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ABSTRACT

This dissertation contains three essays which examine network effect study in econometrics and

its applications. In the first essay, I study two research questions: how underwriter network affects

firm network through IPO process and how firm network affects issuer post-IPO stock market per-

formance. To address the two research questions, I construct firm and underwriter network based

on sharing the same institutional shareholders and cooperating in the same syndicate, respectively.

The networks are measured by network centrality measures from social network analysis (SNA):

degree, eigenvector, closeness and betweenness. I then adopt regression models with these cen-

trality measures. Empirical results indicate that an issuer is significantly more central in its public

firm network if this issuer is led by a bookrunner through IPO process that is more central in its

underwriter network. The effect of firm network on issuer post-IPO market performance is signifi-

cant. An issuer with higher network centrality will achieve higher holding period return and higher

monthly average trading volume in the first post-IPO year, while an issuer with higher eigenvector

centrality has lower holding period return in the third post-IPO year. To analyze the source of un-

derwriter network effect on firm performance, I run a specification by adding underwriter network

centralities along with firm network centralities to analyze the firm post-IPO market performance. I

also find that the effect of underwriter network on firm performance that is documented in literature

can be mainly attributed to the effect of underwriter network on firm network.

In the second essay, we study identification and estimation of peer effects in observed networks

where the problem of mismeasured links arises. In applied work, researchers generally construct

networks that contain mismeasured links because of the data they use or the method of construction

they adopt. Failing to deal with these mismeasured links, that using the observed networks as the

true networks of interest, can result in biased estimates of peer effects parameters. Our paper

provides sufficient conditions to identify peer effects in a generalized linear-in-mean model in

which networks of interest contain mismeasured links. With the help of repeated observations of

networks, we can identify peer effects in a generalized method-of-moments(GMM) model through
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an observed conditional moment model, instead of knowing the latent network structures. Based

on the identification strategy, we propose a three-stage semiparametric estimator and apply our

method to analyze peer effects among firms on their financial policies. Empirical results indicate

that the peer effect is significantly positive and it becomes insignificant when mismeasured links

are not addressed. Empirically studying firm networks with mismeasured links provides us an in-

depth look on the biased estimates of peer effects if mismeasured links are not properly taken care

of.

In the third essay, we conduct a reduced-form analysis of first-price sealed-bid auction with

affiliated private values under a network perspective. In recent literature, researchers generally

adopt symmetric dependency among bidder’s private values through affiliation. Failing to take

the embedded network structure of those bidders into consideration, that assuming the dependent

structures of every pair of bidders be the same, can result in biased estimates in dependency pa-

rameters. Our paper provides some empirical evidence on the dependency of private values among

bidders based on their linked status and proposes a structural model for estimation. The primary

data we use are collected from the detailed bid summary files provided by the California Depart-

ment of Transportation (Caltrans). We construct contractor networks based on if two contractors

share a same subcontractor in one project. In the end, reduced-form results indicate that being

linked has a significantly negative effect on the difference of bid amount between two contractors

(bidders). In other words, linked contractors tend to submit close bid prices.
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1 INTRODUCTION

Network effect has been widely studied. Researchers are interested in how network structure

may affect network outcomes. Network structure and network content are important factors for

various aspects of network outcomes (e.g. see Burt (2000), Cohen and Frazzini (2008)). In this

dissertation, we studied econometric methods under the topic of network effects and apply our

method to different empirical works. There are three essays in this dissertation.

In the first essay, the objective of this paper is to analyze how the central position of a bookrun-

ner in its underwriter network affects the position of an issuer in its public firm network in IPO

process, and to study how the established position of the issuer in public firm network influences

its post-IPO market performance. In the existing literature, effect has been seen of underwriter net-

work on firm IPO performance (Bajo et al. (2016)). Nevertheless, the mechanism of underwriter

network on firm performance is unclear. To further investigate the mechanism behind the effect, I

study two research questions. The first question I analyze is how underwriter network affects firm

network through IPO process. During book running process, bookrunner can induce institutional

holders to pay attention to the firms it takes public by delivering noisy information to and col-

lecting confidential bids from institutional holders. Intuitively, a bookrunner with higher network

centrality in underwriter network has more sources on institutional holders, and can thus attract

more investor attention, leading to higher network centrality of the issuer it takes public. Second,

I examine how firm network affects issuer post-IPO market performance. Such effect could exist

because institutional holders can affect firm’s management decision and financial policy by setting

board members. Moreover, institutional holders can deliver noisy information related to the firm to

other firms through actions they take, such as selling a firm’s shares or buying new shares. To em-

pirically address the two questions, I first construct firm and underwriter network, then use reduced

form analysis. To construct the two networks, I use data from Thomson Reuters 13f institutional

holdings and Thomson Reuters SDC New Issues Database. To capture firm performance, IPO
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characteristics, and firm characteristics, data from Center for Research in Security Prices (CRSP)

and Compustat are used. Firm network is constructed by defining the linkages between two firms

based on if they share a same institutional holder. Following the literature, I define underwriter

network in the way that two underwriters are linked if they ever cooperated in a same syndicate in

the previous five years before IPO. My dependent variables are three post-IPO stock market per-

formance measures: average monthly trading volume, holding period return in the first post-IPO

year and holding period return in the third post-IPO year. My controls are variables that capture

firm characteristics, IPO characteristics, and market environments. I adopt two regression mod-

els of network centrality measures as independent variables. The centrality measures are degree,

eigenvector, closeness, and betweenness, from social network analysis (SNA). The first model is

a linear regression of firm network centralities on underwriter networks centralities. The second

model is a linear regression of firm post-IPO performance on firm network centralities.

In the second essay, the objective of this paper is to both theoretically and empirically study

the identification and estimation strategy of peer effects in networks, given that the econometri-

cians may not be able to observe the latent network because of mismeasured links. To identify

peer effects in networks with mismeasured links, we take three steps. In the first step, we inves-

tigate the identification strategy in a generalized linear-in-mean social interaction model. We use

two adjacency matrices that summarize the link structures in peer-effects network and contextual-

effects network, separately. The outcome variable is linearly determined by the mean of neighbors’

characteristics that in the contextual-effects network and the mean of peer outcomes that in the

peer-effects network. Because of the linear-in-mean model, the misclassification of linkage status

in the adjacency matrices are transformed to measurement errors in the mean outcomes and the

mean characteristics. We first show that an weighted average of characteristics of neighbors in an

individual’s peers’ contextual-effects network can be used as an instrument variable for the mean

of that individual’s peer outcomes (Bramoullé, Djebbari and Fortin (2009), Blume et al. (2015)).

For simplicity, we call the instrument variable for the mean of peer outcomes as instrumental mean
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characteristics. The social effects can be identified if the observed network is assumed to be the

true network of interest. Then to identify peer effects in networks with mismeasured links, we

first apply the method in Hu (2008). We use repeated measurements on two conditional distri-

bution matrices: one is the joint distribution matrix of observed mean characteristics/instrumental

mean characteristics and outcomes conditional on covariates; the other is the distribution matrix of

observed mean characteristics/instrumental mean characteristics conditional on covariates. Then

we use an eigenvalue-eigenvector decomposition method based on above distribution matrices to

obtain conditional densities of latent mean characteristics/instrumental mean characteristics con-

ditional on observed mean characteristics/instrumental mean characteristics, separately.We use a

GMM method to estimate peer effects parameters. In the second part, we develop a three-stage

semiparametric estimator following the identification procedure. In the third part, we carry out

an empirical study by constructing firm networks then using a structural form analysis. In our

empirical study, to construct the peer-effects network and contextual-effects network, we use data

from the Customer-supplier data and the merged Center for Research in Security Prices (CRSP)-

Compustat database.

In the third essay, the objective of this paper is to empirically study the first-price sealed-bid

auction with affiliation, given the network of potential bidders. To investigate the the first-price

sealed-bid auction with affiliation under a network perspective, we take several steps. In the first

step, we propose a simple model that characterize our basic settings and assumptions. For the

isolated bidders, their private values are independent of others’. For the linked pairs of bidders,

their private values are dependent. We further assume that the dependence structure of private

valuations between any pair of linked bidders is the same, regardless of the auction and bidder

characteristics. Next, we construct contract-specific contractor networks using data from California

Department of Transportation (Caltrans). The contract-specific contractor network is constructed

by the chance of having at least one same subcontractors in the underlying contract. Then based

on the 712 contract-specific contractor networks from our sample, we investigate the densities of
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those networks. Moreover , we provide key evidence on how private values are dependent based

on network structure. We first introduce the distance between two contractors and we find most

pairs of contractors are either unlinked or within two-step reach. Then we construct a variable

called Bid Amt, a ratio between total bid amount and engineer estimates. We investigate how the

difference in Bid Amt between two contractors are determined by the distance between the two

contractors. Lastly, we examine how the position of a contractor in its contractor network may

affect its bidding behaviour and its probability of winning. We first run a linear regression of Bid

Amt on four centrality measures (from social network analysis: degree, eigenvector, betweenness,

closeness). Then we conduct a Probit model of probability of winning on centrality measures.
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2 NETWORK CENTRALITY AND NETWORK EFFECTS

Network structure and network content are important factors for various aspects of network out-

comes (e.g. see Burt (2000), Cohen and Frazzini (2008)). A network of entrepreneurial firms may

affect accounting-based performance, market-based performance for public firms, or innovation

and technology change, and so forth (e.g. see Deeds and Hill (1996), Cohen and Frazzini (2008),

Ahern (2013)). Moreover, the network of entrepreneurial firms can be affected by other network,

such as the underwriter network. Previous literature on inter-firm network focus on firm link-

ages as mergers, acquisitions, R&D alliances, customers and suppliers (e.g. Bengtsson and Kock

(2000), Cohen and Frazzini (2008), Ahern and Harford (2014)). This paper studies the effect of

underwriter network on firm network and the effect of firm network on firm post-IPO performance.

Figure 1: Timing of Initial Public Offering

In an initial public offering (IPO), two main parties involved are issuer (the firm that goes

public) and bookrunner or lead underwriter (the investment bank that leads the IPO process and

provides underwriting services for the issuer), as shown in Figure 1. Firms form linkages if they

share the same large institutional holders. Intuitively, effectiveness of such linkages exists because

of the two potential roles played by institutional holders: decision makers that can affect firm’s

management decisions or financial policies by setting board members in the firm, and paths along

which the information of firms diffuse. Therefore, firm performance is potentially affected by its

position in firm network. Underwriters form linkages if they cooperate in the same syndicate in the

previous five years before IPO. Such linkages are effective because underwriters share their high-
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net-worth investor sources in the syndicate during the process of book building and road shows.

Book building is a practice by which bookrunner collects confidentially bids from institutional

holders at various prices and disseminates noisy information about the issuer to these holders. As

such, one can expect that a more central bookrunner in its underwriter network can potentially

induce more institutional holders to buy shares from the issuer.

The objective of this paper is to analyze how the central position of a bookrunner in its un-

derwriter network affects the position of an issuer in its public firm network in IPO process, and

to study how the established position of the issuer in public firm network influences its post-IPO

market performance. In the existing literature, effect has been seen of underwriter network on firm

IPO performance (Bajo et al. (2016)). Nevertheless, the mechanism of underwriter network on

firm performance is unclear. To further investigate the mechanism behind the effect, I study two

research questions. The first question I analyze is how underwriter network affects firm network

through IPO process. During book running process, bookrunner can induce institutional holders

to pay attention to the firms it takes public by delivering noisy information to and collecting confi-

dential bids from institutional holders. Intuitively, a bookrunner with higher network centrality in

underwriter network has more sources on institutional holders, and can thus attract more investor

attention, leading to higher network centrality of the issuer it takes public. Second, I examine

how firm network affects issuer post-IPO market performance. Such effect could exist because

institutional holders can affect firm’s management decision and financial policy by setting board

members. Moreover, institutional holders can deliver noisy information related to the firm to other

firms through actions they take, such as selling a firm’s shares or buying new shares.

To empirically address the two questions, I first construct firm and underwriter network, then

use reduced form analysis. To construct the two networks, I use data from Thomson Reuters 13f

institutional holdings and Thomson Reuters SDC New Issues Database. To capture firm perfor-

mance, IPO characteristics, and firm characteristics, data from Center for Research in Security

Prices (CRSP) and Compustat are used. Firm network is constructed by defining the linkages
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between two firms based on if they share a same institutional holder. Following the literature, I

define underwriter network in the way that two underwriters are linked if they ever cooperated in

a same syndicate in the previous five years before IPO. My dependent variables are three post-IPO

stock market performance measures: average monthly trading volume, holding period return in the

first post-IPO year and holding period return in the third post-IPO year. My controls are variables

that capture firm characteristics, IPO characteristics, and market environments. I adopt two regres-

sion models of network centrality measures as independent variables. The centrality measures are

degree, eigenvector, closeness, and betweenness, from social network analysis (SNA). The first

model is a linear regression of firm network centralities on underwriter networks centralities. The

second model is a linear regression of firm post-IPO performance on firm network centralities.

Empirical findings indicate that an issuer is significantly more central in its public firm network

if this issuer is led by a bookrunner through IPO process that is more central in its underwriter net-

work. For example, if a bookrunner has 40 more direct links with other underwriters, the firm to

be issued will have about 25 more links with other public firms. I also find that the effect of firm

network on issuer post-IPO market performance is significant and twofold. For example, if issuer

betweenness centrality increases from minimum value to median value in the sample, the average

monthly trading volume will significantly increase by around 7%. However, if issuer eigenvector

centrality increases, the holding period return in the third year will significantly drop. To further

investigate the source of the effect of underwriter network on firm performance, I run a specifi-

cation by adding underwriter network centralities to the analyses of firm post-IPO performance.

Empirical results show that firm network still has significant effects on firm’s post-IPO stock mar-

ket performance. Furthermore, the scales of effects that come from firm network is much larger

than that that come from underwriter network. This finding indicates that the effect of underwriter

network on firm performance that is documented in literature could be attributed to the effect of

underwriter network on firm network.

This paper contributes to the existing literature of network effect in several aspects. First, I
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extend underwriter network literature by showing that firm network is more powerful in predict-

ing stock market performance. In existing literature, underwriter network has been seen as an

important predictor for issuer post-IPO performance (Bajo et al. (2016)). I show that the effect

of underwriter network on firm performance is generated by the effect of underwriter network on

firm network. Furthermore, it has been widely argued that favorable positions are regarded as net-

work resources (Granovetter (1985), Snehota and Hakansson (1995), Gulati (1999), Burt (2000)).

However, there are also abundant works on arguing that over-embeddedness in network can lead

to inability to act (Uzzi (1997), Gargiulo and Benassi (2000)). My results also show the two-sided

effect of being at favorable positions. An issuer with higher closeness centrality will achieve higher

holding period return in the first post-IPO year, while an issuer with higher eigenvector centrality

will have lower holding period return in the third post-IPO year.

Second, I construct inter-firm network in a novel way that based on common large institu-

tional holders. By defining the linkages between two firms based on whether they share a same

institutional holder, I show the key roles played by institutional holders in the relation between

established firm network and firm stock market performance. Institutional holders can affect firm’s

management decision and financial policy by setting board members. Also, institutional holders

can deliver information that are related to the firm to other firms in the network through actions

they take, such as selling huge amount of shares of the firm. My work adds a new dimension

to the existing business network studies. In the related literature, firm networks are defined in

various ways. Previous research on inter-firm network has focused on firm linkages as merg-

ers, acquisitions, R&D alliances, customers and suppliers, and so forth. Some researchers study

firm networks in the concept of social networks where relationships with other firms are based on

strong personal relationships with individuals such as friends, relatives, long-standing colleagues

and so forth (Dubini and Aldrich (1991), Lipparini and Sobrero (1997), Ardichvili, Cardozo and

Ray (2003),Lechner, Dowling and Welpe (2006), Cooper (2017)). There are also works on rep-

utational networks that made up of partner firms that are market leaders (Lechner, Dowling and
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Welpe (2006), Dietz (2012)), and co-operative technology networks that technology alliances in-

volve joint research and development or innovation projects(Deeds and Hill (1996), Kelley and

Rice (2002), Lechner, Dowling and Welpe (2006)). In recent literature, many researchers are in-

terested in studying the network structure of customer-supplier relationships (Bengtsson and Kock

(2000), Cohen and Frazzini (2008), Ahern and Harford (2014)).

Third, this is one of the first papers to study how one network can affect another network with

totally different agents, to the best of the author’s knowledge. Such study is important because net-

work formation could be partly driven by other network as well as the strategic decisions made by

agents in the network per se. I study this relationship by analyzing the impact of various network

centrality measures characterizing bookrunners on network centrality measures characterizing is-

suers. I show that bookrunner centralities have significantly positive effects on issuer centralities.

Many works in the literature study the relation between network structure or network centrality

with network outcomes (Hanna and Walsh (2002)), Pappas and Wooldridge (2007), El-Khatib,

Fogel and Jandik (2015)). For example, industries that are more central in the network of inter-

sectoral trade earn higher stock returns than industries that are less central (Ahern (2013)). Firm

that goes public with a lead underwriter that is more central in its investment bank network per-

forms better (Bajo et al. (2016)). However, little work has been done on analyzing the relation

between one network structure with another network structure. My study fills in the gap.

Last, this paper potentially provides a new way to capture investor attention through the con-

struction of firm network. The linkage between two agents in the established firm network is

constructed in terms of whether the two agents share a same holder. A firm with high degree cen-

trality or eigenvector centrality is very likely to be held by many institutional holders or held by

few holders that hold many other firms’ shares, meaning that this firm gains a lot of investor atten-

tion. As such, the degree centrality and eigenvector centrality can be two good proxies for investor

attention. Investor attention and investor inattention are two topics that have been discussed and

followed for decades (Hong and Stein (1999), Huberman and Regev (2001), Hirshleifer and Teoh
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(2003), Peng and Xiong (2006)). In past studies, investor attention is characterized using proxies,

such as pre-IPO media coverage (Liu, Sherman and Zhang (2014), Bajo et al. (2016)), past news

and extreme past returns. This paper potentially provides a new way to capture investor atten-

tion through the construction of firm network. Furthermore, under my framework, with annually

updated data on institutional holdings, it is possible to get proxies for investor attention over time.

The rest of the paper is organized as follows. Section 2.1 describes the data I use and presents

descriptive statistics on dependent variables and control variables. Section 2.2 introduces the four

measures, degree, eigenvector, closeness and betweenness, that characterize network centralities

and basic regression models. Section 2.3 discusses my empirical results and specifications. Section

2.4 discusses conclusions and future works.

2.1 Data

In this section, I introduce the data as well as the sample selection rules. The data comes from

four main data sources: Thomson Reuters 13f institutional holdings, Thomson Reuters SDC New

Issues Database, Compustat and Center of Research on Security Prices (CRSP).

The data on initial public offerings, are from the Thomson Reuters SDC New Issues Database

over the period January 1987 to December 2009. Following the literature, I exclude firms in the

financial sector with SIC code start from 6000 to 6999. Only issuances on new common equities

that processed in U.S. market are kept, limited to three exchange markets: NASDAQ, AMEX

and NYSE. Besides, following IPO literature, I exclude certain types of security on trust Units,

units, non-voting shares and spin-offs. Eventually, I get a sample of IPO observations with size

3984. For each initial public offering, I observe the issuer (known as the firm that goes public), the

bookrunner (also known as the lead manager or lead underwriter in the issuance of new equity) and

the co-managers (that follow the IPO process along with the bookrunner in a syndicate). Following

the literature, the underwriter network for each issuance observation is constructed by the chance

of cooperation in the same syndicate within five years. For example, if manager A and manager

10



B worked in the same syndicate within five years prior to the IPO issue date, then A and B are

considered connected.

The data on firm network are from the Thomson Reuters Institutional Holdings (13f) Database

over the period January 1987 to December 2009. Observations from Institutional Holdings Database

are matched with observations from SDC New Issues Database by Ticker symbol and issue date.

Eventually, 3078 issuer observations are matched to New Issue Database. For each record, I ob-

serve the firm’s name and the firm’s institutional shareholders. For simplicity, I only keep the

records on December 31th each year, since institutional holdings won’t change much within a

year. For a calendar year, the firm network is constructed by the chance that two firms share a

same institutional holder. For example, if firm A has shareholders a and b, firm B has shareholders

a and c, firm C has shareholder c, then A and B, B and C are considered connected, but A and C

are not.

The control variables and firm performance variables are from Thomson Reuters SDC New

Issues Database, the Center for Research in Security Prices (CRSP) and Compustat. Observations

from both CRSP and Compustat are matched with observations from SDC New Issues database by

Ticker symbol and issue date. Since the observations from different sources are matched according

to the same calendar year, the possibility of change in Ticker symbol will not be problematic.

Table 1: Summary Statistics: Control Variables

Variable Mean Std. Dev. Min. Max. Sample Size
LnOffersize 19.774 1.049 15.607 24.502 3984
HiTechDummy 0.565 0.496 0 1 3984
LnPrimaryShares 15.043 0.764 11.695 18.789 3984
FilingWidth20Dummy 0.078 0.268 0 1 3984
MiddleFiling 0.133 0.554 0.009 16.667 2512
AvgUnderpricing -3.739 5.071 -31.171 11.435 3984
BMktshare 0.026 0.024 0.001 0.115 3984
MktReturn 0.013 0.037 -0.225 0.128 3731
LnAssets 2.906 1.68 -5.809 8.835 1652
OIBD/Asset 0.323 36.976 -402.3 1269.538 1364
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Summary statistics of control variables and firm performance variables are shown in Table

1 and Table 2, respectively. LnOffersize is the log of IPO issuing principal amount (in dollars).

HiTechDummy is an indicator variable that equals one if the firm is a high technology firm. LnPri-

maryShares is the log of the number of primary shares offered in the exchange market. Filing-

Width20Dummy is a dummy variable that equals one if the firm has a filing width greater or equal

to 20%. Here, filing width is defined as the ratio of the gap between high filing price and low filing

price to high filing price. MiddleFiling is defined as a unit divided by the middle point of filing

price range. AvgUnderpicing is the average underpricing of all issuances in the prior month before

the issue date of the underlying firm, where underpricing is simply calculated as the difference

between the offer price and closing price at the 1st trading day. BMktshare is the market share

of a bookrunner, computed as the ratio of the issuance amounts that led by the same bookrunner

in the prior five years to the total issuance amounts processed in the prior five years before issue

date. MktReturn is the value-weighted return on CRSP index in the quarter of the firm’s issue date,

which captures the market environment of an IPO. LnAssets is the log of total assets of a firm in

the last quarter of the calendar year prior to the IPO issue date, which is a measure of firm size.

OIBD/Asset is the firm’s operating income before dividends to total assets in the last quarter of

the calendar year before the IPO issue date. LnOffersize, HiTechDummy, LnPrimaryShares, Fil-

ingWidth20Dummy, 1/MiddleFiling, AvgUnderpicing and BMktshare are computed by using SDC

New Issues Database. MktReturn is computed from CRSP Database. LnAssets and OIBD/AssetAdj

are calculated based on the data I get from Compustat.

Table 2: Summary Statistics: Firm Post IPO performance

Variable Mean Std. Dev. Min. Max. Sample Size
LnTurnover 0.145 0.89 -4.943 3.633 3906
adj_HPR1 0.176 0.961 -0.971 12.828 3764
adj_HPR3 0.253 1.447 -1.24 37.735 3085

In the literature, there are various ways to capture firm post-IPO stock market performance. In
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this paper, I use LnTurnover, HPR1, and HPR3 as the three market-based performance measures

that obtained from CRSP dataset. LnTurnover is the log of average monthly share volumes traded

in the first post-IPO year. HPR1 and HPR3 are the holding period return of the issuer’s stock in

the first post-IPO year and in the third post-IPO year, respectively.

2.2 Model

In this section, I introduce the centrality measures that characterize the position of an agent in one

network. There are four measures from social network analysis (SNA) that are included in my

models: degree, eigenvector, closeness and betweenness. To address the first research question,

I analyze a linear regression model with bookrunner centrality measures as independent variables

and firm centrality measures as dependent variables. To address the second research question, I

adopt a linear regression model with firm centrality as independent variables and firm stock market

performance as dependent variables.

2.2.1 Measures Characterizing Network Centrality

In this paper, a network consists of two components: vertices that represents agents and edges

that represents the linkages between agents. Especially, an ego is used to represent the agent

whose centrality importance is being analyzed, and an alter to represent the agents who are directly

connected to the ego. The network can be either directed or undirected, depending on whether I

distinguish the two connected vertices. In this paper, I only consider undirected network, meaning

there is no distinction between the two vertices associated with each edge. Besides, I only consider

unweighted network where all the edges are equally important.

Before measuring the importance of a vertex in a network, an adjacency matrix is needed. In an

adjacency matrix, the i j-th element in the matrix equals to 1 if the i-th agent is connected with the

j-th agent, and equals to 0 if they are not connected. Based on the corresponding adjacency matrix,

I can calculate several measures that reflect the vertex importance in the network. These measures
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are known as network centrality, which are widely used in the field of social network analysis

(SNA). In this paper, I use four different centrality measures: degree, eigenvector, closeness, and

betweenness. Degree centrality and eigenvector centrality are the two centrality measures that are

constructed based on direct links to the ego; while closeness centrality and betweenness centrality

are the two measures obtained based on all the direct and indirect links to the ego. Because of the

difference, degree centrality and eigenvector centrality are good measures for characterizing local

importance of the ego; while closeness centrality and eigenvector centrality are used for capturing

global importance of the ego. Details on these four measures are introduced in the following.

Degree is the simplest and most straightforward centrality measure that counts the number of

edges directly connected to the ego. For a network with N vertices and adjacency matrix A, the

degree of ego i, denoted as di, is represented mathematically as:

d′i =
N

∑
j 6=i

ai j

Degree can be interpreted as the immediate risk for a vertex to catch information that flows

through a network. For example, an ego with a larger degree centrality is exposed to more path-

ways that linked to its alters, hence the ego catches more information from its alters. To enable

comparison on the degree centralities of two vertices from networks with different sizes, degree

centrality is usually normalized by dividing the total number of potential direct links to the ego,

N−1.

di =
1

N−1

N

∑
j 6=i

ai j (2.1)

Eigenvector is another measure that characterizes the local centrality of a vertex. Different

from degree centrality that treats every direct connections to the ego equally, eigenvector highlights

the differences in influence level of each connections. This measure assigns relative scores to all

vertices in the network so that high-scoring vertices are more influential than low-scoring vertices.

Then a high eigenvector for a vertex indicates that this vertex is connected to alters that are well-
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connected. The assigned score for a vertex i is given in the following way:

ei =
1
λ

∑
j∈N(i)

e j

, where N(i) is the set of all the alters or neighbors to the ego i and λ is a constant. If the

network G has an adjacency matrix A = (ai j), then the assigned score can be written as:

ei =
1
λ

∑
j∈G

ai je j (2.2)

If the centrality vector for the network is defined as e = (e1,e2, ...,ei, ...,eN)
′, I can rewrite the

above equation in a matrix form:

λ · e = A · e

Clearly, e is an vector of matrix A with eigenvalue λ. Then by the Perron-Frobenius theorem

that asserts a real square matrix with nonnegative entries has a unique largest real eigenvalue and

that the corresponding eigenvector can be chosen to have nonnegative components. The normalized

eigenvector corresponding to the unique largest eigenvalue of the adjacency matrix is defined as

the eigenvector centrality.

Closeness is a centrality measure that is defined based on the concept of network paths, whereas

degree centrality and eigenvector centrality are both defined based on direct connections. Close-

ness centrality tells us the extent to which a vertex is closer to all the other reachable vertices in a

network either directly or indirectly. It is defined as the reciprocal of the average geodesic distance

(known as the shortest path between a specified pair of vertices) between the ego and all of its

reachable vertices:

c′i =
1

∑ j 6=i d(i, j)

|R(i)|2
∈ (0,1),

where R(i) is the set of all reachable vertices of the ego i in the network and |·| gives us the
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cardinality of this set. Besides, d(i, j) denotes the geodesic path between i and j.

To enable comparison between two networks with different sizes, the normalized expression of

closeness centrality is given by:

ci =

(
|R(i)|
N−1

)2 1
∑ j 6=i d(i, j)

. (2.3)

According to the definition, it is clear that a higher closeness centrality of a vertex indicates a

lower average distance of this vertex to all the other reachable vertices, hence the more central the

vertex is. High closeness centrality can be interpreted as high chance of receiving information in a

timely way.

Another measure that is defined based on the concept of network paths is betweenness central-

ity. This measure reflects how often an underlying vertex to occur on a randomly chosen shortest

path between two randomly chosen vertices in a network. It is represented mathematically as:

b′i = ∑
j,k 6=i

n jk(i)
N jk

,

where N jk is the total number of shortest paths from j to k and n jk(i) is the number of shortest paths

from j to k that pass through the ego i.

Similarly, I need a normalized form of betweenness to enable comparison of two networks with

different sizes, which is given in the following way:

bi =
b′i(N−1
2

) = 2bi

(N−1)(N−2)
. (2.4)

A vertex with higher betweenness links together vertices who are otherwise unconnected or

remotely connected, hence creating more chances to explore information or to influence the spread

of information through the network.
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2.2.2 Effect of One Network on Another Network

There are two networks in my model. One is the firm network, generally denoted as G f ≡ (V f ,E f ),

where V f is the set of all the firms that reported their institutional holders and E f is the set of edges,

which are 2-element subsets of V f ≡ (v f
1 ,v

f
2 , ...v

f
N)
′. The other is the underwriter network, denoted

as Gu ≡ (V u,Eu), where V u ≡ (vu
1,v

u
2, ...v

u
M) is the set of all underwriters that ever followed at least

one IPO process during the underlying time period and Eu is the set of associated edges. Since I

only focus on the position of the bookrunner (or the lead underwriter) in its underwriter network

and in reality there are some underwriters never led an IPO, I need a subset of V u: V B ⊆ V u.

Similarly, I study the position of the issuers in the firm network, hence a subset of V f : V I ⊆ V f

is needed. The crucial step that connects firm network and underwriter network is initial public

offering (IPO). An IPO process is is defined as:

IPOk = (tk,vI
k,v

B
k ,V

f
k ,V

u
k ,H

I
k), k ∈ {1,2, ...,K}, (2.5)

where tk is the IPO issue year, vI
k is the so called issuer or the firm that went public and vB

k is the

bookrunner or lead underwriter that led the IPO process for firm vI
k. V u

k is the set of all underwriters

that worked for issuer vI
k (known as the syndicate). V f

k is the set of all firms that reported their

institutional holders during the same issue year. Lastly, H represents the set of institutional holders

that held a firm’s stock shares. Specifically, HI
k is the set of institutional holders that held large

amount of common stock shares of firm vI
k at the end of its issue year.

The formal definitions of the two networks and network measures are given as below:

Definition 2.1 (Firm Network). In the k-th IPO year tk, the firm network is defined as,

G f
k = (V f

k ,E
f
k ), (2.6)

where V f
k = (v f

1k, ...,v
f
ik, ...,v

f
nkk) is the set of all firms that reported their shareholdings in the
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calendar year tk. Let A f
k = (a f

i jk), i, j ∈ {1,2, ...,nk}, be the adjacency matrix of G f
k , where (1)

a f
i jk = 1 if i 6= j and Hik∩H jk 6=∅, (2) a f

i jk = 0 otherwise.

Here, firm network is defined according to each calendar year. The total set of agents in firm

network is the set of firms that reported their institutional holdings. The linkages of two firms

are defined based on if they share a same institutional holder in that specific calendar year. For

example, there are 3078 firms in the network in 2000 and the network can be plotted as in Figure

2.

Figure 2: Firm Network in Year 2000

Definition 2.2 (Underwriter Network). In the k-th IPO year tk, the underwriter network is defined

as,

Gu
k = (V ∗uk ,E∗uk ), (2.7)

where V ∗uk ≡
⋃

k̃:tk−56tk̃6tk V u
k̃

, interpreted as the set of underwriters that ever followed an IPO

process either as bookrunners or co-managers within the five years prior to tk. Let Au
k = (au

i jk),

i, j ∈ {1,2, ...,mk}, be the adjacency matrix of Gu
k , where (1) au

i jk = 1 if ∃ some k̃ such that tk−5 6

tk̃ 6 tk, i 6= j, vu
ik ∈V u

k̃
and vu

jk ∈V u
k̃

, (2) au
i jk = 0 otherwise.

Here, underwriter network is defined according to each IPO observation. For a specific date of

IPO process, the linkage of two underwriters in the underwriter network is defined based on if the
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two underwriters had worked in the same syndicate in the previous five years before this IPO date.

For example, the underwriter network that was constructed under the IPO of Neoforma.com INC

on January 24th, 2000, can be plotted as shown in Figure 3.

Figure 3: Underwriter Network in Year 2000

Definition 2.3 (Network Measures). In the k-th IPO, the measures that characterizing the impor-

tance of issuer vI
k in its network G f

k is denoted as M(vI
k):

M(vI
k) = (d(vI

k),e(v
I
k),c(v

I
k),b(v

I
k))
′.

For simplicity, rewrite M(vI
k) as MI

k:

MI
k = (dI

k,e
I
k,c

I
k,b

I
k)
′.

In the k-th IPO, the measures that characterizing the importance of bookrunner vB
k in its network

Gu
k is denoted as M(vB

k ):

M(vB
k ) = (d(vB

k ),e(v
B
k ),c(v

B
k ),b(v

B
k ))
′.

For simplicity, rewrite M(vB
k ) as MB

k :

MB
k = (dB

k ,e
B
k ,c

B
k ,b

B
k )
′.
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In Definition 3, d(·), e(·), c(·), and b(·) are the degree centrality measure, the eigenvector cen-

trality measure, the closeness centrality measure, and the betweenness centrality measure, respec-

tively.

To study the relationship between firm network and underwriter network, I conduct a linear

regression model (in matrix forms):

MI = δ0 +δ1MB +u, (2.8)

where

δ1 =



δd 0 0 0

0 δe 0 0

0 0 δc 0

0 0 0 δb


.

2.2.3 Effect of Network on Firm Performance

I am also interested in studying how firm network affects firm post-IPO performance as well as

the relationship between the two networks. To accomplish this goal, I conduct a linear regression

model as follow:

y = α0 +MI ′
α1 +C′α2 + ε1, (2.9)

where C is a vector of control variables.

α1 = (α1d,α1e,α1c,α1b)
′.

A specification regression is conducted to show the robustness of regression results from equa-

tion (5).:

y = β0 +MI ′
β1 +MB′

β2 +C′β3 + ε2, (2.10)
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where

β1 = (β1d,β1e,β1c,β1b)
′, β2 = (β2d,β2e,β2c,β2b)

′.

2.3 Empirical Results

In this section, I present my main empirical results based on the methodology that was introduced

in Section 2.2. Table 3 and Table 4 report the summary statistics of both issuer centralities and

bookrunner centralities in our regression analyses in subsequent sections. Table 5 presents the re-

gression results of issuer network centralities on bookrunner network centralities. It shows that all

the four centrality measures of bookrunners have significantly positive effects on the four measures

of issuers, meaning that a bookrunner with higher centralities in its underwriter network will help

the associated issuer obtain higher centralities as well in the firm network. If I control for firm

size, firm operating ability, and some other characteristics, the underwriter centrality measures still

have significant effect on firm centrality measures, except for eigenvector. Table 6 to Table 8 show

the main regression results of issuer Post IPO performances on issuer network centralities. The

results show that issuer network centralities do have some significantly positive impacts on the

issuer performances after they go public. Especially, the most predictable measure is between-

ness centrality, which characterizes an issuer’s global importance and the ability an issuer can

catch or control the information that pass through firm network. Table 10 to Table 11 present the

specification studies on the regression of issuer post IPO performances on both issuer centralities

and bookrunner centralities. From these specifications, conclusions are drawn that the impact of

bookrunner centralities on issuer performance is much less than the impact of issuer centralities on

issuer performance. Details on interpretation of these regression results are given in the subsequent

subsections.
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2.3.1 Network Centralities Measures

The descriptive statistics presented in Table 3 summarize the network centrality measures of is-

suers in their own firm networks. I use Fdegree, Feigenvector, Fcloseness and Fbetweenness to

stand for each issuer’s degree centrality, eigenvector centrality, closeness centrality, and between-

ness centrality, respectively. Following Definition 1, the firm networks are obtained by calendar

year, leading to 23 different networks since there are 23 years in the period of January 1987 to De-

cember 2009. As a result, I observe different network sizes for different firm networks. To enable

comparison on centralities from different networks, all the measures are normalized.

Table 3: Summary Statistics: Firm Network Measures

Variable Mean Median Std. Dev. Min. Max. Sample Size
Fdegree 0.777386 0.872529 0.232342 0.002933 0.985108 3078
Fcloseness 0.000361 0.000333 0.000111 0.000161 0.000662 3078
Fbetweenness 0.000038 0.000030 0.000037 0 0.000551 3078
Feigenvector 0.000399 0.000372 0.000163 0.000001 0.000790 3078

The descriptive statistics shown in Table 4 summarize the network centrality measures of

bookrunners in their own underwriter networks.I use Udegree, Ueigenvector, Ucloseness and Ube-

tweenness to stand for each observed bookrunner’s degree centrality, eigenvector centrality, close-

ness centrality, and betweenness centrality, respectively. I also need to normalize all the four

measures because it is clear that the underwriter network sizes also vary across observations, by

Definition 2.

Table 4: Summary Statistics: Underwriter Network Measures

Variable Mean Median Std. Dev. Min. Max. Sample Size
Udegree 0.277028 0.241191 0.262007 0 0.774389 3984
Ucloseness 0.000126 0.000129 0.000117 0 0.000415 3984
Ubetweenness 0.003907 0.000719 0.005712 0 0.047903 3984
Ueigenvector 0.001703 0.001391 0.000796 0 0.003409 3984

The data on IPO records are from SDC New Issue Dataset from January 1982 to Decemeber
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2009, with sample size 4788. For each IPO record, I observe one issuer and its associated bookrun-

ner and co-managers. Based on these records, I can construct underwriter networks in the period

of January 1987 to Decemeber 2009, with sample size 3984. Unfortunately, not all IPO issuers

are recorded in the Thomson Reuters 13f dataset that reveals their institutional holdings. Eventu-

ally, 3078 IPO issuers are matched with the 13f dataset, hence 3078 issuer centrality measures are

observed.

Interesting patterns are revealed if I plot issuer centralities and bookrunner centralities in cu-

mulative way, as shown in Figure 4. The degree centralities of issuers are larger than the degree

centralities of bookrunners at every cumulative density level. For example, at the 60% quantile,

issuer centrality is around 0.9 while bookrunner centrality is only about 0.4. Especially, there are

almost 35% of bookrunners are isolated in their own networks, with 0 degree centralities, mean-

ing they did not join any syndicates with other underwriters in the past five years before it led

an IPO. Besides, there are some issuers that have degree close to 1, meaning they are connected

to almost every other firms in the network. If I examine the adjacency matrices that associated

with the networks, I observe dense matrices for firm network and relatively sparser matrices for

underwriter network. The difference in the density level come from the difference in defining the

two networks. As for closeness centrality, I observe a similar pattern to degree centrality that the

closeness centralities of issuers are larger than the closeness centralities of bookrunners at every

cumulative density level. The closeness centrality measures the average distance of an ego to all

the other agents it can reach, hence it can tell us to what extent an ego is close to other agents. On

average, the issuers are closer to other firms in their firm networks compared with the bookrunners

in their underwriter networks.

It is less meaningful to compare the scattered cumulative density diagram of eigenvector be-

tween issuers and bookrunners, due to normalization. To get a unique corresponding eigenvector

for an adjacency matrix, the eigenvector is normalized so that the sum of all components is 1. If

two networks exhibit quite a difference in size, the eigenvectors will differ a lot. In this paper, the
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Figure 4: Network Centralities

firm network has a size of 3000 on average while the underwriter network has a size of 400 on

average. So when it comes to normalized eigenvector, clearly I should observe much less scales

in issuer eigenvector centralities. Similar scale issue happens to betweenness centrality, too. Be-

tweenness is normalized by dividing (N−1)(N−2), leading to huge scale differences between the

issuer betweenness centralities and the bookrunner betweenness centralities. Even though certain

scale issue exists, our linear regression model is still valid as long as careful examinations on the

scale of each predicted coefficient are conducted.

2.3.2 Firm and Underwriter Network Centralities

Table 5 presents the results from the four regression models in equation (2.10) with year dummies.

These regression results indicate, as expected, that the centralities of bookrunners have significant

positive effects on the centralities of issuers that go public. The intuition behind this significant

positive effects lies in book building, a process in which bookrunner attempts to determine offer

price for IPO based on the demand information they get from institutional holders. During the book

24



building process, it is true that a bookrunner will contact some institutional holders that potentially

will buy the new issuer’s stocks. If a bookrunner is in a central position of its underwriter network,

then it will have more sources on the institutional holders. Then the pool of institutional holders

the central bookrunner can contact to is obviously larger than that a remote bookrunner can contact

to. The possibility that the central bookrunner can persuade or lead institutional holders to buy the

issuer’s stock is higher than a remote bookrunner can do. As such, a bookrunner that is central in

its underwriter network will help the issuer that goes pubic build more direct links to other firms

or build closer relationship to other firms.

The coefficient per se carries useless information on the scale of effect unless the difference

between the firm network size and underwriter network size are taken considered. In the sample,

most firm networks have size around 3000, while most underwriter networks have size around 400.

To interpret 0.0842, the coefficient of bookrunner degree, I should scale up the network size. For

example, if a bookrunner has 0.1 higher degree centrality, meaning the bookrunner connects to 40

more other underwriters, then the corresponding issuer will have 0.00842 higher degree centrality,

meaning the issuer will connect to about 25 more public firms.
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2.3.3 Firm Performance and Network Centralities

In this subsection, I study the relation between issuer centrality and five issuer post-IPO perfor-

mance measures. The three dependent variables are stock turnover rate, holding period return in

the first post-IPO year and holding period return in the third post-IPO year.

The independent variables in the regressions are issuer degree centrality, issuer eigenvector

centrality and issuer betweenness centrality. The closeness centrality is omitted because it has

a very strong co-linearity with eigenvector centrality. Two specifications are given by dividing

these four measures into two groups. One group contains degree and eigenvector, which are the

two measures that characterize the local centrality level of an issuer. The other group includes

closeness and betweenness, which are the two measures that are defined based on paths, hence

telling the global centrality level of an issuer. The regression results are presented in Table 6 to

Table 8. Sepecification results are shown in Table 9 to Table 11.

To compare the effect on issuer performance driven by issuer centralities with that driven

by bookrunner centralities, I conduct specification regressions with both issuer centralities and

bookrunner centralities as independent variables. Similar specification on local centralities and

global centralities are conducted too. The regression results can be found in Table 10 to Table 11.

Clearly, besides the issuer network effect on issuer performance, issuer’s IPO characteristics

may also have non-negligible effects on the issuer post-IPO performance. I control for offer size by

including natural logarithm of IPO total principal amount (LnOffersize). I also control for amount

of primary shares listed in the primary exchange market(LnPrimaryShares). Both offer size and

primary shares are likely to affect the post-IPO performances. Besides, I include high-tech issuer

dummy as a control variable. High-tech issuers are expected to have higher valuations and yield

better performance.

The uncertainty about the value of IPO shares to be issued is given by the dummy variable on

whether the filing width is greater than 20% (FilingWidth20Dummy). Filing width is defined as the

percentage difference between high filing price and low filing price that reported by bookrunner.
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I also control for reciprocal of the middle point of filing range, which capture the effect of the

choice of price level in IPO (MiddleFiling). I expect bookrunner that has higher market shares will

be better at leading an IPO process, hence leading to issuer’s better performance. So the market

share of bookrunner is also included as a control variable (BMktshare).

Besides, market environment at the time issuer goes public should be controlled. The first con-

trol variable I use is the average underpricing in the prior month before IPO issue date(AvgUnderpricing).

This variable capture recent IPO environment by telling us whether the market is a heating market

with higher underpricing or not. The second control variable I sue is the CRSP value weighted

market return in the prior quarter before IPO (Mktreturn).

Furthermore, I add year dummies in every regression to control for year effects. As for industry

dummies, I conduct specification on whether industry dummies are added.

I study the relation between issuer centrality and issuer stock turnover rate by running re-

gressions with issuer’s average monthly trading volume in the first calendar post-IPO year as the

dependent variable.

The main regression results are shown in column 1 and column 2 of Table 6. Among the

centrality measures, only betweenness centrality is statistically significant and the impact of be-

tweenness on turnover rate is positive. The estimated coefficients exhibit little difference if industry

dummies are not included. The two groups specification results are shown in column 3 to column

6. In the specification that I only include global centrality measures, betweenness centrality still

significantly and positively affect turnover rate, as expected.

Higher issuer betweenness centrality means that the issuer will occur more frequently on the

shortest paths of other pairs of firms. By lying on the shortest paths between others, an issuer along

with its institutional holders will catch information more efficiently and even be able to control

information diffusion. Here, the institutional holders play roles as signals of such information by

taking actions of selling issuer’s stocks or buying issuer’s stocks. Therefore, there will be more

frequent transactions on the stocks of the issuer.
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For example, consider two firms A and B, between which there are only four shortest paths

with length 4. Firm X and Y are the two firms that occurs on the shortest paths, with betweenness

3
4 and 2

4 , respectively. This means that firm X occurs three times on the four shortest paths, while

firm Y occurs two times on the four shortest paths. Suppose I hold other measures the same for

firm X and Y. If anything bad or good happened to firm A, the institutional holders of firm A will

directly take actions, either selling the shares or buying more shares. Then the firms whose shares

are held by those holders will also learn the fact happened to firm A. Step by step, the information

will move along the shortest paths till firm B. Clearly, firm X with higher betweenness will be more

likely to catch the information, even to manipulate the diffusion and its stocks will be more likely

to be traded than firm Y.

Furthermore, offer size and bookrunner market share have significantly positive effects on

turnover rate. Also, high-tech companies have significantly higher monthly average trading volume

than non high-tech companies.

Table 11 presents the specification results of turnover rate on issuer and bookrunner centralities.

It shows that the issuer betweenness is still positively significant. The bookrunner betweenness is

also positively significant, but its effect on turnover rate is less than the issuer’s. The effect magni-

tude is not straightforward if I only look at the coefficient because the scale of centrality measures

is not straightforwardly comparable. Based on the sample I have, supposing both issuer between-

ness and bookrunner betweenness change from minimum value to median value, the turnover rate

will increase by 7% driven by issuer betweenness, but only 0.7% driven by bookrunner between-

ness. These patterns tell us that, there are two ways that bookrunner affects turnover rate: directly

or through affecting issuer network. Bookrunner centrality has very little direct effect on turnover

rate. Instead, issuer centrality plays an important role in issuer turnover rate.

I study the relation between issuer centrality and issuer stock holding period return by running

regressions with issuer’s annualized holding period return in the first post-IPO calendar year as the

dependent variable. Further, to show how this effect changes over time, I also run a regression
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with issuer’s annualized holding period return in the third post-IPO calendar year as the dependent

variable.

The first regression results that I am interested in lie in column 5 and column 6 in Table 7.

The closeness centrality is significantly positive affecting the annualized industry-adjusted holding

period return, when I regress adj_HPR1 only on global centrality measures. I did not get sig-

nificant centrality measures in column 1 and 2 because I omit closeness which has co-linearity

with eigenvector. The estimated coefficients exhibit little difference if industry dummies are not

included.

The second regression results that I am interested in are shown in column 1 and column 2,

Table 8. Here, dependent variable is the annualized industry-adjusted holding period return in

the third post-IPO year. The closeness centrality is no longer significant and the effect is also

diminished to negative values. But instead, the eigenvector is statistically significant and the impact

of eigenvector on adj_HPR3 is negative. In the specification where I regress adj_HPR3 only on

local centrality measures, same results still hold. Also, the estimated coefficients exhibit little

difference if industry dummies are not included.

Higher issuer closeness means that the issuer is closer to all its reachable agents. One possible

explanation why issuer closeness has positive effect on holding period return in the first post-IPO

year is that, the closer the issuer to its reachable agents, the higher the possibility it is exposed to

risks, hence yielding higher return by the modern portfolio theory.

When it comes to the holding period return in the third post-IPO year, closeness is no longer

significant. Instead, eigenvector is negatively significant. Higher issuer eigenvector means that the

issuer is connected to alters that are well connected in the network. One possible intuition is that,

as time goes by, institutional holders’ attention may gradually switch to those alters since they did

well in the past two years. As such, it is likely that these institutional holders will sell many of the

issuer’s shares, leading to lower stock return.

Table 7 also shows that high-tech issuers have significant higher holding period return both in
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the first post-IPO year and in the third post-IPO year than the non-high-tech issuers. Bookrunner

market share has a significantly positive effect on holding period return in the first post-IPO year,

but not significantly on holding period return in the third post-IPO year. This pattern makes sense,

since a bookrunner with higher market shares is likely to be better at leading IPO, leading to

higher return of the issuer, but eventually the effect will drop once the bookrunner stops following

the issuer. The filing width dummy exhibits a significantly positive effect on holding period return.

One possible reason is that a higher uncertainty about the value of IPO shares to be issued implies

a higher volatility in its stocks, hence possibly leading to higher return.

Table 10 and Table 11 show the specification results of holding period return on both issuer

and bookrunner centralities. Table 10 shows that issuer closeness is still positively significant,

while underwriter closeness is not significant at all. Instead, underwriter betweenness is positively

significant but with a low magnitude. Table 11 shows that issuer eigenvector is still negatively

significant, but none of the centrality measures of bookrunner is significant. These patterns tell us

that, bookrunner centrality has very little direct effect on holding period return in the first post-

IPO year, and no significant direct effect on the holding period return in the third post-IPO year.

Instead, issuer centrality play an important role in issuer holding period return.

2.4 Conclusion

Network structure and network content have been seen as important factors for various aspects of

network outcomes in previous studies on network effect. In this paper, I show that network struc-

ture can affect another network structure with totally different agents as well as certain network

outcomes. I can draw two main conclusions by adopting two regression models of network central-

ity measures. First, an issuer is significantly more central in its public firm network if this issuer is

led by a bookrunner through IPO process that is more central in its underwriter network. Second,

the effect of firm network on issuer post-IPO performance is significant and twofold. Moreover, in

the specification regression, I show that the effect of underwriter network on firm performance that
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was studied in literature is actually generated by the effect of underwriter network on firm network.

There could be two feasible and enlightening tasks to be considered as part of future works. One

can think of using weighted adjacency matrix instead of unweighted adjacency matrix to charac-

terize firm network under the concept of institutional holdings. By weighting the adjacency matrix

with different importance in linkages, one can tell whether a pair of firms are strongly connected

because they share a same institutional holder that holds huge amount of shares in both firms. Also,

one can think of using the degree centrality of a firm, either from a weighted adjacency matrix or

an unweighted adjacency matrix, as a proxy for the ability in attracting investor attention of this

firm. Since there is annually collected data on institutional holdings, it is possible to get proxies

over time, hence to study how does investor attention could affect firm performance.
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Table 6: Regression Results: Effect of Firm Centralities on Turnover Rate

(1) (2) (3) (4) (5) (6)

Fdegree 0.198 0.207 0.238 0.248
(0.204) (0.205) (0.204) (0.205)

Feigenvector -505.2 -543.4 -323.2 -363.0
(349.8) (350.8) (346.9) (347.8)

Fcloseness 0.329 -90.59
(327.0) (327.3)

Fbetweenness 1974.5∗∗∗ 1951.8∗∗∗ 1672.5∗∗∗ 1684.9∗∗∗

(572.5) (573.7) (574.8) (576.3)

LnOffersize 0.179∗∗∗ 0.182∗∗∗ 0.201∗∗∗ 0.203∗∗∗ 0.170∗∗∗ 0.174∗∗∗

(0.0503) (0.0505) (0.0501) (0.0502) (0.0503) (0.0504)

HiTechDummy 0.340∗∗∗ 0.333∗∗∗ 0.338∗∗∗ 0.333∗∗∗ 0.340∗∗∗ 0.333∗∗∗

(0.0404) (0.0374) (0.0405) (0.0375) (0.0404) (0.0374)

LnPrimaryShares -0.260∗∗∗ -0.269∗∗∗ -0.259∗∗∗ -0.268∗∗∗ -0.251∗∗∗ -0.261∗∗∗

(0.0691) (0.0692) (0.0693) (0.0694) (0.0690) (0.0692)

FilingWidth20Dummy 0.0449 0.0438 0.0551 0.0538 0.0429 0.0418
(0.0563) (0.0565) (0.0564) (0.0566) (0.0563) (0.0565)

MiddleFiling 0.0721 0.0737 0.0746 0.0764∗ 0.0758∗ 0.0775∗

(0.0456) (0.0458) (0.0457) (0.0459) (0.0456) (0.0457)

AvgUnderpricing -0.00610 -0.00910 -0.00630 -0.00930 -0.00655 -0.00949
(0.0105) (0.0105) (0.0105) (0.0105) (0.0105) (0.0105)

BMktshare 4.142∗∗∗ 4.366∗∗∗ 4.090∗∗∗ 4.311∗∗∗ 4.109∗∗∗ 4.347∗∗∗

(1.052) (1.051) (1.055) (1.054) (1.052) (1.051)

MktReturn -0.1000 -0.0438 0.00897 0.0637 -0.107 -0.0495
(0.556) (0.558) (0.557) (0.558) (0.556) (0.558)

YearDummy YES YES YES YES YES YES

IndustryDummy YES NO YES NO YES NO

Constant -1.005∗ -0.648 -1.453∗∗∗ -1.064∗∗ -1.101∗∗ -0.717
(0.552) (0.520) (0.538) (0.507) (0.561) (0.530)

SampleSize 1857 1857 1857 1857 1857 1857
R2 0.208 0.200 0.203 0.195 0.207 0.199
adj. R2 0.192 0.186 0.187 0.182 0.192 0.185
1. Dependent variable is LnTurnover, the monthly average trading volume in the first post-IPO year.
2. Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: Regression Results: Effect of Firm Centralities on HPR1

(1) (2) (3) (4) (5) (6)

Fdegree -0.0487 -0.0326 -0.0334 -0.0172
(0.238) (0.239) (0.237) (0.238)

Feigenvector 240.4 197.7 309.8 266.7
(406.0) (407.5) (401.4) (402.9)

Fcloseness 688.1∗ 649.9∗

(377.1) (377.8)

Fbetweenness 750.2 744.2 457.7 452.2
(659.4) (661.0) (661.6) (663.6)

LnOffersize 0.0335 0.0349 0.0423 0.0434 0.0289 0.0302
(0.0580) (0.0582) (0.0575) (0.0577) (0.0579) (0.0581)

HiTechDummy 0.0927∗∗ 0.139∗∗∗ 0.0919∗∗ 0.139∗∗∗ 0.0924∗∗ 0.138∗∗∗

(0.0465) (0.0431) (0.0465) (0.0431) (0.0464) (0.0430)

LnPrimaryShares -0.0344 -0.0406 -0.0346 -0.0409 -0.0312 -0.0372
(0.0794) (0.0796) (0.0794) (0.0796) (0.0792) (0.0795)

FilingWidth20Dummy -0.0680 -0.0577 -0.0639 -0.0536 -0.0672 -0.0570
(0.0648) (0.0651) (0.0648) (0.0650) (0.0648) (0.0650)

MiddleFiling 0.0317 0.0320 0.0329 0.0332 0.0318 0.0323
(0.0523) (0.0525) (0.0523) (0.0525) (0.0522) (0.0524)

AvgUnderpricing -0.00248 -0.00119 -0.00255 -0.00126 -0.00303 -0.00178
(0.0122) (0.0122) (0.0122) (0.0122) (0.0122) (0.0122)

BMktshare 2.269∗ 2.519∗∗ 2.249∗ 2.497∗∗ 2.193∗ 2.453∗∗

(1.206) (1.206) (1.206) (1.206) (1.204) (1.204)

MktReturn 0.224 0.325 0.263 0.364 0.230 0.332
(0.640) (0.642) (0.639) (0.641) (0.639) (0.641)

YearDummy YES YES YES YES YES YES

IndustryDummy YES NO YES NO YES NO

Constant 0.155 0.180 -0.0178 0.0194 -0.0277 0.00216
(0.635) (0.600) (0.617) (0.583) (0.645) (0.610)

SampleSize 1834 1834 1834 1834 1834 1834
R2 0.082 0.072 0.081 0.071 0.083 0.073
adj. R2 0.064 0.056 0.063 0.056 0.065 0.057
1. Dependent variable is adj_HPR1, the industry-adjusted holding period return in the first post-IPO
year.
2. Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: Regression Results: Effect of Firm Centralities on HPR3

(1) (2) (3) (4) (5) (6)

Fdegree 0.687 0.696 0.685 0.693
(0.454) (0.454) (0.454) (0.454)

Feigenvector -1460.6∗ -1483.3∗ -1483.5∗ -1519.1∗∗

(778.4) (778.4) (766.6) (766.6)

Fcloseness -724.9 -776.7
(703.3) (702.7)

Fbetweenness -194.9 -304.8 -204.9 -285.0
(1138.2) (1136.2) (1156.4) (1155.3)

LnOffersize -0.0229 -0.0105 -0.0251 -0.0139 -0.0316 -0.0191
(0.106) (0.106) (0.105) (0.105) (0.106) (0.106)

HiTechDummy 0.263∗∗∗ 0.237∗∗∗ 0.264∗∗∗ 0.237∗∗∗ 0.266∗∗∗ 0.241∗∗∗

(0.0836) (0.0765) (0.0835) (0.0764) (0.0835) (0.0763)

LnPrimaryShares 0.0262 0.0101 0.0261 0.00998 0.0382 0.0218
(0.144) (0.144) (0.144) (0.144) (0.144) (0.144)

FilingWidth20Dummy 0.344∗∗∗ 0.353∗∗∗ 0.343∗∗∗ 0.351∗∗∗ 0.339∗∗∗ 0.348∗∗∗

(0.116) (0.116) (0.116) (0.116) (0.116) (0.116)

MiddleFiling -0.0922 -0.0911 -0.0926 -0.0918 -0.0891 -0.0879
(0.102) (0.102) (0.102) (0.102) (0.102) (0.102)

AvgUnderpricing 0.00760 0.00436 0.00759 0.00434 0.00700 0.00387
(0.0230) (0.0230) (0.0230) (0.0230) (0.0231) (0.0230)

BMktshare 0.740 1.263 0.741 1.266 0.873 1.404
(2.125) (2.118) (2.124) (2.117) (2.125) (2.117)

MktReturn -0.775 -0.656 -0.786 -0.673 -0.801 -0.682
(1.141) (1.141) (1.139) (1.139) (1.142) (1.142)

YearDummy YES YES YES YES YES YES

IndustryDummy YES NO YES NO YES NO

Constant 0.0363 0.158 0.0840 0.228 0.0245 0.177
(1.120) (1.054) (1.084) (1.021) (1.143) (1.079)

SampleSize 1518 1518 1518 1518 1518 1518
R2 0.083 0.079 0.083 0.079 0.082 0.077
adj. R2 0.062 0.060 0.062 0.060 0.061 0.059
1. Dependent variable is adj_HPR3, the industry-adjusted holding period return in the third post-IPO
year.
2. Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 9: Specification Results: Effect of Firm Centralities on Turnover Rate

(1) (2) (3) (4) (5) (6)

Fdegree 0.190 0.199 0.227 0.235
(0.205) (0.205) (0.205) (0.206)

Feigenvector -491.4 -529.0 -300.6 -339.1
(350.8) (351.8) (348.6) (349.5)

Fcloseness 3.168 -89.43
(327.0) (327.3)

Fbetweenness 1950.4∗∗∗ 1927.6∗∗∗ 1639.4∗∗∗ 1651.5∗∗∗

(572.2) (573.2) (574.1) (575.6)

Udegree -0.274∗ -0.284∗ -0.0982 -0.104
(0.158) (0.158) (0.146) (0.146)

Ueigenvector 42.30 44.83 32.41 35.27
(50.22) (50.33) (50.40) (50.51)

Ucloseness -524.9∗∗ -507.2∗

(264.9) (265.8)

Ubetweenness 10.60∗∗∗ 10.91∗∗∗ 9.665∗∗∗ 9.778∗∗∗

(4.004) (4.013) (3.689) (3.696)

LnOffersize 0.195∗∗∗ 0.198∗∗∗ 0.205∗∗∗ 0.208∗∗∗ 0.178∗∗∗ 0.182∗∗∗

(0.0511) (0.0513) (0.0508) (0.0510) (0.0505) (0.0506)

HiTechDummy 0.343∗∗∗ 0.337∗∗∗ 0.339∗∗∗ 0.334∗∗∗ 0.341∗∗∗ 0.336∗∗∗

(0.0405) (0.0375) (0.0407) (0.0376) (0.0404) (0.0374)

LnPrimaryShares -0.276∗∗∗ -0.285∗∗∗ -0.265∗∗∗ -0.274∗∗∗ -0.258∗∗∗ -0.267∗∗∗

(0.0699) (0.0701) (0.0701) (0.0703) (0.0692) (0.0694)

FilingWidth20Dummy 0.0494 0.0486 0.0568 0.0557 0.0436 0.0426
(0.0563) (0.0565) (0.0565) (0.0566) (0.0562) (0.0564)

MiddleFiling 0.0758∗ 0.0775∗ 0.0752 0.0770∗ 0.0785∗ 0.0800∗

(0.0456) (0.0458) (0.0458) (0.0460) (0.0455) (0.0457)

AvgUnderpricing -0.00673 -0.00964 -0.00642 -0.00942 -0.00741 -0.0103
(0.0105) (0.0105) (0.0105) (0.0105) (0.0105) (0.0105)

BMktshare 3.627∗∗∗ 3.817∗∗∗ 4.063∗∗∗ 4.268∗∗∗ 3.649∗∗∗ 3.846∗∗∗

(1.159) (1.160) (1.150) (1.151) (1.121) (1.122)

MktReturn -0.108 -0.0534 0.0127 0.0681 -0.106 -0.0504
(0.556) (0.557) (0.557) (0.559) (0.555) (0.557)

YearDummy YES YES YES YES YES YES

IndustryDummy YES NO YES NO YES NO

Constant -1.080∗ -0.737 -1.478∗∗∗ -1.094∗∗ -1.136∗∗ -0.758
(0.552) (0.522) (0.539) (0.509) (0.560) (0.530)

SampleSize 1857 1857 1857 1857 1857 1857
R2 0.211 0.203 0.203 0.195 0.210 0.202
adj. R2 0.194 0.189 0.187 0.181 0.194 0.188
1. Dependent variable is LnTurnover, the monthly average trading volume in the first post-IPO year.
2. Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10: Specification Results: Effect of Firm Centralities on HPR1

(1) (2) (3) (4) (5) (6)

Fdegree -0.0673 -0.0480 -0.0555 -0.0364
(0.238) (0.239) (0.238) (0.239)

Feigenvector 255.4 208.3 334.4 286.6
(407.3) (408.8) (403.0) (404.5)

Fcloseness 665.9∗ 628.7∗

(377.4) (378.2)

Fbetweenness 750.0 740.0 428.8 424.3
(659.2) (660.9) (661.4) (663.5)

Udegree -0.195 -0.177 -0.0788 -0.0645
(0.182) (0.182) (0.167) (0.168)

Ueigenvector 89.13 78.91 83.90 74.00
(57.72) (57.89) (57.69) (57.86)

Ucloseness -155.5 -144.9
(305.1) (306.4)

Ubetweenness 7.206 7.020 8.274∗ 7.891∗

(4.587) (4.601) (4.230) (4.239)

LnOffersize 0.0367 0.0379 0.0379 0.0391 0.0301 0.0311
(0.0589) (0.0591) (0.0583) (0.0585) (0.0582) (0.0583)

HiTechDummy 0.0895∗ 0.138∗∗∗ 0.0871∗ 0.135∗∗∗ 0.0908∗ 0.138∗∗∗

(0.0466) (0.0432) (0.0466) (0.0432) (0.0464) (0.0430)

LnPrimaryShares -0.0355 -0.0412 -0.0287 -0.0349 -0.0292 -0.0349
(0.0804) (0.0806) (0.0803) (0.0806) (0.0796) (0.0798)

FilingWidth20Dummy -0.0620 -0.0519 -0.0596 -0.0496 -0.0657 -0.0555
(0.0649) (0.0651) (0.0648) (0.0650) (0.0647) (0.0650)

MiddleFiling 0.0309 0.0312 0.0300 0.0304 0.0323 0.0326
(0.0523) (0.0525) (0.0523) (0.0525) (0.0522) (0.0524)

AvgUnderpricing -0.00321 -0.00171 -0.00295 -0.00152 -0.00355 -0.00217
(0.0122) (0.0122) (0.0122) (0.0122) (0.0122) (0.0122)

BMktshare 1.009 1.346 1.318 1.648 1.445 1.725
(1.330) (1.332) (1.314) (1.316) (1.285) (1.288)

MktReturn 0.222 0.321 0.272 0.372 0.220 0.320
(0.639) (0.642) (0.639) (0.641) (0.638) (0.641)

YearDummy YES YES YES YES YES YES

IndustryDummy YES NO YES NO YES NO

Constant 0.0634 0.0742 -0.0794 -0.0513 -0.0573 -0.0355
(0.636) (0.602) (0.618) (0.585) (0.645) (0.610)

SampleSize 1834 1834 1834 1834 1834 1834
R2 0.085 0.074 0.083 0.073 0.085 0.075
adj. R2 0.065 0.057 0.064 0.056 0.066 0.058
1. Dependent variable is adj_HPR1, the industry-adjusted holding period return in the first post-IPO
year.
2. Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11: Specification Results: Effect of Firm Centralities on HPR3

(1) (2) (3) (4) (5) (6)

Fdegree 0.688 0.697 0.688 0.695
(0.455) (0.455) (0.454) (0.454)

Feigenvector -1447.4∗ -1472.1∗ -1472.6∗ -1509.8∗∗

(780.6) (780.7) (768.8) (768.9)

Fcloseness -706.8 -763.2
(704.6) (704.2)

Fbetweenness -195.2 -309.2 -191.4 -275.5
(1139.2) (1137.3) (1156.9) (1155.9)

Udegree 0.0580 0.0476 -0.0128 -0.00319
(0.324) (0.324) (0.298) (0.298)

Ueigenvector -61.14 -56.92 -57.51 -54.13
(105.0) (105.1) (104.8) (104.8)

Ucloseness 123.8 118.0
(550.8) (551.4)

Ubetweenness -4.429 -3.131 -7.072 -5.778
(8.023) (8.017) (7.463) (7.452)

LnOffersize -0.0194 -0.00670 -0.0174 -0.00721 -0.0322 -0.0197
(0.107) (0.107) (0.106) (0.106) (0.106) (0.106)

HiTechDummy 0.267∗∗∗ 0.238∗∗∗ 0.270∗∗∗ 0.241∗∗∗ 0.265∗∗∗ 0.240∗∗∗

(0.0840) (0.0769) (0.0838) (0.0767) (0.0836) (0.0765)

LnPrimaryShares 0.0189 0.00297 0.0153 0.000440 0.0356 0.0198
(0.146) (0.146) (0.146) (0.146) (0.145) (0.145)

FilingWidth20Dummy 0.341∗∗∗ 0.350∗∗∗ 0.340∗∗∗ 0.349∗∗∗ 0.338∗∗∗ 0.348∗∗∗

(0.116) (0.116) (0.116) (0.116) (0.116) (0.116)

MiddleFiling -0.0895 -0.0885 -0.0890 -0.0885 -0.0891 -0.0880
(0.102) (0.102) (0.102) (0.102) (0.102) (0.102)

AvgUnderpricing 0.00799 0.00452 0.00758 0.00425 0.00772 0.00439
(0.0230) (0.0230) (0.0230) (0.0230) (0.0231) (0.0231)

BMktshare 1.927 2.294 1.700 2.132 1.551 1.948
(2.357) (2.355) (2.320) (2.316) (2.280) (2.277)

MktReturn -0.769 -0.650 -0.785 -0.672 -0.789 -0.670
(1.142) (1.142) (1.140) (1.140) (1.142) (1.142)

YearDummy YES YES YES YES YES YES

IndustryDummy YES NO YES NO YES NO

Constant 0.115 0.236 0.140 0.288 0.0584 0.210
(1.124) (1.059) (1.088) (1.025) (1.144) (1.080)

SampleSize 1518 1518 1518 1518 1518 1518
R2 0.084 0.080 0.084 0.079 0.082 0.078
adj. R2 0.061 0.058 0.062 0.060 0.060 0.058
1. Dependent variable is adj_HPR3, the industry-adjusted holding period return in the third post-IPO
year.
2. Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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3 PEER EFFECTS IN LATENT NETWORKS

Peer effects are widely studied for various aspects of network outcomes(Calvó-Armengol, Patac-

chini and Zenou (2009), Goldsmith-Pinkham and Imbens (2013)). Previous literature on identi-

fication of peer effects parameters mainly require the full knowledge of adjacency matrices that

describe the network structures. However, in applied work, it is very likely to have a network with

mismeasured links. For example, widely used self-reported survey data can contain intentional

errors. Survey limitation on the number of links that one can report can lead to bounded degree

of an observed network. In some network studies, mismeasured links arise because researchers

assume the population can be partitioned into several groups and everyone in the same group are

connected. This paper theoretically and empirically studies identification and estimation of peer

effects in networks where mismeasured links are considered.

There are several undesired consequences if an observed network under interest has mismea-

sured links. Firstly, the peer effects estimated based on the observed network are biased if mis-

measured links are not taken into consideration. Because mismeasured links can result in mis-

classification of link status from either 1 to 0 or 0 to 1 in the associated adjacency matrix, then

both the mean of peer characteristics or the mean of peer outcomes may have measurement errors.

Therefore, the peer effect estimated is biased. Secondly, if one studies information diffusion along

links, then mismeasured links can lead to wrong diffusion paths. Because of misclassification on

link status, the observed neighbors of one node is different from the latent neighbors of that node,

information that passes through the node will end in different diffusion paths from the true paths.

Moreover, if one is interested in exploring network formation, the mismeasured links can result in

biased preference parameters. In the dynamic network formation study, individuals make decisions

on forming a link or deleting a link based on comparing the expected utility between the current

stage and the next stage. If the networks we observe over time involve in mismeasured links, then

the estimates of the preference parameters in the utility function would be biased.
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The objective of this paper is to both theoretically and empirically study the identification and

estimation strategy of peer effects in networks, given that the econometricians may not be able to

observe the latent network because of mismeasured links. In the existing literature, identification

of peer effects in a given network has been studied (Blume et al. (2015), Bramoullé, Djebbari

and Fortin (2009)). Nevertheless, how to identify and estimate the peer effects in networks with

mismeasured links remains unclear.

To identify peer effects in networks with mismeasured links, we take three steps. In the first

step, we investigate the identification strategy in a generalized linear-in-mean social interaction

model. We use two adjacency matrices that summarize the link structures in peer-effects network

and contextual-effects network, separately. In the peer-effects network, an individual’s outcome is

affected by her linked individual’s outcome, while in the contextual-effects network, an individ-

ual’s outcome is affected by her linked individual’s characteristics. The peer-effects network and

the contextual-effects network are two different network structures based on a same group of indi-

viduals. The outcome variable is linearly determined by the mean of neighbors’ characteristics that

in the contextual-effects network and the mean of peer outcomes that in the peer-effects network.

Because of the linear-in-mean model, the misclassification of linkage status in the adjacency ma-

trices are transformed to measurement errors in the mean outcomes and the mean characteristics.

We first show that an weighted average of characteristics of neighbors in an individual’s peers’

contextual-effects network can be used as an instrument variable for the mean of that individual’s

peer outcomes (Bramoullé, Djebbari and Fortin (2009), Blume et al. (2015)). For simplicity, we

call the instrument variable for the mean of peer outcomes as instrumental mean characteristics.

The social effects can be identified if the observed network is assumed to be the true network of

interest.

Then to identify peer effects in networks with mismeasured links, we first apply the method

in Hu (2008). We use repeated measurements on two conditional distribution matrices: one is the

joint distribution matrix of observed mean characteristics/instrumental mean characteristics and
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outcomes conditional on covariates; the other is the distribution matrix of observed mean charac-

teristics/instrumental mean characteristics conditional on covariates. Then we use an eigenvalue-

eigenvector decomposition method based on above distribution matrices to obtain conditional

densities of latent mean characteristics/instrumental mean characteristics conditional on observed

mean characteristics/instrumental mean characteristics, separately. We use Gumbel copula param-

eter, along with the two conditional densities, to get the joint distribution of latent mean charac-

teristics and latent instrumental mean characteristics. The intuition is that repeated measurements

on mean characteristics/instrumental mean characteristics serve as instrument variables, so that

we can identify conditional densities of latent means conditional on observed means. Finally, we

adopt the conditional densities along with latent moment conditions to derive an observed condi-

tional model. Then we use a GMM method to estimate peer effects parameters. In summary, the

intuition is that with the help of conditional densities of latent instrumental mean characteristics,

we can identify peer effects in a GMM model through an observed conditional moment model,

instead of knowing the latent network structures.

In the second part, we develop a three-stage semiparametric estimator following the identi-

fication procedure. In the first stage, we use repeated measurements to estimate the conditional

densities of mean characteristics and instrumental mean characteristics, separately(Hu (2008)). In

the second stage, we propose a semiparametric pseudo-likelihood method to estimate a Gumbel

copula parameter (Genest, Ghoudi and Rivest (1995)). We use this copula parameter, along with

the distribution matrices in the first stage, to get the joint distribution of latent mean characteristics

and latent instrumental mean characteristics conditional on covariates. In the third stage, we can

estimate the social effects parameters by a GMM method.

In the third part, we carry out an empirical study by constructing firm networks then us-

ing a structural form analysis. In our empirical study, to construct the peer-effects network and

contextual-effects network, we use data from the Customer-supplier data and the merged Center

for Research in Security Prices (CRSP)-Compustat database. The firms’ peer-effects network is
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constructed by defining the linkages between two firms based on if they are customer and supplier

links. It has been seen in the finance literature that the choices made by the customers do affect the

choices made by the suppliers, and vice versa. The firms’ contextual-effects network is constructed

by defining the linkages between two firms based on if they have the same industry identification

code. It is quite clear that the firms that are in the same industry have similar characteristics and

we think these similarities may have impact on firms’ choices. As required by our identification

strategy, we need at least two repeated measurements of both the peer-effects network and the

contextual-effects network. For the peer-effects network, we use the observed customer-supplier

network in 2001 as the first measurement, while that in 2002 as the second measurement. As for

the contextual-effects network, we use the SIC 3-digit industry classification for constructing the

first measurement of adjacency matrix, while the GIC industry classification for the second mea-

surement. Our dependent variable is the leverage ratio chosen by each firms, a measure of firm’s

corporate financial policy. Our control variables include measures for firm capital structure and

measures for firm profitability. Following Leary and Roberts (2014), we use the return shock as

the exogenous peer firm characteristic that serves as the key independent variable. We begin with

a known capital structure determinant, stock returns, for the time period Jan.1991 to Dec.2000,

then we use a traditional asset pricing model to extract the idiosyncratic variation, along with the

variation among peers in stock returns. We obtain the residual from this model and define this

residual as return shock and use it to obtain the exogenous variation in peer firms’ characteristics

in year 2001. Such exogenous variation in year 2001 is used as our key independent variable. At

last we adopt the three-stage estimation method to obtain the estimates of structural parameters on

peer effect and contextual effect.

Empirical findings indicate that the contextual effect and the peer effect among firms are sta-

tistically significant. The contextual effect is positive significant with a scale around 0.3. This

indicates that if an industry experiences an increasing return shock, it is very likely that the firms

in the same industry to choose higher leverage ratio. A positive return shock usually indicates a
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prosperity in the industry, the firms in the same industry choose to increase leverages in order to

invest and gain more from the booming stock market. The peer effect is also found to be positive

and significant, with a scale around 0.8. This implies that if a firm’s customer or supplier choose to

increase its leverage ratio, it is very likely that the firm would also choose to increase its leverage

ratio. Indicated by the bargaining power theory, when firms raise their leverages, their suppliers of

customers will also raise their own leverages in response to increase their bargaining power (Hen-

nessy and Livdan (2009), Chu (2012)). Furthermore, the peer effect becomes insignificant and the

magnitude decreases if we ignore the possibilities of mismeasured network links.

This paper contributes to the existing literature of peer effects in network in several aspects.

First, this paper is one of the first papers studying the identification and estimation of peer effects

in networks with mismeasured links. In the existing literature, the adjacency matrix of network

structures is required to be observed in the sample when identifying and estimating the network

effects parameters (Bramoullé, Djebbari and Fortin (2009), Blume et al. (2015)). There are few

studies on identification of network effects parameters or preference parameters under certain re-

strictions on the observed links. In De Paula, Richards-Shubik and Tamer (2018), they study the

identification of preference parameters in networks with bounded degree. In Chandrasekhar and

Lewis (2011), they investigate the identification of social networks with use of sampled network

data. The problem of mismeasured links arises because in applied work, researchers generally

collect a sub-sample of a network. In their paper, the links between observed individuals in the

sub-sample are assumed to be true links. However, in this paper, we analyze peer effects under the

case where all the links in a network could be mismeasured with an assumption that the supports

of latent mean characteristics/instrumental mean characteristics are the same as the the supports

of observed mean characteristics/instrumental mean characteristics. In Blume et al. (2015), they

mention the idea on how to deal with unknown social matrix. Our paper provides a novel sufficient

conditions of the identification strategy on peer effect parameters that are different from the above

literature.
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Second, we contribute to the empirical literature by applying our method to analyze peer effects

of firms on their financial policies. In the existing literature, peer effects are often studied under

a network structure where firm linkages are often constructed based on if two firms are in the

same industry (Leary and Roberts (2014)). However, it is very unlikely to have every firm in the

same industry be connected and affect each other’s actions. Besides, for different kinds of industry

classification code (e.g. SIC industry code, GIC code, Standard Poor industry classification, etc.),

the classifications on firms are different, as a result the associated firm networks are different. Other

applied work on firm networks use data that to some extent describe the relationship between two

firms (e.g. customer-supplier data, connection data of members in the boards). However, for a

static network study, such data may be just a instantaneous observation on the real network. There

can be firms that are linked but unobserved and also firms that are only interacted for a very short

period but still under observed. Hence in the study of firm networks, the problem of mismeasured

links requires a lot attention. Besides, many existing econometric studies on estimation of network

effects use social network data, such as the Add Health data, the 75 villages in India data, and

etc (as in e.g., Bramoullé, Djebbari and Fortin (2009), Calvó-Armengol, Patacchini and Zenou

(2009),Goldsmith-Pinkham and Imbens (2013), ?, etc.) By using the customer-supplier data and

the CRSP data, we study peer effects among firms on their corporate financial policy(Leary and

Roberts (2014)) and provide new evidence on peer effects in economic networks.

The rest of the paper is organized as follows. Section 2 introduces the linear social interaction

model we use. Section 3 and 4 shows the identification strategy of peer effects in networks without

and with latent links, respectively. Section 5 describes the three-stage semi-parametric estimation

method. Section 6 studies the asymptotic properties of the three-stage semi-parametric estimators.

Section 7 applies the estimation method on firm networks and empirically studies the peer effects

on firms’ financial policies. Section 8 discusses conclusions and potential future works.
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3.1 The Model

We consider a generalized linear-in-mean social interaction model where individual outcome Yi is

determined by

Yi = α+β∑
j

A∗i jYj + γXc
i +δ∑

j
C∗i jX j + εi. (3.1)

In this model, Xc
i is a 1× k vector controlling for individual i’s exogenous characteristics and

Xc ≡ (Xc
1 ,X

c
2 , ...,X

c
n )

T is a n× k matrix of characteristics. Let A∗ and C∗ be two row-normalized

symmetric n× n adjacency matrices that summarize the link status in peer-effects network and

contextual effects network, with A∗i j = 1/ni if i and j are linked and A∗i j = 0 otherwise, where ni is

the number of individuals that are linked to i in the peer-effects network. C∗i j is defined similarly

to A∗i j. Let A∗ii =C∗ii = 0 by convention in the literature that individuals cannot link to themselves.

Similar to Blume et al. (2015), A∗ can be different from C∗. We assume that no individuals are

isolated in the network so that the row-normalization of A∗ and C∗ are well-defined. Note that we

use the superscript “∗" to emphasize the point that A∗ and C∗ are latent to econometrician because

of mismeasured links.

Based on the definitions of A∗i j and C∗i j, the covariate ∑ j A∗i jY j represents the average outcomes

of individuals in i’s peer-effects network. For simplicity, we call it as latent mean outcomes. The

term ∑ j C∗i jX j denotes the average characteristics of individuals in i’s contextual-effects network,

which we assume to be a discrete scalar and exogenous. Similarly, we call it as latent mean

characteristics. εi is the i.i.d error term. The structural parameters of interest include the intercept

α∈R, the endogenous peer effect β∈R, the vector of individual effects γ∈Rk, and the contextual

effects δ ∈ R. Following the literature, we require that |β|< 1.

This paper is to identify and estimate the social effects parameters θ ≡ (α,β,γT ,δ)T , given

that the econometrician may not be able to observe the true network under interest because of

mismeasured links.
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3.1.1 Identification without Latent Networks

In this section, we identify θ by assuming that A∗ and C∗ are known to analyst a priori. We show

that identification is established by imposing a simple condition on matrices A∗ and C∗.

We can write the structural model (3.1) in matrix notation, which is

Y = αι+βA∗Y + γXc +δC∗X + ε, (3.2)

where Y is an n×1 vector of actions for all individuals in the network, ι is an n×1 vector of ones.

Since |β|< 1, (I−βA∗) is invertible1. We can write:

Y = α(I−βA∗)−1
ι+ γ(I−βA∗)−1Xc +δ(I−βA∗)−1C∗X +(I−βA∗)−1

ε.

By Neumann expansion, (I−βA∗)−1 = ∑
∞
s=0 βsA∗s. Then by assuming no isolated individuals in

the latent peer-effects network A∗2, we have

Y =
α

1−β
ι+ γ

∞

∑
s=0

β
sA∗sXc +δ

∞

∑
s=0

β
sA∗sC∗X +

∞

∑
s=0

β
sA∗sε, (3.3)

which can be viewed as the reduced from equation for (3.2).

ASSUMPTION 3.1. E(εi|Xc,X) = 0.

Assumption 3.1 means that individual characteristics Xc,X are strictly exogenous. Then latent

mean outcomes conditional on Xc, X can be written as:

E(A∗Y |Xc,X) =
α

1−β
ι+ γ

∞

∑
s=0

β
sA∗s+1Xc +δ

∞

∑
s=0

β
sA∗s+1C∗X . (3.4)

Equation (3.4) implies that variables (A∗C∗X ,A∗2C∗X , . . .) can be used as instrumental variables

1See Case (1991), footnote 5.
2This implies that A∗ι = ι and α(I−βA∗)−1ι = α/(1−β)ι.

46



Figure 5: Illustration of IV

for A∗Y , provided that δ 6= 0. These IVs have socioeconomic interpretation. For example, A∗C∗X

represents an n×1 vector of weighted averages of characteristics for members in peers’ contextual-

effects network. Figure 5 illustrates the intuition for adopting A∗C∗X as IV. In this figure, individ-

ual 1 is linked to 2 and 3 in the peer-effects network, and 2 and 3 are linked to 4 and 5 in the

contextual-effects network, respectively. We are interested in peer effects of 2 and 3’s outcomes on

1’s outcome. Due to the network structure, the effects of 4 and 5’s characteristics on 1’s outcome

are solely because of their effects on 2 and 3’s outcomes, which forms a valid exclusion restriction.

Proposition 3.1. Suppose that δ 6= 0. If the matrices I, A∗, C∗ and A∗C∗ are linearly independent,

the social effects θ are identified.

Sufficient conditions that depend only on the shape of networks for linear independence of

I,A∗,C∗,A∗C∗ are given by Lemma 3.1 below and are easily satisfied.

Lemma 3.1. If there exists two distinct individuals i and j such that (i) ∑k A∗ikC
∗
ki 6= ∑k A∗jkC

∗
k j

or (ii) they are linked by a sequence of edges, some in the peer-effects network and some in the

contextual-effects network, and who are not linked by a path in either the peer-effects network or

the contextual-effects network alone, then I, A∗, C∗ and A∗C∗ are linearly independent.

In order to understand this lemma, suppose that social interaction are confined to firms in some
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industries. The term ∑k A∗ikC
∗
ki represents the contextual effect of firms that are linked to firm i in

its peer-effects network, and condition (i) requires this effect to be different for two distinct firms.

This condition can be easily satisfied if contextual effects are not distributed uniformly across all

firms. Condition (ii), on the other hand, is satisfied except possibly when the peer-effects network

and contextual-effects network are the same, i.e., A∗ =C∗.

Define Z∗i =
(

∑
n
j=1C∗i jX j,∑

n
j=1 ∑

n
k=1 A∗i jC

∗
jkXk

)
, same in matrix form Z∗ = (C∗X , A∗C∗X).

ASSUMPTION 3.2. (i) A∗sXc and A∗tC∗Xc are mean independent of C∗X and A∗C∗X, where s =

1,2, ..., t = 2,3, .... (ii) E [∑∞
s=1 βsE(A∗sXc)+∑

∞
s=2 βtE(A∗tC∗Xc)] = 0

In Assumption 3.2(i), consider the case where s = 1 and t = 2, that assuming A∗Xc and A∗C∗Xc

are mean independent of C∗X and A∗C∗X . A∗Xc is the mean of covariates in the peer-effects net-

work, while A∗C∗Xc is the mean of instrumental covariates. Then Assumption 3.2(i) implies that,

in the latent networks, mean covariates and instrumental mean covariates are mean independent

of mean characteristics and instrumental mean characteristics. Because of mean independence,

E(Y |Xc,Z∗) can be written as

E(Y |Xc,Z∗) =
α

1−β
ι+ γXc +δC∗X +δβA∗C∗X +E

[
∞

∑
s=1

β
sE(A∗sXc)+

∞

∑
t=2

β
tE(A∗tC∗Xc)

]

Based on zero mean condition 3.2(ii), the reduced form equation (3.3), and discussions above, we

have the following parametric conditional moment model:

E(Yi|Xc
i ,Z
∗
i ) =

α

1−β
+ γXc

i +δ

n

∑
j=1

C∗i jX j +δβ

n

∑
j=1

n

∑
k=1

A∗i jC
∗
jkXk ≡ m(Xc

i ,Z
∗
i ;θ). (3.5)

Therefore, we can identify the social parameters θ by the conditional moment condition

E [Yi−m(Xc
i ,Z
∗
i ;θ)|Xc

i ,Z
∗
i ] = 0. (3.6)
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3.1.2 Identification with Latent Networks

In this section, we discuss identification of social parameters θ when A∗ and C∗ are unobserved

because of mismeasured links. Then the moment condition (3.6) becomes infeasible. In data, we

can only observe contaminated measures A and C for A∗ and C∗, respectively. Let Zi denote the

(observed) instrument variables with A∗i j replaced by Ai j and C∗i j replaced by Ci j

Let fZ∗|Z,Xc denote the conditional density of latent variable given the contaminated measure

Z and the covariate Xc. Define Zi =
(

∑
n
j=1Ci jX j,∑

n
j=1 ∑

n
k=1 Ai jC jkXk

)
, where Ai j is the entry in

the i-th row and j-th column of matrix A (and similarly for Ci j). If we can identify fZ∗|Z,Xc , then

instead of the latent model (3.5), we can identify the social parameters θ through the observed

conditional moment model

E(Yi|Xc
i ,Zi) =

∫
m(Xc

i ,Z
∗
i ;θ) fZ∗|Z,XcdZ∗. (3.7)

The above observed conditional moment model (3.7) holds under Assumption 3.4(ii), proof can be

found in Appendix B. It implies, by the law of iterated expectation, the following unconditional

moment condition:

E
[(

Yi−
∫

m(Xc
i ,Z
∗
i ;θ) fZ∗|Z,XcdZ∗

)
Si

]
≡ E [g(Yi,Si,θ)] = 0, (3.8)

where Si = (1,XcT
i ,ZT

i )
T . Therefore, the objective of this section is to identify the conditional

density fZ∗|Z,Xc .

Denote by Z∗ and Z the support of Z∗ and Z. Let Z∗1 ≡∑
n
j=1C∗i jX j and Z∗2 ≡∑

n
j=1 ∑

n
k=1 A∗i jC

∗
jkXk

(and similarly for Z1 and Z2). By Bayes’ Theorem,

fZ∗|Z,Xc =
fZ|Z∗,Xc fZ∗|Xc fXc

fZ,Xc
. (3.9)

Therefore, in order to identify fZ∗|Z,Xc we can try to identify fZ|Z∗,Xc and fZ∗|Xc .
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ASSUMPTION 3.3. (i) fZ|Z∗,Xc = fZ1|Z∗,Xc fZ2|Z∗,Xc and (ii) fZm|Z∗,Xc = fZm|Z∗m,Xc for m = 1,2.

Assumption 3.3 (i) means that Z1 and Z2 are independent with each other when conditioning

on the latent variables Z∗ and the covariate Xc. A sufficient condition for condition (i) is the

independence of measurement errors in Z1 and Z2. For example, suppose Z∗1 = (X1 +X2 +X3)/3,

Z1 = (X1 +X2 +X4)/3, Z∗2 = (X5 +X6)/2 and Z2 = (X6 +X7)/2. Then the measurement errors in

Z1 and Z2 are (X4−X3)/3 and (X7−X5)/2, respectively. The measurement errors are independent

with each other because {Xi}i∈N is independent across different individuals.

Condition (ii) requires Zl to be independent with Z∗m when conditioning on Z∗l and Xc for

l,m = 1,2, l 6= m. One of the sufficient conditions for (ii) is that the measurement error in Zl is

independent with Z∗m. Consider the example above, the measurement error in Z1 is (X4−X3)/3,

which is independent of Z∗2 = (X5 +X6)/2.

By Assumption 3.3,

fZ|Z∗,Xc = fZ1|Z∗1 ,Z∗2 ,Xc fZ2|Z∗1 ,Z∗2 ,Xc = fZ1|Z∗1 ,Xc fZ2|Z∗2 ,Xc .

Consequently, in order to identify fZ|Z∗,Xc we can try to identify the conditional densities fZ1|Z∗1 ,Xc

and fZ2|Z∗2 ,Xc . The identification requires another measurement of the peer-effects and contextual-

effects network, which we denote as A′ and C′.

Then we have Z′1 ≡ ∑
n
j=1C′i jX j and Z′2 ≡ ∑

n
j=1 ∑

n
k=1 A′i jC

′
jkXk.We impose the following addi-

tional assumptions to in order to apply the results in Hu (2008).

ASSUMPTION 3.4. For m = 1,2, (i) fZm|Z′m,Z∗m,Xc = fZm|Z∗m,Xc ; (ii) fY |Zm,Z′m,Z∗m,Xc = fY |Z∗m,Xc

Assumption 3.4 (i) requires the two measurements to be independent with each other when

conditioning on the latent variable Z∗m,m = 1,2 and the covariate Xc. Equivalently, it requires the

measurement error in Z1 is independent of the measurement error in Z′1. For an arbitrary individual

i, this means its mismeasured links in different observed networks should be different. Let us

still use the example discussed before: Z∗1 = (X1 +X2 +X3)/3 and Z1 = (X1 +X2 +X4)/3. If

50



Z′1 = (X2+X3+X5)/3, then the measurement errors in Z1 and Z′1 are (X4−X3)/3 and (X5−X1)/3,

which are obviously independent with each other. Condition (ii) means the two measurements

are independent with the outcome variable Y when conditioning on the latent variable and the

covariate. Assumption 3.4 is commonly imposed in the measurement error literature, see, e.g., Hu

(2008), Hu and Schennach (2008) and Hu (2017).

ASSUMPTION 3.5. |Zm|= |Z′m|= |Z∗m|= Km, m = 1,2.

Assumption 3.5 is similar to Hu (2017) and requires the dimension of the support of two mea-

surements to be equal to that of the support of Z∗m. Otherwise the measurements will not have

enough information to identify the distribution of the latent variables. This assumption can be

relaxed to allow |Zm| and |Z′m| to be larger than |Z∗m|. Assumptions 3.4 implies that

fZm,Z′m,Y |Xc(zm,z′m,y|xc) =

∑
z∗m∈Z∗

fZm|Z∗m,Xc(zm|z∗m,xc) fZ′m|Z∗m,Xc(z′m|z∗m,xc) fY |Z∗m,Xc(y|z∗m,xc) fZ∗m|Xc(z∗m|xc).
(3.10)

For each Y = y and Xc = xc, we define

MZm,Z′m,Y |Xc =
[

fZm,Z′m,Y |Xc(zmi,z′m j,y|xc)
]

i=1,2,...,Km; j=1,2,...,Km
,

DY |Z∗m,Xc = diag
{

fY |Z∗m,Xc(y|z∗m1,x
c), fY |Z∗m,Xc(y|z∗m2,x

c), . . . , fY |Z∗m,Xc(y|z∗mKm
,xc)

}
,

MZm|Z∗m,Xc =
[

fZm|Z∗m,Xc(zml|z∗mk,x
c)
]

l=1,2,...,Km;k=1,2,...,Km
,

DZ∗m|Xc = diag
{

fZ∗m|Xc(z∗m1|xc), fZ∗m|Xc(z∗m2,x
c), . . . , fZ∗m|Xc(z∗mKm

|xc)
}

.
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Then (3.10) is equivalent to

MZm,Z′m,Y |Xc = MZm|Z∗m,XcDY |Z∗m,XcDZ∗m|XcMT
Z′m|Z∗m,Xc ,m = 1,2. (3.11)

ASSUMPTION 3.6. MZm|Z∗m,Xc and MZ′m|Z∗m,Xc has rank Km for m = 1,2.

Assumption 3.6 has been used in Newey and Powell (2003), Mahajan (2006) and Hu (2008).

In the case when the measurements Zm and Z′m take fewer values than Z∗m, Assumption 3.6 may fail

to hold. In Appendix 5, we give an example of how easy this assumption can be satisfied. Define

MZm,Z′m|Xc =
[

fZm,Z′m|Xc(zmi,z′m j|xc)
]

i=1,2,...,Km; j=1,2,...,Km
.

Similar to (3.11), we have

MZm,Z′m|Xc = MZm|Z∗m,XcDZ∗m|XcMT
Z′m|Z∗m,Xc . (3.12)

Equation (3.12) implies that the rank of the observed matrix MZm,Z′m|Xc equals to Km. Therefore,

Assumption 3.6 can be tested.

Lemma 3.2. Under Assumption 3.5 and 3.6, the rank of matrix MZm,Z′m|Xc is Km for m = 1,2.

Assumption 3.6 together with (3.11) and (3.12) implies that

MZm,Z′m,Y |XcM−1
Zm,Z′m|Xc = MZm|Z∗m,XcDY |Z∗m,XcM−1

Zm|Z∗m,Xc. (3.13)

This equation implies that observed matrix on the left hand side of (3.13) has an eigenvalue-

eigenvector decomposition. Then fZm|Z∗m,Xc can be identified as the eigenvector of the observed

matrix up to permutation of its rows. In order to guarantee the identification is unique, we need to

have another assumption:
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ASSUMPTION 3.7. For m = 1,2 and z∗m 6= z̃∗m, (i) fY |Z∗m,Xc(y|z∗m,xc) 6= fY |Z∗m,Xc(y|z̃∗m,xc);

(ii) fZm|Z∗m,Xc(z∗m|z∗m,xc)> fZm|Z∗m,Xc(z̃m
∗|z∗m,xc).

Assumption 3.7 (i) ensures that the eigenvalues { fY |Z∗m,Xc(z′′m|z∗mk,x
c)}k=1,2,...,Km are distinctive

and rules out the case of duplicate eigenvalues. Condition (ii) implies that z∗m is the mode of

distribution fZm|Z∗m,Xc(y|z∗m,xc) and hence the ordering of the eigenvectors. These two conditions

together guarantee that the decomposition in (3.13) is unique.

The conditional marginal distribution of Zm can be represented as fZm|Xc = ∑Z∗m fZm|Z∗m,Xc fZ∗m|Xc .

The matrix representation is

MZm|Xc = MZm|Z∗m,XcMZ∗m|Xc,

where

MZm|Xc =
[

fZm|Xc(zml|xc)
]T

l=1,2,...,Km

and

MZ∗m|Xc =
[

fZ∗m|Xc(z∗ml|xc)
]T

l=1,2,...,Km
.

Therefore, by Assumption 3.6 the conditional density of Z∗m can be identified as

MZ∗m|Xc = M−1
Zm|Z∗m,XcMZm|Xc , m = 1,2. (3.14)

Proposition 3.2. Under Assumptions 3.4-3.7, the conditional densities fZm|Z∗m,Xc and fZ∗m|Xc are

nonparametrically identified for m = 1,2.

The next step is to identify the (conditional) joint density fZ∗|Xc . Since Z∗1 and Z∗2 can be

dependent with each other3, we will apply Sklar’s Theorem to identify it. Let Cσ denote the

parametric conditional copula function with parameter σ,

ASSUMPTION 3.8. For conditional copula functions Cσ

(
FZ∗1 |Xc,FZ∗2 |Xc

)
and Cσ̃

(
FZ1|Xc,FZ2|Xc

)
,

3Z∗1 and Z∗2 may contain same individual’s characteristics.
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σ = σ̃.

Assumption 3.8 requires the parameter of the conditional copula function for Z∗1 and Z∗2 to be

the same as that of Z1 and Z2. This assumption implies that the dependent structure Z∗1 and Z∗2 will

not be contaminated by the measurement errors. Hence, the copula parameter σ can be identified

by the conditional distributions of Z1 and Z2. Furthermore, the conditional distribution functions

of Z∗m can be identified by fZ∗m|Xc . Consequently, by Sklar’s Theorem we have

fZ∗|Xc = cσ

(
FZ∗1 |Xc ,FZ∗2 |Xc

)
fZ∗1 |Xc fZ∗2 |Xc ,

where cσ is the density of Cσ. Finally, because the densities fXc and fZ,Xc can be directly identified

from data, the (joint) conditional density fZ∗|Z,Xc can be identified by (3.9).

Theorem 3.1. Under Assumptions 3.3-3.8, the conditional density fZ∗|Z,Xc is semiparametrically

identified.

3.2 Estimation

Since the identification is constructive, we propose a three-stage semiparametric estimator follow-

ing the identification procedure step by step. In the first stage, we estimate the conditional densities

fZm|Z∗m,Xc and fZ∗m|Xc by nonparametric method. In the second stage, the copula function C is es-

timated via the pseudo likelihood method similar to Genest, Ghoudi and Rivest (1995), and we

obtain the conditional joint density of Z∗1 and Z∗2 . Finally, in the third stage we estimate the social

parameters θ by GMM.
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3.2.1 Nonparametric Estimation of the Conditional Density

We estimate the joint distributions of Zm, Z′m, Y and Xc using a simple frequency estimator (m =

1,2),

f̂Zm,Z′m,Y,Xc(zm,z′m,y,x
c) =

1
n

n

∑
i=1

1(Zmi = zm,Z′mi = z′m,Yi = y,Xc
i = xc),

where 1(·) is the indicator function. Similarly, we can estimate fZm,Z′m,Xc and fXc using the fre-

quency estimator. Then, the conditional distribution matrices MZm,Z′m,Y |Xc and MZm,Z′m|Xc can be

estimated by stacking the estimate of fZm,Z′m,Y,Xc , fZm,Z′m,Xc and fXc as follows:

M̂Zm,Z′m,Y |Xc =

[
f̂Zm,Z′m,Y,Xc( j, l,y,xc)

f̂Xc(xc)

]
j,l

,

and

M̂Zm,Z′m|Xc =

[
f̂Zm,Z′m,Xc( j, l,xc)

f̂Xc(xc)

]
j,l

.

Then, following the identification procedure, the conditional density fZm|Z∗m,Xc are estimated as

f̂Zm|Z∗m,Xc = ψ

(
M̂Zm,Z′m,Y |XcM̂−1

Zm,Z′m|Xc

)
,

where ψ(·) is the eigenvector function. Note that we need to normalize the sum of each column to

be 1. Furthermore, the marginal distribution Z∗m conditional on Xc can be estimated by

M̂Z∗m|Xc = M̂−1
Zm|Z∗m,XcM̂Zm|Xc,

where M̂Z∗m|Xc = [ f̂Z∗m|Xc( j|xc)] j. Note that M̂Zm|Xc = [ f̂Zm|Xc( j|xc)] j is directly obtained from data

by using the frequency estimator.
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3.2.2 Semiparametric Estimation of the Copula Function

Following Genest, Ghoudi and Rivest (1995), we propose a semiparametric pesudo-likelihood

method to estimate the copula function C. Let

F̂Zm,Xc(zm,xc) =
1
n

n

∑
i=1

1(Zmi ≤ zm,Xc
i ≤ xc)

and

F̂Xc(xc) =
1
n

n

∑
i=1

1(Xc
i ≤ xc)

denote the empirical distribution functions for FZm,Xc and FZm,Xc , m = 1,2. Then, the conditional

distribution function FZm|Xc can be estimated as

F̂Zm|Xc(zm|xc) =
F̂Zm,Xc(zm|xc)

F̂Xc(xc)
.

We parametrize the conditional copula function to be Cσ. Then, the copula parameter σ will be

estimated by

σ̂ = argmax
σ

n

∑
i=1

log
[
cσ(F̂Z1|Xc(Z1i|Xc

i ), F̂Z2|Xc(Z2i|Xc
i ))
]
, (3.15)

where cσ is the density of Cσ. Then, the identification procedure implies that the density fZ∗|Xc can

be estimated as

f̂Z∗|Xc = cσ̂

[
F̂Z∗1 |Xc , F̂Z∗2 |Xc

]
f̂Z∗1 |Xc f̂Z∗2 |Xc.

3.2.3 GMM Estimation of the Social Parameters

In the third stage, we estimate the social parameters θ by the GMM method. Specifically, let V̂

denote a (k+3)× (k+3) weighting matrix,

θ̂ = argmin
θ

(
1
n

n

∑
i=1

ĝ(Yi,Si,θ)

)T

V̂

(
1
n

n

∑
i=1

ĝ(Yi,Si,θ)

)
, (3.16)
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where

ĝ(Yi,Si,θ) =

(
Yi−

∫
m(Xc

i ,Z
∗
i ;θ) f̂Z∗|Z,Xc(z∗|Zi,Xc

i )dz∗
)

Si,

and

f̂Z∗|Z,Xc =
f̂Z|Z∗,Xc f̂Z∗|Xc f̂Xc

f̂Z,Xc
.

3.3 Asymptotic Properties

In this section, we establish the asymptotic properties of the three-stage semiparametric estimators.

First, we show that the frequency estimator for the conditional density is consistent.

ASSUMPTION 3.9. (i) {Xc
i }i∈N is i.i.d; (ii) {Wmi}i∈N ≡ {(Zmi,Z′mi,Yi)}i∈N is strictly station-

ary for m = 1,2; (iii) For m = 1,2, limn→∞ Cov[1(Zmi = z,Xc
i = x),1(Zm j = z,Xc

j = x)] = 0,

limn→∞ Cov[1(Zmi = z,Z′mi =Z,Xc
i = x),1(Zm j = z,Z′m j = z,Xc

j = x)]= 0 and limn→∞ Cov[1(Wmi =

w,Xc
i = x),1(Wm j = w,Xc

j = x)] = 0.

Assumption 3.9 (i)-(ii) are standard in literature. Condition (iii) implies that the covariance

of indicator functions between different observations of random variables Xc
i , Zmi, Z′mi and Wmi

converges to zero as n→∞. The reason why we need this assumption is due to the structure of Zmi

(and Z′mi), which contains individual’s characteristics. Zmi and Zm j will be dependent with each

other if they share same individual’s characteristics. For example, if Zmi = (X1 +X2 +X3)/3 and

Zm j = (X3 +X4 +X5)/3, then Zmi and Zm j are not independent because they share X3. Similar

argument applies to Z′mi and Z′m j. This condition ensures that standard law of large numbers works

for these indicator functions.

Proposition 3.3. Under Assumption 3.9, f̂Zm|Z∗m,Xc
p−→ fZm|Z∗m,Xc and f̂Z∗m|Xc

p−→ fZ∗m|Xc for m = 1,2.

Next, we show that the second-stage pesudo-likelihood estimator for the copula parameter σ is

57



consistent. Following Rio (2017), for real-valued random variables X and Y , we set

τ(X ,Y ) = 2 sup
(x,y)∈R2

|Pr(X > x,Y > y)−Pr(X > x)Pr(Y > y)|

as the strong mixing coefficient. The strong mixing coefficient between two σ-fields A and B is

defined by

τ(A ,B) = 2sup{|Cov(1A,1B)| : (A,B) ∈ A×B}.

Let σ0 denote the true value of σ. Also we use Σ and Fm denote the support for σ and Fm ≡ FZm|Xc ,

m = 1,2, respectively. We impose the following assumptions,

ASSUMPTION 3.10. (i) Ω≡ Σ×F1×F2 is a compact metric space with metric ‖ ·‖; (ii) For each

σ ∈ Σ and Fm ∈ Fm, m = 1,2, logcσ(F1,F2) is measurable; (iii) For each Zmi ∈ Zm and Xc
i ∈ X c,

logcσ(F1,F2) is continuously differentiable on Ω to order 3; (iv) limn→∞ τ(Si,S j) = 0, where Si

denote the σ-field induced by (Zi,Z′i ,X
c
i ,Yi).

Conditions (i)-(iii) are standard in the MLE literature. Condition (iv) is a stronger version of

Assumption 3.9 (iii) and implies that the covariance between measurable functions of (Zi,Z′i ,X
c
i ,Yi)

and (Z j,Z′j,X
c
j ,Yj) will converge to 0 as n→ ∞ for i 6= j.

Proposition 3.4. Under Assumptions 3.9-3.10, σ̂
p−→ σ0.

Next, we establish the asymptotic normality of the semiparametric estimator σ̂ under suitable

regularity conditions.

ASSUMPTION 3.11. (i) σ0 ∈ int(Σ); (ii) b≡E[∇σ,σ logCδ(F1,F2)]< 0; (iii) For m= 1,2, ‖F̂Zm,Xc−

FZm,Xc‖∞ = op(rn), where ‖ · ‖∞ is the sup-norm and rn is a nonstochastic positive real sequence

such that rn < n−1/4 for each n; (iv) ∑
n
i=1 ∑

n
j 6=i τ(Si,S j)< ∞

Conditions (i) and (ii) of Assumption 3.11 are standard in the literature. Condition (iii) requires

that the uniform convergence rate of the empirical distribution function F̂Zm,Xc to be faster than

58



n−1/4, which is necessary for deriving the asymptotic distribution of semiparametric M-estimators,

see, e.g., Newey (1994) and Newey and McFadden (1994). Condition (iv) is a technical condition

that makes central limit theorem work for weakly dependent random variables.

Define

v2 = lim
n→∞

1
n

Var

{
n

∑
i=1

[∇σ logCδ(F1(Z1i|Xc
i ),F(Z2i|Xc))+K1(Z1i,Xc

i )+K2(Z2i,Xc
i )+K3(Xc

i )]

}
,

where

K1(Z1i,Xc
i ) =

∫
1(Z1i ≤ z1,Xc

i ≤ xc)
[
∇σ,FZ1,X

c logcσ(F1(z1|xc),F2(z2|xc))
]

dFZ1,Z2,Xc(z1,z2,xc),

K2(Z2i,Xc
i ) =

∫
1(Z2i ≤ z2,Xc

i ≤ xc)
[
∇σ,FZ2,X

c logcσ(F1(z1|xc),F2(z2|xc))
]

dFZ1,Z2,Xc(z1,z2,xc)

and

K3(Xc
i ) =

∫
1(Xc

i ≤ xc)
[
∇σ,FXc logcσ(F1(z1|xc),F2(z2|xc))

]
dFZ1,Z2,Xc(z1,z2,xc).

The asymptotic distribution of σ̂ can be summarized as follows.

Proposition 3.5. Under Assumptions 3.9-3.11,
√

n(σ̂−σ0)
p−→ N(0,v2/b2).

Now, we show that the third-stage GMM estimator for the social parameter θ is consistent. De-

fine η = ( fZ1,Z′1,Y,X
c, fZ2,Z′2,Y,X

c , fZ1,Z′1,X
c , fZ2,Z′2,X

c , fZ1,Xc , fZ2,Xc , fZ,Xc , fXc)T . Then, g(Yi,Si,θ) can

be written as gi(θ,σ,η). Let Θ and H denote the support for θ and η, respectively. Also use θ0 to

denote the true value of θ. We impose the following assumptions,

ASSUMPTION 3.12. (i) Θ is compact; (ii) For each σ ∈ Σ and η ∈ H , gi(θ,σ,η) is measurable;

(iii) For each Zi ∈Z, gi(θ,σ,η) is continuously differentiable on Θ×Σ×H to order 2; (iv) V̂
p−→V ,

a positive definite (k+3)× (k+3) matrix.

Assumption 3.12 (i)-(iii) are similar to Assumption 3.10. Condition (iv) is standard in the

GMM literature.
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Theorem 3.2. Under Assumptions 3.9, 3.10 and 3.12, θ̂
p−→ θ0.

Next, we establish the asymptotic normality of the semiparametric GMM estimator θ̂ under

suitable regularity conditions.

ASSUMPTION 3.13. (i) θ0 ∈ int(Θ); (ii) G≡ {E[∇θgi(θ0,σ0,η0)]}TVE[∇θgi(θ0,σ0,η0)] is posi-

tive definite; (iii) ‖η̂−η0‖∞ = op(rn), where rn is a nonstochastic positive real sequence such that

rn < n−1/4 for each n.

Assumption 3.13 is similar to Assumption 3.11 (i)-(iii) and is standard in the literature. First,

we introduce some notations. Define R = E[∇θgi(θ0,σ0,η0)], ζi = (Zi,Z′i ,Yi,Xc
i ),

ζmi = (Zmi,Z′mi,Yi,Xc
i ), ζ̃i = (Zi,Z′i ,X

c
i ), ζ̃mi = (Zmi,Z′mi,X

c
i ),

H1m(ζmi) =
∫
1(ζmi = ζm)∇ fZm,Z′m,Y,Xc gi(θ0,σ0,η0)dFZ,Z′,Y,Xc(ζ),

H2m(ζ̃i) =
∫
1(ζ̃i = ζ̃m)∇ fZm,Z′m,Xc gi(θ0,σ0,η0)dFZ,Z′,Y,Xc(ζ),

H3m(Zmi,Xc
i ) =

∫
1(Zmi = zm,Xc

i = xc)∇ fZm,Xc gi(θ0,σ0,η0)dFZ,Z′,Y,Xc(ζ),

H4m(Zi,Xc
i ) =

∫
1(Zi = z,Xc

i = xc)∇ fZ,Xc gi(θ0,σ0,η0)dFZ,Z′,Y,Xc(ζ),

H5m(Xc
i ) =

∫
1(Xc

i = xc)∇ fXc gi(θ0,σ0,η0)dFZ,Z′,Y,Xc(ζ),

and

Λ = lim
n→∞

1
n

Var

{
n

∑
i=1

[gi(θ0,σ0,η0)+νi +ξi]

}
,

where

νi = E [∇σgi(θ0,σ0,η0)]
∇σ logCδ(F1(Z1i|Xc

i ),F2(Z2i|Xc))+K1(Z1i,Xc
i )+K2(Z2i,Xc

i )+K3(Xc
i )

−E[∇σ,σ logCδ(F1,F2)]
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and

ξi =
2

∑
m=1

[
H1m(ζmi)+H2m(ζ̃i)+H3m(Zmi,Xc

i )+H4m(Zi,Xc
i )+H5m(Xc

i )
]
.

The asymptotic distribution of σ̂ can be summarized as follows.

Theorem 3.3. Under Assumptions 3.9-3.13,
√

n(θ̂−θ0)
d−→ N(0,G−1RTV ΛV RG−1).

3.4 Empirical Study

In applied work, firm linkages are often constructed based on if two firms are in the same industry.

However, it is unlikely to have every firm in the same industry connected. Besides, for different

kinds of industry classification code(e.g. SIC industry code, GIC code, Standard Poor industry

classification, etc.), classifications on firms are different, as a result the associated firm networks

are different. Other applied work on firm networks use data that to some extent describe the

relationship between two firms (e.g. customer-supplier data, connection data of members in the

boards). However, for a static network study, such data may be just a instantaneous observation on

the true network of interest. There can be firms that are linked but unobserved and also firms that

are only interacted for a very short period but still under observed. Therefore, in the study of firm

networks, the problem of mismeasured links is quite commonly seen, hence requires a lot attention

to deal with.

In this section, we carry out an empirical analysis to study the peer effects among firms on their

corporate financial policies. We construct both peer-effects network and contextual-effects network

based on a sample of 419 firms. The peer-effects network is constructed by defining the linkage

between two firms based on if they form a customer and supplier link. It has been seen in the

literature that corporate financial policies made by customers do affect corporate financial policies

made by suppliers, and vice versa. The contextual-effects network is constructed by defining the

linkages between two firms based on if they are in the same industry. In general, firms that in the

same industry have similar characteristics and these similarities have impact on firms’ corporate
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financial policies. Empirical findings indicate that the peer effect and contextual effect among

firms are statistically significant. But if we ignore the existence of mismeasured network links,

peer effect becomes insignificant.

3.4.1 Data and Summary Statistics

Our primary data come from two sources: the Customer-supplier data for the period 2001 and

2002, and the merged Center for Research in Security Prices (CRSP)-Compustat database for the

period 1996 to 2001. After merging two data sets and getting rid of isolated firms in customer-

supplier data, we get the full sample with 419 observations.

The dependent variable is the leverage ratio chosen by each firms. Leverage ratio is defined

as the ratio between a firm’s debt and equity, which is regarded as a choice of firm’s financial

policy. The independent variable is return shock, introduced by Leary and Roberts (2014), that is

constructed to be strictly exogenous. We follow Leary and Roberts (2014) regression procedure

to predict this idiosyncratic shock in 2001 by using data from period 1996 to 2000. Details on

obtaining return shock is discussed in Section 7.1.2.

We allow for four variables to control for the firms’ capital structures and profitability. These

variables are firms’ market to book ratio, logarithm of sales turnover rates, the ratio between earn-

ings per shares from operations and assets, and the ratio between net property, plant, and equipment

and assets. The market to book ratio and the ratio between net property, plant, and equipment and

assets are two variables that describe a firm’s capital structure. The logarithm of sales turnover

rates and the earnings per shares from operations control for a firm’s ability in making profit. In

our identification method, an instrument variable as indicator is required. We use firm size, defined

as logarithm of assets, as the indicator variable (Z′′).

Table 12 provides the summary statistics on control variables, the dependent variable, the in-

dependent variable and the instrument variable.

We use the Customer-supplier data to construct firm’s peer-effect networks (A and A′), by
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Table 12: Summary Statistics of Variables

Variable Mean Std. Dev. Min. Max. Sample Size
Control variables
Market to book ratio 2.5208 7.9466 -33.2166 121.874 419
Log(sales/turnover) 1.9564 1.1426 -1.4815 4.6296 419
EPS from operations/assets -0.0758 0.7337 -8.9888 4.7416 419
Net PPE/assets 0.2472 0.1942 0 0.9743 419
Dependent variable
Leverage 0.2947 3.765 -46.811 46.2578 419
Independent variable
Idiosyncratic return 0.0315 0.2724 -0.6007 3.1792 419
Instrument variable
Log(Assets) 6.1885 2.5634 0.6632 13.3403 419

defining the firms as the nodes and the customer-supplier pairs as the links. The customer firms’

choices on financial policies can affect the supplier firms’ choices of financial policies, and vice

versa. So the adjacency matrices for firms’ peer-effect networks are undirected and symmetric.

Specifically, the Customer-supplier data in 2001 is used as the first measurement for peer-effect

network (A); while the Customer-supplier data in 2002 is used as the second measurement (A′).

We get the firms’ contextual-effect networks (C and C′) based on the industry classification

codes. The nodes are defined as the same set of firms in the Customer-supplier data and the links

are defined as the firm-pairs that are from the same industry. Firms’ choices on financial policies

can be affected by the characteristics of other firms that are from the same industry. Specifically,

we use the 3-digit SIC code as the first measurement for contextual-effect network(C) and the GIC

industry code as the second measurement (C′).

Figure 6 presents the matrix plots of the same 50 firms from our sample. We found for both

the contextual-effects network and the peer-effects network, the repeated measurements indeed

have different link structures. Besides, a larger fraction of links are the same in the repeated

measurements. Figure 7 provides the histogram on degrees of all measurements of the peer-effects

network and the contextual-effects network. We require no isolated firms in peer-effect networks

but allow for isolated firms in contextual-effect networks. From Figure 7, we observe that all the
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four networks, especially the peer-effect networks, are sparse, as required by our model.

In our model, we require Xi to be an exogenous peer firm characteristic. It is not trivial to

find such exogenous characteristic even by controlling for firm i’s own characteristics. Following

the identification strategy in Leary and Roberts (2014), we begin with a known capital structure

determinant, stock returns, for the time period Jan.1991 to Dec. 2000. We use a traditional asset

pricing model to extract the idiosyncratic variation, along with the variation among peers in stock

returns. We obtain the residual from this model and define this residual as the return shock and use

it to obtain the exogenous variation in peer firms’ characteristics in year 2001. Such exogenous

variation in year 2001 is used as Xi in our model.

The intuition behinds the return shock follows the event study approach. We need to identify

certain events that are relevant for peer firms but are random conditional on observables- firm i’s

capital structure. Such events or shocks can be accidental CEO deaths, accounting scandals, and

so on. But we cannot directly apply these events because such events are rare to see and lack

of external validity. Besides, it is also unclear whether these events are exogenous because of

spillover effects. Therefore, we need to address the shortcomings in event study approach. The

details on obtaining return shock are discussed as below.

First, we run a regression for each firm’s stock return on a rolling basis using historical monthly

data for period from January 1996 to Decemeber 2000:

ri jt = αi jt +β
M
i jt(rmt− r ft)+β

IND
i jt (r̄−i jt− r ft)+ηi jt , (3.17)

where ri jt refers to the stock return for firm i in industry j over month t, (rmt− r ft) is the monthly

excess market return, and (r̄−i jt− r ft) is the excess return on an equal-weighted industry portfolio

excluding firm i’s return. We use the first measurement for contextual-network as such industry

classification. The idiosyncratic return is given by:
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Figure 6: Networks for Fifty Firms

Figure 6 presents the matrix plots of the same 50 firms from our sample. We found for both the contextual-
effects networks and the peer- effects networks, the repeated measurements indeed have different link

structures.
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Figure 7: Histograms of Degree in Each Network

Figure 7 presents the histogram figures of number of links in each network. The horizontal axis is the
degree level, which measures the number of direct links of a firm. The vertical axis is the number of firms.
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Idiosyncratic Returni jt ≡ η̂i jt = ri jt− r̂i jt = α̂i jt + β̂
M
i jt(rmt− r ft)+ β̂

IND
i jt (r̄−i jt− r ft) (3.18)

We require at least 20 months and up to 60 months of historical data for each firm in the

estimation. For example, to obtain the idiosyncratic returns for Google Inc. between January

2001 and December 2001, we first estimate equation 3.17 using data between January 1996 and

December 2000. Once we get the estimators (α̂i jt , β̂
M
i jt , β̂

IND
i jt ), we use these parameters to predict

the expected return in 2001 using historical data on excess market returns and excess industry

returns for Google Inc. in 2001. Then as shown in equation 3.18, we subtract the expected return

from the Google Inc. return in 2001 to get the idiosyncratic return for Google Inc. in year 2001.

Table 13 presents summary statistics for the return shock regression results. We get estimation

results for each firm in the sample, so the sample size for each result is also 419. The mean of

number of observations per regression is 37 and the average adjusted R2 is 13%. The average

coefficients on market excess return and excess industry return are both positive. The average

expected return is 0.0349 and the average idiosyncratic return is 0.0315. The 419 predicted results

of idiosyncratic return is used as Xi, for each i in our model.

Table 13: Summary Statistics of Return Shock Regression

Variable Mean Std. Dev. Min. Max. N
Summary statistics o f variables
Stock returns 0.0665 0.274 -0.4545 3.2727 419
Return excess market return -0.0509 0.0579 -0.1424 0.0579 419
Return excess avg. industry return 0.0195 0.1517 -0.3131 0.6429 419
Summary statistics o f regression results
αi 0.0414 0.0365 -0.083 0.1582 419
βM

i 0.3676 0.6930 -1.8269 2.6499 419
βIND

i 0.4521 0.5212 -0.9703 3.9235 419
Obs. per regression 37.0406 11.5934 20 60 419
Adjusted R2 0.1347 0.1467 -0.1023 0.7023 419
Summary statistics o f predicted results
Expected return 0.0349 0.1153 -0.2659 0.5279 419
Idiosyncratic return 0.0315 0.2724 -0.6007 3.1792 419
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3.4.2 The Empirical Model

Our empirical model is a generalization of a linear-in-mean model, where we distinguish the peer-

effects network with the contextual-effects network,

Yi = α+ γ
′Xc

i +β∑
j

A∗i jYj +δ∑
j

C∗i jX j + εi,

where the index i and i j correspond to firm i and links between firms i and j, respectively. The

outcome variable, Yi, is a measure of corporate financial policy, such as leverage. The variable

∑ j A∗i jYj denotes the average of peer firm leverage ratios in the peer-effects networks. Since all

the diagonal elements in the adjacency matrix A∗ are zeros, such average leverages exclude self-

leverage. The K-dimensional vectors Xc
i are control variables including measures for firm capital

structure and measures for firm profitability. The key independent variable, Xi, is the return shocks

that are exogenous.

We refer to the parameter vector of interest, (α,γ,β,δ), as structural parameters, to distinguish

them from reduced-form parameters that appear in the context of instrumental variables. Social ef-

fects are captured by β and δ, which measure the peer effect and the contextual effect, respectively,

on firms’ leverage ratios. Under our identification strategy, with the help of instrument variables,

we obtain the reduce form equation,

Yi = α̃+ γ̃
′Xc

i + β̃∑
j

A∗ikC
∗
k jX j + δ̃∑

j
C∗i jX j + εi,

where the notation tilde refers to reduced form parameters that are functions of the structural

parameters. Specifically,

α̃ =
α

1−β
; γ̃ = γ; δ̃ = δ; β̃ = δβ.

Our empirical estimation follows the estimation strategy introduced in Section 5. In the first
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step, we obtain the empirical joint distribution of the first measurement and the second measure-

ment of the mean characteristics(Z1i and Z′1i), and the empirical joint distribution of the first and

the second measurement of the instrumental mean characteristics(Z2i and Z′2i). Also, we obtain

the above empirical joint distributions conditional on the instrument indicator variable, Z′′, which

is an indicator of firm size. We use the logarithm of firm assets and set it as a binary variable.

Z′′ is one if firm asset is greater than 75 (in millions of dollars), and zero otherwise. Then we

use an eigenvector decomposition to get the predicted conditional distribution, fZ′′=z(Z∗1 |Z1) and

fZ′′=z(Z∗2 |Z2), where z ∈ {0,1}. Moreover, we are able to obtain the predicted distributions of the

latent mean characteristics (DZ∗1 ) and the latent instrumental mean characteristics (DZ∗2 ).

The top two sub-figures of Figure 8 present the empirical cdfs of Z1 and Z2 as observed from

data. The blue lines present the empirical cdfs for the two measurements of the mean character-

istics. The orange lines present the empirical cdfs for the two measurements of the instrumental

mean characteristics. From the empirical densities of observed data, we find that Z1 and Z2 fol-

lows similar patterns of cumulative densities. The bottom two sub-figures of Figure 8 present the

empirical cdfs of discretized Z1 and Z2 based on observed data. To get the best fit discretization

of Z1 and Z2, we check for the minimum condition numbers of joint distribution of Z1 and Z2. We

find that the discretized empirical cdfs follow similar patterns as the observed empirical cdfs.

Figure 9 presents the histograms of the distirbution of the predicted latent (Z∗1 ,Z
∗
2) and the

observed (Z1,Z2). We find that the probability density of the lower mean characteristics is much

larger than that of the observed mean characteristics. The mean of the latent mean characteristics

is less than the observed mean. This indicates in the latent contextual-effects network, there are

more links between firms with lower return shocks rather than those between firms with higher

return shocks. The mismeasured links mostly lie in the fact that we observe absent links to higher

return shock firms, while do not observe existing links to lower return shock firms.

In the second step, we use the empirical marginal distribution of Z1 and Z2 to estimate the

parameter of Gumbel copula function (a copula from Archimedean Family). We transform the data
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Figure 8: Empirical CDF of Z and Discretized Z
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Figure 9: Distributions of Latent Z and Observed Z

to the copula scale (unit square) using a kernel estimator of the cumulative distribution function.

Figure 10a presents the marginal density of Z1 and Z2 respectively in histograms and joint density

of Z1 and Z2 in circle plots. Figure 10b presents the densities after transformation using a kernel

estimator of cdf. Figure 11 presents the pdf and cdf of the Gumbel Copula of Z1 and Z2 using the

estimated copula parameter. We use this estimated parameter, along with Gumbel copula function

to obtain the joint distribution of Z∗1 and Z∗2 .

In the third step, we use the predicted distributions to recover the latent mean characteristics

and the latent instrumental mean characteristics for each firm. Then we use a GMM method to

recover the reduced-form parameters and their associated statistics. We transform the reduced-

form parameters into structural parameters and obtain the associated statistics by using a bootstrap

method.

3.4.3 Empirical Results

Table 14 presents the structural estimates of the GMM estimation. The standard errors in parenthe-

ses are obtained using bootstrap method. We find that both the latent peer effect and the latent con-

textual effect are significant and positive. If the average leverage ratio of a firm’s customer/supplier

is increased by 1 unit, the firm will also increase its leverage by 0.8727. The positive peer effects
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(a) Marginal Density of Z1 and Z2 (b) Transformed Density of Z1 and Z2

Figure 10: Copula Transformations

Figure 11: Estimated PDF and CDF of a Gumbel Copula of Z1 and Z2
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on leverage ratios are found in the literature. Firms often have very close connections with their

key suppliers. Indicated by the bargaining power theory, when firms raise their leverages, their

suppliers or customers will also raise their own leverages in response to increase their bargaining

power (Hennessy and Livdan (2009), Chu (2012)). Our estimation result also indicates a positive

contextual effect. In the same industry, increased return shock to peer firms implies an industry

prosperity. In turn, firms choose to raise leverages in order to take chance in such good indus-

try environment. We also find positive effect of earnings per share from operations and assets on

leverage ratio. Earnings per share is a measure on firm’s profitability with higher EPS indicating

higher ability in running business. This implies a firm with better profitability will choose higher

leverage. Market-to-book ratio, a measure on firm’s capital structure, was found to have a negative

effect on leverage ratio.

We also conduct a specification by estimating the structural parameters in the case where we

observe networks without any mismeasured links. Table 15 presents the GMM results. The peer

effects and the contextual effects are both insignificant, and also with lower magnitude compared

with the case where we consider measurement errors.

Empirical findings indicate that if we ignore the mismeasured links in firm networks, the esti-

mate results are underestimated and most importantly, insignificant. After we address the concern

of mismeasured links, peer effects are found to be significant, with a larger magnitude. Such

change in estimate results implies importance in being cautious about mismeasured links. If the

data we use are self-reported, or only for a short time span, or the method to construct a network

has some embedded problems in defining network links, such as the industry code, then it is im-

portant to consider the chance having mismeasured links in the observed network. Since failing to

deal with these mismeasured links, by using the observed network as the true network of interest,

can result in biased estimates of peer effects parameters as indicated by our empirical analysis, or

can result in other undesired consequences as introduced in the previous sections.
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Table 14: Structural Parameter Estimation

Estimated Results

∑ j C∗i jX j 0.3479∗

(0.2057)

∑ j A∗i jYj 0.8727∗∗

(0.4011)

Market-to-book ratio -0.1485∗

(0.0821)

Log(sales/turnover) 0.0572
(0.0643)

EPS from operations/assets 0.0659∗

(0.0398)

Net PPE/assets 0.0727
(0.0912)

Constant -0.0936
(0.1280)

Sample Size 419
standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 15: Parameter Estimation: Mismeasured Links are Ignored

Estimated Results

∑ j C∗i jX j 0.2658
(0.2026)

∑ j A∗i jYj 0.2415
(0.1895)

Market-to-book ratio -0.1428∗

(0.0770)

Log(sales/turnover) 0.1379
(0.1533)

EPS from operations/assets 0.0108
(0.0569)

Net PPE/assets -0.0013
(0.0319)

Constant 0.0272
(0.0677)

Sample Size 419
standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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3.5 Conclusion

Peer effects are widely studied for various aspects of network outcomes. Previous literature on

identification of peer effect parameters mainly require the knowledge of adjacency matrices. In this

paper, we show the sufficient conditions to identify and estimate the peer effects in networks where

links are latent because of measurement errors. We can draw two main conclusions by adopting our

estimation method to the firm networks. First, we find that both the peer effects and the contextual

effects are significantly positive among firms on the decisions of leverage ratios. Second, we show

that the peer effects are not significant if the measurement errors are ignored. There could be two

feasible and enlightening tasks to be considered as part of the future works. One can think of using

weighted adjacency matrix instead of unweighted adjacency matrix to characterize firm networks

under the concepts of sale amounts between customers and suppliers. By weighting the adjacency

matrix with different importance in linkages, one can tell whether a pair of customer and supplier

are strongly connected because they have large amount of sales happened. Also, one can think of

discrete choice outcome variable instead of continuous outcome variable. For example, if one are

interested in the peer effects on firm’s R&D choice, the binary outcome variable requires a new

way to identify the peer effects.

76



4 FIRST PRICE AUCTION WITH AFFILIATION: A NETWORK PERSPECTIVE

Auction with affiliated private values (APV) are widely studied (Milgrom and Weber (1982), Li,

Perrigne and Vuong (2002), Hubbard, Li and Paarsch (2012), Li and Zhang (2015)). Previous liter-

ature on first-price sealed-bid auction with affiliation mainly require symmetric dependent structure

among all bidders. However, in some applied work, it is unrealistic that every possible combina-

tion pairs of bidders have the same dependent structure due to information asymmetry. This paper

conducts a reduced-form analysis of first-price sealed-bid auction with affiliation under a network

perspective. Specifically, we provide some empirical evidence on the dependency of private values

among bidders based on their linked status and proposes a structural model for estimation.

The objective of this paper is to empirically study the first-price sealed-bid auction with affili-

ation, given the network of potential bidders. In the existing literature, researchers generally adopt

symmetric dependency among bidders’ private values through affiliation (Li and Zhang (2015)).

Nevertheless, how the dependency determined by link status between bidders remains unclear.

To investigate the the first-price sealed-bid auction with affiliation under a network perspec-

tive, we take several steps. In the first step, we propose a simple model that characterize our basic

settings and assumptions. For the isolated bidders, their private values are independent of others’.

For the linked pairs of bidders, their private values are dependent. We further assume that the

dependence structure of private valuations between any pair of linked bidders is the same, regard-

less of the auction and bidder characteristics. Basically, this model introduces asymmetry into the

affiliation relationship between bidders, where such asymmetry is fully captured by their network

structure. The reduced-form analysis are all based on the idea of dependency between linked pairs.

Next, we construct contract-specific contractor networks using data from California Depart-

ment of Transportation (Caltrans). The contract-specific contractor network is constructed by the

chance of having at least one same subcontractors in the underlying contract. Intuitively, we ex-

pect that a subcontractor can effectively serve as a go-between that makes information (e.g. costs,
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qualities, working days, etc.) sharing available for two contractors. According to the regulation

of Caltrans bidding process, the contractor must submit its bid along with a list of subcontractors.

For a same project (contract), if two contractors listed at least one same subcontractor, their ex-

pectations on unit prices of project items should be close. As a consequence, the total bid amount

submitted by two contractors should be close too.

Then based on the 712 contract-specific contractor networks from our sample, we investigate

the densities of those networks. Density is a network descriptive measure that equals the number

of links divided by the maximum number of potential links in a network. Our affiliation model

requires that if two contractors are linked, then their private values are dependent; If two contractors

are unlinked, then their private values are independent. Hence, density is very straightforward in

telling us to what extent private values are dependent among contractors in a contractor network.

The symmetric dependency structure among all pairs of bidders required by Li and Zhang (2015)

only coincides with the case where density equals 1. In other words, it requires the network is a

complete network with all nodes to be linked with each other. We find that 66.22% of our contractor

networks are not complete networks, and even 16.49% of them are empty networks, indicating a

quite different starting point compared with Li and Zhang (2015).

Moreover , we provide key evidence on how private values are dependent based on network

structure. We first introduce the distance between two contractors and we find most pairs of con-

tractors are either unlinked or within two-step reach. Then we construct a variable called Bid Amt,

a ratio between total bid amount and engineer estimates. We investigate how the difference in Bid

Amt between two contractors are determined by the distance between the two contractors. Besides

that, we define a variable called Bid Gap as the difference on total bid amount between the winner

and the biggest loser, divided by engineer estimates. We run a linear regression of Bid Gap on

contractor-network density, controlling for the number of contractors in each contract. Intuitively,

a network with higher density should have smaller bid gap due to higher chances of information

exchange.
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Lastly, we examine how the position of a contractor in its contractor network may affect its bid-

ding behaviour and its probability of winning. We first run a linear regression of Bid Amt on four

centrality measures (from social network analysis: degree, eigenvector, betweenness, closeness).

Then we conduct a Probit model of probability of winning on centrality measures.

Empirical findings indicate that the effect of directly linked status on difference in Bid Amt

is significantly negative with magnitude 0.0681 at 99% confidence level. This implies that if two

contractors are linked in its contractor network, then they are likely to submit a similar bid price

compared with unlinked or indirectly linked contractors. The result from specification on second-

degree linked tells us that the indirect links have zero effect on Bid Amt. Intuitively, second-degree

link involves two different subcontractors that brings possibly quite different information on bids.

By studying Bid Gap and network densities, we find that the effect of density on Bid Gap is

also negative at 99% significance level. In the case where network density changes from 0 to

1, the bid gap decreases by 0.209 significantly and the unit bid gap (controlling for the number

of contractors) decreases by 0.0339 significantly. Additional empirical results related to network

centralities implies the existence of network effects among contractors on their bidding amounts

and probabilities of winning.

This paper contributes to the existing literature of auction with affiliated private values by pro-

viding a network perspective on the way of affiliation. In the existing literature, the dependency

of private values among bidders are assumed to be symmetric (Li, Perrigne and Vuong (2002),

Hubbard, Li and Paarsch (2012)). In Li and Zhang (2015), their model requires all the possible

combination of two bidders to have exactly the same dependent structure. In our model, the de-

pendency comes from the fact that two contractors are linked in its contractor network. If two

contractors are unlinked, then their private values are considered independent.

The rest of the paper is organized as follows. Section 4.1 introduces the data source and sum-

mary statistics. Section 4.2 formally proposes our model. Section 4.3 introduces the construction

of contractor networks and network properties. Section 4.4 studies the dependency of bid amounts
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based on link status. Section 4.5 investigates how network structure may affect bid amount and

probability of winning. Section 4.6 discusses conclusions and potential future works.

4.1 Data and Summary Statistics

The primary data we use are collected from the detailed bid summary files provided by the Cali-

fornia Department of Transportation (Caltrans). Each original PDF file summarizes a sealed-bid

first-price auction with information on bidders (contractors), bid amount, contract characteristics

and subcontractors.

At the beginning of bidding process, Caltrans advertises a project with information on bid

open date, a list of items that required to complete the project, along with engineer estimates on

the quantity and cost of each contract item. The potential bidders need to submit its sealed-bid

on a unit price of each unit contract item, and the total bid amount will be the sum across all

contract items by quantity. In the sealed-bid, the contractors must list each subcontractor whose

work accounts for at least 0.5% or $10,000, whichever is greater, of the contract value. Each

subcontractor must be prequalified to do the listed work. In the end, the contractor with the lowest

total bid amount is awarded the project.

Our data collects bid summary in year 2001 and 2002, with a sample size of 14,983. For

each unit of observation, we observe contract ID, contract open date, total amount of engineer

estimates on the project, a contractor that submitted a bid amount upon some contract, along with

one of the bidder’s subcontractor. Notice that there can be multiple contracts per day, multiple

bidders per contract and multiple subcontractors per bidder per contract. For convenience, we

assign contracts, contractors, and subcontractors with unique numeric IDs based on their names.

During this period, in summary, there are 712 construction contracts out for bid, 604 unique bidders

ever joined at least one bid and 1723 unique subcontractors that ever worked with at least one of

those bidders. Detailed summary statistics for the number of contracts, bidders and subcontractors

can be found in table 16. The average number of contractors per contract is 5 and the average
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number of subcontractors that ever worked with one single contractor is 15.

Table 16: Summary Statistics: Bidders and Subcontractors

Variable Mean Std. Dev. Min. Max. N
Number of Bidders 604
Number of Subcontractors 1723
Number of Contracts 712
Number of Contracts per Day 6.35 5.58 1 45
Number of Bidders per Contract 5.05 3.05 1 22
Number of Subcontractors per Bidder 15.00 19.73 1 278

Summary statistics on contract characteristics are presented in Table 17. Before the Department

of Transportation in California advertised a project (a contract), an estimate amount on the quantity

and unit cost of the items that are required to complete the whole construction procedure was given

by some technical engineer. We denote this estimated amount for bidders’ bidding reference as

Engineer Estimates. The total amount of engineer estimates varies a lot based on different types

of project. The smallest contract only has an estimates of $78,000, while the largest contract has

an estimates of $105,610,000. Amount Under Estimates is a variable that shows how much lower

a contractor bids compared with the engineer estimates. Contractors are aware of the Number of

Items in each contract before bidding. The average number of items per contract is about 51. The

variable Working Days is the total working days spent by the winning contractor. Bid amount is the

total bid amount on each project. For each bidder that submitted a bid for one project (contract), we

observe a group of subcontractors that are listed to work on different aspects of contract items. For

example, on Jan.4. 2001, there were three bidders bidding for a contract 01-411304: Mendocino

Construction, Parnum Paving and Rolling rock Construction. Mendocino had three subcontractors:

Anrak corporation, Central striping, and G and L Traffic. Parnum Paving had one subcontractor:

Central Striping. Rolling rock had two subcontractors: Central Striping and G and L Traffic. In

the end, Parnum Paving won the contract with a bidding amount of $1,379,983 and it finished the

construction using 70 days.

Table 18 presents regression results of Bid Amount on three contract characteristics: Engineer
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Table 17: Summary Statistics: Contract Charateristics

Variable Mean Std. Dev. Min. Max. Sample Size
Engineer Estimates 5477825 13759460 78000 105610000 14983
Amount Under Est 670791 2510059 -7457202 21579142 14983
Number of Items 51 54 1 326 14983
Working Days 223 286 10 1350 14983
Bid Amount 5271480 13058090 43806 130820028 14983

Estimates, Number of Items and Working Days. We find engineer estimates has a significant

prediction power on bid amount that is 0.945. Intuitively, contractors submit bids based on the list

of items provided by Caltrans and the quantity and unit cost of each item estimated by engineers.

The unit price that the contractor can offer should be close to the engineer unit cost estimates. As a

consequence, Bid Amount is around Engineer Estimates to some extent due to project size. When

control for the number of items in a contract and number of working days, the estimated coefficient

on Engineer Estimates does not change much. In the following sections, we will use the variable

Engineer estimates to control for contract size based on the discussion above.

Table 18: Regression of Bid Amount on Contract Characteristics

(1) (2) (3) (4) (5)
Bid Amount Bid Amount Bid Amount Bid Amount Bid Amount

Engineer Estimates 0.945∗∗∗ 0.920∗∗∗ 0.920∗∗∗

(0.00261) (0.00421) (0.00427)

Number of Items 171981.2∗∗∗ 7347.0∗∗∗ 7213.7∗∗∗

(2162.5) (956.4) (1110.5)

Working Days 12146.2∗∗∗ 25.59
(478.5) (108.3)

_cons 72070.6∗∗∗ -3333738.5∗∗∗ 453552.3∗∗∗ -111342.2∗∗∗ -111545.8∗∗∗

(22862.0) (108120.0) (144129.9) (32937.3) (32952.6)
N 3829 3829 3829 3829 3829
R2 0.972 0.623 0.144 0.972 0.972
adj. R2 0.972 0.623 0.144 0.972 0.972
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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4.2 The Model

In this section, we introduce basic settings of our model and discuss on the bidding equilibrium.

In Subsection 4.2.1, two assumptions on dependence structure are presented. One requires that

the dependency structure among bidders are the same across auctions. The other requires that the

dependence structure of private values between any pair of linked bidders is the same, regardless

of the auction and bidder characteristics. These assumptions are quite conventional. In Subsection

4.2.2, we show a sufficient condition for the firs-order condition of expected payoff to be held. In

the following sections, our reduced-form analysis is mainly based on the idea of the model.

4.2.1 Basic Settings

We consider a first-price, sealed-bid auction model in which n(> 2) bidders with a given network

structure bid for a single indivisible object. Let G ≡ (N,E) characterize the network structure of

bidders where N ≡ {1, ...,n} collects all bidders and E ≡ (ei j)i, j∈N collects all link status between

bidders. We consider a symmetric, undirected network structure in which ei j = e ji = 1 indicates i

and j are linked and ei j = e ji = 0 otherwise. There are no self links, eii = 0. Let the neighborhood

Ni ≡ { j ∈ N|ei j = 1} collect the bidders that are directly linked to bidder i, and mi ≡ |Ni| denote

the number of neighboring bidders.

Let Vi be bidder i’s valuation over the object. Suppose the bidders’ value V = (V1, ...Vn) is drawn

from the continuous joint cumulative distribution function FV (v) with v = (v1, ...,vn) denoting

realizations of random variables. Let Fi(vi) denote the marginal cumulative distribution function

of bidder i. By Sklar’s theorem , there exists a unique copula function C such that

FV (v) =C(F1(v1), · · · ,Fn(vn)). (4.1)

Denote X as the vector of auction characteristics.
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ASSUMPTION 4.1. The dependency structure among bidders are the same across auctions, i.e.

FV |X(v|x) =C(F1|X(v1|x), · · · ,Fn|X(vn|x)).

Following Mazo, Girard and Forbes (2015), we consider the Product of Bivariate Copula (PBC)

model associated with the network G:

C(u1, ...,un) = ∏
{(i, j):ei j∈E}

Γi j(u
1/mi
i ,u1/m j

j ), (4.2)

where Γi j’s are arbitrary bivariate copulas. For some isolated bidder i, let Γi(ui) = ui, so that Vi

is independent of all other values. From Mazo, Girard and Forbes (2015), we know that (4.2)

is a well defined copula. The PBC model essentially introduces asymmetry into the affiliation

relationship between bidders, where such asymmetry is fully captured by their network structure

G.4 Specifically, (4.2) implies that the bivariate marginal copula Ci j(ui,u j) is given by (Proposition

5 in Mazo, Girard and Forbes (2015))

Ci j(ui,u j) =

 u(mi−1)/mi
i u(m j−1)/m j

j Γi j(u
1/mi
i ,u1/m j

j ) if ei j ∈ E,

uiu j otherwise.
(4.3)

Therefore, the values between unlinked bidders are independent, while the value dependency

between linked bidders are determined by the copula function Γi j.

ASSUMPTION 4.2. (Homogeneous Pair Copula) The dependence structure of private valuations

between any pair of linked bidders is the same, regardless of the auction and bidder characteristics.

That is, Γi j(ai,a j) = Γ(ai,a j;θ),∀i, j ∈ N.

4Moreover, the PBC model is a particular case of the Liebscher copula, which a generic form to construct an
asymmetric copula (Liebscher 2008). In fact, PBC is the only Liebscher copula decomposed into bivariate copulas.
See Proposition 2 in Mazo, Girard and Forbes (2015).
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4.2.2 Equilibrium Bidding

For ease of exposition, assume the joint distribution is symmetric (or exchangeable), i.e. Fi =F0,∀i.

Let σ(·) denote the strictly increasing symmetric bidding strategy in equilibrium. Note that here

our copula function is no longer symmetric.

Let W−i ≡ (W1, ...,Wi−1,Wi+1, ...,Wn) denote the vector of W eliminating Wi. Given the copula

model (4.2), the marginal copula of u−i is

C−i(u−i)≡C(u1, ...,ui−1,1,ui+1, ...,un)

= ∏
{(k,l):k,l /∈N(i),ekl∈E}

Γ(u1/mk
k ,u1/ml

l ) ∏
{ j: j∈N(i),ei j∈E}

u1/m j
j , (4.4)

resulting in the marginal distribution of V−i being

FV−i(v−i) =C−i(F0(v1), ...,F0(vi−1),F0(vi+1), ...,F0(vn))

= ∏
{(k,l):k,l /∈N(i),ekl∈E}

Γ(F0(vk)
1/mk ,F0(vl)

1/ml) ∏
{ j: j∈N(i),ei j∈E}

F0(v j)
1/m j . (4.5)

Bidder i’s expected payoff is

E[π(si,vi)] = (vi− si)P[V1 ≤ σ
−1(si), ...,Vi−1 ≤ σ

−1(si),Vi+1 ≤ vi, ...,Vn ≤ σ
−1(si)]

= (vi− si)FV−i(σ
−1(si), ...,σ

−1(si))

= (vi− si)C−i(F0(σ
−1(si)), ...,F0(σ

−1(si))), (4.6)

where σ(·) denotes the symmetric strictly increasing bidding strategy.

The first-order condition yields

σ
′(vi) = (vi−σ(vi)) f0(vi)

∑
n
j 6=iC

( j)
−i (F0(vi), · · · ,F0(vi))

C−i(F0(vi), · · · ,F0(vi))
, (4.7)
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where C( j)
−i ≡

∂C−i
∂u j

.

A sufficient condition for equation (4.7) to characterize a unique monotone pure strategy equi-

librium (MPSE) is that the copula C satisfies MTP2. It is well known that a function is MTP2 if

and only if it is TP2 in all pairs of its arguments (Hubbard, Li and Paarsch 2012). In addition, by

Proposition 6 in Mazo, Girard and Forbes (2015), the TP2 property of Ci j is inherited from the TP2

property of γi j.

ASSUMPTION 4.3. (TP2) The copula γ(ai,a j;θ) is totally positive of order 2, i.e. Γ(a1,a2;θ)Γ(b1,

b2;θ)≥ Γ(a1,b2;θ)Γ(b1,a2;θ), for all a1 < b1,a2 < b2.

Let G0 be the marginal distribution of the equilibrium bids, then by GPV,

G0(si) = F0(vi), g0(si) =
f0(vi)

σ′(vi)
. (4.8)

Therefore, from the first order condition (4.7) we have

vi = si +
C−i(G0(si), · · · ,G0(si))

g0(si)∑ j 6=iC
( j)
−i (G0(si), · · · ,G0(si))

. (4.9)

ASSUMPTION 4.4. (Symmetric Pair Copula) The bivariate copula function Γ(·, ·;θ) is exchange-

able, i.e. Γ(a,b;θ) = Γ(b,a;θ),∀a,b ∈ R.

We derive the expression of C( j)
−i in the Appendix.

4.3 Contractor Networks

In this section, we introduce the way we construct contractor networks. The contractor networks

are contract-specific. This means, for one project, we construct one network where the nodes are

the contractors that submitted bids for the project, and the links between those nodes are defined

based on if they share at least one same subcontractor. Detailed construction of networks can be
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found in Section 4.3.1. In Li and Zhang (2015), they assume private values are symmetrically de-

pendent among all the bidders. However, in our case, we assume the dependency of private values

are based on link status. If two bidders are not linked, then their private values are considered inde-

pendent. In section 4.3.2, we examine the densities of each network to see the extent to which the

contractors are connected, hence to what extent their private values are dependent on each other.

In subsection 4.3.3, we present the centrality measures that describe contractor importance in the

contract-specific networks.

4.3.1 Construction of Networks

For each contract that we observe during 2001 to 2002, we construct a contract-specific bidder

network based on all the bidders (contractors) that bid in the same contract. In total, we con-

struct 712 different bidder networks based on 712 different contracts overtime in the sample. The

contract-specific bidder network is constructed by the chance of having same subcontractors in the

underlying contract. For example, suppose both bidder A and bidder B bid for a contract on date

Jun.10. 2001. Bidder A listed a subcontractor, which was also one of bidder B’s subcontractors

when B bid for the same project, then A and B are considered linked.

Intuitively, we expect that a subcontractor can effectively serve as a go-between that makes

information (e.g. costs, qualities, working days, etc.) sharing available for two contractors. Ac-

cording to the regulation of Caltrans bidding process, the contractor must submit its bid along with

a list of subcontractors. Naturally, a contractor should have already contacted those subcontractors

for their qualities of work and costs for work. For a same project(contract), if two contractors

listed at least one same subcontractor, their expectations on unit prices of project items should be

similar. As a consequence, the total bid amount submitted by these two contractors should be close

too. Detailed reduced-form evidence on dependency of bid amounts based on link status can can

be found in Section 4.4.

Figure 12 is an example of how contract-specific networks may look like. Here we plot 36
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contract-specific networks from our sample. There are three features about the contract-specific

networks. The first feature is that the number of bidders in a contract t, denoted as nt , can vary.

The average number of bidders per contract is 5.05 with a standard deviation of 3.05 (Table 16).

The second feature is that some contract-specific networks are complete networks. A complete

network is a network where all bidders are connected to each other. For example, the first network

in the first row in Figure 12. According to our justification, a complete network indicates that

the private values are symmetrically dependent among all contractors. This case coincides with

the basic settings in Li and Zhang (2015). The third feature is that there are a small amount of

empty networks. An empty network is a network in which there is no links. for example, the fifth

network in the first row in Figure 12 is an empty network with three bidders. Notice that there

can be two possible cases for a network to be an empty network: there is only one bidder in the

network (no self link allowed) or there are more than one bidders but they do not have any same

subcontractors. In an empty network, private values are considered independent due to zero links.

As long as the contractor network is not a complete network, dependency structures of private

values are different from Li and Zhang (2015). In summary, we find that among the 752 networks,

33.78% of them are complete networks and 16.49% of them are empty networks. 66.22% of our

contractor networks are not complete networks, indicating a quite different setting compared with

the symmetric dependency setting in the current literature.

4.3.2 Densities of Networks

In this subsection, we introduce the densities of contractor networks. Density is a network descrip-

tive measure that equals to the number of links divided by the maximum number of potential links

in a network. For example, for a network with nt bidders, the maximum number of potential links

equals to nt∗(nt−1)
2 . Density is another straightforward measures that tells us to what extent private

values are dependent among a contractor network. If the density of a contractor network equals

one, the network is a complete network.
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Figure 12: An Example of Network Structure

Figure 13 summarizes the distribution of density of the contractor networks. If we exclude the

complete networks and the empty networks, we observe a rather uniform distribution of network

densities for very sparse density to very dense density. In our settings, two linked bidders share

a dependency structure on their private values, whereas two bidders without a link are considered

to have independent private values. In the previous literature, the affiliated private values are

assumed to take all pairs of bidders’ affiliated values into consideration equally, regardless of

network structure. The variation in densities reveals the importance of network structure of the

underlying contractors. The traditional way no longer holds because a large fraction of networks

are not complete networks and some of them are even very sparse.

4.3.3 Centrality Measures of Networks

In this subsection, we introduce the centrality measures of contractors in its contractor networks.

Centrality measures capture a bidder’s position/importance in its contract-specific network. We
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Figure 13: Histogram of Network Densities

use four centrality measures from social network analysis (SNA) to describe a bidder’s importance

in its network: Degree, Eigenvector, Closeness and Betweenness.

Degree is the simplest and most straightforward centrality measure that counts the number of

links directly linked to the bidder. Degree can be interpreted as the immediate risk for a bidder

to catch information that flows through a network. Eigenvector is another measure that character-

izes the local centrality of a bidder. Different from Degree that treats every direct links equally,

Eigenvector highlights the differences in influence level of each links. Closeness is a measure

that is defined based on the concept of network paths, whereas Degree and Eigenvector are both

defined based on direct links. Closeness tells us the extent to which a bidder is closer to all the

other reachable bidders in a network either directly or indirectly. A higher Closeness indicates the

bidder is closer to the central of the network. Another measure that is defined based on the concept

of network paths is Betweenness. This measure reflects how often an underlying bidder to occur

on a randomly chosen shortest path between two randomly chosen bidders in a network.

To summarize, Degree and Eigenvector are good measures for characterizing local importance

of the bidder; while Closeness and Betweenness are used for capturing global importance of the

bidder. Notice that, for comparability between different networks, we normalize the four centrality

measures based on different network size.

In our sample, there are 604 bidders but they repeatedly showed up in 712 different contracts.

In the end, we have a total size of 3743 unique contract-bidder observations. For a bidder, it may
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have different centrality measures in different networks because the network is contract-specific.

A detailed summary statistics on centrality measures are given in Table 19. Since we normalize

centrality measures for comparison between different networks with various network size, the

values of these four centrality measures all lie in the interval from 0 to 1.

Table 19: Summary Statistics: Centrality Measures

Variable Mean Std. Dev. Min. Max. N
degree 0.644 0.369 0 1 3743
eigenvector 0.188 0.131 0.014 1 3743
closeness 0.164 0.172 0 1 3743
betweenness 0.024 0.093 0 1 3743

Figure 14 presents distributions of centrality measures on every bidders in each contract. From

comparison between the distribution of degree centrality and that of eigenvector centrality, we find

that even though many contractors have degree level close to 1, very little of them have eigen-

vector level around 1. As we introduce, eigenvector accounts for the importance of linked nodes,

while degree simply counts linked nodes with equal weights. In Section 4.5, we will see how the

importance of a contractor in its network may affect its bidding behavior.

Figure 14: Histogram of Centrality Measures
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4.4 Empirical Results: Dependency Structure of Linked Pairs

In this section, we provide key evidence on how private values are dependent based on network

structure. In Subsection 4.4.1, we introduce the distance between two contractors. Most pairs of

contractors are either unlinked or within two-step reach, that is either directly linked, or indirectly

(second-degree) linked. In Subsection 4.4.2 we show that the difference in bidding amount is

significantly smaller for two contractors if they are directly linked. This reduced-form finding

supports our theory that private values are dependent through network links. We also find that the

difference in bid amount are larger for two contractors if they are indirectly linked. In Subsection

4.4.3, we first define a bid gap as the difference in bid amount between the winner and the biggest

loser. We then study how the density of contractor network may affect the bid gap. We expect the

bid gap to be smaller if the density is higher.

4.4.1 Distance between Contractors

In network studies, distance between two nodes captures the length of the shortest path between

two nodes. In an indirect unweighted network, every edge distance is taken to be 1. For example,

if node A and node B are directly linked, then the distance between A and B is 1. If node C is

directly linked to B but not linked to A, then the distance between A and C is 2. If two nodes are

neither directly linked, nor indirectly linked through any node, then they are considered to have

infinite distance.

Table 20 summarizes the distances between any two contractors in a specific contractor network

in our sample. The total amount of such pairs is 11224, which is calculated by adding up all

the maximum potential numbers of links in each contractor network. Around 22.71% of pair of

contractors have infinite distance, 63.08% of them are directly linked and over 97.50% of them

are within two-step reach or have infinite distance. Since very little fraction of pairs have distance

over 2, our reduced-form model in Subsection 4.4.2 will focus on the cases with one-step reach
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and two-step reach.

Table 20: Distance of Two Contractors

Count Frequency
Infinite 2549 22.71
One-step Reach 7080 63.08
Two-step Reach 1330 11.85
Three-step Reach 234 2.08
Four-step Reach 26 0.23
Five-step Reach 5 0.04
Total 11224 100.00

4.4.2 Dependency in Bid Amount between Linked Pairs

Figure 15 plots the distribution of total bid amount of all contractors, divided by engineer estimates

in order to control for contract characteristics. We call this ratio between total bid amount and

engineer estimates as Bid Amt. If Bid Amt is greater than 1, this means the contractor submits

a bid over the amount of engineer estimates; while if Bid Amt is less than 1, this indicates the

contractor submits a bid less than the amount of engineer estimates. According to the histogram,

we find there are some extreme cases where contractors submit very high bids compared with

engineer estimates. There are 2, 3, even 5 times of engineer estimates. We also find that almost

half of contractors bid over estimates and half of them bid less than estimates. This variation in

Bid Amt reveals variation in bidding behavior of contractors. Next we will study how the linked

status may affect bidding behavior between a pair of contractors.

We first construct the dependent variable by calculating the absolute difference between the

two Bid Amt of two contractors. For example if Bid Amt of contractor A is 1.3 and Bid Amt of

contractor B is 1.1, then the difference in Bid Amt is 0.2. We collect all the difference in Bid Amt

for all the pairs of contractors in each contractor network. In the first column, our independent vari-

able is an indicator variable that equals one indicating two contractors are directly linked and zero
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Figure 15: Probability Density Distribution of Bid Amount

otherwise. In the second column, our independent variable is an indicator variable that equals one

indicating two contractors are linked in the second-degree (indirectly linked) and zero otherwise.

Table 21 presents the linear regression results of difference in bidding amount on linked status.

We find the effect of directly linked status on difference in Bid Amt is significantly negative with

magnitude 0.0681 at 99% confidence level. This indicates that if two contractors are linked in its

contractor network when bidding for the same contract, then they are likely to bid a similar price

compared with unlinked or indirectly linked. Intuitively, if two contractors share a same subcon-

tractor when they bid for the same contract, they are likely to get similar price or qualities from

the same subcontractor. The subcontractor then serves as a go-between that makes information

between two contractors shareable.

We also run a specification on pairs that are second-degree linked. We find the effect of second-

degree linked status on difference in Bid Amt is insignificant. This indicates that indirect links have

zero effect on bid amount. Intuitively, second-degree link involves two different subcontractors that

brings possibly quite different information on bids. As a consequence, the two contractors that are

indirectly linked will also have quite various bid behaviour.
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Table 21: Regression of Difference in Bidding Amount on Linked Status

(1) (2)
Difference in Bid Amt Difference in Bid Amt

Directly Linked -0.0681∗∗∗

(0.00397)

Second-degree Linked 0.00571
(0.00594)

Constant 0.228∗∗∗ 0.183∗∗∗

(0.00318) (0.00206)
N 11047 11047
R2 0.026 0.000
adj. R2 0.026 0.000
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.4.3 Bid Gap and Network Densities

In this subsection, we define the bid gap for a bid and investigate how network densities may affect

bid gaps. We expect that if a contractor network has higher density, then contractors are engaged

more often by sharing same subcontractors. As a consequence, when they submit bids, they tend

to submit quite close prices over the project.

Bid gap is defined as the difference on total bid amount between the winner and the biggest

loser (the contractor that submit the highest bid), divided by engineer estimates. Besides, we

also control for the number of contractors in each contract to make such gaps comparable. The

dependent variable in Column (1) in Table 22 is bid gap controlling for engineer estimates. The

dependent variable in Column (2) is the bid gap from (1) divided by the number of contractors in

the associated contractor network. Dependent variable in Column (2) can be interpreted as the unit

bid gap (bid gap per contractor) for a contract.

From Table 22, we find the effect of density on bid gap for both cases are significantly negative

at level 99%. Negative effect coincides with our initial expectation that if a contractor network is

more dense, then the bid gap between the winner and the biggest loser is smaller. In other words,
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if there are more links in a network, then the contractors tend to submit similar bids compared with

the case with less links. In the case where network density changes from 0 to 1, equivalently the

network changes from an empty network to a complete network, the bid gap decreases by 0.209

significantly and the unit bid gap decreases by 0.0339 significantly.

Table 22: Regression of Bid Gap on Density

(1) (2)
Bid Gap Bid Gap (control for the number of contractors)

density -0.209∗∗∗ -0.0339∗∗∗

(0.0360) (0.00718)

_cons 0.467∗∗∗ 0.0860∗∗∗

(0.0270) (0.00539)
N 677 677
R2 0.047 0.032
adj. R2 0.046 0.031
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.5 Empirical Results: Network Effects

In this section, we examine how the position of a contractor in its contractor network may affect its

bidding behavior and probability of winning. We first run a linear regression of total bid amount

(divided by engineer estimates) on the four centrality measures. Then we conduct a Probit model of

probability of winning on centrality measures. In the end, we find, the importance or the position

of a contractor in its contractor network does have certain effects on its bidding behavior and

probability of winning.

Table 23 presents regression results of Bid Amt (total bid amount divided by engineer esti-

mates) on four centrality measures. In the Caltrans auction, the contractor with the lowest total bid

amount will win the contract. From Column (6) in Table 23, we find that all the four centrality

measures have significant effect on Bid Amt, but the signs of the coefficients have different direc-

tions. Recall that both degree centrality and eigenvector centrality capture the local importance of
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a node, while closeness centrality and betweenness centrality capture the global importance of a

node. Column (6) in Table 23 indicates that if a contractor is locally important, then it tends to

bid with smaller price; if a contractor is globally important, then it tends to bid with higher price.

Intuitively, local importance is crucial to our case because we have examined that direct linked

status have significant effect on bidding behaviors of a pair of contractors.

Table 23: Linear Regression: Bid-Engineer Estimates Ratio on Centrality Measures

(1) (2) (3) (4) (5) (6)
Bid Amt Bid Amt Bid Amt Bid Amt Bid Amt Bid Amt

degree -0.0782∗∗∗ -0.149∗∗∗ -0.156∗∗∗

(0.0121) (0.0162) (0.0163)

eigenvector -0.00298 -0.126∗∗∗ -0.133∗∗∗

(0.0290) (0.0327) (0.0327)

closeness 0.0138 0.237∗∗∗ 0.243∗∗∗

(0.0262) (0.0363) (0.0363)

betweenness 0.105∗∗ 0.154∗∗∗

(0.0451) (0.0449)

_cons 1.102∗∗∗ 1.052∗∗∗ 1.050∗∗∗ 1.049∗∗∗ 1.135∗∗∗ 1.135∗∗∗

(0.00904) (0.00728) (0.00621) (0.00467) (0.0119) (0.0119)
N 3801 3801 3801 3801 3801 3801
R2 0.011 0.000 0.000 0.001 0.022 0.025
adj. R2 0.011 0.000 0.000 0.001 0.021 0.024
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Next, we conduct a reduced-form analysis on the effect of network centrality measures on Win.

Variable Win is a binary variable with Win = 1 represents the contractor win the auction; Win = 0

otherwise. We run a Probit model of Win on Degree, Eigenvector, Closeness and Betweenness

centrality measures. We are interested in whether the position of a bidder in network has significant

effect on whether the bidder win the auction. Table 24 presents the estimation results.

Degree centrality has a significantly negative effect on winning probability. An explanation
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would be that with more neighbors that share the same subcontractors, more contractors bid for

less values, in turn reducing the likelihood of winning. However, eigenvector centrality has a

significantly positive effect on winning probability. Due to higher importance of linked contractors,

the contractor itself can gain more valuable information on the cost of projects, hence more likely

to win the bid. Closeness centrality also has a significant positive effect on probability of winning.

Higher closeness means the node is more central in the whole network. A contractor that lies in the

central of the network can effectively gain useful information and as a consequence more likely to

win a bid.

Table 24: Probit Model: Win on Centrality Measures

(1) (2) (3) (4) (5) (6)
win win win win win win

degree 0.0645 -0.257∗∗∗ -0.255∗∗∗

(0.0646) (0.0883) (0.0888)

eigenvector 1.689∗∗∗ 1.083∗∗∗ 1.087∗∗∗

(0.164) (0.197) (0.198)

closeness 1.167∗∗∗ 1.128∗∗∗ 1.126∗∗∗

(0.127) (0.186) (0.186)

betweenness 0.0601 -0.0629
(0.250) (0.248)

_cons -0.954∗∗∗ -1.252∗∗∗ -1.119∗∗∗ -0.914∗∗∗ -1.164∗∗∗ -1.164∗∗∗

(0.0483) (0.0416) (0.0334) (0.0247) (0.0664) (0.0664)
N 3743 3743 3743 3743 3743 3743
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.6 Conclusion

Auction with affiliated valuations are widely studied. Previous literature on affiliation require

that the dependency structures of every pair of bidders are the same. In this paper, we show

some empirical evidence on how link status in a bidder network matters when studying affiliated
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values. We can draw two main conclusions based on our empirical findings. First, we find if two

contractors are linked in its contractor network, then they are significantly likely to submit close bid

prices. Second, the position of a contractor in its contractor network has some significant effects

on its bidding amount and probability of winning. There could be two feasible and enlightening

tasks to be considered as part of our future work. One is a structural study on our model with

estimation methods. The other could be a new work that we can relax the assumption that requires

all linked pairs to have same dependent structures, by taking the link weights into consideration.

99



5 CONCLUSION

Network effect has been widely studied in Econometrics in various of aspects. Researchers are

interested in how the network structure may affect certain network outcomes. In this dissertation,

we studied different topics of network effect studies. In the first essay, we studied firm networks

and underwriter networks to see how they may affect the public firms’ post IPO performance. In

the second essay, we investigated how to identify and estimate peer effects in latent networks. In

the third essay, we used a network perspective to analyze the affiliated bidding behavior in first-

price auction. From the works, we find that network structure does have significant effects on

some outcomes we care about. Future studies can be done around studies on network formation

and network effects. We can relax the networks to be endogenous and see what would the network

effect be.
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APPENDIX A

In Appendix A, we will show how the full rank conditions (Assumption 3.6) be easily satisfied

using a simple example. Note that we can always emprically test the full rank condition. Consider a

case where Xi ∈{0,1} is a one-dimensional, strictly exogenous, binary characteristic. For example,

in the study of social network, such characteristic can be gender; in the study of firm network,

such can be whether a firm has R&D investments. As introduced, we are able to observe two

measurements over two networks, peer-effects networks A and A′, and contextual-effects networks

C and C′, while the latent networks are A∗ and C∗ correspondingly. Define A∗i and C∗i as the

neighborhood of individual i in networks A∗ and C∗, respectively. So that the cardinalities |A∗i | and

|C∗i | represent the number of individuals that are directly linked to individual i in the two networks,

respectively. Similar definitions for observed networks always hold.

As we introduced, Z∗i1 ≡ ∑
n
j=1C∗i jX j and Z∗i2 ≡ ∑

n
j=1 ∑

n
k=1 A∗i jC

∗
jkXk. Under this simple case,

we can rewrite Z∗i1 and Z∗i2 as Z∗i1 = 1
|C∗i |

∑ j∈C∗i
X j and Z∗i2 = 1

∑k∈A∗i
|C∗k |

∑ j∈C∗k
X j, respectively (and

similarly for Zi1, Zi2, Z′i1, Z′i2). Suppose for simplicity, the probabilities of observing the right link

status between two individuals i and j in network A and C are given by Pr(Ai j = 1|A∗i j = 1) =

Pr(Ai j = 0|A∗i j = 0) = λ and Pr(Ci j = 1|C∗i j = 1) = Pr(Ci j = 0|C∗i j = 0) = r, respectively. Note

that observing the right link status between two individuals includes two possible cases: one is

observing a link when two individuals are actually linked and the other is not observing a link

when two individuals are not actually linked. Suppose in the population, the fraction of male is

given by q.

We start with figuring out the probability matrices for Z1 conditional on Z∗1 which only contains

linking information in network C (similar for Z′1 conditional on Z∗1). Overall there are four cases

to discuss if we impose the relaxed version of Assumption 3.5 that |Ci| ≥ |C∗i | and |C′i | ≥ |C∗i |, for

∀i∈N. For simplicity, we start with the case where |C∗i |= 2 and then extend to general case where
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|C∗i |= n .

Case 1:|Ci|= |C′i |= |C∗i |= 2

MZ1|Z∗1 =


Pr(Z1 = 0|Z∗1 = 0) Pr(Z1 = 0|Z∗1 = 1

2) Pr(Z1 = 0|Z∗1 = 1)

Pr(Z1 =
1
2 |Z
∗
1 = 0) Pr(Z1 =

1
2 |Z
∗
1 = 1

2) Pr(Z1 =
1
2 |Z
∗
1 = 1)

Pr(Z1 = 1|Z∗1 = 0) Pr(Z1 = 1|Z∗1 = 1
2) Pr(Z1 = 1|Z∗1 = 1)


3×3

MZ′1|Z∗1 =


Pr(Z′1 = 0|Z∗1 = 0) Pr(Z′1 = 0|Z∗1 = 1

2) Pr(Z′1 = 0|Z∗1 = 1)

Pr(Z′1 =
1
2 |Z
∗
1 = 0) Pr(Z′1 =

1
2 |Z
∗
1 = 1

2) Pr(Z′1 =
1
2 |Z
∗
1 = 1)

Pr(Z′1 = 1|Z∗1 = 0) Pr(Z′1 = 1|Z∗1 = 1
2) Pr(Z′1 = 1|Z∗1 = 1)


3×3

MZ1,Z′1
=


Pr(Z1 = 0,Z′1 = 0) Pr(Z1 = 0,Z′1 =

1
2) Pr(Z1 = 0,Z′1 = 1)

Pr(Z1 =
1
2 ,Z
′
1 = 0) Pr(Z1 =

1
2 ,Z
′
1 =

1
2) Pr(Z1 =

1
2 ,Z
′
1 = 1)

Pr(Z1 = 1,Z′1 = 0) Pr(Z1 = 1,Z′1 =
1
2) Pr(Z1 = 1,Z′1 = 1)


3×3

Pr(Z1 = 0|Z∗1 = 0) = r2 +C1
2r(1− r)q+(1− r)2q2

Pr(Z1 =
1
2 |Z
∗
1 = 0) =C1

2r(1− r)(1−q)+C1
2(1− r)2q(1−q)

Pr(Z1 = 1|Z∗1 = 0) = (1− r)2(1−q)2

Pr(Z1 = 0|Z∗1 = 1
2) = r(1− r)q+(1− r)2q2

Pr(Z1 =
1
2 |Z
∗
1 = 1

2) = r2 + r(1− r)+C1
2(1− r)2q(1−q)
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Pr(Z1 =
1
2 |Z
∗
1 = 1) =C1

2r(1− r)q+C1
2(1− r)2q(1−q)

Pr(Z1 = 1|Z∗1 = 1) = r2 +C1
2r(1− r)(1−q)+(1− r)2(1−q)2

Case 2:|Ci|= 3 > |C′i |= |C∗i |= 2
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∗
1 = 1) =C1

2r(1− r)q2 +C1
3(1− r)2q2(1−q)

Pr(Z1 =
2
3 |Z
∗
1 = 1) = r2q+C1

2C1
2r(1− r)q(1−q)+C1

3(1− r)2q(1−q)2

Pr(Z1 = 1|Z∗1 = 1) = r2(1−q)+C1
2r(1− r)(1−q)2 +(1− r)2(1−q)3
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Case 3:|Ci|= 3 = |C′i |= 3 > |C∗i |= 2

MZ1|Z∗1 =



Pr(Z1 = 0|Z∗1 = 0) Pr(Z1 = 0|Z∗1 = 1
2) Pr(Z1 = 0|Z∗1 = 1)

Pr(Z1 =
1
3 |Z
∗
1 = 0) Pr(Z1 =

1
3 |Z
∗
1 = 1

2) Pr(Z1 =
1
3Z∗1 = 1)

Pr(Z1 =
2
3 |Z
∗
1 = 0) Pr(Z1 =

2
3 |Z
∗
1 = 1

2) Pr(Z1 =
2
3 |Z
∗
1 = 1)

Pr(Z1 = 1|Z∗1 = 0) Pr(Z1 = 1|Z∗1 = 1
2) Pr(Z1 = 1|Z∗1 = 1)


4×3

MZ′1|Z∗1 =



Pr(Z′1 = 0|Z∗1 = 0) Pr(Z′1 = 0|Z∗1 = 1
2) Pr(Z′1 = 0|Z∗1 = 1)

Pr(Z′1 =
1
3 |Z
∗
1 = 0) Pr(Z′1 =

1
3 |Z
∗
1 = 1

2) Pr(Z′1 =
1
3 |Z
∗
1 = 1)

Pr(Z′1 =
2
3 |Z
∗
1 = 0) Pr(Z′1 =

2
3 |Z
∗
1 = 1

2) Pr(Z′1 =
2
3 |Z
∗
1 = 1)

Pr(Z′1 = 1|Z∗1 = 0) Pr(Z′1 = 1|Z∗1 = 1
2) Pr(Z′1 = 1|Z∗1 = 1)


4×3

Case 4:|Ci|= 4 > |C′i |= 3 > |C∗i |= 2

MZ1|Z∗1 =



Pr(Z1 = 0|Z∗1 = 0) Pr(Z1 = 0|Z∗1 = 1
2) Pr(Z1 = 0|Z∗1 = 1)

Pr(Z1 =
1
4 |Z
∗
1 = 0) Pr(Z1 =

1
4 |Z
∗
1 = 1

2) Pr(Z1 =
1
4 |Z
∗
1 = 1)

Pr(Z1 =
1
2 |Z
∗
1 = 0) Pr(Z1 = 1

2 |Z
∗
1 = 1

2) Pr(Z1 =
1
2 |Z
∗
1 = 1)

Pr(Z1 =
3
4 |Z
∗
1 = 0) Pr(Z1 =

3
4 |Z
∗
1 = 1

2) Pr(Z1 =
3
4 |Z
∗
1 = 1)

Pr(Z1 = 1|Z∗1 = 0) Pr(Z1 = 1|Z∗1 = 1
2) Pr(Z1 = 1|Z∗1 = 1)


5×3

MZ′1|Z∗1 =



Pr(Z′1 = 0|Z∗1 = 0) Pr(Z′1 = 0|Z∗1 = 1
2) Pr(Z′1 = 0|Z∗1 = 1)

Pr(Z′1 =
1
3 |Z
∗
1 = 0) Pr(Z′1 =

1
3 |Z
∗
1 = 1

2) Pr(Z′1 =
1
3 |Z
∗
1 = 1)

Pr(Z′1 =
2
3 |Z
∗
1 = 0) Pr(Z′1 =

2
3 |Z
∗
1 = 1

2) Pr(Z′1 =
2
3 |Z
∗
1 = 1)

Pr(Z′1 = 1|Z∗1 = 0) Pr(Z′1 = 1|Z∗1∗=
1
2) Pr(Z′1 = 1|Z∗1 = 1)


4×3

We can always extend the previous example to a more general case where |Ci| = m, |C∗i | = 2,

and m ≥ 2. Suppose |X j = 1| = k, that is we observe k female links in the neighborhood of
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individual i in total.

MZ1|Z∗1 =

Pr(Z1 =
k
m |Z

∗
1 = 0) Pr(Z1 =

k
m |Z

∗
1 = 1

2) Pr(Z1 =
k
m |Z

∗
1 = 1)


(m+1)×3

,

where

Pr(Z1 =
k
m
|Z∗1 = 0) =r2Ck

m−2qm−2−k(1−q)k +C1
2r(1− r)Ck

m−1qm−1−k(1−q)k+

(1− r)2Ck
mqm−k(1−q)k

Pr(Z1 =
k
m
|Z∗1 =

1
2
) =r2Ck−1

m−2qm−1−k(1−q)k−1 + r(1− r)

[Ck
m−1qm−1−k(1−q)k +Ck−1

m−1qm−k(1−q)k−1]+

(1− r)2Ck
mqm−k(1−q)k

Pr(Z1 =
k
m
|Z∗1 = 1) =r2Ck−2

m−2qm−k(1−q)k−2 +C1
2r(1− r)Ck−1

m−1qm−k(1−q)k−1

+(1− r)2Ck
mqm−k(1−q)k

Furthermore, we can extend |C∗i | = 2 to |C∗i | = n. Keep |Ci| = m and m ≥ n. Suppose |X j =

1|= k and |X∗j = 1|= k∗, that is we observe k female links in total, while the true number of female

links is k∗.

MZ1|Z∗1 =

 Pr(Z1 =
k
m |Z

∗
1 = k∗

n )


(m+1)×(n+1)

,
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where

Pr(Z1 =
k
m
|Z∗1 =

k∗

n
) =

n

∑
w=0

rn−w(1− r)w

[
min{n−w,k∗}

∑
s=0

Ck−s
m−(n−w)q

m−(n−w)−(k−s)(1−q)k−s

]

k/k∗: number of observed/true female links.

m/n: number of observed/true links.

w: possible number of links mis-measured among true links (0≤ w≤ n).

s: number of female links correctly measured.

m− (n−w): total number of links mis-measured.

Next, we move on to figure out MZ2|Z∗2 , where Z∗i2 =
1

∑k∈A∗i
|C∗k |

∑ j∈C∗k
X j. Z∗i2 presents the average

characteristics of individual ks’ direct links in the latent contextual network, where individual ks

are direct links of individual i in the latent peer-effect network. Since Z∗i2 is also an average term

of characteristics of individuals in network C, we can make use of the previous results. Similarly,

for convenience, we suppress the subscript i.

For simplicity, we assume |Ai|= 1, that is in the latent peer-effect network i only has one direct

link. Based on the comparison between the latent network and its two measurements, there are

four cases similar to the discussion of Z1. Notice, it is enough to consider two cases that |Ai|= |A∗i |

and |Ai|> |A∗i |.

Case 1: |Ai|= |A∗i |= 1

Under this case, we observe one link in network A but we do not know if the link is the true

link in the latent network. If we observe the right link, say individual l, then Pr(Z2 =
k
m |Z

∗
2 = k∗

n )

is the same as Pr(Zl1 =
k
m |Z

∗
l1 =

k∗
n ). However,if we observe the wrong link, say some individual

l′ other than l, then Pr(Z2 =
k
m |Z

∗
2 = k∗

n ) is the same as Pr(Zl′1 =
k
m |Z

∗
l′1 =

k∗
n ). Recall we assume
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the probability of observing the right link in network A is given by Pr(Ai j = 1|A∗i j = 1) = Pr(Ai j =

0|A∗i j = 0) = λ.

Pr(Z2 =
k
m
|Z∗2 =

k∗

n
) = λPr(Zl1 =

k
m
|Z∗l1 =

k∗

n
)+(1−λ)Pr(Zl′1 =

k
m
|Z∗l′1 =

k∗

n
)

Case 2: |Ai|= 2 > |A∗i |= 1

Under this case, we observe two links in network A but there is only one true link in the latent

network A∗. There are two possible outcomes. We may observe the true link, say individual l, and

another wrong link, arbitrarily say l′. Or we may observe two wrong links, arbitrarily say l′ and

l′′. Then Pr(Z2 =
k
m |Z

∗
2 = k∗

n ) follows the form:

Pr(Z2 =
k
m
|Z∗2 =

k∗

n
) =C1

2λ(1−λ)Pr(Zl1 =
kl

ml
|Z∗l1 =

k∗l
nl
)Pr(Zl′1 =

kl′

ml′
|Z∗l′1 =

k∗l′
nl′

)

+(1−λ)2Pr(Zl′1 =
kl′

ml′
|Z∗l′1 =

k∗l′
nl′

)Pr(Zl′′1 =
kl′′

ml′′
|Z∗l′′1 =

k∗l′′
nl′′

),

where

kl + kl′ = kl′+ kl′′ = k,

k∗l + k∗l′ = k∗l′+ k∗l′′ = k∗,

nl +nl′ = nl′+nl′′ = n,

ml +ml′ = ml′+ml′′ = m,

For general case, where |A∗i | = na, |Ai| = ma, and ma ≥ na, we can write Pr(Z2 =
k
m |Z

∗
2 = k∗

n )

in the following form:
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Pr(Z2 =
k
m
|Z∗2 =

k∗

n
) =

na

∑
ω=0

λ
na−ω(1−λ)ma−(na−ω)Cna−ω

ma

[
na−ω

∏
l=1

Cna−ω
na

Pr(Zl1 =
kl

ml
|Z∗l1 =

k∗l
nl
)

na+1+ω

∏
l′=na+1

Pr(Zl′1 =
kl′

ml′
|Z∗l′1 =

k∗l′
nl′

)

]
,

where for each ω such that 0≤ ω≤ na,

ω

∑
l=1

kl +
ω+na+1

∑
l′=na+1

kl′ = k,

ω

∑
l=1

k∗l +
ω+na+1

∑
l′=na+1

k∗l′ = k∗,

ω

∑
l=1

nl +
ω+na+1

∑
l′=na+1

nl′ = n,

ω

∑
l=1

ml +
ω+na+1

∑
l′=na+1

ml′ = m.

Notice that in the above equation, we suppress subscript i. Without loss of generality, we can

order all the individuals in the network such that the first na individuals are the true links to some

arbitrary individual i. For example, individual l ∈ {1,2, ...,na} is a direct link to i in the latent

network A∗.
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APPENDIX B

Proof of Proposition 3.1

Proof. First, we assume that Xc is one-dimensional and consider two sets of structural parameters

θ and θ′, where θ = (α,β,γ,δ) and θ′ = (α′,β′,γ′,δ′). Suppose θ and θ′ lead to the same reduced

form, which means

α(I−βA∗)−1
ι = α

′(I−β
′A∗)−1

ι, (5.1)

γ(I−βA∗)−1 = γ
′(I−β

′A∗)−1, (5.2)

and

δ(I−βA∗)−1C∗ = δ
′(I−β

′A∗)−1C∗. (5.3)

We want to show that these imply θ = θ′. Pre-multiply (5.2) and (5.3) by (I− βA∗)(I− β′A∗).

Since for all b, (I−bA∗)−1A∗ = A∗(I−bA∗)−1 (Both (I−bA∗)−1 and A∗ are symmetric matrix),

we have

γ(I−β
′A∗) = γ

′(I−βA∗),

and

δ(I−β
′A∗)C∗ = δ

′(I−βA∗)C∗.

To rearrange the above two equations, we get

(γ− γ
′)I +(γ′β− γβ

′)A∗ = 0 (5.4)

and

(δ−δ
′)C∗+(δ′β−δβ

′)A∗C∗ = 0. (5.5)

115



Since the matrices I, A∗, C∗ and A∗C∗ are linearly independent, (5.4) and (5.5) implies

γ = γ
′, δ = δ

′, βγ
′ = β

′
γ, βδ

′ = β
′
δ. (5.6)

If δ 6= 0, we know that β = β′ by the last equation in (5.6). Furthermore, observe that (5.1) implies

αι = α′ι, hence α = α′. Therefore, we have θ = θ′.

Next, suppose that there are K characteristics in Xc and that parameters γk is associated with

characteristics k. Then, θ and θ′ leading to the same reduced form implies (5.1), (5.3) and

γk(I−βA∗)−1 = γ
′
k(I−β

′A∗)−1, (5.7)

for all k. Similarly by previous arguments, for all k, we can pre-multiply (5.7) by (I−βA∗)(I−

β′A∗). Then we get α = α′, β = β′, γk = γ′k for all k and δ = δ′, and hence θ = θ′.

Proof of Lemma 3.1

Proof. The proof is provided in Corollary 1 and 2 in Blume et al. (2015) and hence is omitted.

Proof of Equation 3.7

Proof.

Equation(3.4)⇒ m(Xc
i ,Z
∗
i ;θ)≡ E(Yi|Xc

i ,Z
∗
i )
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∫
m(Xc

i ,Z
∗
i ;θ) fZ∗|Z,XcdZ∗ =

∫
E(Yi|Xc

i ,Z
∗
i ) fZ∗|Z,XcdZ∗

=
∫ ∫

Yi fY |Z∗,XcdY fZ∗|Z,XcdZ∗

=
∫

Yi

∫
fY |Z∗,Xc fZ∗|Z,XcdZ∗dY

=
∫

Yi

∫
fY |Z∗,Xc

fZ∗,Z,Xc

fZ,Xc
dZ∗dY

=
∫ Yi

fZ,Xc

∫
fY |Z∗,Xc fZ∗,Z,XcdZ∗dY

By Assumption 4.2.(ii),

∫ Yi

fZ,Xc

∫
fY |Z∗,Xc fZ∗,Z,XcdZ∗dY =

∫ Yi

fZ,Xc

∫
fY |Z∗,Z,Xc fZ∗,Z,XcdZ∗dY

=
∫

Yi
fY,Z,Xc

fZ,Xc
dY

= E(Yi|Xc,Z)

Proof of Lemma 3.2

Proof. By Assumption 3.5, the rank of DZ∗m|Xc is Km. By the rank inequality, for any p×n matrix

A and n×q matrix B,

rank(A)+ rank(B)−n≤ rank(AB)≤min{rank(A), rank(B)}.

Then we can show that MZm|Z∗m,XcDZ∗m|Xc has rank Km. By applying the inequality again, we can

conclude that the matrix

MZm,Z′m|Xc = MZm|Z∗m,XcDZ∗m|XcMT
Z′m|Z∗m,Xc .
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has rank Km.

Proof of Proposition 3.2

Proof. Assumptions 3.4-3.6 implies that the observed matrix MZm,Z′m,Y |XcM−1
Zm,Z′m|Xc admits an eig-

envalue-eigenvector decomposition that

MZm,Z′m,Y |XcM−1
Zm,Z′m|Xc = MZm|Z∗m,XcDy|Z∗m,XcM−1

Zm|Z∗m,Xc.

Assumption 3.7 (i) ensures that there are no duplicate values for the diagonal elements in DY |Z∗m,Xc ,

which correspond to fY |Z∗m,Xc . Therefore, the eigenvectors are linearly independent with each

other. The next step is to determine which eigenvectors corresponds to fZm|Z∗m,Xc(·| j,xc) for j =

1,2, ...,Km. Condition (ii) imposes an ordering for the eigenvectors. Consequently, we can identify

fZm|Z∗m,Xc by checking the location of the largest value in each eigenvector.

The conditional distribution of Zm can be represented as fZm|Xc = ∑Z∗m fZm|Z∗m,Xc fZ∗m|Xc . The

matrix representation is

MZm|Xc = MZm|Z∗m,XcMZ∗m|Xc,

Therefore, the conditional density of Z∗m can be identified as

MZ∗m|Xc = M−1
Zm|Z∗m,XcMZm|Xc , m = 1,2.

Note that the invertibility of MZm|Z∗m,Xc is guaranteed by Assumption 3.6.

Proof of Theorem 3.1

Proof. The proof follows the discussion in the text and hence is omitted.

Proof of Proposition 3.3

118



Proof. First, we show that f̂Zm,Z′m,Xc,Y
p−→ fZm,Z′m,Xc,Y . Fix n ∈ N+, z ∈ Z, z′ ∈ Z′, x ∈ X c and

y ∈ Y . By Chebychev’s inequality, there exists c > 0 such that

Pr
(∣∣∣ f̂Zm,Z′m,Xc,Y (z,z

′,x,y)−E
[

f̂Zm,Z′m,Xc,Y (z,z
′,x,y)

]∣∣∣≥ c
)
≤ c2 Var

[
f̂Zm,Z′m,Xc,Y (z,z

′,x,y)
]
.

Since f̂Zm,Z′m,Xc,Y (z,z
′,x,y) = 1

n ∑i1(Zmi = z,Z′mi = z′,Xc
i = x,Yi = y)≡ 1

n ∑i1i,

Var

[
1
n

n

∑
i=1

1(Zmi = z,Z′mi = z′,Xc
i = x,Yi = y)

]
=

1
n2

n

∑
i=1

Var1i +
1
n2

n

∑
i=1

n

∑
j 6=i

Cov(1i,1 j)

=
1
n

Var1i +
n(n−1)

n2 Cov(1i,1 j)

= o(1)

by Assumption 3.9 (iii). Furthermore, by Assumption 3.9 (i)-(ii) we have

E
[

f̂Zm,Z′m,Xc,Y (z,z
′,x,y)

]
= E

(
1
n

n

∑
i=1

1i

)
= E(1i) = fZm,Z′m,Xc,Y .

Therefore, f̂Zm,Z′m,Xc,Y
p−→ fZm,Z′m,Xc,Y . Similarly, we can show that f̂Zm,Z′m,Xc

p−→ fZm,Z′m,Xc and f̂Zm,Xc

p−→

fZm,Xc . Furthermore, f̂Xc
p−→ fXc by law of large numbers. Hence, by continuous mapping theorem

f̂Zm,Z′m,Y |Xc

p−→ fZm,Z′m,Y |Xc , f̂Zm,Z′m|Xc

p−→ fZm,Z′m|Xc and f̂Zm|Xc

p−→ fZm|Xc .

Since the eigenvector function ψ(·) is a well-behaved analytical function (Andrew, Chu and

Lancaster 1993), we have

f̂Zm|Z∗m,Xc
p−→ fZm|Z∗m,Xc

for m = 1,2. Finally, by continuous mapping theorem we can show that

f̂Z∗m|Xc
p−→ fZ∗m|Xc, m = 1,2.
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Proof of Proposition 3.4

Proof. We prove this proposition by verifying conditions (i)-(iv) of Theorem 2.1 in Newey and

McFadden (1994). It is easy to see that conditions (ii) and (iii) are satisfied by Assumption 3.10.

Therefore, we only need verify conditions (i) and (iv), i.e., E[logcσ(F1,F2)] is uniquely maximized

at σ0 and

sup
σ∈Σ

∣∣∣∣∣1n n

∑
i=1

log
[
cσ(F̂1(Z1i|Xc

i ), F̂2(Z2i|Xc
i ))
]
−E[logcσ(F1(Z1i|Xc

i ),F2(Z2i|Xc
i ))]

∣∣∣∣∣= op(1). (5.8)

First, E[logcσ(F(Z1i),F(Z2i))] is uniquely maximized at σ0 by Sklar’s theorem and Lemma 2.2 of

Newey and McFadden (1994). Then, in order to show (5.8), we follow the proof of Theorm 4.2 in

Wooldridge (1994) and show that

sup
(σ,F1,F2)∈Ω

∣∣∣∣∣1n n

∑
i=1

log [cσ(F1(Z1i|Xc
i ),F2(Z1i|Xc

i ))]−E[logcσ(F1(Z1i|Xc
i ),F2(Z2i|Xc

i ))]

∣∣∣∣∣= op(1).

(5.9)

Let δ > 0 be a positive number to be set later. Since Ω is compact, there exists a finite covering

of Ω, say Bδ(σ j,F1 j,F2 j), j = 1,2, ...,K(δ), where Bδ(σ j,F1 j,F2 j) is the sphere of radius δ about

(σ j,F1 j,F2 j), i.e.,

Bδ(σ j,F1 j,F2 j) =
{
(σ,F1,F2) ∈Ω| ‖(σ,F1,F2)− (σ j,F1 j,F2 j)‖< δ

}
.

Set ω = (σ,F1,F2), B j = Bδ(ω j), Ln(ω) = 1/n∑
n
i=1 log [cσ(F1(Z1i|Xc

i ),F2(Z2i|Xc
i ))],

Ln(ω) = E[Ln(ω)]. Since Ω⊂
⋃K

j=1 Bδ(ω j), it follows that

Pr
[

sup
ω∈Ω

∣∣Ln(ω)−Ln(ω)
∣∣> ε

]
≤ Pr

[
max

1≤ j≤K(δ)
sup

ω∈B j

∣∣Ln(ω)−Ln(ω)
∣∣> ε

]

≤
K(δ)

∑
j=1

Pr

[
sup

ω∈B j

∣∣Ln(ω)−Ln(ω)
∣∣> ε

]
. (5.10)
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We will show that each probability in the summand is o(1).

Define li(ω) = logcσ(F1(Z1i|Xc
i ),F2(Z2i|Xc

i )), li(ω) = E[li(ω)]. For ω ∈ B j,

∣∣Ln(ω)−Ln(ω)
∣∣≤ ∣∣Ln(ω)−Ln(ω j)

∣∣+ ∣∣Ln(ω j)−Ln(ω j)
∣∣+ ∣∣Ln(ω j)−Ln(ω)

∣∣
≤1

n

n

∑
i=1

∣∣li(ω)− li(ω j)
∣∣+ ∣∣∣∣∣1n n

∑
i=1

li(ω j)− li(ω j)

∣∣∣∣∣+ 1
n

n

∑
i=1

∣∣li(ω)− li(ω j)
∣∣

by the triangle inequality. By Assumption 3.10 (iii) and the monotonicity of expectation, for

ω ∈ B j, ∣∣li(ω)− li(ω j)
∣∣≤ ci‖ω−ω j‖ ≤ δci

and ∣∣li(ω)− li(ω j)
∣∣≤ ci‖ω−ω j‖ ≤ δci,

where ci = supω∈B j
‖∇ωli(ω)‖ and ci = E(ci). Therefore, we have

sup
ω∈B j

∣∣Ln(ω)−Ln(ω)
∣∣≤ δ

(
1
n

n

∑
i=1

ci +
1
n

n

∑
i=1

ci

)
+

∣∣∣∣∣1n n

∑
i=1

li(ω j)− li(ω j)

∣∣∣∣∣
≤ 2δ

1
n

n

∑
i=1

ci +δ

∣∣∣∣∣1n n

∑
i=1

ci−
1
n

n

∑
i=1

ci

∣∣∣∣∣+
∣∣∣∣∣1n n

∑
i=1

li(ω j)− li(ω j)

∣∣∣∣∣
= 2δci +δ

∣∣∣∣∣1n n

∑
i=1

ci− ci

∣∣∣∣∣+
∣∣∣∣∣1n n

∑
i=1

li(ω j)− li(ω j)

∣∣∣∣∣
where the second inequality is by triangle inequality and the last equality is by Assumption 3.9.

Since ci ≤C < ∞ by Assumption 3.10 (iii). It follows that

Pr

[
sup

ω∈B j

∣∣Ln(ω)−Ln(ω)
∣∣> ε

]
≤ Pr

[
δ

∣∣∣∣∣1n n

∑
i=1

ci− ci

∣∣∣∣∣+
∣∣∣∣∣1n n

∑
i=1

li(ω j)− li(ω j)

∣∣∣∣∣> ε−2δC

]
.
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Now choose δ≤ 1 such that ε−2δC > ε/2. Then

Pr

[
sup

ω∈B j

∣∣Ln(ω)−Ln(ω)
∣∣> ε

]
≤ Pr

[∣∣∣∣∣1n n

∑
i=1

ci− ci

∣∣∣∣∣+
∣∣∣∣∣1n n

∑
i=1

li(ω j)− li(ω j)

∣∣∣∣∣> ε

2

]
.

Next, choose N so that

Pr

[∣∣∣∣∣1n n

∑
i=1

ci− ci

∣∣∣∣∣+
∣∣∣∣∣1n n

∑
i=1

li(ω j)− li(ω j)

∣∣∣∣∣> ε

2

]
≤ ε

K(δ)
, (5.11)

for all n≥ N and all j = 1,2, ...,K(δ). Note that this is possible because

∣∣∣∣∣1n n

∑
i=1

ci− ci

∣∣∣∣∣= op(1)

and ∣∣∣∣∣1n n

∑
i=1

li(ω j)− li(ω j)

∣∣∣∣∣= op(1)

by similar argument as in the proof of Proposition 3.3. Therefore, (5.10) and (5.11) together imply

that for all n≥ N and ε > 0

Pr
[

sup
ω∈Ω

∣∣Ln(ω)−Ln(ω)
∣∣> ε

]
≤ ε,

which proves (5.9). Finally, since Fn(Zli)
p−→ F(Zli), l = 1,2 by similar argument as in the proof of

Proposition 3.3, (5.9) implies that

sup
σ∈Σ

∣∣∣∣∣1n n

∑
i=1

log
[
cσ(F̂1(Z1i|Xc

i ), F̂2(Z2i|Xc
i ))
]
−E[logcσ(F1(Z1i|Xc

i ),F2(Z2i|Xc
i ))]

∣∣∣∣∣= op(1)

by Theorem 3.7 of White (1996). Consequently, σ̂
p−→ σ0 by Theorem 2.1 of Newey and McFadden

(1994).
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Proof of Proposition 3.5

Proof. By Assumption 3.11 (i) and Proposition 3.4, σ̂ is an interior point of Σ with probability

approaching 1 as n→ ∞. Therefore, with probability approaching 1, ∇σLn(σ̂, F̂1, F̂2) = 0. By

Taylor expansion at σ0, we have

∇σLn(σ0, F̂1, F̂2)+∇σ,σLn(σ
∗, F̂1, F̂2)(σ̂−σ0) = 0 w.p.a 1,

where σ∗ lies between σ̂ and σ0. Consequently,

√
n(σ̂−σ0) =

√
n∇σLn(σ0, F̂1, F̂2)

−∇σ,σLn(σ∗, F̂1, F̂2)
.

Now, we prove this proposition in three steps:

Step 1. First, we will show that
√

n∇σLn(σ0, F̂1, F̂2)
d−→ N(0,v2) by similar argument as in

the proof of Theorem 8.1 in Newey and McFadden (1994). By Assumption 3.10 (iii) and Taylor

expansion at (FZ1,Xc ,FZ1,Xc,Xc), we have

√
n∇σLn(σ0, F̂1, F̂2) =

√
n∇σLn(σ0,F1,F2)+

√
n∇σ,FZ1,X

c Ln(σ0,F1,F2)(F̂Z1,Xc−FZ1,Xc)

+
√

n∇σ,FZ2,X
c Ln(σ0,F1,F2)(F̂Z2,Xc−FZ2,Xc)+

√
n∇σ,FXc Ln(σ0,F1,F2)(F̂Xc−FXc)+ r,

where r = Op

(√
n‖F̂−F‖2

∞

)
. Therefore, by Assumption 3.11 (iii) and Donsker’s theorem,

|
√

n∇σLn(σ0, F̂1, F̂2)−
√

n∇σLn(σ0,F1,F2)−
√

n∇σ,FZ1,X
c Ln(σ0,F1,F2)(F̂Z1,Xc−FZ1,Xc)

−
√

n∇σ,FZ2,X
c Ln(σ0,F1,F2)(F̂Z2,Xc−FZ2,Xc)−

√
n∇σ,FXc Ln(σ0,F1,F2)(F̂Xc−FXc)|= op(1).

Hence, the remainder term from the linearization is small. Next, we verify the stochastic equicon-

tinuity condition (Andrews 1994) for
√

n∇σ,FZm,Xc Ln(σ0,F1,F2)(F̂Zm,Xc−FZm,Xc) and
√

n∇σ,FXc Ln(σ0,F1,F2)(F̂Xc−FXc). By Assumption 3.11 (iv) and Theorem 4.2 of Rio (2017), it is
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clear that

√
n
[
∇σ,FZm,Xc Ln(σ0,F1,F2)−E(∇σ,FZm,Xc Ln(σ0,F1,F2))

]
(F̂Zm,Xc−FZm,Xc)

=
1√
n

n

∑
i=1

{
∇σ,FZm,Xc li(σ0,F1,F2)−E[∇σ,FZm,Xc li(σ0,F1,F2)]

}
(F̂Zm,Xc−FZm,Xc) = op(1).

Similarly, we can show that

√
n
[
∇σ,FXc Ln(σ0,F1,F2)−E(∇σ,FXc Ln(σ0,F1,F2))

]
(F̂Xc−FXc) = op(1).

Define Fn to be the empirical measure. Then,

∫
∇σ,FZm,Xc li(σ0,F1,F2)(F̂Zm,Xc−FZm,Xc)dF

=
∫

∇σ,FZm,Xc li(σ0,F1,F2)) [1(Zmi ≤ zm,Xc
i ≤ xc)−FZm,Xc(z,xc)]dFn,

and

∫
∇σ,FXc li(σ0,F1,F2)(F̂Xc−FXc)dF =

∫
∇σ,FXc li(σ0,F1,F2)) [1(Xc

i ≤ xc)−FXc(xc)]dFn,

Consequently, condition (iii) of Theorem 8.1 in Newey and McFadden (1994) is verified. Finally,

their condition (iv) is trivially satisfied. Therefore,

√
n∇σLn(σ0, F̂1, F̂2)

d−→ N(0,v2)

by CLT for weakly dependent random variable (see, e.g., Theorem 4.2 of Rio 2017), where

v2 = lim
n→∞

1
n

Var

{
n

∑
i=1

[∇σ logCδ(F1(Z1i|Xc
i ),F(Z2i|Xc))+K1(Z1i,Xc

i )+K2(Z2i,Xc
i )+K3(Xc

i )]

}
.
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Step 2. Next, we show that ∇σ,σLn(σ0, F̂1, F̂2)
p−→ b. We have

∇σ,σLn(σ
∗, F̂1, F̂2) =

1
n

n

∑
i=1

∇σ,σli(σ∗, F̂1, F̂2).

By argument similar to the proof of Proposition 3.4, ∇σ,σli(·, ·, ·) satisfies the uniform weak law of

large numbers. Furthermore, σ∗
p−→ σ0 and F̂m

p−→ Fm, m = 1,2. Hence, by Theorem 3.7 of White

(1996),

∇σ,σLn(σ
∗, F̂1, F̂2)

p−→ E[∇σ,σ logCδ(F1,F2)] = b.

Step 3. Finally, by combining the results in Steps 1 and 2 and applying Slutsky’s theorem, we

can conclude that
√

n(σ̂−σ0)
p−→ N(0,v2/b2)

Proof of Theorem 3.2

Proof. We prove this theorem by verifying conditions (i)-(iv) of Theorem 2.1 in Newey and Mc-

Fadden (1994). It is easy to see that conditions (ii) and (iii) are satisfied by Assumption 3.12.

Furthermore, condition (i) is satisfied by the identification result. Therefore, we only need to ver-

ify condition (iv), i.e.,

sup
θ∈Θ

∣∣∣∣∣1n n

∑
i=1

gi (θ, σ̂, η̂)−E[gi(θ,σ,η)]

∣∣∣∣∣ ,
which can be proved similarly to Proposition 3.4. Therefore, we can conclude that

θ̂
p−→ θ0.

Proof of Theorem 3.3
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Proof. By Assumption 3.13 (i) and Theorem 3.2, θ̂ is an interior point of Θ with probability ap-

proaching 1 as n→ ∞. Therefore, with probability approaching 1 the first order condition is

[
1
n

n

∑
i=1

∇θgi(θ̂, σ̂, η̂)

]T

V̂

[
1
n

n

∑
i=1

gi(θ̂, σ̂, η̂)

]
= 0.

By Taylor expansion at θ0, we have

1
n

n

∑
i=1

gi(θ̂, σ̂, η̂) =
1
n

gi(θ0, σ̂, η̂)+
1
n

∇θgi(θ
∗, σ̂, η̂)(θ̂−θ0) w.p.a 1,

where θ∗ is between θ̂ and θ0. Consequently,

√
n(θ̂−θ0) =−


[

1
n

n

∑
i=1

∇θgi(θ̂, σ̂, η̂)

]T

V̂

[
1
n

n

∑
i=1

∇θgi(θ
∗, σ̂, η̂)

]
−1

×

[
1
n

n

∑
i=1

∇θgi(θ̂, σ̂, η̂)

]T

V̂

[
1√
n

n

∑
i=1

gi(θ0, σ̂, η̂)

]

Now, we prove this theorem in three steps:

Step 1. First, we will show that 1/
√

n∑
n
i=1 gi(θ0, σ̂, η̂)

d−→N(0,Λ) by similar argument as in the

proof of Theorems 6.1 and 8.1 in Newey and McFadden (1994). By Taylor expansion at (σ0,η0),

1√
n

n

∑
i=1

gi(θ0, σ̂, η̂) =
1√
n

n

∑
i=1

gi(θ0,σ0,η0)+
1√
n

n

∑
i=1

∇σgi(θ0,σ0,η0)(σ̂−σ0)

+
1√
n

n

∑
i=1

∇ηgi(θ0,σ0,η0)(η̂−η0)+ r,

where the remainder term r is op(1) by Proposition 3.5 and Assumption 3.13 (iii). First, note that

1√
n

n

∑
i=1

∇σgi(θ0,σ0,η0)(σ̂−σ0) =
1
n

n

∑
i=1

∇σgi(θ0,σ0,η0)
√

n(σ̂−σ0)

By argument similar to the proof of Proposition 3.4, ∇σgi(·, ·, ·) satisfies the uniform weak law of
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large numbers. Besides, σ̂ is an asymptotically linear estimator with influence function

∇σ logCδ(F1(Z1i|Xc
i ),F2(Z2i|Xc))+K1(Z1i,Xc

i )+K2(Z2i,Xc
i )+K3(Xc

i )

−E[∇σ,σ logCδ(F1,F2)]

by Proposition 3.5. Therefore, by continuous mapping theorem

1√
n

n

∑
i=1

∇σgi(θ0,σ0,η0)(σ̂−σ0)

=E[∇σgi(θ0,σ0,η0)]

1√
n

n

∑
i=1

∇σ logCδ(F1(Z1i|Xc
i ),F2(Z2i|Xc))+K1(Z1i,Xc

i )+K2(Z2i,Xc
i )+K3(Xc

i )

−E[∇σ,σ logCδ(F1,F2)]

+op(1)

=
1√
n

n

∑
i=1

νi +op(1).

Next, we show that

1√
n

n

∑
i=1

∇ηgi(θ0,σ0,η0)(η̂−η0) =
1√
n

n

∑
i=1

ξi +op(1).

Following the proof of Theorem 8.1 in Newey and McFadden (1994), we verify the stochastic

equicontinuity condition for 1/
√

n∑
n
i=1 ∇ηgi(θ0,σ0,η0)(η̂−η0). By Assumption 3.11 (iv), As-

sumption 3.12 (v) and Theorem 4.2 of Rio (2017), it is clear that

1/
√

n
n

∑
i=1

∇ηgi(θ0,σ0,η0)(η̂−η0) = op(1).
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Furthermore, we have

∫
∇ fZm,Z′m,Y,Xc gi(θ0,σ0,η0)( f̂Zm,Z′m,Y,Xc− fZm,Z′m,Y,Xc)dF

=
∫ [

1(ζmi = ζm)− fZm,Z′m,Y,Xc(ζm)
]

∇ fZm,Z′m,Y,Xc gi(θ0,σ0,η0)dFn.

Similar results can be shown for

∫
∇ fZm,Z′m,Xc gi(θ0,σ0,η0)( f̂Zm,Z′m,Xc− fZm,Z′m,Xc)dF,

∫
∇ fZm,Xc gi(θ0,σ0,η0)( f̂Zm,Xc− fZm,Xc)dF,∫

∇ fZ,Xc gi(θ0,σ0,η0)( f̂Z,Xc− fZ,Xc)dF

and ∫
∇ fXc gi(θ0,σ0,η0)( f̂Xc− fXc)dF

for m = 1,2. Consequently, condition (iii) of Theorem 8.1 in Newey and McFadden (1994) is

verified. Finally, their condition (iv) is trivially satisfied. Therefore,

1√
n

n

∑
i=1

∇ηgi(θ0,σ0,η0)(η̂−η0) =
1√
n

n

∑
i=1

ξi +op(1),

and hence
1√
n

n

∑
i=1

gi(θ0, σ̂, η̂)
d−→ N(0,Λ)

by CLT for weakly dependent random variable (see, e.g., Theorem 4.2 of Rio 2017), where

Λ = lim
n→∞

1
n

Var

{
n

∑
i=1

[gi(θ0,σ0,η0)+νi +ξi]

}
.

Step 2. Next, we show that 1/n∑
n
i=1 ∇θgi(θ̂, σ̂, η̂)

p−→ R. By argument similar to the proof of

128



Proposition 3.4, ∇θgi(·, ·, ·) satisfies the uniform weak law of large numbers.

Moreover, θ̂
p−→ θ0, σ̂

p−→ σ0 and η̂
p−→ η0. Hence, by Theorem 3.7 of White (1996),

1
n

n

∑
i=1

∇θgi(θ̂, σ̂, η̂)
p−→ E[∇θgi(θ0,σ0,η0)] = R.

Similarly, we can show that
1
n

n

∑
i=1

∇θgi(θ
∗, σ̂, η̂)

p−→ R.

Consequently,


[

1
n

n

∑
i=1

∇θgi(θ̂, σ̂, η̂)

]T

V̂

[
1
n

n

∑
i=1

∇θgi(θ
∗, σ̂, η̂)

]
−1

p−→
{
E[∇θgi(θ0,σ0,η0)]

TVE[∇θgi(θ0,σ0,η0)]
}−1

= G−1

by continuous mapping theorem.

Step 3. Finally, by combining the results in Steps 1 and 2 and applying Slutsky’s theorem, we

can conclude that
√

n(θ̂−θ0)
d−→ N(0,G−1RTV ΛV RG−1).
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