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ABSTRACT 

   

Flood inundation is widely acknowledged as a significant factor in the healthy 

functioning of floodplains. However, increasing human activities, particularly over the 

past several decades, have threatened the original river systems. Analyzing inundation 

patterns of floodplains can provide insights into the planning for unregulated floodplains, 

or restoration strategies for destroyed floodplain ecosystems. A case study was conducted 

to examine the inundation patterns of the Mission River Floodplain (MRF) in both the 

spatial and temporal dimensions. In this study, we proposed a weighted approach to derive 

the flood inundation frequency and examined its relationship to the coastal ecosystems. 

Exceedance probabilities of the Mission River were calculated based on daily flow from 

water year 1939 to 2018. Then, flood-inundation information was extracted from 135 

multitemporal Landsat satellite images acquired between 1984 and 2018 to create an 

inundation frequency map, with weights derived from the exceedance probabilities. The 

inundation frequency map was jointly analyzed with several factors to determine the 

spatial patterns of inundation. Results reveal a strong relationship between inundation 

frequency and land cover, as well as soil types. Inundation frequency exhibited a stronger 

relationship with elevation than slope. To examine the temporal patterns of inundation, a 

multiple linear regression model for inundation percentage was generated. Result reveals 

a strong relationship between inundation percentage and discharge or precipitation. Long-

term inundation dynamics were determined based on historical discharge and precipitation 

records. Understanding the spatial and temporal patterns of flood inundation is essential 
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for effective ecological restoration and management of coastal riverine ecosystems, and 

thus, for achieving their sustainability in the presence of the changing nature of flood 

events.   
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1. INTRODUCTION 

Floodplains are flat areas adjacent to rivers or streams that flood during periods of 

high discharge. Floods could leads to significant and negative social-economic impacts at 

a global scale (Wu et al., 2014). Hoverer, not all floods are associated with natural 

disasters. Floodplain flow is essential for the healthy functioning of river systems, which 

affects water balance and floodplain ecologies (Alsdorf et al., 2007; Chormanski et al., 

2011). Regular floods contribute to the lateral interaction of organic matter and nutrients 

between water and land, resulting in the high productivity of floodplain ecosystem (Junk, 

Bayley, & Richard, 1989; Tockner, Malard, & Ward, 2000). Floods can disperse seeds, 

deposit nutriments around roots of plants in the floodplain, and enable aquatic creatures 

to colonize different habitats (Huang, Chen and Wu et al 2014), thus contribute to the 

prosperity of flora and fauna communities.  

In the past decades, intervene of human has already accelerated or decelerated 

natural processes, altered and destroyed floodplain ecosystems (Callan & Friedl, 2008; 

Syvitski et al., 2012, Gibbs et al., 2016). To maintain the floodplain ecological diversity 

and restore damaged aquatic habitats, it is important to identify the natural inundation 

dynamics of rivers and their associations with floodplain communities (Benke et al., 2000; 

Robertson et al., 2001; Overton, 2005). Inundation dynamics refer to the spatial and 

temporal pattern of inundation events. The temporal pattern includes the timing, 

frequency, and duration of inundation throughout the floodplain. The spatial pattern 

describes the area that is likely to be inundated (Benke et al., 2000). Determining 

inundation patterns among different river-floodplain ecosystems requires long-term 
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observations. Monitoring the inundation dynamics allows for better understanding of the 

structural and functional aspects of river-floodplain ecosystems (Benke et al., 2000).  

In situ measurement is crucial to understand inundation dynamics of surface water, 

and has the advantage of high accuracy. However, it is hard to obtain a synoptic view of 

rivers especially in sparsely gauged regions. In situ measurements for river discharge 

provide only one-dimensional observations of inundation and storage, which cannot been 

applied in complex floodplains or wetland to measure the three-dimensional process 

varying in both space and time (Alsdorf et al., 2007). Furthermore, the difficulty of 

establishing spatial relationships between the main channel and connected floodplains 

greatly constrains the applicability of in situ measurements (Huang et al., 2014). It is also 

expensive and time-consuming to monitor long-term wetland dynamics using in situ 

measurement (Halabisky et al., 2016).  

Remote sensing has become an effective and efficient tool in ground water 

observations (Ji et al., 2009; Chen et al., 2013; Huang et al., 2014; Lettenmaier et al., 

2015). Remote sensing enables both fine-scale and large-scale water bodies mapping with 

spatial continuity, and provides long-term continuous monitoring of variations that are 

impossible or expensive to conduct with in situ measurement (Overton, 2005; Alsdorf et 

al., 2007; Lettenmaier et al., 2015). Time-series remote sensing provides insights into the 

dynamics of surface water changes, from which we can better understand the hydrology 

and ecology of wetland systems (Ward et al., 2014). An integration of remote sensing data 

and in situ measurements can lead to better insights of floodplain inundation dynamics, 
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flood monitoring and other hydrological applications (Ordoyne & Friedl, 2008; Huang et 

al., 2014). 

Inundation extent and inundation frequency are the two broad categories that most 

previous studies have measured (Ordoyne & Friedl, 2008; Gibbs et al., 2016). Inundation 

extent varies with the topography, tide, human alteration and duration of the flood wave 

(Syvitski et al., 2012), which is closely related to the prosperity of flora and fauna 

communities in river-floodplain systems (Chormanski et al., 2011; Zhao et al., 2011; 

Huang et al., 2014). Monitoring the long-term variations in inundation extent allows for 

detecting fluctuations concealed from investigation based on only one or few satellite 

images (Song, et al 2018). Several studies (Gibbs et al., 2017; Song et al., 2018) have used 

remotely sensed data to map the wetland inundation dynamics at global or local scale. 

However, they failed to link the inundation dynamics with the ecological factors such as 

vegetation and wetland types, which is crucial to analyze the ecological impacts of 

inundation dynamics (Chen et al., 2014; Jin et al., 2017). Some others (Chormanski et al., 

2011; Chen et al., 2014; Ward et al., 2014; Tulbure et al., 2016; Jin et al., 2017) related 

inundation dynamics with factors including vegetation types and distribution, wetland 

types, tide and precipitation. They examined the association between the advance or retreat 

of surface water and the distribution or condition of vegetation, but failed to consider the 

influence of different inundation frequency.  

Inundation frequency is a significant characteristic of floodplain inundation 

(Huang et al., 2014). Primary production within floodplains is associated with changes to 

flood frequency (Robertson et al., 2001). Measuring inundation frequency in the past 
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allows for determining environmental water requirements of the floodplain-river system 

(Huang et al., 2012). Several previous studies (Ward et al., 2014; Tulbure et al., 2016; 

Song et al., 2018) have applied time-series remote sensing data to generate inundation 

frequency maps at local scale. Their products provided valuable information for 

understanding long-term inundation dynamics, but none of them considered the impacts 

caused by temporal bias of observations when creating inundation frequency maps.  

Temporal bias means when creating inundation frequency maps, factors including 

revisit period of the satellite, cloud cover and the observation length (Overton, 2005; 

Chormanski et al., 2011) are not considered, and thus, the results could be temporal biased 

and may not be able to accurately represent the inundation frequency of a longer period. 

Landsat data is among the most widely-used optical sensors for water resources 

observations (Feyisa et al., 2014). However, Landsat cannot capture all ephemeral flood 

events including the peaks and retrieves due to the 16-day revisit time (Overton, 2005; 

Hui et al., 2008; Tulbure et al., 2016). Song et al. (2018) noted that the number of cloud-

free images in wet seasons is typically less than that in dry seasons. If remotely sensed 

data cover a relatively dry period, it will lead to the underestimation of the inundation 

frequency and the simulated future inundation probability, and vice versa (Huang et al., 

2014). Other studies have also stressed the importance of accounting for seasonality across 

dry and wet years (Ji et al., 2009; Tulbure et al., 2016). Song et al. (2018) assigned 

different weights to the images acquired in dry and wet seasons. However, the derived 

water frequency maps could be biased in their study.     
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This study is designed to examine the both the spatial and temporal patterns of 

floodplain inundation by creating an inundation frequency map and deriving long-term 

inundation dynamics. The main objectives of this study are to: 

(1) Examine the long-term inundation dynamics of the Mission River Floodplain 

(MRF), integrating Landsat satellite data, river discharge and precipitation.  

(2) Analyze the relationship between inundation frequency and land-cover types, 

soil types, elevation and slope. 
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2. STUDY AREA AND DATA 

 

2.1 Study Area 

Mission River is a lowland meandering river flowing through the coastal plains of 

Texas to its mouth on Mission Bay (Fig. 1). It flows on undulating coastal prairies covered 

by loam, clay, and sand. The floodplain provides habitats for a variety of species of 

waterfowl, mammals and aquatic creatures. Mean monthly temperature ranges from 

15.6℃ in January to 27.7 ℃ in August. Mean annual precipitation is 1016 mm within the 

floodplain, with a mean monthly precipitation ranging from 38 mm in March to 177 mm 

in September (https://www.usclimatedata.com/climate/refugio/texas/united-

states/ustx1129). In the study area, there is a United States Geological Survey (USGS) 

gauge station (USGS 08189500). Mean river discharge is 2.0 m3/s based on the records 

from the gauge station. The low-relief floodplain is susceptible to floods induced by 

meteorological and hydrological events. The river discharge increases dramatically when 

flood events occur. The largest flood event during the study period was in September 2001, 

with a peak discharge of 786.55 m3/s.  

The study area for inundation analysis was the coastal region of the Mission River 

Floodplain (MRF), located between 28°15'24.9"N 97°18'42.4"W and 28°09'41.2"N 

97°09'44.0"W (Fig. 1). The determination of the study boundary was based on the 100-

year-flood boundary for Refugio Country, Texas, which was obtained from the Flood 

Insurance Study supported by Federal Emergency Management Agency (FEMA; 

https://msc.fema.gov/portal/search). To examine the influence of tree-canopy cover of the 

https://www.usclimatedata.com/climate/refugio/texas/united-states/ustx1129
https://www.usclimatedata.com/climate/refugio/texas/united-states/ustx1129
https://msc.fema.gov/portal/search
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study area, we downloaded the Land Cover Database (NLCD) 2011 Percentage Tree 

Canopy – Cartographic (USDA Forest Service Remote Sensing Applications Center & 

U.S. Geological Survey, 2015). Because optical sensors have limited ability of penetrating 

tree canopy to detect the water bodies (Di Vittorio & Georgakakos., 2017), we excluded 

the upstream area of Mission River within the FEMA 100-year-flood boundary, where the 

mean canopy-cover percentage was above 50%.  

 

 

Fig. 1 Map of coastal region of the MRF within FEMA 100-year-flood boundary. 
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2.2 Datasets and preprocessing 

Four types of data were used in this study: in situ measurements, satellite image 

data, land cover related products, and digital elevation model (DEM) derived products. 

2.2.1 In situ measurements 

The in situ measurements considered in this study include river discharge and 

precipitation data. The discharge data were acquired from a United States Geological 

Survey (USGS) gauge station (USGS 08189500) at Refugio, Texas, including daily mean 

discharge from water year 1984 to 2018. The discharge time series is shown in Fig. 2, in 

which discharge values at the date of Landsat images acquisition were highlighted.  

 

 

Fig. 2. River discharge from 1984 to 2018 and river discharge at the image acquisition 

date. Different color of dots represent images captured by Landsat 5, Landsat 7 and 

Landsat 8 satellite. The upper dash line represents 10-year-flood boundary, and the lower 

dash line represents 3-year-floood boundary. 

 

The precipitation data were acquired from three National Oceanic and 

Atmospheric Administration (NOAA) meteorological station (USC00417529, 

USC00417533 and USC00417530) at Refugio, TX, including daily precipitation  
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measurements between 1984 and 2019. Both the river gauge station and the 

meteorological station were the closet stations of their respective types to the study area 

(Fig. 1). However, the precipitation data since August 2017 was not continuous.  

 

2.2.2 Remotely sensed data  

The satellite image data used in this study consisted of Landsat and PlanetScope 

images. The Landsat data included Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI 

images acquired between 1984 and 2018. We analyzed at total of 135 Landsat images 

(Table 1). The Landsat data used in this study were top-of-atmosphere (TOA) reflectance 

images, provided through and partially analyzed within Google Earth Engine 

(https://earthengine.google.com/). The spatial resolution of these Landsat images is 30 m, 

and the temporal resolution is 16 days. All Landsat images analyzed were cloud-free over 

water bodies. The acquisition time of each Landsat image was shown in Fig. 2. 

The PlanetScope constellation is operated by Planet Company, which consists of 

more than 120 PlanetScope satellites (Planet Team, 2018). Most of the current satellite 

sensors are limited in providing water observations with both spatial and temporal 

consistency (Heimhumber, Tulbure, & Broich, 2018). However, PlanetScope data 

overcomes this obstacle. The high spatial resolution (3 m) and temporal resolution (daily) 

of PlanetScope imagery enables fine-scale dynamic monitoring of ground features. 

Previous studies (Houborg & McCabe, 2016; Cooley et al., 2017) have demonstrated the 

potential of PlanetScope data in monitoring changes in small water bodies. In this study, 

2 cloud-free PlanetScope images were used to assess the accuracy of the water extents 

https://earthengine.google.com/
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extracted from the Landsat images. Inundation percentage derived from 18 PlanetScope 

images were used to validate the regression model of inundation created in section 4.2.  

 

Table 1. Satellite Imagery Summary. 

Sensor type Numbers of 

images 

Year  Spatial 

resolution (m) 

Purpose 

Landsat 5 TM 

Landsat 7 ETM+ 

Landsat 8 OLI 

PlanetScope 

98 

16 

21 

18 

1984 - 2011 

1999 - 2003 

2013 - 2018 

2017 - 2019 

30 

30 

30 

3 

Inundation Analysis 

Inundation Analysis 

Inundation Analysis 

Validation 

 

 

2.2.3 Land cover related products 

Land cover related products used in this study included soil classification data and 

land-cover classification data. The soil classification was obtained from the Web Soil 

Survey supported by the Natural Resources Conservation Service (NRCS) 

(https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx/). The soil 

classification map provided detailed information regarding soil, including composition, 

elevation, slope, depth, available water storage, permeability, etc. The dataset was jointly 

analyzed with the inundation frequency map to examine the spatial pattern of inundation. 

The existing land-cover classification product used in this analysis was obtained 

from the Ecological Mapping Systems (EMS), generated by the Texas Parks and Wildlife 

Department (TPWD) (https://tpwd.texas.gov/landwater/land/programs/landscape-

ecology/ems/). The spatial resolution of this classification map is 10 m, which combined 

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
https://tpwd.texas.gov/landwater/land/programs/landscape-ecology/ems/
https://tpwd.texas.gov/landwater/land/programs/landscape-ecology/ems/
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National Agriculture Imagery Program (NAIP) photographs, ground-reference data, 

enhanced satellite classification, landform-modeling efforts, and other ancillary data.  

There are 42 land-cover classes within the MRF. We applied a class-merging 

operation to the classification map, reducing the number of land-cover classes from 42 to 

13 classes. The major feature classes within this study included forest, woodland, 

shrubland, grassland, tidal/non-tidal wetland, open water, and anthropogenic. The 

merging process was based on the geographic position and ecological character of the 

feature classes. Because crops, urban area, and barren only dominated a few pixels, we 

merged these three classes to an anthropogenic class. The merging criterion for wetlands 

was based on whether such areas are influenced by tides. The class merging for vegetation 

was more complicated. First, we determined four categories: forest, woodland, shrubland, 

and grassland. Then, we determined several sub-classes within these four categories. The 

criterion was based on whether the vegetation belonged to evergreen or deciduous, as well 

as the geographic location of the vegetation. After class merging, the vegetation classes 

within the study area include mixed forest, hardwood forest, live oak forest, upland 

deciduous woodland, upland mesquite woodland, evergreen shrubland, deciduous 

shrubland and grassland. The last step was to assign each class into the categories listed 

above. 

2.2.4 DEM derived products 

The DEM data used in this study was obtained from the National Elevation Dataset 

(NED) released on December 4, 2012. NED was mainly derived from USGS 10-meter 

and 30-meter DEMs. The spatial resolution of NED varies depending on location. The 
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spatial resolution of NED for our study area is 1/3 arc-second (approximately 10 meters; 

United States Geological Survey, 2013). Slope can be defined as the rate of maximum 

change in z-value from each cell. The slope information was derived from NED through 

Slope function in ArcGIS 10.4. Due to the different spatial resolution between Landsat 

data and NED derived product, the DEM and slope data were resampled to 30 m, and then 

referenced to Landsat images.  
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3. METHODS 

 

3.1 Extracting water pixels  

The first step of deriving the inundation frequency map is to extract water pixels from 

satellite images. Among the most commonly-used water indices to extract water bodies 

from Landsat imagery are the Normalized Difference Water Index (NDWI) 

(McFEETERS, 1996) and the Modified Normalized Difference Water Index (MNDWI) 

(Xu, 2006). These two respective indices are calculated as follows: 

                    𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
                                                      (1) 

                    𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑀𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑀𝐼𝑅
                                                   (2) 

where Green is the green band, NIR is the near-infrared band, and MIR is the mid-infrared 

band. Compared to NDWI, MNDWI can better remove noise associated with built-up 

areas, vegetation, and soil, and MNDWI can generate higher water extraction accuracy 

than NDWI in most cases (Xu, 2006). Pixel values range from -1 to 1 after applying 

MNDWI, and a value of 0 has been suggested to be the default threshold for open 

waterbodies (Xu, 2016). However, waterbodies within the Mission River Floodplain 

(MRF) are much complicated, as they include wetlands, rivers, lakes, aquatic beds, and 

unconsolidated shore. Using a threshold of zero misses many details and underestimates 

the water-flooded extent (Ji et al., 2009; Huang et al., 2014). 
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The MNDWI threshold used for this study was -0.1. Setting of this threshold was 

based on the Landsat image-derived water-extraction results and visual interpretation of 

water in synchronous PlanetScope imagery, which has a spatial resolution of 3 m (Fig. 

3(a) and (b)). Previous studies have also suggested -0.1 as the MNDWI threshold to use 

for extracting water from floodplain and wetland environments (Huang et al., 2014; Song 

et al., 2018). Thus, we applied a uniform threshold value of -0.1 to all Landsat image-

derived MNDWI images over the 1984-2018 time period within the Google Earth Engine 

environment (Fig. 3(c) and (d)). To better ensure the accuracy of the water-extraction 

maps, visual inspection and manual editing was applied to remove/correct the 

misclassified pixels based on PlanetScope images.  

PlanetScope imagery was used as the validation data source in this study. The most 

distinctive advantage of PlanetScope imagery is the 3 m spatial resolution and the daily 

revisit capability, which makes it a useful data source to validate the accuracy of Landsat-

derived data products in this study. However, due to the poor radiometric quality 

introduced by the inexpensive sensors and the limited spectral resolution (Houborg & 

McCabe, 2016), it is difficult to accurately extract waterbodies from PlanetScope images 

using a constant threshold. Thus, approximate water boundaries within each PlanetScope 

image were derived by setting an upper threshold for the near-infrared band. The 

determination of the threshold was based on on-screen interpretation of the digital 

numbers (DNs) of most of the waterbodies in a given image. Then, manual delineation 

was implemented to modify the misclassified pixels (Fig. 3(c) and (d)). These steps were 

conducted for all the PlanetScope images used in this study. 
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(a)                                                                     (b) 

  
 

(c)                                                                     (d) 

  

Fig. 3. (a) Landsat OLI image of the MRF; (b) water extraction from Landsat image using 

MNDWI; (c) PlanetScope image of the MRF; (d) water extraction from PlanetScope 

image using thresholding and manual editing. Note that both of the images were acquired 

on 12/09/2017, and the mean daily river flow was 0.15 m3/s.  

 

3.2 Deriving inundation frequency map  

Accurate calculation for the inundation frequencies for all pixels based on Landsat 

observations is a significant part of deriving an inundation frequency map. Inundation 

frequency describes how often an area is submerged by the floodwater (Huang et al., 

2014). For each pixel, inundation frequency is defined as the ratio of the number of 

observations in which detected as water to the number of total observations, which ranges 
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from 0 to 100 percent. For the imagery, this means that the inundation frequency is the 

counts of inundated time divided by all the Landsat observations within the study period. 

This approach is straightforward and easy to operate. Many previous studies have 

calculated inundation frequencies with this approach (Tulbure et al., 2016, Jin et al., 2017; 

Heimhuber et al, 2018). However, if we use all the available satellite observations to 

derive an inundation frequency map, we would face the problem that the temporal 

distribution of every available image is uneven, and the result can be temporal biased (i.e., 

more observations in dry season than that in wet season). Song et al. (2018) also mentioned 

this problem in their study. They assigned higher weights to the observations in pre-wet 

season, which had less cloud-free images than that in dry season. Thus, the water 

frequency map still could be biased in their study.  

To solve this problem, we proposed a weighted approach to incorporate Landsat 

observations and gauge measurements. Daily flow time series from water year 1939 to 

2018 were reordered from the lowest value to the highest value, and each discharge value 

was assigned with a rank starting from 1 to the largest value of discharge. The exceedance 

probabilities of the Mission River were calculated based on the instruction provided in a 

USGS report (U.S. Geological Survey., 2008), which is calculated as follows: 

                             𝑃 = 100
𝑀

𝑁+1
                                                         (3) 

where 𝑃 is the exceedance probability, 𝑀 is the ranking position on the list, and 𝑁 is the 

total number of daily mean flows. Exceedance probabilities were divided into 22 ranges, 

based on which the discharges were also divided into 22 ranges (Table 2). 
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Table 2. Calculations to derive the weights. 

 

 

Each Landsat image was matched with a river discharge measured on the date of 

image-acquisition. The number of Landsat images falling in each range was calculated. 

Ideally, the number of Landsat images in a discharge range should be in proportional to 

the number of flow data in the same range. However, it is difficult to realize due to the 

availability of Landsat data. Thus, less weights should be assigned to the images in the 

range that received more number of observations than others, and vice versa. This means 

Flow 

conditions 

Exceedance 

probabilities 

（P; %） 

Discharge range  

(Q; m3/s) 

Number of flow 

data in the range 

(Mi) 

Number of 

images in the 

range (Ni) 

Weight 

( Wi) 

Low  

flow 

 

P ≥ 99 

95 ≤ P < 99 

90 ≤ P < 95 

0 < Q ≤ 3.0e-4 

3.0e-4 < Q ≤ 9.4e-3 

9.4e-3 < Q ≤ 0.05 

320 

1124 

1479 

2 

5 

7 

0.56 

0.78 

0.74 

 

Dry 

conditions 

 

 

 

85 ≤ P < 90 

80 ≤ P < 85 

75 ≤ P < 80 

70 ≤ P < 75 

65 ≤ P < 70 

60 ≤ P < 65 

0.05 < Q ≤ 0.07 

0.07 < Q ≤ 0.10 

0.10 < Q ≤ 0.12 

0.12 < Q ≤ 0.14 

0.14 < Q ≤ 0.17 

0.17 < Q ≤ 0.21 

1465 

1532 

1426 

1323 

1445 

1427 

2 

2 

2 

8 

11 

6 

2.55 

2.67 

2.48 

0.58 

0.46 

0.83 

Mid-

range 

flows 

 

55 ≤ P < 60 

50 ≤ P < 55 

45 ≤ P < 50 

40 ≤ P < 45 

0.21 < Q ≤ 0.26 

0.26 < Q ≤ 0.31 

0.31 < Q ≤ 0.37 

0.37 < Q ≤ 0.45 

1451 

1675 

1141 

1565 

3 

8 

6 

9 

1.68 

0.73 

0.66 

0.61 

 

 

Moist 

conditions 

 

 

 35 ≤ P < 40 

30 ≤ P < 35 

25 ≤ P < 30 

20 ≤ P < 25 

15 ≤ P < 20 

10 ≤ P < 15 

0.45 < Q ≤ 0.54 

0.54 < Q ≤ 0.65 

0.65 < Q ≤ 0.82 

0.82 < Q ≤ 1.08 

1.08 < Q ≤ 1.51 

1.51 < Q ≤ 2.72 

1352 

1526 

1457 

1401 

1312 

1450 

8 

8 

6 

11 

10 

8 

0.59 

0.66 

0.85 

0.44 

0.46 

0.63 

 

High  

flow 

5 ≤ P < 10 

1 ≤ P < 5 

 P < 1 

2.72 < Q ≤ 7.94 

7.94 < Q ≤ 76.84 

 Q > 76.84 

1424 

1149 

286 

2 

6 

5 

2.48 

0.67 

0.20 
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weight is positively related to the number of flow data falling in each discharge range, but 

negatively related to the number of images falling in the range, which was calculated as:  

                             𝑊𝑖 =
𝑀𝑖

𝑇
·

1

𝑁𝑖
                                                       (4) 

where 𝑊𝑖 is the weight, 𝑀𝑖 is the number of river flow data in the discharge range, 𝑁𝑖 is 

the number of images in a discharge range, and 𝑇 is the total number of river flow data. 

Inundation frequency was the stacking of each image timed the weights, which ranged 

from 0 to 100 percentage. 

 

3.3 Analyzing relationships between inundation and discharge or precipitation 

Quantifying the relationship between inundation extent and hydrological factors is 

essential to examine the long-term floodplain dynamics. Discharge is among the most 

important factors that influences the extent of floodplain inundation (Benke et al., 2000; 

Overton et al., 2009; ward et al., 2014). Benke et al (2000) built a linear regression model 

between gauge-measured discharge and inundation percentage estimated during flood 

events, and found a strong relationship between these two variables (r2 = 0.98). However, 

previous studies found that there was a delay between measured increase in river discharge 

and subsequent inundation extent in the downstream, and the delayed time related to the 

scale of the floodplain (Overton et al., 2009; Huang et al., 2014). This means downstream 

region could be inundated several hours or few days after a flood event measured by a 

gauge station in the upstream. On the other hand, actual inundation extent would not 

decrease as rapidly as river discharge due to the retained water in residual pools (Benke et 
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al., 2000). Thus, the river discharge measured on the same day of image acquisition may 

not be appropriate to build regression model.  

Consider the influence of the retained water after flood events, and the time lag 

between measured discharge and floodplain inundation, we calculated mean daily 

discharges of 1 to 15, 20, 25 and 30 days prior to the date of image acquisition. Linear 

regressions were built between mean daily discharges and inundation extents estimated 

from Landsat images. The coefficient of determination (r2) of the regressions used to 

determine the discharge-inundation relationship.  

Precipitation is a significant factor that influence floodplain inundation (Ward et 

al., 2014;Song et al., 2018). Both short-term and long-term cumulative precipitation will 

influence the percentage of water inundation (Jin et al., 2017). Short-term precipitation 

has direct impacts on floodplain inundation through surface water runoff. Long-term 

precipitation will affect the floodplain inundation through surface water storage in 

catchments and soil moisture (Jin et al., 2017). Same process was applied to cumulative 

precipitation data from 1 to 30 days to determine the precipitation-discharge relationship.  

Because both discharge and precipitation will influence on the inundation extent, 

a multiple linear regression with two predictor variables (mean daily discharge and 

cumulative precipitation) was built. We used all combinations of mean discharge and 

accumulative precipitation with different time lags (1-15, 20, 25, 30 days) and inundation 

percentage to build regressions, which means 324 regressions in total were created. The 

regression with highest r2 was selected as the model to predict inundation percentage based 

on mean discharge and cumulative precipitation. 
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3.4 Accuracy assessment 

Two parts of accuracy assessment were included in this study. One was to assess 

the accuracy of the water-extraction maps from Landsat images. Influenced by the highly 

dynamic water extent in most floodplain environments, assessing the accuracy of 

inundation maps is more difficult relative to validating other remote-sensing products (Jin 

et al., 2017). To quantitatively assess the Landsat image-based water-extraction accuracy, 

two cloud-free, high-spatial-resolution PlanetScope images acquired at the date of Landsat 

images were selected as reference data. Cooley et al. (2017) found that PlanetScope 

images entail a positional error of <10 m RMSE. Thus, the PlanetScope images used in 

this study were georeferenced to synchronous Landsat images. Due to the different spatial 

resolutions of these two satellite data types, all Landsat images were spatially resampled 

to 3 m using nearest neighborhood method. Producer’s accuracy and user’s accuracy were 

calculated in order to assess the Landsat image-based water-extraction accuracy. 

Producer’s accuracy represents how well the water bodies on the ground are classified in 

the Landsat imagery. User’s accuracy represents how well the water pixels classified from 

Landsat imagery actually represents the water bodies on the ground (Congalton, 1991).  

Another part of accuracy assessment was to validate the multiple linear regression 

model created in section 3.3. Inundation percentage of 18 PlanetScope images acquired 

between 2017 and 2019 were calculated. Cumulative precipitation of 5 days and mean 

discharge of 12 days prior to the PlanetScope image acquisition were calculated. Then, 

the inundation percentage was estimated using the regression model, and compared to the 

inundation percentage derived from the PlanetScope images.  
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4. RESULTS 

 

4.1 Flood inundation frequency map 

Fig. 4 showed the inundation frequency map of the Mission River Floodplain 

(MRF) over water year 1984 to 2018, which consisted of 135 scene of Landsat images 

with different weights. To better visualize the spatial pattern of inundation, the inundation 

map was divided into 10 ranges using the Geometrical Interval function in ArcGIS 10.4. 

The mean inundation frequency for the entire study area was 20.1%. After excluding open 

water bodies (rivers, lakes) from the map, the mean inundation frequency for the 

remaining area was 10.7%. It was observed that there was a gradient of increasing 

inundation frequency from the upstream of the Mission River to the coast. An area of 7.5  

km2 (17.7%) was never inundated after excluding open water bodies, most of which 

located in the upper portion of the study area. Only 5.5% of the area (2.3 km2) was 

inundated more than 50% of the time over the period, most of which located at the mouth 

of the Mission River. It also showed that the area close to the main river channel had a 

relatively low inundation frequency comparing to the surrounding floodplain.    
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Fig. 4. Flood Inundation Frequency Map of the MRF. 

 

Although the upstream of Mission River with high canopy-cover rate was not 

included in this study, the observation to the lower portion of the river floodplain was still 

influenced by vegetation. Optical sensors have limited ability of penetration and cannot 

see through the tree canopy, which means it is difficult to detect the water bodies under 

trees (Di Vittorio & Georgakakos., 2017). Radar has the major advantages of the good 

penetration capability, which means it can penetrate through clouds and tree canopy 

(Schumann & Moller., 2015). However, there was no available Radar data that could be 

used for long-term inundation monitoring (Heimhumber et al., 2018). Thus, the inundation 

frequency map derived in this study might underestimate the inundation frequency of the 

MRF. 
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4.2 Relationships between inundation and discharge or precipitation 

Fig. 5(a) showed the coefficient of determination (r2) of regressions between 

inundation percentage and mean discharge with different time lags. It was observed that 

there was a slightly increase in r2 when the time lag increased from 1 to 4 days, and then 

the inundation-discharge relationship remained stable. All r2 values were above 0.7 when 

calculating mean discharges from 2 to 15-day period. However, a relatively low r2 was 

observed when using discharge on the same day of image acquisition. The reason was that 

there existed a delay between measured increase in river discharge and subsequent 

changes in inundation status (Overton et al., 2009; Huang et al., 2014). Thus, a low 

inundation percentage could be observed even if the gauge-measured discharge was high. 

The highest r2 was obtained when discharge was calculated for an 11-day average (r2 = 

0.76). Then, the r2 began to decrease when the time lags increased from 12 to 30 days, but 

inundation and discharge were still statistically correlated (p <0.05; note that all the p 

values calculated in this thesis used t-test). It indicated calculating the mean discharge 

could provide a better estimation for inundation status, instead of applying the discharge 

value on the image-acquisition date. 

Fig. 5(b) showed the r2 of regressions between inundation percentage and 

cumulative precipitation with different time lags. There was no relationship (r2 = 0.07 and 

0.13, respectively; P > 0.05) between inundation and precipitation when cumulative 

precipitation was calculated for 1 and 2 days. However, a strong relationship between 

inundation and precipitation was observed when the time lag increased to 3 day. This 

means precipitation will not led to stagnant water within a relatively short period (less 
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than 3 days). The highest r2 (0.70) was attained when calculating cumulative precipitation 

for a period of 5 days. Although r2 sustained decreased when calculating time lags for 

precipitation from 11 to 30 days, precipitation still exhibited a statistically significant 

influence on inundation percentage (r2 > 0.4, p < 0.05). This result corresponded to the 

findings in a previous study (Jin et al., 2014), in which the authors stated both short-term 

and long-term precipitation would influence the inundation status, and the strongest 

inundation-precipitation relationship was obtained with 5-day cumulative precipitation.  

 

  

Fig. 5. (a) Coefficient of determination (r2) of the linear regressions between inundation 

percentage and mean discharge with different time lags; (b) r2 of the linear regressions 

between inundation percentage and cumulative precipitation with different time lags.  

 

It was demonstrated that both discharge and precipitation within certain periods 

were statistically significant to inundation percentage. Regression models were 

established to predict inundation percentage in previous studies (Benke et al., 2000; Gibbs 

et al., 2016). However, they only considered discharge as the independent variable for the 

regression. In this study, no linear regression between inundation extent and discharge or 

precipitation exhibited a relationship with r2 greater than 0.8. With the multiple linear 
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regressions built in section 3.3, it suggested that using both mean discharge and 

cumulative precipitation as the inputs generated better result for inundation estimation. It 

turned that the highest r2 was from the regression model with 12-day mean daily discharge 

and 5-day cumulative precipitation as the inputs (Fig. 6). The regression model was 

expressed as: 

                           𝑦 = 0.18𝑥₁ + 0.50𝑥₂ + 16.63                                     (5) 

where 𝑦 is inundation percentage, 𝑥₁ is cumulative precipitation of 5 days (mm), and 𝑥₂ is 

mean daily discharge of 12 days (m3/s).  

 

  

Fig. 6. Multiple linear regression between inundation percentage (𝒚), 5-day cumulative 

precipitation (𝒙₁), and 12-day mean daily discharge (𝒙₂). 

 

4.3 Long-term inundation time series 

Given the relationship between mean discharge, cumulative precipitation and 

inundation extent (Fig. 7), long-term inundation dynamics of the MRF were constructed 
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based on gauge-measured hydrological and metrological data from Jan 12, 1984 to July 

31, 2017 (Fig. 7). Results indicated that the temporal distribution of flood inundation 

varied greatly from year to year. Floods led to >50% inundation occurred 172 days over 

the period, which means >50% of the floodplain would be inundated for about 5 days in a 

year. During the wet year of 1990, 1993, 1997, 1998, 2001, 2004 and 2007, the floods 

with >50% area inundated exceed 10 days. However, there were 19 years within the 34-

year period receiving no flood events that led to >50% inundation. 

The most significant drought event occurred between 2011 and 2014. No flood 

event led to >50% inundation during this period. Result showed the mean inundation 

percentage between 2011 and 2014 was only 18.3%, and the mean inundation percentage 

for the 34-year period was 21.3%. There were other drought events with shorter duration, 

which were from 1984 to 1985, 1988 to 1989, and 1999 to 2000. No significant flood was 

observed during these periods. Fig. 7 also reflected the periods with extensive flood 

events. For example, from August 31 to November 28 in 2001, the floodplain received 

>50% inundation for 26 days during the 90-day period, and the mean inundation 

percentage was 41.1%. Severe drought and frequent flood events could lead to significant 

ecological effects to both flora and fauna communities with in the floodplain. The long-

term inundation dynamics enabled us to determine the distribution and duration of these 

events.  

Responses of floodplain wetlands are significant to sustainable water resources 

protection and management. How floodplain responses to flood events with different 

magnitudes needs to be better understood and quantified (Di Vittorio & Georgakakos.,  
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Fig. 7. Predicted floodplain inundation percentage from January 12, 1984 to July 31, 2017. 

The dash lines indicate 80% inundation, above which the predicted inundation percentage 

is less reliable. 
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2017). Banke et al. (2000) indicated that floodwater on the surfaces of floodplain could  

create new habitats and provide the chance for material exchange between living and 

nonliving matter. Thus, understanding the inundation dynamics of floodplains over long 

timeframes is essential to examine how both flora and fauna communities adapt to the 

wet-dry transition environment (Thomas et al., 2011).  

 

 

Fig. 8. Relationship between inundation percentage and inundation extent. The numbers 

in the figure refer to the inundation percentage. The inundation extents were extracted 

from Landsat images using MNDWI. 

 

The strong relationship between mean discharge, cumulative precipitation and 

inundation extent (Fig. 7) enabled us to determine the inundation percentage within the 

MRF. It is also essential to transfer the inundation percentage to the spatial distribution of 
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actual inundated area. In section 3.1, the water extents of 135 Landsat images were 

extracted. If the inundation percentage within the floodplain is calculated, the Landsat 

images with closest inundation percentage could be selected to estimate the inundated area 

(Fig. 8).   

4.4 Accuracy assessment results 

4.4.1 Accuracy assessment for water extraction results 

The quantitative accuracy assessment for the two groups of images acquired on 

different days reveals similar accuracy (Table 3). The user’s accuracies of water extraction 

(71.3% and 70.3%) were lower compared to the producer’s accuracies (82.8% and 85.7%). 

The difference between these two accuracies could be due to the scaling issues. The width 

of the upstream zone and tributaries of Mission River are less than 30 meters. There are 

many small ponds and wetlands within the study area, and their sizes are less than the 

pixels size of Landsat imagery. These small water bodies (narrow channels, small ponds) 

could be more accurately captured by PlanetScope images compared to Landsat images. 

However, because of the low threshold (-0.1) we applied to the MNDWI results, many 

small water bodies could also be captured by Landsat image. Thus, the Landsat images 

could slightly overestimate the extent of water bodies compared to PlanetScope images. 

  

Table 3. Classification accuracy-assessment results for Landsat image-based water 

extraction, with PlanetScope image-derived water areas used as reference. 

Date Producer’s Accuracy User’s Accuracy 

12/09/2017 

08/22/2018 

82.8% 

85.7% 

71.3% 

70.3% 
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Fig. 9 revealed that the lakes and main channels could be captured by both 

PlanetScope and Landsat images. The main inconsistency of the result came from the 

small ponds and wetlands along the downstream of the Mission River, which was 

overestimated by the Landsat images (yellow region). The red region in Fig. 9 indicated 

that the upstream and tributaries of the Mission River was too narrow to be captured by 

Landsat images. However, the accuracy assessment results still indicate that Landsat 

images could extract most of the water bodies within the MRF with a high accuracy.  

 

 

Fig. 9. Comparison of water-extraction results of Landsat and PlanetScope images. Both 

of the satellite images used in this analysis were acquired on 12/09/2017. 
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4.4.2 Accuracy assessment for regression model of inundation 

Fig. 10 showed the comparison of actual inundation percentage calculated from 

digitization of PlanetScope images and model-derived inundation percentage. It turned 

that all of the prediction errors were less than 5% in absolute value. The root mean square 

error (RMSE) was 2.9%. This result indicated that the multiple linear regression model 

created in this study provided accurate estimations over inundation percentage. This 

model took both precipitation and discharge into consideration, and generated better 

prediction accuracy than using one of these variables. However, the model could not 

provide accurate prediction of inundation percentage for some dates with extreme low or 

high inundation percentage but normal discharge or precipitation condition. Tide was a 

factor that lead to temporal increase in inundation extent (Jin et al., 2017). However, there 

were no tidal station within this area. Thus, measured tidal data could not been 

incorporated in the regression model of inundation to determine the effects caused by 

tides.  
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Fig. 10. Comparison of actual inundation percentage obtained from the digitization of 

PlanetScope images and model-derived inundation percentage. The solid line presents 

perfect match between derived and actual inundation. The two dashed lines indicates the 

boundaries of 5% error. 
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5. DATA ANALYSIS AND DISCUSSION 

 

5.1 Soil 

Soil type is a significant factor that affects the surface water inundation. The 

characters of soil, including permeability, water storage capacity, slope, directly 

influences the retaining of groundwater. Jin et al (2017) found that soil saturation was 

important to determine the provision of wetland systems, and the difference in soil 

properties could lead to different inundation pattern. However, they did not quantitatively 

examine the relationship between soil types and inundation pattern. Many previous studies 

(Chen et al., 2014; Ward et al., 2014; Tulbure et al., 2016; Jin et al., 2017) have related 

inundation frequency with land-cover types and wetland types. However, none of them 

analyzed the relationship between inundation frequency and soil types.  

A soil classification map from NRCS was used to examine the relationship 

between soil types and inundation frequency. The NRCS soil map was overlaid and 

clipped to the extent of the inundation frequency map (Fig. 11). Minimum score, lower 

quartile, median, upper quartile, maximum score and whiskers were calculated for each 

soil type, based on which a box plot was created to provide the summary of the inundation 

frequencies of soil types (Fig. 12). The mean inundation frequency was also calculated 

with respect to each type of soil by averaging the inundation frequency in the polygon of 

each soil type based on the inundation frequency map. 
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Fig. 11. Natural Resources Conservation Service (NRCS) soil type map of the Mission 

River Floodplain (MRF). The soil classes were reordered from the lowest to the highest 

based on their inundation frequencies. 

 

 

 

Fig. 12. Box plot of the inundation frequency associated with each soil class. Note that ‘x’ 

symbol in all graphics of this thesis represents mean value of a certain class.  
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Barrada clay obtained the highest mean inundation frequency (44.5%). Most of the 

Barrada clay located in the wetlands close to the coast. Aransas clay was the dominant 

type of soil within the MRF, accounting for 56.3% of the area. The mean inundation 

frequency of Aransas clay was 11.5%. Fig. 12 shown that Aransas clay had many outlies 

shown in the box plot, indicating that although most of Aransas clay distributed in the 

regions that were not inundated frequently, some could located in the region received 

intensive floods. Other types of soil were associated with inundation frequencies ranging 

from 0.03% to 6.4%. It turned that the types of soil with relatively low inundation 

frequency were distributed along the upper portion of the riverbank, which was 

corresponding to the area that seldom got flooded (Fig. 4). However, some pixels within 

these types of soil still possessed high inundation frequencies. The main reason was due 

to the pixel size. More than one types of soil could exist in the extent of a pixel, but we 

could only assign one type of soil to the pixel. It also revealed that the region with high 

concentration of clay usually exhibited higher inundation frequency compared to sandy 

and loamy soil.   

Result indicated that the variance in flood inundation frequency was closely related 

to the different properties of soil. Great differences in soil properties could occur within a 

small geographical area, leading to the variance in the spatial pattern of inundation. The 

differences in soil properties could directly influence the stagnant time of floodwater 

(Gibbs et al., 2016). Rafael et al. (2018) found that flooding could induce changes to the 

composition of the soil microbial community, and extreme flood events would reduce the 

functioning of soil. The different duration of floodwater would lead to the variance in soil 
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condition. Vegetation within in different soil conditions responds to the flood inundation 

diversely (Wong et al., 2015). This means the flood inundation and soil is in a process of 

mutual influence. Thus, it is essential to examine the relation between soil and flood 

inundation in order to optimize the utilization of land with different soil types.   

5.2 Land cover  

Previous studies have recognized the ecological and environmental importance of 

floodplain and wetland inundation (Benke et al., 2000; Chen et al., 2013; Huang et al., 

2014). Relating inundation dynamics with land-cover types is essential to analyze the 

influence of inundation dynamics instead of only monitoring the changes in water extent 

(Chen et al. 2014). Most of biological productions and organic matters within floodplains 

are from the lateral exchange of river-floodplain systems (Junk et al., 1989). Several 

studies indicated that vegetation type and health condition was dependent on flood 

inundation frequency (Bren & Gibbs., 1986; Tockner et al., 2000). Examining the 

relationship between distribution of land-cover types and flood inundation frequency 

provides insights into the functioning of the river-floodplain ecosystem (Benke et al., 

2000).  

A reclassified land-cover map from EMS was jointly analyzed with the inundation 

frequency map to examine the ecological impacts of flood inundation. The process to 

obtain the reclassified land-cover map was provided in section 2.2.3. The land-cover map 

was clipped to the same extent of the inundation frequency map, and the 13 land-cover 

classes were reordered from the lowest to the highest based on their inundation frequencies 
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(Fig. 13). Then, a box plot indicating the inundation frequency of each land-cover type 

was created (Fig. 14).  

 

 

Fig. 13. Ecological Mapping System (EMS) land-cover classification of the MRF. The 

land-cover classes were reordered from the lowest to the highest based on their inundation 

frequencies. 

 

Result showed that the land-cover type with the highest mean inundation 

frequency was prairie pond shore (30.6%), and the inundation frequency of prairie pond 

shore varied from locations to locations (Fig. 13). The mean inundation frequency of tidal 

wetland was 21.7%, which was higher than that of non-tidal wetland (15.3%). It suggested 

that tide could be an important factor that influenced the floodplain inundation. Among 

all the vegetation classes, live oak forest possessed the highest mean inundation frequency 

(7.4%), and upland mesquite woodland was associated with the lowest mean inundation 

frequency (1.7%). Mesquites are desert adapted, drought tolerant trees. Their distribution 
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indicated that they preferred to live in the environments that were seldom inundated. The 

anthropogenic class processed the lowest mean inundation frequency (1.4%), which 

consisted of cropland and urban area with low intensity. Fig. 13 also showed that the 

anthropogenic class had less outliers than that of other land-cover types.    

 

 

Fig. 14. Box plot of the inundation frequency associated with each land-cover type. 

 

In the MRF, evergreen vegetation included live oak forest and evergreen 

shrubland. Deciduous included hardwood forest, deciduous shrubland, upland deciduous 

woodland and upland mesquite woodland. Result showed that the mean inundation 

frequency associated with live oak forest and evergreen shrubland were higher than other 

vegetation types, which were 7.4% and 6.6%, respectively. Then, the mean inundation 

frequencies of evergreen and deciduous were calculated. Result exhibited that the mean 

inundation frequency associated with evergreen and deciduous was 6.7% and 4.0%, 
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separately. The mean inundation frequency of grassland was 3.2%, which was lower than 

that of both evergreen and deciduous. It revealed more frequent inundation was usually 

associated with evergreen comparing to deciduous and grassland.   

Examining how different types of vegetation adapt to floods is essential to 

understand the natural properties of floodplain ecosystems. Jin et al ., (2017) found that 

wetlands with deciduous or evergreen forest and scrub exhibits less frequent floods 

inundation compared to emergent, which meant that the existence of vegetation would 

influence the duration of floods. The structural characteristic of vegetation in aquatic 

environments influences light penetration, as well as the habitats for submerged plant and 

algae (Ward et al., 2014). The frequency of floods inundation could also influence the 

suspended sediment concentration, and hence affects the productively of the vegetation 

(Han et al., 2015). The predicted inundation frequency can be used to determine how 

floods with changing frequencies affect different communities, especially flood-

dependent vegetation and animals (Thomas et al., 2011). Thus, it is necessary to relate 

floodplain inundation frequency with different vegetation types to determine their 

relationship among different ecosystems.    

5.3 Elevation  

Many previous studies used digital elevation model (DEM) to map inundation 

extent of floodplain environments (Gibbs et al., 2016; Heimhuber et al., 2018), or improve 

the mapping accuracy of surface water (Feyisa et al., 2014). In this study, DEM derived 

from the National Elevation Dataset (NED) was jointly analyzed with the inundation 

frequency map to examine the relationship between inundation frequency and elevation. 
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The DEM exhibited an obvious falling gradient from the upstream to the coast (Fig. 15). 

To quantitatively analyze the influence of elevation on inundation frequency, the DEM 

was reclassified to 11 ranges with an interval of 1 m. Considering the influence of open 

water bodies, all the rivers, lakes and ponds were masked when examining the relationship 

between inundation frequency and elevation. Then, a box plot was created based on the 

statistics for the 11 ranges. The mean inundation frequency of each range was also 

calculated (Fig. 16).  

 

 

Fig. 15. Digital elevation model (DEM) of the MRF derived from the National Elevation 

Dataset (NED). 

 

Fig. 16 indicated that elevation was a significant factor that caused the variance in 

inundation frequency. The mean inundation frequency was 44.0% when elevation was 

below 1 m. However, mean inundation frequency decreased dramatically along with the 

increasing of elevation. The mean inundation frequency dropped to 11.8% when the 

elevation range rose to 1-2 m. When the elevation was above 8 m, the mean inundation 
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frequency dropped below 1%. It also exhibited that when elevation was below 1 m, 

inundation frequencies varied from locations to locations. The inundation frequencies of 

50% of the floodplain area ranged from 0 to 11.0% or 84.7% to 100% within this elevation 

range. The variations in inundation frequency decreased along with the increasing 

elevation.  

 

 

Fig. 16. Box plot of the inundation frequencies associated with different elevation ranges. 

The DEM was derived from the National Elevation Dataset (NED). 

 

5.4 Slope 

Slope can be defined as the rate of maximum change in z-value from each cell. 

Margono et al (2014) used slope as one of the explanatory variables to map per-pixel 

wetland probability, and found that slope was an important variable in mapping wetlands. 

Tulbure et al (2016) used slope to stratify the area by not allowing water to occur in area 
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with steep slopes, for water is difficult to retain in the steep slopes. In this study, slope 

derived from NED through the Slope function in ArcGIS 10.4 and was jointly analyzed 

with the inundation frequency map to further examine their relationship (Fig. 17). The 

slope map was reclassified to 10 ranges using the Geometrical Interval function in ArcGIS 

10.4. All the water bodies were masked using the same water mask in 5.3. Then, a box 

plot was created based on the statistics of the 10 ranges (Fig. 18).  

 

 

Fig. 17. Slope of the MRF derived from NED. 

 

Fig. 18 revealed that the range with lowest slope received more frequent 

inundation than other ranges. The median value of each range exhibited a decreasing trend 

along with the increasing of the slope. However, the mean value of each range did not 

exhibited the same trend. The lowest mean inundation frequency was associated with the 

slope ranging from 3.8 to 4.9 degree, which was 3.8%. Then the mean inundation 

frequency began to rise with the increasing of slope. The mean inundation frequency 
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reached 9.9% when slope was between 8.2 and 14.2 degree. This means many pixels with 

high inundation frequency fell into this range, leading to the low median but high mean 

value. This phenomenon could be due to the 30 m-spatial resolution of the data. For a 

great number of pixels with high slope value distributed along the Mission River, and 

these pixels were always associated with high inundation frequencies (Fig. 17). Given the 

relationship between median inundation frequency and slope, it still revealed that the 

increase in slope lead to the decrease in inundation frequency. However, this relationship 

was not as strong as that between elevation and inundation frequency (Fig. 16).  

 

 

Fig. 18. Box plot of the inundation frequencies associated with different slope ranges. The 

slope was derived from NED. 
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6. SUMMARY AND CONCLUSIONS 

 

This study proposed a weighted approach to create an inundation frequency map  

of the Mission River Floodplain (MRF) combining Landsat images ranging from 1984 to 

2018 and long-term gauge measurements. This approach assigned different weights to 

images to reduce the temporal bias of observations, which was also applicable to 

inundation frequency analysis of other rivers. A multiple linear regression was created, 

which used cumulative precipitation and mean discharge as predictor variables. The long-

term inundation dynamics of the MRF were determine through the regression model. To 

examine the relationship between inundation frequency and relevant factors, data layers 

including soil types, land-cover types, elevation and slope were jointly analyzed with the 

inundation frequency map. Followings are the main findings of this study:  

(1) A multiple linear regression provided more accurate estimation of inundation 

percentage than linear regression with only one variable, in which cumulative 

precipitation of 5 days and mean discharge of 12 days were used as the 

predictor variables (r2 = 0.84). 

(2) Soil types, land-cover types, elevation and slope revealed strong relationships 

with inundation frequency. Clay usually exhibited higher inundation frequency 

compared to sandy and loamy soil, and more frequent inundation was 

associated with evergreen comparing to deciduous and grassland. Inundation 

frequency decreased along with the increase in both elevation and slope. 

However, this phenomenon was less obvious in slope than elevation.  



 

45 

 

The derived inundation frequency map and long-term inundation dynamics 

provide insights into the spatio-temporal patterns of flood inundation over the MRF. Such 

information is significant to the protection and restoration of river-floodplain ecosystems, 

and provides a key to the healthy functioning and sustainable development of these 

systems. The findings can also assist in understanding the relationship between the 

inundation dynamics and floodplain ecology of other unregulated coastal rivers.  
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