The κ − ε model is much less sensitive to farfield conditions, but does not perform

as well in the boundary layer. The reader may consult [Menter, 1993] for a more

complete comparison of the models. In that same work, Menter proposed a blending

of κ− ε and κ−ω models that takes advantage of the strengths of each. This model

is known as the Shear Stress Transport (SST) turbulence model. The model has

undergone several revisions over its lifetime, and the updates due to Menter et al.

[2003] and Hellsten [1998] are used in this work.

The model equations for the SST turbulence model are [Carpenter, 2016]

∂ρκ

∂t
+∇ · (ρuκ) = Pκ − β∗ρωκ+∇ · [(µ+ σκµT )∇κ]

∂ρω

∂t
+∇ · (ρuω) =

ρα

µT
Pκ − βρω2 +∇ · [(µ+ σωµT )∇ω]

+ [2ρ (1− F1)σω2]
∇κ · ∇ω

ω
,

(2.12)

where κ is the turbulent kinetic energy, ω is the turbulence dissipation rate, Pκ is

the production of κ, and α, β, β∗, σκ, σω, and σω2 are model constants. The function

F1 will be defined shortly. The production term is given by

Pκ = τR : ∇u

where : represents a double contraction operation. (Note: two definitions are com-

monly used for the double contraction. The one used here is A : B = tr
(
ABT

)
.)

The constants of the model are weighted averages of the κ − ω and κ − ε model

constants:

φ = (F1)φ1 + (1− F1)φ2,

where φ represents an arbitrary model constant, and the subscripts 1 and 2 indicate

the κ − ω and the κ − ε models, respectively. The model constants for the κ − ω
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model are given by [Menter et al., 2003]

σκ1 = 0.850, σω1 = 0.500,

β1 = 0.0750, α1 = 0.555̄,

and those for the κ− ε model are given by

σκ2 = 1.000, σω2 = 0.856,

β2 = 0.0828, α2 = 0.440.

The blending function F1 is evaluated at each point in space as follows:

F1 = tanh
(
arg4

1

)
(2.13)

arg1 = min

[
max

( √
κ

0.09ωd
,
500µ

ρωd2

)
,

4ρσω2K

CDκωd2

]
, (2.14)

where d is the distance to the nearest wall. The cross-diffusion term in Eq. 2.14 is

the positive portion of the last term in Eq. 2.12, and is given by

CDκω = max
(

2
ρσω2

ω
∇κ · ∇ω, 10−20

)
. (2.15)

The value of the limiter (10−20) in Eq. 2.15 varies in the literature. The current value

is from [Menter et al., 2003]. The eddy viscosity is given by:

µT =
a1ρκ

max (a1ω, |S|F2)
, (2.16)

where a1 = 0.31 and

S =
1

2
(∇u + (∇u)ᵀ)

is the mean strain rate tensor. The blending function F2 is given by

F2 = tanh (arg2)

arg2 = max

(
2
√
κ

0.09ωd
,
500µ

ρωd2

)
.

16



II.4. Equation Nondimensionalization

The differential equations (2.8) and (2.12) are written in terms of dimensional

variables. If these equations are implemented directly in software form, there will be

two consequences: 1) the software will have an assumed system of units, and 2) the

flow variables and fluxes will have wildly different orders of magnitude, thereby plac-

ing limits on the level of accuracy that can be obtained, and making interpretation

of the convergence level difficult for the user. The nondimensionalization procedure

used here follows that of Carpenter [2016]. The nondimensionalization of each vari-

able is of the form φ̂ = φ/φref , where φ is the variable to be nondimensionalized, the

subscript “ref” indicates a reference value, and a hat indicates the nondimensional

quantity. The values of the reference quantities for each dimensional variable are

given by

x̂ =
x

l
, t̂ =

t

l/c∞
, û =

u

c∞

ρ̂ =
ρ

ρ∞
, p̂ =

p

ρ∞c2
∞
, Ê =

E

c2
∞

Ĥ =
H

c2
∞
, T̂ =

T

T∞
, µ̂ =

µ

µ∞

µ̂T =
µT
µ∞

, κ̂ =
κ

c2
∞
, ω̂ =

ω

c∞/l
.
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CHAPTER III

NUMERICAL METHODS

This chapter begins by describing the turbomachinery grid generators that were

developed for turbomachinery flows. Next, the discretization of the governing equa-

tions used by the flow solver is discussed. Following this, the modifications to the flow

solver are discussed, including the implicit solver and novel preconditioning strategy.

III.1. Grid Generation

A number of commercial software packages exist that are capable of generat-

ing CFD grids for turbomachinery applications; examples include Pointwise and

Autogrid. However, writing custom software for grid generation has three distinct

advantages: 1) the user has full control over all aspects of the grid, 2) numerous

grids with the same topology but slightly different geometrical features can be “mass-

produced” without much user intervention, and 3) since the user is also the developer,

all software-related difficulties may be directly handled without need for technical

support. For these reasons, all of the grid generation for this work was handled

with in-house FORTRAN programs. The following sections discuss the various grid

generators that were developed for annular gas seal flows.

III.1.1. Plain and Labyrinth Seal Grid Generation

The procedure for the generation of plain and labyrinth seals using a multiblock

structured grid is straightforward, as the individual blocks may be generated using
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Figure III.1: Grid block configuration for labyrinth seals.

algebraic interpolation; that is, no PDE- or optimization-based grid-generation sys-

tems are necessary. The only non-trivial portion of the grid generation process is

the selection of clustering functions. Some authors, such as Thompson et al. [1985],

prefer to use algebraic functions for the clustering process. However, the ratio of ad-

jacent element sizes is a critical parameter for grid point clustering, and these simple

functions do not allow complete control over this ratio. A more direct approach

would be to choose the clustering such that the ratio of adjacent element sizes is

constant throughout the stretched region. This leads to a geometric series for the

point distribution, which may be solved through Newton-Rhapson iteration for the

ratio between adjacent element sizes. A similar procedure is used for clustering at

both end points.

With the clustering algorithm in hand, all that remains is the designation of
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Figure III.2: Example multiblock grid around a labyrinth seal tooth.

block boundaries for the multiblock grid. For the types of seals encountered in this

work, a straightforward choice of block boundaries that results in nearly perfect

orthogonality measures is shown in Fig. III.1. The user provides the grid dimensions

IMAX1, IMAX2, JMAX1, and JMAX2, with the only restriction being that JMAX2

must be greater than JMAX1. Blocks II and III share the same dimensions. These

three blocks are copied for the total number of teeth required by the seal. An

example of a seal tooth that is meshed in this fashion is shown in Fig. III.2. This

two-dimensional grid is then revolved to create the full annulus. In order to move

the numerically troublesome truncation boundaries (inlet and outlet) further away

from the area of interest, additional structured padding grids are placed upstream

of the first tooth and downstream of the last tooth in a straightforward manner.
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(a)

(b)

(c)

Figure III.3: Basic structured grid topologies: a) H-grid, b) C-grid, and c) O-grid.

III.1.2. Swirl Brake Grid Generation

The procedure used for the generation of grids for swirl vane geometries is more

sophisticated. The three-dimensional grid is formed from topologically identical x−

θ layers that are stacked in the radial direction. The “cap” grid that covers the

clearance of the vane is then added separately. The radial distribution of the layers

is based on the clustering procedure discussed above.

Several different topology configurations are popular in turbomachinery grid
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generation. The most common ones are depicted in Fig. III.3 . These standard

configurations all resemble letters of the alphabet, and so are given the names H-

grid, C-grid, and O-grid respectively. The defining feature of each of these grids is

the location of slope discontinuities on the boundaries. For the H-grid, these may

appear at the leading and trailing edges of the airfoil. If the leading or trailing edge

is “cusped”, that is, if the suction and pressure sides terminate with the same slope,

then no slope discontinuity must occur. However, if the edge has a finite termination

angle, a slope discontinuity equal to half of that angle results, and if the edge is

rounded, then a slope discontinuity of 90 degrees results. Any discontinuities in

the boundary tend to propagate into the interior of the grid, thereby damaging the

overall grid quality. For this reason, H-grids are ideal for airfoils with sharp leading

and trailing edges, but less so for those with rounded edges. The O-grid has the

entire airfoil as its inner boundary, and hence has the opposite problem: it is ideal

for airfoils with rounded edges. However, the O-grid also carries some problems for

the outer boundary. If the flow is external, then the outer boundary may be left

rounded, and no issues result. However, for a turbomachine blade or vane passage,

the understanding is that the grid must be periodic with respect to the θ-direction;

that is, the points on the upper and lower boundaries in Fig. III.3 must match when

the grid is rotated about the axial direction by an angle equal to the pitch. For this

reason, the grid must have right angles on its outer boundaries, so as to interface

properly with the next copy. These right angles create corners, and therefore slope

discontinuities, in the outer boundary, thereby degrading the quality of the grid in

the same manner as the H-grid. The C-grid is a compromise between the H- and
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Figure III.4: O4H grid topology. Block I is an O-grid, and Blocks II-V are H-grids.

O-grids, in that the grid about the leading edge resembles an O-grid, and the grid

around the trailing edge resembles an H-grid. It is therefore ideal for airfoils that

have rounded leading edges and sharp trailing edges, as most airfoils nominally do.

However, it retains the same problems with the outer boundary that the O-grid has.

For many turbomachinery applications, manufacturing concerns dictate that

the edges of the airfoils must have some minimum radius, which is not negligable

compared to the length scales of the fluid flow and hence cannot be idealized as a

sharp edge. Thus the best grid topology would seem to be the O-grid. However, as

discussed above, the right angles in the outermost grid lines tend to propagate far into

the interior of the grid, and would likely interfere with the accuracy of the prediction

of the blade-to-blade vortex that is known to appear in swirl brake flows [Nielsen
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et al., 2001]. It follows that no simple grid topology is perfectly suited for these

flows. A more modern approach is to combine several structured grid blocks in such

a way that the burden of the non-ideal boundaries is shared between the blocks. This

necessitates singularities in the mapping, where the grid quality is necessarily low,

but results in higher overall grid quality. One possible choice is the so-called O4H

grid topology, which is employed in this work. Figure III.4 shows a representative

grid around a swirl brake. The grid for one vane is composed of four structured

blocks. Block I is an O-grid which surrounds the vane. This grid is surrounded

by four H-grid blocks, labeled II-V, which serve to provide a buffer between the O-

grid and the harsh outer boundary. The singularities in the mapping occur at the

“corners”, of the O-grid block, where five edges meet at a single point. They are

referred to as singularities because no one-to-one mapping from the ξ− η domain to

the x − θ domain exists, and a point surrounded by five neighbors does not permit

a traditional finite difference representation of the derivatives. Hence, they must be

either treated as boundary points, or different schemes must be used for the singular

and non-singular points.

Two possibilities exist for the generation of such a multi-block grid. The first

is to prescribe the block boundaries, perhaps using Bezier curves or some sort of

spline, and generate the interior of the blocks using standard approaches. This

approach, while simple and cheap, will likely result in awkward transitions at the

block boundaries. Alternatively, one may attempt to smooth the entire grid at

once, thereby eliminating the transition problems at the expense of complexity and

computational cost. This is the approach used here. Each block is attacked with
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a standard iterative smoothing algorithm. The overall grid is then smoothed in a

manner analogous to Gauss-Seidel; that is, one block is smoothed while the others

are held constant, and then that block is fixed while the next block is smoothed.

The blocks are cycled in this manner until convergence is achieved. The result is

a completely smooth grid with practically invisible block boundaries, as evident in

Fig. III.4 .

III.2. Flow Solver

The RANS equations are solved using in-house CFD software called UNS3D,

which stands for unsteady, unstructured Navier–Stokes in three dimensions. This

software has been previously used to simulate turbomachinery flows [Carpenter, 2016;

Kim, 2003; Brenner et al., 2013], cavity flows [Liliedahl et al., 2011], aeroelasticity

problems [Gargoloff, 2007], and hypersonic flows [Brown, 2016].

III.2.1. Spatial Discretization

The spatial part of the system of partial differential equations must be dis-

cretized, resulting in a system of ordinary differential equations that govern the

evolution of the flow variables through time. The standard methods of spatial dis-

cretization of PDE’s include the finite element, finite volume and finite difference

methods; in this work, the finite volume method is used. This requires that an inte-

gral formulation of the governing equations is used. The domain of interest is broken

up into non-overlapping control volumes using a cell-vertex, median-dual scheme,

which places the unknowns at the grid points of the original mesh. For each control
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volume, the flux integral is approximated by a sum single-point quadratures for each

face of the control volume, which is known to be sufficient for up to second-order ac-

curacy [Blazek, 2005]. The viscous fluxes are evaluated using a central scheme. The

inviscid fluxes are evaluated using Godunov’s method [Godunov, 1959]. The result-

ing Riemann problem at each quadrature point is evaluated using Roe’s scheme [Roe,

1986] with Harten’s entropy fix [Harten, 1983].

The gradients of the flow variables at a grid point are evaluated with a least-

squares fit using the immediate neighbors of that grid point. Since least-squares

problems are known to be poorly conditioned, a QR decomposition is used for its

stability properties [Haselbacher & Blazek, 2000]. A piecewise linear reconstruction

over each control volume is used to obtain second-order accuracy [Barth & Jesperson,

1989]. Because of Godunov’s accuracy barrier [Blazek, 2005], it is known that linear

schemes of second and higher order produce nonphysical oscillations in regions of

high gradients. Hence, nonlinear schemes must be used which locally reduce the

order of accuracy in these regions, either by the addition of artificial dissipation, or

by the reduction of the gradient estimates using limiters. A special modified version

of Venkatakrishnan’s limiter [Venkatakrishnan, 1995a] developed by Carpenter [2016]

is used in this work.

The spatial discretization is parallelized using domain decomposition and the

Message Passing Interface (MPI). Each processor receives a portion of the complete

grid, as well as a thin buffer layer that overlaps with the subdomains allocated

to neighboring processors. The original implementation due to Kim [2003] was re-

stricted to grids composed of topologically identical layers. A refined implementation
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due to Brown [2016] allowed arbitrary subdomain boundaries. The reader is referred

to the dissertation by Brown [2016] for details regarding the parallelization algorithm.

This section is intended to introduce, at a surface level, the methods that make

up the core of the flow solver. A more complete description may be found in the

dissertations by Kim [2003] and Gargoloff [2007].

III.2.1.1. Semi-Discrete Form

The integral form of the governing equations may be written for a single control

volume as

∂

∂t

∫
Ω

UdΩ +

∮
∂Ω

(Fc − Fv) dS =

∫
Ω

GdΩ.

For a constant or linear reconstruction, we have∫
Ω

UdΩ = Ucen(Ω)Ω,

where Ucen(Ω) is the value of U at the centroid of the control volume. The grid

point associated with a control volume will not, in general, lie at the center of that

control volume in a median-dual scheme, resulting in a discrepancy between the

storage location of the unknowns and the centroid. For steady flows, accurate time

integration is not important, and this discrepancy may be neglected without any ill

effects [Blazek, 2005]. For unsteady flows, a mass matrix is generally used to address

the discrepancy. However, for the grids encountered in this work, the skewness is

very low. Hence, the discrepancy between the storage location of the unknowns and

the cell centroid is very small, and the mass matrix may be neglected without issue.

The flux through each face of the control volume is evaluated using a single
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point quadrature. The total surface flux is then∮
∂Ω

(Fc − Fv) dS =

NF∑
j=1

(Fc − Fv)j Sj,

where NF is the number of faces forming the boundary of the current control volume.

This, taken with the assumption of the previous paragraph, leads to the following:

∂U

∂t
= −

NF∑
j=1

(Fc − Fv)j Sj + G ≡ R, (3.1)

where R is the residual associated with the current control volume. This is known as

the semi-discrete form, because the spatial operators have been discretized, but not

the temporal operator. Taken for all the control volumes together, this represents

a system of N ordinary differential equations, where N = Nnode × 5 for inviscid or

laminar flows, or Nnode × 7 for turbulent flows.

III.2.1.2. Nonlinear Solution Strategies

For steady flows, the time derivative in Eq. 3.1 vanishes, and we arrive at a sys-

tem of N nonlinear algebraic equations for the steady flow state. This system may

be attacked directly using many standard methods, including Newton-type methods,

Quasi-Newton methods, and multigrid methods. However, the extreme nonlinearity

of these equations means that these fast methods are unlikely to succeed without an

excellent starting guess, which is usually unavailable in the context of CFD simula-

tions. In the case of the Newton and Quasi-Newton methods, this difficulty may be

approached using standard globalization techniques, such as line searches and trust

region approaches, but convergence from a bad starting guess is still unlikely.

The modern tool for dealing with the lack of a satisfactory starting guess is

the class of methods called continuation methods. Broadly speaking, a continuation
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methods forms a relationship between the problem at hand, which is presumably

very difficult, and a simpler but related problem for which either an exact answer

is known, or a satisfactory solution algorithm is available. The relationship between

the two problems typically takes the form of an interpolation using a continuation

parameter. For the simple problem, the continuation parameter is assigned a value

(say, for example, 0), and the difficult problem is also assigned a value (say, 1).

Some mechanism is then used to advance the continuation parameter from the simple

problem to the difficult one. This description is intentionally vague, and there are

numerous methods that fall under this umbrella term. Indeed, many tricks frequently

employed by CFD practitioners may be interpreted as continuation methods. For

example, one might start with a low-order scheme and advance toward a high-order

scheme. Another example is starting with additional artificial dissipation, or starting

with a coarse grid, before interpolating to subsequently finer grids (sometimes known

as full multigrid). These techniques, though conceptually simple, have been by many

CFD practitioners to successfully solve problems for which a direct attack using the

aforementioned fast algorithms has failed.

One continuation method stands above the others in the context of fluid flow

simulations, and that is the so-called pseudo-transient continuation method. In this

case, the continuation parameter is time, and the solution of the “simple problem” is

the solution at t = 0, which is the initial guess. The semi-discrete equations 3.1 are

then integrated through time to a steady state, using any of a number of practical

methods for ordinary differential equations. This approach is one of the oldest and

most commonly used in CFD; indeed, practically every commercial solver for the
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Navier–Stokes equations uses this approach as its core solution method. Its strength

lies in its robustness; in the author’s experience, if the solution procedure fails, it is

almost always due to improper problem specification, and almost never due to the

time-integration method, so long as one operates within the stability boundaries of

the time-stepping method. The cost of this robustness, unfortunately, is an extended

solution time. A reasonable approach, then, is to use the time stepping approach

to obtain a good starting guess for the endgame solver, which is usually one of the

aforementioned fast solvers.

Time stepping methods for Eq. 3.1 broadly fall into two categories: explicit

and implicit. The explicit methods use a time discretization that may be trivially

solved for the solution at the next time step. Hence, the computational work and

storage needed in order to advance the solution to the next step are minimized. The

drawback is that all explicit methods have stability problems that place restrictions

on the maximum allowable time step, thereby driving up the total cost of the solution.

The alternative is to use an implicit method, which removes the stability restriction.

However, implicit methods require the solution of a system of linear or nonlinear

equations at each time step. Hence, the cost per iteration is much larger than that of

explicit methods, but the number of steps needed to obtain a solution is dramatically

reduced. This tradeoff may situationally favor either class of methods, and the ideal

solver should have access to methods from both classes.

The flow solver, UNS3D, uses a traditional four-stage Runge–Kutta scheme to

integrate Eq. 3.1 to a steady state. Since the precise evolution of the solution through

time is of no importance compared to the steady state result, convergence acceler-
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ation techniques may be used to reduce the number of steps needed to arrive at an

answer. Local time stepping [Jameson et al., 1981] and implicit residual smooth-

ing [Jameson et al., 1986] are used in this work. The reader may consult the disser-

tation by Kim [2003] for a complete discussion of the explicit time stepping method.

As mentioned above, the stability restrictions of explicit methods often make

them prohibitively slow for problems of practical interest. The next section intro-

duces the basic implicit scheme that is intended to overcome this slow convergence.

III.2.1.3. Implicit Scheme

The time derivative in Eq. 3.1 may be evaluated using a backward Euler dis-

cretization, resulting in

Un+1 −Un

∆t
= R

(
Un+1

)
, (3.2)

where the superscript indicates the time step number. Since the solution at the

next time level appears embedded in the right-hand side, this is an implicit method.

The backward Euler method is known to have no stability restrictions. However,

Eq. 3.2 represents a system of nonlinear algebraic equations that must be solved for

the solution at the next time step. This system contains all of the same difficulties

as the original steady state system, so it seems that we have gained little so far,

although a good initial guess is available for Eq. 3.2 by applying an explicit method.

In order to obtain a tractable problem, the right-hand side of Eq. 3.2 is expanded

out to the first order term:

R
(
Un+1

)
≈ R (Un) + J (Un)

(
Un+1 −Un

)
, (3.3)
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where J (Un) is the Jacobian matrix of the residual evaluated at time level n. Defin-

ing ∆U = Un+1 − Un, the first-order term is moved over to the left-hand side of

Eq. 3.2, resulting in [
Jn − I

∆t

]
∆U = −Rn. (3.4)

This is the basic implicit method that is used in this work. The quantity in brackets

is the system matrix, which is a sparse matrix of size N , which in this work will

number up to, at most, a few hundred million. It is important to note that the

accuracy of the final result is determined only by the accuracy of the right-hand

side, while the convergence of the method is governed by the quality of the left-hand

side. Hence, any number of approximations may be employed to make the system

matrix cheaper to construct or solve.

Some insight may be gained by examining the form of the system matrix. In

the limit of large time steps, the diagonal matrix vanishes, and we are left with none

other than Newton’s method. In the limit of small time steps, the diagonal matrix

dominates, and we recover a forward Euler discretization. Hence, the present method

represents a compromise between Newton’s method and the forward Euler method,

with the time step acting as a tuning parameter to control this compromise. The

presence of the diagonal term has two effects. First, it reinforces the diagonal of the

system matrix, thereby allowing easier solution with iterative methods. Second, by

blending with a slower, simpler scheme, the likelihood of convergence is improved.

This compromise resembles the trust-region globalization method for optimization,

wherein the Newton step is blended with gradient descent [Dennis & Schnabel, 1996],

to similar effect.
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This implicit scheme (3.4) is quite standard in practical CFD computations, see

for example [Blazek, 2005]. What distinguishes the various flow solvers is how this

system is solved, which is discussed in the next section.

III.2.1.4. Linear Solution Strategies

The simplest approach for the solution of Eq. 3.4 is the use of direct methods,

which almost always have their roots in Gaussian elimination. In this context, an LU

decomposition would likely be employed. For dense matrices, an LU decomposition

has O(N3) complexity, which would be entirely prohibitive in this context. For sparse

matrices, the best-case complexity is O(NNZ), where NNZ is the number of nonzero

entries in the matrix. For a PDE discretization with a fixed stencil size, NNZ ∝ N , so

the cost of the LU decomposition is O(N). However, the proportionality constant is

large, and computational experience has shown that this approach is not feasible for

three-dimensional problems [Vanden & Whitefield, 1995]. Furthermore, the author

has some experience with standard packages such as SuperLU and MUMPS, and this

experience indicates most direct methods for sparse linear systems do not parallelize

well. Finally, all direct methods require the matrix to be built and stored in memory,

which itself is likely prohibitive for three-dimensional problems with second-order or

higher discretizations. Hence, iterative methods are practically mandatory for large-

scale implicit CFD codes [Blazek, 2005, p. 193].

The modern tool for the iterative solution of large, sparse linear systems is the

class of methods known as Krylov subspace methods [Saad, 2003]. These methods

are generally faster than older stationary iterative methods, such as the Richardson,
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Jacobi, Gauss–Seidel, and Successive-Over-Relaxation methods. In addition, they

are generally more robust and carry theoretical guarantees that the older methods

lacked, including upper bounds on the total number of steps. An final advantage

of Krylov subspace methods for Newton-style iterations is that they only require

matrix-vector products, and therefore may be performed matrix-free. For general

sparse systems, the most popular methods are the Generalized Minimum Residual

(GMRES) [Saad & Schultz, 1986] and the Stabilized Biconjugate-Gradient (BiCG-

Stab) [Van der Vorst, 1992] methods. Because GMRES minimizes the linear residual

over the Krylov subspace at each iteration, it guarantees a decrease in the residual

norm with each iteration. The cost of GMRES scales quadratically, and the storage

linearly, with the number of iterations performed, and thus a restarted version of the

algorithm is often employed. However, the restarted algorithm does not carry the

same convergence guarantees as the full algorithm [Saad & Schultz, 1986]. The BiCG-

Stab algorithm alleviates the storage requirements of GMRES, but the convergence

is often erratic, and thus one cannot guarantee that additional iterations will yield

a better solution. It is for this reason that GMRES is usually preferred, and thus

an unrestarted version of GMRES is used in this work, following the implementation

in [Saad & Schultz, 1986].

A practical difficulty with iterative methods is that they usually need to be

preconditioned to be effective. Indeed, it is often said that the choice of precondi-

tioner is more important than the choice of Krylov subspace method [Saad, 2003].

Preconditioning refers to the transformation of a linear system to one with the same

solution, but which is easier to solve. Preconditioning may be performed on the left,
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i.e.

MAx = Mb

or on the right, i.e.

(
AMM−1

)
x = b (3.5)

where M is the preconditioning matrix. In the case of right preconditioning, the

problem (3.5) is usually broken into two sub-problems

(AM) y = b

x = My,

so that the inverse of M is never explicitly needed. It is also possible to employ

“mixed” preconditioning, which is a combination of left and right preconditioning.

While left and right preconditioning typically yield similar benefits [Saad, 2003],

there exists a particular variant of GMRES which provides an estimate of the resid-

ual norm at each iteration. This variant of GMRES, which is used in this work,

provides an estimate of the unpreconditioned norm of the residual for right precon-

ditioning, but an estimate of the preconditioned residual norm in the case of left

preconditioning. Since the preconditioner may have a dramatic effect on the residual

norm, the preconditioned residual norm does not provide a fair way to compare the

effectiveness of several preconditioning options. Hence, right preconditioning is often

preferred for use with GMRES, and is used here for this reason. Right precondition-

ing also allows use of a so-called “flexible” algorithm [Saad, 1993] that permits the

preconditioner to vary from one GMRES search direction to the next, and also saves
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one preconditioner application, at the cost of doubling the storage requirements of

the algorithm. Because the preconditioner did not vary from one GMRES search

direction to the next, and because the preconditioners considered later in this work

were memory intensive, the standard “inflexible” version of GMRES was used here.

As mentioned in the previous section, the system matrix need not be evalu-

ated accurately to obtain a consistent method, because only the right-hand side

determines the problem being solved. Therefore, so long as the right-hand side is

evaluated accurately, and the method converges, any approximation of the system

matrix may be used. Two common options are to use a low-order approximation

of the system matrix, and to use a crude approximation of the viscous part of the

spatial operator. Both of these approximations reduce the stencil size of the scheme,

and therefore reduce the computational expense of building and solving the linear

system. Indeed, a widely held opinion is that the construction of a second-order

Jacobian is prohibitive, due to the excessive bandwidth. The penalty for using any

of these approximations is that quadratic convergence can no longer be achieved. In

most practical cases, quadratic convergence cannot be achieved regardless, so these

reduced-order techniques can be used to create a tractable problem with some cost

in convergence speed.

In the case of Newton-Krylov methods, where the Newton system is solved

using a Krylov subspace technique, the possibility exists to obtain the benefits of

the full second-order Jacobian without the cost of its construction. We speak here

of matrix-free techniques. This possibility exists because Krylov subspace methods

require only the action of the Jacobian on a vector, not the Jacobian itself. Since
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the Jacobian is itself a derivative, its action on a vector may be interpreted as a

directional derivative, and therefore approximated with a single finite difference:

Jv =
∂R

∂U
v =

∂R

∂v
= lim

ε→0

R(U + εv)−R(U)

ε
≈ R(U + hv)−R(U)

h
,

where v is the distance traveled along the vector v, and h is the finite difference step

size. Hence, assuming the residual R(U) is already known, the action of the Jacobian

on a vector may be approximated using a single residual evaluation. The choice of the

differencing parameter h is not entirely trivial. If one has access to exact arithmetic,

one would naturally set h as small as possible to reduce the truncation error of

the finite difference approximation. However, in practice one must necessarily use

finite-precision arithmetic, and roundoff error can easily spoil the solution. Hence,

the differencing parameter must be carefully chosen to balance these two sources

of error. A common recipe [Dennis & Schnabel, 1983] is to use the square root

of machine zero, and this choice is used here. In the event that this prescription

provides inadequate accuracy, another possibility is to use a central difference:

Jv ≈ R(U + hv)−R(U− hv)

2h
.

This will almost certainly alleviate the accuracy issue, at the expense of a second

residual evaluation for each matrix-vector multiply, thereby doubling the cost of the

algorithm. This should therefore only be used as a last resort. In the software imple-

mentation used here, both options are available, although the first-order difference

was found sufficient for all cases in this work.

Using a matrix-free implementation, the cost of building and storing the Ja-

cobian can be completely avoided, and hence the prohibitive bandwidth of the full
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second-order Jacobian is no longer relevant. Quadratic convergence may therefore be

pursued, although in many cases a matrix-free approach using first-order Jacobian

has proven beneficial, and both options are available in the software. However, even

when a matrix-free implementation is used, a preconditioner is still required. While

matrix-free preconditioning strategies exist [Saad, 1993] that offer enormous savings

in memory, they generally lag behind matrix-ready preconditioners in terms of wall-

clock time. Therefore, matrix ready preconditioners are used in this work. Several

options are available in terms of the fidelity used in the primary Jacobian and its

preconditioner. Here we use the same terminology as [Cai et al., 1995]. The first

possibility is to use a high fidelity Jacobian evaluation together with a high fidelity

preconditioner:

MhighJhigh∆U = MhighU, (3.6)

where the subscripts “high” and “low” indicate the use of a high- or low-fidelity

approximation. Left preconditioning is used in Eq. 3.6 for simplicity of presentation,

but the same concepts apply to right preconditioning. This “high-high” approach

has tremendous potential to offer quadratic convergence for realistic problems, but

is generally considered infeasible for matrix-ready preconditioners because, as men-

tioned before, a full-order Jacobian matrix is prohibitively expensive to evaluate for

three-dimensional problems. The second approach is to use a low-fidelity precondi-

tioner together with a high-fidelity Jacobian:

MlowJhigh∆U = MlowU.

This approach allows the pursuit of quadratic convergence with modest cost, and is

used in most of this work. The third possibility is to use a low-fidelity preconditioner

38



together with a high-fidelity Jacobian:

MlowJlow∆U = MlowU.

This approach allows for the lowest possible cost. The issue that arises here is

whether the low-fidelity Jacobian is “close enough” to the high-fidelity Jacobian

that the computed step direction sufficiently approximates the true Newton step. For

simple flow problems, the low-fidelity Jacobian is sufficient. For harder problems, the

critical factor is the level of mesh resolution. As the mesh is refined, the first-order

and second-order discretizations become closer, and one can expect a low-fidelity

system to better approximate the true Newton step. However, in practical CFD the

problem is often under-resolved, and hence it is possible that the low-fidelity Newton

step will not provide a descent direction for the second-order residual. On the other

hand, because the mismatch between the fidelity level of the preconditioner and

Jacobian is eliminated, the preconditioner is more effective for this approach than

for the “low-high” approach above. In this work, the “low-low” approach is used

whenever possible, but when in doubt, the “low-high” approach is used. Of course,

one could consider a fourth option, which is to use a high-fidelity preconditioner with

a low-fidelity Jacobian:

MhighJlow∆U = MhighU.

This approach, however, is nonsensical, as the preconditioner will be both harder

to construct and less effective at preconditioning the low-fidelity Jacobian than the

low-fidelity preconditioner. Hence, this “high-low” approach is never used.

To summarize, in this work a low-fidelity preconditioner is always used, which
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is build from a first-order discretization of the nonlinear residual, while the Jaco-

bian sometimes uses a first-order discretization, and sometimes uses a second-order

discretization. The viscous terms are never neglected, either in the Jacobian or the

preconditioner, because it was found that they are essential for both convergence and

effective preconditioning. For small nonlinear step sizes, the first-order representa-

tion of the Jacobian is usually tried first, and if convergence stalls, a second-order

representation is used. For large nonlinear step sizes, the first-order representation

is unlikely to work, and the second-order representation is used. The next section

discusses the details of the preconditioning algorithm built from the first-order dis-

cretization.

III.2.1.5. Preconditioning Strategies

The most successful general purpose preconditioner for unsymmetric matrices is

undoubtedly the Incomplete Lower-Upper (ILU) factorization, in which some or all of

the fill-in encountered during an LU factorization is discarded. In the most extreme

case, all fill-in is discarded, resulting in the ILU(0) algorithm. This preconditioner

has the benefit of requiring O(N) operations to build and apply, and requires no

storage beyond that required for the matrix itself. However, while this approach

has found enormous success, there are few theoretical guarantees of its success, and

it sometimes fails spectacularly. For this reason, ILU factorizations using larger

amounts of fill-in may be employed to better approximate the true factorization;

however, the storage and computational cost increases as well.

A central problem with ILU factorizations is that the solution of sparse trian-
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Figure III.5: Illustration of the Additive-Schwarz decomposition.

gular systems through forward- and back-substitution has an inherently sequential

component; that is, one processor must complete its work before the next proces-

sor can begin. While approaches have been developed to mitigate this effect, the

sequential bottleneck created by sparse triangular solves remains a problem in the

application of ILU preconditioning.

One possibility to alleviate this sequential bottleneck is the use of Additive-

Schwarz (AS) preconditioning [Dryja & Widlund, 1989]. Broadly, a Schwarz-type

method breaks the problem into many sub-problems which, when solved one-by-one,

form an approximation of the solution of the full problem. The Additive-Schwarz

methods, in particular, allow the sub-problems to be solved completely indepen-

dently. This differs from the Multiplicative-Schwarz methods, which require the

sub-problems to be solved sequentially. In this sense, the additive methods are anal-

ogous to the Jacobi method, and the multiplicative methods are analogous to the

Gauss-Seidel method. For this reason, AS methods are sometimes referred to as

“Block-Jacobi” methods. This is illustrated in Fig. III.5. The white 6× 6 box repre-

sents a matrix, while the yellow portion represents the portion of that matrix used to
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construct the preconditioner. In the left image, the preconditioner is constructed us-

ing only the diagonal of the matrix. While a diagonal matrix is very cheap to invert,

it represents a very small portion of the true matrix, and no coupling is captured

in the preconditioner. Moving to the middle image, 2 × 2 diagonal blocks are cho-

sen. This is still cheap to invert, since 2× 2 matrices have simple explicit solutions,

but more coupling is captured, and the preconditioner represents a larger portion of

the original matrix. One can continue this approach with larger and larger blocks,

leading to better and better performance, until one reaches a size where inversion of

the block is no longer practical. While AS methods have very limited use as solvers,

they are known to perform excellently as preconditioners. This is particularly true

in a parallel computing environment, where the sub-problems can be formed from

the sub-domains allocated to each processor. In this case, the preconditioner can be

built and applied without any communication between the processors, resulting in

a perfectly parallel preconditioner. The linear systems that arise on each processor

are also sparse, and thus may be attacked with a sparse direct solver. In the event

that this is too costly, an ILU factorization may be performed on each processor,

thereby circumventing the aforementioned sequential bottleneck that plagues global

ILU preconditioners.

The most glaring difficulty associated with parallel AS preconditioners is that as

the processor count rises, the diagonal blocks constituting the preconditioner shrink

relative to the size of the overall problem, and the effectiveness of the preconditioner

is diminished. For a self-adjoint elliptic problem, an AS preconditioner (with exact

subdomain solves) is known to reduce the condition number of the global problem
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from O(h−2) to O(h−1H−1) , where H is the subdomain size [Keyes, 1995]. How-

ever, as the number of processors used for a given problem increases (in the sense

of strong scaling), H approaches h, and the condition number approaches O(h−2).

Two methods exist to overcome this difficulty. The first is to include overlap the

subdomain problems by small number of grid layers. With generous overlap, the

condition number may be reduced to O(H−2) [Keyes, 1995]. However, in practice,

as one approaches larger and larger problems, one increases the number of proces-

sors used in proportion (in the sense of weak scaling). Therefore, H ∝ h, and the

condition number effectively still scales as O(h−2). The other approach to overcom-

ing this difficulty is the addition of a coarse-level component to the preconditioner,

in the same spirit as multigrid methods. This, together with generous overlap, re-

duces the condition number to O(1). Typically only one coarse grid is used, and

experience indicates that approximately one coarse-grid point for each processor is

optimal [Keyes, 1995]. While a coarse grid of that size is far too coarse to provide

any benefit with a traditional multigrid method, here it serves not to eliminate the

low-frequency components of the error, but merely to provide some global coupling

between the sub-problems.

In this work, a non-overlapping AS method is supplemented by a coarse prob-

lem formed using the Additive Correction Multigrid (ACM) method [Hutchinson &

Raithby, 1986]. This method is essentially a traditional linear multigrid method using

piecewise constant restriction and prolongation operators [Gjesdal, 1996]. One im-

mediate concern is whether such crude operators are sufficient to provide any benefit.

Indeed, a known result in the multigrid literature is the so-called order rule [Gjesdal,
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1996], which states that the sum of the orders of the restriction and prolongation

operators must exceed the order of the differential equation if true multigrid perfor-

mance is to be obtained. Since the Navier–Stokes equations are second-order PDE’s,

it follows that at least one of the interpolation operators must be piecewise linear in

order to obtain textbook multigrid efficiency (TME); piecewise-constant operators

should be sufficient for the Euler equations. However, it must be stressed here that

the goal is not good multigrid performance, but simply a cheap way to add coupling

between the subdomain problems. Hence, it reasonable to hope that while piecewise-

constant interpolation operators may be too crude for a useful multigrid method for

the Navier–Stokes equations, they may be sufficient to overcome the non-optimal

scaling of the AS preconditioner.

One core difficulty with this approach is that in an AS preconditioning context,

the coarse grid problem is extremely inconvenient to construct. In generating the

diagonal blocks for the AS preconditioner, information about neighboring subdo-

mains is intentionally avoided, because doing so results in additional communication

among the processing elements as well as coding complexity, and the information is

not needed in a pure AS context. Hence, in the event that a developer has already

invested considerable time and money into a well-optimized and verified AS precon-

ditioner, it is unlikely they will be willing to redo some of that work to create a coarse

grid component. Further, this approach has been tried in a parallel, unstructured

grid environment by Venkatakrishnan [1995b], who found that the gains obtained

by using a coarse-grid component based on ACM were completely defeated by the

additional cost of generating and applying the coarse-grid component, and therefore
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did not justify the added complexity.

III.2.1.6. A Novel Preconditioner

A possible way to circumvent the painful generation of the coarse-grid problem is

to attack it with a class of methods known as Quasi-Newton methods. These methods

seek to obtain approximations for the Jacobian (or its inverse) by using readily

available function evaluations. The oldest and most successful of these methods is

Broyden’s method [Broyden, 1969]. The basic idea is to update an estimate for the

Jacobian by requiring that it satisfies a secant condition

As = y,

where s = ∆x is some incremental change in the unknowns, and y = ∆f is some

incremental change in the function f to be zeroed (in our case, this would be the resid-

ual vector). In the method Broyden originally envisioned, the incremental changes

in x and f would come from the difference between the current and previous iterate;

however, in practice, any function evaluations that are available may be used. In one

dimension, the secant condition is enough to uniquely determine the new estimate

for the Jacobian, but in multiple dimensions, it effectively provides one column of

information about the Jacobian, and therefore the update is not unique. The various

Quasi-Newton methods are distinguished by how they uniquely determine an update

that satisfies the secant condition. Broyden himself conceived two methods, which

history has given the unfortunate names of the “good Broyden” and “bad Broyden”

methods. The “good” Broyden update is determined by requiring the least possible
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change in the estimate of the Jacobian, and may be written as

Ak+1 = Ak +
yk −Aksk
||sk||2

sTk .

However, since the update is a rank-one perturbation, the Sherman-Morrison formula

may be used to directly update the estimate of the inverse:

A−1
k+1 = A−1

k +
sk −A−1

k yk

sTkA−1
k yk

sTkA−1
k .

This will circumvent the need to factor the matrix at every iteration. The “bad”

Broyden method instead seeks the least possible change in the estimate of the inverse

of the Jacobian, and may be written as

A−1
k+1 = A−1

k +
sk −A−1

k yk
yTk yk

yTk .

The “bad” method was given this name because Broyden himself found it did not

converge well [Broyden, 1969]. However, later researchers have found that this may

have been due to a mistake, and the “bad” method performs about as well as the

good method on average [Kvaalen, 1991]. Which method is superior seems to be

problem dependent, and in fact, methods have been devised that switch between the

“good” and “bad” methods during the computation, using a simple test to indicate

which will likely perform better.

In this work the Broyden update is applied to the coarse-grid problem, using any

fine grid function evaluations that are available. In this way, the coarse-grid problem

never has to be explicitly formed. Further, the fine-grid function evaluations are

taken directly from the GMRES iterations from previous time steps, so no further

function evaluations are necessary to estimate the inverse of the coarse grid Jacobian.
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To firmly describe the new preconditioner, let us consider the following problem:

Ax = b, (3.7)

where A is a real N × N matrix, and x and b are real vectors of size N . Consider

further that the vector b is a function to be zeroed, and A is its Jacobian, possibly

with a modification such as a diagonal component due to an implicit time-stepping

method. Equation 3.7 is then an approximate Newton method. The coarse grid

problem is formed using a Galerkin approach. The prolongation operator transforms

a vector represented on the coarse grid to the same vector represented on the fine

grid:

Pṽ = v, (3.8)

where P is the prolongation operator, v is a vector of size N represented on the

fine grid, and ṽ is a vector of size Ñ that represents v on the coarse grid. The

prolongation operator used here is linear, and therefore may be interpreted as an

N × Ñ matrix. Substituting Eq. 3.8 into Eq. 3.7, we arrive at

APx̃ = b. (3.9)

The matrix AP is an N × Ñ matrix, and hence the problem (3.9) is overdetermined.

In order to arrive at a uniquely solvable problem, the problem (3.9) is restricted onto

the coarse grid, resulting in

RAPx̃ = Rb, (3.10)

where the Ñ ×N matrix R represents the restriction operator. The Ñ × Ñ matrix

Ã ≡ RAP now represents the left-hand side of the coarse-grid problem, which is

uniquely solvable so long as the matrix Ã is nonsingular.
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Assuming the problem (3.10) is solvable, the coarse-grid solution may be ana-

lytically represented as

x̃ = (RAP)−1 Rb,

and this result is prolongated back to the fine grid:

x = Px̃ = P (RAP)−1 Rb. (3.11)

It follows that the matrix

MACM = P (RAP)−1 R (3.12)

represents an approximate inverse of the system matrix A. This is combined with

the AS component of the preconditioner to form the overall preconditioner:

M = MAS + αMACM, (3.13)

where α is a weighting factor. For this work, it was found that values of α between

0.1 and 1 worked well. Of course, in practice, one would not typically invert the the

matrix RAP, but perform an LU factorization. However, in this work, the inverse

of this matrix will be directly approximated using a Quasi-Newton method.

In the ACM method, the restriction operator typically taken as a summation

over all the control volumes that are to form a single coarse-grid control volume,

and the prolongation operator is taken to be injection. In this manner, the restric-

tion matrix is the transpose of the prolongation matrix. However, this leads to the

awkward situation that restricted matrix entries are much larger than the fine-grid

matrix entries. This is problematic because the final matrix is a weighted average of
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the ACM component and the AS component, and using summation for the restric-

tion operator will result in the ACM component overwhelming the AS component.

This is completely contrary to the spirit of the coarse-grid operator, as it is only

intended to supplement the AS preconditioner. Hence, the restriction operator is

instead chosen to be an average, resulting in coarse-grid matrix entries of the same

order of magnitude as the fine-grid matrix.

As mentioned above, the matrix MACM may be inconvenient to generate in a

parallel context, as it requires not only an update of the AS component, but also

significantly more communication than the AS component normally would. The

generation of MACM may be circumvented by the use of a Quasi-Newton method.

At every step of the GMRES solver, a matrix-vector multiply is performed, giving

us new information about the matrix A:

As = y. (3.14)

The coarse-grid vector s̃ that, when prolongated, forms the vector s is given implicitly

by

Ps̃ = s. (3.15)

Taking the restriction of Eq. 3.15, we find:

RPs̃ = Rs. (3.16)

With the special choice of the restriction operator as an average, the matrix RP

becomes the identity matrix, and the vector s̃ is isolated:

s̃ = Rs. (3.17)
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The reader should note two points. First, if the restriction had been instead chosen to

be a summation, as in a typical ACM method, Eq. 3.17 would have had an additional

diagonal matrix on the right-hand side. Second, while the matrix RP becomes the

identity matrix with this special choice for the restriction, the product PR is not

an identity matrix. Hence, it is somewhat fortunate that Eq. 3.17 called for the

restriction of the prolongation, and not the prolongation of the restriction!

Now that we have isolated the vector s̃, we can substitute its definition into the

secant condition (3.14):

APs̃ = y. (3.18)

Taking the restriction, we find

RAPs̃ = Ry ≡ ỹ, (3.19)

which is exactly a secant condition for the coarse-grid matrix RAP. We have now

proven that, given a pair of vectors s and y for which the secant condition holds

(3.14), these vectors may be restricted to obtain a pair of vectors s̃ and ỹ which

satisfy a secant condition for the coarse-grid matrix. While this is a straightforward

and intuitive result, it bears repeating that for a typical ACM restriction operator,

the math would have been slightly less clean.

The entire preconditioner may now be fully understood by the reader. An AS

preconditioner is first formed by sparse finite differences on each processor. This

component of the preconditioner is frozen for a number of iterations specified by the

user. At each nonlinear iteration, the GMRES algorithm is used in conjunction with

the AS preconditioner. At each iteration of the GMRES algorithm, a matrix-vector
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product is formed in a matrix-free fashion using an nonlinear residual evaluation. The

vector and its Jacobian-vector product are saved, and after the GMRES algorithm

terminates, this pair of vectors is used to enrich the current approximation of the

inverse of the coarse-grid matrix. After a number of nonlinear iterations specified by

the user, the ACM component is added to the AS component of the preconditioner,

thereby improving the global coupling of the AS preconditioner for all nonlinear

iterations thereafter. The ACM component of the preconditioner is not frozen, but is

continually enriched at each nonlinear iteration until the simulation terminates. This

new preconditioner is tentatively referred to as the “AS+BROY” preconditioner.

A few small notes are in order. First, since the coarse-grid component of the

preconditioner is no longer tied to the AS component, as would be the case if the

coarse-grid problem were directly formed in the usual Galerkin sense, the coarse-grid

component is not lost when the AS component is refreshed, and may be improved

without interruption. Second, it was found experimentally that the “bad” Broyden

method consistently outperforms its “good” counterpart when used in this context.

The author can provide no rigorous explanation for this, but intuitively, it seems

reasonable that a least-change update to the inverse of the Jacobian might prove

better than a least-change update to the Jacobian itself in a preconditioning context,

because the preconditioner is intended to approximate the inverse of the Jacobian.
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CHAPTER IV

VERIFICATION AND VALIDATION RESULTS

This chapter presents the results of several test cases intended to show that the

flow solver is able to capture the relevant physics of annular gas seal flows. The

baseline solver has been previously verified and validated extensively for both simple

canonical flows and flows of practical interest; see the dissertations by Carpenter

[2016], Kim [2003] and [Brown, 2016] for an assortment. Thus, we focus here on ver-

ifying the present modifications to the solver and the validation of the ability of the

solver to predict rotordynamic coefficients for annular gas seals. The modifications to

the basic solver are as follows: 1) the option was added to solve the discretized gov-

erning equations and boundary conditions using GMRES with an Additive-Schwarz

preconditioner, and 2) the wall rotation rate and frame rotation rate were decoupled

to facilitate whirling seal flows. For item 1, it is sufficient to show that the new

implicit solver produces the same result as the original solver, and does so in less

time. Item 2 is trivial in it’s implementation. While UNS3D has been shown to

work properly for internal flows, the ability of the baseline solver to correctly predict

rotordynamic forces has not been adequately documented. For this it is necessary

to compare the computed solution against experimental results for several seal flows

of practical interest.

Section 1 shows a comparison of the implicit and explicit options for several

small canonical cases. Section 2 presents validation results for multiple seal flows.
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IV.1. Verification of Implicit Solver

IV.1.1. Verification of Superlinear Convergence

One way to show that an implicit solver is working properly is to demonstrate

that, in the limit of infinite time step, the solver behaves as a Newton solver and

quadratic convergence is achieved. In this case, true quadratic convergence is unlikely

to be achieved for two reasons. First, only first-order differences are used in comput-

ing Jacobian-vector products. Second, double-precision arithmetic is unlikely to be

sufficient, as by the time that the algorithm has settled into quadratic convergence,

machine error has already been reached. Thus, in this case, we will declare victory if

1) superlinear convergence is demonstrated, and 2) a decrease in the 2-norm of the

residual of at least five orders of magnitude can be achieved in a handful of iterations.

Superlinear convergence may be defined as

lim
k→∞

εk+1

εk
= 0,

where ε is some measure of the error, and k is the iteration count. On a plot of the

logarithm of the ε versus iteration count, this manifests as a downward bend in the

curve. If the problem is sufficiently well behaved, we can expect to see the same

behavior in the residual, and we can thus use the residual as a proxy for the error.

It is worth reiterating that superlinear convergence is not expected in practice,

as we will usually use a modest CFL number to take advantage of the continuation

properties of the implicit algorithm. Superlinear convergence is only worth checking

on very small cases, for which good initial guesses are available and which may be

well-solved by the iterative linear solver (GMRES).
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IV.1.2. Evaluation of Preconditioner Effectiveness

IV.1.2.1. Additive-Schwarz Preconditioner

The baseline AS preconditioner is evaluated on a laminar channel flow at a

Mach number of 0.2 and atmospheric conditions. The flow domain is pictured in

Fig. IV.1. The flow enters through the −x face and exits through the +x face.

The sides of the domain are all solid walls, so four boundary layers are present

in the flow. The grid dimensions were 20 points in the streamwise direction, and

100 points in each of the transverse directions, which led to a total of 200,000 grid

points. The initial spacing off the wall was chosen to correspond to a y+ number

of approximately unity. The domain was decomposed among 28 processors. To

initialize the flow, the residual was driven down to a tolerance of 10−6 using the

standard four-stage Runge–Kutta algorithm. The solution was then driven to a

tolerance of 10−11 using both the Runge–Kutta scheme and the implicit solver. The

maximum number of search directions used by the implicit solver was 20, and a

reduction of one order of magnitude was requested at each time step. The CFL

number used by the explicit solver was 2.0, which appeared to be approximately the

stability limit for this problem. The CFL number used by the implicit solver was set

to be practically infinite, so that the implicit scheme approximates a Newton solver.

The results of the two simulations are plotted in Figs. IV.2 and IV.3. The

invisible implicit curve in Fig. IV.2 is not a mistake; the simulation terminates in

approximately 250 iterations, and thus is within the border of the plot. Of course,

this is not truly a fair comparison, because the implicit solver will take far longer per

iteration than the explicit solver. A more fair comparison is in terms of wallclock
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Figure IV.1: Computational grid for the laminar channel flow test case.

time, as shown in Fig. IV.3. Here, we see an improvement of approximately a factor

of 40 in total simulation time.

IV.1.2.2. New Preconditioner

The new preconditioner is evaluated on the same laminar channel flow as the

previous section, but an extremely coarse grid (approximately 500 grid points) is used

to facilitate rapid testing. To determine the effectiveness of the new preconditioner

in reducing the number of GMRES search directions, the solution is advanced from a

constant initial guess for 100 nonlinear iterations using the basic AS preconditioner.

During this time, the Broyden component of the preconditioner is simply “collecting
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Figure IV.2: Convergence rate of the laminar channel flow test case.

data”; that is, the Broyden component is being enriched by every residual evaluation

collected during the GMRES process, but is not contributing to the effectiveness

of the preconditioner. This is done to ensure that the Broyden component of the

preconditioner is sufficiently developed from its starting guess (the identity matrix) so

as to not have a detrimental effect on the convergence of the linear solver. After 100

nonlinear iterations, the Broyden component is added to the preconditioner, and the

solution is driven to a nonlinear residual tolerance of 10−11. The CFL number was set

to 100 for both simulations, and the maximum allowed number of search directions

was set to 50, although neither solver hit this limit. A reduction in the linear residual

norm of two orders of magnitude was required before advancing to the next step.

The weighting factor assigned to the Broyden component was 0.2. The problem
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Figure IV.3: Wallclock time comparison for the laminar channel flow test case.

was decomposed among 28 processors, which is a much larger number than would

normally be used for such a small problem. However, this is precisely the situation

for which the coarse-grid component is needed; only when the number of processors

is so large that the effectiveness of the basic AS preconditioner is diminished is the

coarse-grid component necessary.

The convergence of the GMRES algorithm for both preconditioners is shown in

Fig. IV.4. The basic AS preconditioner achieves a reduction in the linear residual of

two orders of magnitude in 40 iterations, while the new preconditioner requires only

28, an improvement of approximately 41%. It is interesting to note that the difference

in the two curves appears to widen as the iterative solver advances, indicating that

the best benefits from the new preconditioner may be obtained when very deep
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Figure IV.4: Convergence of the GMRES algorithm for the 101st iteration of the

laminar channel problem.

convergence is required from the linear solver. This would be the case when the the

outer nonlinear problem is very stiff.

The number of GMRES search directions required at each nonlinear iteration

of the laminar channel problem is plotted in Fig. IV.5. The “stairstep” pattern is

expected, as the number of iterations is necessarily quantized to integer values. The

reader will notice a sharp initial increase in the number of search directions required.

This is due to the fact that the AS component of the preconditioner is “frozen” for

the duration of this simulation; hence, the effectiveness of this component will be
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very strong shortly after it is computed, but will decay rapidly thereafter. For longer

simulations, the AS component of the preconditioner is updated every few hundred

iterations. For the first 100 iterations, no difference exists between the performance

of the two preconditioners, because the coarse grid component is only being enriched,

and is not contributing to the linear system solution. After 100 iterations, the basic

AS preconditioner requires a flat 40 search directions to achieve a reduction in the

linear residual of two orders of magnitude, while the new preconditioner requires first

28 for approximately 35 iterations, and 27 thereafter. The reduction from 28 to 27

could be completely coincidental, but is in line with the expected behavior of the new

preconditioner, because the Quasi-Newton method should be gradually improving

the coarse-grid component of the preconditioner throughout the simulation. It is

interesting that the new preconditioner seems to approach the effectiveness of the

“fresh” AS preconditioner shortly after its generation.

Next, we test the new preconditioner on the Wright seal, using a very coarse grid

(approximately 200,000 nodes.) The geometry and flow conditions of this problem

will be discussed in detail later in this section. Here, the problem is restricted to

laminar flow. Similar to the above flat plate test case, the flow is converged using a

first order explicit method, then driven down 1 order of magnitude using a second

order explicit method. From there, 100 iterations are performed using the implicit

method, and on the 101st iteration, the preconditoner is switched on. Shown in

Fig. IV.6 is the number of linear iterations required for the 101st step. We again see

a substantial improvement in the number of linear steps required to obtain a given

tolerance.
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Figure IV.5: Improvement in the required number of search directions required fr

the laminar channel problem.

IV.2. Validation of Solver for Annular Gas Seal Flows

IV.2.1. Nelson Seal

The simplest possible geometry for an annular gas seal is a smooth seal, sim-

ilar in concept to journal bearings. In this case, no teeth, grooves, or pockets are

present, and the sealing effect is entirely due to the viscous effects in the seal clear-

ance. The geometry and flow conditions come from tests conducted at Texas A&M

university [Nelson et al., 1986]. For this case, bulk flow results are available from the

reference for comparison.
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Figure IV.6: Improvement in the required number of search directions required for

the Wright problem.

IV.3. Case Definition

The geometry is sketched in Fig. IV.7. The flow enters from the reservoir on the

left, passes through the seal clearance, and exits to the sump on the right. The rotor

is 75.679 mm in radius, the radial clearance of the seal is 1.114 mm, and the seal

is 50.8 mm in length. The stagnation temperature was 305 K, the sump pressure

was 100,000 Pa, and the shaft rotation rate was 52.36 rad/s. The reservoir pressure

and mass flow are linked, and were found by digitizing the data in the reference.

The pairs of stagnation pressure and mass flow rate are shown in Table IV.1. While
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Figure IV.7: Nelson seal geometry.

cases with preswirl were available from the reference, the range given of ζ ± 81 did

not seem plausible, nor was it specific enough to be useful. For this reason, it was

decided that only the zero preswirl cases were worthwhile for comparison.

Table IV.1: Nelson seal operating conditions. [Nelson et al., 1986]

Pres/Psump Pres [Pa] ṁ [kg/s]

1.818 181,800 0.119

2.905 290,500 0.204

4.000 400,000 0.300

4.916 491,600 0.398

5.643 564,300 0.495
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IV.4. Grid Generation

The computational grids for this case were composed of a single structured block

which was algebraically generated, requiring only the clustering function from Chap-

ter III. Table IV.2 gives the grid dimensions for the grid independence study, where

IMAX is the number of points in the axial direction, JMAX is the number of points

in the radial direction, KMAX is the number of points around the circumference,

and ∆s is the radial spacing at the wall, which was chosen to give a y+ number of

approximately unity. In a traditional grid independence study, the number of points

in each direction is refined by a factor of two, resulting in the total number of grid

points increasing by a factor of eight (and the total runtime increasing by a factor

of 16). However, here it was deemed that refining in this manner would produce

either a coarse grid that would be too coarse, or a fine grid that is excessively fine,

so instead a factor of
√

2 was chosen, thereby resulting in an overall factor of eight

increase in the number of nodes from the coarse to the fine grid.

Table IV.2: Grid dimensions for the Nelson seal.

Grid IMAX JMAX KMAX ∆s [m] Total Points

Coarse 50 100 200 8.0×10−7 1,000,000

Medium 70 140 280 5.7×10−7 2,744,000

Fine 100 200 400 4.0×10−7 8,000,000

The results of the grid independence study is shown in Fig. IV.10. Since no more
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Figure IV.8: Overview of the coarse computational grid for the Nelson seal.
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Figure IV.9: Cutaway view of the coarse computational grid for the Nelson seal.
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Figure IV.10: Grid independence study for the Nelson seal.

than a 2% difference was observed in the tangent force between the tested grids, it

was determined that any of the tested grids would be sufficient. Hence, the medium

grid was chosen to generate all the remaining results.

IV.5. Results

The direct stiffness is plotted in Fig. IV.11 with the experimental data and the

accompanying bulk flow results. The reader may notice a small kink in the curves

at the second data point; this occurs because only the first point is at an unchoked

flow condition. The agreement between the present simulations and the experiment
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Figure IV.11: Direct stiffness versus pressure ratio for the Nelson seal. Experimental

results from [Nelson et al., 1986].

is fair (< 20% error), and is within the experimental error bounds for all but the

last two points. Even better, the error is about half that of the bulk flow model on

average, with the exception of the second data point. It is unusual for an untuned

CFD prediction to outperform a bulk flow model. However, it is worth noting that

the direct stiffness is of little consequence for rotordynamic stability.

More important is the direct damping, shown in Fig. IV.12. Here, both models

do an excellent job of matching the experimental data; the CFD simulation performs

better at the low pressure ratios, while the bulk flow model is superior at the high

pressure ratios. The second data point is of note, as it is outside of the general trend

of the data and neither model manages to capture the deviation. The author has no
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Figure IV.12: Direct damping versus pressure ratio for the Nelson seal. Experimental

results from [Nelson et al., 1986].

convincing explanation for the deviation, but proposes that since the flow there is

right on the verge of being choked, the experimental and simulation errors may both

be magnified.

IV.6. Wright Seal

The next step up in complexity is a labyrinth seal with the smallest possible

number of teeth. While such short seals are ideal for CFD validation, rotordynamic

coefficient data for them is rare due to experimental difficulties with maintaining

adequate pressure ratios and measurable forces. However, tests conducted at West-
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inghouse in the late 1970’s [Wright, 1978] found rotordynamic coefficients for a two-

tooth tooth-on-stator labyrinth seal. This dataset is interesting for a few reasons.

First, it was published around the same time as the foundational work by Benckert &

Wachter [1980], so the field was in its infancy when this work was taking place. Sec-

ond, while most authors obtain all four rotordynamic coefficients, Wright obtained

only “radial stiffness” and an “excitation constant” (what later authors might call

the effective direct and cross-coupled stiffness coefficients). These represent com-

binations of the four standard coefficients, and since only one whirling frequency

was tested for each set of flow conditions, there is no way to convert them to the

standard coefficients. While this could be viewed as a weakness of the data, it is

in fact advantageous from the perspective of CFD validation, as we essentially have

direct access to the forces measured during the experiment, rather than the curve-fit

coefficients from many measurements at different frequencies.

IV.6.1. Case Definition

The geometry of the Wright seal is shown in Fig. IV.13. The flow enters from

the reservoir on the left, passes through the clearances of the two teeth of the seal,

and exits to the sump on the right. The rotor is 101.6 mm in radius, the radial clear-

ance of the seal is 0.1585 mm, and the tooth height is 5.0305 mm. The teeth have

a 30◦ chamfer on the back face and a 1.397 mm total thickness, and are spaced 12.7

mm apart. According to the discussion in [Gamal & Vance, 2008], past experiments

and analytical investigations have suggested that seals with tapered or beveled teeth

have superior leakage, and this was likely the working assumption around the time
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Figure IV.13: Geometry of the Wright seal.

of Wright’s experiments. Later experiments provided conflicting evidence; the mat-

ter does not appear to be conclusively settled, and the optimal tooth profile likely

depends on the operating conditions and overall thickness of the tooth.

Table IV.3 gives the reservoir pressures, whirling rates, mass flow rates, radial

stiffness coefficients, and excitation constants used in both the experiments and the

simulations; they are taken from Table 23 in [Wright, 1978]. The exit pressure

was fixed at 103,421 Pa, and the running speed was 30 RPS. The temperature was

not provided in the reference; however, in comparing with similar experiments, a

value of 295 K was selected. The experiments were performed with an amplitude of

oscillation equal to 0.019 mm; however, other references suggest a value of 10% of

the clearance, and so a nearby value of 0.015 mm was selected for the simulations.

No preswirl readings were available from the experiment. While Wright suggests

that, in general, the preswirl velocity is probably around half of the rotor speed, this

estimate assumes that the flow is fully developed. In reality, given the amount of
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time the flow had to develop between the inlet pipe and the seal, it is more likely

that the flow had approximately zero preswirl, and this value was used instead.

Table IV.3: Wright seal operating conditions. [Wright, 1978]

Pres [Pa] Ω [RPS] ṁ [kg/s] Ks [N/m] E [N/m]

117277 13.75 0.00884 8318.5 -3677.6

131076 14.48 0.01387 17004.8 -5043.6

144876 15.20 0.01716 26671.8 -6217.0

158674 15.80 0.01988 35095.4 -7442.8

172473 16.24 0.02242 41592.6 -8090.8

IV.6.2. Grid Generation

The computational grids for this case were composed of three structured blocks

per tooth, as shown in Fig. IV.14. The values for IMAX1, JMAX1, IMAX2, JMAX2,

and KMAX can be specified independently, with the sole restriction that JMAX2

is greater than JMAX1. The blocks are all generated algebraically. Clustering is

added to each solid wall using the algorithm presented in chapter III. In addition,

padding blocks are placed upstream and downstream of the seal in an effort to keep

the truncation boundaries as far from the area of interest as possible. The lengths

of the upstream and downstream padding blocks were 20 and 30 mm, respectively,

and the numbers of axial points used to discretize these blocks were IMAXIN and

IMAXOUT, respectively.
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Figure IV.14: Grid block configuration for labyrinth seals.

As usual, a grid independence study was undertaken to determine a good com-

promise between accuracy and computational cost. The dimensions of the grids used

in the study are listed in Table IV.4. As with the Nelson seal, refining each direction

by a factor of 2 was deemed excessive. In this case, a factor of 3
√

2 was used, so

that the total number of grid points increased by a factor of two between subsequent

grids.

The results of the grid independence study are shown in Fig. IV.17. This study

is performed at the conditions corresponding to the lowest reservoir pressure in Ta-

ble IV.3. The convergence is oscillatory, but the error is clearly decaying with the

number of grid points, and there is no more than a 5% difference between the fine

and superfine grids, so the fine grid was chosen for subsequent computations.
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Figure IV.15: Overview of the computational grid for the Wright seal.

Table IV.4: Grid dimensions for the grid independence study for the Wright seal.

Grid I1 J1 I2 J2 IIN IOUT K ∆s [m] Total Points

Coarse 26 22 41 61 14 20 126 2.38×10−6 1,618,875

Medium 33 28 52 77 17 25 159 1.89×10−6 3,279,290

Fine 41 35 65 97 21 31 201 1.50×10−6 6,540,600

Superfine 52 44 82 122 27 39 253 1.19×10−6 13,129,704
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Figure IV.16: Cross-section view of the computational grid for the Wright seal.
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Figure IV.17: Grid independence study for the Wright seal.
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IV.6.3. Results

The predicted effective radial stiffness for each pressure difference from Ta-

ble IV.3 is plotted against the experimental results in Fig. IV.18. The agreement

is quite good: the simulation overpredicts the stiffness, but only by 12-20%, and

the slope matches well. However, once again, the radial stiffness is of little con-

sequence to the stability of the rotor. More important is the excitation constant

shown in Fig. IV.19, where the simulation underpredicts the experimental value by

nearly half. However, it is worth reiterating that bulk flow predictions often show

errors of over 100%, and so the discrepancy shown here is within reason. Putting

aside the sources of error certainly present in the experiment itself, the discrepancy

in Fig. IV.19 can likely be attributed to the inability of a two-equation turbulence

model to adequately capture fully separated flows.
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Figure IV.18: Effective radial stiffness versus pressure difference for the Wright seal.

Experimental results taken from [Wright, 1978].
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Figure IV.19: Excitation constant versus pressure difference for the Wright seal.

Experimental results taken from [Wright, 1978].
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CHAPTER V

CONCLUSIONS

This chapter presents conclusions that may be drawn from the previous chap-

ters. In this dissertation, solver improvements to an existing Navier–Stokes code are

described, and a new preconditioner was developed that combined a Quasi-Newton

method with the Additive Correction Multigrid method to improve the subdomain

coupling of an Additive-Schwarz preconditioner. The new preconditioner was shown

to improve the number of linear system iterations required at each nonlinear step of

the Navier–Stokes code, and the overall runtime, for viscous problems. The improved

solver was used to predict the rotordynamic coefficients of several realistic seal flows

from the literature, and the results are compared against the associated experiments.

The following conclusions may be drawn from this work:

1. The implicit time-integration method was shown to provide superlinear conver-

gence for small problems, even in conjunction with the turbulence model. This

should not be expected to carry over to typical simulations, partly because the

models are segregated, but also because modest timesteps are used in practice.

2. The implicit method, together with the AS preconditioner, was found to offer

up to 40 times improvement in wallclock time over the existing explicit solver

for real problems. While this is probably the upper bound of the improvement,

one can expect improvements of five to ten times for harder problems.

3. The new preconditioner improves the coupling of the subdomains in the AS
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preconditioner, and was found to offer substantial improvements in the number

of GMRES iterations necessary for convergence within each global nonlinear

iteration. Smaller, but substantial, benefits were seen in overall runtime.

4. The predicted rotordynamic coefficients showed excellent agreement with the

experimental results for a smooth seal. This is likely because the flow is com-

pletely attached. The predictions for the simple labyrinth seal showed good

agreement for the radial forces, but poor agreement for the tangential forces.

This is likely due to the separated nature of the flow.
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CHAPTER VI

FUTURE WORK

The goal of this work was to improve the runtimes of a Navier–Stokes code using

advanced solvers with new preconditioners. The following work is recommended to

further this goal:

1. The preconditioner has not been optimized in the sense of minimizing com-

munication. Much can likely be gained by seeking opportunities to reduce the

frequency of MPI calls.

2. Methods should be investigated to estimate the optimal weighting factor for

the combined preconditioner.

3. The flows studied herein are likely outside the realm of applicability of the SST

turbulence model. The effect of the turbulence model choice on labyrinth seal

flows should be investigated.
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