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 ABSTRACT 

 

Two-dimensional echocardiography (2D echo) is the most widely used cardiac 

imaging techniques in clinical applications. Boundary delineation of the heart, especially 

the left-ventricle (LV), is essential to calculate the clinical parameters. Currently, LV 

segmentation from 2D echo is conducted manually or using semi-automatic techniques. 

In this study, machine learning techniques were employed. U-net, which is a fully 

convolutional network, and segAN, which is a generative adversarial network, were 

trained and evaluated. Training was conducted on the in-house dataset, which consists of 

2108 porcine images from 10 different subjects. This dataset was the first dataset, which 

consists of six standard projections of 2D echo over the entire cardiac cycle. Transfer 

learning was used for long-axis projections to compensate the limitation of in-house 

dataset using Cardiac Acquisitions for Multi-structure Ultrasound Segmentation dataset. 

The models were evaluated on test images by computing metrics such as the dice metric. 

U-net and segAN models outperformed the level-set method, a traditional segmentation 

technique. The average dice metric of U-net was 0.903 for LV cavity and 0.787 for LV 

myocardium. The average dice metric of segAN was 0.912 for LV cavity and 0.801 for 

LV myocardium. Previous reconstruction algorithm was improved and validated to 

generate the 3D LV geometry from segmented images. Physiological parameters were 

calculated from reconstructed geometries with about 15% error which is similar to the 

previous methods using 2D echo compared to the gold standard MRI. In this study, fully 

automated algorithm to generate 3D LV geometry from 2D echo images was introduced 
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by combining machine learning segmentation technique and 3D reconstruction algorithms. 

This algorithm facilitates the patient-specific LV modeling and simulation without 

expert’s knowledge and effort. 
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1. INTRODUCTION  

 

Heart disease are one of the major reasons for the human death in United States of 

America [1]. Diagnosis of heart disease is essential for fighting this disease, which 

requires analysis of cardiac morphology and functions from medical images. The function 

of heart, especially left ventricle (LV), is highly related to its shape, size, and the load 

exerted on blood during the myocardium shortening [2]. In fact, LV shape and volume 

changes with time, e.g. ejection fraction (EF) and cardiac volume (CV), are good 

indicators of some heart diseases like functional mitral regurgitation (MR) [3] and acute 

myocardial infarction (AMI) [4]. In order to calculate these clinical parameters, the 

boundary of LV and myocardium  need to be identified from low-level images using the 

techniques such as segmentation and tracking and reconstruct into the 3D geometries.  

In this study, images of the LV at six standard projections were segmented using 

machine learning techniques (U-net and segAN) over one cardiac cycle and reconstructed 

using 3D reconstruction algorithm. The results of clinical parameters and 3D 

reconstruction models using automated segmentation versus expert delineation were 

compared against each other to validate. The rest of the introduction is organized as 

follows: Section 1.1 describes the advantages of two-dimensional echocardiography. 

Section 1.2 discusses the previous LV segmentation methods. Section 1.3 describes the 

application of machine learning techniques on biomedical image segmentation tasks. 

Section 1.4 emphasizes the dataset on the machine learning techniques and introduces the 
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previous datasets related to LV segmentation tasks. Finally, Section 1.5 discusses about 

the 3D reconstruction algorithms using 2D images. 

 

1.1. 2D echocardiography 

Among various imaging techniques, two-dimensional echocardiography (2D echo) 

is one on the most widely used methods for evaluation of heart disease in clinical practice. 

Following advantages are the reason why 2D echo is the most widely used non-invasive 

method. First, 2D echo generates high temporal resolution images (50-250 frames per 

second (fps)) which contain more accurate LV motion information within the heart cycle 

[5]. Also, 2D echo needs short acquisition time which allows real time analysis [6]. 

Standardized scanning locations for both long-axis and short-axis which can act as the 

criteria planes facilitates the clinical analysis from the 2D echo images [7]. Finally, 2D 

echo is relatively inexpensive and does not need advance preparation for the testing. 2D 

echo provides a gray scale image with anatomical features, e.g., LV cavity, LV 

myocardium, and heart valves, are identified to calculate cardiac functions. The first step 

to quantification of the cardiac functions from the 2D echo images is segmentation of the 

LV from the gray scale 2D echo images. 

 

1.2. LV segmentation task 

At present, manual delineation conducted by experts and semi-automatic 

segmentation methods are the main techniques which used for LV segmentation from 2D 

echo images [8]. However, these methods are time-consuming and based on the experts’ 
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subjective judgment, which is prone to intra- and inter-observer variability [9]. To address 

these problems, automate segmentation methods are necessary to accelerate and generate 

the consistent result. However, applying automatic segmentation method to 2D echo is 

harder than other imaging techniques such as magnetic resonance imaging (MRI) and 

computerized tomography (CT). 

The difficulty of automatic segmentation task of 2D echo images stems from 

inherent properties of 2D echo images [10].  First, 2D echo represents poor contrast 

between LV myocardium and blood pool inside the LV. For this reason, previous 

segmentation methods which use contrast difference between LV myocardium and cavity 

as their criteria do not work well. Second, 2D echo has brightness inhomogeneities in the 

same structures. Third, there is a variation in the speckle pattern along the cardiac 

structures due to the different probe orientation from different measuring experts. Also, 

2D echo generates similar intensities of myocardium, trabeculae, papillary muscles, and 

heart valves. Finally, there is variability of shape, intensity, and heart motion across the 

patients. 

To date, several methods have been proposed for the automatic segmentation of a 

LV. A review of these methods can be found in [11]. They can be generally classified as: 

pixel classification [12], image-based methods [13], deformable methods [14], active 

appearance and shape models (AAM/ASM) [15] and atlas models [16]. Pixel classification, 

image-based and deformable methods require an extensive user interaction and suffer 

from a low robustness and accuracy [17]. Alternatively, model-based methods such as 

AAM/ASM and atlas models can overcome the problems with previous methods and 
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reduce user interaction at the expense of a large training set to build a general model. 

However, it is very difficult to build a model that is general enough to cover all possible 

shapes and dynamics of the heart chambers [11]. In this study, state-of-the-art deep 

learning segmentation method is applied to generate a robust and accurate segmentation 

from 2D echo images. 

 

1.3. Machine learning techniques on biomedical image segmentation 

Recently, medical image analysis has been revolutionized with successful 

adoption of machine learning techniques [17]. This success has primarily been powered 

by supervised machine learning methods, which map an input to desired output by training 

with input-output pair data. Three essential elements of supervised machine learning 

technique are enough data, computational ability, and appropriate machine learning model. 

Rapid development of Graphic Processor Unit (GPU) has offered high computation ability 

for training the machine learning models. Also, lots of large open datasets related to 

biomedical images, e.g., brain, lung, and heart, have been made public in competitional 

way [18-20]. Finally, powerful machine learning models have been developed with 

convolutional neural networks (CNNs). CNNs typically operate on image data and provide 

one prediction per one image sample, e.g., an image class label or quantitation of disease 

burden [21]. Recently, most of the medical image analyses using machine learning 

techniques have employed CNN models [22, 23]. For the biomedical image segmentation 

tasks, U-net has achieved a high performance [24]. In this study, a new dataset for LV 

segmentation from 2D echo images was created and two different CNN models, U-net and 
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segAN [25], were applied on it. Their segmentation performance were compared to each 

other and previous segmentation methods. 

 

1.4. Dataset for the machine learning LV segmentation technique 

As mentioned at the previous section (Section 1.3), a large and proper dataset, 

which is used to train the CNN model, is one of the most important prerequisites for 

applying CNNs to medical images. Currently, most of the open LV segmentation datasets 

for training CNN models are based on the MRI and CT images because they are considered 

as the standard format [26]. Followings are the open dataset for the LV segmentation tasks. 

The Left Ventricle Segmentation Challenge (LVSC) dataset, offered by the Medical Image 

Computing and Computer Assisted Intervention Society (MICCAI), consists of 100 fully 

delineated MRI images of the short-axis LV [27]. Automated Cardiac Diagnosis 

Challenge (ACDC) dataset, also organized by the MICCAI, consists of 100 patients’ short-

axis MRI images [28]. Each patient’s images cover the whole LV geometry from the base 

to the apex with a thickness of 5 mm interval. Besides the challenge datasets, individual 

researchers have generated  their own in-house dataset to train their models with different 

objects. Bai et al. generated a large dataset, which consists of 4,875 patients’ total 93,500 

images including both short- and long-axis MRI LV images acquired from the UK 

Biobank [29]. Majd et al. created in-house dataset with cardiac CT angiography (CCTA) 

short-axis images from 60 patients and trained their CNN model which combined with 

voxel classification method [30]. Lieman et al. generated their in-house dataset which 

consisted of 1,143 short-axis MRI images and applied their ENet model for the 
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segmentation task [31]. With these large and open datasets, different CNN models have 

been developed and applied to LV segmentation tasks on MRI and CT images. Patravali 

et al. showed that 3D U-net [32] outperformed the simple 2D U-net [24] for segmenting 

the stacked volumetric images based on the results tested on ACDC data. Tan et al. used 

a CNN regression model to both segment the LV and calculate the radius of  LV 

endocardium and epicardium in short-axis using LVSC data [33]. 

However, the large dataset for the 2D echo LV segmentation is hard to find. 

Current, there is only one open dataset, Cardiac Acquisitions for Multi-structure 

Ultrasound Segmentation (CAMUS) dataset [10]. CAMUS dataset consists of 450 

patients' long-axis 2-chamber and 4-chamber projection images. Each projection images 

contain end-diastolic and end-systolic images. As a result, CAMUS dataset consists of 

1800 different images. For this reason, researchers have constructed in-house 2D echo 

datasets for their specific studies. Veni et al. constructed in-house dataset which consists 

of 69 images from 4-chamber projection and trained  their revised U-net, which combined 

with the anatomical priors [34]. Zhang et al. generated their in-house dataset using three 

long-axis, 214 images of 2-chamber, 141 images of 3-chamber, and 182 images of 4-

chamber projections, and one short-axis projections, 124 images [35].  They trained their 

U-net model for segmentation and used the segmented results for auto-diagnosis of the 

cardiac disease. The limitation of the previous datasets is that they only were concentrated 

on end-diastolic and end-systolic images and consisted of several projections, e.g., one 

projection from Veni et al. and four projections from Zhang et al. However, to obtain more 

precise information about cardiac function, more projections and more time steps’ images 
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are needed. In this study, an in-house dataset, which consists of six standard projections, 

three long-axis and three short-axis, images over the whole cardiac cycle, was generated 

for the LV segmentation task. To compensate the small amount of training dataset, transfer 

learning was conducted on training long-axis projections using CAMUS dataset. 

 

1.5.  3D reconstruction 

To analyze the comprehensive dynamic 3D LV geometry and to be a model for the 

computational fluid dynamic (CFD) simulation, 3D geometry is essential. Currently, MRI, 

3D echocardiography (3D echo), and CT methods are used to get 3D LV geometry directly 

from the medical devices [36, 37]. However, these methods have several weak points. 

First, they need long acquisition times and high costs. Furthermore, they typically generate 

dynamic 3D model with 20-30 frames per second (fps) temporal resolution [38]. This is 

not enough to get accurate quantitative LV motion information with different time 

resolution in cardiac cycle [5, 39]. In this respect, a 3D reconstruction model based on the 

2D echo images can be a good alternative. 

Dekker et al. introduced the first 3D reconstruction process with 2D echo images 

[40]. Since then, several 3D reconstruction approaches using 2D echo images have been 

proposed. Sawada et al. [41] and Raichlen et al. [42] reconstructed the 3D model based on 

the multiple short-axis projections which were made at some intervals from apex to base. 

Also, Ghosh et al. generated LV geometry using rotation of long-axis projections[43]. 

However, if the number of 2D images was not enough, there was accuracy limitation with 

using only one kinds of sections, long- or short axis [44]. Gustavsson et al. used three 
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long-axis and two short-axis projections for the 3D LV reconstruction [45]. However, a 

major purpose of these previous 3D reconstruction researches was calculating the cardiac 

volume and visualizing the LV motion. In this study, the in-house 3D reconstruction 

algorithm, which creates LV models for CFD simulation, was improved and used to 

generate the 3D LV geometries [38]. 
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2. METHODS 

 

Six standard projections of 2D echo images, three long-axis: 3-chanber, 2-chamber, 

and 4-chamber projection, and three short-axis: base, mid, and apex projections were 

segmented using CNN models. 3D LV geometries were reconstructed from the segmented 

results. 

 

2.1. 2D echo image 

2.1.1. Image acquisition 

In this study, 2D echo images from porcine hearts were used for the in-house 

dataset. In cardiovascular research, pig hearts alternate the human hearts due to their 

similarity in shape, size, and physiological parameters, such as pumping capacity, with 

human hearts [46]. 2D echo of in situ porcine images were captured over whole heart cycle 

(R-wave to R-wave) during the open chest pig surgery using a Vivid 7 ultrasound system 

(GE Vingmed Ultrasound AS, Horton, Norway) and an M4S transducer operating at 

1.7/3.4MHz (fundamental/harmonic) frequency by researchers at Mayo clinic. To obtain 

six different projections’ images, the ultrasound transducer was place directly on the 

proper LV surface location. A transmission gel was added between the transducer and the 

LV surface to guarantee the acoustic coupling. The frame rate of obtained images was 

between 36 to 55 fps. 
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Figure 2.1 The delineated and ground truth 2D echo images for one time instant. LV 

boundary is delineated by the experts using the speckle tracking software and 

converted into the CNN proper images. (a), (b), and (c) are long-axis 3-chamber, 4-

chamber, and 2-chamber projections. (d), (e), and (f) are short-axis base, mid and 

apex projections. 

 

 

2.1.2. Reference delineation and contouring protocol 

Supervised machine learning techniques need both input data, for the segmentation 

task of the original 2D echo images, and output data, for the segmentation task of the 

delineated results. To obtain a delineated images for the output data, acquired 2D echo 

images were delineated by experts using an interactive speckle tracking software 

(EchoPAC, GE Healthcare). Experts manually chose LV inner and outer boundaries at the 
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first time step images. Then, speckle tracking software offered the images’ delineation for 

the whole cycle. Manual detection of the LV myocardium and cavity over the whole 

images is error-prone and subjective due to inherent 2D echo image dropouts and noise. 

In this reason, a semi-automatic speckle tracking band replaced the LV boundary. In 

cardiovascular research, speckle tracking methods have been used to obtain LV properties 

[47, 48]. Figure 2.1 - Delineation shows the six standard projection images’ delineation 

results at the given time instance. These delineated images were converted into the proper 

images to be used for the ground truth (reference) output data (Figure 2.1 – Ground Truth). 

Red region represents the LV myocardium and blue region represents the LV cavity. 

 

2.2. Machine learning segmentation 

2.2.1. Dataset 

In this study, two different datasets were employed to train CNN models. First one 

is fully annotated CAMUS dataset [10]. The CAMUS dataset consists of 1800 images. 

Images are obtained from 450 patients’ long-axis 2- and 4- chamber projections. Each 

projection has end-diastolic and end-systolic images. The ground truth image has four 

labels - 0: background, 1: LV cavity, 2: LV myocardium, and 3: left atrium. Second dataset 

is in-house dataset, which consists of three long- and three short-axis projection images. 

The ground truth images (Figure 2.1 – Ground Truth) has three labels - 0: background, 1: 

LV cavity, and 2: LV myocardium. Table 2.1 shows the total number of image and used 

porcine of each projections. Among total datasets, 80% of the images were assigned to the  
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Table 2.1 Information of the in-house dataset 

Projections Number of image Number of porcine 

3-chamber 374 10 

4-chamber 302 8 

2-chamber 306 8 

Base 377 10 

Mid 375 10 

Apex 374 10 

 

 

training set, which is used to train the CNN models and remaining 20% of images were 

allotted to the testing set, which were used for validating the trained CNN models. Among 

8 to 10 porcine, 2 pigs’ data, 77 to 81 images, were assigned to the testing set for each 

projections. Exact training and testing set information is at APPENDEX A. 

 

2.2.2. Data augmentation 

Ronneberger et al. showed that aggressive image augmentation techniques 

facilitates CNN models, especially U-net, to generate promising segmentation results with 

little amount of training data [24]. In this study, three data augmentation techniques – 

rotating, cropping, and blacking out - were employed to supplement the limitation of in-

house dataset. The images were rotated with 0.7 probability. They rotated with arbitrary 

angle between -25 and 25 degree. The background blank part which generates after 

rotating was filled using a spline interpolation method. Cropping filled out a random size 
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of left, right, and bottom parts of the images with 0.7 probability. Lastly, black out 

technique, which was introduced by Zhang et al., was used [35]. They generated circular 

areas inside the images which have zero intensities. In this study, circular area, which has 

random amount of diameter and random amount of intensities between the maximum and 

minimum values, was created inside the images with 0.5 probabilities. 

 

2.2.3. CNN algorithm and training details 

The most famous machine learning segmentation algorithm, U-net [24], and one 

kinds of generative adversarial networks (GAN), segAN [25], CNN models were used for 

the LV segmentation. Each projections were trained separately for the both models. All 

final weights of six projections were trained based on the in-house database. However, 

before training the long-axis projections, transfer learning technique was employed using 

CAMUS dataset. Transfer learning is the technique that applies the knowledge, which is 

gained from other related dataset, during training. The effects of transfer learning are the 

trained model performs better while using less training data and needs less computation 

time. In this study, first the models were trained on the CAMUS dataset, and then 

calculated weights were used as the base of the training with in-house dataset. 

All images were resized to 128 × 128 pixels for CNN models. Also, segmented 

result images had 128 × 128 pixels. Gray 2D echo images were resized using OpenCV’s 

cubic interpolation function. Ground truth images were resized using OpenCV’s nearest 

interpolation function to maintain the label values, i.e., 0, 1, and 2 values for the in-house 

dataset. 
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The Adam optimizer was used to optimize each model’s loss with 0.0005 learning 

rate. Both CNN models were trained for 1000 epochs on the CAMUS dataset and trained 

for 500 epochs on the in-house dataset. The training was conducted with Python and 

TensorFlow. The experiments were performed on NVIDIA TESLA K80 GPU and 

NVIDIA GeForce GTX 1050 GPU. The batch sizes for training were 64 and 16 for the 

TESLA K80 GPU and GeForce GTX 1050 GPU, respectively. 

  

2.2.4. U-net 

U-net deep CNN architecture was proposed by Ronneberger et al. in 2015 [24]. 

Since the algorithm was developed, it has generated quite successful results in biomedical 

image segmentation tasks [17]. Figure 2.2 represents the employed U-net model. U-net 

consists of two main parts, encoder and decoder. Encoder, which places the left side of the 

Figure 2.2, consists of the Convolution layers and Maxpool layers and performs the 

contracting images. The features of input images were extracting during the contracting. 

The encoder has of 4 Maxpool layers and each Maxpool layer downsamples the images 

with a 2 × 2 pooling kernel, 2 strides, and same padding method. Similarly, decoder 

places the right side of the Figure 2.2 and has the Convolution layers and transposed 

convolution layers. The images were recovered original sizes during the upsampling. The 

decoder consists of 4 transposed convolution layers and each layer upsamples with a 

4 × 4  kernel, 2 strides, and same padding method. During the contracting, some 

information was lost. To recover these fine features, after each transposed convolution 

layer upsamples the images,  same  sized  images from  encoder were concatenated.  All  
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Figure 2.2 U-net architecture. Each layer consists of two convolution layers followed 

by batch normalization layers. Blue and red arrows indicate max pooling and 

deconvolution layer followed by batch normalization. Green arrows are 

concatenation operations. 

 

 

convolution layers used 3 × 3 kernel, rectified linear unit (ReLU) activation function, and 

L2 regularization. Batch normalization layers were used for normalization scheme. After 

decoder  recovered   the   images,   final  convolution layers,  which  used  1 × 1   kernel, 

generated feature maps to match segmentation labels (4 for the CAMUS dataset and 3 for 

the in-house dataset). Multi-dimensional dice loss was used to calculate the loss during 

the training. 
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Figure 2.3 The segAN architecture. In segmentor, U-net architecture is used for 

segmentation. In critic, two masked images are used to calculate the multi-scale loss. 

Masked image shows the segmented part of the input image (here, LV myocardium). 

 

 

2.2.5. SegAN 

SegAN was used as second algorithm for LV segmentation. Xue et al. proposed 

the medical image segmentation generative adversarial network (GAN) model, segAN, in 

2018 [25].  They  showed  that  segAN  model  outperformed  the  previous  segmentation 

models, including U-net, on MRI brain tumor segmentation task using BRATS dataset. 

Figure 2.3 shows the segAN structure. The common GAN consist of two neural networks. 

One neural network, called a generator, creates new data instances, and the other, 

discriminator, evaluates the authenticity of the generative data. The entire GAN model’s 

performance is improved by the min-max game between generator and discriminator. 
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Similarly, in the segAN, the segmentor (which performs as a generator, Figure2.3 upper 

box) generated the segmented images from the original images with encoder-decoder 

algorithm. In this study, same U-net structure which described above, was employed for 

the segmentor architecture. The critic (which performs as a discriminator, Figure2.3 lower 

box) compared the two inputs, segmented results from the segmentor and ground truth 

images, and calculated the loss between them. The final loss was calculated by the  multi-

scale feature loss function based on the mean absolute error (MAE) and dice loss. During 

the training, the segmentor tried to minimize the final loss, which means created 

segmented results as similar as ground truth images, whereas the critic aimed to maximize 

the final loss. After training, segmentor was used to LV segmentation task. 

 

2.2.6. Post-process 

Some segmented images from both CNN models contained independent island-

like structures at the background and an incomplete LV myocardium structure. To reduce 

these problems, post-process was conducted on the segmented images using 

Morphological Transformation technique, which is based on the erosion and dilation 

function [49]. Based on the vector subtraction and addition, erosion and dilation combine 

two sections. To remove the island-like structures, erosion followed by dilation was used. 

Inversely, to complete the LV boundary line, dilation followed by dilation was used. The 

diameters of erosion and dilation were manually added during the post-process. 
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2.2.7. Evaluation of segmentation results 

To compare the segmentation performance of CNN models and previous non-

machine learning methods, level-set, which is widely used semi-automatic segmentation 

algorithm [50], was tested on same testing set. The Creaseg, open software of level-set 

method, was employed to segment the LV [51]. For the testing set which consists of 2 

pigs, 5 images were selected with same time interval per one pig. Total 10 images were 

tested with level-set method for each projections. 

To assess and compare the segmentation results quantitatively, four widely used 

metrics in the segmentation researches were employed: the dice metric, precision, 

sensitivity, and Hausdorff distance. Let P and G represent the predictive segmentation 

result and ground truth image, respectively. The dice metric [52] calculates the overlap 

between P and G. The dice metric is defined as: 

 

 
𝐷𝑖𝑐𝑒 =

2|𝑃 ∩ 𝐺|

|𝑃| + |𝐺|
 (2.1) 

 

The dice value varies from 0, which means no overlap, to 1, which means perfect overlap. 

The good segmentation results have high dice metric. The precision and sensitivity (also 

known as recall) are other metrics used to evaluate the relevance between P and G [53]. 

Precision and sensitivity are defined as: 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (2.2) 



 

19 

 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.3) 

 

Where TP, FP, and FN are the true positives, false positives, and false negatives. In image 

segmentation task, TP, FP, and FN are the number of pixels, which are correctly classified 

as denoted labels, incorrectly classified as denoted labels, and incorrectly classified as not 

labels, respectively. Also, precision and sensitivity vary from 0 to 1. Good segmentation 

results represent high values from both. The Hausdorff distance, which is widely used to 

compare two different geometries, represents the maximum distance between the contours 

of P(δP) and G(δG) [54]. Hausdorff distance is defined as: 

 

 𝐻𝑎𝑢𝑠𝑑. 𝑑𝑖𝑠𝑡. = 𝑚𝑎𝑥 (𝑚𝑎𝑥
𝑖∈𝛿𝑃

𝑑(𝑖, 𝛿𝐺), 𝑚𝑎𝑥
𝑖∈𝛿𝐺

𝑑(𝑖, 𝛿𝑃)) (2.4) 

 

Where d(i,δ) is the shortest distance from specific point i to contour δ. Good segmentation 

result has low Hausdorff distance value, which means the difference between predict 

segmentation and ground truth images is small. The Hausdorff distance is calculated on 

the [mm] dimension. 

 

2.3. 3D reconstruction 

2.3.1. Input data 

Six 2D echo standard projections’ one cardiac cycle videos are the input data of 

the 3D reconstruction algorithm. To get these input video, 30 to 40 images over one 

cardiac cycle are concatenated into one video. The segmentation images from CNN 
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models have fixed 128 × 128 pixels size. Therefore, the segmented images were resized 

to their original size, e.g., 648 × 480 pixels size, for recovering the original LV height to 

width ratio and pixel to mm ratio. 

 

2.3.2. Previous 3D reconstruction algorithm 

3D reconstruction algorithm, which was developed by our group [38], uses six 

standard projections, i.e., 3-, 2-, and 4-chamber and apex, mid, and base projections. This 

algorithm consists of seven steps. First, endocardial boundary detection part delineates LV 

boundaries by the intensity differences between RGB channels. Second, data smoothing 

part smooths the coarse LV boundaries from previous step with B-spline curve fitting and 

variable span weighted moving average methods. Third, temporal interpolation section 

matches six different frame rates using a cubic spline with natural boundary conditions. 

Fourth, sectional scaling and orientation part arranges the six projections using nominal 

positions after matching all projections’ scaling. Also, positions and angles of long- and 

short-axis projections are optimized by minimizing the error between difference sections. 

Fifth, spatial interpolation section interpolates the LV surface points based on frame of six 

projections. Sixth, temporal smoothing conducts Fourier curve fitting to smoothen the 

volume flux with considering the periodic nature of the dependent variable. Finally, mesh 

generation part converts generated surface points into cartesian co-ordinates and 

triangulated to generated mech. The final reconstructed LV geometries are stored in a 

standard visualization tool kit (VTK) file format. 

 



 

21 

 

 

Figure 2.4 Validation reference. (a) represents the LV geometry obtained from the 

MRI images. (b) shows the extracting process. (c) represents the six extracted 

projection frame. 

 

 

2.3.3. Validation process 

In this study, two validation processes were conducted for the 3D reconstruction 

algorithm. First, the reconstruction ability of algorithm was validated against a known 

geometry from MRI. Second, the number of projections, which were used for the 3D 

reconstruction, was verified.  

3D reconstruction algorithm’s capability was validated using reference LV 

geometry, which was obtained from the MRI images. MRI images of whole LV consists 

of lots of short-axis projections from apex to base. Figure 2.4 (a) shows the 3D geometry 

from MRI which is considered as the reference geometry. Six projections were extracted 

from the reference geometry as shown in Figure 2.4 (b) and (c). Extracted projections  
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Table 2.2 Projection combinations. Ch denotes the chamber in the long-axis. 

Combinations Long-axis projections Short-axis projections 

Reference 6: 0° (3ch), 45°, 60° (4ch), 90°, 120° 

(2ch), and 135° 

3: Base, mid, and apex 

Standard 3: 0° (3ch), 60° (4ch), and 120° (2ch) 3: Base, mid, and apex 

Long and base 3: 0° (3ch), 60° (4ch), and 120° (2ch) 1: Base 

Long-axis only 6: 0° (3ch), 45°, 60° (4ch), 90°, 120° 

(2ch), and 135° 

0: - 

 

 

were converted into 3D shape using reconstruction algorithm. 3D reconstruction algorithm 

was evaluated by comparing reference and reconstructed LV geometries. 

The sensitivity to the number of projections used for the reconstruction was 

verified by comparing the combination of projections which were obtained from same LV. 

Table2.2 represents the different combinations which used from 4 to 9 projections. Four 

different combinations of projections were reconstructed and compared. The reference LV 

geometry was generated from six long-axis and three short-axis. 

 

2.3.4. 3D reconstruction algorithm improvement 

In this study, previous 3D reconstruction algorithm was improved. Previous 

algorithm could not represent the long-axis 2- and 4-chamber projections’ shape well on  
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Figure 2.5 Different apex location geometries. (a) Centered: apex is located near the 

center of the short-axis projections. (b) Tilt: apex is not located near the center. 

 

 

the reconstructed geometries. Especially, when the apex point was not located near the 

center of the short-axis projections (Figure 2.5 (b)), this problem worsened. 

The method of assigning the apex point on the short-axis projection images caused 

this problem. Previous algorithm assumed the average of the x and y components of all 

short-axis boundary points denotes the apex point. This assumption was only reasonable 

when the apex point was located near the center of short-axis (Figure 2.5 (a)). However, 

most of the LV have tilted geometries (Figure 2.5 (b)). Long-axis projections of Figure 

2.1 shows that the apex point was not located near the center of the short-axis projections. 

The apex point can be estimated from the three long-axis projections. The apex 

point is the highest point of the each long-axis LV boundary. Six boundary points and 

apex  point  were  obtained  from  the  three  long-axis  and  compared  with the short-axis  
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Figure 2.6 Estimation of the apex point. Comparison between short-axis projection 

and points which were obtained from the three long-axis. Red line denotes the short-

axis projection boundaries. Blue points on the boundaries represents the three long-

axis. Green point represents the average of six blue points. Blue point inside the 

boundary shows the average of boundary points which were obtained from the 

interpolated curve using six points. Yellow point represents the geometric center of 

the interpolated curve. Red point shows the average of the short-axis boundary. 

Finally, white point denotes the geometric center of the short-axis boundary. 

 

 

projections. To estimate the apex point on the short-axis projection, several points were 

calculated and compared. Figure 2.6 shows the comparison between points which 

obtained from short-axis and long-axis projections. Green, blue, and yellow points were 

calculated from the three long-axis projections. Red and white points were obtained from 

the short-axis projection. Average of boundary points was calculated as: 

 

 
Xavg =

∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
 𝑎𝑛𝑑 Yavg =

∑ 𝑌𝑖
𝑛
𝑖=1

𝑛
 (2.5) 

 

Where n denotes the total number of points which consist the boundary and X𝑖  and Yi 

represent each point’s X and Y values. Geometric center was calculated as: 
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Xgeo =

∑ 𝑋𝑔𝑒𝑜,𝑖 × 𝐴𝑖
𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

 𝑎𝑛𝑑 Y𝑔𝑒𝑜 =
∑ 𝑌𝑔𝑒𝑜,𝑖 × 𝐴𝑖

𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

 (2.6) 

 

Where Ai  denotes the area of divided sections and Xgeo,i  and Ygeo,i  represent each 

section’s X and Y values of the geometric center.  Figure 2.6 shows that the white and 

yellow points, which were calculated as geometric centers, were the closest points. From 

this result, the difference between geometric center of the interpolated curve using six 

points and apex point was transferred to the short-axis. Apex point was estimated by 

adding this difference to the geometric center of short-axis boundary. 

  

2.3.5. Evaluation of reconstruction geometries 

LV physiological parameters were calculated to compare the 3D geometries 

reconstructed from ground truth and segmented images. In this study, reconstructed LV 

volume with ground truth images is the benchmark one. 3D reconstruction algorithm 

calculates the LV volume on every time instance over whole cardiac cycle. Physiological 

parameters, ejection fraction (EF), stroke volume (SV), and cardiac output (CO), were 

calculated using these volume information. Three parameters have been widely used in 

cardiac research and performed as the index of the LV assessment [55]. 

Ejection fraction (EF) is the fraction of blood leaving heart each time when LV 

contracts. It is defined as: 
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𝐸𝐹 =

𝐸𝐷𝑉 − 𝐸𝑆𝑉

𝐸𝐷𝑉
 (2.7) 

 

Where  EDV  and ESV   are end-diastolic and end-systolic volumes [ml] over the given 

cardiac cycle. Stroke volume (SV) is the difference between the maximum and minimum 

volumes during the cardiac cycle. It has [ml] dimension. Finally, cardiac output (CO) is 

the volume of the blood, which is pumped by the LV, per unit time and has [ml/sec] 

dimension. It is defined as: 

 

 𝐶𝑂 = 𝐻𝑅 ×  𝑆𝑉 (2.8) 

 

Where HR is heart rate and SV is stroke volume. 
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3. RESULTS 

 

3.1. Segmentation result 

3.1.1. CAMUS dataset segmentation 

Before conducting the segmentation task on the in-house dataset, U-net and segAN 

were trained and tested based on the CAMUS dataset to verify the methods. CAMUS 

dataset only consists of 2- and 4-chamber projection. Both models were trained and tested 

without separation of projections. Also, the post-process, which used morphological 

transformation, was evaluated quantitatively. Among 450 patients’ dataset, 400 patients’ 

images were used to train two CNN models and remained 50 patient’s images were used 

to test the trained models. For the comparison, p-value was calculated to verify the 

statistically different. 

Table 3.1 reports the dice metric, precision, sensitivity, and Hausdorff distance of 

two CNN models. To evaluate the effect of the post-process, each model was calculated 

twice, before and after applying post-process. The Dice metric of the LV cavity is 0.920 

and of the LV myocardium 0.860 for the U-net model. For the segAN, the dice metric of 

the LV cavity is 0.917 and of the LV myocardium is 0.859. Both models show higher 

performance on LV cavity than the LV myocardium (p-value < 0.05). The precision and 

sensitivity are calculated similar to the Dice metric. The  Hausdorff  distance  is  4.92 mm  

for LV cavity and 6.23 mm for LV myocardium on the U-net model. For the segAN, 5.14 

mm for LV cavity and 6.18 mm for LV myocardium were calculated. 
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Table 3.1 The comparison of metrics. The comparison of metrics: Dice metric, 

precision, sensitivity, and Hausdorff distance (HD) between the before and after the 

post-process for both U-net and segAN on CAMUS dataset (4-chamber and 2-

chamber projections). P-P denotes the post-process 
Method Section P-P Dice Precision Sensitivity HD (mm) 

 

 

U-net 

LV 

cavity 

None 0.915 ± 0.066 0.920 ± 0.105 0.919 ± 0.059 5.17 ± 1.39 

Done 0.920 ± 0.058 0.929 ± 0.093 0.921 ± 0.060 4.92 ± 1.27 

LV 

myocardium 

None 0.858 ± 0.066 0.852 ± 0.089 0.867 ± 0.077 6.43 ± 1.40 

Done 0.860 ± 0.063 0.861 ± 0.063 0.871 ± 0.077 6.23 ± 1.25 

 

 

segAN 

LV 

cavity 

None 0.912 ± 0.079 0.907 ± 0.123 0.930 ± 0.053 5.25 ± 1.90 

Done 0.917 ± 0.071 0.916 ± 0.112 0.932 ± 0.053 5.14 ± 1.71 

LV 

myocardium 

None 0.855 ± 0.066 0.852 ± 0.092 0.862 ± 0.078 6.28 ± 1.19 

Done 0.859 ± 0.064 0.862 ± 0.086 0.866 ± 0.077 6.18 ± 1.17 

 

 

Table 3.1 shows the effect of the post-process. Dice metric increases from 0.915 

to 0.920 for the LV cavity and increases from 0.858 to 0.860 for the LV myocardium on 

the U-net model (p-value < 0.05). Also, dice metric of segAN increases from 0.912 to 

0.917 for the LV cavity and from 0.855 to 0.859 for the LV myocardium (p-value < 0.05). 

The Hausdorff distance, for which small values indicate better results, decreases from 5.17 

mm to 4.92 mm for the LV cavity and from 6.43 mm to 6.23 mm for the LV myocardium 

on the U-net model (p-value < 0.05). Also, Hausdorff distance of segAN decreases from 

5.25 mm to 5.14 mm for the LV cavity and from 6.28 mm to 6.18 mm for the LV 

myocardium (p-value < 0.05). The effect of the post-process was remarkable on the 

Hausdorff distance. Three other metrics were improved less than 1%. However, Hausdorff 

distance decreases from 1.4% to 4.7% for each class. 
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3.1.2. In-house dataset segmentation 

Six projections were separately trained and tested based on the in-house dataset 

using U-net and segAN. Also, segmentation results using level-set method were reported 

to comparison. Figure 3.1 represents the segmentation results. Original 2D echo images 

(Gray), predicted segmentation images using the U-net and segAN models (U-net and 

segAN), ground truth images (Ground Truth), and level-set segmentation images (Level-

set) on six standard projections consist each row. Green and red regions of the U-net, 

segAN, and Ground Truth rows’ images indicate LV cavity and LV myocardium 

respectively. Red line of the Level-set row’s images denotes the LV cavity. Level-set 

method can only segment the LV cavity. 

Figure 3.1 shows that the machine learning models achieve high performance on 

LV segmentation task. Segmented images agreed with ground truth images, which were 

converted from expert's delineation for the both long-axis (Figure 3.1 (a), (b), and (c)) and 

short-axis (Figure 3.1 (c), (d), and (e)) projections. Segmentation difference between U-

net and segAN is small and hard to evaluate from the images. 

Level-set method generated reasonable segmentation results for the long-axis 

projections. The wall was delineated correctly by the level-set method. However, the 

existence of valves, which has similar brightness of the LV wall and has intensity 

difference with LV cavity, made a problematic segmentation near the base. If  the  valve  
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Figure 3.1 Illustration of the segmentation results for six standard projections. The 

first row shows original 2D echo images (Gray), second and third rows show 

predicted segmented result from U-net and segAN models (U-net and segAN), fourth 

row shows the ground truth images (Ground Truth), and the last row represents the 

segmentation results using level-set method (Level-set). Red region represents LV 

myocardium and green region represents LV cavity. Red line in the Level-set images 

denotes the LV cavity. Images are the one time instant of each projection's cardiac 

cycle. Each column shows long-axis (a) 3-chamber, (b) 4-chamber and (c) 2-chamber 

and short-axis (d) base, (e) mid and (f) apex projections. 

 

 

was closed, level-set method could generate a closed curve. However, in case of an open 

valve, the iteration of the level-set method had to controlled to divide the LV cavity and 

left atrium cavity. For the short-axis projections, presence of the valve orifice, trabeculae, 

and papillary muscles disturbed the LV cavity segmentation. Table 3.2, 3.3, and 3.4 report  
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Table 3.2 U-net model. U-net model: The comparison of metrics: Dice metric, 

precision, sensitivity and Hausdorff distance (HD) 
Methods Projections Section Dice Precision Sensitivity HD (mm) 

 

 

 

 

 

U-net 

3-chamber Cavity 0.920 ±0.017 0.902 ±0.044 0.940 ±0.023 2.96 ±0.24 

Myocardium 0.814 ±0.017 0.869 ±0.040 0.769 ±0.046 3.61 ±0.25 

2-chamber Cavity 0.927 ±0.023 0.930 ±0.065 0.929 ±0.027 2.72 ±0.38 

Myocardium 0.715 ±0.031 0.818 ±0.040 0.640 ±0.056 4.23 ±0.29 

4-chamber Cavity 0.900 ±0.011 0.889 ±0.028 0.913 ±0.020 3.18 ±0.41 

Myocardium 0.772 ±0.019 0.811 ±0.034 0.738 ±0.020 3.89 ±0.39 

Base Cavity 0.931 ±0.037 0.917 ±0.083 0.954 ±0.054 2.20 ±0.26 

Myocardium 0.860 ±0.041 0.896 ±0.039 0.827 ±0.049 3.14 ±0.33 

Mid Cavity 0.888 ±0.022 0.918 ±0.063 0.863 ±0.036 2.92 ±0.24 

Myocardium 0.761 ±0.079 0.751 ±0.151 0.791 ±0.035 4.19 ±0.57 

Apex Cavity 0.854 ±0.040 0.928 ±0.109 0.811 ±0.093 2.26 ±0.38 

Myocardium 0.804 ±0.059 0.829 ±0.094 0.785 ±0.040 3.05 ±0.29 

Mean Cavity 0.903 0.914 0.901 2.71 

Myocardium 0.787 0.829 0.758 3.68 

 

 

the dice metric, precision, sensitivity, and Hausdorff distance (HD) of U-net, segAN, and 

level-set methods, respectively. All metrics were calculated on the testing dataset. Six 

projections’ results were calculated separately. The mean value of each metric was defined 

as: 

 

 
𝑀𝑀𝑒𝑎𝑛 =

𝑀3𝑐ℎ + 𝑀2𝑐ℎ + 𝑀4𝑐ℎ + 𝑀𝐵𝑎𝑠𝑒 + 𝑀𝑀𝑖𝑑 + 𝑀𝐴𝑝𝑒𝑥

6
 (3.1) 

 

where M is each metric (3-chamber: 3ch, 2- and 4-chamber: 2 and 4ch).  
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Table 3.3 SegAN model. SegAN model: The comparison of metrics: Dice metric, 

precision, sensitivity and Hausdorff distance (HD) 
Methods Projections Section Dice Precision Sensitivity HD (mm) 

 

 

 

 

 

segAN 

3-chamber 

 

Cavity 0.915 ±0.014 0.903 ±0.033 0.929 ±0.025 3.57 ±0.71 

Myocardium 0.787 ±0.034 0.860 ±0.033 0.728 ±0.056 3.76 ±0.36 

2-chamber 

 

Cavity 0.923 ±0.021 0.912 ±0.051 0.938 ±0.022 3.09 ±0.33 

Myocardium 0.697 ±0.032 0.816 ±0.036 0.611 ±0.048 4.44 ±0.28 

4-chamber 

 

Cavity 0.914 ±0.016 0.894 ±0.040 0.936 ±0.015 3.29 ±0.49 

Myocardium 0.805 ±0.022 0.845 ±0.029 0.769 ±0.029 3.64 ±0.30 

Base 

 

Cavity 0.917 ±0.039 0.891 ±0.088 0.954 ±0.053 2.27 ±0.31 

Myocardium 0.847 ±0.042 0.889 ±0.043 0.810 ±0.046 3.21 ±0.43 

Mid 

 

Cavity 0.903 ±0.038 0.874 ±0.079 0.941 ±0.045 2.46 ±0.27 

Myocardium 0.799 ±0.102 0.758 ±0.162 0.865 ±0.043 3.64 ±0.77 

Apex 

 

Cavity 0.901 ±0.072 0.894 ±0.142 0.930 ±0.060 2.27 ±0.40 

Myocardium 0.864 ±0.101 0.864 ±0.138 0.852 ±0.060 3.03 ±0.54 

Mean 

 

Cavity 0.912 0.895 0.938 2.82 

Myocardium 0.801 0.842 0.772 3.62 

 

 

From Table 3.2, mean dice metric of U-net model is 0.903 for the LV cavity and 

0.787 for the LV myocardium. Base projection has largest dice metric, 0.931 for LV cavity 

and 0.860 for LV myocardium and smallest Hausdorff distance, 2.20 mm for LV cavity 

and 3.14 mm for LV myocardium. Apex projection has smallest dice metric, 0.854 for LV 

cavity and 0.804 for LV myocardium and mid projection has largest Hausdorff distance, 

2.92 mm for LV cavity and 4.21 mm for LV myocardium . Long-axis projections’ average 

dice metric is 0.916 for LV cavity and 0.767 for LV myocardium. Short-axis projections’ 

average dice metric is 0.891 for LV cavity and 0.808 for LV myocardium. Long-axis 

projections’ average Hausdorff distance is 2.96 mm for LV cavity and 3.91 mm for LV  
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Table 3.4 Level-set method. Level-set method: The comparison of metrics: Dice 

metric, precision, sensitivity and Hausdorff distance (HD) 
Methods Projections Section Dice Precision Sensitivity HD (mm) 

 

 

Level-set 

3-chamber Cavity 0.857 ±0.048 0.775 ±0.090 0.968 ±0.032 3.61 ±0.57 

2-chamber Cavity 0.896 ±0.022 0.907 ±0.049 0.890 ±0.056 4.02 ±0.54 

4-chamber Cavity 0.885 ±0.012 0.549 ±0.057 0.931 ±0.053 3.88 ±0.41 

Base Cavity 0.815 ±0.050 0.788 ±0.103 0.856 ±0.040 4.37 ±0.36 

Mid Cavity 0.784 ±0.067 0.892 ±0.120 0.704 ±0.080 3.26 ±0.46 

Apex Cavity 0.695 ±0.081 0.866 ±0.057 0.555 ±0.114 2.68 ±0.29 

Mean Cavity 0.821 0.846 0.817 3.64 

 

 

myocardium. Short-axis projections’ average Hausdorff distance is 2.46 mm for LV 

cavity and 3.45 for LV myocardium. 

From Table 3.3, mean dice metric of segAN is 0.912 for the LV cavity and 0.801 

for the LV myocardium. 2-chamber projection has largest dice metric value, 0.923 for LV 

cavity. Apex projection has smallest Hausdorff distance, 2.27 mm for LV cavity and 3.03 

mm for LV myocardium. Long-axis projections’ average dice metric is 0.917 for LV 

cavity and 0.763 for LV myocardium. Short-axis projections’ average dice metric is 0.907 

for LV cavity and 0.837 for LV myocardium. Long-axis projections’ average Hausdorff 

distance is 3.31 mm for LV cavity and 3.94 mm for LV myocardium. Short-axis 

projections’ average Hausdorff distance is 2.33 mm for LV cavity and 3.26 for LV 

myocardium. 

Finally, Table 3.4 reports the results of level-set method. The mean dice metric is 

0.821 for the LV cavity and mean Hausdorff distance is 3.64 mm. The highest dice metric 

is 0.896 for the 2-chamber projection and the lowest Hausdorff distance is 2.68mm for the 
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Figure 3.2 One time instant of LV segmented input videos. One time instant of LV 

segmented input videos using U-net for the 3D reconstruction algorithms. Long-axis 

(a) 3-chamber, (b) 4-chamber, and (c) 2-chamber and short-axis (d) base, (e) mid, 

and (f) apex projections. A: Anterior, AS: Anteroseptal, Ap: Apical, B: Basal, I: 

Interior, IL: Inferolateral, L: Lateral, and S: Septal. 

 

 

apex. Long-axis projections’ average dice metric is 0.879 for LV cavity. Short-axis 

projections’ average dice metric is 0.764 for LV cavity. 

From all metrics, U-net and segAN generated better results the level-set method 

(p-value < 0.05). Especially, level-set method made lower performance on the short-axis 

projections. Both U-net and segAN models generated better results on LV cavity than LV 

myocardium (p-value < 0.05). Figure 3.2 shows the final segmentation results. After the 

resizing process, the LV in Figure 3.2 has the original height-width ratio and pixel-mm 

ratio. The videos generated by these images became the input of the 3D reconstruction 
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algorithm. Even the LV cavity made better segmentation results than LV myocardium, the 

reconstruction algorithm only uses the inner boundary of LV. In this reason, this study 

used the LV myocardium images as the input of the reconstruction algorithm. 

 

3.2. 3D reconstruction 

3.2.1. Algorithm improvement result and validation 

The previous reconstruction algorithm failed to represent the 2- and 4- chamber 

projections because of a not reasonable assumption on apex location for the short-axis 

projection method (section 2.3.4). This problem was improved using information from the 

long-axis projections and matching geometric centers method as explained in section 2.3.4. 

Figure 3.3 shows the three long-axis (upper row) and short-axis (middle row) projections, 

which were extracted from the benchmark geometry and used to reconstruction, and the 

reconstructed geometries using different algorithms (lower). Yellow shape, which was 

made by original algorithm, had a simple symmetrical cone shape and failed to represent 

the 4-chamber projection’s biased apex and curvature of the right side boundary. However, 

the red geometry, which was reconstructed by the improved algorithm, had an eccentric 

apex position and succeed to represent the bump configuration near the apex, which was 

came from 4-chamber projection. Yellow model’s apex was located near the center of the 

short-axis projections. However, red geometry’s apex was not fixed near the center. 
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Figure 3.3 Comparison of reconstructed geometries. Long-axis projections (upper 

row), shot-axis projections (middle row) and comparison of reconstructed 

geometries (bottom row). Among the reconstruction geometries, red shape is 

reconstructed by improved algorithm and yellow shape is made by original 

algorithm. Ch denotes the -chamber projection. 
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Figure 3.4 Comparison of LV geometries. Purple shape is the original LV geometry, 

which was obtained from MRI. Yellow shape is reconstructed geometry using 

improved algorithm. 

 

 

The improved algorithm was validated by comparing the reconstructed geometry 

with original shape. Figure 3.4 shows the comparison between original and reconstructed  

LV geometries. Purple shape was obtained from the MRI and perform as the reference LV 

geometry. Yellow shape was reconstructed geometry by improved algorithm using three 

long- and three short-axis projections, which were extracted from reference geometry 

(Figure 3.3 upper and middle row). The reconstructed model succeeded to detect tilted 

apex point and overall curvature of surface. The smoothing section of the reconstruction 

algorithm generated the smooth surface, which could not represent the detailed coarse 

surface of original surface. Also, the surface which was not located near the three long-

axis projections made difference with reference geometry. 
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Figure 3.5 Volume-time graphs of one cardiac cycle. Red, green, yellow, and blue 

lines denote the reference, standard, long-axis only, and long and base projections 

combinations (Table 2.2), respectively. 

 

 

3.2.2. Projection validation 

In this study, six standard projections were used to reconstruct the LV. To verify 

the usage of standard projections, four different combinations of projections (Table 2.2) 

were tested and compared. Figure 3.5 shows the four volume-time graphs using different 

projection combinations. The reference combination, which was reconstructed with nine 

projections, conducted the benchmark for the comparison. Standard projections, three 

long-axis and three short axis, showed similar volume change trend during the one cardiac 

cycle with reference case. Also, the absolute volume had close value with benchmark. The 

largest volume difference was 2.3% near the end-systolic time instance. Long-axis only  
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Table 3.5 Physiological parameter comparison. GT denotes the geometry which was 

reconstructed from ground truth images. GT geometries performed as reference.  EF: 

ejection pressure, SV: stroke volume, and CO: cardiac output. 

Porcine parameter GT U-net Error (%) segAN Error (%) 

Case1 EF 0.37 0.33 10.0 0.36 2.3 

SV [ml] 29.5 29.8 1.2 32.4 9.9 

CO [L/min] 2.18 2.21 1.3 2.39 9.8 

Case2 EF 0.40 0.33 18.1 0.34 14.4 

SV [ml] 26.3 23.2 11.7 23.6 10.4 

CO [L/min] 1.94 1.72 11.6 1.74 10.5 

 

 

projection combination, includes six long-axis, generated reconstructed geometries which 

had similar absolute volume value with the benchmark. However, it failed to detect the 

volume change trend. In contrast, long and base projection combination, three long-axis 

and one short-axis, succeeded to detect the volume change trend besides the lowest volume 

time instance. However, the entire volumes were 15% smaller than the benchmark 

volumes. This error is similar to the previous methods using 2D echo compared to the gold 

standard MRI [56-58]. 
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Figure 3.6 LV 3D reconstructed geometry comparison. Yellow LV shape is 

reconstructed with ground truth images. (a) Green LV shape is reconstructed with 

segAN segmented images. (b) Red LV shape is reconstructed with segAN segmented 

images. 

 

 

3.2.3. Reconstruction using segmented results 

Six projections’ images segmented by machine learning technique (Figure 3.2) 

were reconstructed by the improved algorithm. In this study, the benchmark to evaluate 

the reconstructed geometries’ physiological parameters was the model reconstructed from  

ground truth images, which were delineated by experts. Two porcine LV geometries were 

reconstructed using test dataset images. Table 3.5 reports the physiological parameters of 

reconstructed geometries from the ground truth, U-net segmented, and segAN segmented 

images. The average error of ejection pressure using U-net model was 14.0%. SegAN 

model made 8.4% average error of ejection pressure. For the stroke volume and cardiac 

output, U-net model made average 6.4% error and segAN model made 10.2% error. These  
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Figure 3.7 One cardiac cycle LV 3D reconstruction results. (a) Reconstruction 

geometries using segAN and (b) Volume-time graphs over one cardiac cycle with 

red line which represents corresponding time instance. 

 

 

results showed that the U-net model generated reconstructed volumes which represented 

the absolute volume value better than segAN model. However, segAN model made LV 

shapes which represented the volume trend better than U-net model. Figure 3.6 shows the 

comparison between LV geometries. Yellow LV shape was reconstructed with ground 

truth images. Red and green LV shapes were reconstructed with segAN and U-net 

segmented images, respectively. Figure 3.7 illustrates the 3D reconstruction results over 

one cardiac cycle generated from segAN segmentation results. Each shape represents the 

specific time instances with the same time intervals during one cardiac cycle using a fixed 

apex position and the same point of view. Starting at the end-diastole, the model contracts 

during the systole and expands during the diastole. 
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3.3. Calculation time 

U-net and segAN models generated segmentation images using NVIDIA GeForce 

GTX 1050 GPU. Level-set method segmented the LV boundary on the Intel® Core™ i7-

7700HQ CPU. U-net took 53±2 seconds for segmenting the one cardiac cycle images, 

consists of between 40 to 42 images. It spent average 1.3 seconds per one images. SegAN 

required 104±8 seconds to segment the one cardiac cycle images. Average 2.51 seconds 

were taking per one images. Level-set method took 75±2 seconds for segmenting one 

image. 3D reconstruction algorithm generated one cardiac cycle’s LV geometries on the 

Intel Xeon E5-2670 v2 CPU. It required average 49 seconds to reconstruct the geometry 

of one cardiac cycle. Total average 367 seconds were required to segment the six 

projection images over one cardiac cycle and 3D reconstruct using U-net and 

reconstruction algorithm. SegAN segmentation and reconstruction algorithms took 

average 673 seconds. 
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4. DISCUSSION 

 

4.1. Segmentation 

In-house dataset, which was used to train CNN models, was different with previous 

datasets about LV segmentation task. Previous datasets consisted of one or two images, 

e.g., end-diastolic and end-systolic images, from one case. These datasets had 60 to 450 

different cases to acquire diversity [10, 34, 35]. However, in-house dataset consisted of 30 

to 40 images from one case and had 10 different cases. The segmentation results showed 

that, if the number of images were enough, this new kinds of dataset also achieve high 

performance on the segmentation task. However, due to small number of cases, current 

segmentation model only worked well on the similar 2D echo images, which was obtained 

from same transducer. This problem can be solved by increasing the number of cases. 

For a LV segmentation tasks, reasonable results can be obtained from a relatively 

small number of images comparing to other image segmentation tasks. This is because of 

two features of LV images. First, there are clear standard projections for acquiring the 2D 

echo images, e.g., six standard projections. Therefore, each projection’s images have 

similar arrangement of structures and shape of each structure. Second, the shape of LV is 

quite simple. For the long-axis projections, the LV has half-ellipse shape. Also, short-axis 

projections represent the circular shape of LV. These features facilitate successful 

segmentation using small amount of data. 

CNN models’ segmented results showed some unexpected island-like structures 

in the background. The post-process was followed segmentation task to remove these 
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island-like structures. The island-like structures caused the higher Hausdorff distance 

because they were not appeared near LV. However, the dice metric, precision, and 

sensitivity did not decrease, because they occupied small number of pixels comparing with 

LV cavity and myocardium. Table 3.1 represents the effect of the post-process. Comparing 

the metrics before and after conducting the post-process, the Hausdorff distance was 

decreased from 1.4% to 4.7% and other metrics increased less than 1%. This results show 

the post-process succeeded in removing the island-like structures.  

However, the metrices of LV myocardium were still worse than LV cavity’s 

metrices after post-process. There are two main reasons that generated worse metric values. 

First, the total number of pixels were inherently different between LV cavity and 

myocardium. LV cavity had a larger number of pixels which is advantageous for 

calculating the metrics. Second, island-like structures which had larger diameter than the 

LV myocardium thickness were not removed using current post-process and these were 

included on the LV myocardium label. Different background removing method, such as 

region of interest (ROI) technique, should be developed to increase the segmentation 

accuracy. 

Segmentation results show the usage of 2D echo image can be extended with CNN 

models by removing segmentation restriction. Currently, CNN models are actively used 

in the segmentation of MRI and CT cardiac images [26]. Most of the LV MRI and CT 

datasets consist of dense short-axis images. CNN models achieve more than 0.9 on the 

dice loss and precision for these image segmentation task [28-30]. This study shows that 
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the CNN models also can achieve a similar accuracy on 2D echo projections. This suggests 

that if there is a large dataset for the segmentation, the data types, e.g., MRI, CT and echo, 

would not significantly affect the performance of the CNN models. 

Figure 4.1 shows the comparison between U-net and segAN models using Tukey 

box calculated from the dice metric. From these plots, U-net outperformed the segAN for 

the 2-chanmber and base projections. In contrast, for the apex projection, segAN 

performed better than the U-net. For the other three projections, the superiority of one 

model is not clear.  

Figure 3.1 and Table 3.2, 3.3, and 3.4 show that the U-net and segAN models 

outperformed the level-set method on the LV segmentation task for the 2D echo images. 

Level-set method caused several specific problems. For the long-axis, the Aortic and 

Figure 4.1 Tukey box plots computed from the dice metric. Each plot’s numbers 

denote dice metric of 1: LV myocardium using U-net, 2: LV myocardium using 

segAN, 3: LV cavity using U-net, and 4: LV cavity using segAN. 
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Mitral valves which were located end of the LV disturbed the exact LV cavity 

segmentation. The seriousness of this problem changed over the cardiac cycle with 

opening and closing the valves. The worst case was occurred when the valve was open. 

Level-set method could not distinguish between LV and the left atrium. To get reasonable 

breakpoint between two structures, the total number of iterations should be carefully 

controlled by experts for the level-set, i.e., not fully automatic. For the short-axis, the 

existence of trabeculae and papillary muscle, which had similar brightness on 2D echo 

images, caused the distorted segmentation results. However, CNN models generated 

segmentation results regardless of these problems on both long- and short-axis. 

Furthermore, CNN techniques were fully automatic. In contrast, the level-set method 

needed manual starting box which should be chose delicately. Finally, level-set method 

spent more calculation time than the machine learning models. Level-set method took 

almost 50 minutes to segment the images for one cardiac cycle. 

To overcome the limitation of insufficient dataset, transfer learning and 

augmentation techniques were employed. However, the different quality of the 2D echo 

images, e.g., sparse border, variation in echo, and image noise, restricted the application 

of the trained models. When the model tries to segment different quality images, it 

generates non-robust segmentation results with incomplete segmentation lines and large 

island-like structures. Also, some 2D echo images depict cavities other than the LV. These 

are the common limitations of the machine learning segmentation models and could be 

improved by training with a larger and diverse dataset. 
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For the future work, automatic delineation method needs to be extended to segment 

the valves and superior walls, which is however, non-trivial task because in the standard 

2D echo projection image, only small numbers of pixels represent the valves thus making 

them hard to distinguish from LV ends in long-axis and tendineae in short-axis projections.  

 

4.2. 3D reconstruction 

During validating the usage of six standard projections for the reconstruction, the 

role of the different kinds of projections for the reconstruction was estimated. Figure 3.5. 

showed the comparison between long-axis only, six long-axis projections, and long and 

base, three long-axis and base projections. Long-axis only combination succeed with 

capturing the volume change trend over the cardiac cycle. Long-axis and base combination 

obtained more accurate absolute LV volume than the long-axis only combination, even 

the small number of projections. This result shows that additional number of long-axis 

projections helps detecting the absolute volume value and additional short-axis projection 

supports to detect the volume change trend.  

For the reconstruction using segmented results, inner wall boundary of the 

myocardium section was used (Figure 3.2). The accuracy of the inner wall boundary could 

be estimated from the LV cavity accuracy of segmentation results. Comparing to the 

average dice, precision, and sensitivity values, which were near 90%, the physiological 

parameters had 10 - 20% error. This showed that 10% error of the segmentation increased 

to 10 – 20% error after reconstruction and this error was coming from both segmentation 

and reconstruction. 
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5. CONCLUSIONS 

 

In this study, dynamic 3D LV geometries over one cardiac cycle are automatically 

generated from six standard 2D echo projections. This algorithm consists of automatic 

segmentation and reconstruction parts. The machine learning segmentation techniques, 

especially CNN models, facilitate automatic, rapid and consistent 3D reconstruction from 

2D echo images. 

Two CNN models, U-net and segAN, have been employed to automatically 

segment the LV from the 2D echo images. These models were trained with both CAMUS 

dataset and an in-house dataset. CAMUS dataset was used for the transfer learning to 

compensate the small amount of training dataset. Also, effect of the post-process was 

quantified using CAMUS dataset. All metrices were improved by using post-process, 

which removed the island-like background.  

In-house dataset consisted of total 2108 images. Standard projections of 2D echo, 

three long-axis and three short-axis projections, images over one cardiac cycle were 

extracted from 10 pigs. 

The assessment metrics and segmented images show that both U-net and segAN 

outperform the level-set method. Especially, CNN models achieve high performance on 

LV cavity segmentation. For the LV myocardium segmentation, both model generated 

higher error than the cavity. Relatively small number of pixels which consist the 

myocardium and background island-like structure caused this high error. U-net achieved 

average 0.903 and 0.787 dice metrices for the LV cavity and myocardium. SegAN 
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achieved average 0.912 and 0.801 dice metrices for the LV cavity and myocardium. The 

performance difference between two models was small. However, segAN took two times 

more computation time than U-net.  

In this study, previous 3D reconstruction algorithm was improved and validated 

with two perspective. Validity of using six standard sections was verified by comparing 

with other combinations of different projections. Also, reconstructed geometry was 

verified with benchmark. During this process, problem of algorithm was confirmed, and 

the cause of this problem was identified, the method of estimating the apex point inside 

the short-axis projections. After resolving this problem using information from three long-

axis projections and geometric center matching process, algorithm generated the geometry, 

which represented the all projections and showed the high similarity with reference shape. 

Segmented images were reconstructed to the 3D LV geometry using improved algorithm. 

Based on the comparison of physiological parameters, the average predicted error was 

around 15%, which is similar to the previous methods using 2D echo compared to the gold 

standard MRI. 

Fully automated pipeline, from 2D echo images to a 3D geometric geometry of 

LV, was generated by combining the machine learning segmentation technique and 3D 

reconstruction algorithm. This pipeline can help the fast analysis of the vast numbers of 

echo images in clinical applications to visualize 3D LV wall motion and evaluate global 

function. Also, this algorithm facilitates the patient-specific LV modeling and simulation 

without expert’s knowledge and effort. 
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APPENDIX A 

IN-HOUSE DATASET: TRAINING AND TESTING DATASET 

Training dataset 

Projections Pig identification number Number of images 

3-chamber 15, 6921, 6926, 6927, and 8550 196 

2-chamber 6918, 6926, 6933, and 8550 151 

4-chamber 6918, 6926, 6927, 6933, and 8550  194 

Base 6918, 6921, 6926, 6937, and 8550 189 

Mid 15, 6921, 6927, 6933, and 6937 200 

Apex 6918, 6927, and 6933 118 

 

Testing dataset 

Projections Pig identification number Number of images 

3-chamber 6933 and 6937 82 

2-chamber 6921 and 6937 80 

4-chamber 6921 and 6937 80 

Base 6927 and 6933 83 

Mid 6918 and 6926 69 

Apex 6921 and 6937 53 

 

 

 


