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ABSTRACT

Bandit learning has been widely applied to handle the exploration-exploitation dilemma in

sequential decision problems. To solve the dilemma, a large number of bandit algorithms have

been proposed. While many of these algorithms have been proved to be order-optimal with respect

to regret, the difference between the best expected reward and that actually achieved, there remain

two fundamental challenges.

First, the “efficiency” of the best-performing bandit algorithms is often unsatisfactory, where

the efficiency is measured jointly with respect to the performance in maximizing rewards as well as

the computational complexity. For instance, the Information Directed Sampling (IDS), variance-

based IDS (VIDS), and Kullback-Leibler Upper Confidence Bounds (KL-UCB) have often been

reported to achieve outstanding performance with respect to regret. Unfortunately, they suffer from

high computational complexity even after approximation, and exhibit poor scalability of computa-

tional complexity as the number of arms increases. Second, most of the existing bandit algorithms

assume that the sequential decision-making process will continue forever without an end. How-

ever, users may renege and stop playing. They also assume the underlying reward distribution is

homoscedastic. Both these assumptions are often violated in real-world applications, where par-

ticipants may disengage from future interactions if they do not have a rewarding experience, and

at the same time, the variances of underlying distributions differs under different contexts.

To address the aforementioned challenges, we propose a family of novel bandit algorithms.

To address the efficiency issue, we propose Biased Maximum Likelihood Estimation (BMLE) -

a family of novel bandit algorithms that generally apply to both parametric and non-parametric

reward distributions, often have a closed-form solution and low computation complexity, have a

quantifiable regret bound, and demonstrate satisfactory empirical performance. To enable bandit

algorithms handle the reneging risk and reward heteroscedasticity, we propose a Heteroscedastic

Reneging Upper Confidence Bound policy (HR-UCB) - a novel UCB-type algorithm that achieves

outstanding and quantifiable performance in the presence of reneging risk and heteroscedasticity.
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1. INTRODUCTION

1.1 Fundamental Challenges in Bandit Learning

Bandit learning has been widely applied to solve sequential decision problems in many ap-

plications such as web advertising, recommender systems, information retrieval, clinical trials,

etc. The classical difficulty addressed in bandit learning is the exploration-exploitation dilemma,

which requires the learning algorithm to balance information gathering and best use of available

information to achieve optimal performance. Many bandit algorithms have been proposed to over-

come this difficulty in the existing literature. These algorithms can be categorized into two main

groups: frequentist approaches (e.g., UCB [1], UCB-Tuned [1], MOSS [2, 3], KL-UCB [4, 5, 6])

and Bayesian approaches (e.g., Bayes-UCB [7], Thompson sampling [8, 9, 10, 11], Knowledge

Gradient [12, 13] Information Directed Sampling [14, 15]). In the frequentist settings, an upper

confidence bound is derived from concentration inequalities or constructed with the help of other

information measures, such as the Kullback–Leibler divergence. The Bayesian approaches, on the

other hand, assume that the unknown parameters are drawn from an underlying prior distribution,

and make the decisions by following a continually updated posterior distribution.

While many algorithms from both groups have been proved to be order-optimal, there are two

fundamental challenges that are inadequately addressed in the existing literature. First, the “effi-

ciency” of the best-performing algorithms is often unsatisfactory. Here efficiency is measured in

terms of the performance in maximizing reward accumulation with respect to computational com-

plexity. For instance, it is well known that among frequentist approaches, although UCB, UCB-

Tuned, and MOSS have a closed-form solution and low computational complexity, their empirical

performance is often worse than KL-UCB, which has no closed-form solution and has higher com-

putational complexity. Among Bayesian approaches, Information Directed Sampling (IDS) and

its variant variance-based IDS (VIDS) have often demonstrated state-of-the-art performance com-

pared to Thompson sampling, Bayes-UCB, and Knowledge Gradient. Unfortunately, IDS has no
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closed-form solution and suffers from high computational complexity even after approximation

and poor scalability with a large number of arms. This limitation restricts the application scope

of bandit learning in large-scale machine learning problems, where efficiency and scalability are

major concerns.

Second, most of these algorithms are designed to handle sequential decision problems that con-

tinue indefinitely without an end. In addition, they also assume that the unknown environment has

homoscedastic reward distributions, i.e., the variance is the same across different reward distribu-

tions to be learned. However, these assumptions are often violated in real-world applications such

as clinical trials, portfolio selection, and cloud computing. In these applications, participants may

disengage from future interactions if they receive insufficient rewards, and at the same time, the

reward distributions have been observed to be heteroscedastic [16, 17, 18, 19, 20]. These viola-

tions may render nominally optimal algorithms sub-optimal and face difficulty in sustaining their

outstanding performance in these applications.

1.2 Outline of the Dissertation

To address the aforementioned challenges in efficiency, we propose a family of novel bandit

algorithms in Section 2. To address the efficiency issue, we propose Biased Maximum Likelihood

Estimation (BMLE) - a family of novel bandit algorithms that can be generally applied to reward

distributions from both parametric families (e.g., exponential family) as well as non-parametric

families (e.g., sub-Gaussian and sub-exponential). Compared to existing bandit algorithms, BMLE

has several salient features. First, it has a closed-form solution and low computational complexity,

demonstrating promising scalability with a large number of arms. Second, the regret bound of

BMLE is quantifiable and is order-optimal under mild assumptions. Finally, it often demonstrates

outstanding empirical performance along with a major computational advantage in comparison to

many other state-of-the-art methods.

To enable bandit algorithms to handle learning tasks with reneging risk and heteroscedastic

rewards, in Section 3, we propose Heteroscedastic Reneging Upper Confidence Bound algorithm

(HR-UCB) - a novel UCB-type bandit algorithm that is able to work in the presence of reneg-
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ing phenomena and heteroscedastic reward distributions. We prove a regret bound for HR-UCB

and evaluate its performance in comprehensive experiments. We find that the performance of

existing methods such as LinUCB, Contextual Markov Decision Process (CMDP), and Episodic

Reinforcement Learning (ERL) is unsatisfactory, while HR-UCB demonstrates excellent empirical

performance. We provide concluding remarks in Section 4.

For better readability, the detailed proofs for Section 2 and Section 3 are provided in Ap-

pendix A and Appendix B respectively. In the main bodies of the two sections, intuition and

sketches of the proofs are given.
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2. OPTIMALITY AND SCALABILITY OF STOCHASTIC MULTI-ARMED BANDITS

THROUGH BIASED MAXIMUM LIKELIHOOD ESTIMATION1

2.1 Overview

In this section, we introduce BMLE – a family of novel learning algorithms for stochastic

multi-armed bandit problems. Algorithm design for the stochastic multi-armed bandit problem

has been studied extensively in the literature. Most prior work can be categorized into two main

groups, namely frequentist approaches and Bayesian approaches. Frequentist approaches consider

the unknown reward parameters as fixed but unknown. An optimistic estimate (empirical mean

plus confidence bound) of the unknown parameters is relied upon to guide the sequential decisions.

The family of Upper Confidence Bound (UCB) algorithms is among the most popular in this

group, given its simplicity in implementation and good theoretical guarantees. In this family,

UCB, UCB-Tuned, and MOSS directly construct their upper confidence bound from concentration

inequalities and have a closed-form solution [22, 1, 23, 2, 3]. In comparison, KL-UCB derives

the bound with the help of other information measures, such as the Kullback-Leibler divergence,

and has no closed-form solution [4, 5, 7, 6]. On the other hand, Bayesian approaches consider the

unknown reward parameters to have been drawn from an underlying prior distribution. As rewards

are accumulated, algorithms in this group continually update and base decisions on the posterior

distribution of the unknown parameters. In this family, Thompson sampling, Knowledge Gradient

(KG), KG* and Bayes-UCB directly apply the statistics of the updated posterior distribution and

thus have a closed-form solution [24, 8, 9, 11, 10, 12, 13, 7]. In contrast, information-directed

sampling (IDS) blends the concept of information gain by looking at the ratio between the square

of expected immediate regret and the expected reduction in the entropy of the target, and has no

closed-form solution [14, 15].

While many algorithms from both groups have been proved to be order-optimal, one funda-

1Part of this section is reprinted from my preprint “Bandit Learning Through Biased Maximum Likelihood Es-
timation” by Xi Liu, Ping-Chun Hsieh, Anirban Bhattacharya, and P. R. Kumar [21] that is publicly available at
https://arxiv.org/abs/1907.01287
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mental limitation is that their “efficiency” is often unsatisfactory. Here efficiency refers to their

performance in maximizing reward accumulation with respect to computational complexity in

making decisions. For instance, it is well known that among the frequentist approaches, although

UCB, UCB-Tuned, and MOSS have a closed-form solution and low computational complexity,

their empirical performance is often worse than KL-UCB, which has no closed-form solution but

has higher computational complexity [7, 6]. Not surprisingly, among Bayesian approaches, the In-

formation Directed Sampling (IDS) has demonstrated state-of-the-art best performance compared

to Thompson sampling, Bayes-UCB, and Knowledge Gradient. This statement is even true when

comparing IDS with frequentist approaches [14, 15]. Unfortunately, IDS and its variant V-IDS

have no closed-form solution and suffer from high computational overhead due to the excessive

sampling required for estimating the integrals involved. This limitation restricts the applicability

of state-of-the-art bandit learning algorithms in large-scale machine learning problems, where effi-

ciency is a significant concern, e.g., when the number of arms is in the billions, KL-UCB and IDS

are unscalable. Another issue with respect to Bayesian approaches is that their performance has

been reported to be sensitive to the choice of prior [11, 25].

To attack the aforementioned challenges, we revisit the bandit learning problem from the fre-

quentist perspective and propose Biased Maximum Likelihood Estimation (BMLE) - a family of

novel bandit algorithms that can be generally applied to reward distributions from both paramet-

ric families (e.g., exponential family) as well as non-parametric families (e.g., distributions with

bounded support). Compared to existing bandit algorithms, BMLE has several salient features.

First, BMLE does not rely on a prior and hence completely obviates the potential issues arising

from an inappropriate choice of prior. Second, BMLE has a closed-form solution and low compu-

tational complexity. Third, the regret bound of BMLE is quantifiable, and it is order-optimal under

mild assumptions. Finally, it often demonstrates empirical performance comparable to the best,

but at the same time, retain computational efficiency. As a result, in large-scale machine learn-

ing problems, BMLE may be preferred in comparison to other baseline schemes. The intuition

that BMLE outperforms its counterparts in the frequentist framework is that most of those base-
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lines rely on the upper confidence bound to construct the index. However, the upper confidence

bound only uses moment assumptions on the true distribution and hence does not fully exploit all

underlying information. In contrast, the proposed BMLE algorithm addresses the exploration and

exploitation trade-off by directly operating with the likelihood function to navigate the exploration.

This feature allows it to makes better use of the information on the parametric distributions. As

such, BMLE can provide simple new indices for bandits with well-known distributions. These

indices are quite different from, for example, UCB-based indices. Table 2.1 shows a comparison

of the indices produced by BMLE and other UCB-based policies. The fact that such qualitatively

different indices provide excellent performance may itself be of intrinsic interest.

Algorithm Index

BMLE
(Bernoulli) Ni(t)

(
H(pi(t))−H(p̃i(t)

)
(Gaussian) pi(t) + α(t)/(2Ni(t))

(Exponential) Ni(t) log
( Ni(t)pi(t)
Ni(t)pi(t)+α(t)

)
UCB pi(t) +

√
2 log t/Ni(t)

UCB-Tuned pi(t) +
√

min{1
4
, V t(i)} log(t)/Ni(t)}

MOSS pi(t) +
√

max(log( T
Ni(t)·N ), 0)/Ni(t)

Table 2.1: Comparison of indices produced by BMLE with other approaches. Below H(p) is the
binary entropy, V t(i) is the upper bound on the variance, and the other quantities are defined in
Sections 2.3 and 2.4.2.

The main contributions of this section are as follows:

• We present a new family of bandit algorithms from the perspective of biased maximum

likelihood estimation.

• We substantiate the BMLE algorithm by considering the general exponential family reward

distributions. By designing proper bias terms for the likelihood function, we derive simple

closed-form new indices for different bandit problems.

• For both Gaussian distributions and other exponential families that satisfy some mild con-

ditions, we provide the first logarithmic regret bound for the BMLE algorithm and thereby
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characterize the interplay between the bias term and the regret. The same regret bounds also

extend to non-parametric reward distributions.

• We conduct extensive numerical simulations and show that the BMLE algorithm can achieve

or better state-of-the-art regret performance. Through extensive comparative numerical sim-

ulation of several competitive algorithms, we also establish the efficiency of BMLE in terms

of computational time per pull and scalability in terms of the number of arms.

2.2 Related Work

The algorithm design for the stochastic multi-armed bandit problem has been studied exten-

sively in the existing literature. Most of the prior work can be categorized into two main groups,

namely frequentist approaches and Bayesian approaches. In the frequentist settings, the family

of UCB algorithms, including UCB [1], UCB-Tuned (UCBT) [1], and MOSS [2, 3], are among

the most popular ones given their simplicity in implementation and good theoretical guarantees.

An upper confidence bound can be directly derived from concentration inequalities or constructed

with the help of other information measures, such as the Kullback–Leibler divergence used by the

KL-UCB algorithm [4, 5, 7, 6]. The concept of upper confidence bound has later been extended

to various types of models, such as contextual linear bandits [26, 27, 28], Gaussian process bandit

optimization [29], and model-based reinforcement learning [30]. The above list is by no means

exhaustive but is mainly meant to illustrate the wide applicability of the UCB approach in different

settings. While being a simple and generic index-type algorithm, UCB-based methods sometimes

suffer from much higher regret than their counterparts [14, 8]. This mainly results from the fact that

the upper confidence bound itself only uses moment assumptions on the true distribution and hence

does not fully exploit the underlying information structure. Different from the UCB solutions, the

proposed BMLE algorithm addresses the exploration and exploitation trade-off by directly oper-

ating with the likelihood function to navigate the exploration, and therefore it makes better use of

the information of the parametric distributions.

On the other hand, the Bayesian approach studies the setting where the unknown reward pa-
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rameters are drawn from an underlying prior distribution. As one of the most popular Bayesian

bandit algorithms, Thompson sampling (TS) [24, 8, 9, 11, 10] follows the principle of probability

matching by continuously updating the posterior distribution based on a prior. In addition to strong

theoretical guarantees, [9, 10], TS has been reported to achieve superior empirical performance to

its counterparts [8, 24]. While being a powerful bandit algorithm, TS can be sensitive to the choice

of the prior [11, 25]. Another popular Bayesian algorithm is Bayes-UCB [7], which combines the

Bayesian interpretation of bandit problems and the simple closed-form expression of UCB-type al-

gorithms. In contrast, BMLE does not rely on a prior and hence completely obviates the potential

issues arising from an inappropriate prior choice.

Another line addresses the exploration and exploitation dilemma through information-related

measures. The Knowledge Gradient (KG) approach [12] and its variant KG* [13], KGMin, and

KGMN [31, 12, 13] proceed by making a greedy one-step look-ahead measurement for exploration,

as suggested by their name. While KG has been shown empirically to perform well for Gaussian

process optimization [13, 32], its performance is not readily quantifiable, and it does not always

converge to optimality [14]. Another promising solution is the Information Directed Sampling

(IDS) and its variant - VIDS [14, 15] proposed by Russo and Van Roy [14, 15]. Different from

the KG algorithm, IDS blends in the concept of information gain by looking at the ratio between

the square of expected immediate regret and the expected reduction in the entropy of the target.

Moreover, it has been reported in [14, 15] that IDS achieves state-of-the-art results in various bandit

models. However, IDS and its variants can suffer from high computational time per decision (i.e.,

pull) due to the excessive sampling required for estimating high dimensional integrals. Compared

to these competitive solutions, the proposed BMLE method can achieve comparable performance

both theoretically and empirically, but at the same time retains computational efficiency.

Our work also connects to adaptive control of unknown MDPs. The stochastic N-armed bandit

problem, in general, can be viewed as an unknown MDP problem. This has historically been a chal-

lenging problem [33] since an action taken on a dynamic system serves the “dual” purposes [34, 35]

of controlling the system to reduce the immediate cost incurred and also simultaneously explor-
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ing system behavior by exciting it. A straightforward solution of the problem is estimating the

unknown parameter, and then taking an action that would be optimal for the estimate, which is

often referred to as the “certainty equivalence” approach. However, this approach suffers from the

“closed-loop identifiability" problem [36]: the system is ever-evolving in a closed-loop with the

adaptive control law, and as the control law converges to limiting control law, it ceases to learn

about other possibly better control laws [36, 37, 38, 39].

Specifically, consider a Markov Decision Process with state space X , action space U , with

controlled transition probabilities p(i, j, u;θ) denoting the probability of transition to a next state

j ∈ X when the current state is i ∈ X and action u ∈ U is applied, indexed by a parameter θ

in a set Θ. The true parameter is θ0 ∈ Θ, but is unknown. A reward r(i, j, u) is accrued when

the system transitions from i to j under u. The goal is to maximize the long-term average reward

liminfT→∞ 1
T

∑T−1
t=0 c(x(t), x(t+1), u(t)), where x(t) and u(t) are the state and action taken at time

t. Let φθ : X → U , be a stationary control law such that choosing u(t) = φθ(x(t)) is optimal if the

true parameter is θ; such an optimal control law exists under various conditions [40]. Since the true

parameter θ0 is unknown, one can employ a certainty-equivalent strategy of making a maximum

likelihood estimate (MLE) θ̂(t) ∈ Θ that maximizes the likelihood
∏t−1

s=0 p(x(s), x(s+1), u(s),θ)

over θ ∈ Θ, and then applying the action u(t) = φθ̂(t)(x(t)). Then, the parameter estimates θ̂(t)

converge to a θ∗ such that

p(i, j, φθ∗(i),θ∗) = p(i, j, φθ∗(i),θ0) for all i, j. (2.1)

However φθ∗ need not be optimal for θ0.

A solution to this fundamental problem was proposed in [41]. Let J(φ,θ) denote the long-term

average reward accrued by the stationary control law φ, and Jopt(θ) := maxφ J(φ,θ) the optimal

long-term reward, when the parameter is θ. Then the closed-loop identification (2.1) implies that

J(φθ∗ ,θ
∗) = J(φθ∗ ,θ

0). However, since J(φθ∗ ,θ
∗) = Jopt(θ

∗), while J(φθ∗ ,θ
0) ≤ Jopt(θ

0),

it follows that Jopt(θ∗) ≤ Jopt(θ
0). Therefore it was suggested in [41] to introduce a delicate
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bias into the maximum likelihood estimate to prefer parameters with higher optimal rewards. The

resulting “biased maximum likelihood estimation" (BMLE) is:

θ̂BMLE(t) = argmax
θ∈Θ

J(θ)α(t)

t−1∏
s=0

p(x(s), x(s+ 1), u(s),θ),

where α(t) : [1,∞) → R+ is a function that satisfies limt→∞ α(t) = ∞ and limt→∞ α(t)/t = 0.

The control action chosen is u(t) = φθ̂BMLE(t)(t)(x(t)). The cost-bias term J(θ)α(t) has two salient

features: (i) J(θ)α(t) achieves active exploration by favoring models with higher reward, and (ii)

the effect of the bias term gradually diminishes as α(t) grows indefinitely with time. This method

was shown to yield the optimal long-term average reward in a variety of settings [42, 43, 44, 45,

46, 47, 48, 49, 50]. Long-term average optimality studied in the BMLE work is a gross measure

implying only that regret is o(t). However, in bandit learning [22], attention has been focused on

showing a much finer O(log(t)) optimality of regret. No existing study has addressed whether and

how the cost-bias idea still works in bandit learning, where guarantees on finite-time performance

are indispensable, and where, therefore, a finer measure of optimality is of interest. As such, our

goal in this section is to tailor the BMLE to the stochastic multi-armed bandit problem and perform

finite-time analysis in terms of regret.

2.3 Problem Formulation

We consider the stochastic N -armed bandit problem, where each arm i is characterized by

its reward distribution Di with mean θi. Without loss of generality, we assume that θ1 > θ2 >

· · · > θN ≥ 0, and hence arm 1 is the optimal arm. For each arm i, we define ∆i := θ1 − θi

to be the negative of the gap between its mean reward and that of the optimal arm. For ease

of notation, we also use ∆ to denote the minimum gap of ∆2. We use θ to denote the vector

(θ1, · · · , θN). At each time t = 1, · · · , T , the decision maker chooses an arm πt ∈ {1, · · · , N}

and obtains a corresponding reward Xt, which is independently drawn from the distribution Dπt .

Let Ni(t) and Si(t) be the total number of trials of arm i and the total reward collected from

pulling arm i up to time t, respectively. We also use Ht = (π1, X1, π2, X2, · · · , πt, Xt) to denote
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the history of all the choices of the decision maker and the reward observations up to time t. We

let L(Ht; {Di}) denote the likelihood of the historyHt under the reward distributions {Di}. Based

on the multi-armed bandit convention, our objective is to minimize the pseudo regret defined as

Regret(T ) := Tθ1 − E[
∑T

t=1 Xt], where the expectation is taken with respect to the randomness

of the rewards and the employed policy. The employed policy should not depend on T and should

perform well for all T .

2.4 The BMLE Algorithm

In this section, we formally introduce the general procedure of BMLE and then substantiate it

by considering a collection of commonly-studied parametric reward distributions.

2.4.1 The Generic BMLE Procedure

The main components of the BMLE algorithm are:

• Design a bias term that favors the models with larger achievable optimal long-term average

reward.

• At each time t, derive the biased maximum likelihood estimator θ̂BMLE
t = (θ̂BMLE

t,i ) as detailed

in the subsequent subsections, and then select an arm as

πBMLE
t = argmax

i∈{1,··· ,N}
θ̂BMLE
t,i . (2.2)

(We assume throughout that some arbitrary order on the argument of “argmax" is used to

break ties).

2.4.2 BMLE Index For Exponential Family Distributions

In this section, we discuss the BMLE algorithm for the exponential family reward distributions.

To begin with, the probability density or mass function of an exponential family distribution in

natural form can be expressed as

p(x; η) = A(x) exp
(
ηx− F (η)

)
, η ∈ N (2.3)
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where η is the canonical parameter, N is the parameter space, A(·) is a real-valued function, and

F (·) is a real-valued twice-differentiable function. For example, a Gaussian distribution with mean

µi and known variance σ2
i can be represented in the form of (2.3) by letting η = µi/σ

2
i , F (η) =

σ2
i η

2/2, A(x) = (2πσ2
i )
− 1

2 exp(−x2/2σ2
i ). By calculating the moment generating function for

p(x; η), we further know that E[Y ] = Ḟ (η) (“dot" denoting derivative) and Var[Y ] = F̈ (η), for

any random variable Y with a density function as (2.3) This also suggests that F (η) is strictly

convex and the mean function Ḟ (η) is strictly increasing. Therefore, there is a one-to-one mapping

between the canonical parameter and the mean parameter. We use Ḟ−1(·) to denote the inverse

function of Ḟ (·). Moreover, we use KL(η′ || η′′) to denote the Kullback-Leibler (KL) divergence

of any two distributions in an exponential family with canonical parameters η′ and η′′. In an

exponential family, the KL divergence can be further expressed as

KL(η′ || η′′) = F (η′′)− [F (η′) + Ḟ (η′)(η′′ − η′)]. (2.4)

Given that there is a one-to-one mapping between the canonical parameter and the mean parameter

in an exponential family, we further define D(θ′, θ′′) : Θ×Θ→ R+ as

D(θ′, θ′′) := KL(Ḟ
−1

(θ′) || Ḟ−1
(θ′′)). (2.5)

Next, we turn to the derivation of the proposed BMLE index. Consider the case where the

reward distribution of each arm i has the density function p(x; ηi) with mean θi = Ḟ (ηi), and F (·)

and A(·) are identical across all the arms. We use η to denote the vector (η1, · · · , ηN). Recall that

πt denotes the index of the arm chosen by the employed policy at time t. Based on (2.3), we know

that at each time t, the likelihood ofHt under the parameters η of the distribution is

L(Ht;η) =
t∏

s=1

A(Xs) exp
(
ηπsXs − F (ηπs)

)
. (2.6)

Next, we propose to construct the multiplicative bias term as maxi∈{1,··· ,N} exp(g(Ḟ (ηi))α(t)),

12



where g(·) is a strictly increasing user-defined real-valued function. We specifically choose g(·) to

be the inverse function of Ḟ (·) and hence g(Ḟ (η)) = η. Then, the BMLE index for exponential

family distributions can be derived as

η̂BMLE
t := argmax

ηi∈N ,∀i

{
L(Ht;η) max

1≤i≤N
exp(ηiα(t))

}
. (2.7)

The relationship between (2.7) and BMLE is as follows: Each η represents an instance of the

bandit model with mean reward equal to Ḟ (ηi) for each arm i. Under each instance η, the optimal

long-term average reward is simply max1≤i≤N Ḟ (ηi). Since Ḟ (·) is a strictly increasing function

and θi = Ḟ (ηi), we may use ηi as a proxy of the mean reward θi in designing the bias term.

Therefore, with a positive function α(t), (max1≤i≤N exp(ηiα(t)) is indeed a bias term in favor of

the models with larger achievable optimal long-term average reward.

Next, we derive a simple closed-form expression for πBMLE
t . Based on (2.2) and the maximiza-

tion problem of (2.7), we know

πBMLE
t (2.8)

= argmax
i∈{1,··· ,N}

argmax
ηi∈N ,∀i

{
max

1≤i≤N
L(Ht;η) exp(ηiα(t))

}
(2.9)

= argmax
i∈{1,··· ,N}

{ max
ηi∈N ,∀i

L(Ht;η) exp(ηiα(t))}, (2.10)

where (2.10) is obtained by exchanging the order of the two inner maximizations in (2.9). By

solving the inner maximization problem in (2.10), we show that BMLE enjoys a simple closed-

form expression for the exponential families. Define

I(ν, n, α(t)) =
(
nν + α(t)

)
Ḟ

−1
(
ν +

α(t)

n

)
(2.11)

− nνḞ−1
(ν)− nF

(
Ḟ

−1
(
ν +

α(t)

n

))
+ nF

(
Ḟ

−1
(ν)
)
.

Proposition 1. The selected arm at each time t for the BMLE algorithm under exponential family
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rewards is

πBMLE
t = argmax

i∈{1,··· ,N}
I(pi(t), Ni(t), α(t)). (2.12)

The proof is in Appendix A.5. To further substantiate the above index, we examine closed-form

expressions of the BMLE indices for three commonly-studied distributions.

2.4.2.1 Bernoulli Distributions

For Bernoulli distributions, we know F (η) = log(1 + eη), Ḟ (η) = eη

1+eη
, Ḟ−1(θ) = log( θ

1−θ ),

and F (Ḟ−1(θ)) = log( 1
1−θ ). Based on (2.11), the BMLE index derived from the Bernoulli rewards

can be obtained as follows. We define p̃i(t) := min{pi(t) + α(t)/Ni(t), 1}.

Corollary 1. For the Bernoulli rewards, the BMLE index given by (2.11) becomes

I(pi(t), Ni(t), α(t)) (2.13)

= Ni(t)
{
p̃i(t) log p̃i(t) + (1− p̃i(t)) log(1− p̃i(t)) (2.14)

− pi(t) log(pi(t))− (1− pi(t)) log(1− pi(t))
}
. (2.15)

The detailed proof of Corollary 1 is provided in Appendix A.6. From Corollary 1, we observe

that BMLE is an index-type algorithm with index I(pi(t), Ni(t), α(t)) for arm i that is easy to

compute.

Remark 1. The index in (2.13)-(2.15) can be reorganized as

I(pi(t), Ni(t), α(t)) (2.16)

= α(t) log
p̃i(t)

1− p̃i(t)
−Ni(t) · KL(pi(t) || p̃i(t)), (2.17)

where KL(θ′ || θ′′) denotes the Kullback–Leibler divergence between a Bernoulli(θ′) and Bernoulli(θ′′)

distribution. The derivation of this index is provided in Appendix A.7. Through this alternative ex-

pression, one may find some connection with the KL-UCB algorithm [4, 5, 7, 6], which selects the

arm with index: argmaxi max{q ∈ [0, 1] : Ni(t) · KL(pi(t) || q) ≤ log t + 3 log log t}. The index

14



of (2.17) however, has two salient distinctions: (i) The BMLE index is derived from the machinery

of maximum likelihood estimation, while KL-UCB originates from the idea of introducing more

smoothness into the UCB-type algorithms. (ii) Instead of solving a convex optimization problem

for obtaining the index as KL-UCB, the BMLE index enjoys a simple closed-form expression.

Remark 2. The expression for p̃i(t) resembles that of a Bayes estimator (under quadratic loss) for

a Binomial likelihood with an improper Beta prior to the success probability. However, BMLE

is not a Bayesian approach as it does not impose any prior distribution on the model parameters.

Instead, BMLE achieves exploration entirely through the time-varying bias term.

2.4.2.2 Gaussian Distributions

For Gaussian reward distributions with the same variance σ2 among arms, we know F (ηi) =

σ2η2
i /2, Ḟ (ηi) = σ2ηi, Ḟ

−1(θi) = θi/σ
2, and F (Ḟ−1(θi)) = θ2

i /2σ
2, for each arm i. Based on

(2.11), the BMLE index for the Gaussian rewards can be derived as follows.

Corollary 2. For Gaussian reward distributions with the same variance σ2 among arms, under the

BMLE algorithm, the selected arm at each time t is

πBMLE
t = argmax

i∈{1,··· ,N}

{
pi(t) +

α(t)

2Ni(t)

}
. (2.18)

The proof of Corollary 2 is provided in Appendix A.8.

Remark 3. The index in (2.18) has a similar flavor to UCB-type indices [1, 2, 7]. However, it

is directly derived from the machinery of maximum likelihood estimation without resorting to

concentration inequalities.

2.4.2.3 Exponential Distributions

Corollary 3. For exponential reward distributions, under the BMLE algorithm, the selected arm

at each time t is

πBMLE
t = argmax

i∈{1,··· ,N}

{
Ni(t) log

( Ni(t)pi(t)

Ni(t)pi(t) + α(t)

)}
. (2.19)
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The proof of Corollary 3 is provided in Appendix A.9.

Remark 4. While the BMLE indices are derived from parametric distributions, they can be readily

applied to other non-parametric reward distributions. As will be seen in Proposition 4 and Propo-

sition 5, in such misspecified settings, the derived indices still achieve logarithmic regret bounds

for non-parametric distributions that satisfy some concentration inequalities.

2.4.3 Properties of the Derived BMLE Index

We introduce several useful properties of the index I(ν, n, α(t)) in (2.11) to better demonstrate

the behavior of the proposed BMLE algorithm. To begin with, we discuss the dependence of

I(ν, n, α(t)) on ν and n.

Lemma 1. For a fixed ν ∈ Θ and α(t) > 0, I(ν, n, α(t)) is strictly decreasing with n, for all

n > 0.

Lemma 2. For a fixed n > 0 and α(t) > 0, I(ν, n, α(t)) is strictly increasing with ν, for all ν ∈ Θ.

The proofs of Lemmas 1 and 2 are provided in Appendices A.1 and A.2. Recall that the BMLE

index is I(pi(t), Ni(t), α(t)), where pi(t) denotes the empirical mean. Then, it is reasonable that

the index of an arm increases with its empirical mean reward, as suggested by Lemma 2.

To prepare for the following lemmas, we first define a function ξ(k; ν) : R++ → R as

ξ(k; ν) =k
[(
ν +

1

k

)
Ḟ

−1
(ν +

1

k
)− νḞ−1

(ν)
]

(2.20)

− k
[
F
(
Ḟ

−1
(
ν +

1

k

))
− F (Ḟ

−1
(ν))

]
. (2.21)

It is easy to verify that I(ν, kα(t), α(t)) = α(t)ξ(k; ν). By Lemma 1, we know ξ(k; ν) is strictly

decreasing with k. Moreover, define a function K∗(θ′, θ′′) as

K∗(θ′, θ′′) = inf{k : Ḟ
−1

(θ′) > ξ(k; θ′′)}. (2.22)
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Lemma 3. Given any pair of real numbers µ1, µ2 ∈ Θ with µ1 > µ2, for any real numbers

n1, n2 that satisfy n1 > 0 and n2 > K∗(µ1, µ2)α(t) (with K∗(µ1, µ2) being finite), we have

I(µ1, n1, α(t)) > I(µ2, n2, α(t)).

Lemma 4. Given any real numbers µ0, µ1, µ2 ∈ Θ with µ0 > µ1 and µ0 > µ2, for any real num-

bers n1, n2 that satisfy n1 ≤ K∗(µ0, µ1)α(t) and n2 > K∗(µ0, µ2)α(t), we have I(µ1, n1, α(t)) >

I(µ2, n2, α(t)).

The proofs of Lemmas 3 and 4 are in Appendices A.3 and A.4. Note that Lemma 3 shows

that BMLE indeed tends to avoid the arm with a smaller empirical mean reward after sufficient

exploration which is quantified in terms of α(t) by n2 > K∗(µ1, µ2)α(t). On the other hand,

Lemma 4 suggests that BMLE is designed to continue exploration even if the empirical mean

reward is initially fairly low (which is reflected by the fact that there is no restriction on the ordering

between µ1 and µ2 in Lemma 4), when there has been insufficient exploration, as quantified by

n1 ≤ K∗(µ0, µ1)α(t).

2.5 Regret Analysis of the BMLE Algorithm

In this section, we present a theoretical analysis of the proposed bandit algorithm.

2.5.1 Exponential Families With a Lower Bound on Mean

We consider the regret performance of BMLE for the exponential families with a known lower

bound on the mean (denoted by θ). For example, the mean of an exponential distribution is non-

negative and, therefore θ = 0. Note that such a collection naturally includes the commonly-

studied exponential families that are defined on the positive half real line, such as the exponential,

Binomial, Poisson, and Gamma (with a fixed shape parameter).

Proposition 2. For any exponential family with a lower bound θ on the mean, for any ε ∈ (0, 1), the

regret of BMLE using (2.11) with α(t) = Cα log t and Cα ≥ 4/(D(θ1 − ε∆
2
, θ1)K∗(θ1 − ε∆

2
, θ))
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satisfies

R(T ) ≤
N∑
a=2

∆a

[
max

{ 4

D(θa + ε∆a

2
, θa)

, (2.23)

CαK
∗(θ1 −

ε∆a

2
, θ1 +

ε∆a

2
)
}

log T + 1 +
π2

3

]
. (2.24)

Below is a sketch of our proof. Our target is to quantify the expected number of trials of each

sub-optimal arm a up to time T . The regret bound proof starts with a similar demonstration as for

UCB1 [1] by studying the probability of the event {I(p1(t), N1(t), α(t)) ≤ I(pa(t), Na(t), α(t))},

using the Chernoff bound for exponential families. However, it is significantly different from

the original proof as the dependency between the level of exploration, and the bias term α(t) is

technically more complex, compared to the straightforward confidence interval used by the con-

ventional UCB-type policies. Specifically, the main challenge lies in characterizing the behavior

of the BMLE index for both regimes where N1(t) is small compared to α(t), as well as when it

is large compared to α(t). Such a challenge is handled by considering three cases separately: (i)

Consider N1(t) > 4
D(θ1− ε2 ∆,θ1)

log t and apply Lemma 3; (ii) Consider N1(t) ≤ 4
D(θ1− ε2 ∆,θ1)

log t

and N1(t) ≤ K∗(θ1 − ε
2
∆, θ)α(t) and apply Lemma 4; (iii) Use Lemma 4 to show that {N1(t) ≤

4
D(θ1− ε2 ∆,θ1)

log t} and {N1(t) > K∗(θ1− ε
2
∆, θ)α(t)} cannot occur simultaneously. The complete

proof is provided in Appendix A.10.

2.5.2 Gaussian Distributions

Proposition 3. For Gaussian reward distributions with variance bounded by σ2 for all arms, the

regret of BMLE using (2.18) with α(t) = Cα log t and Cα ≥ 256σ2

∆
satisfies

R(T ) ≤
N∑
a=2

∆a

[ 2

∆a

Cα log T +
2π2

3

]
. (2.25)

Below is a sketch of our proof. We extend the proof procedure of Proposition 2 for Gaussian

rewards, with the help of Hoeffding’s inequality. We then prove an additional lemma, which shows

that conditioned on the “good” events, the BMLE index of the optimal arm (i.e. arm 1) is always
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larger than that of a sub-optimal arm a if Na(t) ≥ 2
∆a
α(t) and α(t) ≥ 256σ2

∆a
, regardless of N1(t).

The complete proof is provided in Appendix A.11.

2.5.3 Beyond Parametric Distributions

As mentioned in Remark 4, BMLE indices derived for exponential families can be readily ap-

plied to other non-parametric distributions. Moreover, the regret proofs in Propositions 2-3 can be

readily extended if the non-parametric rewards also satisfy proper concentration inequalities. Be-

low we define two classes of reward distributions, namely sub-Gaussian and sub-exponential [51].

Definition 1. A random variable X with mean µ = E[X] is σ-sub-Gaussian if there exists σ > 0

such that

E[eλ(X−µ)] ≤ e
σ2λ2

2 , ∀λ ∈ R. (2.26)

Definition 2. A random variable X with mean µ = E[X] is (ρ, κ)-sub-exponential if there exist

ρ, κ ≥ 0 such that

E[eλ(X−µ)] ≤ e
ρ2λ2

2 , ∀|λ| < 1

κ
. (2.27)

Proposition 4. For any σ-sub-Gaussian reward distributions, BMLE using (2.18) with α(t) =

Cα log t and Cα ≥ 256σ2

∆
yieldsR(T ) ≤

∑N
a=2 ∆a

[
2

∆a
Cα log T + 2π2

3

]
.

The proof of Proposition 3 still holds for Proposition 4 without any change as Hoeffding’s

inequality directly works for sub-Gaussian distributions.

Proposition 5. For any (ρ, κ)-sub-exponential reward distributions defined on the positive half

line, BMLE using (2.18) with α(t) = Cα log t and Cα ≥ 16(κε∆ + 2ρ2)/((ε∆)2K∗(θ1 − ε∆
2
, 0))

achieves a regret bound

R(T ) ≤
N∑
a=2

∆a

[
1 +

π2

3
+ max

{16(κε∆ + 2ρ2)

(ε∆a)2
, (2.28)

CαK
∗(θ1 −

ε∆a

2
, θ1 +

ε∆a

2
)
}

log T
]
. (2.29)

The proof of Proposition 2 can be easily extended for Proposition 4 by replacing the Chernoff
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bound with the sub-exponential tail bounds. The proof of Proposition 5 is provided in Appendix

A.12.

2.6 Empirical Study on the Performance of the BMLE Algorithm

To evaluate the effectiveness and efficiency of BMLE, we conducted a comprehensive em-

pirical comparison between BMLE and other methods for Bernoulli bandits, Gaussian bandits,

and exponential bandits. We paid particular attention to the fairness of the comparison and repro-

ducibility of the experimental results. To ensure the sample path is the same for all methods in each

round of decision-making, we prepared data containing the outcomes of pulling all arms over all

rounds in advance of each experiment. As such, in each round, the outcome of pulling one arm can

be obtained directly through querying the prepared data, instead of calling a random generator. We

also note that a few benchmark methods such as Thompson Sampling and sample-based IDS/VIDS

will change the state of the underlying random generator and thus influence each other’s sample

path when compared together in one program, thus bringing unfairness into comparison. This is

because, in each round, they need to sample from random generators based on updated posteriors.

To avoid this unfairness to occur, we evaluate their performance separately with the same prepared

data, and the same seed for the random number generators, i.e., the calling of random generators

in one method will not change the state of random generators in other methods. To ensure the

reproducibility of experimental results, we set up the seeds for the random number generators at

the beginning of each experiment and provide all the codes, including the seed setup in GitHub.

2.6.1 An Adaptive Scheme for Selecting Bias in BMLE

As discussed in Section 2.5, BMLE achieves logarithmic regret by choosing α(t) = Cα log t,

where the choice of Cα involves the minimum gap ∆ and the largest mean θ1. We consider the

following adaptive scheme that gradually learns ∆ and θ1. To illustrate the overall procedure, we

use the Cα in Proposition 5 as an example (for ease of notation, we use Cα,0 to denote the constant

16(κε∆ + 2ρ2)/((ε∆)2K∗(θ1 − ε∆
2
, 0))).

• Estimate ∆ and θ1: Note that ∆ can be expressed as max1≤i≤N{θi−maxj 6=i θj}. For each arm i,
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construct Ui(t) and Li(t) as the upper and lower confidence bounds of pi(t) based on proper con-

centration inequalities. Then, construct an estimator of ∆ as ∆̂t := max1≤i≤N
{

max
(
0, Li(t)−

maxj 6=i Uj(t)
)}

. Meanwhile, we use Umax(t) := max1≤i≤N Ui(t) as an estimate of θ1. Based on

the confidence bounds, we know ∆̂t ≤ ∆ and Umax(t) ≥ θ1, with high probability.

• Construct the bias using estimators: We construct α(t) = min{Ĉα(t), β(t)} log t, where

Ĉα(t) estimates Cα,0 by replacing ∆ with ∆̂t and θ1 with Umax(t), and β(t) is a non-negative

strictly increasing function satisfying limt→∞ β(t) =∞. With high probability, Ĉα(t) gradually

approaches the target value Cα,0 from above as time evolves. On the other hand, β(t) guarantees

smooth exploration initially and will ultimately exceed Ĉα(t).

2.6.2 Pseudo Code of the Adaptive Scheme

In this section, we provide the pseudo-code of the experiments in Section 2.6. To begin with,

Algorithm 1 shows the pseudo-code for choosing the bias term α(t) in Bernoulli bandits. The

main idea is to learn a proper Cα considered in the regret analysis by gradually increasing Cα

until it is sufficiently large. This is accomplished by setting α(t) = min{Ĉα(t), β(t)} log t (Line

13 in Algorithm 1), where β(t) is a positive strictly increasing function with limt→∞ β(t) = ∞

(e.g. β(t) =
√

log t in the experiments in Section 2.6), and Ĉα(t) serves as an over-estimate of

the minimum required Cα based on the estimators ∆̂t and Umax(t) for ∆ and θ1 (Lines 3-8 in

Algorithm 1). Note that ∆ can be written as ∆ = max1≤i≤N{θi −maxj 6=i θj}. Therefore, ∆̂t is a

conservative estimate of ∆ in the sense that ∆̂t ≤ ∆, conditioned on the high probability events

θi ∈ [Li(t), Ui(t)], for all i. Here the confidence bounds Li(t) and Ui(t) are constructed with the

help of Hoeffding’s inequality. For small t, it is expected that ∆̂t is very close to zero and hence

Ĉα(t) is large. Therefore, initially β(t) serves to gradually increase Cα and guarantees enough

exploration after β(t) exceeds the minimum required Cα. Given sufficient exploration enabled by

β(t), the estimate ∆̂t gets rather accurate (i.e. ∆̂t ≈ ∆), and subsequently Ĉα(t) shall be clamped

at some value slightly larger than the minimum required Cα. On the other hand, as the calculation

of Ĉα(t) involves the subroutine of searching for the valueK∗(Umax(t)− ε∆̂t

2
, 0), we can accelerate
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Algorithm 1 Adaptive Scheme for Choosing α(t) in Bernoulli Bandits

1: Input: N , ε ∈ (0, 1
2
), and β(t)

2: for t = 1, 2, · · · do
3: for i = 1 to N do
4: Ui(t) = min

(
pi(t) +

√
(N + 2) log t/Ni(t), 1

)
// upper confidence bound of the em-

pirical mean
5: Li(t) = max

(
pi(t) −

√
(N + 2) log t/Ni(t), 0

)
// lower confidence bound of the em-

pirical mean
6: end for
7: Umax(t) = maxi=1,··· ,N Ui(t)

8: ∆̂t = maxi

{
max

(
0, Li(t)−maxj 6=i Uj(t)

)}
9: if ξ

(
N+2

2(ε∆̂t)2β(t)
, 0
)
< Ḟ−1(Umax(t)− ε∆̂t

2
) then

10: α(t) = β(t) log t // In this case, we know Ĉα(t) > β(t)
11: else
12: Find Ĉα(t) = N+2

2(ε∆̂t)2K∗(Umax(t)− ε∆̂t
2
,0)

by solving the minimization problem of (2.22) for

K∗(Umax(t)− ε∆̂t

2
, 0).

13: α(t) = min{Ĉα(t), β(t)} log t
14: end if
15: end for

the adaptive scheme by first checking if it is possible to have Ĉα(t) ≥ β(t). Equivalently, this can

be done by quickly verifying whether ξ( N+2

2(ε∆̂t)2β(t)
, 0) < Ḟ−1(Umax(t)− ε∆̂t

2
) (Line 9 in Algorithm

1).

Similarly, Algorithms 2 and 3 demonstrate the pseudo codes for selecting α(t) in exponential

bandits and Gaussian bandits, respectively. Compared to the Bernoulli case, the main difference

of the exponential case lies in the construction of the confidence bounds (Lines 4-5 in Algorithm

2), which leverage the sub-exponential tail bounds instead of Hoeffding’s inequality. On the other

hand, Algorithm 3 for the Gaussian case differs from the other two in that it does not require the

calculation of K∗(·, ·) and only ∆̂t is needed (Lines 7-8 in Algorithm 3).

2.6.3 Detailed Description of the Major Competitors

The competitors from the frequentist setting include UCB [1], UCB-Tuned (UCBT) [1], MOSS [2,

3], and KL-UCB [5]. On the other hand, the competitors from Bayesian family consist of Knowl-
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Algorithm 2 Adaptive Scheme for Choosing α(t) in Exponential Bandits

1: Input: N , ε ∈ (0, 1
2
), and β(t)

2: for t = 1, 2, · · · do
3: for i = 1 to N do
4: Ui(t) = pi(t) +

κ(N+2) log t+
√
κ2(N+2)2(log t)2+2ρ2(N+2) log t

Ni(t)
// upper confidence bound

5: Li(t) = max
(
pi(t) −

κ(N+2) log t+
√
κ2(N+2)2(log t)2+2ρ2(N+2) log t

Ni(t)
, 0
)
// lower confidence

bound
6: end for
7: Umax(t) = maxi=1,··· ,N Ui(t)

8: ∆̂t = maxi

{
max

(
0, Li(t)−maxj 6=i Uj(t)

)}
9: if ξ

(16(κε∆̂t+2ρ2)

(ε∆̂t)2β(t)
, 0
)
< Ḟ−1(Umax(t)− ε∆̂t

2
) then

10: α(t) = β(t) log t // In this case, we know Ĉα(t) > β(t)
11: else
12: Find Ĉα(t) = 16(κε∆̂t+2ρ2)

(ε∆̂t)2K∗(Umax(t)− ε∆̂t
2
,0)

by solving the minimization problem of (2.22) for

K∗(Umax(t)− ε∆̂t

2
, 0). α(t) = min{Ĉα(t), β(t)} log t

13: end if
14: end for

Algorithm 3 Adaptive Scheme for Choosing α(t) in Gaussian Bandits

1: Input: N , σ, and β(t)
2: for t = 1, 2, · · · do
3: for i = 1 to N do
4: Ui(t) = pi(t) +

√
(N + 2) log t/Ni(t) // upper confidence bound of the empirical mean

5: Li(t) = pi(t)−
√

(N + 2) log t/Ni(t) // lower confidence bound of the empirical mean
6: end for
7: ∆̂t = maxi

{
max

(
0, Li(t)−maxj 6=i Uj(t)

)}
8: Calculate Ĉα(t) = 256σ2

∆̂t

9: α(t) = min{Ĉα(t), β(t)} log t
10: end for

edge Gradient (KG) [12], its variant - KG* [13], and the approximation KG* - KG(min) (KGMin),

and MN (KGMN) [31] in [31]), Thompson sampling (TS) [8, 10, 52], Bayes-UCB (BUCB) [7],

Information Directed Sampling (IDS) and its variant - variance-based IDS (VIDS) [14, 15], and

GPUCB [29] and its tuned version - GPUCB-Tuned (GPUCBT). GPUCB and GPUCBT are only
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regarded as competitors of BMLE in Gaussian bandits.

2.6.3.1 Frequentist Approaches

The UCB algorithm selects an arm i which maximizes the index θ̂i(t) +
√

2 log(t)/Ni(t),

where θ̂i(t) is the empirical mean reward received from samples of arm i. The index of UCB

is constructed to facilitate regret bound analysis. Its empirical performance is often unsatis-

factory. To achieve better empirical performance, UCB-Tuned (UCBT) replaces the index by

θ̂i(t) +
√

min{1/4, V t(i)} log(t)/Ni(t)}, where V t(i) is the upper bound on the variance of the

reward of arm i. UCBT often demonstrates outstanding empirical performance, but unfortunately,

there is limited literature illustrating any guarantee to its regret bound. The MOSS algorithm uses

pi(t) +
√

max(log( T
Ni(t)·N ), 0)/Ni(t), a slightly different index from UCB and UCBT for arm i,

where the computation of the index requires additional knowledge of time horizon T . It automat-

ically decreases the amount of exploration after an arm has already been pulled more than T/N

times. It has two limitations: (1) sub-optimality - it is only nearly asymptotically optimal, and can

be arbitrarily worse than UCB in some regimes, and (2) instability - the distribution of its regret

can be not well-behaved. KL-UCB is currently the most computationally heavy method in the

frequentist family. Taking Bernoulli bandits as an example, the index for arm i is obtained through

solving an optimization problem max{p ∈ [0, 1] : D(pi(t), p) ≤ (log(t) + c log(log(t))/Ni(t)}.

The optimization problem often relies on Newton’s method or bisection search for its solution,

except in Gaussian bandits, where a closed-form index can be derived thanks to the tractable form

of KL divergence for Gaussian distributions. KL-UCB often demonstrates better empirical perfor-

mance than UCB as it constructs the upper confidence bound using Chernoff’s inequality, a tighter

one than that which has been used in UCB.

2.6.3.2 Bayesian Approaches

GPUCB and GPUCBT are only for Gaussian bandits. Under GPUCB, the index of arm i at time

t is µi(t)+
√
βtσi(t), where µi(t) and σi(t) are the posterior mean and posterior standard deviation

for arm i and βt = 2 log(Nt2π2/6δ). They provide regret bounds that hold with probability at
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least 1 − δ. As such, δ is often chosen to be a very small positive number close to zero [15].

Its variant GPUCB-Tuned (GPUCBT) demonstrates better empirical performance and replaces the

original βt by βt = c log(t), where c is a hyperparameter tuned for time horizon T . Similar to

UCBT, there is also concern about the theoretical guarantee of GPUCBT. Different from UCB-like

algorithms, KG is inspired by the Bellman equation and is one type of the one-step look-ahead

policy: the index for arm i is determined by an immediate reward of pulling arm i and the expected

future rewards after observing the outcomes of the pull. The future rewards are quantified by the

knowledge improvement of the optimal arm after observing the outcome of the pulled arm in the

current round. To be more specific, KG uses the index µi(t) + E[µ∗(t + 1) − µ∗(t)|i] for arm

i, where µ∗(t) = maxi{µi(t)}. KG has a closed-form in both Bernoulli and Gaussian bandits.

However, beyond limitations such as requiring specification of the time horizon T , the regret of

KG sometimes grows linearly as it may explore insufficiently, especially when the outcome of true

distribution is discrete and the time horizon is long [31]. To overcome this limitation, KG* was

proposed by extending the one-step look-ahead to multi-step look-ahead. At time t, KG* calculates

the index for an arm over all possible steps of look-ahead and thus suffers from high computational

complexity, and scales very poorly with time horizon T . To enable longer time horizons, the

heuristic approximation methods KGMin and KGMN were applied [31]. Basically, they use the

golden section search to approximately maximize a non-concave function but are still empirically

effective, as illustrated in [15]. TS, in general, works well for different types of bandits, including

those with discrete and continuous outcomes. It often outperforms vanilla UCB algorithms and

follows a simple intuition: select the arm according to the probability that it is the optimal arm.

In each round, TS uses the outcome drawn from the posterior distribution of arm i as its index

for arm i. Motivated by the Bayesian interpretation of the problem and to retain the simplicity of

UCB-like algorithms in implementation, BUCB constructs upper confidence bounds based on the

1 − 1/t quantiles of the posterior distribution. Specially, BUCB uses Qi

(
1 − 1/

(
t(log(T ))c

))
as the index for arm i, where Qi

(
·
)

denotes the quantile function of the posterior distribution

for arm i. Like MOSS and GPUCBT, BUCB also requires knowledge of time horizon T . TS and
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BUCB are proved to be optimal, and observed to exhibit excellent performance in experiments with

Bernoulli bandits. Their leading positions in empirical performance were displaced by IDS and its

variant VIDS. In each round, IDS calculates the probabilities of pulling individual arms through

solving an optimization problem minπ{∆2
t (π)/gt(π)}, where π is a vector of probabilities and

π(i) denotes the probability of pulling arm i. ∆t(π) denotes the expected regret under π and

reward randomness. gt(π) denotes the entropy reduction with respect to the optimal arm. The exact

computation of π and gt(π) requires computation of multi-dimensional integrals, which is very

expensive. Therefore, usually, sample-based estimation is applied. VIDS further approximates

IDS through approximating gt(π) by π>v, where v denotes the vector of variance for all arms.
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Figure 2.1: Average cumulative regret over 100 trials with T = 105 and β(t) =
√

log(t): (a)
Bernoulli bandits with (θi)

10
i=1 = (0.66, 0.67, 0.68, 0.69, 0.7, 0.61, 0.62, 0.63, 0.64, 0.65); (b)

Gaussian bandits with σ = 1 and (µi)
10
i=1 = (0.41, 0.52, 0.66, 0.43, 0.58, 0.65, 0.48, 0.67, 0.59,

0.63); (c) Exponential bandits with the rates for different arms (λi)
10
i=1 = (1/0.31, 1/0.1, 1/0.2,

1/0.32, 1/0.33, 1/0.29, 1/0.2, /0.3, 1/0.15, 1/0.08). We use UCBT, GPUCBT and BUCB as the
shorthand of UCB-Tuned, GPUCB-Tuned and Bayes-UCB, respectively)

2.6.4 Effectiveness of the BMLE Algorithm

Figures 2.1-2.3 illustrate the comparison of BMLE with major competitors with respect to the

average cumulative regret in examples from Bernoulli bandits, Gaussian bandits, and exponential
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bandits. In Bernoulli bandits, the reward of an arm i is binary and drawn independently from a

Bernoulli distribution with an unknown parameter θi ∈ (0, 1). In the setting of Gaussian bandits,

the reward distribution of arm i is a Gaussian distribution with mean µi and the standard deviation

σi. For ease of presentation and to use the results of Proposition 3, we take σi ≡ σ for all i and

assume knowledge of σ in the experiments with Gaussian bandits. In exponential bandits, the

reward distribution of arm i follows an exponential distribution with the rate λi.
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Figure 2.2: Average cumulative regret over 100 trials with T = 105 and β(t) =
√

log(t): (a)
Bernoulli bandits with (θi)

10
i=1 = (0.655, 0.6, 0.665, 0.67, 0.675, 0.68, 0.685, 0.69, 0.695, 0.7); (b)

Gaussian bandits with σ = 1 and (µi)
10
i=1 = (0.5, 0.75, 0.4, 0.6, 0.55, 0.76, 0.68, 0.41, 0.52, 0.67);

(c) Exponential bandits with the rates for different arms (λi)
10
i=1 = (1/0.46, 1/0.45, 1/0.5, 1/0.48,

1/0.51, 1/0.4, 1/0.43, 1/0.42, 1/0.45, 1/0.44).

In the comparison with IDS and VIDS, we sampled 100 points over [0, 1] interval for q (Algo-

rithm 4 in [15]) and M = 10000 (Algorithm 3 in [15]). We take c = 0 in BUCB and KL-UCB,

which are reported to achieve the best empirical performance in the original papers. We take

c = 0.9 in GPUCBT after parameter tuning as in [15]. In searching for a solution of KL-UCB

and computing the value of Cα,0, the maximum number of iterations is set to be 100. It is also

worth mentioning that KL-UCB has the same closed-form index as UCB in Gaussian bandits. The

conjugate priors for methods of Bayesian family are Beta distribution β(1, 1) for Bernoulli ban-
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dits, N (0, 1) for Gaussian bandits, and Gamma distribution γ(1, 1) for exponential bandits. Most

competitors are compared in all three types of bandits. Some are not compared in one or two be-

cause their performance is found to be much worse than the rest, e.g., the UCBT for Gaussian and

exponential bandits.
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Figure 2.3: Average cumulative regret over 100 trials with T = 105 and β(t) =
√

log(t): (a)
Bernoulli bandits with (θi)

10
i=1 = (0.755, 0.76, 0.765, 0.77, 0.775, 0.78, 0.785, 0.79, 0.795, 0.8);

(b) Gaussian bandits with σ = 1 and (µi)
10
i=1 = (0.65, 0.35, 0.66, 0.4, 0.65, 0.64, 0.55, 0.4, 0.57,

0.54); (c) Exponential bandits with the rates for different arms (λi)
10
i=1 = (1/0.25, 1/0.28, 1/0.27,

1/0.3, 1/0.29, 1/0.22, 1/0.21, 1/0.24, 1/0.23, 1/0.26).

We note that KG performs poorly as it explores insufficiently. This is not surprising as several

papers have pointed out the limitations of KG-family methods when rewards are discrete or the

time horizon is long [31]. When the rewards are continuous (e.g., in Gaussian bandits and expo-

nential bandits), KG* and the variants of KG* (KGMin, KGMN) achieve remarkable performance

improvement over the vanilla KG. This benefits from the consideration of more than one step in

look-ahead planning. It is worth emphasizing that BMLE, in general, outperforms all other base-

lines, including KL-UCB, IDS, VIDS, in terms of regret performance in all three types of bandits.

It is not surprising that VIDS or IDS are the closest competitors to BMLE in terms of regret per-

formance. However, BMLE is found to be slightly better than IDS and VIDS in those examples.
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Moreover, in spite of the good performance of IDS and VIDS, the determination of their indices

suffers from high computational complexity, even under sample-based approximation. In contrast,

the BMLE index, with its simple closed-form expression is trivial to compute. One more advan-

tage of BMLE over some of the baselines is that it is “time horizon agnostic”, i.e., the computation

of the BMLE index does not need the knowledge of time horizon T . In contrast, BUCB, MOSS,

GPUCBT, and KG-family methods (KG, KG*) need to know T . It needs to be emphasized that

we evaluate the effectiveness of BMLE in both challenging examples as well as randomly picked

examples. For instance, for Gaussian bandits, we choose the parameter values to make the problem

very challenging: the standard deviation is 100 times the value difference between the largest mean

and second-largest mean. In contrast, the means of exponential bandits are chosen more randomly

and easier to be differentiated.

Tables 2.2-2.10 provide detailed statistics, including the mean as well as the standard error

and quantiles of the final regrets, with the row-wise smallest values highlighted in boldface. From

the tables, we observe that BMLE tends to have the smallest value of regret at medium to high

quantiles, and comparable to the smallest values at other lower quantiles among those that have

comparable mean values (e.g., IDS, VIDS, KLUCB). Along with the presented statistic of standard

error, they suggest that the BMLE’s performance enjoys comparable robustness as those baselines

that achieve similar mean regret.

2.6.5 Efficiency of the BMLE Algorithm

Figures 2.4-2.6 compare the efficiency between BMLE and other baseline methods, where ef-

ficiency is represented by the two metrics of interest: Computation time per decision as well as

Regret. The computation time per decision is computed through counting the total time spent in

each trial and then dividing by #Trials × T . BMLE is seen to provide promising performance.

Especially compared with IDS, VIDS, and KL-UCB, BMLE achieves slightly better regret perfor-

mance with orders of magnitude less computation time per decision than those methods. IDS and

VIDS suffer from high computation complexity because they need to estimate several integrals in

each round. The KL-UCB often relies on Newton’s method or bisection search to find the index
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Stats BMLE IDS VIDS KLUCB UCBT TS UCB MOSS BUCB KG KGMin KGMN
Mean 2.64 4.06 4.29 7.30 4.75 4.27 18.1 4.65 5.81 23.8 23.8 18.1
SD 2.34 4.67 4.61 1.09 1.76 1.49 1.13 0.931 1.06 21.6 3.55 3.44
Q10 1.42 0.747 1.77 5.84 3.10 2.83 16.5 3.56 4.53 0.037 18.99 13.45
Q25 1.61 1.16 2.11 6.61 3.63 3.27 17.5 3.94 5.19 10.0 21.0 15.6
Q50 1.91 1.84 2.55 7.18 4.49 4.04 18.2 4.59 5.64 20.0 24.1 18.4
Q75 2.38 4.61 3.46 8.04 5.44 4.89 18.7 5.21 6.38 40.0 26.2 20.6
Q90 4.30 11.4 11.3 8.61 6.55 5.95 19.6 5.71 7.14 50.1 28.1 22.5
Q95 9.93 12.4 12.5 9.26 7.60 6.48 20.0 6.16 7.66 69.9 29.1 23.3

Table 2.2: Statistics of distribution of average final regret over 100 trials for the Bernoulli bandits
with true values: (θi)

10
i=1 = (0.66, 0.67, 0.68, 0.69, 0.7, 0.61, 0.62, 0.63, 0.64, 0.65) and T = 105.

The regrets are in unit of 100.

Stats BMLE IDS VIDS KLUCB UCBT TS UCB MOSS BUCB KG KGMin KGMN
Mean 3.62 3.71 4.30 8.32 6.17 5.06 14.4 5.83 7.16 16.4 13.1 9.91
SD 2.48 2.86 2.69 1.32 1.31 1.56 0.785 1.70 1.20 15.9 2.14 1.98
Q10 1.33 1.16 1.97 6.50 4.41 3.34 13.4 4.12 5.64 0.023 10.13 7.42
Q25 1.65 1.64 2.39 7.32 5.32 3.85 13.9 4.61 6.41 5.02 11.84 8.76
Q50 2.24 2.63 3.19 8.23 5.98 4.77 14.4 5.33 7.15 10.0 13.4 9.9
Q75 6.08 5.69 5.73 9.30 6.93 5.75 15.0 6.55 7.83 30.0 14.5 11.2
Q90 6.61 6.82 8.03 10.2 7.80 6.98 15.4 8.16 8.65 35.0 15.4 12.3
Q95 7.23 8.35 9.12 10.6 8.58 7.93 15.6 9.43 9.06 45.0 16.2 13.4

Table 2.3: Statistics of distribution of average final regret over 100 trials for the Bernoulli bandits
with true values: (θi)

10
i=1 = (0.655, 0.6, 0.665, 0.67, 0.675, 0.68, 0.685, 0.69, 0.695, 0.7) and

T = 105. The regrets are in unit of 100.

Stats BMLE IDS VIDS KLUCB UCBT TS UCB MOSS BUCB KG KGMin KGMN
Mean 3.13 3.56 4.09 7.41 6.70 4.93 14.5 5.72 6.39 21.3 13.0 7.57
SD 2.28 3.87 3.00 1.27 1.20 1.72 0.691 1.33 1.28 13.4 2.10 178.3
Q10 1.42 0.951 1.67 5.81 5.07 3.29 13.5 4.34 4.86 4.51 10.25 5.31
Q25 1.69 1.33 2.01 6.52 5.74 3.74 13.97 4.64 5.43 10.0 11.7 6.29
Q50 2.04 1.79 2.68 7.26 6.81 4.63 14.5 5.43 6.23 20.0 13.2 7.54
Q75 369.7 5.43 5.56 8.07 7.52 5.34 15.0 6.49 7.24 30.0 14.4 8.97
Q90 6.80 6.96 7.88 8.86 8.33 7.26 15.4 7.61 8.14 40.0 15.6 9.64
Q95 7.2 8.91 12.0 10.0 8.67 7.74 15.5 8.31 8.67 45.0 15.9 10.4

Table 2.4: Statistics of distribution of average final regret over 100 trials for the Bernoulli bandits
with true values: (θi)

10
i=1 = (0.755, 0.76, 0.765, 0.77, 0.775, 0.78, 0.785, 0.79, 0.795, 0.8) and

T = 105. The regrets are in unit of 100.
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Stats BMLE VIDS KLUCB&UCB GPUCB GPUCBT TS BUCB KG KG*
Mean 730.6 775.0 1412.2 2640.3 848.5 932.7 1222.3 1684.3 1046.0
SD 827.4 678.7 219.2 227.0 314.2 282.1 231.4 2056.8 238.9
Q10 135.3 233.9 1147.2 2382.8 529.3 657.8 960.8 20.4 788.0
Q25 160.2 336.0 1272.1 2500.0 608.0 706.6 1036.5 59.9 891.6
Q50 263.1 544.1 1395.9 2600.4 814.7 876.0 1205.9 1035.8 1000.6
Q75 1140.8 1137.7 1545.9 2787.1 1001.1 1125.3 1390.6 2028.0 1171.1
Q90 2107.9 1516.5 1674.6 2916.1 1228.6 1304.8 1512.9 4028.8 1314.1
Q95 2157.6 1862.0 1724.6 3024.4 1578.7 1472.7 1565.5 7818.3 1413.7

Table 2.5: Statistics of distribution of average final regret over 100 trials for the Gaussian bandits
with true values: (µi)

10
i=1 = (0.41, 0.52, 0.66, 0.43, 0.58, 0.65, 0.48, 0.67, 0.59, 0.63) and T = 105.

Stats BMLE VIDS KLUCB&UCB GPUCB GPUCBT TS BUCB KG KG*
Mean 531.1 638.5 1102.7 2464.2 607.7 684.3 923.6 1995.0 760.2
SD 469.5 1117.0 196.9 210.8 234.1 250.1 178.7 3541.8 163.8
Q10 145.5 143.7 859.7 2200.1 361.4 411.1 724.5 21.1 568.4
Q25 167.4 206.6 937.4 2320.7 444.3 501.7 792.9 30.2 664.5
Q50 207.7 314.1 1093.2 2466.4 544.8 623.1 927.2 1014.4 752.5
Q75 1131.8 889.0 1232.0 2605.0 714.6 792.2 1042.0 1044.3 851.4
Q90 1188.1 1183.3 1346.8 2726.0 926.2 1058.9 1174.1 8121.5 930.0
Q95 1204.2 1248.6 1439.0 2804.9 1041.8 1209.2 1193.5 9023.5 959.5

Table 2.6: Statistics of distribution of average final regret over 100 trials for the Gaussian bandits
with true values: (µi)

10
i=1 = (0.5, 0.75, 0.4, 0.6, 0.55, 0.76, 0.68, 0.41, 0.52, 0.67) and T = 105.

Stats BMLE VIDS KLUCB&UCB GPUCB GPUCBT TS BUCB KG KG*
Mean 652.0 694.7 1302.0 2281.0 856.5 903.4 1149.5 1233.6 1001.7
SD 581.8 776.1 164.5 169.5 255.8 268.2 201.0 1659.2 234.8
Q10 127.3 193.6 11000.0 2062.5 561.1 574.8 897.0 24.5 747.2
Q25 155.7 322.9 1173.4 2156.6 665.7 715.8 1000.4 72.0 827.9
Q50 265.4 471.9 1295.7 2262.7 814.3 849.3 1130.5 1021.1 944.4
Q75 1116.2 861.0 1428.3 2397.7 1007.8 1085.6 1294.0 1987.0 1128.1
Q90 1202.8 1236.1 1492.8 2506.3 1164.6 1283.0 1404.6 2028.1 1346.7
Q95 2021.8 1467.5 1549.4 2545.1 1334.9 1394.5 1511.5 2055.5 1467.2

Table 2.7: Statistics of distribution of average final regret over 100 trials for the Gaussian bandits
with true values: (µi)

10
i=1 = (0.65, 0.35, 0.66, 0.4, 0.65, 0.64, 0.55, 0.4, 0.57, 0.54) and T = 105.
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Stats BMLE VIDS KLUCB TS UCB MOSS BUCB KG
Mean 179.6 243.3 322.7 208.6 1504.6 379.9 288.2 961.6
SD 119.4 463.1 63.9 61.3 66.1 44.5 71.9 1063.3
Q10 128.7 37.6 239.4 132.8 1430.9 329.4 196.7 26.5
Q25 139.7 47.9 271.3 157.7 1452.0 345.8 238.3 37.2
Q50 155.2 70.5 331.7 202.3 1505.4 380.1 275.1 387.2
Q75 173.4 103.7 367.2 243.4 1550.6 405.9 330.6 2450.7
Q90 195.4 1039.9 407.0 303.1 1586.5 435.0 377.3 2509.9
Q95 291.7 1074.1 423.2 320.1 1617.6 457.8 405.3 2522.7

Table 2.8: Statistics of distribution of average final regret over 100 trials for the Exponential bandits
with true values: (1/λi)

10
i=1 = (0.31, 0.1, 0.2, 0.32, 0.33, 0.29, 0.2, 0.3, 0.15,0.08) and T = 105.

Stats BMLE VIDS KLUCB TS UCB MOSS BUCB KG
Mean 294.6 322.4 710.6 436.7 1805.6 453.5 600.8 1000.0
SD 301.3 352.5 118.0 168.7 126.6 147.8 126.3 1637.9
Q10 139.8 93.3 565.4 288.1 1653.3 342.8 464.1 34.9
Q25 148.7 116.4 609.8 335.9 1713.9 374.8 792.9 30.2
Q50 176.9 166.1 695.1 411.0 1789.0 419.6 592.2 77.4
Q75 237.4 273.8 784.9 468.3 1898.1 483.9 662.3 1050.0
Q90 919.0 1064.9 875.6 610.0 1970.0 578.0 739.0 4920.6
Q95 1183.3 1112.1 916.6 682.5 2035.3 644.9 789.5 5042.0

Table 2.9: Statistics of distribution of average final regret over 100 trials for the Exponential bandits
with true values: (1/λi)

10
i=1 = (0.46, 0.45, 0.5, 0.48, 0.51, 0.4, 0.43, 0.42, 0.45,0.44) and T = 105.

Stats BMLE VIDS KLUCB TS UCB MOSS BUCB KG
Mean 195.2 215.9 339.1 221.3 1815.8 462.0 298.8 1460.3
SD 140.2 425.2 53.6 60.3 69.2 53.3 45.9 2035.8
Q10 140.9 43.5 264.9 159.6 1729.3 402.8 247.8 26.7
Q25 153.1 55.9 301.4 176.9 1776.9 428.6 263.5 33.7
Q50 166.2 70.5 335.7 211.3 1818.0 456.7 297.7 58.3
Q75 188.0 94.1 373.1 248.6 1863.7 480.2 326.5 3249.7
Q90 225.8 1037.1 408.4 296.9 1897.8 532.3 365.8 4955.2
Q95 291.7 1064.6 433.2 319.3 1934.1 563.1 383.3 4966.9

Table 2.10: Statistics of distribution of average final regret over 100 trials for the Exponential
bandits with true values: (1/λi)

10
i=1 = (0.25, 0.28, 0.27, 0.3, 0.29, 0.22, 0.21,0.24, 0.23, 0.26) and

T = 105.
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for an arm, except in Gaussian bandits, where a closed-form solution can be obtained. We observe

from the figure that those baselines such as UCB, GPUCB, and KG that also enjoy closed-form

index have similar computation time per decision as BMLE, i.e., comparable vertical position in
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Figure 2.4: Comparison of computation time and regret for Bernoulli, Gaussian, and Exponential
bandits over 100 trials with T = 105 and β(t) =

√
log(t): (a) Bernoulli bandits with (θi)

10
i=1 =

(0.66, 0.67, 0.68, 0.69, 0.7, 0.61, 0.62, 0.63, 0.64, 0.65); (b) Gaussian bandits with σ = 1 and
(µi)

10
i=1 = (0.41, 0.52, 0.66, 0.43, 0.58, 0.65, 0.48, 0.67, 0.59, 0.63); (c) Exponential bandits with

the rates for different arms (λi)
10
i=1 = (1/0.31, 1/0.1, 1/0.2, 1/0.32, 1/0.33, 1/0.29, 1/0.2, /0.3, 1/0.15,

1/0.08).

the figure. However, their regret performance is far worse than BMLE’s, i.e., larger horizontal po-

sition in the Figure, thus worse efficiency than BMLE. We also observe that in terms of efficiency,

the closest competitors to BMLE are TS, MOSS, and tuned version UCB (UCBT, GPUCBT).

Compared to TS, BMLE follows the frequentist formulation, and thus its performance does not

deteriorate like TS when an inappropriate prior is mistakenly chosen. Compared to MOSS, BMLE

does not rely on the knowledge of T to compute its index. Compared to the tuned version UCB,

the regret performance of BMLE enjoys stronger theoretical guarantees, as illustrated by the afore-

mentioned propositions.
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Figure 2.5: Comparison of computation time and regret for Bernoulli, Gaussian, and Exponential
bandits over 100 trials with T = 105 and β(t) =

√
log(t): (a) Bernoulli bandits with (θi)

10
i=1 =

(0.655, 0.6, 0.665, 0.67, 0.675, 0.68, 0.685, 0.69, 0.695, 0.7); (b) Gaussian bandits with σ = 1
and (µi)

10
i=1 = (0.5, 0.75, 0.4, 0.6, 0.55, 0.76, 0.68, 0.41, 0.52, 0.67); (c) Exponential bandits with

the rates for different arms (λi)
10
i=1 = (1/0.46, 1/0.45, 1/0.5, 1/0.48, 1/0.51, 1/0.4, 1/0.43, 1/0.42,

1/0.45, 1/0.44).

2.6.6 Scalability of the BMLE Algorithm

In this subsection, we compare the computation time per decision between BMLE and other

methods when the number of arms increases. The computation times are measured on a Linux

server with (i) an Intel Xeon E7 v4 server2 operating at a maximal clock rate 3.60 GHz and (ii)

a total of 528 GB memory. Throughout this section, we measure the average computation time

per decision for each method over 100 simulation trials and a time horizon of 10000 for each

trial. Tables 2.11-2.13 show the computation time per decision of different methods under varying

numbers of arms. We observe that BMLE scales well for various reward distributions as the number

of arms increases. The computation time per decision stays at a few 10−4 seconds even when the

number of arms reaches 70. In contrast, the computation time per decision for VIDS and IDS can

be as high as thousands of 10−4 seconds. The computation time for KLUCB, KG, and BUCB

is often tens of times higher than BMLE. The only exception is the BUCB in Bernoulli bandits,

where the quantile function is easier to be computed. The increased amount of time for IDS, VIDS,

2While there are 64 cores in the server, we force the program to run on just one core for a fair comparison.
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KLUCB, and KG, is often much more than that for BMLE. It also deserves to be emphasized that,

in Gaussian bandits, BMLE achieves the shortest computation time per decision when the number

of arms is 30, 50, and 70. This is largely because, in Gaussian bandits, the computation of Ĉα(t)

is simple than in the other two types of bandits, as illustrated in Algorithm 3. We also observe

that TS achieves the best performance in computation time in Bernoulli bandits and exponential

bandits. The computation time of BMLE is often in the same order with that of TS and becomes

closer and closer as the number of arms increases.
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Figure 2.6: Comparison of computation time and regret for Bernoulli, Gaussian, and Exponential
bandits over 100 trials with T = 105 and β(t) =

√
log(t): (a) Bernoulli bandits with (θi)

10
i=1 =

(0.755, 0.76, 0.765, 0.77, 0.775, 0.78, 0.785, 0.79, 0.795, 0.8); (b) Gaussian bandits with σ = 1
and (µi)

10
i=1 = (0.65, 0.35, 0.66, 0.4, 0.65, 0.64, 0.55, 0.4, 0.57, 0.54); (c) Exponential bandits with

the rates for different arms (λi)
10
i=1 = (1/0.25, 1/0.28, 1/0.27, 1/0.3, 1/0.29, 1/0.22, 1/0.21, 1/0.24,

1/0.23, 1/0.26).

2.7 Possible Extensions

There are several promising directions to extend the proposed family of BMLE algorithms.

One natural direction is to derive the index of BMLE algorithms and conduct regret analysis for

in different contextual bandits. In this section, we mainly derive the BMLE index and quantify

its performance for different context-free bandits. Considering its outstanding performance in
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#Arms
(Stats)

BMLE IDS VIDS KLUCB UCBT TS UCB MOSS BUCB KG KGMin KGMN

10(Mean) 1.36 175 123 12.8 1.53 0.23 0.712 0.895 0.855 28.7 0.649 0.453
30(Mean) 3.61 1260 788 49.7 4.96 0.63 2.19 2.83 2.58 97.6 1.89 1.36
50(Mean) 4.58 3630 1930 80.3 7.85 0.63 3.42 4.40 4.11 159 2.95 2.14
70(Mean) 7.56 6660 3590 113 10.3 0.63 4.49 5.87 5.43 209 3.97 2.86
10(SE) 0.236 54.8 33.1 1.53 0.586 0.04 0.268 0.333 0.351 10.9 0.284 0.172
30(SE) 1.30 458 232 17.3 1.52 0.11 0.646 0.844 0.714 29.2 0.557 0.408
50(SE) 2.04 972 536 29.4 2.59 0.11 1.11 1.40 1.25 49.5 0.931 0.678
70(SE) 2.70 1330 883 36.6 3.63 0.11 1.53 2.00 1.76 69.3 1.34 0.962

Table 2.11: Average computation time per decision for Bernoulli bandits under different numbers
of arms. All numbers are obtained over 100 trials with time horizon 104 and in 10−4 seconds.

#Arms
(Stats)

BMLE VIDS KLUCB&UCB GPUCB GPUCBT TS BUCB KG KG*

10(Mean) 0.617 135 0.993 0.346 0.318 0.451 17.9 25.1 10.9
30(Mean) 1.07 1410 3.82 1.10 1.08 1.33 75.2 103 21.2
50(Mean) 1.49 3580 6.49 1.79 1.76 2.44 121 168 33.9
70(Mean) 1.95 6610 8.52 2.24 2.22 3.16 162 226 45.9
10(SE) 0.284 53.9 0.417 0.136 0.160 0.0425 6.98 9.37 2.77
30(SE) 0.484 409 1.28 0.370 0.370 0.321 26.2 35 5.61
50(SE) 0.686 866 2.14 0.563 0.563 0.562 42.1 56.1 9.77
70(SE) 0.871 1290 2.95 0.755 0.773 0.774 58.5 77.6 15.7

Table 2.12: Average computation time per decision for Gaussian bandits under different numbers
of arms. All numbers are obtained over 100 trials with time horizon 104 and in 10−4 seconds.

#Arms
(Stats)

BMLE VIDS KLUCB TS UCB MOSS BUCB KG

10(Mean) 1.01 133 7.26 1.38 0.420 0.548 14.9 0.519
30(Mean) 1.93 1160 22.8 3.97 1.20 1.61 42.6 1.36
50(Mean) 2.97 3170 36.5 6.64 1.92 2.53 75.5 2.23
70(Mean) 3.79 6430 53.7 9.30 2.67 3.59 102 3.06
10(SE) 0.435 13.6 0.884 0.316 0.0980 0.112 1.55 0.101
30(SE) 0.890 187 2.79 0.777 0.263 0.340 5.02 0.265
50(SE) 1.24 447 5.47 1.20 0.397 0.498 10.2 0.456
70(SE) 1.56 788 6.92 1.96 0.531 0.688 12.3 0.605

Table 2.13: Average computation time per decision for Exponential bandits under varying numbers
of arms. All numbers are obtained over 100 trials with time horizon 104 and in 10−4 seconds.
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context-free scenarios, it will be interesting to examine how well the family of BMLE algorithms

performs under contextual information. Another promising direction is in the areas of MDP and

reinforcement learning. As mentioned in Section 2.2, the proposed BMLE algorithms strongly

connect to the unknown MDP problem – a fundamental problem in adaptive control and reinforce-

ment learning. As such, one possible direction is to extend the precise regret and computational

analysis to general adaptive control of Markov chains, and the efficient exploration problem in

reinforcement learning. There have been studies that successfully extend other bandit algorithms

to solve the same problem [53, 54, 55, 56]. Another possible direction to extend the family of

BMLE algorithm is in the areas of Bayesian Optimization, which in some sense can be viewed as a

pure-exploration problem in “continuous” bandits. In view of many previous successful extensions

of bandit algorithms to Bayesian Optimization [57, 58, 59], it will not be surprising if BMLE is

also of interest in in Bayesian Optimization.

2.8 Summary

In this section, we propose BMLE – a novel family of bandit algorithms to overcome the lim-

itation in efficiency in the best-performing algorithms for bandit learning. The proposed BMLE-

family algorithms are formulated in a general way and are based on the Biased Maximum Likeli-

hood Estimation method originally appearing in the adaptive control literature. Although a similar

scheme appears in previous studies, it has never been considered in bandit setting with respect

to the finer notion of regret. Here we design the reward-bias term to tackle the exploration and

exploitation tradeoff for stochastic bandit problems and shown that it is a competitive method

with performance often slightly better than other state-of-the-art baseline methods. Moreover,

BMLE provides simple indices that provide a major computational advantage in terms of being

very easy-to-compute for each arm. We prove that the derived BMLE indices achieve a logarith-

mic finite-time regret bound and hence attain order-optimality, for both exponential families and

the cases beyond parametric distributions. Through extensive simulations, we demonstrate that the

proposed algorithms achieve regret performance comparable to the best of several state-of-the-art

baseline methods while being computationally efficient in comparison to other best-performing
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methods. Unlike some other bandit learning algorithms that rely on a lot of intuitions to derive the

index, the clear theoretical foundation and generality of the proposed family of BMLE algorithms

potentially is expected to be extendable to several promising formulations.
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3. LEARNING TO OPTIMIZE UNDER PRESENCE OF RENEGING RISK AND REWARD

HETEROSCEDASTICITY1

3.1 Overview

In this section, we introduce HR-UCB – a novel learning algorithm for contextual bandit prob-

lems. The bandit models that are discussed in Section 2 are usually referred to as context-free

bandits. One of the major limitations in modeling real-world problems is that they do not use

any applicable “features” in determining the values of unknown reward parameters. This makes

them not as competitive as other learning algorithms in modeling problems with big data. To over-

come this limitation, researchers in the bandit community have proposed “contextual” bandits.

Compared to context-free bandits, in contextual bandits, reward parameters are often assumed to

depend on the contexts (features) of the bandits. For example, in a contextual bandit referred to as

a “linear” bandit, the mean value of the reward distribution equals the dot product of the features

and an unknown coefficient vector to be learned on the fly [26].

Sequential decision problems commonly arise in a large number of real-world applications. To

name a few, in treatments to extend the life of people with terminal illnesses, doctors are required to

make decisions on which treatments are to be used for patients periodically. In portfolio selection,

fund managers need to decide which portfolios are recommended to their customers every time. In

cloud computing services, the cloud platform has to determine the resources allocated to customers

given specific requirements of their programs. Contextual bandits [27] have been extensively used

to model such problems. In the modeling, available choices are referred to as “arms” and a decision

is regarded as a “pull” of the corresponding arm. The decision is evaluated through rewards that

depend on the outcome of the interaction.

In the aforementioned applications of contextual bandits, the phenomenon of participants dis-

engage from future interactions has been commonly observed. Such behavior is referred to as

1Part of this section is reprinted with permission from “Stay With Me: Lifetime Maximization Through Het-
eroscedastic Linear Bandits With Reneging” in ICML 2019 [60] Copyright by the authors themselves Ping-Chun
Hsieh*, Xi Liu*, Anirban Bhattacharya and P. R. Kumar. *: Equal contribution.
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“churn”, “unsubscribing” or “reneging” in the literature [61, 62]. For instance, patients may fail

to survive the illness or are unable to undertake more treatments due to the deterioration of their

physical condition [63]. In portfolio selection, fund managers earn money from customer enroll-

ment in their service. The return from the portfolio selected may however turn out to be loss,

occasioning the customer to lose trust in the manager and stoppage of using the service [64]. Sim-

ilarly, in cloud computing services, the customer may feel that a resource was not well allocated

and be dissatisfied with the throughput, and then switch to another service provider [65]. In other

words, the participant 2 of the interaction often has a limited “lifetime” defined as the total num-

ber of interactions between the participant and a service provider until the customer reneges. The

larger the lifetime, the “longer” the participant stays with the provider. Customer lifetime has been

recognized as a critical metric to evaluate the success of many applications including all the afore-

mentioned applications as well as e-commerce applications [66]. Moreover, as well known, the

acquisition cost for a new customer is much higher than an existing customer [61]. Therefore, in

such applications and services, a particularly vital goal is to maximize the lifetime of customers.

Unfortunately, this reneging risk is rarely discussed in existing bandit solutions. Most existing

bandit algorithms assume that the interaction process never ends. Their objective is only to max-

imize the accumulated rewards collected from endless interactions. As such, they are not directly

applicable to the problem of customer reneging.

Another phenomenon that has been neglected in many contextual bandit formulations is the

presence of “heteroscedasticity” in real-world applications, i.e., the variability of outcomes across

the range of predictors. Many previous studies of the aforementioned applications have pointed

out that the distribution of the outcome can be heteroscedastic. In medical treatment of patients,

it has been found that the physical condition after treatment can be highly heteroscedastic [16,

17]. In portfolio selection [18, 19, 20], it is even more common that the return of investing in

a selected portfolio is heteroscedastic. In cloud services, it has been repeatedly observed that

throughput and responses of the servers can be highly heteroscedastic [67, 68, 69]. In the bandit

2For simplicity, in this section, we use the terms participant, user, customer, and patients interchangeably.

40



setting, this means that both the mean value and the variance of the outcome depend on the context.

The “context” here represents both the decision and the customer. However, previous studies on

contextual bandits have usually assumed that the underlying distribution involved in the problem

is homoscedastic, i.e., its variance is independent of contexts. As such, they only need to estimate

the true value of the mean. If the reneging risk is the chance that the outcome (e.g., patients’

health condition, portfolio return, and throughput rate) is below the satisfaction level, accurately

estimating it requires estimation of both mean and variance. Existing contextual bandit algorithms

are therefore inapplicable under the two phenomena.

The line of MAB research that is most relevant to the problem is bandit models with risk man-

agement, e.g., variance minimization [70] and value-at-risk maximization [71, 72, 73]. However,

the risks in those models concern the large fluctuation of collected rewards which have no impact

on the lifetimes of bandits. This renders them inapplicable to our problem. Another category of

related research is “conservative” bandits [74, 75], where a choice is only considered if it guar-

antees that the overall performances outperforms 1 − α of baselines. Unfortunately, our problem

has a higher degree of granularity, i.e., to avoid reneging, individual performance (performance of

each choice) needs to be above some satisfaction level. Moreover, none of them considers data

heteroscedasticity. A more complete review and comparison are provided in Section 3.2.

To overcome these limitations, we propose a novel model of contextual bandits that addresses

the challenges arising from both reneging risk as well as heteroscedasticity. We call the model

“heteroscedastic linear bandits with reneging”. To solve the proposed model, we develop a UCB-

type policy, called Heteroscedastic Risk Upper Confidence Bounds (HR-UCB), that is proved to

achieve a O
(√

T (log(T ))3
)

regret bound with high probability. We have successfully applied the

proposed method to solve the lifetime maximization problem. We evaluate the performance of

HR-UCB for the problem via comprehensive simulations. The simulation results demonstrate that

our model has lower regret, and outperforms conventional UCB that ignores reneging, as well as

more complex models such as Episodic Reinforcement Learning (ERL). The main contributions

of this section are as follows:
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• The reneging risk and reward heteroscedasticity commonly arise in many real-world appli-

cations of bandit learning but are ignored by most existing bandit models. We investigate

the characteristics of the two phenomena and propose a novel bandit model that is able to

overcome the limitation of bandit models in the presence of reneging risk and reward het-

eroscedasticity.

• To provide a solution for the proposed model, we develop a UCB-type policy, called HR-

UCB, and establish theoretical guarantee for the proposed policy. We prove that the HR-

UCB can achieve a O
(√

T (log(T ))3
)

regret bound with high probability.

• We evaluate the HR-UCB via comprehensive simulations. The simulation results demon-

strate that the model outperforms conventional UCB that ignores reneging and more complex

models such as Episodic Reinforcement Learning (ERL).

3.2 Related Work

There are mainly two lines of research related to our work. The first is about bandits with risk

management. Reneging can be viewed as a type of risk that the decision-maker tries to avoid. The

risk management in bandit problems has been studied in terms of variance and quantiles. In [70],

mean-variance models to handle risk are studied, where the risk refers to the variability of collected

rewards. The difference from conventional bandits is that the objective to be maximized is a linear

combination of mean reward and variance. Subsequent studies [71, 72] propose a quantile (value at

risk) to replace the mean-variance objective. While these studies investigate optimal policies under

risk, the risks they handle are different from ours, in the sense that the risks usually relate to the

variability of rewards and have no impact on the lifetime of bandits. Moreover, their approaches to

handle the risk are based on more straightforward statistics, while, in our problem, the reneging risk

is relatively complex, i.e., it comes from the probability that the outcome of following a suggestion

is below a satisfactory level. Therefore, their models cannot be used to solve our problem.

Second, in contrast to those works, conservative bandits [74, 75] control the risk by requir-

ing that the accumulated rewards while learning the optimal policy be above those of baselines.
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Similarly, in [76], each arm is associated with some risk; safety is guaranteed by requiring the

accumulated risk to be below a given budget. Unfortunately, our problem has a higher degree of

granularity. The participants in our problem are more sensitive to bad suggestions. A single bad

decision may cause reneging and brings the interactions to an end, e.g., one bad treatment can

result in a patient’s death.. Moreover, their models assume homoscedasticity, while we allow the

variance to depend on the context.

The “satisfaction level” in our model has the flavor of thresholding bandits. Different from us,

the thresholds in the existing literature are mostly used to model reward generation. For instance,

in [77], an action induces a unit payoff if the sampled outcome exceeds a threshold. In [78], no

rewards can be collected until the total number of successes exceeds the threshold.

In terms of the problem in this section, the most relevant one that has previously been studied

is in [79]. Compared to it, ours has three salient differences. First, it has a very different setting

for modeling reneging: each decision is represented by a real number; reneging happens when

the pulled arm falls below a threshold. As a comparison, we represent each decision by a high-

dimensional context vector; reneging happens if the outcome of following a suggestion is not

satisfactory. Second, it couples the reneging with the reward generation. The “rewards” in our

model can be regarded as the lifetime while the reneging is separately captured by the outcome

distribution. Third, it fails to take into account the data heteroscedasticity in the aforementioned

applications.

In terms of bandits under heteroscedasticity, to the best of our knowledge, only one very re-

cent paper [80] discusses it. Compared to it, ours has two salient differences. First, we address

heteroscedasticity under the presence of reneging. The presence of reneging makes the learning

problem more challenging as the learner has to always be prepared that plans for the future may

not be carried out. Second, the solution in [80] is based on information directed sampling. In

contrast, in this section, we present a heteroscedastic UCB policy that is efficient, easier to imple-

ment, and can achieve sub-linear regret. The reneging problem can also be approximated by an

infinite-horizon Episodic Reinforcement Learning (ERL) problem [81, 82]. Compared to it, our
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solution has two distinct features: (a) the reneging behavior and heteroscedasticity are explicitly

addressed, (b) the context information is leveraged in learning policy design.

3.3 Problem Formulation

In this section, we describe the formulation of the heteroscedastic linear bandits with reneging.

To incorporate reneging behavior into the bandit model, we model the problem in the following

stylized manner: The users arrive at the decision-maker one after another and are indexed by

t = 1, 2, · · · . For each user t, the decision-maker interacts with the user in discrete rounds by

selecting one action in each round sequentially until the user t reneges on interacting with the

decision-maker. Let st denote the total number of rounds experienced by the user t. Note that

st is a stopping time, which depends on the reneging mechanism that will be described shortly.

Since the decision-maker interacts with one user at a time, all the actions and the corresponding

outcomes regarding user t are determined and observed, before the next user, t+ 1 arrives.

Let A be the set of available actions of the decision-maker. Upon the arrival of each user t, the

decision-maker observes a set of contexts Xt = {xt,a}a∈A, where each context xt,a ∈ Xt summa-

rizes the pair-wise relationship3 between the user t and the action a. Without loss of generality, we

assume that for any user t and any action a, we have ‖xt,a‖2 ≤ 1, where ‖ · ‖2 denotes the `2-norm.

After observing the contexts, the decision-maker selects an action a ∈ A and observes a random

outcome rt,a. We assume that the outcomes rt,a are conditionally independent random variables

given the contexts, and are drawn from an outcome distribution that satisfies:

rt,a := θ>∗ xt,a + ε(xt,a) (3.1)

ε(xt,a) ∼ N
(
0, σ2(xt,a)

)
(3.2)

σ2(xt,a) := f(φ>∗ xt,a), (3.3)

whereN (0, σ2) denotes the Gaussian distribution with zero mean and variance σ2, and θ∗, φ∗ ∈ Rd

3For example, in recommender systems, one way to construct such a pair-wise context is to concatenate the feature
vectors of each individual user and each individual action.
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are unknown, but known to have the norm bounds as ||θ∗||2 ≤ 1 and ||φ∗||2 ≤ L. Although, for

simplicity of discussion, we focus here on Gaussian noise, all of our analysis can be extended to

sub-Gaussian outcome distributions of the form ψσ(x) = (1/σ)ψ((x−µ)/σ), where ψ is a known

sub-Gaussian density with unknown parameters µ, σ. This family includes truncated distributions

and mixtures, thus allowing multi-modality and skewness. The parameter vectors θ∗ ∈ Rd and

φ∗ ∈ Rd will be learned by the decision-maker during interactions with the users. The function

f(·) : R → R is assumed to be a known linear function with a finite positive slope Mf such that

f(z) ≥ 0, for all z ∈ [−L,L]. One example that satisfies the above conditions is f(z) = z + L.

Note that the mean and variance of the outcome distribution satisfy

E[rt,a|xt,a] := θ>∗ xt,a, (3.4)

V[rt,a|xt,a] := f(φ>∗ xt,a). (3.5)

Since φ>∗ xt,a is bounded over all possible φ∗ and xt,a, we know that f(φ>∗ xt,a) is also bounded,

i.e. f(φ>∗ xt,a) ∈ [σ2
min, σ

2
max] for some σmin, σmax > 0, for all φ∗ and xt,a defined above. This also

implies that ε(xt,a) is σ2
max-sub-Gaussian, for all xt,a.

3.3.1 Model of Reneging Behavior

We modeled reneging behavior based on two observations. First, in all the applications men-

tioned in Section 3.1, the decision-maker is usually able to observe the outcome of following the

suggestion, e.g., the physical condition of the patient after the treatment, the money earned from

purchasing the suggested portfolio, and the throughput rate of running the programs. Second, we

observe that the participants in these applications are willing to reveal their satisfaction level with

respect to the outcome of the suggestion. For instance, patients will let doctors know their expec-

tations for the treatment in physician visits. Customers are willing to inform fund managers how

much money they can afford to lose. Cloud users share with the service providers their require-

ments of throughput performance. We suppose that the outcome of following the suggestion is a

random variable drawn from an unknown distribution that may vary under different contexts. If
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the outcome of the random variable falls below the satisfaction level, the customer quits all future

interactions, i.e., “reneges”; otherwise, the customer stays. The reneging risk is, therefore, the

chance that the outcome drawn from an unknown distribution falls below some customized thresh-

old. Thus, learning the unknown outcome distribution plays a critical role in optimal decision

making.

The minimal expectation of a user is characterized by its satisfaction level. Let βt ∈ R denote

the “satisfaction level” of user t. We assume that satisfaction levels of users, like the pair-wise

contexts, are available before interacting with them. Denote by r(i)
t the observed outcome at round

i of user t. When r
(i)
t falls below βt, reneging occurs and the user drops out from any future

interaction. Supposing that at round i, action a is selected for user t, the risk that reneging occurs

is

P(r
(i)
t < βt|xt,a) = Φ

( βt − θ>∗ xt,a√
f(φ>∗ xt,a)

)
, (3.6)

where Φ(·) is the cumulative density function (CDF) for N (0, 1). Without loss of generality,

we also assume that βt is lower bounded by −B for some B > 0. Recall that st denotes the

number of rounds experienced by user t. Given the reneging behavior as modeled above, st is the

stopping time that represents the first time that the outcome r(i)
t is below the satisfaction level βt,

i.e. st := min{i : r
(i)
t < βt}.

3.3.2 Model of Heteroscedasticity

Illustrative examples of heteroscedasticity and reneging risk are shown in Figure 3.1. In Fig-

ure 3.1(a), the variance of the outcome distribution gradually increases as the value of the one-

dimensional context xt,a increases. Figure 3.1(b) shows the outcome distributions of the two ac-

tions for a user. Specifically, the outcome distribution P1 has mean µ1 and variance σ2
1 , and mean

µ2 and variance σ2
2 for P2. As the two distributions correspond to the same user (but for different

actions), they face the same satisfaction level β. In this example, the reneging risk P2(r < β) (the

blue shaded area) is higher than P1(r < β) (the red shaded area).

46



(a) Example of heteroscedasticity (b) Example of reneging risk

Figure 3.1: Illustrative examples of heteroscedasticity and reneging risk in the presence of het-
eroscedasticity. (ψ(·) is the probability density function.)

A policy π ∈ Π is a rule for selecting an action at each round for a user based on the preceding

interactions with that user and other users, where Π denotes the set of all admissible policies. Let

πt = {xt,1, xt,2, · · · } denote the sequence of contexts that correspond to the actions for user t under

policy π. To solve the lifetime maximization problem, let R
π

t denote the expected lifetime of user

t under the action sequence πt. Then the total expected lifetime of T users can be represented by

Rπ(T ) =
∑T

t=1 R
πt
t . Define π∗ as the optimal policy in terms of total expected lifetime among

admissible policies, i.e. π∗ = argmaxπ∈ΠRπ(T ). The pseudo regret of the heteroscedastic linear

bandits with reneging for a policy π is

RegretT := Rπ∗
(T )−Rπ(T ). (3.7)

The objective of the decision-maker is to learn a policy that achieves as minimal a regret as possi-

ble.
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3.4 The HR-UCB Algorithm

3.4.1 Oracle Policy

Before we propose our policy, let us first consider how an oracle policy with full knowl-

edge of θ∗ and φ∗ will make a decision. Consider T users that arrive sequentially. Let πoracle
t =

{x∗t,1, x∗t,2, · · · } be the sequence of contexts that correspond to the actions for the user t under an

oracle policy πoracle. The oracle policy πoracle = {πoracle
t } is constructed by choosing

πoracle
t = arg maxx̃t={x̃t,1,x̃t,2··· }R

x̃t
t , (3.8)

for each t. Due to the construction in (3.8), we know that πoracle achieves the largest possible

expected lifetime for each user t, and is hence optimal in terms of pseudo-regret defined in Section

3.3. By using an one-step optimality argument, it is easy to verify that πoracle is a fixed policy for

each user t, i.e. xt,i = xt,j , for all i, j ≥ 1. Let R
∗
t denote the expected lifetime of user t under

πoracle. As such, the optimal reward an oracle policy can receive from user t is

R
∗
t =

(
Φ
( βt − θ>∗ x∗t√

f(φ>∗ x
∗
t )

))−1

. (3.9)

This consideration to the oracle policy inspires us to propose HR-UCB replacing θ∗ and φ∗ with

their estimation. The challenges will be how to handle the heteroscedasticity and different lifetimes

of users in the estimation, as well as quantify the regret performance with the replacement.

3.4.2 Estimators for θ∗ and φ∗

Consider a general regression problem with heteroscedasticity. Let {(xi, ri) ∈ Rd × R}ni=1

be a sequence of n pairs of context and outcome that are realized by a user’s actions. Recall

from (3.1)-(3.3) that ri = θ>∗ xi + ε(xi) and ε(xi) ∼ N
(
0, f(φ>∗ xi)

)
with unknown parameters

θ∗ and φ∗. Note that, given the contexts {xi}ni=1, ε(x1), · · · , ε(xn) are mutually independent. Let

r = (r1, · · · , rn)> and ε = (ε(x1), · · · , ε(xn)) be the row vectors of the n outcome realizations

and the deviations from the mean, respectively. Let Xn be an n × d matrix in which the i-th row
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is x>i , for all 1 ≤ i ≤ n. We use θ̂n, φ̂n ∈ Rd to denote the estimators of θ∗ and φ∗ based on the

observations {(xi, ri)}ni=1, respectively. Moreover, define the estimated residual with respect to θ̂n

as ε̂(xi) = ri− θ̂>n xi. Let ε̂ = (ε̂(x1), · · · , ε̂(xn))>. Let Id denote the d×d identity matrix, and let

z1 ◦ z2 denote the Hadamard product of any two vectors z1, z2. We consider the generalized least

squares estimators (GLSE) [83] as

θ̂n =
(
X>nXn + λId

)−1
X>n r, (3.10)

φ̂n =
(
X>nXn + λId

)−1
X>n f

−1(ε̂ ◦ ε̂), (3.11)

where λ > 0 is some regularization parameter and f−1(ε̂ ◦ ε̂) = (f−1(ε̂(x1)2), · · · , f−1(ε̂(xn)2))>

is the pre-image of the vector ε̂ ◦ ε̂. Note that in (3.10), θ̂n is the conventional ridge regression

estimator. On the other hand, to obtain an estimator φ̂n, (3.11) still follows the ridge regression

approach, but with two additional steps: (i) derive the estimated residual ε̂ based on θ̂n, and (ii)

apply the map f−1(·) on the square of ε̂.

3.4.3 Pseudo Code of the HR-UCB Algorithm

Define a d× d matrix Vn as

Vn =
(
X>nXn + λId

)
. (3.12)

For all n ∈ N, define

α(1)
n (δ) = σ2

max

√
d log

(n+ λ

δλ

)
+ λ1/2, (3.13)

and ‖x‖Vn =
√
x>Vnx is the induced vector norm of vector x with respect to Vn. Define

α(2)(δ) =

√
2d(σ2

max)2
(( 1

C2

ln(
C1

δ
)
)2

+ 1
)
, (3.14)

α(3)(δ) =

√
2dσ2

max ln
(d
δ

)
, (3.15)
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where C1 and C2 are some universal constants. For all n ∈ N, define

ρn(δ) =
1

Mf

{
α(1)
n (

δ

3
)
(
α(1)
n (

δ

3
) + 2α(3)(

δ

3
)
)

(3.16)

+ α(2)(
δ

3
)
}

+ L2λ1/2. (3.17)

For any given β ∈ [−B,∞), define the function hβ : [−1, 1]× [σ2
min, σ

2
max]→ R as

hβ(u, v) =

(
Φ
( β − u√

f(v)

))−1

. (3.18)

Note that for any given x ∈ X , hβ(θ∗
>x, φ∗

>x) equals the expected lifetime of a single user with

threshold β if a fixed action with context x is chosen under parameters θ∗, φ∗. Note that in our

bandit model, the number of rounds of each user is a stopping time and can be arbitrarily large. To

address this, we propose to actively maintain a regression sample set S through a function Γ(t).

Specifically, we let the size of S grow at a proper rate regulated by Γ(t). One example is to choose

Γ(t) = Kt for some constant K ≥ 1. Since each user will play for at least one round, we know

|S| is at least t after interacting with t users. We use S(t) to denote the regression sample set right

after the departure of user t. Moreover, let Xt be the matrix in which the rows are composed by

the contexts of all the elements in S(t). Similar to (3.12), we define Vt = X>t Xt + λId, for all

t ≥ 1. To simplify notation, we also define

ξt(δ) := C3α
(1)
|S(t)|(δ) + C4ρ|S(t)|(δ/|S(t)|2). (3.19)

Now we are ready to define the index of HR-UCB for any x ∈ X :

QHR
t+1(x) := hβt+1

(
θ̂t
>
x, φ̂t

>
x) + ξt(δ) · ‖x‖V −1

t
. (3.20)

Note that QHR
t (x) is indeed an upper confidence bound as will be illustrated in Section 3.5. Now,

we formally introduce the HR-UCB algorithm in Algorithm 4.
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Algorithm 4 The HR-UCB Algorithm

1: S ← ∅, action set A, function Γ(t), and T
2: for each user t = 1, 2, · · · , T do
3: observe xt,a for all a ∈ A and reset i← 1
4: while user t stays do
5: π

(i)
t = arg maxxt,a∈Xt Q

HR
t (xt,a) (ties are broken arbitrarily)

6: apply the action π(i)
t and observe the outcome r(i)

t and if the reneging event occurs
7: if |S| < Γ(t) then
8: S ← S ∪ {(x

t,π
(i)
t
, r

(i)
t )}

9: end if
10: i← i+ 1
11: end while
12: update θ̂t and φ̂t by (3.10)-(3.11) based on S
13: end for

As illustrated in Algorithm 4, for each user t, HR-UCB observes the contexts of all available

actions, and then chooses an action based on the indices QHR
t that depend on θ̂t and φ̂t. To derive

these estimators by (3.10) and (3.11), HR-UCB actively maintains a sample set S, whose size

is regulated by a function Γ(t). After applying an action, HR-UCB observes the corresponding

outcome and the reneging event, if any. The current context-outcome pair will be added to S only

if the size of S is less than Γ(t). Based on the regression sample set S, HR-UCB updates θ̂t and

φ̂t right after the departure of each user. By using a one-step optimality argument, it is easy to

verify that the optimal policy is a fixed policy for each user t, i.e. xt,i = xt,j , for all i, j ≥ 1. This

indicates that the exploration guaranteeing sublinear regret under heteroscedasticity is mainly over

users. The knowledge transfer across users is given more importance than learning for a single

user, because, compared to the population of potential users, a user’s lifetime is mostly short. The

concern of exploration is handled by encoding the confidence bound inQHR
t so that later users with

similar contexts are treated differently.

3.5 Regret Analysis of the HR-UCB Algorithm

In this section, we provide regret analysis for HR-UCB.
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3.5.1 Confidence Set of the Estimator for θ∗

First, let us see why QHR
t (x) is indeed an upper confidence bound and how tight it is. A

confidence set for θ̂∗ was introduced in [27]. For convenience, we restate these elegant results in

the following lemma.

Lemma 5. (Theorem 2 in [27]) For all n ∈ N and any δ > 0, we have

P
{∥∥∥θ̂n − θ∗∥∥∥

Vn
≤ α(1)

n (δ),∀n ∈ N
}
≥ 1− δ, (3.21)

3.5.2 Confidence Set of the Estimator for φ∗

Next, we derive the confidence set for the estimator of φ∗. The following is the main theorem

on the confidence set for φ̂n.

Theorem 1. For all n ∈ N and for any δ > 0, with probability at least 1− 2δ, we have

∥∥∥φ̂n − φ∗∥∥∥
Vn
≤ ρn(

δ

n2
) = O

(
log(

1

δ
) + log n

)
,∀n ∈ N. (3.22)

Remark 5. As the estimator φ̂n depends on the residual term ε̂, which involves the estimator θ̂n, it

is expected that the convergence speed of φ̂n would be no larger than that of θ̂n. Based on Theorem

1 along with Lemma 5, we know that under GLSE, φ̂n converges to the true value at a slightly

slower rate than θ̂n.

To demonstrate the main idea behind Theorem 1, we highlight the proof in the following

Lemma 6-9. We start by taking the inner products of an arbitrary vector x with φ̂n and φ∗ to

quantify the difference between φ̂t and φ∗.

52



Lemma 6. For any x ∈ Rd, we have

|x>φ̂n − x>φ̂∗| ≤ ‖x‖Vn−1

{
λ ‖φ∗‖V −1

n
(3.23)

+
∥∥X>n (f−1(ε ◦ ε)−Xnφ∗

)∥∥
Vn

−1 (3.24)

+
2

Mf

∥∥∥X>n (ε ◦Xn(θ∗ − θ̂n)
)∥∥∥
Vn

−1
(3.25)

+
1

Mf

∥∥∥X>n (Xn(θ∗ − θ̂n) ◦Xn(θ∗ − θ̂n)
)∥∥∥
Vn

−1

}
. (3.26)

Proof. The proof is provided in Appendix B.1.

Based on Lemma 6, we provide upper bounds for the three terms in (3.24)-(3.26) separately as

follows.

Lemma 7. For any n ∈ N, for any δ > 0, with probability at least 1− δ, we have

Mf

∥∥X>n (f−1(ε ◦ ε)−Xnφ∗)
)∥∥
Vn

−1 ≤ α(2)(δ). (3.27)

Proof. We highlight the main idea of the proof. Recall that ε(xi) ∼ N (0, φ>∗ xi). Therefore, ε(xi)2

is a χ2
1-distribution with a scaling of f(φ>∗ xi). Hence, each element in (f−1(ε ◦ ε) −Xnφ∗) has

zero mean. Moreover, we observe that
∥∥X>n (f−1(ε ◦ ε)−Xnφ∗)

)∥∥
Vn

−1 is quadratic. Since the

χ2
1-distribution is sub-exponential, we utilize a proper tail inequality for quadratic forms of sub-

exponential distributions to derive an upper bound. The complete proof is provided in Appendix

B.2.

Then, we derive an upper bound for (3.25).

Lemma 8. For any n ∈ N, for any δ > 0, with probability at least 1− δ, we have

∥∥∥X>n (ε ◦Xn(θ∗ − θ̂n)
)∥∥∥
Vn

−1 ≤ α(1)
n (δ) · α(3)(δ). (3.28)

Proof. The main challenge is that (3.28) involves the product of the residual ε and the estimation
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error θ∗ − θ̂n. Through some manipulation, we can decouple ε from
∥∥∥X>n (ε ◦Xn(θ∗ − θ̂n)

)∥∥∥
Vn

−1

and apply a proper tail inequality for quadratic forms of sub-Gaussian distributions. The complete

proof is provided in Appendix B.3.

Next, we provide an upper bound for (3.26).

Lemma 9. For any n ∈ N, for any δ > 0, with probability at least 1− δ, we have

∥∥∥X>n (Xn(θ∗ − θ̂n) ◦Xn(θ∗ − θ̂n)
)∥∥∥
Vn

−1 ≤ (α(1)
n (δ))2. (3.29)

Proof. Since (3.29) does not involve ε, we can simply reuse the results in Lemma 5 through some

manipulation of (3.29). The complete proof is provided in Appendix B.4.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We use λmin(·) to denote the smallest eigenvalue of a square symmetric ma-

trix. Recall that Vn = λId +X>nXn is positive definite for all λ > 0. We have

‖φ∗‖2
Vn

−1 ≤ ‖φ∗‖2
2 /λmin(Vn) ≤ ‖φ∗‖2

2 /λ ≤ L2/λ. (3.30)

By (3.30) and Lemmas 6-9, we know that for a given n and a given δn > 0, with probability at

least 1− δn, we have

|x>φ̂n − x>φ̂∗| ≤ ‖x‖Vn−1 · ρn(δn). (3.31)

Note that (3.31) holds for any x ∈ Rd. By substituting x = Vn(φ̂n − φ∗) into (3.31), we have

∥∥∥φ̂n − φ∗∥∥∥2

Vn
≤
∥∥∥Vn(φ̂n − φ∗)

∥∥∥
Vn

−1
· ρn(δn). (3.32)

Since
∥∥∥Vn(φ̂n − φ∗)

∥∥∥
Vn

−1
=
∥∥∥φ̂n − φ∗∥∥∥

Vn
, we know for a given n and δn > 0, with probability at
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least 1− δn, ∥∥∥φ̂n − φ∗∥∥∥
Vn
≤ ρn(δn). (3.33)

Finally, to obtain a uniform bound, we simply choose δn = δ/(n2) and apply the union bound to

(3.33) over all n ∈ N. Note that
∑∞

n=1 δn =
∑∞

n=1 δ/n
2 = π2

6
δ < 2δ. Therefore, with probability

at least 1− 2δ, for all n ∈ N,
∥∥∥φ̂n − φ∗∥∥∥

Vn
≤ ρn

(
δ
n2

)
.

3.5.3 Regret Proofs for the HR-UCB Algorithm

First, we show that hβ(·, ·) has the following nice property.

Theorem 2. Let M be a d × d invertible matrix. For any θ1, θ2 ∈ Rd with ‖θ1‖ ≤ 1, ‖θ2‖ ≤ 1,

for any φ1, φ2 ∈ Rd with ‖φ1‖ ≤ L, ‖φ2‖ ≤ L, for any β ∈ [−B,∞), ∀x ∈ X ,

hβ
(
θ>2 x, φ

>
2 x
)
− hβ

(
θ>1 x, φ

>
1 x
)
≤ (3.34)(

C3 ‖θ2 − θ1‖M + C4 ‖φ2 − φ1‖M
)
· ‖x‖M−1 , (3.35)

where C3 and C4 are some finite positive constants that are independent of θ1, θ2, φ1, φ2, and β.

Proof. The main idea is to apply first-order approximation under Lipschitz continuity of hβ(·, ·).

The detailed proof is provided in Appendix B.5.

Then, we show that QHR
t (x) is indeed an upper confidence bound.

Lemma 10. If the confidence set conditions (3.21) and (3.22) are satisfied, then for any x ∈ X ,

0 ≤ QHR
t+1(x)− hβt+1

(
θ>∗ x, φ

>
∗ x) ≤ 2ξt(δ) ‖x‖V −1

t
.

Proof. The proof is provided in Appendix B.6.

Now, we formally provide regret analysis for the HR-UCB Algorithm.

55



Theorem 3. Under HR-UCB, with probability at least 1 − δ, the pseudo regret is upper bounded

as

RegretT ≤
√

8ξ2
T

(δ
3

)
T · d log

(T + λd

λd

)
(3.36)

= O

(√
T log Γ(T ) ·

(
log
(
Γ(T )

)
+ log(

1

δ
)
)2
)
. (3.37)

By choosing Γ(T ) = KT with a constant K > 0, we have

RegretT = O

(√
T log T ·

(
log T + log(

1

δ
)
)2
)
. (3.38)

Proof. The proof is provided in Appendix B.7.

Theorem 3 presents a high-probability regret bound. To derive an expected regret bound, we

can set δ = 1/T in (3.37) and get O(
√
T (log T )3). Also note that the upper bound (3.36) depends

on σmax only through the pre-constant of ξT .

Remark 6. A policy that always assumes σmax as variance tends to choose the action with the

largest mean reward since it implies a smaller reneging probability. As a result, such type of policy

incurs linear regret. This will be further demonstrated via simulations in Section 2.6.

Remark 7. The regret proof still goes through for sub-Gaussian noise by (a) reusing the same sub-

exponential concentration inequality in Lemma B.1 since the square of a sub-Gaussian distribution

is sub-exponential, (b) replacing the Gaussian concentration inequality in Lemma B.3 with a sub-

Gaussian one, and (c) deriving ranges of the first two derivatives of sub-Gaussian CDF.

Remark 6 The assumption that βt is known can be relaxed to the case where only the distribution

of βt is known. The analysis can be adapted to this case by (a) rewriting the reneging probability in

(3.6) and hβ(u, v) in (3.18) via integration over distribution of βt, (b) deriving the corresponding

expected lifetime under oracle policy in (3.9), and (c) reusing Theorem 1 and Lemma 5 as the

GLSE does not rely on the knowledge of βt.

56



Remark 7 We briefly discuss the difference between our regret bound and the regret bounds of

other related settings. Note that if the satisfaction level βt = ∞ for all t, then all the users will

quit after exactly one round. This corresponds to the conventional contextual bandits setting (e.g.

homoscedastic case [26] and heteroscedastic case [80]). In this degenerate case, our regret bound

isO(
√
T (log T )·log T ), which has an additional factor log T resulting from the heteroscedasticity.

3.6 Empirical Study on the Performance of the HR-UCB Algorithm

To evaluate the empirical performance of HR-UCB, we consider 20 actions available to the

decision-maker. For simplicity, the context of each user-action pair is designed to be a four-

dimensional vector, which is drawn uniformly at random from a unit ball. For the mean and

variance of the outcome distribution, we set θ∗ = [0.6, 0.5, 0.5, 0.3]> and φ∗ = [0.5, 0.2, 0.8, 0.9]>,

respectively. We consider the function f(x) = x+ L with L = 2 and Mf = 1. The acceptance

level of each user is drawn uniformly at random from the interval [−1, 1]. We set T = 30000

throughout the simulations. For HR-UCB, we set δ = 0.1 and λ = 1. All the results in this section

are the average of 20 simulation trials. Recall that K denotes the growth rate of the regression

sample set for HR-UCB. We start by evaluating the pseudo regrets of HR-UCB under different

K, as shown in Figure 3.2a. Note that HR-UCB achieves a sublinear regret regardless of K. The

effect of K is only reflected when the number of users is small. Specifically, a smaller K induces a

slightly higher regret since it requires more users in order to accurately learn the parameters. Based

on Figure 3.2a, we set K = 5 for the rest of the simulations.

We compare the HR-UCB policy with the well-known LinUCB policy [84] and the Contextual

MDP (CMDP) policy [81]. LinUCB also assumes the mean reward of arm linearly depends on

the context, i.e., E[rt,a|xt,a] = θ>∗ xt,a. Different from HR-UCB, LinUCB ignores the potential

dependence of the variance and the reneging risk if participants. Without planning for the reneg-

ing behavior, LinUCB always targets to maximize the cumulative rewards in an indefinite mode.

In contrast, CMDP models the decision-making with sequential participants (between reneging

behaviors) by episodic MDPs. At the start of each episode, the agent has access to some side-

information or context that determines the dynamics of the MDP for that episode. Although CMDP

57



0 1 2 3

Number of Users 10
4

0

100

200

300

400

500

600

R
e
g
re

t

HR-UCB (K=2)
HR-UCB (K=3)
HR-UCB (K=5)

(a) Pseudo regrets: HR-UCB with different K.

0 1 2 3

Number of Users 10
4

0

1000

2000

3000

4000

R
e
g
re

t

CMDP
LinUCB
HR-UCB

(b) Pseudo regrets: LinUCB, CMDP and HR-UCB (K = 5).

0 1 2 3

Number of Users 10
4

0

500

1000

1500

2000

R
e
g
re

t

max
-UCB

HR-UCB

(c) Pseudo regrets: σmax-UCB and HR-UCB (K = 5).

0 1 2 3

Number of Users 10
4

0

200

400

600

800

1000

1200

R
e
g
re

t

CMDP
HR-UCB

(d) Pseudo regrets: CMDP and HR-UCB (K = 5).

Figure 3.2: Comparison of pseudo regrets.
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is able to model the reneging behaviors, it has several limitations. First, different from the HR-UCB

algorithm that allows the lifetime of different participants to be random, CMDP considers that each

episode has a fixed lifetime. Second, the performance of the CMDP may largely deteriorate in han-

dling the problem handled by HR-CUB. CMDP targets to maximizing long-term rewards, which

requires asymptotic optimality. In contrast, the HR-UCB algorithm aims to minimize the cumula-

tive regret, a finer metric that requires a finite-time guarantee. Third, the scalability of CMDP is

relatively poor compared to the HR-UCB algorithm. Since the space of contexts is continuous, the

complexity of exploration can be very high for CMDP, especially when the dimension of features

scales up.

Figure 3.2b shows the pseudo regrets under LinUCB, CMDP and HR-UCB. LinUCB achieves a

linear regret because it does not take into account the heteroscedasticity of the outcome distribution

in the existence of reneging. For each user, LinUCB simply chooses the action with the largest

predicted mean of the outcome distribution. The regret attained by CMDP policy also appears

linear. This is because CMDP handles contexts by partitioning the context space and then learning

each partition-induced MDP separately. Due to the continuous context space, the CMDP policy

requires numerous partitions as well as plentiful exploration for all MDPs. To make the comparison

fairer, we consider a more straightforward setting with a discrete context space of size ten and only

two actions (with other parameters unchanged). In this setting, Figure 3.2d shows that the regret

attained by CMDP is still much larger than that by HR-UCB, and thereby shows the advantage

of the proposed solution. We also consider a heuristic policy (denoted by σmax-UCB) that always

assumes σmax as the variance. We find that it tends to choose the action with the largest mean

and thus incurs linear regret. We demonstrate this statement in experiments shown by Figure 3.2c,

where the σmax-UCB policy attains a linear regret while HR-UCB achieves a sublinear and much

smaller regret. Through simulations, we validate that HR-UCB achieves regret performance, as

discussed in Section 3.4.
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3.7 Possible Extensions

There are several possible directions to extend the study in this section. First, the techniques

used to estimate heteroscedastic variance and establish sub-linear regret under the presence of

heteroscedasticity can be extended to other variance-sensitive bandit problems, e.g., risk-averse

bandits and thresholding bandits. Second, the studies can be easily adapted to another objective -

maximizing total collected rewards by: (a) taking ĥβ(u, v) = u · hβ(u, v) in regret computation,

(b) reusing Theorem 1 and Lemma 5, and (c) making minor changes to constants C3, C4. Third,

another promising extension is to use active-learning to update the sample set S [85]. To provide

theoretical guarantees, these active-learning approaches often assume that arriving contexts are

i.i.d. In contrast, since that assumption can be easily invalid (e.g., it is adversarial), we can establish

the regret bound without making any such assumption. Finally, in the HR-UCB algorithm, the

problem of knowledge transfer across users is given more importance than learning for a single

user. This is because, compared to the population of potential users, a user’s lifetime is mostly

short. Therefore, another possible extension is to take into account the exploration during the

lifetime of each individual user.

3.8 Summary

In this section, we propose HR-UCB – a novel learning algorithm for contextual bandits to

overcome the limitation of existing bandit algorithms in applications with reneging risk and re-

ward heteroscedasticity. Contextual bandits have been widely used to solve the sequential decision

problems in many real-world applications, such as medical treatment and portfolio selection. In

these applications, a “reneging” phenomenon, where participants may disengage from future in-

teractions after an unsatisfactory outcome, is prevalent. To address the above issue, we propose

a model of heteroscedastic linear bandits with reneging, which allows each participant to have a

distinct “satisfaction level” with any interaction outcome falling short of that level resulting in that

participant reneging. Moreover, the proposed model also allows the variance of the outcome to be

context-dependent taking into account reward heteroscedasticity in real-world applications. Based
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on this model, we develop the HR-UCB algorithm, and prove that it achieves O
(√

T (log(T ))3
)

regret. We evaluate the performance of the HR-UCB algorithm by comparing its performance with

baseline methods in simulation studies. The HR-UCB algorithm outperforms baseline methods

under the presence of reneging risk and reward heteroscedasticity.
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4. CONCLUDING REMARKS

In this dissertation, we aim to explore two fundamental challenges that are inadequately ad-

dressed in the existing literature of bandit learning. First, the efficiency of the best-performing

algorithms is often unsatisfactory. Here “efficiency” is measured in terms of the performance in

maximizing reward accumulation with respect to computational complexity. The gain in regret

performance is often at a huge cost in computation complexity. Second, the assumptions on in-

definite interaction and on reward homoscedasticity made in most existing bandit algorithms are

often invalid in many real-world applications. Participants may disengage from future interactions,

a phenomenon is referred to as “churn”, “unsubscribing” or “reneging” in the literature. Further,

rewards may be heteroscedastic, by which is meant that the variance of the reward distribution is

different under different contexts. To address these challenges, we study both context-free bandits

as well as contextual bandits, and propose novel learning algorithms providing theoretical guaran-

tees on their performance. Extensive simulation experiments have been conducted to evaluate the

performance of the proposed algorithms, comparing them to state-of-the-art baselines proposed

algorithms are seen to outperform these baselines. We conclude by summarizing the key results as

well as outlining some promising directions for future research.

• In Section 2, we study the efficiency issue in existing bandit learning algorithms and propose

BMLE – a novel family of bandit algorithms. The proposed BMLE algorithms often demon-

strate slightly better regret performance than other state-of-the-art bandit algorithms but with a

major computational advantage. We prove that the derived BMLE indices achieve a logarithmic

finite-time regret bound and hence attain order-optimality, for both exponential families and the

cases beyond parametric distributions. In addition, the BMLE algorithms are formulated in a

general way derived from the Biased Maximum Likelihood Estimation method that originally

appeared in the adaptive control literature. They potentially enjoy great generality and thus are

expected to be extendable in several promising directions, including contextual bandits, MDP,
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and reinforcement learning.

• In Section 3, we study the violation of assumptions of indefinite interaction as well as reward

homoscedasticity. We propose HR-UCB – a novel bandit learning algorithms to overcome the

limitation of existing bandit algorithms. To address the above issue, we propose a model of

heteroscedastic linear bandits with reneging, which allows each participant to have a distinct

“satisfaction level” with any interaction outcome falling short of that level resulting in that par-

ticipant reneging. Moreover, the proposed model also allows the variance of the outcome to be

context-dependent by taking into account reward heteroscedasticity in real-world applications.

We develop the HR-UCB algorithm, and prove that it achieves O
(√

T (log(T ))3
)

regret. To the

best of our knowledge, it is the first bandit algorithms to consider both the reneging risk as well

as the reward heteroscedasticity. The techniques used to estimate heteroscedastic variance and

establish sub-linear regret under the presence of heteroscedasticity are expected to be extendable

to other variance-sensitive bandit problems, e.g., risk-averse bandits and thresholding bandits.
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APPENDIX A

PROOFS OF SECTION 2

A.1 Proof of Lemma 1

Recall that

I(ν, n, α(t)) =
(
nν + α(t)

)
Ḟ

−1
(
ν +

α(t)

n

)
− nνḞ−1

(ν)− nF
(
Ḟ

−1
(
ν +

α(t)

n

))
+ nF

(
Ḟ

−1
(ν)
)
.

By taking the partial derivative of I(ν, n, α(t)) with respect to n, we have

∂I

∂n
= νḞ

−1
(
ν +

α(t)

n

)
+
(
nν + α(t)

)∂Ḟ−1
(
ν + α(t)

n

)
∂n

− νḞ−1
(ν) (A.1)

− F
(
Ḟ

−1
(
ν +

α(t)

n

))
− nḞ

(
Ḟ

−1
(
ν +

α(t)

n

))∂Ḟ−1
(
ν + α(t)

n

)
∂n

+ F
(
Ḟ

−1
(ν)
)

(A.2)

= ν ·
[
Ḟ

−1
(
ν +

α(t)

n

)
− Ḟ−1

(ν)
]
−
[
F
(
Ḟ

−1
(
ν +

α(t)

n

))
− F

(
Ḟ

−1
(ν)
)]
. (A.3)

Since Ḟ (·) is strictly increasing for the exponential families, we know Ḟ−1(·) is also strictly in-

creasing and Ḟ−1(ν + α(t)/n) > Ḟ−1(ν). Moreover, by the strict convexity of F (·), we have

F
(
Ḟ

−1
(
ν +

α(t)

n

))
− F

(
Ḟ

−1
(ν)
)
>
(
Ḟ

−1
(
ν +

α(t)

n

)
− Ḟ−1

(ν)
)
· Ḟ
(
Ḟ

−1
(ν)
)︸ ︷︷ ︸

=ν

. (A.4)

Therefore, by (A.1)-(A.4), we conclude that ∂I
∂n

< 0 and hence I(ν, n, α(t)) is strictly decreasing

with n.

A.2 Proof of Lemma 2

Recall that

I(ν, n, α(t)) =
(
nν + α(t)

)
Ḟ

−1
(
ν +

α(t)

n

)
− nνḞ−1

(ν)− nF
(
Ḟ

−1
(
ν +

α(t)

n

))
+ nF

(
Ḟ

−1
(ν)
)
.
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By taking the partial derivative of I(ν, n, α(t)) with respect to ν, we have

∂I

∂ν
= nḞ

−1
(
ν +

α(t)

n

)
+ (nν + α(t))

∂Ḟ−1
(
ν + α(t)

n

)
∂ν

−
(
nḞ

−1
(ν) + nν

∂Ḟ−1(ν)

∂ν

)
(A.5)

− n Ḟ
(
Ḟ

−1
(
ν +

α(t)

n

))
︸ ︷︷ ︸

≤ν+α(t)/n

∂Ḟ−1
(
ν + α(t)

n

)
∂ν

+ n Ḟ
(
Ḟ

−1
(ν)
)

︸ ︷︷ ︸
=ν

∂Ḟ−1(ν)

∂ν
(A.6)

≥ n ·
[
Ḟ

−1
(
ν +

α(t)

n

)
− Ḟ−1

(ν)
]
> 0 (A.7)

where the last inequality follows from the fact that Ḟ−1(·) is strictly increasing for the exponential

families. Therefore, we can conclude that I(ν, n, α(t)) is strictly increasing with ν, for all α(t) > 0

and for all n > 0.

A.3 Proof of Lemma 3

Recall that we define

ξ(k; ν) =k
[(
ν +

1

k

)
Ḟ

−1
(ν +

1

k
)− νḞ−1

(ν)
]
− k
[
F
(
Ḟ

−1
(
ν +

1

k

))
− F (Ḟ

−1
(ν))

]
, (A.8)

K∗(θ′, θ′′) = inf{k : Ḟ
−1

(θ′) > ξ(k; θ′′)}. (A.9)

Moreover, we have I(µ1, kα(t), α(t)) = α(t)ξ(k;µ1). By Lemma 1, we know that the value

of I(µ1, kα(t), α(t)) decreases with k, for all k > 0. Let z = 1
k
. Under any fixed µ1 ∈ Θ and

α(t) > 0, we also know that

lim
k→∞

ξ(k;µ1) = lim
z↓0

[(
µ1 + z

)
Ḟ−1(µ1 + z)− µ1Ḟ

−1(µ1)
]
−
[
F
(
Ḟ−1

(
µ1 + z

))
− F (Ḟ−1(µ1))

]
z

(A.10)

= lim
z↓0

Ḟ
−1

(µ1 + z) + (µ1 + z)
∂Ḟ−1(µ1 + z)

∂z
− Ḟ

(
Ḟ

−1
(µ1 + z)

)∂Ḟ−1(µ1 + z)

∂z

(A.11)

=Ḟ
−1

(µ1), (A.12)
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where (A.10) is obtained by replacing 1/k with z, and (A.11) follows from L’Hôpital’s rule. There-

fore, we have

lim
k→∞

I(µ1, kα(t), α(t)) = α(t) · Ḟ−1
(µ1). (A.13)

By Lemma 1 and (A.13), we know

I(µ1, kα(t), α(t)) ≥ α(t)Ḟ
−1

(µ1), for all k > 0. (A.14)

For any n2 > K∗(µ1, µ2)α(t), we have

I(µ1, n1, α(t)) ≥ α(t)Ḟ
−1

(µ1) (A.15)

≥ I(µ2, K
∗(µ1, µ2)α(t), α(t)) (A.16)

> I(µ2, n2, α(t)), (A.17)

where (A.15) follows from (A.14), (A.16) holds from the definition of K∗(·, ·), and (A.17) holds

due to Lemma 1. Finally, we show that K∗(µ1, µ2) is finite given that µ1 > µ2. We consider the

limit of ξ(k;µ2) when k approaches zero and again let z = 1
k
:

lim
k↓0

ξ(k;µ2) = lim
z→∞

[(
µ2 + z

)
Ḟ−1(µ2 + z)− νḞ−1(µ2)

]
−
[
F
(
Ḟ−1

(
µ2 + z

))
− F (Ḟ−1(µ2))

]
z

(A.18)

= lim
z→∞

Ḟ
−1

(µ2 + z) + (µ2 + z)
∂Ḟ−1(µ2 + z)

∂z︸ ︷︷ ︸
≥0

− Ḟ
(
Ḟ

−1
(µ2 + z)

)︸ ︷︷ ︸
≤µ2+z

∂Ḟ−1(µ2 + z)

∂z︸ ︷︷ ︸
≥0

(A.19)

≥ lim
z→∞

Ḟ
−1

(µ2 + z) (A.20)

≥Ḟ−1
(µ1), (A.21)

where (A.19) follows from L’Hôpital’s rule and (A.21) holds due to the fact that Ḟ−1 is increasing.
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By (A.18)-(A.21) and since ξ(k;µ2) is continuous and strictly decreasing with k, we know there

must exist a finite k′ ≥ 0 such that Ḟ−1(µ1) = ξ(k′;µ2). This implies that K∗(µ1, µ2) is finite

given that µ1 > µ2. �

A.4 Proof of Lemma 4

Similar to the proof of Lemma 3, we leverage the function K∗(·, ·) as defined in (A.9). By

(A.9), we know that for any k > K∗(µ0, µ2), we have ξ(k;µ2) < Ḟ−1(µ0). Therefore, if n2 >

K∗(µ0, µ2)α(t),

I(µ2, n2, α(t)) < I(µ2, K
∗(µ0, µ2), α(t)) (A.22)

= α(t)ξ(K∗(µ0, µ2);µ2) (A.23)

= α(t)Ḟ
−1

(µ0). (A.24)

Similarly, for any k ≤ K∗(µ0, µ1), we have ξ(k;µ1) ≥ Ḟ−1(µ0). Then, if n1 ≤ K∗(µ0, µ1)α(t),

we know

I(µ1, n1, α(t)) ≥ I(µ1, K
∗(µ0, µ1), α(t)) (A.25)

= α(t)ξ(K∗(µ0, µ1);µ1) (A.26)

= α(t)Ḟ
−1

(µ0). (A.27)

Hence, by (A.22)-(A.27), we conclude that I(µ1, n1, α(t)) > I(µ2, n2, α(t)), for all n1 ≤

K∗(µ0, µ1)α(t) and n2 > K∗(µ0, µ2)α(t). �

A.5 Proof of Proposition 1

Recall from (2.10) that

πBMLE
t = argmax

i∈{1,··· ,N}
max
ηi∈N ,∀i

{
L(Ht;η) exp(ηi · α(t))

}
. (A.28)
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By plugging L(Ht;η) into (A.28) using the density function of the exponential families, we have

πBMLE
t = argmax

i∈{1,··· ,N}
argmax
ηi∈N ,∀i

{ t∑
s=1

(
ηπsXs − F (ηπs)

)
+ ηi · α(t)︸ ︷︷ ︸

=:`i(Ht;η)

}
. (A.29)

Note that the inner maximization problem for `i(Ht;η) over η is convex since F (·) is a convex

function. Recall that Ni(t) and Si(t) denote the total number of trials of arm i and the total reward

collected from pulling arm i up to time t, as defined in Section 2.3. By taking the partial derivatives

of `i(Ht;η) with respect to each ηi, we know that `i(Ht;η) is maximized when Ḟ (ηi) = Si(t)+α(t)
Ni(t)

and Ḟ (ηj) =
Sj(t)

Nj(t)
, for j 6= i. For each i = 1, · · · , N , we then define

η∗i := Ḟ−1
( Si(t)
Ni(t)

)
, (A.30)

η∗∗i := Ḟ−1
(Si(t) + α(t)

Ni(t)

)
. (A.31)

By plugging {η∗i } and {η∗∗i } into (A.29), we have

πBMLE
t = argmax

i∈{1,··· ,N}

{
`i
(
Ht; η

∗∗
i , {η∗∗j }j 6=i

)}
(A.32)

= argmax
i∈{1,··· ,N}

{
`i
(
Ht; η

∗∗
i , {η∗j}j 6=i)− `i(Ht; {η∗j}j=1,··· ,N

)}
(A.33)

= argmax
i∈{1,··· ,N}

{[(
(Si(t) + α(t))

)
η∗∗i −Ni(t)F (η∗∗i )

]
−
[
Si(t)η

∗
i −Ni(t)F (η∗i )

]}
. (A.34)

By substituting Ni(t)pi(t) for Si(t) in (A.34), we then arrive at the index as

I(pi(t), Ni(t), α(t)) =
[(

(Ni(t)pi(t) + α(t))
)
η∗∗i −Ni(t)F (η∗∗i )

]
(A.35)

−
[
Ni(t)pi(t)η

∗
i −Ni(t)F (η∗i )

]
. (A.36)

�
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A.6 Proof of Corollary 1

Recall from (A.36) that for the exponential family rewards, the BMLE index is

I(pi(t), Ni(t), α(t)) =
[(

(Ni(t)pi(t) + α(t))
)
η∗∗i (A.37)

−Ni(t)F (η∗∗i )
]
−
[
Ni(t)pi(t)η

∗
i −Ni(t)F (η∗i )

]
. (A.38)

For the Bernoulli case, we know F (η) = log(1 + eη), Ḟ (η) = eηi
1+eηi

, Ḟ−1(θ) = log( θ
1−θ ), and

F (Ḟ−1(θ)) = log( 1
1−θ ). Since Θ = [0, 1] for Bernoulli rewards, we need to analyze the following

two cases when substituting the above Ḟ−1(θ) and F (Ḟ−1(θ)) into (A.38):

• Case 1: α(t) < Ni(t)(1− pi(t)) (or equivalently p̃i(t) < 1)

We have

I(pi(t), Ni(t), α(t)) (A.39)

=
(
Ni(t)pi(t) + α(t)

)
log
( Ni(t)pi(t) + α(t)

Ni(t)− (Ni(t)pi(t) + α(t))

)
(A.40)

−Ni(t) log
( Ni(t)

Ni(t)− (Ni(t)pi(t) + α(t))

)
(A.41)

−Ni(t)pi(t) log
( Ni(t)pi(t)

Ni(t)−Ni(t)pi(t)

)
+Ni(t) log

( Ni(t)

Ni(t)−Ni(t)pi(t)

)
(A.42)

=Ni(t)

{(
pi(t) +

α(t)

Ni(t)

)
log
(
pi(t) +

α(t)

Ni(t)

)
(A.43)

+
(
1− (pi(t) +

α(t)

Ni(t)
)
)

log
(

1− (pi(t) +
α(t)

Ni(t)
)
)

(A.44)

− pi(t) log(pi(t))− (1− pi(t)) log(1− pi(t))
}
, (A.45)

where (A.44)-(A.45) are obtained by reorganizing the terms in (A.41)-(A.42).

• Case 2: α(t) ≥ Ni(t)(1− pi(t)) (or equivalently p̃i(t) = 1)

In this case, the index would be the same as the case where pi(t)+α(t)/Ni(t) = 1. Therefore,
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we simply have

I(pi(t), Ni(t), α(t)) = Ni(t)
{
− pi(t) log(pi(t))− (1− pi(t)) log(1− pi(t))

}
. (A.46)

�

A.7 Derivation of the Alternative Expression of BMLE Index in (2.17)

Note that (A.44)-(A.45) can be rewritten as follows:

I(pi(t), Ni(t), α(t)) (A.47)

= Ni(t)

{(
pi(t) +

α(t)

Ni(t)

)
log
(
pi(t) +

α(t)

Ni(t)

)
(A.48)

+
(
1− (pi(t) +

α(t)

Ni(t)
)
)

log
(

1− (pi(t) +
α(t)

Ni(t)
)
)

(A.49)

− pi(t) log(pi(t))− (1− pi(t)) log(1− pi(t))
}

(A.50)

= Ni(t)

{
pi(t) log

(pi(t) + α(t)
Ni(t)

pi(t)

)
+ (1− pi(t)) log

(1− (pi(t) + α(t)
Ni(t)

)

1− pi(t)

)
︸ ︷︷ ︸

=−KL(pi(t) || p̃i(t))

}
(A.51)

+ α(t) log
( pi(t) + α(t)

Ni(t)

1− (pi(t) + α(t)
Ni(t)

)

)
= α(t) log

p̃i(t)

1− p̃i(t)
−Ni(t) · KL(pi(t) || p̃i(t)). (A.52)

�

A.8 Proof of Corollary 2

Recall from (A.36) that for the exponential family rewards, the BMLE index is

I(pi(t), Ni(t), α(t)) =
[(

(Ni(t)pi(t) + α(t))
)
η∗∗i −Ni(t)F (η∗∗i )

]
−
[
Ni(t)pi(t)η

∗
i −Ni(t)F (η∗i )

]
,

(A.53)
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where η∗i = Ḟ−1
(
Si(t)
Ni(t)

)
and η∗∗i = Ḟ−1

(
Si(t)+α(t)
Ni(t)

)
. For Gaussian rewards with the same variance

σ2 among arms, we have F (ηi) = σ2η2
i /2, Ḟ (ηi) = σ2ηi, Ḟ

−1(θi) = θi/σ
2, and F (Ḟ−1(θi)) =

θ2
i /2σ

2, for each arm i. Therefore, the BMLE index becomes

I(pi(t), Ni(t), α(t)) (A.54)

=
Si(t) + α(t)

σ2Ni(t)
(Si(t) + α(t))−Ni(t)

σ2

2

(Si(t) + α(t)

σ2Ni(t)

)2

(A.55)

− Si(t)
Si(t)

σ2Ni(t)
+Ni(t)

σ2

2

( Si(t)

σ2Ni(t)

)2

(A.56)

=
2Si(t)α(t) + α(t)2

2σ2Ni(t)
. (A.57)

Equivalently, for the Gaussian rewards, the selected arm at each time t is

πBMLE
t = argmax

i∈{1,··· ,N}

{
pi(t) +

α(t)

2Ni(t)

}
. (A.58)

�

A.9 Proof of Corollary 3

Recall from (A.36) that for the exponential family distributions, the BMLE index is

I(pi(t), Ni(t), α(t)) =
[(

(Ni(t)pi(t) + α(t))
)
η∗∗i −Ni(t)F (η∗∗i )

]
−
[
Ni(t)pi(t)η

∗
i −Ni(t)F (η∗i )

]
,

(A.59)

where η∗i = Ḟ−1
( Si(t)
Ni(t)

)
and η∗∗i = Ḟ−1

(Si(t)+α(t)
Ni(t)

)
. For the exponential distributions, we have

F (ηi) = log(−1
ηi

), Ḟ (ηi) = −1
ηi

, Ḟ−1(θi) = −1
θi

, and F (Ḟ−1(θi)) = log θi, for each arm i. Therefore,
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the BMLE index becomes

I(pi(t), Ni(t), α(t)) (A.60)

=(Ni(t)pi(t) + α(t)) ·
(
− Ni(t)

Ni(t)pi(t) + α(t)

)
−Ni(t) log

(Ni(t)pi(t) + α(t)

Ni(t)

)
(A.61)

−
(
Ni(t)pi(t)

(
− 1

pi(t)

))
+Ni(t) log pi(t) (A.62)

=Ni(t) log
( Ni(t)pi(t)

Ni(t)pi(t) + α(t)

)
. (A.63)

�

A.10 Proof of Proposition 2

To begin with, for each arm i, we define pi,n to be the empirical average reward collected in the

first n pulls of arm i. For any exponential family reward distribution, the empirical mean of each

arm i satisfies the following concentration inequalities [11]: For any δ > 0,

P(pi,n − θi ≥ δ) ≤ exp(−nD(θi + δ, θi)), (A.64)

P(θi − pi,n ≥ δ) ≤ exp(−nD(θi − δ, θi)). (A.65)

Next, for each arm i, we define the following confidence intervals for each pair of n, t ∈ N:

δ+
i (n, t) := inf

{
δ : exp(−nD(θi + δ, θi)) ≤

1

t4

}
, (A.66)

δ−i (n, t) := inf
{
δ : exp(−nD(θi − δ, θi)) ≤

1

t4

}
. (A.67)

Accordingly, for each arm i and for each pair of n, t ∈ N, we define the following events:

G+
i (n, t) =

{
pi,n − θi ≤ δ+

i (n, t)
}
, (A.68)

G−i (n, t) =
{
θi − pi,n ≤ δ−i (n, t)

}
. (A.69)
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By the concentration inequality considered in Section 2.3, we have

P(G+
i (n, t)

c
) ≤ e−nD(θi+δ

+
i (n,t),θi) ≤ 1

t4
, (A.70)

P(G−i (n, t)
c
) ≤ e−nD(θi−δ−i (n,t),θi) ≤ 1

t4
. (A.71)

Consider the bias term α(t) = Cα log t with Cα ≥ 4/(D(θ1 − ε
2
∆, θ1) ·K∗(θ1 − ε

2
∆, θ)) and

ε ∈ (0, 1). Recall that we assume arm 1 is the unique optimal arm. Our target is to quantify the

total number of trials of each sub-optimal arm. Define

Qa(T ) := max
{ 4

D(θa + ε
2
∆a, θa)

, CαK
∗(θ1 −

ε

2
∆a, θa +

ε

2
∆a)

}
log T + 1. (A.72)

We start by characterizing E[Na(T )] for each a = 2, · · · , N :

E[Na(T )] (A.73)

≤ Qa(T ) + E
[ T∑
t=Qa(T )+1

I
(
I(pa(t), Na(t), α(t) ≥ I(p1(t), N1(t), α(t), Na(t) ≥ Qa(T )

)]
(A.74)

= Qa(T ) +
T∑

t=Qa(T )+1

P
(
I
(
pa(t), Na(t), α(t)

)
≥ I
(
p1(t), N1(t), α(t)

)
, Na(t) ≥ Qa(T )

)
(A.75)

≤ Qa(T ) +
T∑

t=Qa(T )+1

P
(

max
Qa(T )≤na≤t

I
(
pa,na , na, α(t)

)
≥ min

1≤n1≤t
I
(
p1,n1 , n1, α(t)

))
(A.76)

≤ Qa(T ) +
T∑

t=Qa(T )+1

t∑
n1=1

t∑
na=Qa(T )

P
(
I
(
pa,na , na, α(t)

)
≥ I
(
p1,n1 , n1, α(t)

))
(A.77)

≤ Qa(T ) +
T∑

t=Qa(T )+1

t∑
n1=1

t∑
na=Qa(T )

(
P
(
G−1 (n1, t)

c
)︸ ︷︷ ︸

≤ 1
t4

+P
(
G+
a (na, t)

c
)︸ ︷︷ ︸

≤ 1
t4

)
(A.78)
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+
T∑

t=Qa(T )+1

t∑
n1=1

t∑
na=Qa(T )

P
(
I
(
pa,na , na, α(t)

)
≥ I
(
p1,n1 , n1, α(t)

)
, G−1 (n1, t), G

+
a (na, t)

)
(A.79)

≤ Qa(T ) +
π2

3
(A.80)

+
T∑

t=Qa(T )+1

t∑
n1=1

t∑
na=Qa(T )

P
(
I
(
pa,na , na, α(t)

)
≥ I
(
p1,n1 , n1, α(t)

)
, G−1 (n1, t), G

+
a (na, t)

)
,

(A.81)

where the last equation follows from the fact that
∑T

t=Qa(T )+1( 1
t2

) ≤ π2/6. Next, to provide an

upper bound for (A.81), we need to consider the following three cases separately. As suggested by

(A.81), we can focus on the case where na ≥ Qa(T ).

• Case 1: n1 >
4

D(θ1− ε2 ∆,θ1)
log t

Since n1 >
4

D(θ1− ε2 ∆,θ1)
log t, we have p1,n1 < θ1 − ε

2
∆ on the event G−1 (n1, t). Similarly,

as na ≥ Qa(T ) > 4
D(θa+ ε

2
∆a,θa)

log t, we have pa,na ≤ θa + ε
2
∆a on the event G+

a (na, t).

Therefore, we know

p1,n1 − pa,na > (1− ε)∆. (A.82)

Then, we have

I(p1,n1 , n1, α(t)) > I(θ1 −
ε

2
∆, n1, α(t)) (A.83)

≥ I(θa −
ε

2
∆, K∗(θ1 −

ε

2
∆, θa +

ε

2
∆)α(t), α(t)) (A.84)

≥ I(θa −
ε

2
∆a, K

∗(θ1 −
ε

2
∆, θa +

ε

2
∆)α(t), α(t)) (A.85)

≥ I(pa,na , K
∗(θ1 −

ε

2
∆, θa +

ε

2
∆)α(t), α(t)) (A.86)

≥ I(pa,na , Qa(T ), α(t)) (A.87)

≥ I(pa,na , na, α(t)), (A.88)

where (A.83) and (A.85)-(A.86) hold by Lemma 2, (A.84) holds by Lemma 3, and (A.87)-
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(A.88) follow from Lemma 1. Hence, in Case 1, we always have I
(
p1,n1 , n1, α(t)

)
>

I
(
pa,na , na, α(t)

)
.

• Case 2: n1 ≤ 4
D(θ1− ε2 ∆,θ1)

log t and n1 ≤ K∗(θ1 − ε
2
∆, θ)α(t)

Similar to Case 1, since na ≥ Qa(T ) > 4
D(θa,θa+ ε

2
∆a)

log t, we have pa,na ≤ θa + ε
2
∆a on

the event G+
a (na, t). Moreover, as n1 ≤ K∗(θ1 − ε

2
∆, θ)α(t) and na ≥ Qa(T ) > K∗(θ1 −

ε
2
∆, θa + ε

2
∆)α(t), by Lemma 4 we know

I(θ, n1, α(t)) > I(θa +
ε

2
∆, na, α(t)). (A.89)

Therefore, we obtain that

I
(
p1,n1 , n1, α(t)

)
> I
(
θ, n1, α(t)

)
(A.90)

> I(θa +
ε

2
∆, na, α(t)) (A.91)

> I
(
pa,na , na, α(t)

)
, (A.92)

where (A.90) and (A.92) follow from Lemma 2, and (A.91) is a direct result of (A.89).

Hence, in Case 2, we still have I
(
p1,n1 , n1, α(t)

)
> I
(
pa,na , na, α(t)

)
.

• Case 3: n1 ≤ 4
D(θ1− ε2 ∆,θ1)

log t and n1 > K∗(θ1 − ε
2
∆, θ)α(t)

Recall that α(t) = Cα log t with Cα ≥ 4/(D(θ1 − ε
2
∆, θ1) ·K∗(θ1 − ε

2
∆, θ)). Therefore,

the two events {n1 ≤ 4
D(θ1− ε2 ∆,θ1)

log t} and {n1 > K∗(θ1 − ε
2
∆, θ)α(t)} cannot happen at

the same time.

To sum up, in all the above three cases, we have

P
(
I
(
pa,na , na, α(t)

)
≥ I
(
p1,n1 , n1, α(t)

)
, G−1 (n1, t), G

+
a (na, t)

)
= 0. (A.93)

By (A.81) and (A.93), we conclude that E[Na(T )] ≤ Qa(T ) + π2

3
, for every a 6= 1.
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Finally, the total regret can be upper bounded as

R(T ) ≤
N∑
a=2

∆a · E[Na(T )] (A.94)

=
N∑
a=2

∆a

[
max

{ 4

D(θa + ε
2
∆a, θa)

, CαK
∗(θ1 −

ε

2
∆a, θa +

ε

2
∆a)

}
log T + 1 +

π2

3

]
.

(A.95)

�

A.11 Proof of Proposition 3

We extend the proof of Proposition 2 to the case of Gaussian rewards. To begin with, we define

the confidence intervals and the “good” events. Recall that for each arm i, we define pi,n to be the

empirical average reward collected in the first n pulls of arm i. For each arm i, for each pair of

n, t ∈ N, we define

δi(n, t) := inf
{
δ : max

{
exp(−nD(θi + δ, θi)), exp(−nD(θi − δ, θi))

}
≤ 1

t4

}
. (A.96)

Accordingly, for each arm i and for each pair of n, t ∈ N, we define the following events:

Gi(n, t) =
{
|pi,n − θi| ≤ δi(n, t)

}
, (A.97)

For the Gaussian rewards, we can leverage Hoeffding’s inequality for sub-Gaussian distributions

as follows:

Lemma 11. Under σ-sub-Gaussian rewards for all arms, for any n ∈ N, we have

P(|pi,n − θi| ≥ δ) ≤ 2 exp(− n

2σ2
δ2). (A.98)

The proof of Lemma 11 is a direct result of Proposition 2.5 in [51]. �

Based on Lemma 11, we shall focus on the case D(θ′, θ′′) = 1
2σ2 (|θ′ − θ′′|)2 and δi(n, t) =
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√
(8σ2 log t)/n. For ease of notation, we use γ∗ to denote the constant 8σ2.

Before providing the regret analysis, we first introduce the following useful lemma.

Lemma 12. Suppose γ > 0 and µ1, µ2 ∈ R with µ1 > µ2. Given α(t) = c log t with c ≥ 32γ
µ1−µ2

,

for any n2 ≥ 2
µ1−µ2

α(t) and any n1 > 0, we have I(µ1 −
√

(γ log t)/n1, n1, α(t)) > I(µ2 +√
(γ log t)/n2, n2, α(t)).

The proof of Lemma 12 is summarized as below. We start by considering n2 ≥ Mα(t), for

some M > 0. Then, note that

I
(
µ1 −

√
γ log t

n1

, n1, α(t)
)

= µ1 −
√
γ log t

n1

+
α(t)

2n1

, (A.99)

I
(
µ2 +

√
γ log t

n2

, n2, α(t)
)

= µ2 −
√
γ log t

n2

+
α(t)

2n2

, (A.100)

For ease of notation, we use x1 and x2 to denote
√

(γ log t)/n1 and
√

(γ log t)/n2, respectively.

Then, we know

I
(
µ1 −

√
γ log t

n1

, n1, α(t)
)
− I
(
µ2 +

√
γ log t

n1

, n2, α(t)
)

(A.101)

≥ (µ1 − µ2)− (x1 + x2) +
c

2γ
(x2

1 − x2
2) (A.102)

≥ (µ1 − µ2)− x1 −
√

γ

cM
+

c

2γ
x2

1 −
1

2M
, (A.103)

where (A.103) follows from that n2 ≥Mα(t). Definew(x1) := (µ1−µ2)−x1−
√

γ
cM

+ c
2γ
x2

1− 1
2M

.

The quadratic polynomial w(x1) remains positive for all x1 ∈ R if the discriminant of w(x1),

denoted by Disc(w(x1)), is negative. Indeed, we have

Disc(w(x1)) = 1− 4 · c
2γ
· (−

√
γ

cM
− 1

2M
+ (µ1 − µ2)) ≤ −39, (A.104)

where the last inequality follows from that c ≥ 32γ
µ1−µ2

and M = 2
µ1−µ2

. �

Now, we are ready to prove Proposition 3: Consider the bias term α(t) = Cα log t with Cα ≥
32γ∗

∆
, where γ∗ = 8σ2. Recall that we assume arm 1 is the unique optimal arm. Our target is to
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quantify the total number of trials of each sub-optimal arm. Next, we characterize the expected

total number of trials of each sub-optimal arm, i.e. E[Na(T )]. We define Q∗a(T ) = 2
∆a
Cα log T .

By using as similar argument to (A.73)-(A.81), we have

E[Na(T )] ≤ Q∗a(T ) (A.105)

+
T∑

t=Qa(T )+1

P
(
I
(
pa(t), Na(t), α(t)

)
≥ I
(
p1(t), N1(t), α(t)

)
, Na(t) ≥ Q∗a(T )

)
(A.106)

≤ Q∗a(T ) +
T∑

t=Q∗
a(T )+1

t∑
n1=1

t∑
na=Q∗

a(T )

P
(
I
(
pa,na , na, α(t)

)
≥ I
(
p1,n1 , n1, α(t)

))
(A.107)

≤ Q∗a(T ) +
T∑

t=Q∗
a(T )+1

t∑
n1=1

t∑
na=Q∗

a(T )

(
P
(
G1(n1, t)

c
)︸ ︷︷ ︸

≤ 2
t4

+P
(
Ga(na, t)

c
)︸ ︷︷ ︸

≤ 2
t4

)
(A.108)

+
T∑

t=Q∗
a(T )+1

t∑
n1=1

t∑
na=Q∗

a(T )

P
(
I
(
pa,na , na, α(t)

)
≥ I
(
p1,n1 , n1, α(t)

)
, G1(n1, t), Ga(na, t)

)
(A.109)

≤ Q∗a(T ) +
2π2

3
(A.110)

+
T∑

t=Q∗
a(T )+1

t∑
n1=1

t∑
na=Q∗

a(T )

P
(
I
(
pa,na , na, α(t)

)
≥ I
(
p1,n1 , n1, α(t)

)
, G1(n1, t), Ga(na, t)

)
.

(A.111)

Conditioned on the events Gi(n1, t) and Ga(na, t), we obtain that

I
(
p1,n1 , n1, α(t)

)
≥ I(θ1 −

√
(γ∗ log t)/n1, n1, α(t)) (A.112)

> I(θa +
√

(γ∗ log t)/na, na, α(t)) (A.113)

≥ I
(
pa,na , na, α(t)

)
, (A.114)

where (A.112) and (A.114) follow from Lemma 2, and (A.113) follows from Lemma 12. Hence,
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for n1 > 0 and na ≥ Q∗a(T ),

P
(
I
(
pa,na , na, α(t)

)
≥ I
(
p1,n1 , n1, α(t)

)
, G1(n1, t), Ga(na, t)

)
= 0. (A.115)

By (A.111) and (A.115), we know E[Na(T )] ≤ Q∗a(T ) + 2π2

3
, for every a 6= 1. Hence, the total

regret can be upper bounded as

R(T ) ≤
N∑
a=2

∆a

[ 2

∆a

Cα log T +
2π2

3

]
. (A.116)

�

A.12 Proof of Proposition 5

For sub-exponential reward distributions, we consider the sub-exponential tail bound as fol-

lows:

Lemma 13. Under (ρ, κ)-sub-exponential rewards for all arms, for any n ∈ N, we have

P(pi,n − θi ≥ δ) ≤ exp
(
− n2δ2

2(nκδ + ρ2)

)
. (A.117)

Similar to the proof of Proposition 2, we consider the bias term α(t) = Cα log t, but with

Cα ≥ 16(κε∆ + 2ρ2)/((ε∆)2K∗(θ1 − ε∆
2
, 0)). Note that here we simply replace D(θ1 − ε∆

2
, θ1)

with (ε∆)2

4(κε∆+2ρ2)
by comparing (A.117) with (A.64). Similarly, we define

Q̃a(T ) := max
{16(κε∆ + 2ρ2)

(ε∆a)2
, CαK

∗(θ1 −
ε

2
∆a, θa +

ε

2
∆a)

}
log T + 1. (A.118)

Note that the proof of Proposition 2 relies only on Lemmas 1-4, and these lemmas are tied to

the distributions for deriving the BMLE index, not to the underlying true reward distributions.

Therefore, it is easy to verify that the same proof procedure still holds here by replacing Qa(T )

with Q̃a(T ). �
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APPENDIX B

PROOFS OF SECTION 3

B.1 Proof of Lemma 6

Proof. Recall that Vn =
(
X>nXn + λId

)
. Note that

φ̂n = (X>nXn + λId)
−1X>n f

−1(ε̂ ◦ ε̂) (B.1)

= V −1
n X>n f

−1(ε̂ ◦ ε̂) (B.2)

= V −1
n X>n

(
f−1(ε̂ ◦ ε̂)−Xnφ∗ +Xnφ∗

)
(B.3)

+ λV −1
n φ∗ − λV −1

n φ∗ (B.4)

= V −1
n X>n

(
f−1(ε̂ ◦ ε̂)−Xnφ∗

)
− λV −1

n φ∗ + φ∗. (B.5)

Therefore, for any x ∈ Rd, we know

|x>φ̂n − x>φ̂∗| (B.6)

= |x>V −1
n X>n

(
f−1(ε̂ ◦ ε̂)−Xnφ∗

)
− λx>V −1

n φ∗| (B.7)

≤ ‖x‖Vn−1

(
λ ‖φ∗‖V −1

n
(B.8)

+
∥∥X>n (f−1(ε̂ ◦ ε̂)−Xnφ∗)

)∥∥
Vn

−1

)
. (B.9)

Moreover, by rewriting ε̂ = ε̂− ε+ ε, we have

f−1(ε̂ ◦ ε̂) (B.10)

= f−1
(
(ε̂− ε+ ε) ◦ (ε̂− ε+ ε)

)
(B.11)

= f−1(ε ◦ ε) +M−1
f

(
2
(
ε ◦Xn(θ∗ − θ̂n)

)
(B.12)

+
(
Xn(θ∗ − θ̂n) ◦Xn(θ∗ − θ̂n)

))
, (B.13)
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where (B.12)-(B.13) follow from the fact that both f(·) and f−1(·) are linear with a slope Mf

and M−1
f , respectively, as described in Section 3.3. Therefore, by (B.6)-(B.13) and the Cauchy-

Schwarz inequality, we have

|x>φ̂n − x>φ̂∗| ≤ ‖x‖Vn−1

{
λ ‖φ∗‖V −1

n
(B.14)

+
∥∥X>n (f−1(ε ◦ ε)−Xnφ∗)

)∥∥
Vn

−1 (B.15)

+ 2M−1
f

∥∥∥X>n (ε ◦Xn(θ∗ − θ̂n)
)∥∥∥
Vn

−1
(B.16)

+M−1
f

∥∥∥X>n (Xn(θ∗ − θ̂n) ◦Xn(θ∗ − θ̂n)
)∥∥∥
Vn

−1

}
. (B.17)

B.2 Proof of Lemma 7

We first introduce the following useful lemmas.

Lemma 14 (Lemma 8.2 in [86]). Let {ai}Ni=1 be N independent random complex variables with

zero mean and variance σ2 and having uniform sub-exponential decay, i.e., there exists κ1, κ2 > 0

such that

P{|ai| ≥ xκ1} ≤ κ2e
−x. (B.18)

We use aH to denote the conjugate transpose of a. Let a = (a1, · · · , aN)>, letai denote the complex

conjugate of ai, for all i, and letB = (Bij) be a complex N ×N matrix. Then, we have

P
{
|aHBa− σ2tr(B)| ≥ sσ2

( N∑
i=1

|Bii|2
)−1/2}

(B.19)

≤ C1exp
(
− C2 · s1/(1+κ1)

)
, (B.20)

where C1 and C2 are positive constants that depend only on κ1, κ2. Moreover, for the standard

χ2
1-distribution, κ1 = 1 and κ2 = 2.
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For any p×q matrixA, we define the induced matrix norm as ‖A‖2 := maxv∈Rq ,‖v‖2=1 ‖Av‖2.

Lemma 15. ∥∥∥Vn−1/2X>
∥∥∥

2
≤ 1,∀n ∈ N. (B.21)

Proof. By the definition of induced matrix norm,

∥∥∥Vn−1/2X>
∥∥∥

2
= max
‖v‖2=1

√
v>XVn

−1X>v (B.22)

= λmax

(
XVn

−1XT
)

(B.23)

= λmax

(
X
(
XTX + λId

)−1
XT
)

(B.24)

≤ λmax(X>X)

λmax(X>X) + λ
≤ 1, (B.25)

where (B.25) follows from the singular value decomposition and λmax(X>X) ≥ 0.

To simplify notation, we use X and V as a shorthand for Xn and Vn, respectively. For con-

venience, we rewrite V −1/2X> = [v1 · · · vn] as the matrix of n column vectors {vi}ni=1 (each

vi ∈ Rd) and show the following property.

Lemma 16. Let vi ∈ Rd be the i-th column of the matrix V −1/2X>, for all 1 ≤ i ≤ n. Then, we

have

n∑
i=1

‖vi‖2
2 ≤ d. (B.26)

Proof of Lemma 16. Recall that λmax(·) denotes the largest eigenvalue of a square matrix. We

know

n∑
i=1

‖vi‖2
2 = tr

((
XV −1/2

)(
V −1/2X>

))
(B.27)

= tr
((
V −1/2X

)(
X>V −1/2

))
(B.28)

≤ d · λmax

((
V −1/2X

)(
X>V −1/2

))
, (B.29)
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where (B.28) follows from the trace of a product being commutative, and (B.29) follows since the

trace is the sum of all eigenvalues. Moreover, we have

λmax

((
XV 1/2

)(
X>V −1/2

))
(B.30)

=
∥∥(XV 1/2

)(
X>V −1/2

)∥∥
2

(B.31)

≤
∥∥(XV 1/2

)∥∥
2

∥∥(X>V −1/2
)∥∥

2
≤ 1, (B.32)

where (B.32) follows from the fact that the `2-norm is sub-multiplicative. Therefore, by (B.27)-

(B.32), we conclude that
∑n

i=1 ‖vi‖
2
2 ≤ d.

We are now ready to prove Lemma 7.

Proof of Lemma 7. To simplify notation, we use X and V as a shorthand for Xn and Vn, respec-

tively. To begin with, we know f−1(ε ◦ ε) − Xφ∗ = 1
Mf

((ε ◦ ε) − f(Xφ∗)). Therefore, we

have

∥∥X(f−1(ε ◦ ε)−Xφ∗)
∥∥
V

−1 (B.33)

=
1

Mf

√(
ε ◦ ε− f(Xφ∗)

)>
XV

−1
X>

(
ε ◦ ε− f(Xφ∗)

)
, (B.34)

where each element in the vector (ε ◦ ε− f(Xφ∗)) is a centered χ2
1-distribution with a scaling of

f(φ>∗ xi). DefiningW = diag
(
f(x>1 φ∗), ..., f(x>nφ∗)

)
, we have

∥∥X(f−1(ε ◦ ε)−Xφ∗)
∥∥
V

−1 (B.35)

=
1

Mf

[ (
ε ◦ ε− f(Xφ∗)

)>
W

−1︸ ︷︷ ︸
mean=0, variance= 2

(
WXV

−1
X>W

)
(B.36)

W
−1
(
ε ◦ ε− f(Xφ∗)

)
︸ ︷︷ ︸

mean=0, variance=2

]1/2

. (B.37)

We use η = W
−1
(
ε ◦ ε− f(Xφ∗)

)
as a shorthand and define U =

(
Uij
)

= WXV
−1
X>W . By

Lemma 14 and the fact that ε(x1), · · · , ε(xn) are mutually independent given the contexts {xi}ni=1,
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we have

P
{
|η>Uη − 2 · tr(U)| ≥ 2s

( n∑
i=1

|Uii|2
)1/2}

(B.38)

≤ C1exp(−C2

√
s). (B.39)

Recall that V −1/2X> = [v1 · · · vn]. The trace of U can be upper bounded as

tr(U ) = tr(WXV
−1
X>W ) (B.40)

= tr
(
V −1/2X>WWXV −1/2

)
(B.41)

=
n∑
i=1

f(x>i φ∗)
2 · ‖vi‖2

2 (B.42)

≤ (σ2
max)2

n∑
i=1

‖vi‖2
2 ≤ (σ2

max)2d, (B.43)

where the last inequality in (B.43) follows directly from Lemma 16. Also by the commutative

property of the trace operation, we have

n∑
i=1

|Uii|2
(a)

≤
( n∑
i=1

Uii

)2 (b)

≤
(
(σ2

max)2d
)2
, (B.44)

where (a) follows fromU being positive semi-definite (all diagonal elements are nonnegative), and

(b) follows from (B.43). Therefore, by (B.38)-(B.44), we have

P
{
η>Uη ≥ 2s · (σ2

max)2d+ 2(σ2
max)2d

}
(B.45)

≤ C1 · exp(−C2

√
s). (B.46)

By choosing s =
( 1

C2

ln
C1

δ

)2

, we have

P
{
η>Uη ≥ 2(σ2

max)2d
(( 1

C2

ln
C1

δ

)2

+ 1
)}
≤ δ. (B.47)
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Therefore, we conclude that with probability at least 1− δ, the following inequality holds

∥∥X(f−1(ε ◦ ε)−Xφ∗)
∥∥
V

−1 (B.48)

≤ 1

Mf

√
2(σ2

max)2 · d
(( 1

C2

ln
C1

δ

)2

+ 1
)
. (B.49)

B.3 Proof of Lemma 8

We first introduce a useful lemma.

Lemma 17 (Theorem 4.1 in [87]). Consider a finite sequence {Ak} of fixed self-adjoint matrices

of dimension d × d, and let {γk} be a finite sequence of independent standard normal variables.

Let σ2 = ‖
∑

kA
2
k‖2. Then, for all s ≥ 0,

P
{
λmax

(∑
k

γkAk

)
≥ s
}
≤ d · exp(− s2

2σ2
), (B.50)

where λmax(·) denotes the largest eigenvalue of a square matrix.

Now we are ready to prove Lemma 8.

Proof of Lemma 8. To simplify notation, we use X and V as a shorthand for Xn and Vn, respec-

tively. Recall that V −1/2X> = [v1, v2, ..., vn] and define Ai = viv
>
i , for all i = 1, ..., n. Note that

Ai is symmetric, for all i. Define an n × n diagonal matrix D = diag(ε1, ε2, ..., εn). Then we

have:

∥∥∥X>(ε ◦ (X(θ∗ − θ̂)
))∥∥∥

V
−1 (B.51)

=
∥∥∥V −1/2X>

(
ε ◦
(
X(θ∗ − θ̂)

))∥∥∥
2

(B.52)

=
∥∥∥V −1/2X>DX(θ∗ − θ̂)

∥∥∥
2

(B.53)

(B.54)
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=
∥∥∥V −1/2X>DXV −1/2V 1/2(θ∗ − θ̂)

∥∥∥
2

(B.55)

≤
∥∥V −1/2X>DXV −1/2

∥∥
2
·
∥∥∥V 1/2(θ∗ − θ̂)

∥∥∥
2

(B.56)

=
∥∥V −1/2X>DXV −1/2

∥∥
2
·
∥∥∥θ∗ − θ̂∥∥∥

V
. (B.57)

Next, the first term in (B.57) can be expanded into

∥∥V −1/2X>DXV −1/2
∥∥

2
(B.58)

=

∥∥∥∥∥
n∑
i=1

εiviv
>
i

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

εi√
f(x>i φ∗)

·
(√

f(x>i φ∗)Ai

)∥∥∥∥∥
2

. (B.59)

Note that
εi√

f(x>i φ∗)
is a standard normal random variable, for all i. We also define a d×d matrix

Σ =
∑n

i=1 f(x>i φ∗)A
2
i . Then, we have

Σ =
n∑
i=1

f(x>i φ∗)
(
viv
>
i

)(
viv
>
i

)
(B.60)

=
n∑
i=1

f(x>i φ∗) ‖vi‖
2
2 viv

>
i . (B.61)

We also know

∥∥∥∥∥
n∑
i=1

Ai

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

viv
>
i

∥∥∥∥∥
2

(B.62)

=
∥∥∥(V −1/2X>

)(
XV −1/2

)∥∥∥
2

(B.63)

≤
∥∥∥(V −1/2X>

)∥∥∥
2

∥∥∥(XV −1/2
)∥∥∥

2
≤ 1, (B.64)

where (B.64) follows from Lemma 15. Moreover, we know

‖Σ‖2 =

∥∥∥∥∥
n∑
i=1

f(x>i φ∗) ‖vi‖
2
2 viv

>
i

∥∥∥∥∥
2

(B.65)
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≤

∥∥∥∥∥d · σ2
max

n∑
i=1

viv
T
i

∥∥∥∥∥
2

(B.66)

= d · σ2
max

∥∥∥∥∥
n∑
i=1

Ai

∥∥∥∥∥ ≤ d · σ2
max, (B.67)

where (B.66) follows from Lemma 15-16, f(x>i φ∗) ≤ σ2
max, and that viv>i is positive semi-

definite, and the last inequality follows directly from (B.64). By Lemma 17 and the fact that

ε(x1), · · · , ε(xn) are mutually independent given the contexts {xi}ni=1, we know that

P
{
λmax

( n∑
i=1

εiAi

)
≥
√

2 ‖Σ‖2 s
}
≤ d · e−s. (B.68)

Therefore, by choosing s = ln(d/δ) and the fact that λmax

(∑n
i=1 εiAi

)
= ‖

∑n
i=1 εiAi‖2, we

obtain

P
{∥∥∥∥∥

n∑
i=1

εiAi

∥∥∥∥∥
2

≥
√

2σ2
maxd ln(

d

δ
)

}
≤ δ. (B.69)

Finally, by applying Lemma 5 and (B.69) to (B.57), we conclude that for any n ∈ N, for any δ > 0,

with probability at least 1− δ, we have

∥∥∥X>n (ε ◦Xn(θ∗ − θ̂n)
)∥∥∥
Vn

−1 ≤ α(1)
n (δ) · α(3)(δ). (B.70)

B.4 Proof of Lemma 9

We first introduce a useful lemma on the norm of the Hadamard product of two matrices.

Lemma 18. Given any two matricesA andB of the same dimension, the following holds:

‖A ◦B‖F ≤ tr(AB>) ≤ ‖A‖2 · ‖B‖2 , (B.71)
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where ‖·‖ denotes the Frobenius norm. WhenA andB are vectors, the above degenerates to

‖A ◦B‖2 ≤ ‖A‖2 · ‖B‖2 . (B.72)

Proof of Lemma 9. To simplify notation, we use X and V as a shorthand for Xn and Vn, respec-

tively. LetM be a positive definite matrix. We have

‖Av‖M =
∥∥M 1/2Av

∥∥
2
≤
∥∥M 1/2A

∥∥
2
· ‖v‖2 , (B.73)

where the last inequality holds since `2-norm is sub-multiplicative. Meanwhile, we also observe

that

(
θ∗ − θ̂

)>
X>X

(
θ∗ − θ̂

)
(B.74)

=
(
θ∗ − θ̂

)>
V 1/2V −1/2X>XV −1/2V 1/2

(
θ∗ − θ̂

)
(B.75)

=

∥∥∥∥(θ∗ − θ̂)>V 1/2V −1/2X>
∥∥∥∥2

2

(B.76)

≤
∥∥∥∥(θ∗ − θ̂)>V 1/2

∥∥∥∥2

2

∥∥V −1/2X>
∥∥2

2
(B.77)

≤
∥∥∥θ∗ − θ̂∥∥∥2

V
. (B.78)

Therefore, we know

∥∥∥X>(X(θ∗ − θ̂) ◦X(θ∗ − θ̂))∥∥∥
V

−1 (B.79)

≤
∥∥V −1/2X>

∥∥
2

∥∥∥(X(θ∗ − θ̂) ◦X(θ∗ − θ̂))∥∥∥
2

(B.80)

≤ 1 ·
∥∥∥X(θ∗ − θ̂)∥∥∥2

2
(B.81)
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≤ 1 ·
((
θ∗ − θ̂

)>
X>X

(
θ∗ − θ̂

))
(B.82)

≤
∥∥∥θ∗ − θ̂∥∥∥2

V
≤ (α(1)

n (δ))2, (B.83)

where (B.81) follows from Lemma 15 and 18, and (B.83) follows from Lemma 5. The proof is

complete.

B.5 Proof of Theorem 2

Recall that hβ(u, v) =
(

Φ
(

β−u√
f(v)

))−1

. We first need the following lemma about Lipschitz

smoothness of the function hβ(u, v).

Lemma 19. The function hβ(u, v) defined in (3.18) is (uniformly) Lipschitz smooth on its domain,

i.e., there exists a finite Mh > 0 (Mh is independent of u, v, and β) such that for any β with

|β| ≤ B, for any u1, u2 ∈ [−1, 1] and v1, v2 ∈ [σ2
min, σ

2
max],

|∇hβ(u1, v1)−∇hβ(u2, v2)| ≤Mh

∥∥∥∥∥∥
u1

v1

−
u2

v2

∥∥∥∥∥∥
2

. (B.84)

Moreover, we have

hβ(u2, v2)− hβ(u1, v1) ≤ (B.85)u2 − u1

v2 − v1

>∇hβ(u1, v1) +
Mh

2

∥∥∥∥∥∥
u2 − u1

v2 − v1

∥∥∥∥∥∥
2

2

. (B.86)

Proof of Lemma 19. First, it is easy to verify that hβ(·, ·) is twice continuously differentiable on its

domain [−1, 1] × [σ2
min, σ

2
max] and therefore is Lipschitz smooth, for some finite positive constant

Mh. To show that there exists an Mh that is independent of u, v, β, we need to consider the

gradient and Hessian of hβ(·, ·). Since hβ(u, v) is a composite function that involves Φ(·) and

f(·), it is straightforward to write down the first and second derivatives of hβ(u, v) with respect

to u and v, which depend on Φ(·), Φ′(·), Φ′′(·), f(·), f ′(·), and f ′′(·). Given the facts that for all

the u, v and β in the domain of interest, we have Φ(β−u
v

) ∈ [Φ(−B−1
σ2

min
), 1], Φ′(β−u

v
) ∈ (0, 1√

2π
),

98



|Φ′′(β−u
v

)| ≤ B+1
σmin

√
2π

, and that f(·), f ′(·), f ′′(·) are all bounded, it is easy to verify that such an Mh

indeed exists by substituting the above conditions into the first and second derivatives of hβ(u, v)

with respect to u and v. Moreover, by Lemma 3.4 in [88], we know that (B.86) indeed holds.

Proof of Theorem 2. Define

qu := sup
u0∈(−1,1)

|∂hβ
∂u
|
∣∣∣∣
u=u0

, (B.87)

qv := sup
v0∈(σ2

min,σ
2
max)

|∂hβ
∂v
|
∣∣∣∣
v=v0

. (B.88)

By the discussion in the proof of Lemma 19, we know that qu and qv are both positive real numbers.

By substituting u1 = θ>1 x, u2 = θ>2 x, v1 = f(φ>1 x), and v2 = f(φ>2 x) into (B.86), we have

hβ
(
θ>2 x, φ

>
2 x
)
− hβ

(
θ>1 x, φ

>
1 x
)

(B.89)

≤

 (θ2 − θ1)
>x

f(φ>2 x)− f(φ>1 x)

>∇hβ(θ>1 x, f(φ>1 x)) (B.90)

+
Mh

2

∥∥∥∥∥∥
 (θ2 − θ1)

>x

f(φ>2 x)− f(φ>1 x)

∥∥∥∥∥∥
2

2

(B.91)

≤
(
qu ‖θ2 − θ1‖M · ‖x‖M−1 (B.92)

+ qvMf ‖φ2 − φ1‖M · ‖x‖M−1

)
(B.93)

+
Mh

2

(
‖θ2 − θ1‖2

M +M2
f ‖φ2 − φ1‖2

M

)
· ‖x‖M−1 (B.94)

≤ (qu +Mh) ‖θ2 − θ1‖M · ‖x‖M−1 (B.95)

+Mf (qv +MhMfL) ‖φ2 − φ1‖M · ‖x‖M−1 , (B.96)

where (B.93)-(B.94) follow from the Cauchy-Schwarz inequality and the fact that f(·) is Lips-

chitz continuous, and (B.95)-(B.96) follow from the facts that ‖x‖2 ≤ 1, ‖θ2 − θ1‖2 ≤ 2, and
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‖φ2 − φ1‖2 ≤ 2L. By letting C3 = qu + Mh and C4 = Mf (qv + MhMfL), we conclude (3.34)-

(3.35) indeed holds with C3 and C4 being independent of θ1, θ2, φ1, φ2, and β.

B.6 Proof of Lemma 10

Proof. By Theorem 2 and (3.20), we know

QHR
t+1(x)− hβt+1(θ>∗ x, φ

>
∗ x) (B.97)

= hβt+1(θ̂t
>
x, φ̂t

>
x) + ξt(δ) ‖x‖V −1

t
− hβt+1(θ>∗ x, φ

>
∗ x) (B.98)

≤ 2ξt(δ) ‖x‖V −1
t
. (B.99)

Similarly, by switching the roles of θ>∗ , φ
>
∗ and θ̂t

>
, φ̂t
>

in (B.98), we have

QHR
t+1(x)− hβt+1(θ>∗ x, φ

>
∗ x) ≥ 0. (B.100)

B.7 Proof of Theorem 3

Proof. For each user t, let πHR
t = {xt,1, xt,2, · · · } denote the action sequence under the HR-UCB

policy. Under HR-UCB, θ̂t and φ̂t are updated only after the departure of each user. This fact

implies that xt,i = xt,j , for all i, j. Therefore, we can use xt to denote the action chosen by HR-

UCB for the user t, to simplify notation. Let R
HR
t denote the expected lifetime of user t under

HR-UCB. Similar to (3.9), we have

R
HR
t =

(
Φ
( βt − θ>∗ xt√

f(φ>∗ xt)

))−1

= hβt(θ
>
∗ xt, φ

>
∗ xt). (B.101)

Recall that πoracle and x∗t denote the oracle policy and the context of the action of the oracle policy

for user t, respectively. We compute the pseudo regret of HR-UCB as
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RegretT =
T∑
t=1

R
∗
t −R

HR
t (B.102)

=
T∑
t=1

hβt
(
θ>∗ x

∗
t , φ
>
∗ x
∗
t

)
− hβt

(
θ>∗ xt, φ

>
∗ xt
)
. (B.103)

To simplify notation, we use wt as a shorthand for hβt
(
θ>∗ x

∗
t , φ
>
∗ x
∗
t

)
− hβt

(
θ>∗ xt, φ

>
∗ xt
)
. Given

any δ > 0, define an event Eδ in which (3.21) and (3.22) hold under the given δ, for all t ∈ N.

By Lemma 5 and Theorem 1, we know that the event Eδ occurs with probability at least 1 − 3δ.

Therefore, with probability at least 1− 3δ, for all t ∈ N,

wt ≤ QHR
t (x∗t )− hβt

(
θ>∗ xt, φ

>
∗ xt
)

(B.104)

≤ QHR
t (xt)− hβt

(
θ>∗ xt, φ

>
∗ xt
)

(B.105)

= hβt
(
θ>∗ xt, φ

>
∗ xt
)

+ ξt−1(δ) ‖xt‖V −1
t−1

(B.106)

− hβt
(
θ>∗ xt, φ

>
∗ xt
)

(B.107)

≤ 2ξt−1(δ) · ‖xt‖V −1
t−1

, (B.108)

where (B.104) and (B.106) follow directly from the definition of the UCB index, (B.105) follows

from the design of HR-UCB algorithm, and (B.108) is a direct result under the event Eδ. Now, we

are ready to conclude that with probability at least 1− 3δ, we have

RegretT =
T∑
t=1

wt ≤

√√√√T
T∑
t=1

w2
t (B.109)

≤

√√√√4ξ2
T (δ)T

T∑
t=1

min{‖xt‖2
V −1
t−1

, 1} (B.110)

≤
√

8ξ2
T (δ)T · d log

(S(T ) + λd

λd

)
, (B.111)
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where (B.109) follows from the Cauchy-Schwarz inequality, (B.110) follows from the fact that

ξt(δ) is an increasing function in t, and (B.111) follows from Lemma 10 and 11 in [27] and the

fact that Vt = λId +X>t Xt = λId +
∑t

i=1 xix
>
i . By substituting ξT (δ) into (B.111) and using the

fact that S(T ) ≤ Γ(T ), we know

RegretT = O

(√
T log Γ(T ) ·

(
log
(
Γ(T )

)
+ log(

1

δ
)
)2
)
. (B.112)

By choosing Γ(T ) = KT for some constant K > 0, we thereby conclude that

RegretT = O

(√
T log T ·

(
log T + log(

1

δ
)
)2
)
. (B.113)

The proof is complete.
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