
DEEP REINFORCEMENT LEARNING FOR ADVERSARIAL GAMES ON GRAPHS

A Thesis

by

HARISH KUMAR

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Anxiao Jiang
Committee Members, Dileep Kalathil

Guni Sharon
Theodora Chaspari

Head of Department, Scott Schaefer

May 2020

Major Subject: Computer Science

Copyright 2020 Harish Kumar

ABSTRACT

The game of cops and robbers is a multi-agent adversarial game played on graphs. Previous

research on agent strategies for this game has focused on designing heuristics for minimax strate-

gies and these often impose strict restrictions on the graph structure. This research develops a

methodology that instead uses Deep Reinforcement Learning and Graph Convolutional Networks

by training a cop and robber iteratively against each other.

Naïve implementations of such iterative training suffer from instability and during training and

can result in one-sided agent performance. This work overcomes this issue through a few simple

modifications. Instead of training an agent against the most recent version of its opponent, several

versions of the opponent are preserved and used to train an agent. In addition, the number of steps

for which each agent is trained is set depending on its most recent performance evaluation.

To increase the operating range of the agents, based on recent work in hierarchical graph pool-

ing, an efficient Vertex Pooling technique is introduced that allows the basic approach to be scaled

to large graphs with only a sub-linear increase in the neural network depth. By aggregating local

graph information from increasingly larger receptive fields, this approach achieves a scaling in

which the number of GCN layers in the network needs to increase only logarithmically with the

diameter of the graph.

The overall method is evaluated by measuring its performance in competition with clairvoyant

opponents. Upon evalution, it is seen that these techniques together lead to agents that perform

near-optimally on graphs that were never used during training. The approach proposed in this

research is also compared with two traditional algorithms: Alpha-Beta pruning, and UCT search.

By creating neural architectures and training methods that allow Reinforcement Learning to

be applied successfully to decision-making problems on graphs, this research results in techniques

that can be applied to a range of RL problems involving decision-making by multiple agents on

graphs.

ii

DEDICATION

To my mother, my father, and my little brother.

iii

ACKNOWLEDGMENTS

I would first like to express my heartfelt gratitude to my advisor, Prof. Anxiao Jiang for his

time, guidance and patience. His expertise brought knowledge, stability and direction to our work

on this topic. I must especially thank him for the support and freedom he offered during our

research and for supporting me in exploring areas that I found interesting. I’m grateful to my com-

mittee members Prof. Dileep Kalathil, Prof. Guni Sharon and Prof. Theodora Chaspari for their

advice during the course of this research. I thank all the instructors whose courses I have attended

at TAMU - I thoroughly enjoyed every one of these courses and learned wonderful concepts some

of whose very existence I was previously unaware of.

I thank the Computer Science Department of Texas A&M for funding me as a Teaching Assis-

tant all throughout my Masters program. I thank Prof. Scott Schaefer, Prof. Eduardo Nakamura,

Prof. Michael Moore and Prof. Robert Lightfoot for the pleasant work environment that they

kept during the tenures when I worked with them. I thank my former students whose constructive

feedback was essential in my pedagogical growth.

I thank my undergraduate advisor Prof. Balaraman Ravindran for granting me the experience

of undertaking an enjoyable thesis in computer science, for continuing to offer me his guidance

and good wishes to this day, and for being a great teacher to learn from. I also thank Prof. Neelima

Gupte, my undergraduate advisor, for mentoring and advising me during my undergraduate degree.

From Solid State Physics to Information Theory, the courses that I studied during this time were

formative and fundamental to my career. I thank all the Professors and instructors of IIT Madras

who have taught me, and my peers there for gifting me with an environment where I had something

new to learn from everyone.

I wish to thank Julius Kusuma, Sourav Chatterjee, Paul Varkey, Vishvas Suryakumar, Ted

Woodward and Martijn de Jongh for their warm and friendly mentorship during my summer in-

ternship. Their steady guidance and their unwavering belief in me ensured that I had a successful

internship, and it is thanks to them that upon returning to college, I could focus without diversions

iv

on this thesis.

Several friends have been an integral part of why I have enjoyed life for two and a half decades.

I wish to thank Aditya Gurunathan, Ajay Krishna, Bharath Sivaram, T.R. Sriram, Sumit Kumar,

Vijayaraghavan and Rudra Prasath for putting up with my antics and eccentricities all these years.

These people have been my partners-in-crime for many years and I enjoyed the times I spent in

their company.

In Lakshmi and Kumar, I have been blessed with the most supportive, encouraging, kind and

loving parents anybody could ever ask for. Much of my success in life can be attributed to their

love and support through decades of occasionally difficult, but always joyful times. My younger

brother Nithish, now a graduate student himself, is in many ways the same delightful kid that I

grew up with. I thank him for being a steady source of wisdom, wit and unintended comic relief

through thick and thin. I thank all my relatives for their kindness, affection and encouragement.

My grandparents, Ananthanarayanan and Ananthalakshmi, Yegna Ramanathan and Rajalakshmi

are not with me today, but their inspiring lives and the kindness and warmth they showed to both

friends and strangers have ensured that they will always be remembered, and their memories cher-

ished.

Lastly, I do not think it out of place to express my admiration and indebtedness to the artists

of all the music that I listened to over the past two years and more: Pandit Ravishankar, Ustad Za-

kir Hussain, Pandit Hariprasad Chaurasia, Rakesh Chaurasia, Pandit Ajoy Chakraborty, Kaushiki

Chakraborty, Mandolin U. Srinivas, John McLaughlin, Jayanthi Kumaresh, Bombay Jayashree,

Ranjani & Gayathri, A.R. Rahman and many other brilliant musicians. I also bow in gratitude to

the great Carnatic and Hindustani composers from centuries ago whose wisdom and skill continues

to influence and inspire the music of today. These compositions were not merely my antidote in

tough times, but also founts of boundless joy.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professors Anxiao Jiang and

Guni Sharon and Theodora Chaspari of the Department of Computer Science, and Professor Dileep

Kalathil of the Department of Electrical and Computer Engineering.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was supported by a series of Graduate Teaching Assistantship grants from

Texas A&M University.

vi

NOMENCLATURE

RL Reinforcement Learning

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GCN Graph Convolutional Network

MDP Markov Decision Process

MMDP Multi-agent Markov Decision Process

POMDP Partially Observable Markov Decision Process

MOMDP Mixed-Observability Markov Decision Process

ReLU Rectified Linear Unit

UCT Upper Confidence Trees

MCTS Monte Carlo Tree Search

IAT Iterative Adversarial Training

MAB Multi-Armed Bandit

PRA∗ Partial Refinement A∗

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xii

LIST OF TABLES. xiii

1. INTRODUCTION. 1

1.1 Organization. 3

2. CONCEPTS FROM DEEP LEARNING, REINFORCEMENT LEARNING, GRAPH
THEORY AND GAME THEORY . 4

2.1 Deep Learning . 4
2.1.1 Neurons . 4
2.1.2 Activation Functions . 5
2.1.3 Neural Networks . 5
2.1.4 Variants of Neural Networks . 6
2.1.5 Training Neural Networks . 7

2.1.5.1 Gradient Descent . 7
2.1.5.2 Backpropagation . 8

2.2 Reinforcement Learning . 9
2.2.1 Markov Decision Processes . 9
2.2.2 Policies . 10
2.2.3 Discount Factor . 10
2.2.4 Value Function . 11
2.2.5 Q-Values . 12
2.2.6 Function Approximators for RL. 13
2.2.7 Deep Reinforcement Learning . 13

2.3 Elements of Graph Theory . 14

viii

2.3.1 Vertex . 14
2.3.2 Edge . 14
2.3.3 Degree of a Vertex . 15
2.3.4 Path . 15
2.3.5 Cycle . 16
2.3.6 Tree . 16
2.3.7 Connectedness. 16
2.3.8 Adjacency Matrix . 16
2.3.9 Adjacency List . 17
2.3.10 Embedding of a graph . 17
2.3.11 Planar Graph . 17

2.4 Concepts from Game Theory. 17
2.4.1 Players . 18
2.4.2 Payoffs . 18
2.4.3 Strategies in Games . 18
2.4.4 Normal-form representation . 19

2.4.4.1 Example . 19
2.4.5 Extensive-form representation. 20
2.4.6 Types of Games . 20
2.4.7 Zero-sum Games . 21
2.4.8 Minimax and Maximin . 22

3. RELATED WORK . 24

3.1 Vertex-to-vertex pursuit in a graph . 24
3.2 State abstraction for real-time moving target pursuit: A pilot study 25
3.3 Evaluating strategies for running from the cops . 26
3.4 A cover-based approach to multi-agent moving target pursuit . 26
3.5 POMCoP: Belief Space Planning for Sidekicks in Cooperative Games 27
3.6 Deeppath: A reinforcement learning method for knowledge graph reasoning. 27
3.7 Graph convolutional reinforcement learning for multi-agent cooperation 27

4. FORMAL STATEMENT OF THE COPS AND ROBBERS PROBLEM, MDP FORMU-
LATION AND IN-MEMORY REPRESENTATION. 28

4.1 Problem Description . 28
4.2 Environment Categories . 29
4.3 Variations . 30

4.3.1 Quarantine and Cure . 30
4.3.2 Containment . 31

4.4 Cops and Robbers as a Markov Decision Process . 31
4.4.1 States . 31
4.4.2 Actions. 32
4.4.3 State Transitions. 33
4.4.4 Rewards. 33

ix

4.5 In-memory Representation . 34
4.5.1 States . 34
4.5.2 Actions. 35
4.5.3 State Transitions. 36
4.5.4 Properties . 36

5. NEURAL NETWORK ARCHITECTURE DESIGN, ITERATIVE ADVERSARIAL TRAIN-
ING AND VERTEX POOLING . 37

5.1 Graph Convolutional Networks for Graph Navigation . 37
5.1.1 Problem Statement . 37
5.1.2 Pathfinding Methodology using Matrix Operations . 38

5.1.2.1 Inputs . 39
5.1.2.2 Solution . 39

5.1.3 Emulating Pathfinding using GCNs . 40
5.1.4 Results . 42

5.1.4.1 Limitation on Agent Range . 43
5.2 Iterative Adversarial Training . 44

5.2.1 Pitfalls . 44
5.2.2 Algorithm. 45
5.2.3 Rationale. 47

5.2.3.1 Agent Buffers . 47
5.2.3.2 Adaptive turn lengths . 50

5.3 Vertex Pooling . 51

6. SOFTWARE IMPLEMENTATION, CHALLENGES AND SOLUTIONS. 57

6.1 High-Level Elements of the Software System . 57
6.2 Sub-system Description and Implementation. 58

6.2.1 Orchestrators . 58
6.2.1.1 agent_trainer . 58
6.2.1.2 iterative_adversarial_trainer . 59
6.2.1.3 solo_agent_rollout . 59
6.2.1.4 performance_plotter . 60

6.2.2 Environments . 60
6.2.2.1 MultiAgentIterativeAdversarialEnv . 61
6.2.2.2 SingleAgentFixedStrategyEnv . 62

6.2.3 Agents . 62
6.2.4 Models . 63
6.2.5 Layers. 64

6.2.5.1 GCN Layer . 65
6.2.5.2 Vertex Pooling Layer . 65

6.2.6 Graph Generators . 67
6.3 System Implementation Outcomes . 68

x

7. COP AND ROBBER EVALUATION METHODS, COMPARISONS WITH TRADI-
TIONAL ALGORITHMS AND RESULTS . 69

7.1 Evaluating Trained Cops and Robbers . 69
7.1.1 Requirements and Restrictions on an Evaluation Methodology 69
7.1.2 The Clairvoyant Negamax Algorithm. 70
7.1.3 Proposed Evaluation Methodology. 73

7.1.3.1 Evaluating Cops . 73
7.1.3.2 Evaluating Robbers . 73

7.2 Comparing with other algorithms . 74
7.2.1 Alpha-Beta Pruning . 75
7.2.2 Upper Confidence Tree Search . 77

7.3 Results . 80
7.3.1 Evaluation Against the Clairvoyant Negamax Algorithm. 80
7.3.2 Effects of Vertex Pooling . 83

7.3.2.1 Without Vertex Pooling. 83
7.3.2.2 With Vertex Pooling . 86

7.3.3 Evaluation Against Alpha-Beta Pruning . 89
7.3.4 Evaluation Against Upper Confidence Tree Search . 90

8. CONCLUSIONS . 92

8.1 Summary of Work . 92
8.2 Distinctions from Previous Approaches . 93
8.3 Potential Extensions and Alternate Methods . 93

REFERENCES . 95

xi

LIST OF FIGURES

FIGURE Page

5.1 Network Architecture used for solving the path planning problem . 41

5.2 Cop’s success rate for different GCN depths on the frozen robber problem 42

5.3 Capture Time for different GCN depths on the frozen robber problem 43

7.1 Plot depicting how a cop agent trained using the Iterative Adversarial Training
algorithm performs against a Clairvoyant Negamax Robber when tested on cop-
win graphs . 81

7.2 Plot depicting how a robber agent trained using the Iterative Adversarial Training
algorithm performs against a Clairvoyant Negamax Cop when tested on robber-
win graphs . 82

7.3 Without Vertex Pooling: Variation in Cop Performance with increasing number
of GCN Layers for different starting distances between the cop and the robber.
Measured on cop-win graphs. 83

7.4 Without Vertex Pooling: Variation in Robber Performance with increasing num-
ber of GCN Layers for different starting distances between the cop and the robber.
Measured on robber-win graphs. 85

7.5 With Vertex Pooling: Variation in Cop Performance with increasing number of
GCN Layers for different starting distances between the cop and the robber. Mea-
sured on cop-win graphs. 86

7.6 Number of GCN Layers required to achieve an acceptable cop success rate (0.60)
against a clairvoyant robber, with and without vertex pooling. Measured on cop-
win graphs of increasing diameters and start distances.. 88

7.7 Success rate of agents that use Alpha-Beta pruning, when competing against agents
trained using the Iterative Adversarial Training Algorithm . 89

7.8 Success rate of agents that use Upper Confidence Trees, when competing against
agents trained using the Iterative Adversarial Training Algorithm . 90

xii

LIST OF TABLES

TABLE Page

2.1 Payoffs for the prisoner’s dilemma represented in Normal-Form . 20

xiii

1. INTRODUCTION

Graphs can represent a wide range of problems involving relational structures, local and global

transportation networks, communication networks, the web and other abstractions of real-world

spatial domains. Decision-making problems on graphs are often too complex for traditional ap-

proaches to solve without significant expert-driven design tailored specifically to the problem.

One such problem is the Game of Cops and Robbers ([1]): this is a multi-agent adversarial game

in which two teams of agents, cops and robbers, play a pursuit-and-evasion game on a connected

graph. The cops attempt to arrest the robbers one by one through occupying the same vertices as

the robbers, while the robbers attempt to avoid such a situation. This problem has applications in

physical security, browser prefetching and disease prevention and control ([2]).

The problem of identifying strategies for the game of Cops and Robbers has been shown to

be PSPACE-Hard in [3]. Even finding out the minimum number of cops required to guarantee a

cop victory on a given graph is NP-Hard. A standard approach to solving zero-sum games like

this is to use Negamax, Alpha-Beta pruning or Monte Carlo Tree Search along with well-designed

heuristics. The research community has thus focused on heuristic approaches to build strategies

for cops and robbers ([4], [5], [6]). An issue with many of these heuristics is that they are manually

crafted and are tailored to the specific variant of the problem. In addition, their good performance

is often contingent upon the graph following restrictive structures such as grids and octiles.

Reinforcement Learning (RL) deals with training intelligent agents to take optimal decisions

in a given environment so that the cumulative reward resulting from the series of decisions is

maximized. While RL techniques can use simple methods such as tables, linear models and other

techniques to represent the agent’s learning, training RL agents for complicated problems is a rather

difficult task with these limited tools ([7]). The advent and rise of Deep Neural Networks resulted

in the application of the strong generalization and representation capacity of DNNs to be applied

to Reinforcement Learning tasks. Hence, a prime motivation behind using Deep Reinforcement

Learning on the cops and robbers problem is the hope that there may exist an RL paradigm that does

1

not require a significant amount of manual intervention for each variant, and instead be general

enough to be directly trained on each new variant with minimal changes.

Deep RL methods rely on a neural function approximator to represent the learned policy of

the agent. The architecture of this neural network depends upon the problem that we are solving

and is often tailored specifically to the domain. For instance, deep learning tasks involving visual

inputs are often solved with deep Convolutional Neural Networks ([8], [9]) while those involving

temporal inputs are solved with deep Recurrent Neural Networks that use units such as LSTMs

([10]). This thesis leverages DNNs designed to solve graph problems called Graph Convolutional

Networks ([11]) towards training RL agents to act optimally on the cops and robbers problem.

We iteratively trained the GCN-based cop and robber by playing them against each other and

made them both learn from their opponent. Upon a basic substrate of such an iterative training

strategy, a number of modifications are introduced which make the process stable and prevent a

single agent from dominating the game at the cost of both agents’ learning. One such modification

was to maintain a buffer of different versions of past opponents and train randomly against them

in each training step. This expands the diversity of the opponents that the learning agent faces and

alleviates the effect of catastrophic forgetting. Another useful modification was to adaptively vary

the number of steps each agent is allowed to learn for before the other agent begins learning. We

created agents that achieve very high success rates on graphs on which optimal play by the agents

guarantees victory.

Starting from recent work in hierarchical graph pooling, we implement a fast and efficient

Vertex Pooling technique that exponentially enlarges the receptive field of each GCN layer. By ag-

gregating local graph information from increasingly larger receptive fields, this approach achieves

a range scaling in which to maintain good performance, the number of GCN layers in the network

needs to increase only logarithmically with the required operational range.

The overall method is evaluated by measuring its performance in competition with clairvoyant

opponents. The approach proposed in this thesis is also compared with two other algorithms:

alpha-beta pruning with a distance heuristic, and upper confidence trees. Our techniques together

2

result in agents that perform near-optimally on graphs that were never used during training.

Following are our contributions through this project:

1. A GCN-based neural network architecture that is capable of learning generalized policies

for instances of the cops and robbers problem.

2. The Iterative Adversarial Training algorithm that trains the cop and the robber by allowing

them to learn from each other, along with modifications that increase stability and equitable

learning.

3. A modification to the hierarchical vertex pooling methodology introduced in [12]. This

focuses on graph navigability and enlarges the receptive field of GCN layers and hence the

operating range of our agents.

4. A rigorous evaluation of the trained agent undertaken by allowing the agents to compete

against a clairvoyant, optimal opponent.

1.1 Organization

Chapter 2 goes into detail on the required background knowledge in Deep Learning, Reinforce-

ment Learning, Graphs and Games that is helpful to understand this thesis. Chapter 3 describes

the present state-of-the-art in the area and other related research that may be of interest. Chapter

4 defines the problem, expresses it as a Markov Decision Process and proposes the in-memory

representation used in this project. Chapter 5 provides a detailed discussion of the training meth-

ods and algorithmic techniques that we have used in this thesis. Chapter 6 deals with the software

implementation of our solution, programming challenges that we faced, and how we solved these

issues. Chapter 7 details how we evaluate the performance of cop and robber agents, compares it

with other algorithmic techniques, illustrates our results, offers relevant plots and discusses their

significance. Chapter 8 concludes the thesis and offers a discussion of potential directions in which

our work may be built upon and improved.

3

2. CONCEPTS FROM DEEP LEARNING, REINFORCEMENT LEARNING, GRAPH

THEORY AND GAME THEORY

This chapter introduces background knowledge on Deep Learning, Reinforcement Learning,

basic elements of Graph Theory, and Game Theory with a focus on zero-sum games. The introduc-

tory material in this chapter is relevant to the work done in this thesis and illustrates fundamental

concepts from these topics.

2.1 Deep Learning

Deep learning is a methodology to estimate the optimal parameters for extremely complex

mathematical functions (called deep neural networks) that use a set of inputs to predict random

variables. Here, the various elements of deep learning are introduced in a bottom-up fashion.

2.1.1 Neurons

A neuron is the fundamental functional unit used in deep learning. Several neurons, often

thousands of them, together form a network that is called a Deep Neural Network (DNN). One

simple variant of a neuron takes a set of inputs xi and returns a scalar y as output.

y = g(
∑
i

wixi) (2.1)

wi are the internal parameters of the neuron, commonly called weights. Here, g is a non-linear

function such as the sigmoid function:

σ(x) =
ex

1 + ex
(2.2)

4

2.1.2 Activation Functions

The presence of the non-linear function, called an activation function, enhances the representa-

tional capacity of the neural network. Without such a non-linearity, the neural network degenerates

to a linear function, thereby severely limiting the set of functions that it can approximate.

Other variants of neurons may use different non-linearities such as tanhx = ex−e−x

ex+e−x , tan−1(x),

Softplus(x) = ln 1 + ex and the now-widely used Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x) (2.3)

Despite its apparent simplicity, the ReLU activation function is greatly preferred over other

non-linearities due to the following reasons:

1. It is computationally very efficient to calculate.

2. The gradient of ReLU does not vanish close to 0 when x > 0, thus enabling efficient use of

gradient-based optimization techniques.

3. It enforces sparsity in the input when x ≤ 0, thereby allowing for more regularized interme-

diate representations as well as faster computation using sparsity-conscious matrix multipli-

cation techniques.

We use ReLU activations almost all throughout this project for the above reasons.

2.1.3 Neural Networks

A neural network is a connected network built out of several neurons. While neural networks in

general can have widely varying structures, in practice, these networks are organized into several

layers that do not have any intra-layer connections. Each layer calculates an output that depends

on earlier layers and passes the result to the next layer.

5

The simplest example of a neural network, the fully connected neural network, has the follow-

ing structure: There are K layers in the network and the kth layer has Nk neurons. Given a set of i

input variables represented as an i-length vector X , the output at each layer can be represented as

Y1 = g1(W1X) (2.4)

Yk = gk(WkYk−1), 1 < k ≤ K (2.5)

Wk are the weights for the kth layer. NK , i.e. the number of neurons in the final layer must

be equal to the number of outputs that we want our function to represent. Note that we are able

to gather the operation of all the neurons in a layer together as a single matrix multiplication (fol-

lowed by a non-linear function) due to the absence of connections within layers, and the same

activation function being used for all neurons in a single layer.

The Universal Approximation Theorem showed that such a neural network with a sufficient

number of neurons and the right weights can approximate any continuous function with arbitrary

accuracy even for K = 2.

2.1.4 Variants of Neural Networks

Whereas the universal approximation theorem states that just fully connected neural networks

can represent all continuous functions, finding the right weights for such networks is a very difficult

task that may often be infeasible. Specific problem domains often admit much simpler (in terms

of computation) neural network architectures and neuron variants that vastly outperform the fully

connected architecture.

For instance, the Convolutional Neural Network is a very popular architecture for image inputs

and can be described as follows: Given a two-dimensional image X as input,

6

Y1,i = g1(X ∗W1,i), 1 ≤ i ≤ N1 (2.6)

Yk,j = gk(
∑
i

(Yk−1,i ∗Wk,j)), 1 < k ≤ K and 1 ≤ j ≤ Nk (2.7)

Here, ∗ is the two-dimensional convolution operation. Thus, all these layers perform a convo-

lution of the input images with a set of kernels W that form the set of trainable parameters. These

convolutional layers are followed by a set of fully connected layers that again produce as many

outputs as required from the approximator function.

2.1.5 Training Neural Networks

2.1.5.1 Gradient Descent

This section focuses almost exclusively on gradient-based methods for training neural net-

works. Given a function Y = fW (X) that is parametrized by W , fitting it to approximate a set of

samples (Xi, Yi) drawn from a dataset D will have a fitting error:

e = E(fW (Xi), Yi) (2.8)

In the standard gradient descent technique, we iteratively move in the direction of the local

gradient of the error function until convergence as follows:

Wt+1 ← Wt − η∇WE(fW (Xi), Yi) (2.9)

Here, we simply move in the direction of the gradient by a length that is proportional to η, a

hyperparameter called the learning rate.

7

There are a number of issues with this simple process: there is a strong possibility that such

gradient descent enters a sub-optimal local minimum and is unable to escape it. In addition, the

descent even towards a local minimum might often slow down near saddle points and require a

large number of steps to achieve convergence.

Several incremental techniques such as momentum, Nesterov momentum, Adagrad, RMSProp

and Adam were proposed over the last decade to overcome these issues and to speed up conver-

gence. As an example, the momentum technique proposes the velocity of the gradient as:

Vt = βVt−1 + (1− β)∇WE(fW (Xi), Yi) (2.10)

This velocity is subsequently used to perform the gradient descent step as :

Wt+1 ← Wt − ηVt (2.11)

The advantage of using momentum instead of standard gradient descent is that we have an

exponentially decaying memory of past steps that influences the direction in which we make our

next step. It has been shown empirically that using momentum increases the convergence rate in

many problems. Full descriptions and analyses on other incremental techniques mentioned earlier

can be found in [13].

2.1.5.2 Backpropagation

Calculating the gradient for a function that is as complex as a neural network is a non-trivial

task. This is accomplished by a Dynamic Programming algorithm called Backpropagation that

expresses the gradient at each layer as a function of the gradient at a later layer.

In practice, backpropagation is achieved through automatic differentiation in code through

packages such as Tensorflow or Pytorch.

8

2.2 Reinforcement Learning

Reinforcement Learning is the study of how to write software agents that can take optimal

decisions under uncertainty so as to maximize the cumulative reward. It deals with random pro-

cesses where an agent that is operating within an environment has a number of actions that it can

choose from in each state of the environment. By taking actions over time, the agent is able to

exert influence on the environment to various degrees and perhaps reach states that favor its goals.

2.2.1 Markov Decision Processes

A fundamental probabilistic concept required to understand RL is the Markov Decision Process

(MDP). It is a stochastic, stateful, time-invariant process that can be explained as follows:

• An agent takes actions in an environment over time.

• At a given timepoint t, the process is in state st.

• The agent chooses an action at. The set of choices Ast available to the agent may depend on

st.

• The process proceeds to the next state st+1 and the agent receives a reward rt from the

distribution R(st, at).

The transition from st to st+1 need not be deterministic even given the action at. These state

transitions are governed by a probabilistic state transition matrix Pa(st, st+1). Given the present

state st, no new useful conditional information about the state transitions or the reward distribution

is obtained by further knowing st−1, st−2...s0, at−1, at−2, ...a0 or rt−1, rt−1, ...r0, thus making the

process Markovian.

The goal of the agent given all these is to maximize
T∑
t=1

rt for a finite horizon MDP and
∞∑
t=1

γtrt

for an infinite horizon MDP. Here, γ is called the discount factor and is used to differentially weight

near-term rewards against long-term rewards so that the notion of cumulative reward that we use

continues to be bounded.

A Markov Decision Process is defined using the following parameters:

9

• The state-space S.

• The set of actions available from each state, As.

• The probabilistic state transition matrix given that action a was taken, Pa(s, s
′). Elements of

this matrix give us the probability that given that we took action a from state s, we reach s′

in the next step.

• The reward distributions for each state transition given that action a was taken, Ra(s, s
′).

MDPs are not constrained to have a finite or even a discrete set of states and actions, i.e. the

sets S or As are not constrained to have a finite number of elements or be countable. That said,

this thesis only deals with MDPs that are finite state, finite action, discrete state, discrete action

and finite horizon.

2.2.2 Policies

A policy for a Markov Decision process is defined as conditional probability distribution over

the action space, given the state. Alternately, it can be defined as a function from state-action pairs

to the closed interval of [0, 1]. Good policies perform this mapping such that the expected cumu-

lative reward is high, while an optimal policy must achieve the maximum expected cumulative

reward from any initial state.

Formally, a policy can be stated as

π : S × A→ [0, 1] (2.12)

π(a, s) = Pr(at = a|st = s) (2.13)

2.2.3 Discount Factor

The discount factor is a exponential multiplicative constant used to assign lower importance

to rewards obtainable in the far future compared to rewards that can be obtained in the near fu-

ture. Using a discount factor encodes the intuition of favoring near-term rewards over longer-term

10

rewards of equivalent magnitude. In addition, it bounds the cumulative reward in case of infinite

horizon MDPs. With the discount factor, the cumulative reward becomes

Rt =
T∑
t=1

γirt (2.14)

Some formulations include the discount factor as part of the MDP itself while others allow it to be

a tunable parameter that does not have to be fixed first to fully determine the MDP, but they both

lead to identical outcomes with regards to optimal policies given the same value for the discount

factor.

2.2.4 Value Function

The value function Vπ(s) is a function that maps states to real numbers. The value function is

parametrized by a policy π and is equal to the expected cumulative reward that can be obtained by

starting from a state s and faithfully following the policy π. Formally,

Vπ(s) = E[R|s0 = s, π] (2.15)

= E[
T∑
t=1

γirt|s0 = s, π] (2.16)

The optimal value function is defined as the function V ∗(s) whose value for each s is the maximum

of the expected cumulative reward obtainable from that state across all policies.

V ∗(s) = max
π

Vπ(s) (2.17)

The policy that achieves this maximum is called the optimal policy and is denoted by π∗.

Vπ∗(s) = max
π

Vπ(s) (2.18)

11

2.2.5 Q-Values

The value function denotes the expected cumulative reward obtainable when beginning in a

state s and following a policy π. On the other hand, the Q-Values under a policy π are defined

as the expected cumulative reward obtainable when beginning in a state s, taking an action a, and

then following a policy π afterward. Formally,

Qπ(s, a) = E[R|s0 = s, a0 = a, π] (2.19)

= E[
T∑
t=1

γirt|s0 = s, a0 = a, π] (2.20)

Naturally, the value function and Q-Values can be related by marginalizing over the policy’s action

distribution for the initial state as follows:

Vπ(s) = Ea∼π(s,a)[Qπ(s, a)] (2.21)

=
∑
a∈A

π(s, a)Qπ(s, a) (2.22)

Similar to how we defined the optimal value function, the optimal Q-Values are defined as the

maximum possible expected cumulative rewards achievable from a state s by taking an action a,

over all possible policies.

Q∗(s, a) = max
π

Qπ(s, a) (2.23)

The policy that achieves this maximum is called the optimal policy and is denoted by π∗. It must

be noted that a policy that maximizes the Q-Values will also maximize the Value function.

Qπ∗(s, a) = max
π

Qπ(s, a) (2.24)

12

Given the optimal Q-Values it is straightforward to construct a policy from them: the agent should

just choose the action with the maximum optimal Q-Value for that state.

π∗(s, a) = 1(Q∗(s, a) = max
i∈A

Q∗(s, i)) (2.25)

2.2.6 Function Approximators for RL

An optimal policy for an MDP can be created if we can accurately estimate Q∗(s, a), and

traditional RL algorithms attempt to do exactly that by using sampled trajectories from an MDP

to estimate Q∗(s, a) for all s ∈ S and a ∈ A. Such methods are called tabular methods since

their operation is akin to store all the Q-Values in a table and looking them up to create a policy.

However, these tabular methods have intractable memory requirements when faced with MDPs

that have large state spaces. In addition, it is impossible to encounter all state-action pairs in case

of large problem domains, thus the convergence guarantees for these methods do not apply.

To solve this issue, instead of storing the Q-Values for all the state-action pairs, one variant of

the function approximation RL paradigm seeks to fit a parametrized function to the estimates of

the Q-Values. The goal here is to find a function fp(s, a) such that

fp(s, a) = min
p′

(Q∗(s, a)− fp′(s, a))
2 (2.26)

Firstly, if the set of parameters p is much smaller than the total number of state-action pairs, then

this function solves the memory conundrum. Secondly, if the function approximator has any gen-

eralization capacity, then that can cause the RL agent to predict the Q-Values accurately for at least

some state-action pairs that were never encountered during the training phase.

2.2.7 Deep Reinforcement Learning

If a neural network is used as the function approximator in the approach described in 2.2.6,

it is called Deep Q-Learning. Another approach, called policy gradients, uses a neural function

approximator to take a state as input, and produce a probability distribution over the actions as the

13

output, thus directly providing a policy that can be used to take actions.

Research over the past several years has led to other neural function approximation approaches

for RL of increasing complexity and performance. These include Deep Deterministic Policy Gra-

dients (for MDPs that have continuous action spaces), Proximal Policy Optimization, Soft Actor-

Critic, etc.

2.3 Elements of Graph Theory

A graph is defined as a structure that consists of a set of objects some of which have a pairwise

relation between them. The objects are called vertices while the pairwise relations are called edges.

A graph G is mathematically described as G(V,E) where V is the set of vertices, and E is the set

of edges between the vertices in V .

Graphs have wide-ranging applications and can describe communication networks, transporta-

tion networks, inter-personal relationships, structural and functional dependencies, etc. Below are

some mathematical concepts that are commonly used in topics related to graphs and graph theory.

2.3.1 Vertex

A vertex in a graph is an object that may be related to other objects in the graph. The set

of all vertices in a graph is commonly denoted by V . As an example, in a graph describing a

transportation network between cities, the cities themselves are the vertices. Irrespective of what

named entities constitute vertices, they can all be assigned natural numbers in the range 1, 2, ...|V |

to identify them individually. The ordering of vertices based on these assigned indices has no

relevance unless stated otherwise.

2.3.2 Edge

An edge is a pair of vertices that are related within the graph. This pair can be ordered, in

which case the graph is said to be “directed". Formally, an edge is represented as (u, v) where u

and v are the vertices that are related. An edge may also have an additional real number w attached

to it, called the weight of the edge. Often, the weight of an edge is used to denote how strongly the

relation between the two endpoints is.

14

The vertices are also known as the endpoints of the edge. While multiple edges can exist

between a single pair of vertices, we restrict ourselves to undirected graphs in which only one edge

can exist between a pair of vertices. In addition, we rule out the existence of edges from a vertex to

itself (called a self-loop). For a given vertex v, all the vertices with which v has an edge are called

its neighbors.

As an example, in our transportation network example, the roads between any pair of cities

constitutes an edge, which is undirected in this case. The weight of this edge could denote quan-

tities such as the daily traffic that flows between these cities, the width of the road between these

cities, the average time it takes to travel between these cities, the length of the road, etc.

2.3.3 Degree of a Vertex

The degree of a vertex is defined as the number of edges in the graph for which that vertex is

an endpoint. For an undirected graph without self-loops,

d(v) = |{(u, v) : (u, v) ∈ E}| (2.27)

The minimum and maximum of the degree of all vertices in a graph are called the minimum degree

and maximum degree of a graph. A graph all of whose vertices have the same degree is called a

regular graph. The degree of vertices in any graph (without self-loops or multiple edges between

the same pair of vertices) can range only between 0 and |V | − 1. A graph where all vertices have a

degree of |V |− 1 is called a complete graph. It is commonly denoted as Kn where n is the number

of vertices in the graph.

2.3.4 Path

A path in a graph is a sequence of vertices v0, v1, ...vL such that {(v0, v1), (v1, v2), ...(vL−1, vL)} ⊆

E. In other words, a path is a sequence of vertices such that it is possible to “travel" from the first

vertex in the sequence to the last vertex through all the intermediate vertices in the sequence while

moving only to neighboring vertices at all steps. It must be noted here that the elements of a path

sequence need not be unique. In case all the elements of the sequence are indeed unique, it is called

15

a simple path.

2.3.5 Cycle

A cycle in a graph is a simple path with at least three vertices such that the first vertex in the

path is a neighbor of the last vertex. A graph is said to be acyclic if it contains no cycles. A graph

is said to be a cycle graph if all the vertices in the graph are part of the same cycle, and every vertex

has only two edges. It is denoted using Cn where n is the number of vertices in the graph. C3 is

commonly called a triangle.

2.3.6 Tree

A tree is a connected graph where there is only one simple path between any two vertices in

the graph. The name comes from the fact that a tree graph can be drawn to resemble a real-life tree

that has a root that splits into branches that split into more branches and so on.

2.3.7 Connectedness

Two vertices are said to be connected if there exists at least one path between them. Formally, u

and v are said to be connected if ∃(u, v0, v1, ...vL, v) such that {(u, v0), (v0, v1), ...(vL−1, vL), (vL, v)} ⊆

E where L ≥ 0.

A graph as a whole is called a connected graph if all vertices in the graph are connected to

all other vertices. Connected graphs are the interest space in this thesis as vertices that cannot be

reached by any agent in a multi-agent problem are irrelevant to the scope of the problem.

2.3.8 Adjacency Matrix

It was noted earlier that the set of vertices V in a graph can be assigned consecutive natural

numbers in the range 1, 2, ...|V |. The adjacency matrix A is a matrix that is constructed using the

rule Aij = 1((i, j) ∈ E) where 1(x) is the indicator function that has a value of 1 if x is a true

proposition and 0 otherwise. An element in the adjacency matrix is 1 if and only if there exists an

edge between the vertices corresponding to the row index and the column index of the element. In

case the graph contains weighted edges, the element of A at the corresponding position is set to

16

the weight of the edge, i.e. Aij = w ∀(i, j, w) ∈ E.

All information about a graph can be derived from the adjacency matrix.

2.3.9 Adjacency List

An adjacency list is an alternate method of representing all information about a graph. For

every vertex u in the graph, the adjacency list contains a set of vertices that u has an edge to, along

with any weight for the edge.

An adjacency list uses far less memory than an adjacency matrix when the number of edges in

the graph is much smaller than the number of possible edges.

2.3.10 Embedding of a graph

An embedding of a graph onto a surface is a representation of the graph such that

• All the vertices of the graph are mapped to unique points on the surface.

• All the edge of the graph are mapped to unique arcs on the surface.

• The endpoints of each arc maps to the points that correspond to the endpoints of the corre-

sponding edges.

• No two arcs intersect except at a point that corresponds to a vertex on which both edges are

incident upon.

2.3.11 Planar Graph

A graph is said to be planar if it has an embedding onto the Euclidean space. A consequence of

a graph being planar is that a visual representation of the graph can be drawn onto a plane surface

such that no two edges intersect.

2.4 Concepts from Game Theory

A game is a mathematical representation of a situation where rational actors must make deci-

sions as they attempt to maximize the payoff that they receive at the end of the game. An example

of a game is the situation of two vehicles that have the choice of either proceeding or waiting at a

17

traffic intersection. In case both vehicles simultaneously choose to move forward, they will have

an accident. In case only one vehicle chooses the move forward and the other chooses to wait, they

are both safe, but the waiting vehicle expends time. In case both vehicles choose to wait, they both

lose time and need to play the game again.

2.4.1 Players

A player is a rational agent that is allowed to take decisions in a game. All players have the

objective of maximizing their own payoff in case of deterministic games, and maximizing their

expected payoff in case of games with stochastic elements.

2.4.2 Payoffs

A payoff can be thought of as the total reward that is granted to a player by the end of a game.

The payoff that a player receives arises from the actions of the particular player, as well as the

actions of other players.

2.4.3 Strategies in Games

A strategy is an option/action that a player can choose when facing a particular situation in

game. Good strategies take into account the actions that other players can take and the correspond-

ing consequences in the context of the action that the player is choosing.

A set of strategies that assigns only one strategy to all players involved in the game is called a

strategy profile.

Following are definitions that are commonly used in the context of strategies for games:

• Pure Strategy: A pure strategy is a function that maps every situation that a player may

face in a game to an action that the player would take in that situation. Naturally, a pure

strategy is deterministic - in case a player has a pure strategy, knowing the player’s strategy

determines the action they will take in all situations.

• Mixed Strategy: A mixed strategy is a probability distribution over the set of possible ac-

tions that a player has. The player picks an action by randomly sampling an action from

18

this probability distribution. This means that the action that a player will take is not deter-

minable by any agent before the action is taken. Formally, the mixed strategy for player i is

a probability distribution P on Σi. There are some game formulations where upon playing

many games, an intelligent player would always converge to a mixed strategy - rock, paper,

scissors is an example. Here, in case one player chooses a deterministic strategy, the other

player will quickly observe the pattern and choose a counter-strategy that dominates it.

• Dominated Strategy: A strategy Pi for player i is said to be dominated by another strategy

Si if over all strategies that opponents follow, Si always leads to a better outcome than Pi.

2.4.4 Normal-form representation

In the normal form representation, we use a matrix called the Payoff Matrix to represent the

payoffs of each agent arising from each decision that each player can take. For each set of choices

assigned to the players, the corresponding element in the matrix contains a sequence of payoffs

that depicts what each player will receive.

2.4.4.1 Example

The prisoner’s dilemma is a game set in a situation where two suspects from a criminal gang

have been arrested. The prosecutors do not have enough evidence to convict either prisoner on

the principal charge. However, there is enough evidence to convict them on a minor charge. The

prosecutors give both prisoners the following choice: In return for turning on their partner and

giving sufficient evidence to convict them on the principal charge, the defector will be released

without any charges, causing the silent partner to be jailed for 5 years. In case both suspects turn

on each other, they both spend 3 years in jail. In case both are silent, they only serve 1 year under

the minor charge.

The decisions and payoffs for this game can be represented in the normal-form in the following

manner:

19

Prisoner A

Prisoner B
Remain Silent Defect

Remain Silent (-1, -1) (-5, 0)

Defect (0, -5) (-3, -3)

Table 2.1: Payoffs for the prisoner’s dilemma represented in Normal-Form

2.4.5 Extensive-form representation

The extensive-form representation is commonly used to represent sequential games as they

require decisions to be made by different players at different timesteps, and these decisions them-

selves alter the set of available actions to each player. In this representation, the game’s possible

paths of evolution over time are depicted as a decision tree. Every level in the tree corresponds

to a decision that is made by a single player. From any node in the tree, the branches that lead to

the lower level correspond to the different decisions available to that player from this state of the

game.

2.4.6 Types of Games

Games can be labeled and differentiated on the basis of several attributes that describe the

nature of the game.

• Perfect Information: Games where all players know every move that has been made by

every player.

• Complete Information: A game where all the available strategies and payoffs available to

every player is known to every player in the game.

• Zero-Sum: Whatever strategy the various players of the game choose, the sum of the payoffs

received by all the agents is equal to zero. This means that one agent receives a positive

payoff only at the cost of other players.

20

• Simultaneous/Sequential: A game is said to be simultaneous if agents playing the game

move at the same time, thus not being aware of the actions of other players. It is sequential

if players make moves in their turn, thus allowing for each player to know the action that the

earlier player took.

• Symmetric/Asymmetric: A game where interchanging the identity of players does not

change the payoffs they receive for the same strategy. All other games are said to be asym-

metric.

• Discrete/Continuous: A game where the number of players, actions, situations and out-

comes are finite and thus can be modeled in a discrete sense.

2.4.7 Zero-sum Games

A zero-sum game is one where the gain or loss in utility of one player is exactly balanced by

the loss or the gain that all other players have in total. In other words, adding up the utility received

by all players will result in a sum of zero.

An example of a zero-sum game is chess where victory for one player automatically leads to

defeat for the other and vice versa (We assume that draws are of no utility to either player). Trade

is often thought of as a non-zero-sum game since two entities with a surplus of a different goods

are able to exchange them with each other for mutual utility. Here, there is a strategy profile that

leads to a gain for all players.

In the normal form representation for a zero-sum game, the sequence within every cell in the

payoff matrix must sum to zero. In an extensive-form representation, the payoff sequence at all

leaf nodes must sum to zero.

Formally, if S1, S2, ...Sn are strategies for players 1, 2, ...n and πi represents the payoff that the

ith agent receives at the end of the game, then

n∑
i=1

πi(S1, S2, ...Sn) = 0 (2.28)

21

Two player zero-sum games can be formulated differently: The outcome of the game is de-

scribed just in terms of the payoff that a designated first player receives. The goal of the first

player is then to maximize the outcome of the game while the goal of the other player is to mini-

mize it. This formulation lends itself to easier representation for algorithmic analysis although the

dynamics of the game and the optimal strategies remains the same.

2.4.8 Minimax and Maximin

Consider the alternative formulation of two player zero-sum games proposed previously: In-

stead of describing the payoffs every agent receives, we designate the payoff received by one

specific player as the outcome of the game. Thus, if the outcome of the game is a positive quantity,

that means that the first player has benefited from the game at the cost of the second player, while

if the outcome of the game is a negative quantity, the second player has benefited from the game

at the cost of the first player. In this formulation, the first player is called the maximizing player

while the second player is called the minimizing player.

In such a game, two quantities are interesting: the maximin, defined as

v1 = max
a1

min
a2

vi(a1, a2) (2.29)

and the minimax, defined as

v1 = min
a2

max
a1

vi(a1, a2) (2.30)

Here,

• a1 denotes the action of the maximizing player.

• a2 denotes the action of the minimizing player.

• v1 is the value arising for the maximizing player from this combination of actions.

The maximin quantity is the highest game outcome that can be achieved when the minimizing

22

player knows the action that the maximizing player is going to take. Alternately, it can be stated

to be equal to the best case (maximum) game outcome that the maximizing player can guarantee

when they do not have any knowledge of what action the minimizing player is going to take.

The minimax quantity is the lowest game outcome that can be achieved by the minimizing

player when they do not know anything about the maximizing player’s strategy. Alternately, it is

equal to the best case (minimum) game outcome that the minimizing player can achieve when their

strategy is known to the maximizing player.

These statements are general and apply both to simultaneous and sequential games.

23

3. RELATED WORK

This chapter summarizes pertinent prior research work on the cops and robbers problem, and

other work in reinforcement learning on graph domains.

3.1 Vertex-to-vertex pursuit in a graph

The cops and robbers problem was first studied in [1]. This paper introduces the problem,

provides a set of general theorems that allow characterization of graphs into cop-win and robber-

win, and uses these rules to distinguish a few classes of graphs as cop-win and robber-win.

The following concepts are useful in understanding the results in this paper:

• The Retract of a graph G is a mapping from G onto H such that the edge connectivity of G

is preserved in H , allowing some vertices from G to be mapped to the same vertex in H . In

a retract, vertices can be merged together while preserving their edge connectivity.

• A Graph Product is a binary operator that takes two graphs G1 and G2, and produces a graph

H . H’s vertices are formed out of the cartesian product of the vertices in G1 and G2, i.e.

for every pair of vertices v1 and v2 s.t. v1 ∈ G1.V and v2 ∈ G2.V , there is a vertex (v1, v2)

in H . In addition, a rule dictates whether a given pair of vertices in H , (u1, u2) and (v1, v2)

have an edge. This rule’s result depends on the edges in G1 and G2.

• A vertex v is said to dominate a vertex u if the neighborhood of u, N (u) is a proper subset

of the neighborhood of v, N (v).

• A vertex v is irreducible if there exists some other vertex u that is dominated by v.

• A graph G is dismantlable if and only if there exists an ordering {v1, v2, ...vn} for all its

vertices such that in the ordering, for each i < n, vi is irreducible in the induced subgraph

formed out of the vertices vi, vi+1, ...vn. Alternately, it can be stated that there is a sequence

of vertices v1, v2, ...vn such that the vertices can be sequentially be folded into a neighboring

vertex that dominates it.

24

Using these concepts, the authors show that given a pair of cop-win graphs G1 and G2, all the

graphs that can be produced out of retracting any finite product of G1 and G2, are also cop-win.

In addition, they showed that for any graph, if there is a retract that has a cycle of more than

length 4, then the graph is robber-win. Further, they show that graphs that are a finite product of

two graphs that are simple paths themselves is a cop-win graph.

The authors also produce an alternate formulation of the above statements in which it is stated

that a graph is cop-win if and only if it is dismantlable. The ordering associated with the disman-

tling of a graph is called the cop-win ordering.

Finally, the authors show that every regular graph that is not complete is robber-win.

3.2 State abstraction for real-time moving target pursuit: A pilot study

To allow scalability for minimax-like approaches, [6] attempts to produce good strategies for

the target agent (robber) and proposes the concept of abstract graphs that are produced by com-

bining pairs of vertices in the original graph to form super-vertices. They exploit the fact that if a

robber can evade the cop at a higher-level of abstraction by making a move, then it can evade the

cop in all lower levels as well by moving to some vertex in that super-vertex.

Their approach, called Dynamic Abstract Minimax (DAM) proceeds as follows:

1. At a given level of abstraction perform a minimax search on the graph to find out whether

the robber can evade the cop.

2. If yes, the super-vertex that allows the target to evade the pursuer is the one to which it

should travel.

(a) Choose a random vertex from the set of vertices corresponding to the super-vertex.

(b) Use Partial Refinement A∗ to plan a path to this vertex.

(c) Choose the action recommended by PRA∗

3. If no, then go to the immediate lower level of abstraction and repeat steps 1 to 3.

25

Their agent thus searches for the existence of winning strategies using minimax on the abstract

graphs, and successively move to lower levels of abstraction only if the robber cannot evade the

cop on that level.

3.3 Evaluating strategies for running from the cops

[4] proposes the Trailmax algorithm for robbers that performs a Minimax over a quantity called

Trail which relies on path counts to make decisions. They begin by assuming that the robber’s

strategy is known to the cops and optimize the robber’s actions under that constraint.

The trail T (pc, pr) for a pair of paths pc and pr for the cop and robber respectively is defined

as the total number of turns taken by both agents until capture occurs. Since the robber’s goal

is to find a path that maximizes this quantity while the cop’s goal is to minimize it, the heuristic

lends itself naturally to a minimax formulation. However, this heuristic is guaranteed to return the

optimal value of the game only for octile graphs, i.e., graphs that are superimposable on a grid

structure and have edges from any vertex only to its nearest eight neighbors on the grid.

The authors implement the heuristic search using the abstract graphs technique discussed in

3.2. They get a robber evasion rate of 96.7% with a search depth of 20 steps, as measured on octile

graphs.

3.4 A cover-based approach to multi-agent moving target pursuit

To allow several cops to coordinate their pursuit of a robber, [5] uses a cover heuristic: it is the

number of vertices that are reachable by some cop before the robber. They then use this heuristic

with algorithms such as Alpha-Beta pruning, Greedy and Abstraction to choose the best action to

take to catch the robber.

The authors do not use an optimal robber opponent. Instead, they use a robber motivated by

simple strategies such as heading to a beacon vertex that is farthest away from cops, Dynamic

Abstract Minimax or a Greedy Strategy where the robber simply runs away from the pursuers.

They evaluate their algorithm on grid worlds by comparing the number of steps required by a team

of optimal cops to catch a this robber, against the number of steps their algorithm requires. They

26

note that the optimal cops always catches their robber, and show a success rate of 84.3%.

3.5 POMCoP: Belief Space Planning for Sidekicks in Cooperative Games

[14] uses the cops and robbers game to study collaboration between human and artificial agents.

They first model human actions into several archetypes of humans from instances of collaboration,

then build an optimal policy for each archetype through a UCT search.

They propose the POMCoP algorithm which alters the transition probabilities for the human

based on which human archetype the agent believes is playing with it. Given this new transition

probabilities, the agent uses a UCT search to choose the action that should be taken for catching

the robber in collaboration with the human.

3.6 Deeppath: A reinforcement learning method for knowledge graph reasoning

[15] uses a Policy Network to train a single agent to walk a relational knowledge graph. Their

goal here is to identify the “best" path from one vertex that represents a particular logical entity

to another such vertex. Global accuracy, path efficiency (length) and path diversity metrics are

considered while deciding what a reasonably good relational path is.

3.7 Graph convolutional reinforcement learning for multi-agent cooperation

[16] models the interactivity between neighboring agents using a graph, then uses Graph Con-

volutional Networks to train these agents to cooperate. They encode the intuition that only agents

in a k-hop neighborhood, where k is a small integer, are relevant when we consider cooperative

actions with other agents. They demonstrate their results on a number of simple games that are all

played on grid environments.

27

4. FORMAL STATEMENT OF THE COPS AND ROBBERS PROBLEM, MDP

FORMULATION AND IN-MEMORY REPRESENTATION

This chapter describes the cops and robbers problem that is being solved in this thesis, its

properties and applications, followed by definitions of how it is represented mathematically and in

memory.

4.1 Problem Description

The cops and robbers problem is a turn-based pursuit and evasion game played on a graph by

two teams of agents, the cop team and the robber team. In one variant of the problem, the n agents

are placed randomly onto vertices in a connected graph G(V,E). All agents make moves during

their turn by moving from their current vertex v to any neighboring vertex, i.e., any element of

N (v). The order of turns is such that all cops act one after another sequentially before the robbers

begin acting. Whenever a cop is present on the same vertex as a robber, the robber is “arrested"

and removed from the game immediately. The goal of the cop team is to cause all the robbers

to be arrested, while the goal of the robber team is to make as many robbers as possible evade

arrest indefinitely. To keep the problem solvable in practice, we limit “indefinitely" to a predefined

number of turns that is reasonably larger than the diameter of the graph that the agents play on. We

will also limit ourselves to the case where there is only one robber on the graph as the cops can use

an optimal strategy to capture all the robbers one by one in case there were multiple robbers.

The most common variant of the game has the following attributes:

• Multi-player: The game has several agents all of which need to make their own decisions.

• Complete information: All agents have complete visibility of the graph as well as the posi-

tions of all agents, and thus can acquire knowledge of the strategies and moves available to

all agents.

• Perfect information: Agents observe all moves of all agents over the game’s history.

28

• Markov state: Given the network structure and the positions of all agents, no other historical

information is required for agents to play optimally.

• Zero-sum: The cops and robbers have rewards of equal magnitude and opposite signs when

the game ends. There is no outcome to the game in which the cops and the robbers both get

rewards that do not sum to zero.

• Asymmetric: Players in the game have different roles and are not equal.

• Discrete: No element of the game is continuous.

• No-chance: While random variants of cops and robbers do exist, we primarily perform re-

search upon the variant where actions result in deterministic state transitions. When an agent

chooses to move to a particular vertex, it always succeeds.

• Extensive-form: The game proceeds for many turns or rounds until it ends. This is as op-

posed to a normal-form game where agents take only a single decision.

• Sequential: Agents act after the previously acting agent has completed its action and not

simultaneously.

• Combinatorial: The set of moves available to each agent changes depending on the state.

4.2 Environment Categories

Different combinations of graph structures and start positions lead to different results for the

game if one of teams plays optimally. There is a set of graphs where given a particular number of

cops Ncops, an optimal strategy for the cop team that results in the (single) robber’s arrest always

exists. These configurations are called Ncops-cop-win graphs. In all other graphs, the robber has a

strategy to evade the cops indefinitely. These graphs are called Nc-robber-win graphs.

Note that on cop-win graphs, the robber’s strategy is irrelevant if the cop’s strategy is optimal

as the cop team is guaranteed to arrest the robber. Similarly, on robber-win graphs, the optimal

robber is guaranteed to evade the cops indefinitely irrespective of cop strategy. In addition, for

29

nomenclatural simplicity, 1-cop-win and 1-robber-win graphs are commonly called cop-win and

robber-win graphs respectively.

Some results that have been demonstrated from previous algorithmic work are:

• Trees are cop-win. The cop should attempt to force a situation where it resides on an ancestor

vertex of the robber’s vertex first, then traverse the only path that exists to the robber’s vertex.

• A graph that does not contain any cycle with more than 3 vertices is cop-win.

• Cycles with more than three vertices, denoted by Cn where n ≥ 4 are robber-win. The

robber’s optimal strategy is to just travel along the same direction on the cycle that the cop

moved in the previous turn. Thus, all grid graphs are robber-win.

• Cycles are 2-cop-win. This is since one cop can maintain its current position while the other

can circle around the graph and corner the robber.

• Planar graphs are 3-cop-win.

Such categorization is useful to us as we can evaluate the goodness of different trained agents

on these graphs. For instance, our cop agent’s strength can be measured by evaluating how well it

performs on cop-win graphs against a strong opponent. Getting good opponents to evaluate against

is itself not a trivial problem and required additional thought during the course of this project.

4.3 Variations

Upon the basic cops and robbers problem described in the previous section, existing literature

describes the following variations that can extend to specific applications:

4.3.1 Quarantine and Cure

The robber here is a replicating, infectious virus that in every turn can randomly and inde-

pendently spread from each of its current vertices to neighboring vertices with a probability p.

Whenever a cop enters an infected vertex, it is disinfected. The virus cannot spread to vertices

that contain at least one cop. However, once the cop leaves the vertex, the virus may spread to

30

that vertex if a neighbor has the virus. In this environment, a limited number of cop agents must

disinfect the virus from the entire graph by ensuring that no vertex in the graph is infected.

The virus here replicates according to a simple, uniform strategy, and the focus is on training

cop agents for the problem. However, the question of which vertices an intelligent virus must

spread to from its current positions is also an interesting problem to solve.

4.3.2 Containment

The robber in this variant of the problem is a randomly moving internet user who is browsing

the web. In each robber turn, the user moves to a neighboring vertex akin to clicking hyperlinks on

the web. Once in a while, the user teleports to a random vertex on the graph by typing something

into the search bar. A small team of cops have the ability to teleport to any vertex on the graph

during their turn. They play the role of a browser prefetcher here. The goal of the cops is to ensure

that the user almost always steps into a vertex that is currently occupied by a cop.

This problem again focuses on training cops as the robber does not play the role of a reactive

adversary. This is a useful application that hopes to train agents that can efficiently predict and

prefetch a small number of webpages while correctly anticipating which ones the user will request

next.

4.4 Cops and Robbers as a Markov Decision Process

We return to our basic instance and show our formulation as a Markov Decision Process. For

further background on MDPs, its components and mathematical formulation, please refer to Sec.

2.2.1. Recall that to describe an MDP, we need to decide the State Space S, the action space As,

the reward distribution Ra(s, s
′) and the transition matrix Pa(s, s

′).

4.4.1 States

The state st at any timestep t is the structure of the graph G and the positions pi of all agents that

are still playing the game. Due to the perfect information nature of the game, the state information

fully observable and is identical for all agents and requires no further demarcation at the level of

agents. We enforce an arbitrary ordering on all the vertices of the graph in our state representation

31

that we consistently follow all across our methods. This is done by arbitrarily labeling the |V |

vertices in the graph as 1, 2, 3, ...|V |. We include the graph’s structure as part of the state since

we want our agents to generalize to graphs that they have never seen during training. Naturally,

transitions between states that correspond to different graphs are forbidden as are states where

agents jump to vertices that are more than one vertex away. That the process is in a state st

corresponding to a given network structure and agent positions can thus formally be expressed

using the ordered tuple

st ≡ (G = G(V,E), p1 = P1, p2 = P2, ...pn = Pn) (4.1)

or more concisely as

st ≡ (G = G,P = P) (4.2)

This state st completely describes the present nature of the game and no other additional informa-

tion is required to infer optimal strategies for the agents.

4.4.2 Actions

For the ith agent when it is at vertex pi on the graph G(V,E), the sequence (since we order

vertices in the lexicographical ordering used to represent the state) of available next vertices is the

same as neighbors of pi. We indicate this sequence by N (pi) = [N (pi)]1, [N (pi)]2, ...[N (pi)]d,

where d is the degree of vertex pi. As(i), the set of actions available to agent i is given by

As(i) = {1, 2, ...N (pi),N (pi) + 1} (4.3)

where action a corresponds to the ath element of the sequence N (pi), i.e. [N (pi)]a, and the last

action corresponds to choosing to stay in the same vertex. There are as many actions available as

one more than the number of neighbors for the agent’s current vertex. It must be noted that this

set As(i) is independent of i given p(i), i.e., the action set is the same for all agents given their

32

position. However, we retain the notation of As(i) instead of simplifying it to AG(v) since we can

directly extend it to problem instances that do not have identical action spaces for all agents. For

instance, consider a case where one cop may teleport to any vertex in the graph while all other

agents can traverse only one vertex per turn.

4.4.3 State Transitions

The state transitions for the instance of the problem that we are solving are all deterministic.

Given that the current state is given by

st = (G = G(V,E), p1 = P1, p2 = P2, ..., pi = Pi, ...pn = Pn) (4.4)

and given that a particular agent i is at vertex pi and chooses action a, the next state is given

deterministically by

st+1 =

(G = G(V,E), p1 = P1, ..., pi = [N (Pi)]a, ...pn = Pn), if a < |N (pi)|

st otherwise
(4.5)

4.4.4 Rewards

We noted earlier that we bound the length of each episode to a fixed number of turns τmax.

Whether the team of cops gets a reward is determined by whether the robber is caught before all

agents have taken this maximum number of turns. Consequently, whether the robber gets a reward

is determined by whether it is able to evade arrest until the end of the game. Formally, given that

agent r is the robber and all the other agents are cops,

Rt(C) = min(1,
n∑

c=0
c̸=r

1(pr = pc)) (4.6)

Rt(r) = 1(t = τmax))
n∏

c=0
c ̸=r

1(pr ̸= pc)) (4.7)

33

In the case that an episode proceeds for |τe| turns, the episodic reward for both teams is then given

by

R(C) =
τe∑
t=1

min(1,
n∑

c=0
c ̸=r

1(pr = pc)) (4.8)

R(r) = 1(τe = τmax))
n∏

c=0
c ̸=r

1(pr ̸= pc)) (4.9)

The rewards for the cop team and the robber team are both are scalars common to the whole team

and do not need special methods to represent them.

4.5 In-memory Representation

Given the above Markov Decision Process, we need to establish a convention to express all the

pertinent quantities in memory. Any proposed convention:

• Must express the entirety of the states, actions and transition probabilities without ambiguity.

• Must not occupy memory space that makes storing huge batches of observations infeasible.

• Must permit rapid calculation of possible actions, state transitions and termination condi-

tions.

4.5.1 States

Recall that the state is expressed as

st ≡ (G = G,P = P) (4.10)

We represent the graph structure using the Adjacency Matrix A of the graph. The adjacency matrix

is a square matrix whose dimensions are |V | × |V | and is given by

[A]ij = 1((i, j) ∈ E) (4.11)

34

The positions of all n agents are represented together using a |V |×n matrix called P. Each column

denotes the position of one agent such that only the row corresponding to the agent’s position in

the graph will have a 1, i.e.

[P]ij = 1(pj = i) (4.12)

Both the above matrices are stored as sparse matrices in Python and this means that the memory

occupied by A is O(V + E) and the memory occupied by P is O(V + n).

4.5.2 Actions

Given that the available set of actions for the ith agent when the process is in a state s is given

by

As(i) = {1, 2, ...,N (pi),N (pi) + 1} (4.13)

the action space is represented by a one-hot encoded vector with a length of D + 1, where D is

the maximum vertex degree of all graphs over which we want the agents to operate. Each action

corresponds to moving out of the current vertex through a particular edge to a neighboring vertex.

The last action is the no-op action that leads to the agent maintaining its current position. It is

favorable to us that the cops and robbers problem is more interesting in graphs that aren’t very

dense as such graphs have a large number of triangles and thus unfairly favor the cops. Thus,

having an upper bound for the maximum vertex degree does not limit our ability to scale to most

large graphs of interest.

In case a vertex’s degree is less than D, we attach dummy actions to the remaining bits to retain

the length of the vector. These dummy actions, if taken, result in the agent staying in its current

vertex.

35

4.5.3 State Transitions

Since the transitions are deterministic, there is no need to store a state transition probability

matrix. That said, even if the state transitions were probabilistic, we could functionally encode the

transition matrix instead of directly storing it in memory. In other words, given the current state,

we could calculate the probability of going to each of the next states by simply taking the set of

allowed agent moves and using their probabilities to construct the set of potential next states along

with the probability of transition. All other states have zero probability from the current state.

This concise functional encoding as opposed to representing the transition probability matrix

explicitly is a commonly used practice in most modern RL environments as it saves significant

amounts of memory.

4.5.4 Properties

The aforementioned representation meets our requirements since:

• All possible states and actions can be represented using the sparse matrix convention estab-

lished previously, with the exception of graphs that contain vertices with very high degrees.

Since such unnatural graphs are not in our interest domain, this is not a problem of signifi-

cance.

• All state transition probabilities can be derived rapidly at runtime from the probabilities of

fundamental events, i.e. conditional probabilities for agent movement. In our instance, these

transitions are deterministic.

• The memory requirements have been shown to be linear in the size of the graph (O(V +E)).

• Given a state, the set of permitted actions and the resultant state transitions can be calculated

directly from the adjacency matrix and the position of the agent. The termination condition

can be evaluated immediately from the P matrix.

36

5. NEURAL NETWORK ARCHITECTURE DESIGN, ITERATIVE ADVERSARIAL

TRAINING AND VERTEX POOLING

This chapter offers a detailed discussion of the initial investigation done during our neural net-

work architecture design, the neural architecture we used subsequently, and two main algorithmic

techniques that are used in this thesis: Iterative Adversarial Training and Vertex pooling for graphs.

5.1 Graph Convolutional Networks for Graph Navigation

The problem statement for this section is much simpler than our general goal. However, we

use this as a testbed to develop a baseline neural network architecture that may perform well on

the general problem. By vastly simplifying the problem, we have created a highly controlled test

environment that must be solved by any network architecture that is capable of good performance

on the general cops and robbers problem.

Consider a problem instance where there is only one cop and one robber, and the robber cannot

make any moves. This degenerates into a path planning problem where the cop needs to find

a sequence of actions that will result in its movement from its initial position to the position of

the robber. We present an algorithm to solve this task as a series of matrix multiplication, matrix

lookup and logical operations. We then show that this algorithm can be implemented using a GCN,

then discuss the results obtained from such implementation.

5.1.1 Problem Statement

The cop’s problem statement can be stated as follows:

On a graph G(V,E), given that the cop starts in vertex vc and the robber is present in vertex

vr that is d steps away from vc, find a sequence of actions a1, a2, ...aN such that as the process

37

proceeds through the sequence of states X1, X2, ...XN , the following properties are upheld:

p[st+1 = (G = G(V,E), p1 = Xt+1, p2 = vr)|st = (G = G(V,E), p1 = Xt, p2 = vr), at] = 1

(5.1)

XN = vr (5.2)

N <∞ (5.3)

In other words, we want the agent to identify an action sequence that causes it to enter the robber’s

vertex with probability 1 in a finite number of steps. Note that an agent following a policy that has

a non-zero probability for every possible action from every state is a valid solution to this problem.

This is since the the resultant Markov chain is irreducible and every state is positive recurrent -

such an agent, wherever it starts, will eventually arrive at the destination vertex.

To make the problem more interesting, we complicate it by forcing N = d. In this case, the

cop must find a sequence of actions a1, a2, ...ad such that given X0 = vc,

p[st+1 = (G = G(V,E), p1 = Xt+1, p2 = vr)|st = (G = G(V,E), p1 = Xt, p2 = vr), at] = 1

(5.4)

Xd = vr (5.5)

Alternately, we can say that the cop’s goal is to find a sequence of actions whose resultant state

transitions result in the cop moving on a path of length d from vc to vr.

5.1.2 Pathfinding Methodology using Matrix Operations

To the above problem, we now offer our solution that uses only matrix multiplication, logical

and matrix lookup operations. The advantage of such a solution as we show later on is that we can

implement it efficiently using a GCN.

38

5.1.2.1 Inputs

The following are the inputs to our algorithm:

1. P, a matrix describing the current position of every agent on the graph. The dimension of

this input is |V |×2 as we have just two agents, and Pj1 = 1 if and only if vertex j has a cop,

and Pk2 = 1 if and only if vertex k has a robber.

2. C, a set of one-hot encoded vectors describing the ordering of the available actions. Effec-

tively, if As is the set of actions that are currently possible, this input describes to which

vertex in the graph each action a ∈ As will take the agent to. The dimensions of this input

are |V |×D where D is the maximum vertex degree over all graphs of interest. Cji = 1 if and

only if an agent can travel to vertex j by taking action ai. This contextual input determines

the ordering relationship between the actions and the neighboring vertices.

3. A, the adjacency matrix of the graph. This contains complete information about the structure

of the graph. The dimension of this input is |V | × |V |.

5.1.2.2 Solution

Consider a situation where agent j, the cop, is on the vertex vj . The matrix P will then have

1 at Pvjj and 0 everywhere else. Then (A + I)kP gives us a matrix with the following property:

Matrix element [(A + I)kP]ij is the number of paths by which we can travel from vertex i to agent

j. Alternately, it is the number of paths by which agent j can travel to vertex i, since this is an

undirected graph.

Thus, if we have only two agents, a cop and a robber, element i of the first column of (A + I)P

gives us the number of one-hop paths from vertex i to the cop. Element i in the first column of

(A + I)2P gives us the number of two-hop paths from vertex i to the cop. Element i in the second

column of (A+I)3P gives us the number of three-hop paths from vertex i to the robber. Thus, these

matrices encode useful information that the cop or the robber can use to formulate their strategy.

39

Given these matrices and the input matrices, the cop, if it is at vertex i, has to perform the following

operations to reach the robber’s position:

1. Lookup the robber’s current vertex using the matrix P. The agent needs to find j s.t. Pj,2 > 0.

This vertex is called T in subsequent discussions as it is the target vertex.

2. Find the cop’s distance from the robber’s vertex. This is done by looking up the values of

elements [(A+ I)kP]T,1 for different values of k. If [(A+ I)kP]T,1 > 0, the agent has a k-hop

path from the current vertex to the target vertex T . To get the length of the shortest path, the

agent should choose the least k for which this is true.

3. Find a neighbor vertex n such that the distance from n to T is k − 1. This can be done

by looking up the values of elements [(A + I)k−1P]n,2 over all n. If for some vertex n,

[(A+ I)k−1P]n,2 > 0, then the agent has a (k− 1)-hop path from vertex n to vertex T . Thus,

it is a good candidate to move to for the cop’s next action. However, this is possible only if

vertex n is adjacent to the cop’s current vertex.

4. This can be identified by checking whether [C]n,a > 0 for some a. The a for which this is

true is the action that must be taken.

In the set of steps described above, the distance from the cop to the robber decreases by 1 after

every action. If this initial distance between the cop and the robber was d, a cop following the

above approach will take only d steps to reach the robber, which is the optimal number of steps.

Thus, from the input matrices A,PandC to the final action a, there are a series of look-up oper-

ations and matrix multiplications that produce the optimal strategy for the path planning problem.

5.1.3 Emulating Pathfinding using GCNs

A standard GCN layer with ReLU activation can be expressed as:

H(out)(W,A,H(in)) = ReLU((A + I)H(in)W) (5.6)

40

Figure 5.1: Network Architecture used for solving the path planning problem

Consider the architecture depicted in Fig. 5.1. The first GCN layer takes P as the input. If

W = In×n, the output h(1) is exactly (A+ I)P. This h(1) is fed to the next GCN layer. The outputs

of subsequent layers are hence (A + I)2P, (A + I)3P, ..., (A + I)dP. All these matrices are fed as

inputs to the dense layer along with C. The only remaining set of tasks is to perform the lookup

and logical operations that are required to complete the algorithm. These are handled by the three

dense layers that we have.

A natural question that arises is why the dense layers themselves cannot calculate the (A+I)kP

matrices and undertake the lookup and logical operations. While the Universal Approximation

Theorem does guarantee the existence of a neural network with just a single hidden layer that can

41

solve this task, we neither know the appropriate width of the hidden layer, nor do we have a method

guaranteed to find the model parameters that such a dense network should have. Moving much of

the logic for the graphical analysis sub-task to the GCN layers results in the following advantages:

• The GCN layer’s parameters are shared across all vertices in the graph, thereby eliminating

the need to learn an extremely large number of parameters corresponding to every vertex,

while still performing the useful calculation that we need. This is due to the specially tailored

nature of GCNs that knows to only focus on local graph structure.

• The hypothesis class H of possible neural networks is much smaller due to the greatly

smaller number of parameters, thereby greatly reducing the chance of overfitting.

5.1.4 Results

We implemented the architecture described in Fig. 5.1 using Tensorflow and trained the agent

using the Proximal Policy Optimization algorithm (Ray RLLib implementation). We limited the

maximum episode length to be twice the initial distance d = 4.

Figure 5.2: Cop’s success rate for different GCN depths on the frozen robber problem

42

As seen in Fig. 5.2, when the initial distance between the cop and robber was less than the

number of layers in the network, the agent’s performance during training converged to a 100%

success rate.

Figure 5.3: Capture Time for different GCN depths on the frozen robber problem

Fig. 5.3 shows that the number of steps or turns required to complete the path also converged to

d = 4 over the training process. The conclusion obtained is that the chosen architecture is capable

of performing efficient path planning from a source vertex to a destination vertex.

5.1.4.1 Limitation on Agent Range

It was observed that for a given initial distance, the performance of the cop depended noticeably

upon the number of graph convolutional layers in the neural network. In the plot shown in Fig. 5.2,

the success rate touches 1.0 when the number of GCN layers ≥ 4. However, when it is less than

4, the success rate dropped sharply. This was expected from the analysis in Section 5.1.2: to make

inferences about vertices that are a distance of k away, the cop needs to know the matrix AkP and

having less than k layers makes this nearly impossible due to reasons discussed in Sec. 5.1.2.2.

Such a limitation is not tolerable if we wish to scale our agent to larger graphs as we simply

43

cannot have as many GCN layers as the diameter of the space of graphs that we run our agent

upon. The primary bottleneck in this naïve approach is neither the memory required to implement

the large number of GCN layers, nor the performance cost of calculating the outputs of all the

GCN layers, but the massive number of weights required to consume all the outputs of the different

GCN layers at the dense layer. We implemented a simple, but efficient vertex pooling method to

overcome this issue and describe it in Sec. 5.3.

5.2 Iterative Adversarial Training

Modern deep RL techniques make it straightforward to train a single agent to act optimally

in a given environment. However, they do not directly extend to multi-agent environments. In

our case, we need to train both the cop and the robber to make intelligent decisions during their

adversarial game against each other. We do have the option of building a good opponent using

other algorithms such as Alpha-Beta pruning or UCT search and playing against that, but it must

be noted that even a 100% success rate against such opponents does not offer much evidence of

how good our agent is against a truly good opponent. In addition, our agent’s strategy in these cases

would be limited by what situations it has encountered during its training against these algorithmic

approaches. There is a need to have an adaptive opponent that can keep forcing the learning agent

into new situations so that it can learn to counter them. We use a methodology that we call Iterative

Adversarial Training to train both the cop and the robber by playing them against each other.

5.2.1 Pitfalls

While it might appear straightforward to train all the agents involved in a multi-agent game by

playing them against each other in successive iterations, a poorly designed approach might result

in one of the following negative scenarios:

• The cop could severely outperform the robber and make it improbable for the robber to

explore trajectories where it manages to escape from the cop. The cop needn’t achieve true

competence to force such a situation as it is possible that an otherwise poor strategy is strong

against an untrained robber.

44

• The robber could severely outperform the cop and make it improbable for the cop to explore

trajectories that result in the robber’s capture. Again, the robber needn’t be significantly

competent to cause this result.

• Both agents could fail to achieve any useful learning. In this case, the robber would have a

much higher success rate just due to luck.

Our objective however is that both agents achieve useful learning and converge to a policy that

allows them to win on most graphs where they can win with an optimal policy.

5.2.2 Algorithm

In the most basic version of Iterative Adversarial Training, we instantiate both agents to arbi-

trary, random policies. In each iteration,

1. Freeze the robber’s policy to its current policy.

2. Using Proximal Policy Optimization, train the cop to play against this robber for 1000

episodes.

3. Freeze the cop’s policy to its current policy.

4. Train the robber against this cop for 1000 episodes using Proximal Policy Optimization.

In this initial version of the Iterative Adversarial Training algorithm, we noticed that we were

indeed suffering from some of the pitfalls described in Sec. 5.2.1. Our final version of the algorithm

contains numerous tweaks that we implemented to alleviate these issues which we further describe

in Sec. 5.2.3.

We begin by instantiating a robber agent Robber_Agent and a cop agent Cop_Agent and

initialize these to follow arbitrary, random policies. We maintain two agent buffers implemented

as queues: Buffer_Robber and Buffer_Cop of length Lbuffer. These buffers store several

recent versions of the respective agents in a First In, First Out (FIFO) fashion. The algorithm then

proceeds as a series of turns, each of which consists of a number of steps. Each turn proceeds as

follows:

45

1. A cops and robbers environment is instantiated where the robber is a randomly chosen ver-

sion from Buffer_Robber. The cop is the learning agent in this environment.

2. We undertake N_cop_steps steps. In each step:

(a) We perform several (200) rollouts of this environment under the chosen cop and robber

policy in the present environment.

(b) We use the trajectories gained from the rollouts to repeatedly update the cop’s neural

network weights using proximal policy optimization.

(c) We randomly sample a robber version from Buffer_Robber and set this as the

robber in our environment.

3. We push this version of the cop into the tail of Buffer_Cop, thereby causing the oldest

version of the cop in the buffer to be popped out.

4. We evaluate the most recent version of the cop against all the robbers in the buffer by per-

forming N_eval_rollouts rollouts for each version of the robber. We do not allow

exploration and make the agents choose the action that is predicted by the respective net-

works to have the highest advantage A(s, a).

5. We use the measured performance to set N_cop_steps = Step-Count(performance).

This function sets a higher step count for lower performance, thus giving the poorly perform-

ing agent more trajectories to learn from.

6. A cops and robbers environment is instantiated where the cop is a randomly chosen version

from Buffer_Cop. The robber is the learning agent in this environment.

7. We undertake N_robber_steps steps. In each step:

(a) We perform several (200) rollouts of this environment under the chosen cop and robber

policy in the present environment.

46

(b) We use the trajectories gained from the rollouts to repeatedly update the robber’s neural

network weights using proximal policy optimization.

(c) We randomly sample a cop version from Buffer_Cop and set this as the cop in our

environment.

8. We push this version of the robber into the tail of Buffer_Robber, thereby causing the

oldest version of the robber in the buffer to be popped out.

9. We evaluate the most recent version of the robber against all the cops in the buffer by per-

forming N_eval_rollouts rollouts for each version of the cop. Again, we do not allow

exploration and simply choose the action that is predicted by the agents to have the highest

advantage A(s, a).

10. We use the measured performance to set N_robber_steps = Step-Count(performance).

All the steps described above constitute a single turn. The IAT algorithm requires that these

turns are run repeatedly until convergence.

Equivalent high-level pseudocode for the above algorithm is given in Alg. 1. Further elucida-

tion about the helper methods used for the top-level procedure is given in Alg. 2.

5.2.3 Rationale

This section explains why we transformed the Iterative Adversarial Training algorithm from its

simple beginnings to the vastly more complicated final version.

5.2.3.1 Agent Buffers

It is often noted while training neural networks that when there is significant temporal deviation

in the nature of the input batches during training, the network loses its ability to perform well on

samples that it was trained on long ago and fits its weights to just perform well on recent input

samples. This effect, called catastrophic forgetting, is not as much of a problem in traditional deep

learning as we can just randomly shuffle the input samples to eliminate the temporal deviations.

However, input samples in reinforcement learning are highly correlated and it is not trivial to

47

Algorithm 1 Top-level procedure of the iterative adversarial training algorithm
procedure ITERATIVE-ADVERSARIAL-TRAINING ▷ This procedure trains a cop agent and a
robber agent for the cops and robbers game by playing them against each other.

Cop_Agent← Initialize with arbitrary neural network weights.
Robber_Agent← Initialize with arbitrary neural network weights.
Buffer_Robber← FIFO Queue of length L_buffer.
Buffer_Cop← FIFO Queue of length L_buffer.
N_cop_steps← Step-Count(1.0)
N_robber_steps← Step-Count(1.0)

for i in 0 to L_buffer do
Buffer_Cop.push(Cop_Agent)
Buffer_Robber.push(Robber_Agent)

end for

for i in 0 to N_turns do
for j in 0 to N_cop_steps do

random_opponent← Random-Element(Buffer_Robber)
Cop-Learner-Env← new Cop-Env(random_opponent)
trajectories ← Perform-Rollouts(Cop-Learner-Env,

Cop_Agent, False)
Cop_Agent.PPOUpdate(trajectories)

end for

Buffer_Cop.push(Cop_Agent)
mean_perf ← Eval-Agent-Perf(Cop_Agent, Buffer_Robber,

Cop-Env)
N_cop_steps← Step-Count(mean_perf)

for j in 0 to N_cop_steps do
random_opponent← Random-Element(Buffer_Cop)
Robber-Learner-Env← new Robber-Env(random_opponent)
trajectories ← Perform-Rollouts(Robber-Learner-Env,

Robber_Agent, False)
Robber_Agent.PPOUpdate(trajectories)

end for

Buffer_Robber.push(Robber_Agent)
mean_perf ← Eval-Agent-Perf(Robber_Agent, Buffer_Cop,

Robber-Env)
N_robber_steps← Step-Count(mean_perf)

end for
end procedure

48

Algorithm 2 Utility methods for the iterative adversarial training algorithm
procedure EVAL-AGENT-PERF(Agent, Opponents, Env-Type) ▷ Procedure that evaluates a
given agent against a set of opponents.

mean_perf← 0
for j in 0 to N_eval_steps do

random_opponent← Random-Element(Opponents)
Eval-Env← new Env-Type(random_opponent)
trajectories← Perform-Rollouts(Eval-Env, Agent, True)
mean_perf← mean_perf + Sum(trajectories.rewards)

end for
mean_perf← Step-Count(mean_perf/N_eval_steps)
return mean_perf

end procedure

procedure PERFORM-ROLLOUTS(Env, Agent, shouldExplore) ▷ Procedure to perform a fixed
number of rollouts in an environment using an agent. Returns sample paths and rewards.

trajectories← Empty set that can hold trajectory objects.
for j in 0 to N_rollouts do

trajectory← Empty trajectory
state← Env.reset()
done← False
while not done do

action_probs← Agent.compute_action_probs(state)
if shouldExplore then

action← Random-Sample(action_probs)
else

action← Argmax(action_probs)
end if
next_state, reward, done← Env.step(action)
trajectory.append_info(state, action, next_state,

reward, done)
end while
trajectories.append(trajectory)

end for
return trajectories

end procedure

49

eliminate this dependency. The commonly used technique is experience replay where a long replay

buffer of state transitions, actions and rewards is maintained. The neural network is trained on

samples randomly chosen from this buffer instead of on the most recent samples.

The same problem surfaces in our case, albeit at a higher level: Catastrophic forgetting causes

the agent to forget how to play well against older versions of the opponent agent, and instead

overfit itself to exploit the peculiar weaknesses of its current opponent. We borrow a page from

experience replay and create agent buffers that hold several opponents all of which an agent can

learn from. Over time, we hope that the members of the buffer become dominantly superior to

those members that are popped out, thus invalidating the need for what we expect to be obsolete

agents.

5.2.3.2 Adaptive turn lengths

We observed that depending upon the input graph space that we used, there were numerous

training runs where either the cop or the robber ended up dominating the training process and

blocked the other agent’s ability to learn by severely curbing meaningful exploration. Imbalance

in the success rates of the cop and robber is acceptable and could be a natural result of the biased

nature of the sample space. While imbalance can still produce competent agents, extreme skews

in the success ratio in favor of one agent will result in an extremely small number of positive

examples for the opponent.

Our solution to this issue was to adaptively vary the number of steps each turn consisted of for

the agents. Thus, the agent that loses more games would get more training bandwidth to refine

itself and compensate for its poor performance.

Specifically, if α is the success rate of an agent based on the most recent evaluation, we set the

number of steps per turn for that agent as

Step-Count(α) =
C

max(0.5, α)
(5.7)

50

Effectively, the step count for an agent varies from C to 2C depending on how poor the agent’s

performance was during the most recent evaluation.

5.3 Vertex Pooling

It was noted in Sec. 5.1.4.1 that a traditional GCN needs to have as many layers as the diameter

of the graphs in the operating space to solve even a simple path planning task. On the cops and

robbers problem, we observed poor performance for both agent classes on graphs with a diameter

larger than the depth of the GCN they used. As mentioned earlier, it is not scalable to continually

adding GCN layers to increase the operational range. This is since the first dense layer that takes

the outputs of all these additional GCN layers would have an extremely large number of weights

and thus defeat the purpose of using GCNs to abstract network information into a much smaller

number of outputs.

This issue has parallels with the case of Convolutional Neural Networks: the input and output

sizes for a CNN layer are nearly the same (unless we use stride > 1, which is not applicable to

graphs) and there is no spatial aggregation of local information. The solution in case of CNNs

was to introduce a Max-Pooling layer that aggregates information from neighboring pixels in the

outputs of the CNN layers, thus enlarging the receptive field of each neuron. In the same vein,

previous research has shown the efficiency of Graph Pooling layers that compress features from

a large number of graph vertices into the outputs of a much smaller number of neurons. While a

hierarchical vertex pooling method proposed in [12] forms the base of our vertex pooling method,

our stringent computational requirements necessitate that we introduce a few optimizations before

we can make use of this approach.

Starting from a graph and a set of associated feature vectors F (v) of length f for each vertex

v in the graph, our vertex pooling algorithm produces a series of hierarchical abstractions of the

graph, each of which has close to half as many vertices as the lower level of abstraction. Given a

graph G(V,E) that has a particular level of abstraction, the next level is represented as a component

graph G′(V ′, E ′) each of whose vertices contains at least two vertices from the lower level. The

abstraction process that we use in this thesis proceeds as:

51

1. Set all vertices in V to initially be unmarked.

2. Select an edge (u, v) that is incident on a pair of vertices u and v both of which are unmarked,

such that the geometric mean degree g =
√
dudv is minimized.

3. Create a new component v′ ∈ V ′ and assign both u and v to that component.

4. Mark the unmarked vertices.

5. Repeat steps 2, 3 and 4 until at least one of the following stopping conditions is reached:

(a) All vertices in V have been marked.

(b) The sum of the number of components |V ′| and the number of unmarked vertices

(henceforth referred to as the gross component count) is less than or equal to a threshold

T .

6. If the gross component count is still greater than a threshold T after the loop in the above

step terminates, more vertices from V have to be merged into the components that we have

created. This is since the vertex pooling process must produce a resultant graph where the

number of vertices is at most T .

7. Select an edge (u, v) that is incident on a pair of vertices u and v exactly one of which is

unmarked, such that the geometric mean degree g =
√
dudv is minimized.

8. Assign the unmarked vertex to the component to which the marked vertex has been assigned.

9. Mark the unmarked vertex.

10. Repeat steps 7 and 8 until at least one of the following stopping conditions is reached:

(a) All vertices in V have been marked.

(b) The gross component count is less than or equal to the threshold T .

52

At the end of this process, the gross component count will either be T or T − 1. We take the

following steps to build the graph G′:

1. Add any unmarked vertices that remain in G to V ′.

2. For every edge (u, v) ∈ E s.t. u ̸= v, given that M(u) and M(v) are the components in

which they are present, if (M(u),M(v)) /∈ E ′, add such an edge.

In this project, T was set to |V |
2

so that the next level of abstraction always has close to one-

half the number of vertices from the earlier level. Thus, the above process will result in a graph

G′(V ′, E ′) and a many-one function M : V → V ′ with the following properties:

1. The number of vertices is equal to ⌊ |V |
2
⌋.

2. An edge (u′, v′) ∈ E ′ exists if and only if there exist vertices u and v such that (u, v) ∈ E

and M(u) = u′ and M(v) = v′.

We then do the pooling operation by aggregating together features corresponding to the vertices

attached to each component. Thus, in the case that the input graph and features are of dimensions

|V |×|V | and |V |×f respectively, the vertex pooling layer outputs a matrix of dimensions |V ′|×f

where V ′ is the number of vertices in the abstract graph. While the choice of the aggregation

function to be used depends on the application, we observed that the maximum pooling function

achieves the best performance.

The outputs of the complete vertex pooling process are:

1. The pooled features F ′ that correspond to each of the vertices in G′.

2. The adjacency matrix of the abstract graph G′.

3. A matrix M of dimensions |V ′| × |V | that describes the mapping from vertices in G to

vertices in G′. [M]ij = 1(i = M(j)).

53

Algorithm 3 Top-level procedure of the vertex pooling approach
procedure VERTEX-POOLING(G, F, T) ▷ This procedure takes a graph G, associated vertex
features F and returns vertex-pooled features for an abstract graph built from G.

for v in G.V do
v.isMarked← False

end for
numUnmarked← 0
G’← New graph initialized to have no vertices or edges.

while not Stopping-Condition(numUnmarked, G’, T) do
edge← Get-Edge-With-minGMDegree-and-Markedness(G, 0)
addedComponent← G’.V.add()
Assign-Components-And-Mark(edge, addedComponent)
numUnmarked← numUnmarked - 2

end while
while not Stopping-Condition(numUnmarked, G’, T) do

edge← Get-Edge-With-minGMDegree-and-Markedness(G, 1)
c← edge.u.isMarked ? edge.u.component : edge.v.component
Assign-Components-And-Mark(edge, c)
numUnmarked← numUnmarked - 1

end while

for u in G.V do
if u.unmarked then

addedComponent← G’.V.add()
u.component← addedComponent

end if
end for
for e in G.E do

if (e.u.component, e.v.component) not in G’.E then
G.E.add((e.u.component, e.v.component))

end if
end for
M← Get-Mapping-Matrix(G, G’)
return Get-Pooled-Features(G, G’, F), G’, M

end procedure

54

Algorithm 4 Helper methods for the vertex pooling approach
procedure ASSIGN-COMPONENTS-AND-MARK(edge, component) ▷ Procedure to mark and
assign a component to vertices on the endpoints of an edge.

edge.u.component← component
edge.v.component← component
edge.u.isMarked← True
edge.v.isMarked← True

end procedure

procedure STOPPING-CONDITION(numUnmarked, G’, T) ▷ Procedure that returns whether or
not the stopping condition has been reached

if numUnmarked == 0 then
return True

end if
if numUnmarked + len(G’.v) <= T then

return True
end if
return False

end procedure

Equivalent high-level pseudocode for the above algorithm is given in Alg. 3. Further elucida-

tion about methods used for the top-level procedure is given in Alg. 4 and Alg. 5.

The vertex pooling approach proposed here have similar foundations to the abstract versions

of the base graph proposed in [6] and subsequently used in [4]. However, the goal in our case is

to use the abstract graphs as inputs to a GCN layer and enlarge the receptive field of the GCN.

In contrast, [6] and [4] use them to reduce the computational complexity of their heuristic search

methods. Implementationally, our method uses a deterministic merge strategy that is applicable to

all connected graphs while the abstraction strategy that was proposed in [6] was defined only for

grids and octile graphs.

55

Algorithm 5 Sub-task procedures for the vertex pooling approach
procedure GET-MAPPING-MATRIX(G, G’) ▷ Procedure to calculate a matrix that encodes
how the vertices of G are mapped to G′

M←Matrix of dimensions len(G’.V) x len(G.V)
for u in G.V do

M[u][u.component]← 1
end for
return M

end procedure

procedure GET-EDGE-WITH-MINGMDEGREE-AND-MARKEDNESS(G, markedness) ▷
Procedure that returns the edge minimizing the Geometric Mean of endpoint degrees, with a
given number of endpoints that have been marked.

minGMDegree← Infinity
minGMDegreeEdge← NULL
for e in G.E do

if e.u.isMarked + e.v.isMarked == markedness then
currentGMDegree← GM(e.u.degree, e.v.degree)
if currentGMDegree < minGMDegree then

minGMDegree← currentGMDegree
minGMDegreeEdge← e

end if
end if

end for
return minGMDegreeEdge

end procedure

procedure GET-POOLED-FEATURES(G, G’, F) ▷ Procedure to pool features with the abstract
graph.

outFeatures←Matrix of zeros with shape len(G’.V) x F.shape[1]
featureSet← Array of Empty sets, length len(G’.V)
for u in G.V do

featureSet[u.component].append(F[u])
end for
for u in G’.V do

outFeatures[u]← Pooling-Aggregation(featureSet[u])
end for
return outFeatures

end procedure

56

6. SOFTWARE IMPLEMENTATION, CHALLENGES AND SOLUTIONS

This chapter details how we implemented our ideas in software, the major challenges that we

faced in this phase and our solutions for each of those issues.

6.1 High-Level Elements of the Software System

The entire system has been designed and built to adhere as much as possible to Object Oriented

Programming Principles. The different components of the system in decreasing order of generality

are:

1. Orchestrators: These are top-level modules that are responsible for a complete, end-to-end

process. Orchestrators instantiate and initialize all required objects, set configurations and

guide the general program flow. In general, an orchestrator is a standalone script that need

not be called by a different module to be executed.

2. Environments: Classes that represent our MDPs’ environment and provide methods to in-

stantiate a given environment, reset this environment, and simulate the actions received from

an agent in the environment. Some of these methods return the consequences of agent ac-

tions, e.g. the next state reached and the reward.

3. Agents: These entities are capable of storing and learning a policy by interacting with an

environment. The training methods required to train these agents are self-contained. Agents

internally use models to encode their current policy.

4. Models: A model in our case is a class that can encode a policy that an agent can use to

sample actions. In general, a model consists of methods that can take a state and return an

action to be taken from that state. We do not restrict the models to be internally memoryless,

nor force them to use function approximation.

5. Layers: Layers are components that are relevant to models that use neural networks for

57

function approximation. They store the forward propagation and backpropagation logic for

one layer of a neural network.

6. Graph Generators: These entities are used by environments to build the world in which the

agents compete against each other. They provide various methods to sample random graphs

that have specific properties.

7. Utilities: Generic methods that abstract out code logic to increase readability in all modules

of the system.

The system was completely implemented in Python v3.7.

6.2 Sub-system Description and Implementation

This section describes in detail the various sub-systems that were listed in Sec. 6.1.

6.2.1 Orchestrators

As mentioned before, an orchestrator is a standalone program that completes a specific process

on its own. This could be as simple as processing outputs and creating a plot, or as complicated

as evaluating an entire history of agents against a fixed opponent. Since the orchestrators are top-

level programs that do not encode complicated low-level logic, very few external libraries were

directly used in their implementation. As such, much of the orchestrator code is native Python

code, procedure calls and straightforward application of tools from numpy and matplotlib.

6.2.1.1 agent_trainer

This orchestrator is used to train a given agent in a given environment in a sequential training

process using a training algorithm such as PPO. Specifically, agent_trainer:

1. Instantiates a particular agent.

2. Instantiates a particular environment.

3. Uses an RL algorithm to train the agent in this environment.

4. Writes periodically sampled performance metrics to file.

58

6.2.1.2 iterative_adversarial_trainer

This orchestrator competitively trains a pair of agents to operate well in an environment by

playing them against different versions of their opponents. Most of Alg. 1 is implemented in this

orchestrator. Specifically, iterative_adversarial_trainer:

1. Instantiates a pair of agents.

2. Instantiates respective learner environments.

3. Creates agent buffers and controls the entry and exit of agents into the buffers.

4. Iteratively trains these agents by playing them against each other while closely adjusting the

step count.

5. Writes periodically sampled performance metrics to file.

6.2.1.3 solo_agent_rollout

This orchestrator focuses on visualization and evaluation of the finally obtained agents after all

training is done. Its main role is to support debugging and analysis of a single trained agent in a

post-facto situation. Specifically, solo_agent_rollout:

1. Instantiates a particular agent.

2. Restores it to weights learned earlier.

3. Instantiates an environment for this agent to operate in.

4. Performs rollouts that make this agents act in the environment.

5. Evaluates the results of the rollouts in terms of number of steps and episodes, mean rewards

and success rates.

6. Renders the rollouts graphically.

59

6.2.1.4 performance_plotter

This orchestrator focuses on visualizing the progress of the agents during training. Specifically,

performance_plotter.

1. Loads metrics gathered during training runs.

2. Processes and formats them.

3. Produces plots of the results.

6.2.2 Environments

An environment entity encodes all logic pertinent to the environment in an MDP. In our case,

we want an environment to:

• Initialize required graph generators and opponent agents according to configurable parame-

ters.

• Sample random graphs using an internal graph generator object.

• Provide a method to reset the environment to a starting position. This requires sampling a

new graph and positioning the agents at a configurable distance of each other.

• Provide a method that allows the learning agent to take actions within the environment.

• Continually check for whether the game should be terminated under the current agent posi-

tions.

• Return the reward obtained by the agent after every action.

• Track the MDP from one state to another.

• Return logging information about the actions of the agents, the states, rewards, etc.

• Provide a method to render the state of the environment along with pertinent additional

details.

60

• Contain attributes that describe the size of the state space and action space.

This project implements environment classes that enforces these properties by inheriting them

from OpenAI’s gym.env class. This abstract class throws a NotImplementedError if re-

quired methods such as step, reset and render have not been implemented, thus ensuring

that our environment implementation has the minimum functionality required to emulate a Markov

Decision Process.

The environments that this project uses are described further below.

6.2.2.1 MultiAgentIterativeAdversarialEnv

This environment is primarily what we used to train the cop and robber agents by playing them

against each other. The environment’s constructor takes in parameters that detail the following

contextual information:

1. The learning agent for this instance of the environment. If the learning agent is a cop, a

robber agent is automatically instantiated to be the learner’s opponent. In case the learning

agent is a robber, a cop opponent is automatically instantiated within the constructor.

2. Whether this environment is a “training" environment or an “evaluation" environment. In

case that this is a training environment, the Watts-Strogatz graph generation algorithm is

used. If it is an evaluation environment, then a cop-win graph generator or a robber-win

graph generator is instantiated for cop learners and robber learners respectively. In addition,

the environment returns dense rewards during the learning phase and sparse rewards (since

we only care about success rates) during the evaluation phase.

A shortcoming of our implementation is that each instance of the environment (created during

parallelized rollouts) must contain its own opponent instance, thereby increasing the amount of

memory that each instance requires. We expended significant effort in attempting to overcome this

issue by using a static variable for the opponent that is shared among all environment instances,

but Ray RLLib’s agent instantiation methodology was incompatible with this approach. It is also

61

possible that even had we been successful, this would have caused a concurrency bottleneck since

all the environment instances will request actions from the same opponent instance.

It must be noted that this limitation only reduces the parallelization capacity of our system

while performing rollouts and not the performance of trained agents. Considering that Ray RLLib

makes deep copies of all internal variables of an environment instance to perform parallel rollouts,

this problem might just be an issue that will persist as long as we rely on Ray.

6.2.2.2 SingleAgentFixedStrategyEnv

This environment implements a simpler problem where the opponent of the learner agent uses

a fixed, non-learning strategy such as a random policy or a greedy policy. The opponent agent

is forced to be stateless here, thus allowing us to instantiate a large number of instances of this

environment and perform several rollouts in parallel.

6.2.3 Agents

An agent is an entity that holds a policy and is capable of training the policy by performing

rollouts on a pre-defined environment. As such, it contains both a model that encodes a policy

through function approximation, and an RL algorithm such as PPO that can train this model. Our

agent classes are of simple design and form a wrapper around the PPO class that Ray RLLib

provides. The agent class has the following functionalities:

• Take an environment class along with required environment configuration and instantiate an

agent that can act on the environment.

• Provide a method to perform rollouts within the environment and use the obtained trajecto-

ries to train the model using PPO.

• Compute the action that must be taken for a given state according to the learned policy.

Ray RLLib’s PPO class efficiently trains the agent by

1. Instantiating several “workers", each of which contains a copy of the environment and the

model.

62

2. Making each worker perform rollouts in parallel by allocating the total available CPU time

amongst all workers. Naturally, the total memory required by the workers must be less than

the System RAM. If GPU training is enabled, the total GPU memory required by the workers

must also be less than the available Graphics Memory.

3. Collecting the trajectories obtained by the workers and calculating the neural network tar-

gets.

4. Performing the neural network update using an algorithm such as Adam or RMSProp.

Evaluation is always performed with a single worker, thus requiring us to constrain the evalu-

ation frequency to a small number.

6.2.4 Models

A model is an entity which contains a function approximator that can encode an agent policy.

A model must:

• Instantiate itself to be compatible with a particular action space and state space. In our case,

the action space and state space decide the number of output and input neurons respectively.

• Provide a method that can forward propagate a given state input and get action advantages

for that state.

• Return the value function of the model as a callable method.

We enforce these requirements by inheriting our model classes from Ray’s TFModelV2 class.

This mandates that the model implementation be capable of taking in inputs that follow Tensor-

flow’s input specifications and provides outputs that have the exact type as a Tensorflow Model

object.

In line with these restrictions placed on the model, we create its neural network object using

Tensorflow’s Functional API. We used the Input and Dense layers from the Tensorflow library

along with our implementations of the GCN layer and the vertex pooling layer to build this neural

63

network. Sec. 4.5 describes how many input descriptors of the state are represented as one-hot

encoded vectors. To save memory, we store just the on-bit in the vector as an integer for as long as

possible and convert that into a one-hot encoded vector at the very last moment, within the neural

network. We use Tensorflow’s one_hot layer to accomplish this.

Models, once declared need to be registered with Ray before they can be used within agents.

We do this in the orchestrator since that is where agents will be initialized.

6.2.5 Layers

A layer is an entity that handles both the forward propagation and backpropagation logic for a

particular type of neural network layer such as fully-connected, convolutional or LSTM. Any layer

class must be capable of

• Instantiating a layer object given a set of input and output dimensions along with any re-

quired configurations.

• Storing its own weights and biases within and providing these when requested. This is

necessary to support saving and loading weights, making copies of neural networks, etc.

• Performing forward propagation given a set of inputs and return the output of that layer.

• Perform backpropagation of gradients from the next layer to the previous layer.

We achieve some of these objectives by inheriting our layer classes from Tensorflow’s layers.Layer

abstract class. This class puts implementation requirements on our child classes, as well as pro-

vides additional functionality common to all layers such as providing a backpropagation method

based on the forward propagation logic using automatic differentiation.

The layers that we have implemented in this project are described further below.

64

6.2.5.1 GCN Layer

The GCN layer takes in an Adjacency Matrix A and a matrix of input vertex features F from

all vertices in a graph as input, and calculates the output as

oW(A,F) = ReLU((A+ I)FW) (6.1)

Here, W is the weight matrix for this GCN layer. Given that the graph has V vertices and the input

features for each vertex are of length f , the dimensions of the various tensors involved are:

• A: Tensor of dimensions Batch size× V × V

• F: Tensor of dimensions Batch size× V × f

• W: Tensor of dimensions Output Feature Length× f

Note that the feature matrix F need not be the original vertex features provided to the neural

network as input - they can be transformed features from earlier GCN layers as well. In addition,

the adjacency matrix does not have to correspond to that of the original graph. Vertex pooling

results in abstract graphs, and the adjacency matrices corresponding to these graphs can be fed into

the GCN layers as well in place of the adjacency matrix fed to the network as an input.

6.2.5.2 Vertex Pooling Layer

The algorithmic workings of the vertex pooling layer are described in detail in Sec. 5.3. The

vertex pooling process creates an abstract version of the input graph by deterministically merging

together neighboring vertices while preserving their connectivity information. The features of the

vertices in the abstract graph are obtained by aggregating the features of vertices from the original

graph.

The result of the vertex pooling process is twofold:

1. The graph structure of the abstract graph: This is represented using the adjacency matrix of

the graph that was produced at the end of the abstraction.

65

2. The pooled features: A new set of features is assigned to each vertex in the abstract graph,

and has a feature length equal to the length of the input features.

As in the case of the GCN layer, the Vertex Pooling layer inherits from Tensorflow’s layers.Layer

class. We take advantage of the fact that the graph abstraction process itself is deterministic and

depends only on the graph. We externally build the abstract graph in the neural network’s prepro-

cessor and feed the vertex mapping to a layer that simply aggregates the vertex features according

to the mapping. While this approach reduces code modularity, it greatly simplifies the implemen-

tation as we will have no incompatibility with Tensorflow’s eager execution mechanism.

As described in Sec. 5.3, the mapping from vertices in the input graph to vertices in the abstract

graph is represented with a matrix M that has a 1 at i, j if and only if vertex j in the original graph

corresponds to component vertex i in the abstract graph.

We undertake the following steps in the preprocessor:

1. Take as input the adjacency matrix of the graph.

2. Use the vertex pooling algorithm described in Alg. 3 to produce an abstract graph that

contains a reduced number of vertices compared to the input graph.

3. Build the adjacency matrix A′ for this abstract graph.

4. Build the mapping matrix M.

5. Return A′ and M.

Within the neural network model, both A′ and M are available. The vertex pooling layer’s

calculation can be expressed as

F′ = PoolingAggregation(M,F) (6.2)

66

In the simple case where the pooling aggregation is done through additive pooling, the above

equation reduces to a matrix multiplication.

F′ = M× F (6.3)

When the vertex pooling layer is used as part of a neural network, the A′ is usually fed as the

adjacency matrix to the next GCN layer along with F′ as the vertex features.

6.2.6 Graph Generators

A graph generator’s responsibility is to sample graphs using a fixed random graph generation

technique such as the Watts-Strogatz Algorithm. Clients may request specific constraints to be

placed on the generated graph, such as restricting the maximum vertex degree or the diameter of

the graph. In such cases the graph generator must keep sampling new graphs until it gets a graph

that qualifies all such constraints.

A graph generator performs the following steps:

1. Instantiates itself with a set of configurable parameters that control the nature of the graphs

generated.

2. Periodically generates a new graph every time one is requested.

3. Validates the generated graph and re-samples the graph if it fails any of the predefined con-

straints.

In this project, an abstract class called GraphGenerator implements the logic to check

an undefined set of constraints and regenerate graphs until the constraints are met. All graph

generators inherit from this parent class and define the graph validation constraints to integrate

with this mechanism.

The graph generators that were used in this project are:

1. Small-world graph generator: This uses the Watts-Strogatz algorithm to generate connected

graphs that have a relatively small diameter despite having a large number of vertices.

67

2. Grid graph generator: This graph generator creates a two-dimensional lattice and is deter-

ministic. As expected, this graph generator cannot have constraints.

3. Tree generator: This generates random connected graphs where only one path exists between

any two vertices.

All graph generators use the networkx library to sample graphs.

6.3 System Implementation Outcomes

Some positive outcomes arising from the programming practices that we followed during this

project are:

• Fundamental entities such as graph generators and models have abstract classes defined, and

all realizations of these entities inherit from these classes and override them. This helps

enforce conventions as well as encourages code reuse.

• Configurable Logger classes allow uniform, systematic logging and metrics aggregation.

• Strong integration of existing libraries and open-source tools reduces the number of cases

where we expend effort reinventing the wheel.

• Use of modern Python (>= v3.7) techniques such as checking argument type and return

type statically reduces runtime errors and increases code reliability.

68

7. COP AND ROBBER EVALUATION METHODS, COMPARISONS WITH

TRADITIONAL ALGORITHMS AND RESULTS

This chapter details the methodology that we use to evaluate the performance of the trained

cop and robber agents. It then moves on to describe the alternative approaches that we compare

our agents against. The chapter concludes with a presentation and analysis of the evaluation and

comparison results thus obtained, illustrating the findings with detailed plots.

7.1 Evaluating Trained Cops and Robbers

7.1.1 Requirements and Restrictions on an Evaluation Methodology

The task of evaluating a trained cop or a robber has a number of requirements that should be

met:

1. Evaluation should be against an opponent that is optimal or near-optimal.

2. Evaluation should be statistical and should result in a numerical measure of performance,

not just a qualitative one.

3. The performance metric should be set in a range where the lowest value implies complete

failure and the highest value implies complete success. Naturally, intermediate values should

imply varying degrees of success on the problem.

4. The performance measurement process should be reproducible, given the same initial con-

ditions.

These restrictions mean that firstly, using opponent agents trained using the approach suggested

in this thesis, or against agents that use the heuristic approaches defined in prior work is ruled out.

This is since Condition 1 requires that we cannot evaluate a trained cop or robber by just letting it

competing against an opponent that uses an algorithm that is not guaranteed to be optimal.

69

Secondly, Condition 2 necessitates that for reliable performance measurement, the evaluation

process must be carried out over a large number of graphs and not just a few hand-crafted graph

worlds that are thought to be interesting or balanced.

Thirdly, evaluating the trained cop or robber on randomly sampled graphs without any distinc-

tion is ruled out. On randomly sampled graphs, without knowing the distribution of cop-win and

robber-win graphs, there is no knowledge of the maximum attainable cop or robber performance

when playing against an optimal agent. This prevents us from comparing the obtained performance

against an ideal upper limit. Thus, Condition 3 will not be met on randomly sampled graphs that

do not have further qualifiers (cop-win and robber-win) attached to them.

Finally, to qualify Condition 4, the set of graphs and starting positions used to evaluate the

trained agents must be parametrizable (e.g. using a random seed) to make the results reproducible.

7.1.2 The Clairvoyant Negamax Algorithm

We propose the Clairvoyant Negamax Algorithm, which is an evaluation methodology that

measures the performance of a trained agent against an adversary that has full knowledge of its

strategy. It arises from a simple tweak that we make to the standard Negamax Algorithm: The

strategy of the agent being evaluated is used to fix the opponent actions in a Negamax algorithm

run (instead of searching over all possible opponent actions), thus allowing the Negamax opponent

to take the action that best exploits the weaknesses of the agent being evaluated. If an agent

achieves high performance against a Clairvoyant Negamax opponent, it means that the agent’s

moves, even when known to an optimally playing opponent, do not lead to its defeat.

To illustrate the Clairvoyant Negamax algorithm, consider a case where the cop is the agent

to be evaluated. Thus, on a cop-win graph, the trained cop will play against a robber that uses

a strategy derived from the Clairvoyant Negamax algorithm. Say that the cop gets a reward of

1 if it catches the robber before the end of the game, and −1 otherwise, and say that the robber

receives a reward of 1 if it remains uncaught, and −1 otherwise. Thus, the goals of both the

cop and the robber are to get a reward of 1 before the game ends. The algorithm proceeds in a

depth-first fashion to explore the search tree, with each level in the tree alternating between the

70

cop’s turn and the robber’s turn. The Clairvoyant Negamax algorithm does not use a heuristic and

instead explores for as many levels as the maximum number of plies allowed in the game. This is

primarily enabled by eliminating the computation required to explore over all possible actions of

the agent being evaluated, and instead just using the action it will actually take.

The root node of the search tree corresponds to a state where the robber is about to make its

move. At each level,

1. If the cop has already caught the robber, return −1.

2. If the robber is still uncaught and it is the robber’s turn at this level in the tree, recursively

calculate the node values for all children of the current node. From the results of all recursive

calls made here, return the best (maximum) result as the node’s value.

3. If the robber is still uncaught and it is the cop’s turn at this level of the search tree, get the

cop’s action from its strategy and explore only that branch. The current’s node’s value is

simply set to the value of the child node corresponding to the action that the cop is known to

take from this state.

When the search is complete and the values of all child nodes of the root node are known, the

node with the highest value is chosen. Ties are broken arbitrarily, with the action with the lowest

index in the current arrangement being chosen over other actions.

Thus, if the trained cop’s strategy is represented by σc and the robber’s optimal actions when

it has full knowledge of σc is σr,

σr = argmax
σ

πr(σc, σ) (7.1)

Here, πr(σ1, σ2) is the payoff that the robber receives when the strategies of the cop and robber are

σ1 and σ2 respectively. The cop’s payoff vc in such a case is equal to

vc = min
σ

πc(σc, σ) (7.2)

71

and is upper bounded by

vc = max
σc

min
σ

πc(σc, σ) (7.3)

It may be recalled from Sec. 2.4.8 that vc, the maximin quantity, is the worst reward that all

the adversaries of an optimal agent may jointly force the agent to get if they know its strategy. The

closer the performance of a cop agent against the clairvoyant negamax robber is to vc, the closer its

performance is to what an optimal cop strategy can obtain. In fact, an optimally playing cop will

always receive a reward of vc against a clairvoyant robber.

Similarly, if the trained robber’s strategy is represented by σr and the cop’s optimal actions

when it has full knowledge of σr is σc,

σc = argmax
σ

πc(σ, σr) (7.4)

Here, πc(σ1, σ2) is the payoff that the cop receives when the strategies of the cop and robber are

σ1 and σ2 respectively. The robber’s payoff vr in such a case is equal to

vr = min
σ

πr(σ, σr) (7.5)

and is upper bounded by

vr = max
σr

min
σ

πr(σ, σr) (7.6)

As before, the closer the performance of a robber agent against the clairvoyant negamax cop

is to vr, the closer its performance is to what an optimal robber strategy can obtain. In fact, an

optimally playing robber will always receive a reward of vr against a clairvoyant cop.

By the definition of a cop-win graph, on a domain of only cop-win graphs, vc = 1. Similarly,

on a domain of only robber-win graphs, vr = 1 by the definition of a robber-win graph.

72

7.1.3 Proposed Evaluation Methodology

7.1.3.1 Evaluating Cops

The evaluation methodology proposed and subsequently used in this thesis to evaluate trained

cops is as follows:

1. Generate a random cop-win graph. We did this by generating random graphs from a few

graph classes that have been proven in prior work to be cop-win. Examples are trees and

graphs that do not have irreducible cycles of length more than 3.

2. Randomly choose a starting position with a fixed distance between the cop and the robber.

3. On this cop-win graph:

(a) Allow the cop agent that is being evaluated to take an action.

(b) From the resulting state, using Clairvoyant Negamax with a depth equal to the horizon

of the game, identify the optimal action for the robber.

(c) Allow the robber to take this optimal action.

(d) Repeat steps 3a to 3c until the end of the game.

4. The game is decided in favor of the cop or the robber depending on which agent wins.

This process is repeated over several cop-win graphs and the average win-rate is identified.

The result reveals how well the trained cop performs against a robber that is playing optimally.

7.1.3.2 Evaluating Robbers

The evaluation methodology proposed and subsequently used in this thesis to evaluate trained

robbers is as follows:

1. Generate a random robber-win graph. We did this by generating random graphs from graph

classes that have been proven in prior work to be robber-win. Examples are graphs that have

73

irreducible cycles of length more than 3 where the robber can reach the cycle before the cop,

and grids.

2. Randomly choose a starting position with a fixed distance between the cop and the robber.

3. On this robber-win graph:

(a) From the current state, using Clairvoyant Negamax with a depth equal to the horizon

of the game, identify the optimal action for the cop.

(b) Allow the cop to take this optimal action.

(c) Allow the robber agent that is being evaluated to take an action.

(d) Repeat steps 3a to 3c until the end of the game.

4. The game is decided in favor of the cop or the robber depending on which agent wins.

This process is repeated over several robber-win graphs and the average win-rate is noted. The

result reveals how well the trained robber performs against a cop that is playing optimally.

7.2 Comparing with other algorithms

This section details the process that we use to compare against other methods to solve the cops

and robbers problem. We first provide the graph on which the game will be played as well as the

starting positions to each algorithm and allow them to precompute quantities that they need during

the game.

Given two agent training methods M1 and M2, there are multiple ways in which they may be

compared, each of which has a different meaning:

1. Use M1 for the cop agent and M2 for the robber agent on cop-win graphs: This metric

depends on both how close an M1-cop is to optimal performance on cop-win graphs, as well

as how well an M2-robber is able to take advantages of mistakes that the M1-cop makes. If

the M1-cop does not make any mistakes, then irrespective of M2’s quality, M1’s win-rate

will be 100% and M2’s win-rate will be 0%.

74

2. Use M1 for the cop agent and M2 for the robber agent on robber-win graphs: This metric

depends on both how close an M2-robber is to optimal performance on robber-win graphs,

as well as how well an M1-cop is able to take advantages of mistakes that the M2-robber

makes. If the M2-robber does not make any mistakes, then irrespective of M1’s quality,

M1’s win-rate will be 0% and M2’s win-rate will be 100%.

3. Use M1 for the robber agent and M2 for the cop agent on cop-win graphs: This metric

depends on both how close an M2-cop is to optimal performance on cop-win graphs, as well

as how well an M1-robber is able to take advantages of mistakes that the M2-cop makes. If

the M2-cop does not make any mistakes, then irrespective of M1’s quality, M1’s win-rate

will be 0% and M2’s win-rate will be 100%.

4. Use M1 for the robber agent and M2 for the cop agent on robber-win graphs: This metric

depends on both how close an M1-robber is to optimal performance on robber-win graphs,

as well as how well an M2-cop is able to take advantages of mistakes that the M1-robber

makes. If the M1-robber does not make any mistakes, then irrespective of M2’s quality,

M1’s win-rate will be 100% and M2’s win-rate will be 0%.

This thesis reports metrics measured through all four reporting techniques to get a full picture

of each algorithm’s performance.

7.2.1 Alpha-Beta Pruning

Alpha-Beta pruning is a technique that follows the same approach as the standard Minimax

algorithm, but avoids searching along paths in the tree that will never be picked during optimal

play. As in the case of the Minimax and Negamax algorithms, the depth of the search has a major

influence on the reliability of the actions chosen. Since Alpha-Beta pruning is more efficient in its

search tree exploration, the tree can be explored to a greater depth before the algorithm is forced

to rely on the heuristic to terminate the search along a given path.

Alpha-Beta pruning can be illustrated with the following example: consider a case where the

cop finds a move a1 that results in a favorable position as observed by searching until the search

75

depth. Consider a different move a2, which if taken, can lead to an even more favorable position

with a particular sequence of actions from the cop and the robber. However, the robber agent

discovers on further exploring the tree that a2 also enables the robber to make a move that results

in an extremely unfavorable value for the cop. This means that an optimally playing cop will never

choose a2, thus allowing us to avoid exploring different possibilities arising from the cop choosing

a2 any more.

Consider the Minimax formulation of a zero-sum game, where the game’s outcome is defined

as the cop’s payoff. Here, the cop is trying to maximize the outcome of the game while the robber

attempts to minimize it. The Alpha-Beta pruning algorithm keeps track of two quantities, α and β

throughout the process. α is the worst (least) game score that the maximizing player will at least

get. β is the worst (highest) game score that the minimizing player will at most get. It is a recursive

algorithm in each step of which:

1. If the recursion has reached the search depth, the heuristic value of the current node is

returned.

2. In case of the call being made for the maximizing player, for each child node, i.e. action that

the maximizing player can take:

(a) The worst (minimum) score that the maximizing player can receive after taking that

action is calculated.

(b) α is set to the better (greater) out of its current value and the result of the candidate

action.

(c) If α ≥ β, then the minimizing player would never allow the parent node to be reached,

thus allowing us to avoid exploring it further.

3. Over all the minimum scores returned from all the children, the best (thus, a maximin) is

returned.

76

4. In case of the call being made for the minimizing player, for each child node, i.e. action that

the minimizing player can take:

(a) The worst (maximum) score that the minimizing player can receive after taking that

action is calculated.

(b) β is set to the better (smaller) out of its current value and the result of the candidate

action.

(c) If α ≥ β, then the maximizing player would never allow the parent node to be reached,

thus allowing us to avoid exploring it further.

5. Over all the maximum scores returned from the children, the best (thus, a minimax) is re-

turned.

A pseudocode version of the above algorithm is given in Alg. 6.

7.2.2 Upper Confidence Tree Search

Upper Confidence Tree Search is an algorithm that brings together concepts from Monte Carlo

Tree Search and Multi-Armed Bandits. The basic premise of the algorithm is to perform random

rollouts of full games, and attribute the win/loss statistics from these rollouts to actions taken during

these rollouts. Actions that have a high win-rate are deemed favorable and are recommended over

actions with low win-rates. The algorithm borrows a page from the Upper Confidence Bound-1

(UCB-1) algorithm used to solve Multi-Armed Bandits: during the exploration phase, it chooses to

take those actions that have a high Upper Confidence Bound instead of uniform randomly choosing

one of the available actions. UCT search has a number of differences with Minimax, Negamax and

Alpha-Beta pruning:

• The game is rolled out to the very end. Each rollout gives a win/loss datapoint that is used

to update the favorability of all actions that were taken in the rollout from various states.

• No heuristic is necessary since the depth is not limited to a quantity less than the game’s

length.

77

Algorithm 6 The Alpha-Beta Pruning Algorithm
procedure ALPHA-BETA-PRUNE(treeNode, H, isMaximizingPlayer, alpha, beta) ▷ Procedure
that sets explored nodes to the rewards obtainable during optimal play using Alpha-Beta pruning

if treeNode.leafNode || nodeHeight == 0 then
return heuristic(treeNode)

end if
if isMaximizingPlayer then

maxVal← -Infinity
for c in treeNode.children do

cVal← Alpha-Beta-Prune(c, H-1, False, alpha, beta)
maxVal← max(maxVal, cVal)
alpha← max(maxVal, alpha)
if beta <= alpha then

break
end if

end for
return maxVal

else
minVal← Infinity
for c in treeNode.children do

cVal← Alpha-Beta-Prune(c, H-1, True, alpha, beta)
minVal← min(minVal, cVal)
beta← min(minVal, beta)
if beta <= alpha then

break
end if

end for
return minVal

end if
end procedure

78

• A new parameter, the number of rollouts performed during the estimation phase, has a major

influence upon the reliability of the estimates that we get from UCT search.

Each node in the search tree records the following information:

• w, the number of wins achieved by playing this node and then rolling the game out further.

• n, the number of games that have been played from this node and then rolling the game out

further.

UCT Search proceeds as a series of rollouts. Each rollout is a descent in a tree towards a

terminal state, i.e. a leaf node in the tree. From every node, the agent has the choice of moving to

any of its child nodes in the tree, and this constitutes an action.

1. Given that 1, 2, ...|a| are the available child nodes from the current node, for the ith child

node, calculate fi =
wi

ni
+ c

√
logNi

ni
.

2. Take the action a that has the maximum value for fi, i.e. a = argmax
i

fi.

3. Repeat steps 1 and 2 until the game ends.

4. Increment by 1 the value of n for the tree nodes corresponding to all the actions the agent

took during this rollout.

5. If this game ended in a win, increment by 1 the value of w for the tree nodes corresponding

to all the actions the agent took during this rollout.

Here, wi is the number of wins achieved so far after playing the ith action from the current

node, ni is the number of games played so far after playing the ith action from the current node, Ni

is the total number of games played from the current node, and c is the exploration parameter that

decides how much we wish to favor exploration over exploitation. Note here that in our problem,

the state depends only on the sequence of actions that were taken from the beginning of the game,

given the initial state.

79

7.3 Results

7.3.1 Evaluation Against the Clairvoyant Negamax Algorithm

As mentioned earlier, the Clairvoyant Negamax algorithm is a true yardstick that exploits to the

best extent any and all mistakes that an agent makes. In the cops and robbers game, optimal play

implies that a cop will win on cop-win graphs whatever the robber strategy is, and a robber will

win on robber-win graphs whatever the cop strategy is. Thus, a cop agent’s success rate on cop-win

graphs against a clairvoyant robber tells us how close to optimal play the cop is. Similarly, a robber

agent’s success rate on robber-win graphs against a clairvoyant robber tells us how close to optimal

play the robber is. That said, there is little utility in measuring a trained cop agent’s success rate on

robber-win graphs against a clairvoyant Negamax robber. This is since by definition, a clairvoyant

Negamax robber will win on a robber-win graph. The same can be said of evaluating trained robber

agents on cop-win graphs against a clairvoyant Negamax opponent.

80

Figure 7.1: Plot depicting how a cop agent trained using the Iterative Adversarial Training algo-
rithm performs against a Clairvoyant Negamax Robber when tested on cop-win graphs

The plot in Fig. 7.1 was produced by allowing a cop trained using the IAT algorithm to compete

against a clairvoyant Negamax robber on cop-win graphs. The initial distance between the cop and

the robber was set to a random integral value in [4, 10] during evaluation, and the maximum number

of turns was set to 1.5 times the initial distance. While an optimally playing cop would achieve

a success rate of 1.0, the success rate in this case increases from an initial value of 0.03 up to a

saturation value of 0.93 over the course of training.

81

Figure 7.2: Plot depicting how a robber agent trained using the Iterative Adversarial Training
algorithm performs against a Clairvoyant Negamax Cop when tested on robber-win graphs

The plot in Fig. 7.2 was produced by allowing a robber trained using the IAT algorithm to

compete against a clairvoyant Negamax cop on robber-win graphs. The initial distance between

the cop and the robber was set to a random integral value in [4, 10] during evaluation, and the

maximum number of turns was set to 1.5 times the initial distance. While an optimally playing

robber would achieve a success rate of 1.0, the success rate in this case increases from an initial

value of 0.07 up to a saturation value of 0.96 over the course of training. An interesting element in

this graph is the slowdown in training that happens from robber turn 20 to 35. This is the sequence

of turns where the cop performance sees the sharpest increase as observed in Fig. 7.1. A possible

effect from this rapid increase in the cop’s performance is that the robber temporarily becomes

unable to find rollouts where it manages to escape from its adversary. The presence of adaptive

step counts (Sec. 5.2.3.2) alleviates this issue over time.

82

7.3.2 Effects of Vertex Pooling

This section describes the performance results that were obtained without vertex pooling (in-

troduced in Sec. 5.3) for different problem sizes, and the improved results obtained by the addition

of vertex pooling.

7.3.2.1 Without Vertex Pooling

Figure 7.3: Without Vertex Pooling: Variation in Cop Performance with increasing number of
GCN Layers for different starting distances between the cop and the robber. Measured on cop-win
graphs.

The plot in Fig. 7.3 was produced by allowing a cop trained using the IAT algorithm to compete

against a clairvoyant Negamax robber on cop-win graphs. While an optimally playing cop would

achieve a success rate of 1.0 irrespective of the starting distance, the maximum success rate (over

83

number of layers) when vertex pooling is not used decreases from 0.89 to 0.77 as the starting

distance between the two agents increases from 3 to 6.

In addition, the scaling of the range of the agent with increasing number of GCN layers is

sub-linear. For instance, for a 50% success rate with a starting distance of 3, only 4 GCN layers are

required. This becomes 5 layers for a starting distance of 4, and nearly 9 for a starting distance of

6. Alternately stated, the number of GCN layers required to meet a particular accuracy threshold

is super-linear in the required range. This is since the Dense layer that takes in the output of all the

GCN layers receives a large number of inputs(Nlayers × |V | × 2), and extracting information out

of the GCN-filtered output about the graph becomes harder and harder for the Dense layer with a

much larger number of inputs.

This is aggravated by the need to have at least as many layers as the diameter of the graph for

full operational range over the entire graph. For a small-world graph, note that the graph’s diameter

grows as the logarithm of the number of vertices in the graph. This implies

Nlayers ≥ c log |V | (7.7)

Total number of outputs from GCN layers ≥ c|V | ×Nlayers × 2 (7.8)

Total number of outputs from GCN layers ≥ c|V | log |V | × 2 (7.9)

84

Figure 7.4: Without Vertex Pooling: Variation in Robber Performance with increasing number of
GCN Layers for different starting distances between the cop and the robber. Measured on robber-
win graphs.

The plot in Fig. 7.4 was produced by allowing a robber trained using the IAT algorithm to

compete against a clairvoyant Negamax cop on robber-win graphs. While an optimally playing

robber would achieve a success rate of 1.0 irrespective of the starting distance, the maximum

success rate (over number of layers) when vertex pooling is not used decreases from 0.91 to 0.86

as the starting distance between the two agents increases from 3 to 6.

The performance in case of the robber is somewhat better than that observed in case of the

cop when vertex pooling is not used. This is expected since the robber-win graphs that we use are

dominated by cycles of length greater than 4. The robber does not need significant foresight to

maintain a constant distance from the cop on graphs with short cycles. However, as the diameter

of the graph increases, the length of the cycles increases as well. To even identify that a section

85

of the graph forms a cycle, the agent needs many more GCN layers. In addition, the robber may

also inadvertently lock itself into a “dead-end" in the graph when the cop is on the other side, thus

resulting in the robber’s capture.

As in the case of the cop, the scaling of the range of the agent with increasing number of GCN

layers is again sub-linear. For instance, for a 50% success rate with a starting distance of 3, only

4 GCN layers are required. This becomes 7 layers for a starting distance of 5, and 8 for a starting

distance of 6.

7.3.2.2 With Vertex Pooling

Figure 7.5: With Vertex Pooling: Variation in Cop Performance with increasing number of GCN
Layers for different starting distances between the cop and the robber. Measured on cop-win
graphs.

86

The plot in Fig. 7.5 was produced by allowing a cop trained using the IAT algorithm to com-

pete against a clairvoyant Negamax robber on cop-win graphs. While an optimally playing cop

would achieve a success rate of 1.0 irrespective of the starting distance, the success rate when

vertex pooling is used decreases from 0.93 to 0.92 as the starting distance between the two agents

increases from 3 vertices to 6 vertices.

It is observed in this plot that there is a general increase in the range of the agent due to the

introduction of vertex pooling. With only 4 GCN layers, the agent’s success rate exceeds 60%

whereas 8 layers were required in the case of no vertex pooling that was discussed in Sec. 7.3.2.1.

In addition, the issue of a very large number of GCN-to-Dense connections that was bottle-necking

the neural network is not as present here since the outputs of layer GCN layers is much smaller.

Considering that each vertex pooling layer reduces the number of vertices in the graph to one-half

its original value, the total number of outputs from d GCN layers is

Total number of outputs from GCN Layers = |V | × 2 +
|V |
2
× 2 +

|V |
22
× 2...+ d terms (7.10)

= 2|V | ×
(1
2d
− 1)
−1
2

(7.11)

= 4|V | × (1− 1

2d
) (7.12)

87

Figure 7.6: Number of GCN Layers required to achieve an acceptable cop success rate (0.60)
against a clairvoyant robber, with and without vertex pooling. Measured on cop-win graphs of
increasing diameters and start distances.

The plot in Fig 7.6 was produced as follows:

1. Cops that use Vertex pooling are trained with IAT to play the game on graphs of a particular

diameter.

2. The starting distance between the agents is set to half the diameter of the graphs, but to

slightly lower values for larger graphs. The reduction for larger graphs is only to make the

clairvoyant negamax algorithm tractable.

3. Upon training for a limited number of cop turns (35), training for that diameter setting is

terminated and the performance is measured by evaluating against a clairvoyant negamax

robber on cop-win graphs.

88

4. Steps 1 to 3 are repeated and the number of GCN Layers in the cop agent is increased until

the success rate of the cop on that graph diameter is above 0.60.

5. The diameter of the graph is increased by 2 and the process is repeated.

The experiment was repeated for agents without vertex pooling as far as the available system

memory allowed (10 GCN layers).

Within the domain of graph diameters that were evaluated using the above process, when vertex

pooling was enabled, the number of GCN layers needed scaled with the diameter of the graph at a

rate that is sandwiched by two logarithmic functions. In contrast, not using vertex pooling causes

the scaling to be super-linear in the diameter of the graph.

7.3.3 Evaluation Against Alpha-Beta Pruning

Figure 7.7: Success rate of agents that use Alpha-Beta pruning, when competing against agents
trained using the Iterative Adversarial Training Algorithm

89

The plot in Fig 7.7 was produced by setting the initial distance between the two competing

agents to 9. Following the approach in [4] and [5], the heuristic function that we use is the distance

from the cop to the robber.

It can be observed that on unfavorable graphs, the IAT algorithm still manages to limit the

Alpha-Beta pruning agent’s performance to 0.81 for the cop and 0.89 for the robber. In contrast,

the IAT algorithm obtained a mean success rate of 0.95 for the cop and 0.97 when playing on

graphs that are favorable to it.

7.3.4 Evaluation Against Upper Confidence Tree Search

Figure 7.8: Success rate of agents that use Upper Confidence Trees, when competing against agents
trained using the Iterative Adversarial Training Algorithm

The plot in Fig 7.8 was produced by setting the initial distance between the two competing

agents to 9. The number of rollouts was varied in increments of 10000, going up to 80000 rollouts

per graph.

90

With 60000 rollouts for UCT, it can be observed that on unfavorable graphs, the IAT algorithm

limits the Alpha-Beta pruning agent’s performance to 0.949 for the cop and 0.937 for the robber.

In contrast, the IAT algorithm obtained a mean success rate of 0.953 for the cop and 0.968 for the

robber when playing on graphs that are favorable to it.

However, UCT’s performance exceeds the IAT agents’ performance when the number of roll-

outs exceeds 70000. At 80000 rollouts, when playing against an IAT opponent, the UCT algorithm

achieves a performance of 0.981 for the cop and 0.989 for the robber for graphs favorable to the

UCT agents. In contrast, the IAT algorithm only achieves a success rate of 0.935 for the cop and

0.965 for the robber.

It must be noted that the UCT algorithm had to perform a fresh set of rollouts for every graph

that the game was played on, while the IAT agents required no such precomputation after the

training phase is over.

91

8. CONCLUSIONS

This chapter concludes this thesis report, summarizes our findings and contributions, and sug-

gests directions for future research.

8.1 Summary of Work

An important first step for this thesis was to produce a Markov Decision Process formulation of

the cops and robbers problem. This was followed by an in-memory representation that allows this

formulation to be usable for computation. Subsequently, the thesis looked at a simpler variant of

the game where only the cop was allowed to make moves, and this problem was used to analytically

find out what neural architectures could be viable. We then designed a neural network architecture

for a deep reinforcement learning agent that showed near-perfect success rates on the path planning

problem.

With this agent as the substrate for further work, the thesis then moved on to the problem

of training both the cop and the robber to play optimally, and we decided to do this using an

iterative process where both agents learn from each other in regular, alternating turns. Upon a

basic version of the proposed Iterative Adversarial Training approach, a number of modifications

were introduced that increase the stability and robustness of the process and allow for equitably

training the two agents. In addition, our implementation of vertex pooling allowed the trained

agents to require only a logarithmic increase in the number of GCN layers in order to extend

their operational range. This is in contrast to an approach that does not use vertex pooling, which

requires a linear (super-linear upon empirical observation) number of GCN layers to achieve a

similar increase in their operational range.

It was observed that when competing against a clairvoyant, optimal opponent, the Iterative

Adversarial Training approach achieved a success rate of 0.93 for cops and 0.96 for robbers when

the testing was done on cop-win and robber-win graphs respectively. This is superior to Alpha-

Beta pruning (with a distance heuristic), and to UCT search (up to 6× 104 rollouts). Importantly,

92

our agents were able to achieve this without the requirement of precomputation for each graph.

8.2 Distinctions from Previous Approaches

Apart from the use of deep reinforcement learning to solve the cops and robbers problem, there

are a number of important distinctions between our approach and previous methods:

• A focus on generalization to graphs that were not observed during training. Heuristic ap-

proaches aim to identify the optimal strategy for a single graph. They thus require a poten-

tially expensive precomputation phase before they can start playing on each graph, or require

a significant amount of computation before each step.

• The use of an opponent that learn over time. Previous approaches compared and evalu-

ated against non-optimal opponents that do not evolve and apparently do not offer a worthy

opponent for the agent to learn from.

• Performance evaluation when playing against an optimal opponent. Prior publications ([4],

[6]) on this topic evaluate against an opponent that again runs using heuristic methods and

let their agents compete against these. [5] does use an optimal agent as a benchmark to

measure against, but not as a competitor. These comparisons does not give a clear picture of

how close the agent is to optimal performance.

8.3 Potential Extensions and Alternate Methods

Future extensions of this work can include:

• Using a team of multiple cops to capture a single robber: This turns the problem into a

collaborative as well as adversarial game. The question of whether all cops should follow

the same policy, or whether different cops can assume specific roles in the game and have

different strategies is also interesting.

• Hybrid Approaches: Instead of learning the cop and robber policies through RL, firstly, a

hybrid approach can be followed where the optimal policies for a large number of graphs

93

are evaluated using an algorithmic approach. Subsequently, a GCN can be trained on these

optimal policies and generalized to predict the policy for a new graph given the structure of

the graph. This would just involve supervised learning and may offer faster convergence to

a general solution.

• Generalization to more variants of the cops and robbers problem: There are other inter-

esting variants that are different from this deterministic version of cops and robbers problem.

For instance, the agents could have only partial visibility of the graph - this would force the

cops to spread themselves across the graph to ensure that they have most of it covered, while

the robber needs to balance between exploring the graph enough to know where the cops

are, and avoiding harming itself by accidentally revealing its position to the cops.

• Attention on Graphs: Incorporating attention into various classes of deep neural networks

has led to significant performance increases in recent research. The cops and robbers prob-

lem can benefit from the introduction of attention techniques.

94

REFERENCES

[1] R. Nowakowski and P. Winkler, “Vertex-to-vertex pursuit in a graph,” Discrete Mathematics,

vol. 43, no. 2-3, pp. 235–239, 1983.

[2] N. Nisse, Cops and Robber games and applications, 2013.

[3] M. Mamino, “On the computational complexity of a game of cops and robbers,” Theoretical

Computer Science, vol. 477, pp. 48–56, 2013.

[4] C. Moldenhauer and N. R. Sturtevant, “Evaluating strategies for running from the cops,” in

Twenty-First International Joint Conference on Artificial Intelligence, 2009.

[5] A. Isaza, J. Lu, V. Bulitko, and R. Greiner, “A cover-based approach to multi-agent moving

target pursuit.,” in AIIDE, 2008.

[6] V. Bulitko and N. Sturtevant, “State abstraction for real-time moving target pursuit: A pilot

study,” in AAAI Workshop: Learning For Search, pp. 72–79, 2006.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in Advances in neural information processing systems, pp. 1097–

1105, 2012.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-

miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,

2013.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,

no. 8, pp. 1735–1780, 1997.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-

works,” arXiv preprint arXiv:1609.02907, 2016.

95

[12] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs

with fast localized spectral filtering,” in Advances in neural information processing systems,

pp. 3844–3852, 2016.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[14] O. Macindoe, L. P. Kaelbling, and T. Lozano-Pérez, “Pomcop: Belief space planning for

sidekicks in cooperative games,” in Eighth Artificial Intelligence and Interactive Digital En-

tertainment Conference, 2012.

[15] W. Xiong, T. Hoang, and W. Y. Wang, “Deeppath: A reinforcement learning method for

knowledge graph reasoning,” arXiv preprint arXiv:1707.06690, 2017.

[16] J. Jiang, C. Dun, and Z. Lu, “Graph convolutional reinforcement learning for multi-agent

cooperation,” arXiv preprint arXiv:1810.09202, vol. 2, no. 3, 2018.

96

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Organization

	Concepts from Deep Learning, Reinforcement Learning, Graph Theory and Game Theory
	Deep Learning
	Neurons
	Activation Functions
	Neural Networks
	Variants of Neural Networks
	Training Neural Networks
	Gradient Descent
	Backpropagation

	Reinforcement Learning
	Markov Decision Processes
	Policies
	Discount Factor
	Value Function
	Q-Values
	Function Approximators for RL
	Deep Reinforcement Learning

	Elements of Graph Theory
	Vertex
	Edge
	Degree of a Vertex
	Path
	Cycle
	Tree
	Connectedness
	Adjacency Matrix
	Adjacency List
	Embedding of a graph
	Planar Graph

	Concepts from Game Theory
	Players
	Payoffs
	Strategies in Games
	Normal-form representation
	Example

	Extensive-form representation
	Types of Games
	Zero-sum Games
	Minimax and Maximin

	Related Work
	Vertex-to-vertex pursuit in a graph
	State abstraction for real-time moving target pursuit: A pilot study
	Evaluating strategies for running from the cops
	A cover-based approach to multi-agent moving target pursuit
	POMCoP: Belief Space Planning for Sidekicks in Cooperative Games
	Deeppath: A reinforcement learning method for knowledge graph reasoning
	Graph convolutional reinforcement learning for multi-agent cooperation

	Formal Statement of the Cops and Robbers Problem, MDP Formulation and In-Memory Representation
	Problem Description
	Environment Categories
	Variations
	Quarantine and Cure
	Containment

	Cops and Robbers as a Markov Decision Process
	States
	Actions
	State Transitions
	Rewards

	In-memory Representation
	States
	Actions
	State Transitions
	Properties

	Neural Network Architecture Design, Iterative Adversarial Training and Vertex Pooling
	Graph Convolutional Networks for Graph Navigation
	Problem Statement
	Pathfinding Methodology using Matrix Operations
	Inputs
	Solution

	Emulating Pathfinding using GCNs
	Results
	Limitation on Agent Range

	Iterative Adversarial Training
	Pitfalls
	Algorithm
	Rationale
	Agent Buffers
	Adaptive turn lengths

	Vertex Pooling

	Software Implementation, Challenges and Solutions
	High-Level Elements of the Software System
	Sub-system Description and Implementation
	Orchestrators
	agent_trainer
	iterative_adversarial_trainer
	solo_agent_rollout
	performance_plotter

	Environments
	MultiAgentIterativeAdversarialEnv
	SingleAgentFixedStrategyEnv

	Agents
	Models
	Layers
	GCN Layer
	Vertex Pooling Layer

	Graph Generators

	System Implementation Outcomes

	Cop and Robber Evaluation Methods, Comparisons with Traditional Algorithms and Results
	Evaluating Trained Cops and Robbers
	Requirements and Restrictions on an Evaluation Methodology
	The Clairvoyant Negamax Algorithm
	Proposed Evaluation Methodology
	Evaluating Cops
	Evaluating Robbers

	Comparing with other algorithms
	Alpha-Beta Pruning
	Upper Confidence Tree Search

	Results
	Evaluation Against the Clairvoyant Negamax Algorithm
	Effects of Vertex Pooling
	Without Vertex Pooling
	With Vertex Pooling

	Evaluation Against Alpha-Beta Pruning
	Evaluation Against Upper Confidence Tree Search

	Conclusions
	Summary of Work
	Distinctions from Previous Approaches
	Potential Extensions and Alternate Methods

	REFERENCES

