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ABSTRACT 

 

Mathematical language plays an essential role in conceptualizing the technical 

contents of scientific publications. It applies words, symbols, and rules to constitute any 

sophisticated technical discussion. Existing technologies have achieved the recognition of 

mathematical objects (MOs) from digital documents, as well as the use of MOs and 

keywords to locate relevant resources. However, very few successful applications are on 

computer-based content analysis due to the obscured boundaries and semantics of 

technical contents. In this dissertation, we introduce the concept of reasoning block (RB) 

to mimic the divide-and-conquer of human writing and reading process. The RB model 

develops MO-based foundational solutions to address the challenges of reversing the 

original linear descriptions back to their logical non-linear structure. 

A system model requires both the annotations of constraint expressions and textual 

declarations to enhance the mapping of problem settings and physical semantics. These 

two components highlight the information the readers need to know for the proposed 

system model of a paper. Reliable indicators such as mathematical symbols, stop words, 

and punctuations are used as features to distinguish constraint expressions from any other 

MO. We have investigated both a greedy approach based on the local optimal and a 

probabilistic approach based on Bayes’ theorem in this study. As for mining the textual 

declarations of MOs, it requires to overcome the challenges of tagging, chunking, and 

pairing on the sentences mixed with words and MOs (MWM). We propose a second-order 

hidden Markov model and a frequent pattern mining toolkit for tagging and chunking the 
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MWM sentence, respectively. The final pairing of MOs and their declarations depend on 

the three-layer information (spatial, semantic, and syntactic) of the intermediate tokens 

that connect them.  

Finally, the above analytical products are integrated and transform each 

publication into a hierarchical structure known as the MO reasoning (MOR) graph that 

consists of RBs in logical flows. Redundant MOs and their dependencies are removed 

based upon the minimum information required to cover all relations of MOs and words. 

The MOR graph is used as the technical essence to discover new forms of document 

fingerprint based on different writing styles in various domains.  
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CHAPTER I  

INTRODUCTION 

 

Motivation 

 

 

Figure 1: The growing trend of academic publishing. 

 

In recent decades, the volume of academic publications has grown rapidly [1] as 

shown in Figure 1, largely due to advances in information technology. It has become a 

burden for scientists and researchers to effectively consume the vast amount of papers 

within a limited time frame. Approximately 62% of publications (79 million out of 127 

million) are in science, technology, engineering and mathematics (STEM) fields according 

to the investigation of Microsoft Academic database [2]. Unlike consumer market-based 

information indexing and retrieval systems [3], [4], STEM publications are written to 

cover major aspects regarding technical issues being studied, and deliver focused technical 

themes in a semi-structured manner based on common practice of the respective technical 
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community. Technologies such as search engines [5] and citation tools [6] have led to very 

large-scale digital library systems for indexing, searching, and locating of intellectual 

work. With the maturity of information management solutions [7], research in deep 

content analysis have also gained more attentions. 

Mathematical objects (MOs) and words are two major components that constitute 

the technical contents of scientific publications. MO, once defined, are treated as a new 

form of token similar to other words in a paper, and its constraints and declarations which 

characterizing the quantitative and qualitative attributes, respectively, are quite often 

expressed by surrounding tokens. These MO-to-MO and MO-to-words tuples are often of 

technical significance to the community and can be viewed as a description of the work’s 

technical elements. By mining of these tuples at large scale, the most significant technical 

elements can be extracted as a new form of high-level concise abstractions for the 

technical content. 

Objective and Challenges 

Writing a scientific paper can be characterized as a process of organizing 

sophisticated technical issues into self-contained reasoning blocks (RBs), and with aid of 

sectioning, the complex relationships among technical elements are presented in a set of 

linear sequences. Conversely, in reading the same paper, a reader must identify RBs, and 

use explicit and implicit links among elements in RBs to understand technical issues. We 

observe that most RBs are built upon MOs, using them to quantify system behaviors based 

on rigorous notations and elaborations. As such, in this research, an MO centric content 

analysis framework is proposed, based on the hypothesis that symbols and MOs often 
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carry the most prominent and sophisticated abstractions, and authors must carefully 

construct their reasoning flows around them. 

It is relatively easy for a human reader to manually delineate RBs such as the 

handcrafted example ❶ and ❷ illustrated in Figure 2, though individuals may have 

different interpretations regarding scopes and boundaries of RBs. Yet, this is only the 

beginning of a very complex process in order to understand the technical essence of a 

paper. Through a divide-and-conquer approach and the use of RBs to scope and interrelate 

algorithmic analysis and representations of technical contents, this dissertation explores 

fundamental issues in automating aspects of deep content analysis. 

 

 

Figure 2: The conceptual reasoning block model for a segment of content in [8]. 

 

 



 

4 

 

Succinctly put, this study identifies the following technical challenges and propose 

new modeling techniques and associated algorithms. 

1. The boundary detection of RB: there are no explicit tag defined thus far in any 

document system to support such boundary and existence of RB.  

2. The classification of technical elements in RB: what are the necessary types of 

technical elements in RB for understanding the content of RB?  

3. The relational properties of the technical elements in RB: what are the features we 

can use from the relations of technical elements to study the characteristics of 

different technical elements? 

4. The technical elements that are important compared to others in the RB: how do 

we reduce the amount of information needed from the technical elements to 

efficiently grasp the technical essence of the raw content? 

5. The potential of reasoning flows in document fingerprinting: can we leverage the 

proposed reasoning block model to characterize the writing styles of the scientific 

publications for applications in the cross-paper analysis? 

To address the above five challenges, useful observations and facts are identified 

to aid in modeling.  

1. In technical writing, MOs are highly expressive, compact, and precise; so that 

researchers can effectively use them to covey sophisticated concepts and 

relationships. Even when the sentence sequences are not explicitly tagged, they 

can be used to segment the semantics of the reasoning flows in scientific papers. 
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2. It is necessary to use the textual declarations of MOs to elaborate sophisticated 

concepts in a particular technical domain and followed by constraint expressions 

to assign them domain-specific semantics. Otherwise, MO alone is purely 

mathematical abstractions without semantic significance for a technical subject. 

Being able to automatically detect these semantic bonding of MO-to-MO and MO-

to-words is of great importance to deep content analysis. 

3. MOs are implicitly connected through their common identifiers such as variables, 

indices, or function names. The associated MOs provide intermediate results or 

constraints/conditions of the MO that they pointed to. 

4. The importance of MO can be inferred by criteria used in different weights that 

defines the ranking of importance such as the spacing in the context, the size of 

MO, the number of associated MOs, and the type of associativity such as the 

convergence/divergence point. 

5. A graphical structure can be defined through the RBs with its technical elements 

and their relations. The topological properties of the graph are a way to reflect the 

style of the author composing technical contents. 

The primary goal of this dissertation is to address the following issues, which are 

critical for the computer-based detections and the modeling of reasoning flows: (1) 

Segmentation on the original content of a paper into reasoning blocks; (2) Recognizing 

symbols and/or connecting words that are strongly indicative for the MO constraint 

expressions; (3) Detection of MOs and their coreference words as the textual declarations 
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of MOs; (4) Establishing the connectivity and dependency between technical elements. 

We will leverage the final product to perform large-scale studies in STEM fields. 

System Model 

By definition, an RB is a region of MOs surrounded by closely related words to 

form a localized, self-contained technical concept. Typically, RBs are centered around one 

or a few large equations, together with their constraint expressions, and optionally 

additional explanation of details. Most RBs are approximately aligned with paragraphs, 

yet some others are segmented by the sentence semantics. It is reasonable to assume that 

RBs are clustered around MOs so that the local density of MOs, can be readily used to 

segment MOs, as shown in the purple dash lines of Figure 3. The main equations of RB 

are defined based on four MO features, including the occurrence of MO throughout the 

content, the local density of MOs, the dependency on other MOs, and the MO length as 

addressed in the red bold lines of Figure 3. 
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Figure 3: The characteristics of the boundary of reasoning blocks and the main 

equations. 

 

On the basis of the RB model, this dissertation is organized to perform four major 

research tasks (RT1 to RT4), which are illustrated in Figure 4, with respect to constraint 

expressions, textual declarations, and main equations of MOs. Specifically, RT1 focuses 

on developing the prediction model for MOs that contain constraint semantics, and RT2 

deals with the prediction model for mapping MOs to their related words. RT3 ranks the 

equations based on the content flow and the associated MO that formulate significant 

technical discussions of a paper. A graphical skeleton can be constructed to highlight the 

technical essence of an RB based on the results derived in RT1-RT3. The main focus of 
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RT4 is a case study on cross-paper analysis by using graph structures of MOs and their 

related words as the document fingerprints. 

 

 

Figure 4: The system architecture of the reasoning block model and the four research 

tasks (RT1-RT4). 
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For algorithm design, we follow a three-tier analytical framework including 

symbol, layout, and semantics to mimic the human reading process as shown in Figure 5. 

When reading a scientific paper, we as human readers first identify the symbol values such 

as MOs and words in the content. Then, based on the layout of these symbols, we 

sequentially analyze the writing intent and relationships among them to infer semantics of 

the technical discourse. 

 

 

Figure 5: The three-tier analytical framework for human reading process. 

 

For feature analysis, three-layers of information (spatial, syntactic, and semantic) 

are used to model the classification of technical elements as shown in the natural language 

interface of Figure 6. Spatial analysis is how the linguistic unit distance (e.g., number of 

words) is used to reason about the coreference relation between tokens based on their 
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relatively position (i.e., left-hand side and right-hand side). The syntactic analysis refers 

to the grammatical functions of tokens which imply their usage in influencing neighboring 

tokens. The semantic analysis is the property of stop/root words, punctuation, and strong 

reserved mathematical symbols that carry significant meaning in deriving or introducing 

a technical element. The mathematical language interface in Figure 6 has manifest the 

three types of technical elements: constraints, declarations, and main equations, with 

respect to their associated words/MOs in the context.  

 

 

Figure 6: The information layer and their key features required to model and predict 

mathematical object related entities. 
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Organization of the Dissertation 

The remainder of this dissertation is organized as follows. First, Chapter II presents 

prior knowledge on the problem setting in this research. Chapter III addresses the issue of 

identifying the MOs which contain the semantics of constraints. Chapter IV deals with 

coreference mining of MOs and context words to bridge the gap from quantitative 

abstraction to the physical world. Chapter V introduces heuristics to construct a graphical 

representation that expresses the technical essence of a scientific paper, which is a 

collective process of segmentation, interrelation, and reduction for the original contents. 

The final products are used for cross-paper analysis to cluster various documents based on 

different writing styles derived from the reasoning flows. Finally, a summary of 

contributions and expectations of near future works is given in Chapter VI.  
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CHAPTER II  

PRELIMINARIES 

 

This chapter provides some background knowledge for the research proposed in 

this dissertation study, which includes the introduction of the commonly used types of 

input documents, the existing works of technical element extraction, the current status of 

technical content analysis, and the existing datasets we used to evaluate our models. 

Electronic Documents 

TeX [9] and portable document format (PDF) [10] are the two most common 

electronic document formats that are distributed in academic publishing. TeX is a 

typesetting system originated by Donald Knuth in 1977 and its initial version is released 

in 1978. It has been extensively used in academia, especially for authors who are in 

science, technology, engineering and mathematics (STEM) disciplines. TeX has the 

advantages of cross-platform and can handle the typesetting complex mathematical 

formulae. It is also used to support other forms of typesetting tasks such as the LaTeX 

macro packages [11]. PDF, on the other hand, is a general printing format developed by 

Adobe in 1990s to include text, fonts, vector graphics, raster images and other information 

needed to display in a document. Most of the popular word processors such as Microsoft 

Word, LyX, and Google Docs can support PDF as the output document format. Other TeX 

editing systems like TeXmaker, TeXnicCenter, and TeXworks also support PDF as output 

files and preserve the original TeX sources. Our system mainly focuses on the TeX 

document, where mathematical objects (MOs) are labeled in the contents. However, since 
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PDF is the de facto standard for scientific publishing, we have also developed a pipeline 

to extract and parse MOs from the PDF files using API tools: PDFMiner [12] and PDFBox 

[13]. 

Extraction of Technical Elements 

Any technical discussion can be constructed by two major technical elements: 

MOs and words. MO is a finite combination of symbols that is well-organized according 

to rules and the semantics can be formally defined in mathematics. Word, on the other 

hand, is a set of non-separable character sequence (NCS) that carry human understandable 

meanings. In LaTeX files, MOs exist in syntax such as ‘$’ for users to define math zones 

in their editing and words are simply separated by spaces. However, PDF files have 

excluded the information of which part is MO and which part is word since their objective 

is to easily archive documents. Hence, there is a significant amount of research [14], [15], 

[16], [17], [18], [19], [20], [21], [22], [23], [24] focusing on the extraction of MOs from 

PDF files. 

PDFMiner [12] and PDFBox [13] are two major tools for parsing the resources of 

PDF files such as font set. They applied physical layout lines to scan through the whole 

document, as shown in Figure 7. Each physical layout line contains a list of character 

objects separated by their built-in tokenizer based on spacing. PDFBox creates fonts and 

maps a character value to a glyph name such as “alpha” and “beta”. A character object 

includes metadata such as glyph name, font name, Unicode, and the bounding boxes for 

font and glyph (see Figure 7). A bounding box consists of the left, right, top, and bottom 
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positions of a rectangle with respect to the left-bottom corner of the page as the origin 

position. 

 

 

Figure 7: The data structures of mathematical objects and words obtained from the 

PDF parser. 

 

The earliest work for extracting MO from scientific documents can be traced back 

to 1995 [14]. MO can be inline among plaintexts (IMO) or displayed as a stand-alone 

formula (DMO). The DMO is easier to detect as it often has formula serial number with 

distinct layout. The IMO, on the other hand, is more challenging to extract than DMO due 

to its unrestricted used of fonts and ambiguous boundaries with words caused by the 

discrepancy between physical layout analysis and the logical units. Besides spatial layout 

features, other semantic aspects, including fonts and special characters, are also explored 

in existing works [17], [18], [23], [24] to distinguish MOs from the text. For example, the 
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italic font and the irregular font size are used to filter out MOs from other texts. Special 

characters such as function names, fraction/radical structure, relational operators, Greek 

letters, delimiters, integral symbol, etc. are also used as indicators. 

There are two primary techniques for the research regarding MO extraction from 

PDF documents: the optical character recognition (OCR) [14], [15], [16], and the PDF 

parser [17], [18], [19], [20], [21], [22], [23], [24]. In the OCR-based research, a PDF 

document is first converted into render images, and then MOs are detected based on layout 

analysis. An early work [15] has applied the OCR technique to extract non-Japanese 

characters as MOs from Japanese documents. A follow-up work [16] has improved the 

performance based on the character size and position. In the PDF parser-based research, 

various features such as the attributes of the character object, the geometric layout, and 

the context were used to train the prediction models. For example, Lin et al. [20] utilized 

the visual and character features to establish a support vector machine (SVM) to identify 

IMOs from PDF documents. Several machine learning algorithms were combined with 

heuristic rules to detect both IMOs and DMOs [21]. In 2017, a weakly-supervised 

Bayesian model for MO extraction was proposed based on the font set information [23]. 

Without using any ground truth data for supervised learning, the algorithm first employed 

heuristic rules for DMO detection. Then, a Bayesian predictor was trained based on the 

font name and glyph name of the DMO characters to identify the IMO characters 

relatively. Recently, Wang et al. [24] proposed an unsupervised learning method based on 

the font size information to achieve a state-of-the-art performance of 93.6% F1 score in 

extracting MOs from PDF documents. 
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Technical Content Analysis 

Many existing works [25], [26], [27], [28], [29] for content analysis focused on 

predicting the metadata in the text to recover its logical structure with respect to a 

document. They analyzed the contents based on layout information and textual features to 

automatically infer the types of metadata at different positions in the contents like author 

information, keywords title, abstract, headings, body texts, and citations as shown in 

Figure 8. Besides recovering the logical structure of a text, some other research have 

emphasized on extracting the mathematical logic [30], [31], [32] from text. Their 

approaches are mostly heuristics based on special mathematical terms (“theorem”, 

“proof”, “lemma”), layout information (space, position), and word fonts (style, size). Also, 

their model requires the input documents to be well-formatted in mathematical writing 

practices. In 2018, we developed the first work that studied on recovering the technical 

essence of linear displayed contents [33]. A graphical structure Qualitative-Quantitative 

(QuQn) map is created as the technical essence of any scientific document, as shown in 

Figure 9. The recovering process of the QuQn map is as follows. First, the digital files are 

parsed as rendering blocks or markup units according to the format specification. Then, 

the rendering blocks are transformed into layout structures (columns, lines) and grouped 

into logical structures (body texts and DMOs). For the MOs, their semantics of the internal 

components are labeled through layout analysis [34] and their external meanings of MOs 

are recovered through the bonding words. Finally, the reasoning logic flows are discovered 

through MO-based dependency analysis. 
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Figure 8: The labeling of metadata in a research paper [35]. 
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Figure 9: The construction of QuQn map on a paragraph in arXiv document 

1605.02019. Reprinted with permission from [33]. 

 

Overview of the Datasets 

We introduce in this subsection the publicly available datasets used in this 

dissertation for evaluating the performance results of the research tasks RT1-RT4 in 

Figure 4 of Chapter I. There are four major datasets we used for our research: OA-STM 

Corpus [36], NTCIR-10 [37], KDD Cup 2003 [38], and arXiv.org [39], listed in Table 1, 

provided by the Elsevier Labs, National Institute of Informatics, Cornell University, and 

the arXiv e-print services, respectively. 
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Table 1: List of existing datasets for technical content analysis. 

Name Year Details 

OA-STM Corpus 

[36] 
2015 

→ 10 annotated documents in 10 different 

STEM disciplines. 

→ Documents are provided in both txt and xml 

formats. 

→ There are a total of 346 mathematical 

objects and words mixed sentences. 

→ 600 mathematical objects are given in Penn 

Treebank formats along with their syntactic 

roles.  

NTCIR-10 Math 

Understanding 

[37] 

2012 

→ 35 annotated documents with a total of 9172 

mathematical objects. 

→ The annotations include 3076 short 

declarations and 3053 full declarations of 

mathematical objects. 

→ All annotations are provided in xml and txt 

formats. 

KDD Cup 2003 

[38], [39] 
2003 

→ A collection of 29,000 papers with 352,807 

citations in High Energy Particle Physics 

(HEP) from 1992 to 2003. 

→ The TeX sources are downloaded from the 

arXiv.org. 

RTDS Collections  

[40], [41], [42] 
Active 

→ A collection of 180 papers from arXiv.org in 

Physics, Mathematics, Computer Science, 

Statistics, and Economics. 

→ A dataset MOP that combines the TeX and 

PDF files from KDD Cup 2003 to label the 

ground truth of the mathematical objects. 

→ The LaTeX codes and constraint annotations 

of the mathematical objects in the OA-STM 

Corpus. 

 

The OA-STM Corpus was released for the FORCE-2015 Hackathon event. It 

contained the annotations of MOs versus words and the syntactic roles of each MO as 

shown in Figure 10. There were 10 papers from 10 different fields annotated in this dataset. 
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Since the format of MOs and words were all in plaintext, some further annotations for the 

LaTeX code of MOs [40] and the constraint label of MOs [41] were made and released on 

behalf of RTDS Lab at Texas A&M University, College Station. This dataset was applied 

to both RT1 and RT2. 

 

 

Figure 10: An example of the dataset OA-STM Corpus for syntactic role and 

constraint annotation of mathematical objects (MOs) in STEM fields. 

 

The NTCIR-10 was a collaborative annotation task from various institutions in the 

world [37]. There were 35 documents from arXiv.org annotated in XML format as shown 

in Figure 11. The main goal for this annotation task was to understand the meaning of 

mathematical formulae in scientific publications. The annotations include the mapping of 

MOs to their declarations (see Figure 11). There were two types of declarations: short and 

full declarations, representing the level of semantic details for the annotated MOs. A 

declaration can be either in a sequence of words or a mix of MOs and words. This dataset 

was applied to RT2 for extracting textual declarations of MOs. 
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Figure 11: An example of the NTCIR-10 dataset for the textual declaration of 

mathematical object. 

 

The KDD Cup 2003 was a competition event held by the Ninth Annual ACM 

SIGKDD Conference. It included 29000 documents of High Energy Particle Physics 

published in arXiv.org during 1992 to 2003. The dataset was crawled and organized into 

single TeX sources. The RTDS Lab also developed an MOP tool [42] to convert and 

combine these TeX sources along with their corresponding PDF documents to obtain a 

large-scale dataset with MO annotated in LaTeX code. A small portion of these documents 

are used for cross-paper analysis in RT4. 
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In this dissertation, we also sample some scientific documents in various 

disciplines from the arXiv.org e-print platform [39] to construct a pilot dataset for the 

study of use cases in RT3 and RT4. There are 180 documents sampled from 6 research 

fields including Computation and Language, Graph Theory, Machine Learning, Quantum 

Cryptography, Steganography, and Theoretical Economics. An additional 30 documents 

are sampled from the KDD Cup 2003 dataset in High Energy Particle Physics to constitute 

a medium-size dataset with 210 documents in 7 fields.  
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CHAPTER III  

CONSTRAINT EXPRESSION OF MATHEMATICAL OBJECT1  

 

This chapter presents two models to extract the constraint expressions of 

mathematical objects (MOs) in scientific publications. With the assumption of the features 

are independent and identically distributed (IID), we apply two types of features: the 

mathematical symbols (𝐹𝑆) and the words adjacent to MOs (𝐹𝑊), for analysis. The first 

prediction model is based on a greedy approach to iteratively optimize the performance 

goal. The second scheme is based on naïve Bayesian inference of the two different types 

of feature considering the likelihood of the training data. The first model achieved an 

average F1 scores of 69.5% (based on the tests made on an Elsevier dataset OA-STM 

Corpus). The second prediction model using 𝐹𝑆 achieved 82.4% for F1 score and 81.8% 

accuracy. Furthermore, the second model achieved similar yet slightly higher F1 scores as 

that of the first model for the word stems of 𝐹𝑊, but slightly lower F1 score for the Part-

of-Speech (POS) tags of 𝐹𝑊. 

Overview 

In technical writings, MOs and carefully placed adjacent words are used to 

characterize the technical substance within specific disciplines. The constraint expression 

of MO (MOC) refers to MOs (and their adjacent words) that are meant to describe the 

 

1 Reprinted with permission from “Prediction of Mathematical Expression Constraints (ME-Con)” by Jason 

Lin, Xing Wang, and Jyh-Charn Liu, 2018. Proceedings of the 18th ACM Symposium on Document 

Engineering, Pages 1-4, Copyright 2018 by ACM. 
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constraints or conditions of any mathematical or technical subject. Being a form of 

semantic abstraction, human readers can readily differentiate them from other semantic 

abstractions such as definitions and reasoning flow transitions, but the boundaries between 

these different types can be fluid. 

In this chapter, we propose and compare two different optimization models for 

prediction of MOC. Constraints are an integrated part of every MO, and they are often the 

attachments of the main discussion threads. Automatic detection of MOC is useful in 

tracking the evolution of a reasoning process, delineation of similar works, among other 

modeling tasks. Using the annotated dataset in [36], [40], [41] as the ground truth, we 

develop the models by two classes of features: 𝐹𝑆, based on mathematical symbols, and 

𝐹𝑊, based on the word stems or the POS tags, at the left-hand side, as well as at the right-

hand side of MO. Although natural language processing (NLP) technologies makes 

significant progress in low level content processing [43], [44], they do not take into 

account the mathematical semantics of MOs and their relationship with adjacent words. 

The first prediction model is a greedy approach based on an iterative heuristic rule 

to optimize the prediction goal, and the second adopts the Bayesian theorem. Empirical 

results suggest that certain mathematical symbols from 𝐹𝑆 directly dictates the semantics 

of an MO as an MOC or not. To less extent, certain words or syntactical forms from 𝐹𝑊 

have similar designating power for the adjacent MO (not) to be a constraint. Moreover, 

evidences show that the use of word stem is more indicative than its syntactic role (i.e., 

the POS tag) to convey the intention of an MO. An observation consistent with the fact 
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that MOC is a semantic interpretation of an MO, not a particular class of presentation 

structures expressed in POS. 

Related Works 

The word “constraint” has been defined in different terms such as “properties”, 

“attributes” of a subject, and relational properties between subjects. It is related to the 

information extraction field, where constraint analysis is aimed at the retrieval of 

properties and relations in or between subjects from computer-generated contents or well-

defined language such as SQL [45], [46], [47]. Resources, structure, hierarchy, and 

dependency are considered the main constraints in system development documents [48]. 

For these applications, constraint extraction techniques are largely based on a mix of 

grammar, keyword matching, and NLP tools. For example, the work in [49] presented a 

patent for constraint extraction based on template matching for generation of testing data. 

It utilized handcrafted rules on POS tags to capture three sentence elements: subject, 

object, and condition. To date, no known work done specifically for MOC extraction. 

Features of MOC Expressions 

A human reader asserts an MOC based on the combination of symbols (e.g., ‘|’ 

within ‘{’ and ‘}’), attached words or their syntactic role, e.g., “where” WRB, “for” IN), 

in simple or compounded paragraphs (e.g., “where … {…|…}”). Those cue words or 

symbols that give human strong hint about the presence of MOC are called constrainators. 

We use statistic to rank the likelihood of different mathematical symbols, word stems and 

POS tags of words adjacent to MO. 
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Feature Extraction 

The training of the MOC prediction rules starts with extraction of 𝐹𝑆 and 𝐹𝑊. Here, 

we employed a regular expression (regex) parser to parse the LaTeX annotated MOs [40] 

to extract mathematical symbols represented by reserved words, such as “\sub”. The regex 

“(\\[A-Za-z]+)” is used to extract the LaTeX reserved words for mathematical symbols so 

that “\ldots” in the example shown in Figure 12 can be identified to represent the symbol 

of a long dot string ‘…’. Other symbols that can be directly entered using common 

keyboards are extracted from the regex “([-!%&*()+|~=\[\]\' :;<>?,.\/]|\\[{}])”. An 

example on the set of symbols parsed by the two extractors is illustrated in Figure 12. 

 

 

Figure 12: An example for the mathematical symbol extraction. Reprinted with 

permission from [50]. 

 

It is obvious that some words adjacent to an MO are highly likely meant to describe 

its semantics. That being said, to cope with the very large number of random word forms 

LaTeX Symbol Extractor Typed Symbol Extractor

((

(  x  )  k  =  x  (  x  -  1  )  \ldots  (  x  -  k  +  1  )

LaTeX Math Input.tex

Math Symbols: )) --== ++ \ldots\ldots

file://///[A-Za-z]+)
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being used in MOC, we opted to the hypothesis that the MOC assertion could be related 

to the word stems or the syntactic roles (POS tag) of words adjacent to the MO. To test 

this theory, we used up to two adjacent words of an MO to construct 𝐹𝑊. Only one 𝐹𝑊  

feature entry has value when the MO is adjacent to another MO or is located at the 

beginning/ending of a sentence. In the latter case the type of adjacent punctuation is treated 

as a stem (or a POS tag). For the word stem, we apply the stemming process via the API 

in NLTK [43], which is based on the algorithm in [51]. The POS tags entries in the 

annotated dataset OA-STM Corpus [36] are used for training of 𝐹𝑊. 

Analysis of Mathematical Symbol Features 

MOC can be classified into five major types: (1) condition type (“𝑥 ≥ 1”, “Let 

𝑥 = 1, …”), (2) index (range) type (𝑒𝑖  for 𝑖 ∈ [𝐿𝐻𝑆, 𝑅𝐻𝑆]), (3) set type (𝑆′ ⊆ 𝑆), (4) 

enumerative type (the number of permutations of 𝑛 elements is 𝑛!), and (5) complexity 

type 𝑂(𝑛). 

Based on the IID assumption of individual symbols and words, we first measured 

the relative likelihood of each symbol being used in MOC instances in the training dataset. 

The statistic on the MOC likelihood of different symbols is shown in Figure 13 and Figure 

14. Within the space limit, only symbols with higher than 2% of occurrence ratio over the 

overall symbol counts were plotted. Symbols like “≥, >, <, ≤, ∈, Ω” are almost always 

meant for MOC, while symbols like “∘, ∗, ←, 𝜌, 𝑙𝑖𝑚” almost never meant for MOC. The 

ubiquitous symbol “=” can be used for comparison or assignment. Different paired braces 

“{…}”, “[…]” when embedded with the bar ‘|’ or colon ‘:’ are most likely being used for 

MOC. 
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Figure 13: The statistical likelihood of strong indicative symbols used for recognizing 

the constraint expressions. 

 

 

 

Figure 14: The statistical likelihood of weak indicative symbols used for recognizing 

the constraint expressions. 
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Analysis of Contextual Word Features  

For the analysis of 𝐹𝑊, we took the words at the left and right sides of each MO 

and computed their relative likelihood of being associated with an MOC. Upon analyzing 

the words attach to MOs in the dataset OA-STM Corpus [36], a total of 28 POS tags and 

155 (131) words with (without) stemming were used. To reduce the sampling space, all 

words are transformed into their word stems to be compared against POS tags as features 

for analysis. The results are summarized in Figure 15 for the pairs of word stems with at 

least a word stem is not strongly indicative for MOC when it is positioned at one side of 

the MO. The results for all possible POS tags are also summarized in Figure 16. 

 

 

Figure 15: The statistical likelihood of word stems for introducing the constraint 

expressions in a sentence. Reprinted with permission from [50]. 
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Figure 16: The statistical likelihood of POS tags for introducing the constraint 

expressions in a sentence. Reprinted with permission from [50]. 

 

Among word stems that appeared more than 1.5% in the dataset, certain word 

stems preceding an MO, like {“because”, “some”, “everi”, “get”, “now”, “relat”, 

“therefor”, “have”, “polynomi”, “between”, “when”, “all”}, are always meant for an 

MOC. Other word stems like {“while”, “sinc”, “there”, “mod”} after an MO are always 

meant for an MOC. Alone, the remaining word stems such as {“span”, “order”, 

“equivale”, “simpli”, “use”, “write”, “contain”, ‘[’, “onto”, “project”, “choic”, “group”, 

“pair”, “sylow”, “take”, “epimorph”, “transit”, “function”} were not strongly tied to MOC. 

Regarding the preceding word, an MO following a left bracket -LRB- is nearly 

certain to be an MOC, because it is a common writing practice to place a 

condition/constraint in the bracket pair as a supplement to the main description. MOs 

following Wh-adverb WRB such as “where” and “when” has a relatively high likelihood 
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to be an MOCs for the common phrasings of “where/when MOC …”. An MO following 

a noun (with POS tag NN and NNS for words such as “time” and “graph”) is unlikely an 

MOC because the MO is usually the apposition of the noun phrases. 

With respect to the succeeding word, we find that MO followed by punctuations 

such as ‘.’ and ‘,’, or right bracket RRB are more likely to be MOC, because many 

constraints are positioned to follow a main statement. A noun NN word or a verb VB word 

does not usually follow an MOC, where the MO plays the role of noun modifier or subject. 

Compared with word stem, no POS tag clearly stands out to be considered as 

constrainators. Taking the relatively high co-occurrence syntactic patterns (preposition-

MO-punctuation) like “… [for] [𝑥 > 0] [.] …” as an example, the preceding POS tag IN 

alone has 19.2% of true positive cases, and yet also 15.2% of false positive cases for non-

MOC cases. Overall, word stems performed better than POS tag, because MOC is a 

semantic level expression to indicate the intended purposes of an MO. 

Comparison of Mathematical and Textual Features 

Figure 17 summarizes the ratios of instances for different ranges of MOC 

likelihood. Results show that 𝐹𝑆  features are more uniformly distributed than their 𝐹𝑊 

counterparts. Unlike MO symbols, 𝐹𝑊  are much more pronounced in the midrange of 

likelihoods, suggesting that they tend to be more random, especially the POS distributions, 

than the 𝐹𝑆 in expressing the semantic intent. As a result, increasing the sensitivity for 𝐹𝑊 

based MOC detection also increases the false positive rate resulting lower precisions. A 

general conclusion is that 𝐹𝑊 alone has relatively low discriminating power for prediction 

of MOC. 
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Figure 17: The sample density of MOC expression likelihood. Reprinted with 

permission from [50]. 

 

Prediction of Constraint Expression 

An iterative heuristic rule and a naïve Bayesian decision rule are designed for 

MOC prediction using 𝐹𝑆 and 𝐹𝑊 as the inputs. 

The greedy model iteratively refines the prediction rule for 𝐹𝑆 and 𝐹𝑊 based on the 

true positive (TP), false positive (FP), true negative (TN), and false negative (FN). Given 

a set of MO-words mixed phrases 𝑃 = {𝑝1, … , 𝑝|𝑃|}, where 𝑝 consists of an MO 𝑥 and its 

attached words {𝐿𝐻𝑆(𝑥), 𝑅𝐻𝑆(𝑥)} at the left-hand side (𝐿𝐻𝑆) and the right-hand side 

(𝑅𝐻𝑆). We use a binary array 𝑠𝑥 to represent the |𝑁| distinct symbols 〈𝑏1, … , 𝑏|𝑁|〉 in 𝑥. 

Similarly, the binary array �⃑⃑⃑�𝑥  represents |𝑀|  adjacent word stems or POS tags 
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〈𝑏1, … , 𝑏|𝑀|〉 . A binary variable ℒ(𝑥)  represents the prediction outcome of x so that 

ℒ(𝑥) = 1 when 𝑥 is MOC. 

In the training phase, each entry in 𝑠𝑥 (�⃑⃑⃑�𝑥) is assigned one of the four cases 𝑘 ∈

{𝑇𝑃, 𝐹𝑃, 𝑇𝑁, 𝐹𝑁} in confusion matrix by comparing the ground truth and the prediction 

result. Let the binary vector �⃑⃑�𝑘 (�⃑�𝑘) represents 𝐹𝑆 (𝐹𝑊) for the case 𝑘. The bit position in 

�⃑⃑�𝑘 (�⃑�𝑘) is 1 if the corresponding position in 𝑠𝑥 (�⃑⃑⃑�𝑥) is 1. That is, �⃑⃑�𝑘 = ⋁ 𝑠𝑥
𝑗

𝑗=𝑘  and �⃑�𝑘 =

⋁ �⃑⃑⃑�𝑥
𝑗

𝑗=𝑘  where V denotes the logic OR operation. A binary array 𝑦 of 𝐹𝑆 or 𝐹𝑊 is trained 

from the process based on an iterative heuristic rule: at the i-th iteration, 𝑦𝑖 =

(𝑦𝑇𝑃
𝑖−1 ∨ 𝑦𝐹𝑁

𝑖−1) − (𝑦𝑇𝑁
𝑖−1 ∧ 𝑦𝐹𝑃

𝑖−1). That is, features appeared in both TN and FP instances 

are eliminated from the set of TP or FN instances. The iteration stops when there is no 

more training data to fit the model. The positive predictions of MOC are made upon y ∧

z ≠ 0⃑⃑ where z is the feature array of 𝐹𝑆 or 𝐹𝑊. 

Next, we discuss the naïve Bayesian model. Empirical results in Figure 13 and 

Figure 14 suggests that relative likelihoods of certain mathematical symbols being used in 

MOC expressions are higher than others. To test their discriminating power, we propose 

a naïve Bayesian inference model based on the likelihood of individual features without 

taking into account of the potential dependency between 𝐹𝑆 and 𝐹𝑊. 

Let 𝜃 = 1 (0) denote the case that x is (not) in MOC. Here, for an MO 𝑥 with word 

𝐿𝐻𝑆(𝑥) and 𝑅𝐻𝑆(𝑥) , the posterior probability is 𝑃𝑟(𝜃|𝑒(𝑥)) =
𝑃𝑟(𝑒(𝑥)|𝜃)𝑃𝑟(𝜃)

𝑃𝑟(𝑒(𝑥))
, where 

𝜃 ∈ {0,1} and 𝑒(𝑥) is an evidence set of 𝐹𝑆 or 𝐹𝑊, where 𝐹𝑊 is derived by the POS tag of 

𝐿𝐻𝑆(𝑥) and 𝑅𝐻𝑆(𝑥). Based on the assumption of conditional independence, we have 
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𝑃𝑟(𝑒(𝑥)|𝜃) = ∏ 𝑃𝑟(𝑒(𝑥)𝑖|𝜃)𝑖   for the i-th symbol being evaluated. We propose a ratio 

function 
𝑃𝑟(𝑒(𝑥)|𝜃=1)

𝑃𝑟(𝑒(𝑥)|𝜃=0)
 to assess the likelihood of 𝑥 being in MOC or not. Based on this 

formula, one can ignore the common term 𝑃𝑟(𝑒(𝑥)) at the denominator for cases 𝜃 =

1 versus 𝜃 = 0, so that  
𝑃𝑟(𝜃=1|𝑒(𝑥))

𝑃𝑟(𝜃=0|𝑒(𝑥))
=  

𝑃𝑟(𝑒(𝑥)|𝜃)𝑃𝑟(𝜃=1) 

𝑃𝑟(𝑒(𝑥)|𝜃)𝑃𝑟(𝜃=0)
. 

Experimental Results and Discussion 

We compare the performance of the two proposed models based on precision (P), 

recall (R), F-measure (F1), accuracy (ACC), based on experiments performed on the 

dataset OA-STM Corpus [36], which provides 10 papers from different fields with 2757 

sentences annotated in Penn tree format [52]. Each MO is labeled with FRM in the tag. 

346 of the 2757 sentences contain about 600 MOs in the dataset. All MOs are manually 

annotated with “yes”, “no”, or “uncertain” that whether they are expressing a constraint 

semantic. Both the mathematical symbols and the local word features were applied to all 

600 MOs out of 346 sentences. 

We adopted the 10-fold cross validation (9:1 ratio for the sizes of the training and 

testing data sets) to evaluate the performance of the two models, and the results are given 

in Table 2. The high recall rate 92.7% in average using 𝐹𝑊 indicates that the greedy model 

can capture nearly all combinations of word stems or POS tag patterns. However, the two 

prediction models achieve different levels of both precision and F1 score. As shown in 

Table 2, the heuristic rule-based greedy approach obtained an average precision of 58.1% 

and 69.5% of average F1 score for the three features 𝐹𝑆 , 𝐹𝑊 (stem), and 𝐹𝑊 (POS). In 

contrast to the heuristic prediction model, the naïve Bayesian based prediction model 
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obtained a precision of 80.1% and the F1 score of 82.4% for 𝐹𝑆, and an average precision 

and F1 score of 63.5% and 69.6% for 𝐹𝑊, which is higher than the overall average of the 

first model. 

 

Table 2: The average performance of recognizing the constraint expressions from 

mathematical objects. Reprinted with permission from [50]. 

 
P R F1 ACC 

Greedy Model (𝐹𝑆) 61.4% 85.3% 70.3% 63.5% 

Naïve Bayesian (𝐹𝑆) 80.1% 87.4% 82.4% 81.8% 

Greedy Model (𝐹𝑊, stem) 58.4% 90.2% 70.1% 61.4% 

Naïve Bayesian (𝐹𝑊, stem) 65.8% 82.8% 72.3% 68.1% 

Greedy Model (𝐹𝑊, POS) 54.5% 95.2% 68.0% 55.2% 

Naïve Bayesian (𝐹𝑊, POS) 61.1% 78.2% 66.9% 60.1% 

 

Summary 

In this chapter, we propose two supervised MOC prediction models based on 

heuristic optimization and naïve Bayesian decision inference, respectively. Multiple 

factors may contribute to the performance of the prediction models and the data features. 

The outcomes suggested that the 𝐹𝑆  alone based prediction obtained overall good 

prediction scores. On the other hand, 𝐹𝑊  was found to have much lower prediction 

powers, fluctuating sharply with respect to different word stems and POS tags. By 

intentionally keeping 𝐹𝑆 and 𝐹𝑊 separate, our experiments examine the semantic power of 

individual words and symbols. Mathematical symbols alone are found to carry significant 
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semantic expression power, so that in many cases a human reader can readily assert an 

MO to be MOC (or not) with the presence of some symbols. Of course, words still carry 

some weights in such assertions, but its exact nature requires employment of more 

effective word-based features. With this work being the first of its kind in MOC inference, 

many open questions remain to be answered to understand the natures of 𝐹𝑊, in terms of 

issues such as phrase bonding with MO, other NLP generated primitives that may work 

better for MOC prediction. 
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CHAPTER IV  

TEXTUAL DECLARATION OF MATHEMATICAL OBJECT2 

 

Mathematical objects (MOs) and words are carefully bonded together in most 

science, technology, engineering and mathematics (STEM) documents. They respectively 

give quantitative and qualitative descriptions of a system model under discussion. In this 

chapter, we will introduce a general model for finding the coreference relations between 

words and MOs, based on which we developed a novel algorithm for predicting the natural 

language declarations of MOs--the MOD. The prediction algorithm is applied in a three-

level framework, where the first level is a customized tagger to identify the syntactic roles 

of MOs and the Part-of-Speech (POS) tags of words in the MO-word mixed sentences. 

The second level screens the MOD candidates based on the hypothesis that most MOD 

are noun phrases (NP). A shallow chunker is trained from the fuzzy process mining 

algorithm, which uses the labeled POS tag series in the NTCIR-10 dataset as input to mine 

for the frequent syntactic patterns of NP. In the third level, using distance, word stem, and 

POS tag respectively as the spatial, semantic, and syntactic features, the bonding model 

between MOs and MOD candidates is trained on the NTCIR-10 training set. The final 

prediction results are made upon the majority votes of an ensemble of naïve Bayesian 

classifiers based on the three features. Evaluation of the model on the NTCIR-10 test set, 

 

2 Reprinted with permission from “Prediction of Mathematical Expression Declarations Based on Spatial, 

Semantic, and Syntactic Analysis” by Jason Lin, Xing Wang, Zelun Wang, Donald Beyette, and Jyh-Charn 

Liu, 2019. Proceedings of the 19th ACM Symposium on Document Engineering, Pages 1-10, Copyright 2019 

by ACM. 
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the proposed algorithm achieved 75% and 71% average F1 score in soft matching and 

strict matching, respectively, which outperforms the state-of-the-art solutions by a margin 

of 5-18%. 

Overview 

In scientific documents, MOs are abstract notations of a complex system. It 

requires readers to map back to physical concepts through human-readable texts. A 

common practice for technical writing is that a mathematical notation must be introduced 

or declared before it is used for further discussions. A study showed that 58% of simple 

MOs come with declarations in the first occurrence in articles [53]. Since the way people 

declared MO followed limited patterns, it leads to a potential automation for extracting 

the textual declaration of MO (MOD). The automatically extracted MOD can act as a 

notation table to help the reader navigate between MOs and their physical meanings, and 

in addition, it have potential usage for cross-paper analysis [54], [55]. It has been shown 

that words and phrases used in MOD could help enhance the performance of mathematical 

information retrieval (MIR) [56] (i.e., combining the query of MOs and words to rank the 

relevance of searched documents). 

The mining of MOD belongs to the domain of information extraction. We propose 

to solve this problem from three aspects: the spatial, semantic, and syntactic relations of 

MOs and words. In general, we as human writer use these by instinct to place words and 

MOs in a way such that the contextual information is derived in multiple levels which 

supports the bonding of the two. The challenges of this problem lies in three parts: (1) 

comprehensive solutions on sentences with mixed use of words and MOs (MWM) for 
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lower level document processing such as POS tagging; (2) higher level constituent parsing 

for noun phrase (NP) to locate the possible chunks (i.e., group of words) of MOD; (3) 

mapping the MOs to their corresponding NP-chunks in the sentence. For the first part of 

challenges, we observed a degradation of the word-level POS tagging when applying the 

conventional natural language processing (NLP) toolkit to the MWM sentences. The 

syntactic role of MO (MO-SR) does not exist in any conventional POS annotation schema. 

Here, the syntactic role is defined as an umbrella term for the grammatical function of 

linguistic unit such as word, phrase, and expression. The errors occurred in word-level 

POS tagging could propagate to later constituent parsing on phrase-level annotation. The 

second part of the challenges requires a strategy to find the most frequent pattern of NP 

that covers most variances of MOD. Finally, the selection of which NP and MO have the 

same referent (i.e., the coreference) in a sentence remains a challenging problem. Naïve 

approach such as merely using the spatially nearest NP to MO as the MOD has resulted in 

a high false positive rate [57]. 

 

 

Figure 18: The three-level framework for MOD prediction. Reprinted with 

permission from [58]. 

 

We propose a three-level framework as in Figure 18 to address the above three 

challenges. First, a customized POS tagger for the MWM sentences is proposed using the 
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second order hidden Markov model [59]. Then, the NP-chunks are extracted as the 

potential MOD candidates by a shallow parser learned from the result of fuzzy process 

mining [60] using the human annotated dataset NTCIR-10 [37]. Finally, a predictive 

decision procedure determines whether an NP coreference to a designated MO in the 

sentence. The system architecture is depicted in Figure 19. Besides the pipeline of three-

level predictive analysis (L1 to L3), we also apply a weakly supervised learning approach 

to semi-automatic identify rules of template patterns using anchor words for our model to 

filter out obvious cases of MOD. The system will consolidate the results with the ones 

from the statistical inference step (L3) to make the final selections. 
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Figure 19: The system architecture for the bonding prediction of mathematical 

objects (MOs) and their related noun phrases (NPs). Reprinted with permission from 

[58]. 

 

Related Works 

For automated declaration extraction, the first paper [61] in 2010 attempts to find 

coreference relation between formulas and their surrounding text on Wikipedia 

documents. They proposed a triplet tuple 〈𝐶, 𝐹, 𝐷〉 of potential candidates representing the 

chunks of Concept, Formula, and Description in the contents, respectively. Their 

heuristics are based upon that description always follow a concept after the verb “be”, and 

such description belongs to the nearest formula that have overlaps with its concept. They 
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achieved a performance of 68.33% on precision but only limited to a more organized 

contents like Wikipedia. Other existing works follow a two-phase framework [57], [62], 

[63]. First, the NPs are extracted as the candidates of the MOD based on traditional 

constituent parsing. Then, a prediction is made upon each pair of MO and NP about 

whether the NP is the MOD using a binary classifier. The classifier is trained using the 

features concerning the common declaration patterns, the values/POS of neighboring 

words, and structural features. However, none of them have considered the problem of 

MWM sentences that affect the prediction performance of the POS tagger, and propagate 

the errors to an upper layer analysis. They treat MOs as ordinary words and directly apply 

the existing solutions of POS tagger. 

In the NLP community, POS tagging tasks are considered a nearly solved problem 

using statistical machine learning models [64], [59], [65], [66]. Common features include 

the value, the preceding (succeeding) of the current word and its neighbors [64]. Due to 

the difference in the interaction of MO with word, a traditional constituent or dependency 

parser failed to analyze the syntactical structure of the MWM sentence. As for MO specific 

syntactic tagging, the work in [67] proposed the first MO-SR tagger using a mixture of 

naïve Bayesian models based on the format complexity of MO, neighbors POS prediction, 

and the syntactic properness of the sentence reached a 69% F1 score for the three-class 

classification of MO-SR. However, their model is unable to predict the POS tags of other 

words. 

The existing solutions for parsing MWM sentences are based on brittle grammar, 

including the combinatorial category grammar [68] and the typed probabilistic context-
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free grammar (PCFG) [69]. They both require the semantic analysis of MO, which itself 

is still a challenge. On the other hand, a data-driven training approach might not be feasible 

due to scarcity of dependency parsing tree data for MWM sentences. Though it is 

reasonable to directly extract relation using the dependency parsing structure as done in 

the protein interaction extraction [70], the errors accumulate at both the POS and parsing 

steps result in wrong relation catch in natural language. Besides, the performance of the 

dependency/constituent parsing still face challenges in the multi-word expression [71], the 

special punctuation [72], and the ambiguity of prepositional phrase attachment and 

coordinate conjunction attachment [73], [74], [75] even for normal language. 

Mathematical Objects and Words Mixed Tagger 

POS tagging is an important fundamental work in NLP, which is the foundation of 

high-level tasks such as phrase extraction and dependency analysis. However, the type of 

sentences in scientific documents which mixed with unknown words like MOs introduce 

new usage patterns compared with our daily used natural language. These patterns lead to 

the degradation of the existing POS taggers [65], [66], which further propagates to high-

level analysis such as phrase extraction and syntactic structure parsing. To address this 

problem, we propose a customized MWM tagger (L1 in Figure 19) to accurately label the 

words with respect to the syntactic roles of MOs (MO-SR) in the sentence. 

The Syntactic Role of Mathematical Object 

The mathematical notation system itself could be treated as a language. This 

implies that one MO could be very complex and even correspond to a sentence or 

subordinate clause in the contents. Follow the conventions provided in an Elsevier open 
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access dataset OA-STM Corpus [36], there are three categories of MO-SR as shown in 

Table 3. The existing conventions for the three MO-SR are: S for sentence (main clause) 

or subordinate clause, NP for noun phrase, and NML for noun modifier. 

 

Table 3: The syntactic role of mathematical object (MO-SR) and examples. 

Reprinted with permission from [58]. 

MO-SR Example (MO is in bold font) 

S “Note that [𝒇]𝒑 = [𝒇𝟎]𝒑 and [𝒇′]𝒑 = [𝒇𝟎
′ − 𝒇𝟏]𝒑.” 

NP “We are given a graph 𝑮 = (𝑽, 𝑬).” 

NML “This happens 𝒍𝒈𝒏 times by repeating squaring.” 

 

The special syntactic role of MO could not be covered by the conventional POS 

taggers [43], [44], and about 10% degradation of the POS tagging for other words was 

also observed. The F1 scores of 0.868 and 0.882 is obtained using the Stanford maximum 

entropy tagger [44], [66] and the NLTK averaged perceptron tagger [43], [65] in 

comparison with their 0.973 and 0.971 F1 score, respectively, for non-MWM corpus 

according to the report of the Association for Computational Linguistics (ACL) in [76]. 

For example, in Figure 20, the word “prime” is supposed to be the textual declaration of 

MO_1. 
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Figure 20: The error propagation from POS tagging in L1 to constituent parsing (i.e., 

Fail to identify “prime” as the declaration of MO_1). Reprinted with permission 

from [58]. 

 

Given that MOs which correspond to sentences can be very complex, failure to 

identify their syntactic roles not only leads to mislabeling of POS tags for other words but 

also propagate the errors to parsing phrase, affecting the NP candidate generation for 

MOD [57]. For example in Figure 20, the MOD “prime” cannot be detected if the POS of 

“prime” is mislabeled as adjective (JJ) from the context of the left neighboring word (‘a’) 

is determiner (DT) and the right neighbor MO (MO_1) is noun (NN), which will mislead 

the later structural analysis of the sentence in capturing the whole term “a prime MO_1” 

as an NP rather than relating “MO_1” to “prime” in bold blue line.  

A preliminary study was demonstrated on the MO properties with respect to its 

syntactic role, including the presentation features (i.e., the structural length and depth) in 

Figure 22 and the content features (i.e., the number of variables and operators) in Figure 

23. We applied 600 MOs with LaTeX code annotations from the dataset OA-STM Corpus 
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[36] in this study. All MOs are first converted into Presentation MathML (PMML) format 

via the LaTeXML toolkit [77] as an example given in Figure 21. The presentation features 

are then calculated based on the PMML structure of MO, where the length is the number 

of leaf nodes, and the depth is the number of layers starting from the root node. The content 

features are further obtained based on the number of “mi” node and “mo” node in the 

PMML structure. As a result, we observed that the curves of the three MO-SR classes are 

highly overlapped, suggesting that the feature of using MO properties has less 

discriminant power. Also, our MWM tagger needs to consider the POS tags of other words 

in context as well. Hence, we proposed a sequential classifier using the Markov property. 

 

 

Figure 21: An example of LaTeX code and its corresponding Presentation MathML.  
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(a) 

 
(b) 

 

Figure 22: Histograms of syntactic roles on the (a) length and (b) depth of 

mathematical object (MO) in MathML structure. 
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(a) 

 
(b) 

 

Figure 23: Histograms of syntactic roles on the number of (a) mathematical 

identifiers and (b) operators. 
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The Syntactic Tagger for MWM Sentences 

The task of POS tagging is to predict the syntactic label 𝑡𝑖 for each token 𝑥𝑖 in a 

sentence 𝑠 = {𝑥1, … , 𝑥𝑛}  where 𝑥𝑖  can be a word or an MO. For a word, the label 

candidates are the 36 Penn Treebank POS tags such as noun (NN), adjective (JJ), and verb 

(VB). See Table 9 of Appendix A for more information. When the token is an MO, there 

are three possible labels: { 𝑆 , 𝑁𝑃 , 𝑁𝑀𝐿 }. The POS tagging is formulated as the 

optimization goal as follows: 

arg max
𝑡

[∏ 𝑃𝑟(𝑡𝑖|𝑡𝑖−1, 𝑡𝑖−2)

𝑛

𝑖=1

∏ 𝑃𝑟(𝑥𝑖|𝑡𝑖)

𝑛

𝑖=1

] 𝑃𝑟(𝑡𝑛+1|𝑡𝑛) 

based on the second-order hidden Markov model [59]. Three additional labels 𝑥−1, 𝑥0, 

and 𝑥𝑛+1 are added to the beginning and end of each sequence. Since trigram instances 

are sparse, we need to have a smoothing paradigm on estimating 𝑃𝑟(𝑡𝑖|𝑡i−1, 𝑡i−2) to 

prevent zero count on trigram cases that never occur in the corpus. Similar to [59], we 

apply the linear interpolation of unigram, bigrams, and trigrams for smoothing technique 

to resolve scarcity of the trigram cases in the dataset, which is estimated as: 

𝑃𝑟(𝑡𝑖|𝑡i−1, 𝑡i−2) = 𝜆1 𝑝 (𝑡𝑖) + 𝜆2 𝑝 (𝑡𝑖|𝑡𝑖−1) + 𝜆3 𝑝 (𝑡𝑖|𝑡𝑖−2, 𝑡𝑖−1) 

where 𝜆1 + 𝜆2 + 𝜆3 = 1 . The 𝑝  indicates the unsmoothed probability and all 𝜆  are 

estimated using a global context-independent smoothing [59]. For rare words with 

frequency less than 5, their suffixes (i.e., last 𝑚 letters) are used to estimate the probability 

𝑃𝑟(𝑥𝑖|𝑡𝑖). The Viterbi algorithm [78] is a dynamic programming approach used for the 

efficient prediction of tagging based on tokens. 
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Table 4: POS tagging prediction performance on MWM sentences in the dataset OA-

STM Corpus [36]. Reprinted with permission from [58]. 

Model P (%) R (%) F1 (%) 

CoreNLP [44] 86.56 86.96 86.76 

NLTK [43] 90.03 86.52 88.24 

Proposed 95.91 95.46 95.68 

 

The MWM POS tagging is evaluated on the Elsevier open access dataset [36] 

which consists of 10 papers from different disciplines in STEM fields. There are 346 

MWM sentences containing 545 MOs mixed in these sentences. A 10-fold cross-

validation experiment is designed to test the generalization of the performance. In each 

fold, we pick one file as the test data set. The other 9 files together with the CoNLL2000 

and the Penn Treebank from NLTK [43] are used for training. We achieved a performance 

of over 0.95 for precision (P), recall (R), and F1 score as shown in Table 4. The 

performance result has improved the existing POS taggers by 7-9%. Furthermore, the 

performance of the MO-SR tagging has significantly improved from 0.69 [67] to 0.91 of 

F1 score. 
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Noun Phrase Extraction in MWM Sentences 

 

 

Figure 24: The visualization of process model in Disco [79] using POS tag series of 

MOD (top 10% frequent nodes and links from the data). Reprinted with permission 

from [58]. 

 

After the POS tag is accurately labeled on each word, we next identify NPs as 

candidates of MOD using the context-free grammar (CFG) learned from the ground truths 

of human annotated dataset NTCIR-10 [37] (L2 in Figure 19). We take each word in the 

MOD as a unit of event and apply the fuzzy process mining algorithm [60] to construct an 

automata-like structured process model in 3-tuple 𝑇 = (𝑉, 𝑅, 𝑆)  that simplifies the 

unstructured sequence of data. The finite set 𝑉 contains all 50 POS tags of word, and the 
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finite relations 𝑅 contains any directed link of 𝑉 to (𝑉 ∪ 𝑆) based on the observation of 

their order in the MOD. 𝑆 contains the two terminal states that represent the beginning and 

the ending of a declaration, respectively (i.e., the Start and End in Figure 24). We display 

the process model 𝑇 using the visualization tool Disco [79] as shown in Figure 24. Note 

that the thickness of link indicates the frequency of the bigram pattern, and the black dot 

and the concentric circle nodes are the beginning and the ending of the sequence, 

respectively. From the graph, it shows majority of the MOD (i.e., top 10% frequency of 

nodes and links) is consists of the POS tags DT (determiner) and NN (noun) such as “a 

graph”, “the matrix”, etc. It is understandable that some NPs have tags JJ (adjective) before 

NN and RB (adverb) before NN or JJ. Also, some rare cases connect two NP-chunks with 

the tag IN (subordinating conjunction) like “the set of vertices” and “the element of 

matrix”. Hence, we construct an NP shallow chucker by the following CFG using regex: 

𝑁𝑃 ← 〈𝑁𝐵𝐴𝑅〉〈𝐼𝑁〉〈𝑁𝐵𝐴𝑅〉 
𝑁𝑃 ← 〈𝑁𝐵𝐴𝑅〉 
𝑁𝐵𝐴𝑅 ← 〈𝐷𝑇〉? 〈𝑅𝐵.∗ |𝐽𝐽.∗ |𝑉𝐵.∗ |𝑁𝑁.∗〉 ∗ 〈𝑁𝑁.∗〉 

 

The CFG we propose above has covered around 94.67% of ground truth in the 

NTCIR-10 dataset [37] we used for evaluating the performance of our proposed MOD 

model. 

Features of MOD Predictions 

Human readers can readily recognize MOD based on their prior knowledge on how 

the authors express in writing practice to relate an MO to its corresponding declaration. 

To mimic how humans, make this kind of connection, we propose five main features that 

are considered holding the key to determine whether an NP is referring to an MO (L3 in 
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Figure 19). As depicted in Figure 25, the first two features are the relative position of the 

MO with respect to an NP in the sentence. That is, the NP is either at the left-hand side 

(❶) or the right-hand side (❷) of an MO. The last three features: distance (❸), word 

stem (❹), and POS tag (❺) are all aim for words in between MOs and NPs, so we put 

the three together as one level of discussion. Note that the different color-coding zones of 

the Halo annulus in Figure 25 imply the spatial confidence in making an assertion of any 

MO-NP pair. The closer distance they are, the more likely they are an MOD pair. 

 

 

Figure 25: The modeling of spatial, semantic, and syntactic features in a Halo. 

Reprinted with permission from [58]. 

 

Feature Extraction 

To decide an MO 𝑚 is at the left or right of an NP 𝑤, we can simply retrieve the 

starting positions 𝑚𝑖𝑛(𝐼(𝑤))  and the ending positions 𝑚𝑎𝑥(𝐼(𝑤))  of 𝑤  where the 

function 𝐼(𝑤) represents the set of indices of each token in 𝑤 in the sentence, and compare 
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them with respect to 𝑚’s position  𝐼(𝑚). If 𝑚𝑎𝑥(𝐼(𝑤)) < 𝐼(𝑚) (𝑚𝑖𝑛(𝐼(𝑤)) > 𝐼(𝑚)), 

then NP 𝑤 is at the left (right) of the MO 𝑚 in the sentence. Otherwise, the MO are 

overlapped with its declaration, and this is considered a false case since self-declaration is 

meaningless. 

The distance feature is based upon the number 𝑛 of words and/or MOs between a 

given MO and NP, which is 𝑛 + 1 intervals from all 𝑛 units. As for the word feature, a 

word can have various forms under different contexts in the content. For example, words 

like “denote” can have forms “denoted”, “denotes”, “denoting” based on the tense of verb 

and the subject/object in a sentence. Another example will be the uppercase/lowercase 

according to English grammar rule. A word can also have different usages based on its 

syntactic context (the POS tag). Therefore, we applied the snowball stemming algorithm  

[51] and the proposed MWM tagger to extract the word stem and the POS tag of each 

connecting word of MOD, respectively. The word stemming not only helps us normalize 

the word to its original form to aggregate the words that belong to the same meaning but 

also captures the stop words that usually have unique form. The POS tag of the word will 

preserve the word syntactic property and help us identify significant syntactic roles and/or 

punctuations that connects an MO to its declaration. 

One thing that is not brought to attention from the existing works [57], [62], [63] 

is the enumeration of negative side of instances. By merely studying the positive side of 

instances will not result in an objective likelihood assertion of the fact. Rather, we face a 

case that the assertion is based on whether something exist or not, no spectrum information 

of how the existence of one evidence can lead to the final decision. In this dissertation, the 
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approach we used for sampling the negative instance is by enumerating the complement 

connections of MOD in each sentence. That is, given a graph 𝐺, we examine all the edges 

in the complement graph �̅�. To avoid oversampling of negative instances, we select the 

cases that have the shortest distance to MO. As in Figure 26, the green bold line connects 

the original ground truth of MOD, and we can obtain the negative samples by studying 

the complement of the ground truth links, which is, the red dashed line. 

 

  

Figure 26: An example sentence (highlighted in blue) for negative sampling (green 

bold line connects MO to its true declaration, while red dashed line connects to a 

false declaration). Reprinted with permission from [58]. 

 

Analysis of Spatial Feature 

Based on the statistics from the annotated NTCIR-10 dataset, the distances 

between an MO and its declaration are mostly within 6 as shown in Figure 27(a). Some 

rare cases with distance longer than 10 might be noises in data, or special cases that 

implicitly and indirectly referring an MOD. On the other hand, the distribution on the 

negative samples shown in Figure 27(b) also suggested that different distances still exist 

possible false cases. 
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(a) 

 

(b) 

Figure 27: Histograms of the positive (a) and the negative (b) instances for MOD 

based on the spatial distances. MO is a mathematical object where Dec is its 

declaration while Non-Dec is not. Reprinted with permission from [58]. 
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Figure 28: The statistical likelihood of spatial distance between the mathematical 

object (MO) and its related textual declaration (Dec). Reprinted with permission 

from [58]. 

 

The likelihood spectrum for the distance feature is shown in Figure 28, which is 

derived from the two histograms Figure 27(a)(b) via 
|𝑃|

|𝑃|+|𝑁|
 where 𝑃 is a set of all positive 

instances and 𝑁 is the set of all negative instances. We observed that when an MO and an 

NP are attached to each other in a sentence, no matter the MO is at which side of that NP, 

it is nearly certain that they are a match with more than 90%. However, when it comes to 

distance of 2 words between MO and NP, it is more likely that the MO is at the left than 

at the right of NP to result in an MOD. This is due to human writing practice that if the 

declaration follows its MO in a sentence, we usually use active verb phrase to address 

their coreference relation. For example, “Let MO denotes the Euclidean distance.” where 
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“Euclidean distance” is the MOD. On the contrary, if the declaration followed by its MO 

in the sentence, we must use passive verbs to coreference them, which can be more than 

two words like “The eigenvector is defined as MO.” where “eigenvector” is the MOD. 

Analysis of Word Feature 

On the analysis of the word feature, both word stem and POS tag have high 

frequency on the empty set (-NONE-), which support the observation in distance feature 

that zero-distance has the highest indicating power for positive assertion of MOD. For 

those declarations that followed by their MOs, the top rank frequent word stems include 

stop words like “is”, “the”, “of”, “by” as shown in Figure 29(a). These words include POS 

tags like verbs (VBZ, VBP, VBN), determiner (DT), noun (NN), and preposition (IN) as 

in Figure 31(a). Some punctuations like ‘,’, ‘:’, and ‘(’ appear also very frequent, which 

reflects human writing practice in using those punctuations to apply MO for denotation of 

words. On the other hand, for those MOs that followed by their declarations, the top 

frequent words are be-verb (“is”, “are”, “be”) and verb words like “denote”. It is 

interesting to note that only comma has noticeable frequency on the histogram. This 

suggests a type of writing practices for MOD is to use a comma ‘,’ to connect words to 

MO such as the way we introduce an acronym in natural language. 
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(a) 

 

(b) 

Figure 29: Histograms of the positive (a) and the negative (b) instances for MOD 

based on the word stems. Notice that -NONE- represents an empty token, MO is a 

mathematical object where Dec is its declaration while Non-Dec is not. Reprinted 

with permission from [58]. 
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Figure 30: The statistical likelihood of word stem for intermediate words that 

connect the mathematical object (MO) to its related textual declaration (Dec). 

Reprinted with permission from [58]. 

 

We now discuss the discriminative features that make the decision between the NP 

at the left and/or right of MO. These require examining the likelihood of both word stem 

(Figure 30) and POS tag (Figure 32), which are derived from Figure 29 and Figure 31, 

respectively. When the declaration is followed by MO, it tends to use verb words like 

“are”, “see”, “given” to connect an MO. The word “are” is obvious to understand, but 

“see” and “given” are actually verbs used to attached an MO such as “given 𝑥 ≥ 1”. There 

are also cases which use an NP to declare several MOs at the same time. An example 

sentence would be “The trees MO_1, MO_2, and MO_3” where all three MOs are declared 

simultaneously. Punctuations like the right bracket ‘)’ is used when more than one NP are 

denoting the MO, and the colon ‘:’ is directly used for denotation. As for the declaration 
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at the right of MO, the most likely used word stems are “as”, “ani”, “call”, and “also”. 

Other word like “which” is used for relative clause to further define the subjects in the 

main clause. The usage of these words can also be seen in top likelihood of POS tags: VB, 

VBD, and WDT. 
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(a) 

 

(b) 

Figure 31: Histograms of the positive (a) and the negative (b) instances for MOD 

based on the POS tags. Notice that -NONE- represents an empty token, MO is a 

mathematical object where Dec is its declaration while Non-Dec is not. Reprinted 

with permission from [58]. 

 



 

63 

 

 

 

Figure 32: The statistical likelihood of POS tag for intermediate words that connect 

the mathematical object (MO) to its related textual declaration (Dec). Reprinted with 

permission from [58]. 

 

Bonding of Mathematical Objects and Noun Phrases 

In this section, we describe the proposed decision model used for making the 

inference based on the bonding strength between MO and any NP. After we locate the 

MOs and the potential MOD candidates of NPs, we first use a template matching that are 

collected from 1K documents of arXiv using a weakly supervised approach. Then, we 

apply the naïve Bayesian approach on three features: distance, word stem, and POS tag, 

based on the MO position with respect to an NP. An ensemble of classifiers based on the 

majority vote rule will be used to make the final decision. 

 

 



 

64 

 

Template Pattern Matching 

Before making any inference, we first apply some golden rule templates in identify 

the first-hand matching of MOD. There are several steps based on weakly supervised 

approach to gather the list of declaration templates. The first step is to collect the possible 

pairs of MOs and their associated NPs from arXiv.org to learn the template patterns that 

guarantee a match. The type of sentences we considered for learning the template is the 

ones that contain a single NP with either single or multiple MO(s). The MOs of concern 

are similar to the works proposed in [54] and [55] that focus on simple variables such as 

identifiers or identifiers with superscript, subscript or accent. If there is an NP nearby, we 

commit to a ground truth case for MOD. According to the statistics from the NTCIR-10 

dataset, the distance between MO and its declaration are most likely within a distance of 

6 as shown in Figure 27(a). When preparing the MOD pairs for the unsupervised arXiv 

dataset, we set an even stricter threshold that only considers the pair with a distance of less 

than and equal to 4. In Table 5, we show 8 templates which are at the top of the list of 

frequency and are manually confirmed to perfectly guarantee the bonding exist when there 

is a match. Some of these golden rule templates are also introduced in the existing works 

[57], [62]. 
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Table 5: A list of common template patterns collected from arxiv.org to relate 

mathematical objects (MOs) to their textual declaration (Dec). Reprinted with 

permission from [58]. 

Pattern Template 

1 

[MO] {denote(s) | mean(s) | represent(s)} (the) [Dec] 

[MO] stand(s) for (the) [Dec] 

2 [MO] {is | are} (the) [Dec] 

3 [MO] {is | are} {denoted | defined | given} {as | by} (the) [Dec] 

4 let [MO] be denoted by (the) [Dec] 

5 denote {as | by} [MO] [Dec] 

6 {let | set} [MO] {denote | denotes | be} [Dec] 

7 

[MO] {, | and | or | [MO]} {are | be} [Dec] 

[Dec] [MO] {, | [MO]}* {and | or} [MO] 

8 [Dec] {[MO]}* [MO] 

*Braces “{…}” indicate must select one from the given set of items; Parentheses “(…)” indicate 

with or without; Brackets “[…]” indicate a chunk that must be at that position. 
 

Naïve Bayesian Inference 

In this subsection, we introduce the Bayesian inference model to make assertions 

on the three major types of features (distance, word stem, and POS tag). Based on the 

assumption of conditional independent probability distributions, the features in each type 

are separately used for making likelihood assertion of MOD. 
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Let 𝑚 be an MO in an MWM sentence and 𝑤 is a set of words that given as one 

of the MOD candidates. We would like to estimate the posterior probability of MOD 

condition on the likelihood of the feature set 𝑒(𝑚, 𝑤) extracted between 𝑚 and 𝑤. The 

estimated function can be expressed as follows: 

𝑃𝑟(𝜃|𝑒(𝑚, 𝑤)) =
𝑃𝑟(𝑒(𝑚, 𝑤)|𝜃)𝑃(𝜃)

𝑃𝑟(𝑒(𝑚, 𝑤))
 

where 𝜃 ∈ {0,1} represents positive (1) and negative (0) assertion of MOD for 𝑚 and 𝑤 

based on one of the three types of features. With assumption of conditional independence, 

we can obtain the conditional probability 

𝑃𝑟(𝑒(𝑚, 𝑤)|𝜃) = ∏ 𝑃𝑟(𝑒(𝑚, 𝑤)𝑖|𝜃)

𝑖

 

where 𝑖 is the 𝑖th feature in 𝑒(𝑚, 𝑤). Note that the posterior probability 𝑃𝑟(𝜃|𝑒(𝑚, 𝑤)) ∝

𝑃𝑟(𝑒(𝑚, 𝑤)|𝜃)𝑃𝑟(𝜃) , and 𝑃𝑟(𝜃) is the prior probability of MOD as positive instances in 

the training data. We can derive the labeling result by the likelihood ratio 𝜌 =

𝑃𝑟(𝑒(𝑚,𝑤)|𝜃=1)

𝑃𝑟(𝑒(𝑚,𝑤)|𝜃=0)
 where the predicted 𝜃 = 1 (𝑤 is likely to be the MOD of 𝑚 on feature set 

𝑒) if 𝜌 > 1; Otherwise, 𝜃 = 0 (𝑤 is unlikely to be an MOD of 𝑚 on feature set 𝑒). 

A Laplace smoothing [4] is used to estimate the probability of each feature 𝑖 

condition on 𝜃 = 𝑙, that is: 

𝑃𝑟(𝑒(𝑚, 𝑤)𝑖|𝜃 = 𝑙) =
𝑓(𝑒(𝑚, 𝑤)𝑖|𝜃 = 𝑙) + 𝛼

𝑓(𝑒(𝑚, 𝑤)𝑖|𝜃) + 𝛼(𝑁 + 1)
 

where the function 𝑓(𝑒𝑖|𝑙) counts the number of instances for the evidence 𝑒𝑖 with respect 

to the label 𝑙 . The variable 𝛼  is a smoothing parameter greater than 0, and 𝛼 = 0 

corresponding to no smoothing. The smoothing can resolve the issue that unknown feature 

(i.e., first time occurrence) result in a zero-probability estimation. 
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Majority Vote Ensemble 

For the final decision of MOD, we apply the ensemble of classifiers based on the 

majority vote rule to make the final decision whether an MO 𝑚 and a group of words 𝑤 

are a match of MOD. The voting mechanism follows the objective function 𝑦 =

max
𝑗=1,…,𝐶

∑ 𝜃𝑗(𝑒(𝑚, 𝑤))𝐶
𝑗=1  where 𝜃𝑗  is the voting for feature 𝑗  given the evidence set 

𝑒(𝑚, 𝑤) on the instance of 𝑚 and 𝑤. The final decision can be obtained by the binary 

variable 𝑑 = ⌊𝑦 ∙
2

𝐶
⌋ which indicates the pair (𝑚, 𝑤) is an MOD if 𝑑 = 1, or otherwise it 

is not an MOD. 

The inspiration behind using this voting mechanism is the observation that spatial, 

semantic, and syntactic properties are independent features which complement each other 

like a triangular rule in making a more accurate assertion. The rule of thumb is that the 

words used for connecting an MO to a declaration must carry the semantics of such 

intention under certain syntactic properties within some spatial constrains. For example, 

we know that verbs operate the relations from one entity to another in a sentence. 

However, not all verbs are used for connecting one to another. Hence, a better assessment 

can be made if we know the type of verbs and words that are used under acceptable 

placement and distance constraints. 

Experimental Results and Analysis 

In this section, we first introduce the existing dataset used for evaluation. Then, 

we discuss the performance metrics that are used for comparing with the existing work. 

Finally, a discussion on the outcomes is given. 
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Dataset and Evaluation Criteria 

The dataset we used to train our predictive model is from the NTCIR-10 math 

understanding annotation project [37]. There are approximately 35 papers with a total 

9172 MOs sampled from the arXiv website. There are two types of annotation: short 

declaration and full declaration of MO which are taken as MOD in this paper. For the 

sentence like “Let MO_1 be a virtual link diagram with minimal genus one.”, “a virtual 

link diagram with minimal genus one” is called a full declaration, while the core, “a virtual 

link diagram”, is called a short declaration. There are 3076 short declarations and 3053 

full declarations with two evaluation modes: strict matching and soft matching. The strict 

matching requires exact matching of every word in the annotation, while the soft matching 

only requires partial overlapping. If our prediction is “a virtual link diagram” for the above 

example, we get a false positive under the strict evaluation mode for the full declaration 

and a true positive sample for the other combinations. The evaluation criteria presented 

on Table 6 are precision (P), recall (R), and F1 score. 

Result and Discussion 

The performance comparison of the methodologies is made at two aspects: strict 

matching and soft matching. Each type of matching was assessed on the full declaration 

and short declaration of ground truth dataset. In general, soft matching could work better 

than strict matching due to its mechanism of a hit is more flexible than the strict one. From 

the view of methodologies, the comparison is made between different approaches in [62], 

including: baseline method (the nearest nouns), pattern matching method (templates), and 

machine learning based method (the support-vector machine, SVM). The features for the 
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machine learning method have been enumerated over different combinations to examine 

features which yield the best classification results. For simplicity, we only reported their 

best results for the machine learning method in Table 6. 

 

Table 6: The average performance of mining the textual declarations of 

mathematical objects. Reprinted with permission from [58]. 

 Strict Matching (%) Soft Matching (%) 

 P R F1 P R F1 

Baseline Method (nearest noun) [62] 

Short 

Declaration 
32.20 26.09 28.82 46.19 37.41 41.34 

Full 

Declaration 
27.40 22.20 24.53 46.33 37.53 41.47 

Pattern Matching Method (template) [62] 

Short 

Declaration 
17.84 24.03 20.48 46.22 62.36 53.09 

Full 

Declaration 
19.80 26.66 22.72 46.39 62.59 53.28 

Machine Learning based Method (SVM) [62] 

Short 

Declaration 
84.25 52.63 64.79 91.76 57.32 70.56 

Full 

Declaration 
76.28 40.85 53.20 90.60 46.57 61.52 

Proposed Method (combined Bayesian) 

Short 

Declaration 
73.44 71.25 71.58 76.31 75.31 75.20 

Full 

Declaration 
73.42 71.23 71.56 76.35 75.36 75.25 

 

The experimental results show that both the baseline method and the pattern 

matching method have low performances on P, R, and F1 score. In Table 6, we found that 
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the results of our proposed combined Bayesian model have a performance boost on both 

short declaration and full declaration compared to state-of-the-art work using SVM [62]. 

The short declaration (full declaration) improved by 6.79% (18.36%) and 4.64% (13.73%) 

F1 score in average for strict matching and soft matching, respectively. The reasons for 

these performance boosts lie in three aspects: First, the MWM processing has significantly 

improved word-level tagging performance in general (see Table 4), which leads to higher 

level analysis improvement on capturing the MOD candidates. Second, though the feature 

used in this paper has been considered in existing works, they did not consider the negative 

instance that could exist conflicts with the ground truth. Third, the majority vote of the 

three features can complement each other’s inference in making a more precise decision. 

Furthermore, it is worth knowing that our model has higher sensitivity (recall) on returning 

the results that cover more MOD cases, but lower correctness (precision) in locating the 

actual ones compared to the best existing work [62]. 

Summary  

In this chapter, we have identified two bottlenecks for the current works on the 

extraction of MOD, i.e., the processing of MWM sentences, and the negative sampling to 

constitute the likelihood of any indicators in the proposed features. The customized MWM 

tagger and noun phrase (NP) extractor have been proposed to enhance the preprocessing 

phase of MOD. Negative instances have been enumerated over the positive cases to learn 

the likelihood of any possible indicators. Evaluation of the Elsevier dataset OA-STM 

Corpus has shown that the proposed MWM tagger could significantly enhance the POS 

tagging performance for MWM sentences. The declaration extraction performance has 
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also greatly improved using the NP candidates generated from the customized processing 

toolkit. The experimental results have shown a margin of 5-18% performance gain on the 

F1 score compared to other state-of-the-art works. However, the golden rule template 

patterns manually enumerated are not complete, and it is desirable to have an automated 

or at least semi-automated method to collect the declaration patterns, which might help 

the larger-scale experiment in the near future. 
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CHAPTER V  

REASONING GRAPH OF MATHEMATICAL OBJECT 

 

This chapter introduces a mathematical object (MO) based analytical framework 

for segmentation, interrelation, and reduction of the technical contents. A hierarchical data 

structure called the MO reasoning (MOR) graph is proposed as a baseline model to study 

the potential features of document fingerprints. It is a compact representation of the 

original content that consists of MOs, words, and their interrelations. The dependencies 

among MOs shape the reasoning flows of a scientific paper. The goal of this MOR graph 

is to provide new perspectives and foundational solutions for more large-scale content 

analysis problems such as plagiarism detection and writing style modeling, etc. Some case 

studies are also given in this chapter to demonstrate the usefulness of the MOR graph for 

cross-paper analysis. 

Overview 

Technical writing is a practice of transforming a set of non-linear interrelated 

abstractions into a linear sequence of mixed symbols and words based on rules in 

mathematical language [68]. To digest the complex idea of a scientific paper, researchers 

sometimes need to study the contents back and forth to reconstruct the non-linear relations 

of MOs from their original linear elaborations. They even need to look up external 

materials to fully understand the original idea in depth. Missing a subtle piece of technical 

point may impede a reader from capturing the technical essence of a paper. Being able to 

automatically discover highly related technical concepts, which mostly consist of MOs 
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and words from scientific papers, will greatly improve the research productivity. To 

achieve this goal, we apply our algorithms [50] in Chapter III and [58] in Chapter IV to 

extract the constraint expressions and textual declarations of MOs from documents to 

assist in recovery of their functional structures. 

Technical writers often exercise a divide-and-conquer process to organize the 

sectioning and ordering of the contents [80], [81], [82]. They first divide a research 

problem into several sub-problems that individually forms a self-contained technical 

discussion called the reasoning block (RB). The findings or conclusions of each RB can 

later consolidate based on the logic flows of the RBs to conquer the discussion of the main 

research problem. In this chapter, we apply a math-centric analytical framework using 

MOs as key indicators along with linguistic and layout constraints to analyze the 

characteristics of an RB. Furthermore, we analyze the dependencies among MOs to 

reestablish the reasoning logic flows between RBs. A hierarchical data structure, the MOR 

graph, will be constructed as the technical essence of a paper to apply in various case 

studies of cross-paper analysis. 

Our experimental outcomes showed that the number of MOs and their associated 

words could be very dense. Sometimes, the large number of MOs in the visualization may 

interfere with the understanding of the critical logic flows carried by important MOs that 

are the minority. In order to optimally capture the breadth and depth of technical 

substance, a systematical approach is essential to group the MOs in hierarchical layers and 

unclutter the MO-to-MO and MO-to-words relations suitable for human users to read. 
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Related Works 

Recovering the mathematical logic of publications has already been studied by 

literature at coarse and fine levels. At the coarse level, MO-centered content analysis 

adopted string matching to extract the mathematical component such as definition, 

theorem, lemma, etc. and extract the dependencies among the blocks [30], [31], [32]. 

However, the coarse-level mathematical structures failed to capture many important 

elements such as the MOs and the interactions between MOs and words. At the fine level, 

the current state-of-the-art research [56] used the dependencies among MOs to connect all 

relevant MOs and words for improving the performance of the search engine. 

There are three aspects of criteria need to be considered in designing the MO 

dependency graph: normalization, interrelation, and information overloading. The first 

two aspects are both related with the common practice of using representation markup 

language like LaTeX or Presentation MathML (PMML). The LaTeX and PMML are very 

flexible to produce the same presentation in various encodings. Furthermore, there is a gap 

between the layout representations and the semantics. Heuristics have been proposed to 

normalize PMML [56] such as removal of structures (groups, parentheses, attachments, 

right-hand side MO) and case normalization. After the normalization, the MO 

dependencies is mostly constructed over the normalized representations based on string 

matching or subexpression matching (base form or left-hand side). For the last criterion, 

the dependency graph constructed by [56] is not designed for human to read, so the 

information overloading issue still remains in their product.  
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Recently, we developed the first prototype of graph abstraction called the QuQn 

map [33] to highlight the technical essence of a scientific paper. The QuQn map is used 

in educational contexts to interactively render the words and MOs based on their 

qualitative and quantitative dependencies. Similar projects that enhance reading 

experiences include Utopia [83] and Math-vis [84]. Utopia is used in medical domain by 

connecting external resources such as terminology dictionaries during the reading process. 

Math-vis provide single visualization of MathML and differential analysis of a MathML 

pair. 

 The QuQn map proposed a normalization process to convert the MOs into a 

semantic taxonomy [85] like Content MathML (CMML) to avoid the error-prone and ad-

hoc normalization that appeared in [86]. It applied basic pruning strategies on the links 

and nodes to address the problem of information overloading. However, the spaghetti-like 

MO dependencies still contain too much information for end-users to consume. Hence, 

we proposed a new compact representation in this chapter to allow hierarchical structure 

of MO dependency graph using the segmentation, interrelation, and reduction processes. 

Through our model, the original complex structure of the graph will be progressively 

reorganized from fine details into coarse representations. 
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Revisit the QuQn Map System3 

QuQn map [33] is an abstraction to describe the technical essence of any scientific 

paper. It uses spatial layout and color style to highlight the dependency relationship among 

automatically discovered MOs and words. The first processing step of the QuQn map is 

MO extraction and normalization. Given an MO expressed in LaTeX, MathML or PDF, 

MOs are extracted, parsed, and converted into a semantic taxonomy structure [85] to 

further decomposed into sub-expressions for MO dependency analysis. Each MO paired 

with its semantics by template matching is compared with other pairs to generate their 

dependencies. 

Mathematical Object Processing 

The QuQn mapping system includes a preprocessing normalization step to convert 

MO representations into the notion of semantic taxonomy [85], which is based on the 

Content MathML standard [87], with extensions for special fields. See Figure 53 of 

Appendix B for more information. 

Succinctly put, MO can be organized into atomic expressions or compounded 

expressions. An atomic expression can be a constant, or an identifier with optional 

subscript, superscript, and accent. A compounded expression can be the form of a relation, 

a function application, or a binding variable. As defined in semantic taxonomy, a function 

is a general concept that may include common operations, such as addition, multiplication, 

 

3 Reprinted with permission from “QuQn Map: Qualitative-Quantitative Mapping of Scientific Papers” by 

Xing Wang, Jason Lin, Ryan Vrecenar, and Jyh-Charn Liu, 2018. Proceedings of the 18th ACM Symposium 

on Document Engineering, Pages 1-4, Copyright 2018 by ACM. 
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and others. The compounded expressions include domain-specific expressions, such as 

DeltaVar (calculus), Function (functional analysis), LogicExpression (logic), and 

ProbExp (probability). The grammar can be dynamically expanded as needed. Based on 

the semantic taxonomy structure of MO, the QuQn mapping system implemented a parser 

which can take MOs in XML [77] or PDF [34] as input formats to map to the category of 

semantic taxonomy. 

Each expression of the taxonomy is composed of one or more components for 

further decomposition. For example, a function application expression may consist of a 

function and its arguments. The complete grammar for composition of expression can be 

found in [88]. 

Notation Definitions 

The QuQn map is represented by a paired set 〈𝑋, 𝑌〉, where 𝑋 = {𝑥𝑖} denotes the 

set of MO nodes and their sub-expressions in a document 𝒟, and 𝑌 is the set of MO 

denotations which can be a word description or other alternative MO node. Here, the 

denotation refers to a semantic level declaration of MO. Extraction of equivalent or related 

MOs from 𝒟 requires an understanding of the semantics of MO. As such, the semantic 

taxonomy structure of MO and the notion of “equal”, “sub-component”, and “left-hand 

side” of MOs are used for analysis. They represented the formulation of MO denotations 

that link the MOs to other MOs or words. 

Denotation Extraction 

Denotation refers to anything that has semantic equivalence with an MO. A 

denotation of MO can be a textual declaration expressed in words, or a quantitative 
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description expressed by another MO. Denotation is critical for detecting the relations 

between MOs and linking an MO to their related words. The three concepts for MO 

denotation and MO relation extraction are listed as follows: 

• 𝑥𝑖 = 𝑥𝑗 if the two MOs are the same.  

• 𝑥𝑖 is a subexpression of 𝑥𝑗, denoted as 𝑥𝑖 ∈ 𝑥𝑗 . 

• The left-hand side (LHS) and right-hand side (RHS) function are used to 

represent MO types such as relation expression and function declaration. For 

example, 𝐿𝐻𝑆(𝑥𝑖) = 𝑥𝑗. 

The set of MO denotations 𝑌𝑋 is constructed so that each element represents an 

MO 𝑥 that contains two subexpressions LHS(𝑥) and RHS(𝑥) with an equal relation “=” 

in which the denotation is expressed as 〈LHS(𝑥), RHS(𝑥)〉. Besides MO denotations, every 

MO 𝑥𝑖 in a 〈𝑋, 𝑌〉 set may be optionally associated with a sequence of words 𝑊𝑖 = {𝑤𝑖
𝑗
} 

as the textual declaration. The QuQn map adopted and implemented the rule-based model 

in [57] to extract the textual declaration of 〈𝑥, 𝑊〉 to form the set of word denotations 𝑌𝑊 

for a document. 

Skeleton Graph Construction and Pruning 

The 〈𝑋, 𝑌〉 set represents significant reduction of information from its original 

document. It is called the QuQn map when represented in a graph format. When all 

elements in 〈𝑋, 𝑌〉 are included, the graph can become too large with low-level details as 

well as repetitive occurrences of certain MOs and words. 

A skeleton graph is proposed in QuQn map to improve its readability. It consists 

of MOs as nodes with the optional textual declarations placed alongside as shown in 



 

79 

 

Figure 33. The links between MOs are their dependency relationships. An edge 〈𝑥𝑖 , 𝑥𝑗〉 

means 𝑥𝑖  (or 𝐿𝐻𝑆(𝑥𝑖)) is a sub-expression of 𝑥𝑗  (or 𝑅𝐻𝑆(𝑥𝑗)). The skeleton graph of 

QuQn map is pruned based on two criteria: (1) Keep only the MOs with denotation for 

users to understand the semantics of every MO node; (2) Remove duplicate occurrences 

of an MO. To meet the first criterion, the QuQn map only retain the MO 𝑋𝑦 = {𝑥: 〈𝑥,∗〉 ∈

𝑌𝑋 ∪ 𝑌𝑊}. To meet the second criterion, we only keep those MOs once at their first 

occurrence. For those MOs with multiple equivalent denotations, we only keep the first 

appeared denotation. After the above process, a dependency graph is created as a skeleton 

of the QuQn map. 

Although the pruning conditions have eliminated a good number of nodes, the 

dependency graph is still too large and complex for visualization. Hence, we employed a 

series of post-processing on the graph to reduce its size and complexity. 

• Keep the longest path between any two MO nodes: If there exists two paths 

{ 〈𝑥𝑖 , 𝑥𝑗〉 , 〈𝑥𝑗 , 𝑥𝑘〉 } and { 〈𝑥𝑖 , 𝑥𝑘〉 } from 𝑥𝑖  to 𝑥𝑘 , the shortest path 〈𝑥𝑖, 𝑥𝑘〉  is 

redundant because the longest path already implies that 𝑥𝑖 can reach to 𝑥𝑘 via the 

intermediate node 𝑥𝑗. 

• Keep the largest connected components: remove the local discussions that are not 

connected to the main piece of logic flow. 
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Figure 33: The graph skeleton of QuQn map on arXiv document 1605.02019. 

 

Visualization of the QuQn Map 

Given the graph constructed and reduced, the next task is to visualize the QuQn 

map so that users could quickly identify the essential elements and their details. Following 

the visual program concept proposed by Tufte [89], we use the spatial and color within a 

2D space to make readers quickly identify the dependency relationships among MO nodes. 

Spatially, we group the MO nodes into layers based on the depth of the MO in the 

dependency tree. Since a recursive definition is rarely allowed in scientific elaboration, 

we remove some edges to make the graph acyclic as a tree, in which the large MO node is 

composed of smaller MO nodes. The depth of each tree node is a good indicator of how 
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complex the MO is. Furthermore, grouping the MOs into layers could reduce the 

possibility of crossing edges so that the graph is easier to follow. 

From the aspect of color, we use the same color 𝑐𝑖 for the same MO 𝑥𝑖 across the 

whole filtered graph to help people quickly identify the same MO in different places. The 

color 𝑐𝑖 will also be used as the color of bounding box for 𝑥𝑖 to indicate the first time the 

MO 𝑥𝑖  is presented. Furthermore, the hue contrast of neighbor MOs is maximized to 

enhance the differentiability for easy identification. The key challenge is that we only have 

limited colors, so we use the color wheel concept and select the color that is distant from 

existing color in the angle with smallest standard deviation to enhance the contrast in a 

limited number of color choices as shown in Figure 34. For example, if an MO only has 

one neighbor of the blue-violet color, the MO will be assigned the yellow-orange color to 

maximize the contrast. If an MO is with two neighbor of color red-orange and blue-violet, 

the MO will be assigned the yellow-green color to maximize the total contrast as well as 

minimize the standard deviation of contrast. 

 



 

82 

 

 

  

Figure 34: The graph visualization of QuQn map on arXiv document 1605.02019 

using the color wheel to highlight the components. 

 

The Limitation of QuQn Map 

The construction of QuQn map have largely reduced the complexity of the MO 

dependency graph proposed in [56]. However, the resulting graph is still complicated in 

most cases for user to grasp the technical essence. Also, the denotations of MOs only 

consider MO with limited relations such as equal sign (“=”), which have excluded some 

other possible constraint denotations in the discussion. It is well known in linear 

programming that the same objective function with different constraints or conditions will 

result in different solution sets. Besides, the QuQn map does not serve the purpose of 

modeling the reasoning flows in a scientific paper. The positions of MOs in the contents 
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are lost during the construction processes of the graph. There is no ordering information 

of how the MOs are originally elaborate in QuQn map. Therefore, we proposed a novel 

representation, the MOR graph, to address the above issues.  

Construction of the MOR Graph 

In this section, we introduce the concept of MOR graph to model the reasoning 

flows in scientific papers. The objective is to offer a compact representation to depict 

different granularities of technical details for the MO-based scientific documents. On top 

of the MOR graph is the modularized design so that it could easily be expanded to 

progressively show different levels of information from the coarsest skeleton graph to the 

most detailed overlays on the original documents. It has a two-layer hierarchical data 

structure where the first layer is blocks of self-contained contents known as the RB, and 

the reasoning logic flows between RBs are based upon the MO dependencies as shown in 

Figure 35. The underlying skeleton of the MOR graph contains the MO dependencies 

along with their most related adjacent words similar to the concept of QuQn map. The 

construction of the MOR graph considers all three aspects of graphic design 

(normalization, interrelation, and information overloading) to reduce the complexity of 

the overall structure. We will introduce the segmentation, interrelation, and reduction 

process for generating the MOR graph in the rest of the subsections. 
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Figure 35: A conceptualized structure of reasoning graph for arXiv document 

1605.02019 (red dashed lines denote the blocks and flows). 

 

Segmentation of Reasoning Blocks 

RBs is a set of blocks segmented from the original content that contains a set of 

consecutive sentences with high-density MOs distributed among them. We observed a key 

feature in the local density of MOs that can be used to determine the start and end of the 

RB boundaries. Specifically, the density of MOs around main equations often goes high 

and then progressively drops to a low density of MO when approaching to the end of 

discussion. The boundaries of RB are likely located in those MO-sparse regions, as shown 

in Figure 36. 

The search of the RB boundary will be based on the continuity of the neighboring 

related MOs and frequency of MO within a sliding window. We define a parameter 𝜏 as 

the number of sentences without MOs allowed in a block. The value 𝜏 is considered as a 



 

85 

 

threshold to define the boundaries of RBs as shown in Figure 36. The pseudo code for the 

proposed RB segmentation algorithm is described as follows: 

(1) Given a set of sentences 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} in a document and an integer value 𝜏 

as the threshold of the RB boundaries. We label each sentence 𝑠𝑖 ∈ 𝑆 to 0 (if it is 

a sentence without MO) or 1 (if it is a sentence with MO) to obtain a binary string 

{𝑏1, 𝑏2, … , 𝑏𝑛} where 𝑏𝑖 ∈ {0,1}. 

(2) Iteratively search forward and backward to construct an RB {𝑠𝑖, … , 𝑠𝑗} for 1 ≤ 𝑖 ≤

𝑗 ≤ 𝑛 such that 〈𝑏𝑖−1−𝜏, … , 𝑏𝑖−1〉 = 0⃑⃑ and 〈𝑏𝑗+1, … , 𝑏𝑗+1+𝜏〉 = 0⃑⃑. 

We tested the algorithm on arXiv document 0904.0684 and observed that the 

higher the value 𝜏 is, the less RBs generated as shown in Figure 37(a). We examine the 

number of MO in the first RB and found out that sudden increase appeared when 𝜏 exceeds 

certain value as shown in Figure 37(b). There is no best value for 𝜏. It is subject to change 

depending on how MOs are distributed in the document. That is, one might want to 

consider a lower (higher) 𝜏 if the MOs are densely (sparsely) distributed in the content to 

obtain meaningful segmentations.  

Note that linguistic constraints such as the boundaries of paragraph can also be 

introduced in the segmentation process to obtain better segment points. However, we 

discovered that there is no general solution in the literature for paragraph extraction 

because the performance is highly dependent on the style of document. We conducted 

some preliminary studies and found out that a lot of paragraphs have been detected in 

fragments due to the use of relative spacing introducing ambiguity for extraction (see 

Figure 54 of Appendix C). Therefore, for simplicity, we assume our algorithm in this 



 

86 

 

dissertation does not have the paragraph information for alignment with the 𝜏 -based 

boundaries. 

 

 

Figure 36: The boundary of reasoning blocks (purple dashed line) with a threshold 

of allowing four consecutive sentences without MO. 
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(a) (b) 

Figure 37: The threshold 𝝉 that impacts (a) the number of reasoning blocks created; 

and (b) the number of mathematical objects in the first reasoning block. 

 

Dependency Analysis of Mathematical Objects  

MO dependency is an MO-to-MO relation where one MO is denoted by the other 

MO. The existence of such relation is defined upon the common identifier set of MOs (i.e., 

any named entity in MO such as variable and function name) in which a directed edge 

〈𝑥, 𝑦〉 (𝑥 → 𝑦) is defined as MO 𝑥 (or 𝐿𝐻𝑆(𝑥)) is an identifier set of MO 𝑦. However, a 

challenge for this task lies in the implicit multiplication operation that causes the 

ambiguity of consecutive multiple identifiers (CMI), which has been summarized in [90] 

as one of the MO semantic problems. For example, given an MO “Σ𝑖𝑗” as shown in Figure 

38, the subscript “𝑖𝑗” is a single or separated identifier(s). The CMI problem requires an 

assessment function to detect the collocation [91] between characters in the identifier. Any 

two character are considered collocated if they always appear together side by side in the 

adjacent sense. Previous work in MO dependency analysis [56] did not consider this issue 

in their graph construction, which results in a final graph with a lot of redundant edges. 
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Figure 38: The identifier set of a mathematical object. 

 

To address the challenge of recognizing the CMI, we propose to first decompose 

the MO into a set of identifier strings using a universal list of operators (see Table 10 of 

Appendix D) as delimiters. Some commonly used mathematical terms (see Table 11 of 

Appendix E) are excluded from the set of strings. The assessment functions are then 

applied to each 𝑛–gram identifier string by iteratively assess its 𝑖-gram and (𝑛 − 𝑖)-gram 

substrings to obtain the optimum splitting point 𝑖. The process will recursively assess on 

the two partitions split by 𝑖 until no more new partitions are created. 

Pointwise mutual information (PMI) [92] is a popular measurement of association 

used in the natural language processing (NLP) community to determine the independence 

of any two words [93]. It is very effective in finding the collocation [94] between words. 

We proposed to use the PMI as one assessment function for the CMI problem, which is 

defined as 𝑃𝑀𝐼(𝑥; 𝑦) = log
𝑃𝑟(𝑥,𝑦)

𝑃𝑟(𝑥)𝑃𝑟(𝑦)
 where 𝑃𝑟(𝑠′) is the occurrence rate of substring 𝑠′ 

and the PMI measurement −∞ ≤ 𝑃𝑀𝐼(𝑥; 𝑦) ≤ 𝑚𝑖𝑛(− log 𝑃𝑟(𝑥) , − log 𝑃𝑟(𝑦)) for the 

two substrings resulting in negative if they never occurred together, 0 if they are 
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independence, and positive if they are somewhat co-occurred. Given an identifier string 

𝑠, for any two substrings 𝑠[0: 𝑖] and 𝑠[𝑖 + 1: 𝑛], we calculate the optimum splitting point 

𝑃𝑀𝐼∗ with the maximum PMI score as follows: 

𝑃𝑀𝐼∗(𝑠, 𝑖) = argmax
𝑖

log
𝑃𝑟(𝑠[0: 𝑖], 𝑠[𝑖 + 1: 𝑛])

𝑃𝑟(𝑠[0: 𝑖])𝑃𝑟(𝑠[𝑖 + 1: 𝑛])
 

Besides using the PMI, we also proposed another assessment function for the 

multiple character identifier (MCI) based on the frequency of substring. Given any 𝑛-

character identifier string 𝑠, the MCI is defined as 𝑀𝐶𝐼(𝑥; 𝑦) =
2𝑓(𝑥,𝑦)

𝑓(𝑥)𝑓(𝑦)
 where 𝑓(𝑠′) is the 

frequency of substring 𝑠′ and the measurement result is normalized as 0 ≤ 𝑀𝐶𝐼(𝑥; 𝑦) ≤

1 for 0 representing the two substring are not collocated, and 1 representing they are 

collocated. The optimum splitting point 𝑀𝐶𝐼∗  with the maximum MCI score is then 

calculated as follows: 

𝑀𝐶𝐼∗(𝑠, 𝑖) = argmax
𝑖

2𝑓(𝑠)

𝑓(𝑠[0: 𝑖]) + 𝑓(𝑠[𝑖 + 1: 𝑛])
 

The final decision will be based upon a threshold 𝛿 such that 𝑠 is a consecutive multiple 

identifier if and only if 𝑀𝐶𝐼∗(𝑠, 𝑖) < 𝛿. 

As a result, we conducted a preliminary study on arXiv document 1605.02019 to 

examine the performance of the two assessment functions PMI and MCI, respectively, for 

recognizing the consecutive multiple identifier. The occurrence of each identifier string 

extracted from the MOs are shown in Figure 39, and the experiment results of the 

assessments are listed in Table 7. Both PMI and MCI can successfully identify words like 
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“king”, “queen”, “woman”, “man” as inseparable sets. However, the MCI failed to identify 

“𝑛𝑒𝑔” as a MCI and the PMI failed to identify “𝑗𝑘” and “𝑖𝑗” as two CMIs.  

 

 

Figure 39: The occurrences of identifier sets in arXiv document 1605.02019. 

 

 

Table 7: The assessment score of identifying the consecutive multiple identifiers. 

Mathematical Identifier Set MCI PMI 
𝑘𝑖𝑛𝑔, 𝑞𝑢𝑒𝑒𝑛 

1.000 

+4.868 

𝑤𝑜𝑚𝑎𝑛 +4.174 

𝜆 +3.769 

𝛽 +3.481 

𝛼, 𝜎, Σ +3.076 

𝑚𝑎𝑛 +2.470 

𝑛𝑒𝑔 0.462 +2.565 

𝑗𝑘 0.293 +0.762 

𝑖𝑗 0.222 +0.312 

𝑗𝑛 0.047 -1.173 
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The rest of the process in dependency analysis will be the partial matching of 

identifier set between the MO pair in building the dependency links. Notice that some 

MOs can further decompose their components into left-hand side (LHS) and right-hand 

side (RHS) by a pre-compiled list of relational symbols (see Table 10 of Appendix D). 

The source MO with a LHS should only consider the identifier set in its LHS when doing 

the subset matching of identifiers with any target MO as shown in Figure 40(a). The 

direction of the MO dependency is decided based upon the direction of the matches hit. 

The direction of an MO node 𝑥 pointed to an MO node 𝑦 imply the semantics that 𝑥 or its 

LHS is a subcomponent of 𝑦. A handcrafted example of connecting MOs based on their 

internal identifiers is shown in Figure 40(b). 

 

  
(a) (b) 

Figure 40: The two types of dependencies link based on (a) the left-hand side of MO 

or (b) the whole MO, is a subcomponent of the MO pointed. 

 

After the interrelation analysis of MOs, the formation of reasoning flows can be 

recovered based on the dependency of MOs between RBs. The in-link and out-link will 

decide the direction from one RB to another. No matter how many in-links or out-links 
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are there in an MO, the reasoning flows are constructed based on any dependency link that 

existed in an MO pair, and the directions are aligned with the dependency. The main 

reason why the reasoning flow follows the orientation of the dependency is that technical 

writing tends to first describe the problem formulation and then go into details of problem 

settings, whereas dependencies were built in the opposite direction of the writing flows 

from details to abstraction. Based on the original elaboration flow of the paper, the RBs 

are constructed following the sequence of sentences in the content. However, MO 

dependencies are non-linearly crossed over the content in a paper, suggesting that the 

reasoning flows do not necessarily align with the elaboration flows, and hence MOR graph 

provides the potentials to be applied in document fingerprint. 

Reduction of the MOR Graph 

The size of the original content has been greatly reduced in MOR graph with an 

average of 57.88% from an experiment on 210 arXiv documents. However, the MO 

dependency relationships are still too complex for human to understand. Although the 

QuQn map [33] has attempted to simplify the dependency structure by removing duplicate 

nodes and short-cut links in the pruning process, the resulting graph still suffer from 

spaghetti-like structure when processing papers with dense MOs (see Figure 34). A 

missing opportunity is to consider the MO-to-MO and MO-to-words relations in the 

reduction process. To simplify the already complex dependency relationships between 

MOs in the skeleton of MOR graph, we apply some heuristics on the edge and node 

pruning based on certain reasoning.  
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For the node pruning, we merge the duplicate nodes (i.e., same MOs), and 

eliminate the rooted nodes (i.e., MOs with only out-links) that are neither a constraint nor 

a declaration. Only the main equations and/or their relevant constraints and declarations 

will remain in the RB. For the edge pruning, the dependencies between any MOCs are 

eliminated as a result in a spring graph layout like Figure 40(a) to highlight the subordinate 

relation of the main equations to their constraints. Note that the MO “𝜋 = 𝜃𝜋2 ⋯ 𝜋𝑛−1” 

in Figure 40(a) has various formations of constraints or conditions associated with it, 

making 𝑛 an important local variable that often redefined in the contents for different 

usages. The global variables, however, are expected to be defined consistently in any 

discussion of the whole document. 

After some basic pruning process on the skeleton of MOR graph, we investigate 

certain filtering criteria to highlight main equations along with or without their constraints 

and declarations as the building blocks. The main equation here is defined as the MO with 

equal sign that covers most of the associated MOs in the local content. Some semi-

automatic experiments have been conducted to study the properties of main equations as 

shown in Figure 41. We observed from the preliminary results that main equations: (1) are 

one-time definitions of their explicit forms and will not be repeatedly mentioned in the 

content; (2) are often appeared as the displayed mode (i.e., in single line space and/or 

denoted by equation number); (3) are associated with various MOs based on the common 

identifiers; (4) are relatively large and contains a lot of identifiers. We further examined 

the above four properties of all equations on 50 documents randomly sampled from the 

KDD-2003 dataset [38]. The results of all four histograms present a long tail distribution 
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as shown in Figure 55 and Figure 56 of Appendix F, suggesting that most equations are 

(1) mostly mentioned once in the content; (2) the only MO in a sentence; (3) associated 

with a few MOs in the content; (4) of shorter length in their presentations. The 

contradiction of the third and fourth criteria to the assumption of main equations are due 

to the existence of short equations that are used for problem settings in the content. For 

example, the problem setting 𝑐 = ~3 × 108 𝑚/𝑠  (speed of light) for the mass-energy 

equivalence formula 𝐸 = 𝑚𝑐2.  

 

 

Figure 41: Histograms of the four properties of main equation from arXiv document 

1605.02019. 
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To define the importance of an equation, we first need to aggregate the results of 

the four criteria into one score. The weights can later be used to reveal or hide an MO node 

during the visualization process based on its importance with respect to other MO nodes. 

If we directly use the four criteria as thresholds to filter the MOs, a lot of possibilities will 

appear that results in a large-scale study. Hence, we proposed to use the z-score 

normalization to reduce the four measurements of the criteria down to one score. The four 

metrics are defined as 𝜃 ∈ {𝑓𝑟𝑒𝑞, 𝑑𝑒𝑛𝑠, 𝑑𝑒𝑔𝑟, 𝑙𝑒𝑛𝑔} where (1) 𝑓𝑟𝑒𝑞: the occurrence of 

MO throughout the whole document; (2) 𝑑𝑒𝑛𝑠: the number of MO in the located sentence; 

(3) 𝑑𝑒𝑔𝑟 : the number of in-links in an MO; (4) 𝑙𝑒𝑛𝑔 : the number of mathematical 

identifiers in an MO. The z-score function of an MO 𝑥 is defined as 𝑚𝜃(𝑥) =
𝑥−𝜇

𝜎
 where 

𝑥 is the measurement of metric 𝜃, 𝜇 is the mean of the population, and 𝜎 is the standard 

deviation. The final score for the MO 𝑥 among these four metrics is then aggregated as 

𝑠𝑐𝑜𝑟𝑒(𝑥) = −𝑚𝑓𝑟𝑒𝑞(𝑥) − 𝑚𝑑𝑒𝑛𝑠(𝑥) + 𝑚𝑑𝑒𝑔𝑟(𝑥) + 𝑚𝑙𝑒𝑛𝑔(𝑥) . We tested the scoring 

function on arXiv document 1605.02019, and the experiment results in Table 8 show that 

most of the short equations used for problem settings tend to have lower scores and long 

equations used for problem formulations tend to have higher score from the assessments.    
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Table 8: A primitive evaluation of equations rank on arXiv document 1605.02019. 

Mathematical Equations score 
freq 

(−) 

dens 

(−) 

degr 

(+) 

leng 

(+) 

𝑑𝑗 = 𝑝𝑗0 ∙ 𝑡0 + 𝑝𝑗1 ∙ 𝑡1 + ⋯ + 𝑝𝑗𝑘 ∙ 𝑡𝑘 + ⋯ +

𝑝𝑗𝑛 ∙ 𝑡𝑛  
8.98 1 1 8 16 

ℒ𝑖𝑗
𝑛𝑒𝑔

= log 𝜎(𝑐𝑗 ∙ �⃗⃑⃑�𝑖) + ∑ log 𝜎(−𝑐𝑗 ∙ �⃗⃑⃑�𝑙)𝑛
𝑙=0   8.11 1 1 6 16 

ℒ𝑑 = 𝜆 ∑ (𝛼 − 1) log 𝑝𝑗𝑘𝑗𝑘   7.57 1 1 11 8 

ℒ = ℒ𝑑 + ∑ ℒ𝑖𝑗
𝑛𝑒𝑔

𝑖𝑗   5.38 1 1 6 8 

𝛼 = 𝑛−1  3.28 1 2 8 2 

∑ 𝑝𝑗𝑘𝑘 = 1  3.15 1 1 4 4 

𝑐𝑗 = �⃗⃑⃑�𝑗 + 𝑑𝑗  2.95 1 1 2 6 

𝑘𝑖𝑛𝑔 − 𝑚𝑎𝑛 + 𝑤𝑜𝑚𝑎𝑛 = 𝑞𝑢𝑒𝑒𝑛  1.40 1 1 0 4 

𝜆 = 200  0.37 1 1 0 1 

𝛼 = 1  0.31 1 2 2 1 

𝛽 = 0.75  -0.56 1 2 0 1 

𝑘 = 0 … 19  -1.06 1 3 1 1 

𝑛 = 15  -1.06 1 3 1 1 

𝑗 = 0 … 11312  -1.06 1 3 1 1 

𝑛 = 20  -1.18 2 2 1 1 

 

Visualization of the MOR Graph 

We have developed a prototype tool for visualizing the MOR graphs, which is able 

to support interactive browsing of the technical contents at different granularities of detail. 

The result of the visualization is tested on the arXiv paper same as the one used for QuQn 

map in Figure 34. The presentation of MOR graph begins with a coarse level of 

abstractions, and the user can progressively expand the details if they are interested in 

certain technical discussions. The first layer of the MOR graph is the RBs in the document. 

Each RB can expand its main equations and the associated problem settings can be further 

expanded from those main equations. The layout design follows a multiple level star graph 



 

97 

 

to manifest the subordinating relationships among different levels of technical details. 

Compared with the QuQn map visualization in Figure 34, the presentation of the MOR 

graph in Figure 42 has largely decreased the number of links and nodes revealed to the 

user. By the use of MOR graph, the user can learn the technical details via a progressive 

way. 

 

 

Figure 42: The visualization of reasoning graph for arXiv document 1605.02019. 

 

Applications of the MOR Graph 

The existing cross-paper analyses for mapping a knowledge domain are mostly 

based on co-occurrence analysis, including the co-author networking [95], co-citation 

clustering [96], and co-words modeling [97] using latent semantic analysis (LSA) [98] and 

latent Dirichlet allocation (LDA) [99] methods. Both the author-based and citation-based 

features are considered very coarse-level analysis which an author might work on various 

topics and the citations could play various roles such as background, usage, or comparison 



 

98 

 

[100]. The word-based analysis techniques using bag-of-words are relatively effective for 

indexing and building cross-links among papers. However, it is very difficult to apply 

them for deep content analysis of technical essence, most of which are carried by the MO-

based information. Some MO-based works have used the properties of MO presentations 

[101], [102], [103], [104], [105], and MO citations [106], [107], for indexing specific 

formula in a paper. However, since an MO can carry multiple physical meanings in the 

same presentation [108], they failed to incorporate the MO semantics in their design of 

MIR systems. Recently, several research [54], [55], [56] have applied the mixed used of 

words and MOs for a better performance of MIR task, which is based on the fact that many 

MOs are bonded to words in scientific documents. Although the above existing works are 

very effective in MO indexing, they did not consider the importance of MO declarations 

(MODs) within a document with respect to a corpus of documents. Also, the reasoning 

structures of how these MOs are elaborated with respect to their localities (RBs) and 

constraints (MOCs) have not yet been considered in the study of cross-paper analysis. 

The cross-paper analysis in this section is confined into three use cases: (1) a 

manually labeled case for the detail analysis of two papers based on the MOD and MOC 

through elaboration flows; (2) the unsupervised clustering of MO-based technical dialects 

(“jargoning”, “terminology”) across papers in various knowledge domains; (3) the 

structural-level differential analysis of the MOR graphs in a set of documents. For both 

aspects, the core research topic is to define the similarity metrics between papers, where 

each paper will be abstracted as an MOR graph that consists of RBs, MOs, and MO-

dependency links. The goal is to utilize the MOR graph and its low-level analysis engines 
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to offer new perspectives and foundational solutions to attack more sophisticated problems 

like plagiarism detection and writing style modeling, etc. 

The Cross-paper Analysis Approach 

To model the elaboration flow and enable the cross-paper similarity analysis of the 

MOR graphs, we propose to develop the similarity metrics that consists of (1) the LSA 

[98] model to reduce the high dimensionality of feature terms in science, technology, 

engineering and mathematics (STEM) documents and (2) the string edit distance [109] for 

assessing the structural differences of the graph abstractions. The analysis aims to answer 

some of the cross-paper analysis questions as listed below:  

• “What are the primary model formulations of MOs in the clustered papers?” 

• “Discovery of the common technical essences of papers in a field.” 

• “Scoring of the technical similarity/difference between two papers.” 

The first metric starts with constructing a term-document matrix by calculating the 

TF-IDF score [110], [111] of each term with respect to each document in the corpus. The 

frequency of each term (TF) extracted from the texts is re-weighted by its inverse 

document frequency (IDF) value. Given a document set 𝐷, the TF-IDF score of each term 

𝑡 extracted from the document 𝑑 ∈ 𝐷 is calculated as follows:  

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ∙ 𝑖𝑑𝑓(𝑡, 𝐷) 

where  𝑡𝑓(𝑡, 𝑑) = 𝑓𝑡,𝑑 and 𝑖𝑑𝑓(𝑡, 𝐷) = log
|𝐷|

|𝑑∈𝐷:𝑡∈𝑑|
 . The semantics behind the TF-IDF 

model is that the most representative term for indexing a document is the term that 

frequently appeared in that document but rarely appeared in other documents in the related 

field. To avoid the noise from the non-informative words, the model will preprocess the 
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texts using NLP tool to get rid of the stop words, and only consider NP as a term. The 

term-document matrix will reduce its dimensionality via singular value decomposition 

(SVD) technique to obtain a lower dimension of similarity matrix with each feature as a 

linear combination of terms. 

The second metric uses the string edit distance to construct a similarity matrix that 

specify the differences of any two documents. Given any two strings 𝑠1 and 𝑠2, the string 

edit distance can be calculated as follows: 

𝐸𝐷(𝑠1, 𝑠2) = min
(𝑎1,…,𝑎𝑛)

∑ 𝑐(𝑎𝑖)

𝑛

𝑖=1

 

where min(|𝑠1|, |𝑠2|) ≤ 𝑛 ≤ max(|𝑠1|, |𝑠2|)  and 𝑐(𝑎) ≥ 0  is the cost of each edit 

operations 𝑎 (insertion, deletion, and substitution).  

Use Case 1: Detail Analysis based on Technical Elements 

In this use case, we conduct a simple experiment as shown in Figure 43 by 

manually annotating two paragraphs from two papers [35] and [112] based on their 

declarations and constraints to analyze their technical similarities. As a result, the two 

paragraphs have the same notations and elaboration structures, and the overall content of 

paper [112] seems to be an extension version of paper [35]. From the analysis of the 

declarations and constraints, we found two conflicts in the declarations and constraints of 

notation ‘S’ and ‘𝑇𝐶 ’, respectively. However, the declarations of ‘𝑆’: “9-based digit 

stream” and “hexadecimal digit stream”, refers to the same semantics. In fact, the only 

difference between the two paragraphs is the constraint of the table ‘𝑇𝐶’, which is 3 × 3 
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and 4 × 4, respectively. The case study results suggest that the technical elements of the 

RB can be used for differential analysis of technical contents.  

 

 

Figure 43: Case study on cross paper analysis for one of the paragraphs in paper [35] 

and [112]. 

 

Use Case 2: Text-based Document Clustering 

  The document clustering is conduct using the MODs and NPs from the MWM 

sentences and the non-MWM sentences, respectively. The terms appeared in the MWM 

sentences and/or non-MWM sentences imply their interactions with MOs in the technical 

discourse. We construct a dataset from arXiv.org with 210 documents uniformly 

distributed in 7 research fields (30 documents per field). The research fields we selected 

include Computation and Language (F1), Graph Theory (F2), High Energy Physics (F3), 

Machine Learning (F4), Quantum Cryptography (F5), Steganography (F6), and 
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Theoretical Economics (F7). The extracted word-based terms are restricted to three-gram 

terms (unigram, bigram, and trigram). Through the process of LSA, we fit the resulting 

feature matrix into k-mean clustering [113] with 𝑘 set to 7. The clustering results are 

shown in Figure 44 and Figure 45 for texts in MWM sentences and non-MWM sentences, 

respectively. The top 6 human understandable terms based on the TF-IDF scores are 

displayed to represent each cluster. A bipartite graph is generated to map the clusters to 

the knowledge domains and visualized it using the manifold techniques. 
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Figure 44: The bipartite graph for arXiv research fields and mathematical text 

clustering. 
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Figure 45: The bipartite graph for arXiv research fields and pure text clustering. 

 

The results based on MOD has 24 links in the field mapping, which is lower than 

using non-MWM texts with 30 links. Among these links, three of the seven clusters (M1, 

M6, and M7) based on MOD have overlapped with more than four fields, which is fewer 

than the clusters using non-MWM texts that have four of the seven clusters overlapped 

with more than four fields. This indicates that MOD terms has a better performance in 
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distinguishing different fields of research. The qualitative words tend to have higher 

overlapping in STEM field than quantitative words due to the ambiguity in their semantics. 

Some research fields like F5 (Quantum Cryptography) and F6 (Steganography) are 

sufficient to use non-technical terms such as “protocol”, “security”, “attack”, and “key” 

(from the clusters P5, P6) as shown in Figure 45. This is because most of the research 

from Quantum Cryptography tend to be protocol designs which are in step-by-step based 

descriptions like pseudo code with very few MOs defined in the content. However, 

research fields like F2 (Graph Theory) require the terms to be highly associated with MOs 

to locate the relevant research. Terms like “vertex”, “matrix”, and “edge” (from the 

clusters M2, M3, and M4) in Figure 44 are often used to formulate a graph in MOs, and 

“cycle” and “general position” are classic research problems in graph theory. 
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Figure 46: The bipartite graph for pure text clustering and mathematical text 

clustering.  

 

The mutual relation based on the clustering result of MWM and non-MWM texts 

are also studied. As the result shown in Figure 44, we discovered that three of the clusters 

(P1, P2 and P6) at the left-hand side based on the NPs in non-MWM texts are terms that 

are used in any document cluster at the right-hand side separated by MOD in MWM texts. 

Most of the clusters at the right-hand side except M6 tend to single out at least one or more 

clusters at the left-hand side, suggesting that text based on MOD tend to have more 

distinguishing power to draw the boundaries of the documents clustered by terms that are 
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not closely interact with MO. On the contrary, these terms that are extracted from the non-

MWM texts tend to have a hard time locating documents that are clustered by MODs. This 

finding shows preliminary evidence that terms used in MWM texts for quantitative 

reasoning tend to have potential strength in delineating documents based on terms that 

have no interactions with MO. 

Use Case 3: Structure-level Differential Analysis 

To compare the structural differences between any two MOR graphs, a 

transformation process is required to convert the 2-dimensional graph into a comparable 

1-dimensional sequence. In this case study, we investigate two encoding strategies, the 

Prüfer sequence [114] and the MOC-based degree sequence, respectively, to normalize 

the structure of the MOR graph and its underlying skeleton.  

For the first strategy, the RBs of the MOR graph are taken as nodes, and the flows 

between RBs are taken as edges of the input graph. However, the Prüfer sequence required 

the input structure to be an acyclic labeled tree for transformation. Fortunately, RBs are 

labeled based upon the ordering of the original content, so the only issue we need to 

consider is the cycle that exists in the MOR graph. To address the problem, we adopt the 

breadth-first search (BFS) on the MOR graph to obtain its maximum spanning tree. The 

process of converting an MOR graph into a unique Prüfer sequence is described in Figure 

47. The encoding of the sequence is based upon the order of label to iteratively search for 

the root node with minimal label to remove and encode the sequence with the label of the 

adjacent nodes. A Prüfer code has a length of 𝑛 − 2 for any 𝑛 nodes labeled tree. After 
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the encoding of Prüfer sequence, we calculated the string edit distance between the two 

compared sequences to obtain the similarity between any two MOR graphs.  

 

 

Figure 47: The process of serializing the MOR graph into Prüfer sequence based on 

its spanning tree. 

 

Similar to the first strategy, we apply another encoding mechanism, the MOC-

based degree sequence, on the MO dependency of the MOR graph. The MO is labeled 

based on its first appearance in an RB, so we can follow the order of the labels to calculate 

the number of MOCs each MO is associated with as the MOC-based degree. The process 

is depicted in Figure 48, and the resulting sequence is used as the structural information 

of the MO dependency graph for similarity analysis using the string edit distance. 
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Figure 48: The process of serializing the dependency graph of mathematical objects 

into degree sequence based on the number of associated mathematical constraints. 

 

An experiment has been carried on sorting and classifying the structures of the 

MOR graph based on their differences in the 1-dimnetional encoder. We tested on the pilot 

dataset with 30 arXiv documents from three research fields: Computation and Language 

(L), Graph Theory (G) and Theoretical Economics (E). The assumption of this experiment 

design is that different field experts follow certain common practices in their domains to 

formulate the research problems and deliver their solutions. We expected our proposed 

MOR graph model to capture the essence of how they construct the technical contents 

based on their domain of writing style. We transformed each document into an MOR graph 

and then calculated its Prüfer sequence and MOC-based degree sequence to construct the 

similarity matrix between document pair. The results of similarity matrices for the two 

types of sequences on the arXiv pilot dataset are shown in Figure 49. From the similarity 

matrix, we found that the documents in the research field L has no significant differences 
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between documents. We manually examine some of these documents and found out that 

most of their formulation has less dependencies and no constraints annotated to the MO 

node. To visualize the result, we applied an unsupervised hierarchical clustering on the 

similarity matrix using the Ward algorithm [115] to hierarchically group the instances 

based on their structural similarities. The final hierarchical clustering results are as shown 

in Figure 50. We observed that the documents are roughly group into three knowledge 

domains that nearly consistent to the three research fields we labeled in our pilot dataset. 

The results show that the clustering based on the structures of the MOR graph has a perfect 

clustering in the two research fields G and L, with a small miss rate of 16.67% in field E 

documents. On the other hand, the clustering based on the dependency structure of MOC 

has shown that the two research fields G and E both have 30% miss rate in their clusters. 

The results suggest that the structure of the MOR graph carry more significant insights to 

cluster the documents based on research fields. However, both approaches have 

demonstrated a first-hand evidence that both MOC and RB carry some useful insights that 

can be considered as a type of document fingerprints to differentiate scientific documents 

in different knowledge domains. 
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(a) 

 

(b) 

Figure 49: Similarity matrices of documents in three research fields (‘L’, ‘G’, ‘E’) 

based on the structural differences of (a) dependency graph and (b) reasoning graph 

of mathematical objects. 
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(a) 

 

(b) 

Figure 50: Dendrograms of document clustering results in three research fields (‘L’, 

‘G’, ‘E’) based on the structural differences of (a) dependency graph and (b) 

reasoning graph of mathematical objects. 
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On the other hand, we applied the document clustering process as in Case 2 on this 

small dataset to examine the performance of using the word-based terms from the MWM 

sentences and the non-MWM sentences, respectively, instead of the reasoning structure of 

the contents. The bipartite relations between the three research fields (L, G, E) of the 

dataset and the three clusters using the MODs and NPs from the MWM sentences and the 

non-MWM sentences are shown in Figure 51 and Figure 52, respectively. The top 6 terms 

within trigram are used to represent each cluster. As a result, only the cluster M3 at the 

right-hand side in Figure 51 covers 17% of documents that can be precisely classified into 

the field G. The rest of the overlaps are either multiple-to-one or one-to-multiple relations 

for both clustering results in Figure 51 and Figure 52. From the clustering results, we 

found that the MO dependencies and the word-based terms is less distinguishable than the 

structural-level abstractions extracted based on human writing practice. 

 

 

Figure 51: The bipartite graph for research fields and mathematical text clustering. 
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Figure 52: The bipartite graph for research fields and pure text clustering. 

 

Summary  

 This chapter studies the collective processes of segmentation, interrelation, and 

reduction for the technical content abstraction of scientific documents. An MOR graph is 

proposed as a hierarchical data structure consisting of RBs and dependencies of MOs to 

shape the reasoning flows of the content. We have proposed to use the density of MOs 

distributed over sentences to set the boundaries of RBs. The center of an RB is a few large 

main equations associated with some smaller MOs and words. The identification of the 

main equations in RB are based on the four criteria: (1) the density of MO in the sentence; 

(2) the complexity of the equation presentation; (3) the frequency of equation in the 

content; (4) the degree of MOs denoting the equation. For the final product of the MOR 

graph, we conducted three case studies in cross-paper analysis based on a pilot dataset 

with 210 documents in 7 fields crawled from the arXiv.org. The results have shown that 

the proposed MOR graphical model is useful in capturing the technical semantics and the 

structural representation of the reasoning flows of documents from different research 

fields. 
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CHAPTER VI  

CONCLUSIONS 

 

This dissertation investigated and developed a mathematical object (MO) based 

analytical framework through a series of technical content transformations including MO 

constraint (MOC) classification, MO declaration (MOD) extraction, and MO reasoning 

(MOR) graph abstraction, to support modeling of reasoning flows in scientific 

publications. The proposed underlying system is design for a large-scale deep content 

analysis based on the idea of reasoning flows given the logical order of inductive and 

deductive process for reader to conquer the technical substance in a bottom up manner. 

We defined the notion of reasoning blocks (RB) as a self-contained technical discussion 

consisting of main equations as the problem formulation and their problem settings (i.e., 

the MOC) and physical semantics (i.e., the MOD) as the technical substances to assist 

understanding of the technical essence. The technical contributions of this work are 

summarized as follows.  

First, we started with establishing an automated predictive model to identify the 

MOC expressions used for describing the settings of a problem formulation. Existing 

technologies are limited to handcrafted ad hoc rules for identifications of the constraint 

statements. The proposed model is based on the naïve Bayesian approach to consider 

feature distributions of mathematical symbols and contextual attached words in building 

the inference engine. It is scalable to allow new data arrival due to the assumption of 

features’ conditional independence. The prediction results have achieved an 81% F1 score 
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on the Elsevier dataset OA-STM Corpus, and we have discovered that mathematical 

symbols carry stronger indicators than words in determining whether an MO is a constraint 

expression. 

Second, we proposed a predictive framework for finding the MOD pairs between 

MOs and words based on spatial, syntactic, and semantic information of the intermediate 

tokens which connect the two. We have addressed three critical issues for the problem: (1) 

a POS tagger to handle the syntactic parsing of sentences with mixed use of words and 

MOs (MWM); (2) a higher level constituent parsing built upon the MWM tagger to locate 

possible groups of words for MOD; (3) predictive mapping of the MOs to their MOD 

candidates in the sentence. The final products include a customized mathematical 

language processing toolkit, a shallow parser for MOD candidates, and an ensemble of 

classifiers to finalize the prediction of MOD. We have achieved a 75% F1 score on short 

declarations and a 71% F1 score on full declarations from the existing dataset NTCIR-10. 

Finally, we created a novel abstraction, the MOR graph, to highlight the technical 

essence of a scientific paper. The core of the structure is the RBs used to encapsulate the 

self-contained MO-based technical discussions. RB contains the main equations which 

highlight the objective of the discussion. The MOD annotated the meaning of the internal 

components of the main equation, and the MOC are associated with the main equations 

based on MO dependency analysis. We have observed four criteria for main equations 

including: (1) they present as stand-alone function in a sentence; (2) they are relatively 

complex and abstract in their presentations; (3) they are not repeatedly mentioned in the 

content; (4) they are associated with a lot of MOs to express the depth of the problem. To 
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extract main equations from MOs, we defined a z-score normalization method on 

measurements of the above four criteria of MO. Preliminary results have shown that the 

normalization can successfully put main equations in a higher rank compared to other 

equations. For MO dependency analysis, we have addressed the open problem of multiple-

character identifier in finding the common identifier set among MO pairs. An assessment 

function based on the frequency of collocation is proposed to effectively resolve the 

problem. The MOR graph is designed as a scalable structure to reduce the complexity of 

the visualization, which allows progressive revelation of technical details customized by 

different perspectives of technical importance. We have conducted case studies on 

properties of the MOR graph including: (1) document clustering based on MODs and (2) 

structure-level differential analysis based on reasoning flows and MO dependencies in the 

paper. Results have shown the potential usefulness of applying the MOR graph in cross-

paper analysis. Scientific documents can be successfully classified based on the MODs 

and writing style as modeled by the MOR graph. 

For future work, the current datasets used for training the MOC and MOD models 

are too small, scattered, and error prone. Prediction errors can further propagate and affect 

performance of the MOR graph. To validate the representativeness of performance results 

of MOC and MOD, we plan to collaborate with a team to develop a user-friendly web 

annotation system that collects large-scale ground truths via crowdsourcing. This platform 

will be the basis to link between user input space and the existing models for MOC and 

MOD, so that real-time feedback will be provided to help refining current solution models 

to a convergence point. A comparative study will be carried out between annotations with 
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or without real-time feedback. The measurement includes the number of steps as well as 

correctness of the annotation. The prototype system is still under development with basic 

PDF rendering and annotation ability for MOC and MOD labeling including the database 

design. User’s feedback will later be incorporated into the training and inference loop. 

Last but not least, we will continue exploring the potential features of the MOR graph to 

formulate useful document fingerprints for cross-paper analysis. 
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APPENDIX A 

PART-OF-SPEECH (POS) TAGS 

 

Table 9: The English Penn Treebank POS tags [116] 

Tag Description Tag Description 
$ Dollar NNS Noun, plural 

: Colon NNP Proper noun, singular 

, Comma NNPS Proper noun, plural 

. Period PDT Predeterminer 

“  ‘ Left quote POS Possessive ending 

”  ‘ Right quote PRP Personal pronoun 

-LRB- Left bracket PRP$ Possessive pronoun 

-RRB- Right bracket RB Adverb 

ADD Email RBR Adverb, comparative 

AFX Affix RBS Adverb, superlative 

CC Coordinating conjunction  RP Particle 

CD Cardinal number SYM Symbol 

DT Determiner TO To 

EX Existential there UH Interjection 

FW Foreign word VB Verb, base form 

GW Go with VBD Verb, past tense 

HYPH Hyphen VBG 
Verb, gerund or present 

participle 

IN 
Preposition or subordinate 

conjunction 
VBN Verb, past participle 

JJ Adjective VBP 
Verb, non-3rd person 

singular present 

JJR Adjective, comparative VBZ 
Verb, 3rd person singular 

present 

JJS Adjective, superlative WDT Wh-determiner 

LS List item marker WP Wh-pronoun 

MD Modal WP$ Wh-pronoun, possessive 

NFP Superfluous punctuation WRB Wh-adverb 
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APPENDIX B 

THE DATA STRUCTURE OF MATHEMATICAL SEMANTICS 
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APPENDIX C 

A CASE STUDY OF PARAGRAPH EXTRACTION 

 

 

Figure 54: The preliminary results of paragraph extraction based on the content 

layout (in green rectangles) 
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APPENDIX D 

SOME COMMON LATEX CODES 

 

Table 10: A list of reserved words in LaTeX for different types of mathematical 

symbols 

Category Syntax 
Display Styles "\\displaystyle", "\\text", "\\mathcal", "\\textup" 

Greek Letters 

"\\alpha", "\\theta", "\\eta", "\\tau", "\\beta", "\\vartheta", 

"\\pi", "\\upsilon", "\\gamma", "\\varpi", "\\phi", "\\xi", 

"\\delta", "\\kappa", "\\rho", "\\varphi", "\\epsilon", 

"\\lambda", "\\varrho", "\\chi", "\\varepsilon", "\\mu", 

"\\sigma", "\\psi", "\\zeta", "\\nu", \\varsigma", "\\omega", 

"\\Gamma", "\\Lambda", "\\Sigma", "\\Psi", "\\Delta", 

"\\Xi", "\\Upsilon", "\\Omega", "\\Theta", "\\Pi", "\\Phi", 

"\\chi", "o" 

Relational Symbols 

"\\leq", "\\geq", "\\equiv",  "\\models", "\\le", "\\ge", 

"\\prec",  "\\succ", "\\sim", "\\perp", "\\preceq", 

"\\succeq", "\\simeq", "\\mid", "\\ll", "\\gg", "\\asymp", 

"\\parallel", "\\subset", "\\supset", "\\approx", "\bowtie", 

"\\subseteq",   "\\supseteq", "\\cong", "\\Join", 

"\\sqsubset",   "\\sqsupset",   "\\neq", "\\sqsubseteq", 

"\\sqsupseteq", "\\doteq", "\\frown", "\\in", "\\ni", 

"\\propto", "=", "\\vdash", "\\dashv", "<", ">" 

Big Operators 

"\\sum", "\\bigcap", "\\bigodot", "\\prod", "\\bigcup", 

"\\bigotimes", "\\coprod", "\\bigsqcup", "\\bigoplus", 

"\\int", "\\bigvee", "\\biguplus", "\\oint", "\\bigwedge" 
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APPENDIX E 

SOME COMMON MATHEMATICAL TERMS 

 

Table 11: A list of mathematical terms used in different mathematical fields 

Mathematical Fields Mathematical Terms 
Algebra "det", "tr", "diag", "rank" 

Arithmetic "exp", "ln", "log", "remainder", "quotient" 

Complex Number "real", "real-part", "imaginary" 

Full Name Conventions 

"absolute value", "cosine", "sine", "secant", "ker", 

"kernel", "tangent", "inverse-sine", "maximum", 

"minimum", "exponential", "hyperbolic-tangent", 

"vector", "bra", "ket", 

Functional Words 

"domain", "Id", "range", "image", 

"domainofapplication", "left_compose", 

"left_inverse", "right_inverse", "apply_to_list", 

"kernel", "right_compose", "Laplacian", "curl" 

Hyperbolic Function "sinh", "cosh", "tanh", "coth", "sech", "csch" 

Inverse Function 

"arccos", "arccosh", "arccot", "arccoth", "arccsc",  

"arccsch", "arcsec", "arcsech", "arcsin", "arcsinh", 

"arctan", "arctanh" 

Logic "nand", "xor", "xnor", "nor" 

Number "ceil", "floor", "round", "trunc", 

Number Theory "round", "gcd", "lcm",  "mod" 

Probability "logarithm", "Pr", "degree", "argument" 

Proposition 
"if", "iff", "for", "otherwise", "w.r.t", "s.t.", "i.e.", 

"e.g." 

Set "size", "make_list", 

Statistics 

"mean", "median", "mode", "std", "sdev", 

"variance", "moment", "argmin", "argmax", "min", 

"max", "lim", "arg", "deg", "dim", "Harr", "Jac", 

"sgn", "sigmoid", 

Trigonometric Function "sin", "cos", "tan", "cot", "sec", "csc" 
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APPENDIX F 

HISTOGRAMS OF MATHEMATICAL OBJECT PROPERTIES 

 

 

 

Figure 55: The histograms of the frequency of MOs and the MO density sampled 

from 50 documents of the KDD Cup 2003 dataset  
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Figure 56: The histograms of the number of associated MOs and the MO length 

sampled from 50 documents of the KDD Cup 2003 dataset 

 

 


