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ABSTRACT

Oil and gas pipelines that traverse a river are often buried beneath the river bed and channel

banks. One of the primary reasons for the exposure of buried pipelines is the scouring mechanism

that occurs when the shear stress induced on riverbed by flowing water exceeds the resistance of

channel bed material. Depending on the free spanning length and watercourse flow velocity, the

vortex shedding phenomena may cause interactions resulting in a catastrophic pipeline failure and

disrupting the integrity of the pipeline system. Hence it is essential to accurately predict Critical

Span Length (CSL) and scour depth for river crossing pipelines.

Estimates of CSL and scour depth are found in literature subject to various governing factors.

It is difficult to model the physics of the free span scenario considering all parameters associated

with the pipeline. Advances in soft computing techniques has opened a whole new dimension

to predict design parameters that are difficult to mathematically model, thus enabling protective

preparations to maintain integrity and prevent failures.

In this study, we attempt to identify measurable factors to predict CSL and scour depth and

understand the effect of these variables using Artificial Neural Networks. An Artificial Neural

Network model is developed by collecting pipeline accident reports from Pipeline and Hazardous

Materials Safety Administration (PHMSA) database for accidents that occurred due to Vortex In-

duced Vibration (VIV) loading during flooding in the last 35 years. This is done by identifying

parameters that describe the pipeline including but not limited to pipe dimensions, pipe material

properties, exposure flow rate, river velocity and dynamic lateral and vertical soil stiffness from

real time data. The neural network model designed in MATLAB quickly and accurately predicts

critical span length and scour depth for several river crossing pipelines and the results are com-

pared to Finite Element Analysis and numerical simulations. This model can help us assess which

flooding conditions would potentially cause a VIV failure in the pipe, once exposure flow rates and

river velocities are estimated.
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NOMENCLATURE

ANN Artificial Neural Networks
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DNV Det Norske Veritas
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IoT Internet of Things
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MSE Mean Square Error
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1. INTRODUCTION

Pipeline integrity management is one of the most extensively carried out programs across the

world that focuses on the safety aspects and environmental risks associated with hazardous liq-

uid and natural gas pipelines. It is the cradle-to-grave approach of understanding and operating

pipelines in a safe, reliable manner. Pipelines have been used to transport large quantities of en-

ergy products across the country for decades. However, they present substantial threat of low

probability, high consequence accidents that result in environmental degradation and human ca-

sualties in certain cases. With the recent advancement in computational intelligence, in the area

of machine learning in particular, the possibility of a very low pipeline failure has come close to

reality than ever before.

Converting volumes of raw data from different engineering disciplines into useful information

is a challenge for Oil and Gas companies. One of the fundamental focal points in data driven

modeling approach is to discover relationships between the system input and output state vari-

ables without explicit knowledge of the physical behavior of the system. Increased precision and

confidence in data makes a difference in operational effectiveness, efficiency, and enhanced threat

detection.

Free-span management of pipelines transporting liquid and natural gas starts from the early

project phases including pre-engineering survey, design and construction, and continues through-

out the whole operating life. The design phase is the core of free span integrity management.

Hence determination of maximum allowable free span length (MAFSL) plays a crucial role in the

design of pipelines and in trouble shooting existing pipelines in river crossings. In addition, an

accurate measure of scour depth potentially identifies a feasible Depth of Cover (DoC) for the

pipelines to be buried during the initial laying phase.

Significant contributions are made to estimate MAFSL of pipelines in river crossings subject

to different conditions and are elaborated in the literature review. It has been shown that different

loading conditions lead to the exposure and failure of pipelines in different situations. There is
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no single approach that entirely captures the physics of the problem. Hence, difficulties exist

in the mathematical modeling of scenario considering all physical and environmental parameters

associated with pipelines using the traditional deterministic approach. Artificial Neural Networks

play a key role in mathematical modelling of such a system.

In the United States, pipeline operators are required to abide by regulations put forth by the

federal Pipeline and Hazardous Materials Safety Administration (PHMSA), at a minimum. With a

large number of historical data available from PHMSA database, the United States Geographical

Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA), we have

attempted to select relevant input factors to predict Critical Span Length (CSL) and Scour Depth

for river crossing pipelines. The prediction model is set up using Artificial Neural Networks (ANN)

to understand the non-linear variation of these factors.
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2. BACKGROUND

2.1 Literature Review

Transmission pipeline infrastructure in the United States can be estimated to have more than

100,000 pipeline crossings within rivers, streams, lakes, or flood plains. Although accidents at

river crossings account for less than one percent of the total number of pipeline accidents, the

environmental consequence of a release in water can be severe. The impact of these spills on

the environment has been analysed in terms of cost, rate of contamination of soil, average vol-

ume of release, annual ratio of water type contamination, and effects on fish, birds and terrestrial

wildlife between 2010 and 2017 based on the information from the Pipeline and Hazardous Ma-

terial Safety Administration (PHMSA) database by Chiara Belvederesi, Megan S. Thompson and

Petr E. Komers [9]. The study was aimed at developing a regression analysis method to under-

stand the relationship between released volume and the total elapsed time between the accident

and initiation of remediation. While hazardous liquid releases on land are more easily contained,

river currents can carry hazardous liquids further downstream, and it can potentially impact larger

geographical areas and more communities.

Among the many different failure modes of pipeline in river crossings, the most documented

pipeline failures have been caused by Vortex Induced Vibration (VIV) loading due to the exposure

of unsupported free spanning pipelines to flowing water [10]. The study focused on developing a

flood monitoring program to quantify threshold flood levels that would result in exposure and fail-

ure of pipeline water crossings. The flood monitoring program is in turn aimed at establishing an

action plan based on the assessment of the flood scenario to reduce the consequences of a pipeline

watercourse crossing failure. Prediction of fatigue life-cycles of onshore pipelines that become

exposed at river crossings due to riverbed erosion was carried out using DNV GL’s FATFREE soft-

ware based on S-N curves approach [11]. The methodology was later converted into a screening

tool to assess free span exposure and characteristics of river crossing pipelines in Canada with a
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high potential for fatigue failure due to Vortex Induced Vibrations.

Many literature studies showed the assessment and modeling of VIV loading for free span-

ning pipelines to estimate Maximum Allowable Free Span Length (MAFSL) for both offshore

and onshore water crossing pipelines [12] [13]. Rhett Dotson and Lawrence Matta discussed the

analytical assessments for MAFSL by having total longitudinal stresses below the elastic code lim-

its. They also carried out finite element assessment based on elastic and elastic-plastic modeling

of pipelines for three different scenarios [14]. The influence of soil characteristics on pipeline

supports in free span was analysed in determining the natural frequency of pipeline vibrations

[15]. Recommendations and guidelines have been prescribed by DNV [7] to evaluate the dynamic

response of a free spanning pipeline based on pipe-soil interactions [16]. Determining the combi-

nation of loads that act on the pipeline is crucial for modeling and analysis of MAFSL. Variation in

factors such as line geometry or end restraints can greatly affect the nature of results. These results

are based on deterministic approach.

The oil and gas industry has vast amounts of data captured by instruments and generated by

simulations. We are in a period ideally positioned to combine traditional methodologies with

computational intelligence characterized by data driven models. With the availability of real time

geometrical survey data, the implementation of Artificial Neural Networks (ANN) to model non

linear functions with several variables is increasingly finding its advantages in the industry. Per-

formance of Multivariate Adaptive Regression Splines (MARS) was compared with Multilayer

Perceptron Neural Network model in the prediction of scour depth beneath pipelines based on data

available in literature by Amir Hamzeh Haghiabi [1]. The MARS model was found to have high

precision for modeling scour depth and gave clear information regarding internal processes carried

out in the model development due to its linear nature. However the model had less accuracy in

prediction when compared to the Neural Network model. In relation to the above article, Reza

Barati developed new models for scour depth estimation using regression optimization based on

power functions [17]. Failure prediction of underground pipeline in non-uniform soil settlement

was modeled using artificial neural networks with axial stress as the output vector and buried depth,
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wall thickness, pipe diameter, precipitation level, soil modulus of elasticity, and soil density as six

input vectors [18]. The development of various training algorithms and activation functions, which

can be applied to the neurons has given a new dimension to Artificial Neural Network architectures

to better suit our model requirements based on the nature of data available.

2.2 River bed Scour

Scouring action of river bed refers to the removal of top sediment layer and occurs when the

hydraulic shear stress on the stream bed exceeds the capability of the bed material to resist motion.

Scouring is a common type of erosion that exposes a buried pipeline at its approach to a crossing

and could potentially impact the integrity of the pipeline due to hydrodynamic loading, fatigue

caused by vortex shedding, and impact loads. Major hazards at river crossings that may expose a

pipeline due to natural or environmental changes are listed below [19]:

S.No Hazard category Sub Hazard type

1 Episodic exposure
Local scour and river bed degradation
causing vertical channel movements

2 Progressive erosion
Bank erosion, encroachment and gullying

causing lateral channel movements

3 Channel Avulsion
Meandering river, debris jams, sediment

accumulation and extreme flooding resulting in the
development of a new conveyance route

Table 2.1: Classification of river bed erosion phenomenon.

Flow properties such as river depth, velocity and water density, river bed and soil characteristics

namely dynamic lateral and vertical stiffness of soil, longitudinal slope of the river bed, size of

sediment particles, initial gap between pipeline and undisturbed bed (e), and pipeline geometry

including diameter and wall thickness influence localized scour below pipelines as indicated in

Figure 2.1. Many studies have been conducted to understand the correlation between scour depth
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below pipelines and non dimensional numbers such as Froude number (F), Reynold’s number (Re)

and Shield’s parameter (τ ∗).

Figure 2.1: Localized scouring phenomenon below river crossing pipelines.
Note. Reprinted from [1]

Here we restrict our study on exposed pipelines due to the onset of scour in riverbeds that

experience vortex induced vibrations due to the flowing water. Moncada and Aguirre-Pe (1999)

presented the following relationship for estimating localized scour depth under pipelines [20],

ds
D

= 0.9 ∗ tanh (1.4F ) + 0.55 (2.1)

where ds is the scour depth, F = V√
gy

is the Froude number, V is the velocity of river, y is the water

depth and D is the pipeline outer diameter. They have also stated that parameters such as river

bed slope and e
D

ratio have very minimal effect on scour depth and have been neglected in our

prediction model.
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2.3 Vortex Induced Vibrations: In-line and Cross-flow oscillations

Interactions between pipeline and external fluid flow (in this case, river water) which is perpen-

dicular to the axis of the pipeline reduces the flow around the pipe and in turn induces oscillations

due to the formation of vortices. This unsteady phenomenon occurs at specific flow velocities gov-

erned by the length and shape of the exposed pipeline and is an important source of fatigue damage

for both onshore and offshore free spanning pipelines. Reduced velocity Vr is an important param-

eter in analyzing the onset of vortex shedding-induced oscillations for both in-line and cross-flow

motions and and is defined as,

Vr =
V

fnD
(2.2)

where fn is the natural frequency of vibration of pipe, V is the actual velocity of river water and D

is the outer diameter of the pipe.

When the river velocity is low, symmetric vortices are shed and the pipe begins to oscillate

in-line with the flow when the vortex shedding frequency equals to about one-third the natural

frequency of the pipe span. In-line VIV occurs in two distinct instability regions. The amplitude

of in-line VIV increases with reduced velocity in the first region and the amplitude almost remains

constant in the second instability region. Reduced velocity typically varies between 1 and 2.2 in

the first instability region and varies between 2.2 and 4.5 in the second instability region.

Figure 2.2: Vortex Induced Vibration of a pipe due to its interaction with flowing water.
Note. Reprinted from [2]
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At higher velocities, the Reynold’s number increases and the flow becomes asymmetric resulting

in motion transverse to the flow due to the development of different lift forces on either side of the

pipe. Cross-flow VIV typically occurs at reduced velocities between 3 and 5. The exact transition

from in-line second stability region to the onset of cross-flow vibrations is difficult to determine.

2.4 Existing methodologies for estimating Critical Span Length

Over many years, various research papers, design codes and industry publications have come

up with different analysis and methods to determine Critical Span Length or Maximum Allowable

Free Span Length (MAFSL) for pipelines. The Combined Analysis Method prescribes various

static and dynamic analysis methods, addressing different loading conditions on the pipe span

which are listed below as follows [21]:

1. Static Analysis of free spans induced by low depressions.

2. Static Analysis of free spans using simple beam relations based on ASME B31.8 codes.

3. Static Analysis of free spans induced by elevated obstructions.

4. General Dynamic VIV Analysis.

5. Analysis of Cross-flow VIV based on DNV Guidelines.

2.4.1 Static Analysis

The static analysis of free spans induced by low depression accounts for loads such as dead

weight of the pipeline and contents causing severe bending stresses resulting in sagging at the

middle of the pipe span. This method calculates MAFSL using the criteria of bending stress.

In the second method, the pipe is modelled as a beam and the MAFSL is calculated using the

longitudinal and combined stress limitations based on either Maximum Shear Stress theory or the

Maximum Distortional Energy Theory (Von Mises combined stress) prescribed by ASME B31.8

regulations. Static analysis of free spans induced by elevated obstructions is similar to that of free

spans induced by low depressions except that residual tension is taken into consideration in the

former case.
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2.4.2 Dynamic Analysis

The general dynamic analysis for VIV in free spanning pipelines is based on limiting the re-

duced velocity between 3.0 and 5.0, which corresponds to the onset of cross-flow VIV. The limiting

criteria for MAFSL is derived from the following relation [22]:

fs < 0.7fn (2.3)

where fs is the vortex shedding frequency calculated based on Strouhal number and fn is the nat-

ural frequency of vibration of the pipe. The probability of cross-flow VIV can be minimized when

the vortex shedding frequency around the pipe is less than 70% of the natural frequency of the

pipeline. Strouhal number is assumed to be 0.2 and the free span end fixity constant is taken as

2.52 assuming that the pipelines are partially fixed and supported [12]. The final methodology

prescribed for the analysis of cross-flow VIV is based on the limit state and partial safety factor

design criteria where safety class factor (ψT ), period transformation factor (ψD), natural frequency

reduction factor (ψR) and extreme current variability factor (ψU ) are taken into account for esti-

mating Maximum Allowable Free Span Length.

The output from all of these methods are compared and the most conservative or minimum

value is chosen as the critical span length.

2.4.3 Influence of Internal fluid pressure on Critical Span Length

There have been lots of studies to further understand how internal pressure influences the nat-

ural frequency of vibration of pipeline. Olav Fyriliev and Leif Collberg explained how both buoy-

ancy (external pressure) and weight of internal fluid (internal pressure) have an indirect effect

on the effective axial force which is mathematically modelled into a differential equation using

Hoop stress and Poisson effect [23]. Though DNV-RP-F105 provides some guidance on the crit-

ical buckling load and natural frequency of vibration of pipeline based on internal and external
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pressure, the non-linear effects due to gradual pipeline deflection are not exactly modelled and

expressions based on linear beam theory shall not be valid for all cases.

2.4.4 Influence of Soil Stiffness on Critical Span Length

In order to understand the effects of soil characteristics on the natural frequency of vibration,

the pipe-soil interactions were simulated using vertical and horizontal springs, that would prevent

pipe oscillations in the cross-flow and in-line directions respectively [15]. DNV proposed sim-

plified formulae for calculating dynamic lateral and vertical soil stiffness (equations 3.4 and 3.5)

based on the assumption that the soil is non-stratified and homogeneous. Finite Element Model-

ing and simulations were also carried out in ABAQUS with various boundary conditions. It was

observed that dense sand with pinned/pinned boundary condition had maximum influence on the

natural frequency of vibration and soft clay soil with fixed/fixed end condition had minimal influ-

ence on the natural frequency.

Hence, we can clearly see the governing factors which affect the critical span length changes

for each loading case, and there are difficulties in mathematically modeling the physics of the free

span scenario by considering all environmental parameters associated with pipelines. This thesis

is an attempt to understand the effect of these variables on MAFSL through historical data and

non-linear estimations using Artificial Neural Networks.
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3. DATA PREPARATION

The factors that govern the scour depth and maximum allowable free span length of river cross-

ing pipelines are multi-fold in nature. The exact relationships between them have not been iden-

tified completely and hence we resort to ANN to develop a robust prediction model. The task of

extracting relevant features from available data in a measurable form is quite challenging and is a

study of its own by itself. In this chapter, we highlight the process of determining suitable features

that are measurable from various data sources available online.

3.1 PHMSA Database

Pipeline and Hazardous Material Safety Administration (PHMSA) of the U.S. Department of

Transportation (DOT) has been responsible for collecting oil and gas pipeline related data and

incident reports in the United States from the early 1970’s, and have made them publicly accessible

online. Over many years, several modifications and regulations were established from time to time

regarding the way in which pipeline incidents had to be reported. Hence, the data may be found

to be temporally inconsistent with respect to the reporting criteria. The definition of an "accident"

has changed over time and for this reason, several accidents in the late 20th century and early 21st

century were not included in the dataset as they did not meet the criteria of an accident at that time.

PHMSA has been continuously increasing the quality and quantity of information that is being

made available to the public. The National Pipeline Mapping System (NPMS) Public Map Viewer,

a web based mapping application that serves public with displaying and querying data including at-

tributes related to gas transmission and hazardous liquid pipelines, functions under the jurisdiction

of PHMSA. Figure 3.1 indicates the map of Harris county in Texas as seen via NPMS Public Map

Viewer. The blue lines represent the Gas Transmission Pipelines and the red lines represent Haz-

ardous Liquid Pipelines. The violet and the green dots in the map indicate accidents that occurred

at those locations in Hazardous Liquid pipelines and Gas Transmission pipelines respectively. As

a user can controls the position of the cursor, he / she can obtain the latitude and longitude infor-
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mation for each point displayed in the mapping system. The NPMS Viewer allows the user to view

the pipeline routes one county at a time. One can also access the location of Liquefied Natural Gas

(LNG) plants and breakout tank data for every county in the U.S. through this mapping system.

Figure 3.1: NPMS Public Viewer for Harris County, Texas

This study considers all onshore river crossing gas transmission and hazardous liquid pipelines

in the U.S., regulated by PHMSA subject to failure by VIV loading during floods from 1986. Fac-

tors including Pipeline Outer Diameter (OD), Wall Thickness (WT), Yield Strength (SMYS), Pipe

material, Internal fluid pressure (P) inside the pipe, and Age of pipe from its installation year are all

captured from the corresponding incident reports in the PHMSA database. Apart from these fac-

tors, the latitude, longitude and time of pipeline failure are stored separately in order to reference

other databases to capture the associated river and soil properties of the incidents.

3.2 River Stage and Discharge rates - USGS and NOAA

The United States Geological Survey (USGS) and the National Oceanic and Atmospheric Ad-

ministration (NOAA) monitor real time discharge rates and water levels/stages for various rivers

and streams by setting up a network of streamgages and stations across the United States. The
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Advanced Hydrological Prediction Service under the NOAA provide river hydrograph mappings

that indicate the peak discharge rate during floods at various times in history. For each incident,

based on the latitude and longitude from the PHMSA database, we capture river depth, discharge

rate (Q) and in turn river velocity at four different times including the peak velocity occurrence

during the flood event.

3.3 Data for Dynamic Lateral and Vertical Soil Stiffness values

Modeling of pipe-soil interactions is essential for evaluating the static equilibrium configura-

tion and dynamic response of a free spanning pipeline. The lateral (horizontal) dynamic stiffness

KL is defined as the dynamic horizontal force between pipe and soil per unit length of pipe. The

vertical dynamic stiffness KV is defined as the dynamic vertical force between pipe and soil per

unit length of pipe. The two parameters KL and KV for non-stratified and homogeneous soil are

determined based on the DNV Recommended practice for Free Spanning Pipelines [7], which are

as follows

KV =
CV

1− ν
(
2ρs
3ρ

+
1

3
)
√
D (3.1)

KL = CL(1 + ν)(
2ρs
3ρ

+
1

3
)
√
D (3.2)

, where CL and CV are coefficients selected based on Table 3.1, ν is the Poisson’s ratio and equals

0.5 for undrained conditions, ρs / ρ represents the specific mass ratio between the pipe mass and

the displaced water and D is the pipe outer diameter in meters. Density of steel equals 7861 kg/m3.

Density of fluid inside the pipeline ia taken as 870 kg/m3 for light crude oil and 0.8 kg/m3 for

natural gas. The above stiffness parameters KL and KV play a crucial role in modeling pipe-soil

interactions to determine the natural frequency of vibration of the pipe. The soil type is identified

by the value of its friction angle, which is a characteristic parameter of the soil. Typical friction

angles for different types of sand are given in Table 3.2.
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Soil type CV (kN/m(5/2)) CL (kN/m(5/2)) KV,S (kN/m/m)
Loose sand 10500 9000 250

Medium sand 14500 12500 530
Dense sand 21000 18000 1350

Table 3.1: Dynamic stiffness factor and static stiffness values for pipe-soil interaction in sand.
Note. Adapted from [7]

The Natural Resources Conservation Service (NRCS) under the United States Department of

Agriculture provides soil maps and data surveyed throughout the United States as a web based

application to the public. Based on the river, the latitude and longitude of the pipeline incident, the

contents of sand on the pipeline shoulders are identified to determine its friction angle and in turn

the coefficient values. Using this method, the lateral and vertical dynamic soil stiffness values are

determined for all the pipeline incidents.

Soil type ψs

Loose sand 28 - 30o

Medium sand 30 - 36o

Dense sand 36 - 41o

Table 3.2: Typical Friction angles for sand.
Note. Adapted from [7]

3.4 Estimation of Reduced velocity

3.4.1 In-line oscillation

The in-line response of a pipeline span in current dominated conditions is associated with

either alternating or symmetric vortex shedding. The onset of in-line VIV can be analyzed from

the plot between reduced velocity (Vr) and stability parameter (Ks) as shown as Figure 3.2. The

dimensionless stability parameter plays a significant role in assessing in-line vortex induced motion

and is calculated as follows

Ks =
2Meδ

ρD2
(3.3)
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, where Me is the effective mass and equals the sum of mass of pipe, its contents and added mass,

δ is the logarithmic decrement of structural damping and equals 0.125 for steel, ρ is the density of

fluid around the pipe and D is the pipe outer diameter.

Figure 3.2: Reduced velocity for In-line oscillations based on Stability parameter Ks.
Note. Reprinted from [3]

The mathematical function representing the relation between reduced velocity and stability pa-

rameter in the first and second instability region is given by equation 3.4, which can be found in

Chapter 11, Handbook of Offshore Engineering [24].

Vr =


1 , if Ks ≤ 0.25

0.188 + 3.6Ks − 1.6K2
s , if 0.25 < Ks ≤ 1.2

2.2 , if Ks > 1.2

(3.4)
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3.4.2 Cross-flow oscillation

The onset of cross-flow VIV can be estimated from the plot between reduced velocity (Vr) and

Reynold’s number (Re) as shown in Figure 3.3, Offshore Pipelines (Second edition, Chapter 5)

[3]. Excitations in the cross-flow direction are far more dangerous than in-line when the vortex

shedding frequency roughly equals the natural frequency of vibration of pipe span due to higher

amplitudes of response and fatigue damage. The mathematical function representing the relation

between the two parameters is given by equation (3.5) from Chapter 11, Handbook of Offshore

Engineering [24].

Figure 3.3: Reduced velocity for Cross-flow oscillations based on Reynold’s number Re.
Note. Reprinted from [3]

Vr =


5 , if Re ≤ 5× 104

c1 − c2Re+ c3Re
2 + c4Re

3 + c5Re
4 , if 5× 104 < Re ≤ 3 ×106

3.87 , if Re > 3× 106

(3.5)

where c1 = 5.07148, c2 = 1.61569 × 10−6, c3 = 8.73792 × 10−13, c4 = 2.11781 × 10−19 and

c5 = 1.89218× 10−26.
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3.5 Data cleaning and preprocessing

In summary, we have chosen data corresponding to thirteen input features from various sources

available that can distinctly characterize the output parameters that were used in this study. In

Machine Learning, data cleaning involves identifying and filtering inaccurate or missing data in a

way easier to explore, understand and model for prediction. Any parameter involved in the set of

features should be relevant and measurable for the final model to have minimum error and high

accuracy during prediction. Incomplete data and non essential features need to be excluded in

order to allow our model to generalize well.

3.5.1 Correlation Matrix

Correlation is a statistical measure that indicates the strength and direction of a relationship

between a pair of variables. Correlation coefficient between variables X and Y where each pair of

data is denoted by (xi, yi) is calculated using the following relation:

r =

∑n
i=1(Zx)i(Zy)i
n− 1

(3.6)

where (Zx)i =
xi − x̄
sx

and (Zy)i =
yi − ȳ
sy

(3.7)

Here n represents the total number of ordered pairs in the dataset, x̄, ȳ indicate the mean of vari-

ables, and sx, sy represent the standard deviation of the variables X and Y. The correlation coeffi-

cient (r) varies between−1 and 1, and is a numerical measure of the degree of association between

the variables. Positive coefficients indicate a direct relation between the variables and negative cor-

relations represent an inverse relationship. Correlations above 0.4 are considered to be relatively

strong, those between 0.2 and 0.4 are moderate, and values between 0 and 0.2 are considered weak

in the positive direction. Similarly, correlations below−0.4 are considered strongly negative, those

between −0.4 and −0.2 are moderately negative and values between −0.2 and 0 are considered

weakly negative.
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S.No INPUT
OUTPUT Scour

depth
CSL for

In-line motion
CSL for Cross
flow motion

1 Pipe Outer Diameter (OD) 0.911 0.333 0.495
2 Pipe wall thickness (WT) 0.317 0.415 0.383
3 Yield Strength (SMYS) 0.407 0.136 0.191
4 Internal fluid pressure (P) 0.203 −0.035 0.055
5 River water depth (WD) 0.180 0.102 0.195
6 Age of pipeline installed (years) −0.048 0.260 0.216
7 Discharge rate (Q) 0.220 −0.125 −0.054

8
Ratio of density of fluid to that of density

of pipe material (carbon steel) (ρ/ρs)
−0.004 0.230 0.191

9
Ratio of density of water to that of density

of pipe material (carbon steel) (ρw/ρs)
−10−17 10−16 −10−16

10
Reduced velocity for in-line motion

(Vr) based on Stability parameter Ks
−0.425 0.074 −0.025

11
Reduced velocity for cross-flow motion

(Vr) based on Reynolds number Re
0.521 0.133 0.341

12 Dynamic Lateral soil stiffness (KL) 0.394 0.295 0.315
13 Dynamic vertical soil stiffness (KV ) 0.391 0.303 0.324

Table 3.3: Correlation between Input and Output features

Table 3.3 depicts the correlation coefficients between the 13 input parameters and the output

features that were identified. We find that there is almost no effect of ratio of density of water to that

of pipe material on the output features. Hence, all the remaining 12 parameters have been chosen

to model our neural network architecture, as they have relatively moderate or strong correlations

with the output features.
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4. ARTIFICIAL NEURAL NETWORK MODEL

Computational Intelligence primarily encompasses the family of neural networks, fuzzy logic

systems and evolutionary computing to construct data driven models for supplementing or replac-

ing models based on first principles. ANN models have found to be useful and efficient particularly

in problems where the characteristics of the processes are difficult to describe using physical equa-

tions. Having identified the important input features to predict CSL and Scour Depth from the

available datasets, we can proceed to define the ANN architecture as shown in this chapter.

4.1 Overview of Artificial Neural Networks

An Artificial Neural Network (ANN) is a computational model that has the ability to learn

and develop transformations or mappings between input and output parameters. It is an efficient

technique for solving classification and non-linear regression problems, where the derivation of a

mathematical model is not practical. A neural network algorithm is used to determine the relation-

ship between inputs and outputs of a system based on a training dataset that is essentially reflective

of the complete behavior inherent in the system. Once a reasonably accurate and representative

model is configured, we can perform several analysis methods that can provide us with insights to

the problems.

Figure 4.1: Representation of Hypothesis function
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4.1.1 Neural Networks Model Representation

Neurons and its associated weights constitute the primary elements of a typical neural network

architecture. Neurons within an ANN are basically computational units that can model the func-

tioning of a biological neuron by receiving inputs from various units and translating them into a

single output. This output is then fed as an input to another layer of neurons. Let us examine how

we can mathematically represent a hypothesis function using neural networks. Given a training

set, our objective is to learn a hypothesis function h : x −→ y , so that hw(x) is a good predictor for

the corresponding value of our output features y.

Figure 4.2: A generic neural network architecture with single hidden layer.
Note. Adapted from [4]

Figure 4.2 represents a generic neural network architecture with 5 input features x1, x2, x3, x4 and

x5, 1 hidden layer with 4 units namely a1, a2, a3 and a4, and an output layer with 1 unit ok which

is the result of the hypothesis function. Let us define all the variables that are used to model our
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hypothesis function:

aj = matrix of activation units in layer j

aji = activation unit i in layer j

wj = matrix of weights controlling function mapping from layer j to layer j + 1.

wj
i,k = element of the wj weight matrix that maps ith node of layer j and kth node of layer j+1.

bj = weight matrix elements that maps bias unit in layer j to neurons in layer j + 1.

f = activation function used to compute hidden layer neurons.

g = activation function used to compute neurons in the output layer.

L = Total number of layers in the network including the input and output layer. Here L = 3.

K = Number of output units. Here K = 1.

The values of the activation nodes in the Hidden Layer (second layer of the architecture) can

be obtained as follows:

a20 = 1 (bias unit)

a21 = f (b11 + w1
11x1 + w1

21x2 + w1
31x3 + w1

41x4 + w1
51x5)

a22 = f (b12 + w1
12x1 + w1

22x2 + w1
32x3 + w1

42x4 + w1
52x5)

a23 = f (b13 + w1
13x1 + w1

23x2 + w1
33x3 + w1

43x4 + w1
53x5)

a24 = f (b14 + w1
14x1 + w1

24x2 + w1
34x3 + w1

44x4 + w1
54x5)

The neuron in the output layer which is the predicted result of our hypothesis function can be cal-

culated as follows:

ok = g (b21 + w2
11a

2
1 + w2

21a
2
2 + w2

31a32 + w2
41a

2
4)

The hypothesis output is essentially the activation function applied to the sum of product of

activation nodes and elements of the weight matrix wj in the last layer. The activation function

can be visualized as a transformation that maps the input signals into output signal required for

the neural network to function. There are several non-linear activation functions including but not

limited to sigmoid, hyperbolic tangents and rectified linear units that can be selected based on the
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nature of data, network architecture and model performance.

4.1.2 Back-propagation algorithm

Back-propagation method [25], generally applied to multilayered feedforward neural networks,

is a learning procedure used to optimize the parameters in the hypothesis function by minimizing

the loss function for obtaining the best prediction model. The loss function can be defined in

a way that calculates the error in prediction. The algorithm takes an initial model with random

values for weights and updates itself through an iterative process to minimize error while predicting

output(s). The algorithm aims to calculate the gradient of the loss function with respect to all the

weights using the backward propagation of errors in the network. A slightly modified version of

the back-propagation algorithm is discussed in [26], to accelerate the convergence of the network.

4.1.3 Levenberg-Marquardt algorithm

The Neural Network architecture for predicting critical span length and scour depth can be

designed using the Deep Learning Toolbox in MATLAB. The Toolbox provides a framework to

create, train and analyse neural network models using various in-built algorithms and features. One

such algorithm is the Levenberg-Marquardt (LM) method [27] which was developed to optimize

non-linear least square error functions by combining the Gradient descent and Gauss-Newton min-

imization techniques. In the gradient descent method, the sum of the squared errors is reduced by

updating the parameters in the steepest descent direction. In the Gauss-Newton method, the sum

of the squared errors is reduced by assuming the least squares function as locally quadratic, and

finding the minimum of the quadratic. The LM method acts more like a gradient descent method

when the parameters are far from their optimal value, and acts more like the Gauss-Newton method

when the parameters are close to their optimal value. Since critical span length and scour depth

are non-linear functions of several variables, the LM algorithm was found to be best suited for our

case.
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Figure 4.3: Flow chart indicating the procedure for developing an ANN predictive model

4.2 Establishing Assumptions for Model Formulation

The model formulation during this study needed certain key assumptions to be made to predict

CSL and scour depth which are listed as follows:
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i. The pipelines are situated perpendicular to the flow, where maximum hydrodynamic loads and

vortex induced vibrations would be expected.

ii. The pipeline under study is on the river bed and hence scouring will expose the pipeline and

induce VIV, when flooding occurs.

iii. The soil on the pipe shoulder is assumed to be non-stratified and homogeneous in all the cases

for calculating lateral and vertical dynamic soil stiffness as there are no standard prescriptions

for computing stiffness values for heterogeneous soils.

iv. The free span end fixity constant is 1.57 for pinned/pinned ends and 3.54 for fixed/fixed ends.

In this study, we have considered the value to be 2.52 for all cases because in reality, pipes are

neither completely pinned nor clamped on the ends.

v. The cross sectional area of the river is taken as the product of width and depth, and the river

water is assumed to flow at mean velocity when it comes in contact with the pipe neglecting

the variation of velocity with depth.

4.3 Identifying Input and Output features for the Network

Forty five incidents were captured from the PHMSA database pertaining to failure of gas trans-

mission and hazardous liquid pipelines as a result of VIV loading due to floods in the last 35 years.

For each of the forty five incident cases, river velocity, discharge rate and river stage were captured

at four different times resulting in a total of 180 analyzed data sets.

Table 4.1 indicates the twelve input parameters that were identified for modelling the neural

network. Our input data can be represented as a 180 × 12 matrix, where 180 depicts the number

of samples and 12 depicts the number of features for every sample. Scour depth parameters were

evaluated for all the 180 data sets using the Froude Number approach as prescribed by Moncada

and Aguirre-Pe [20]. First general formulations of DNV on calculations of critical span lengths

due to inline and cross flow oscillations were carried out for all the cases. The critical span length

calculations for all the incidents were validated based on the approach prescribed by Minerals

Management Service under United States Department of the Interior [21].
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S.No Parameters Units
1 Pipe Outer Diameter (OD) inches (in)
2 Pipe wall thickness (WT) inches (in)
3 Yield Strength (SMYS) pounds per square inch (psi)
4 Internal fluid pressure (P) psig (gauge pressure)
5 River water depth (WD) feet (ft)
6 Age of pipeline installed years
7 Discharge rate (Q) Cubic feet per second (ft3/sec)

8
Ratio of density of fluid to that of

density of pipe material (carbon steel) (ρ/ρs)
-

9
Reduced velocity for inline oscillations (Vr)

based on Stability parameter Ks
feet per second (ft/sec)

10
Reduced velocity for crossflow oscillations (Vr)

based on Reynolds number Re
feet per second (ft/sec)

11 Dynamic Lateral soil stiffness (KL) lbf/ft2

12 Dynamic vertical soil stiffness (KV ) lbf/ft2

Table 4.1: Input Features for modeling Neural Network Architecture.

Hence our output data can be represented as a 180 × 3 matrix, where 180 depicts the number

of samples and 3 depicts the number of output parameters for every sample namely scour depth,

critical span length due to inline oscillation and critical span length due to cross flow oscillation.

4.3.1 Feature Scaling

Feature scaling involves dividing the input values of one or more attributes by the maximum

value of that particular attribute, resulting in a new range between 0 and 1. Unlike normalization,

feature scaling does not alter the distribution of the data and only re-scales the data to the desired

range. A good reason to perform features scaling is to ensure that one attribute doesn’t dominate

others. We can speed up the process of gradient descent by having each of our input values in

roughly the same range. The error decreases rapidly after every iteration and the model converges

quickly when the input features are re-scaled. The weight matrices will oscillate inefficiently when

the variables are uneven and have large ranges.
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4.4 Determining the best fit Artificial Neural Network model

Feature scaling was performed to selective attributes such as yield strength, internal fluid pres-

sure, discharge rate and dynamic lateral and vertical soil stiffness values to ensure all the input

attributes had values in a similar range. The 180 data sets were then split into 3 categories namely

Training, Validation and Testing in the ratio 15:2:3 which was determined by trial and error through

interactive tests. The schematic diagram of the Neural Network architecture designed by using

Deep Learning Toolbox in Matlab is depicted in Figure 4.4. The architecture comprised of a back-

propagation network with 2 hidden layers having 30 neurons each and the input layer having 12

neurons corresponding to the 12 features. The network was trained for various numbers of iter-

ations using the Levenberg-Marquardt (LM) algorithm. Based on the analysis of Mean Square

Error (MSE) for training, validation and testing data sets, the best model was chosen that general-

izes well. The performance of the model is discussed in the next chapter.

Figure 4.4: Neural Network Architecture
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5. RESULTS AND ANALYSIS

The prediction results of the ANN model are analysed in this chapter. The number of hidden

layers, neurons, transfer functions and training algorithm were determined in an iterative manner

based on the model performance. Table 5.1 summarizes the design parameters of the network

architecture used to train the model.

Number of input parameters 12
Number of hidden layers 2

Number of neurons in each hidden layer 30
Number of output parameters 3
Total number of data points 180

Data Division 15:2:3
Number of Training data points 135

Number of Validation data points 18
Number of Testing data points 27

Training Algorithm Levenberg-Marquardt (trainlm)
First hidden layer Transfer function Hyperbolic tangent sigmoid (tansig)

Second hidden layer Transfer function Hyperbolic tangent sigmoid (tansig)
Output layer Transfer function Linear transfer function (purelin)

Table 5.1: Model results and Network Architecture

The hyperbolic tangent sigmoid (tansig) transfer function is the mathematical equivalent of tanh

function and can be represented as follows:

tansig(N) =
2

1 + exp (−2×N)
− 1 (5.1)

The symmetric nature of the tansig function enables faster learning of the model when compared

to other activation functions. For the output neuron(s), the most appropriate activation function

for a feedforward neural network is a linear transfer function (purelin), as it reduces the loss in

accuracy of the model when hyperbolic tangent sigmoid transfer function is applied to normalized

data in the hidden layers.
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5.1 Performance Evaluation

The Performance function plays a crucial role in analyzing the speed and accuracy of the learn-

ing network. Here, the Mean Squared Error (MSE) is chosen as the performance evaluation func-

tion for the model. MSE is a statistical function which measures the average squared difference

between the estimated values and actual value. MSE is always positive, and values closer to zero

indicate better performance.

MSE =
1

n

n∑
i=1

| Yi − Yi |2 (5.2)

Here n represents the number of samples in the dataset, Yi and Yi indicate predicted value and

target value of the ith sample respectively. The MSE for Training, Validation and Testing datasets

after each iteration (epochs) is shown in Figure 5.2. The y axis is logarithmically scaled to clearly

interpret the variations in MSE as it goes below 10−1. The MSE for training dataset decreases

continuously with the increase in number of iterations and reaches the target of 10−3 after the

18th iteration. The MSE for validation dataset decreases for 11 iterations, and gradually increases

thereafter. The iteration where least MSE is observed for the validation dataset is selected as the

best model. This occurs after the 11th iteration with a MSE of 0.0129. Models from 12th iteration

onwards are considered to overfit the training data. The results of the mean squared error for

training, validation and testing data set is given in Table 5.2.

Performance analysis Mean Squared Error (MSE)
Target MSE for Training dataset 0.001

Number of iterations 18
Best performance observed 11th iteration

Overall MSE at best performance 0.0186
Training dataset MSE 0.0041

Validation dataset MSE 0.0129
Testing dataset MSE 0.095

Table 5.2: Mean Squared Error Results
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Figure 5.1: Neural Network Performance

5.2 Error Histogram

Figure 5.3 helps us visualize errors between the target values and predicted values for all 180

datasets after training our feedforward neural network. The histogram categorizes the 540 error

values into 20 bins with orange line indicating zero error. Percentage error distribution for training,

validation and testing dataset is given in Table 5.3. We see that 92% of predicted outputs in the

validation dataset and 94% of predicted outputs in the testing dataset have less than 1% error when

compared to theoretical results. The errors of the remaining outputs are also less than 4%.

Percentage Error Training data Validation data Testing data
< 0.5 90% 83% 77%

0.5 ∼ 1 8% 9% 17%
1 ∼ 4 2% 7% 6%

Table 5.3: Percentage error of predicted outputs in various datasets
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Figure 5.2: Neural Network Error Histogram

Table 5.4 indicates the percentage error distribution for training, validation and testing datasets

corresponding to each output feature.

Output variable Percentage Error Training set Validation set Testing set
< 0.5 96.3% 77.78% 81.48%

Scour depth 0.5 ∼ 1 2.22 % 11.11% 11.11%
1 ∼ 4 1.48% 11.11% 7.4%

Critical Span < 0.5 82.22% 83.33% 85.18%
Length for Inline 0.5 ∼ 1 15.56 % 11.11% 11.11%

oscillations 1 ∼ 4 2.22% 5.55% 3.7%
Critical Span < 0.5 91.11% 88.89% 81.48%

Length for Cross 0.5 ∼ 1 6.67 % 5.56% 11.11%
flow oscillations 1 ∼ 4 2.22% 5.56% 7.4%

Table 5.4: Percentage error of predicted outputs in various datasets
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5.3 Regression Plots

Regression plots indicate the relationship between actual values and the predicted values for

the chosen set of data points. The values of the correlation coefficient R between target and pre-

dicted values for training, validation, and testing data sets as seen in figure 5.4 indicate an accurate

prediction of the output values and hence validate the Artificial Neural Network model.

Figure 5.3: Neural Network Regression plots
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5.4 Training State Plots

Training state plots indicate how the control parameters vary with iterations. From the various

plots in Figure 5.5, we can observe the gradient value to decrease gradually indicating that the

error function is reaching its minimum. Mu is referred to as the Momentum parameter which is

included in weight update function to avoid the problem of local minima. It is approximately equal

to the inverse of the Hessian matrix. And finally, from the third plot between Validation checks and

iteration, we can see that the validation dataset MSE increases continuously after the 11th iteration,

an indication that the minimum MSE has been achieved.

Figure 5.4: Neural Network Training state plots
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5.5 Quantifying variable importance in the ANN model

ANN is a powerful statistical technique which captures the relationship between the variables

which cannot be easily described by a simple mathematical model. Although ANN provides little

explanatory insight into the explicit relation between the independent variables in the prediction

process, the Connection Weight Approach provides an excellent methodology for quantifying the

importance of the input variables in a neural network [6]. This method calculates the product of

the raw input-hidden-output connection weights between each input neuron and output neuron and

sums the products across all hidden neurons. The final weights are then used to rank the relative

importance of the input features for each output variable.

Overall Connection Weights

Input features Scour depth CSL for
In-line motion

CSL for Cross
- flow motion

Pipe Outer Diameter (OD) 1.9065 0.0017 −1.7096
Pipe wall thickness (WT) −1.4472 3.4527 4.5148
Yield Strength (SMYS) 2.6710 −2.0436 −0.3391

Internal fluid pressure (P) −2.7444 2.1488 2.4199
River water depth (WD) 0.9861 0.6742 2.7356
Age of pipeline installed 0.6202 0.3790 −1.5626

Discharge rate (Q) 4.6140 −5.3632 −8.6657
Ratio of density of fluid
to that of density of pipe

material (carbon steel) (ρ/ρs)
−0.2113 −1.5621 −3.6170

Reduced velocity for in-line
oscillations (Vr) based on

Stability parameter Ks

−2.7848 −2.2970 −4.1525

Reduced velocity for cross
flow oscillations (Vr) based on

Reynolds number Re

−2.7802 10.3404 9.6695

Dynamic lateral soil
stiffness (KL)

−1.2680 0.3035 3.4515

Dynamic vertical soil
stiffness (KV )

1.7570 0.4750 −3.4983

Table 5.5: Overall Connection Weights of Input parameters based on Olden’s approach.
Note. Adapted from [8]
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In order to better understand the interactions between variables, the strength and direction of

each connection weight within the network must be examined directly. A weight decides how

much influence the input will have on the output. Weights near zero imply changing this input will

not significantly affect the output. Negative weights mean increasing this input will decrease the

output. The relative importance of an input variable in estimating an output variable is computed

as a percentage of magnitude of its overall connection weight with respect to the summation of

absolute values of overall connection weights of all input variables.

Rank Scour depth prediction
Relative

Importance Input feature

1 19.4% Discharge rate (Q)

2 11.71%
Reduced velocity for in-line oscillations

(Vr) based on Stability parameter Ks

3 11.69%
Reduced velocity for cross-flow

oscillations (Vr) based on Reynolds number Re

4 11.54% Internal fluid pressure (P)
5 11.2% Yield Strength (SMYS)
6 8.0% Pipe Outer Diameter (OD)
7 7.4% Dynamic vertical soil stiffness (KV )
8 6.1% Pipe wall thickness (WT)
9 5.3% Dynamic lateral soil stiffness (KL)

10 4.1% River water depth (WD)
11 2.6% Age of pipeline installed

12 0.8%
Ratio of density of fluid to that

of pipe material (carbon steel) (ρ/ρs)

Table 5.6: Relative importance of input parameters in predicting scour depth

Table 5.6 displays the relative order of input features used in ANN to estimate scour depth.

Moncada and Aguirre-Pe used river velocity, water depth and pipeline outer diameter in their

derivation of empirical relationship to estimate scour depth [20]. Here, we see that factors such as

internal fluid pressure, yield strength, pipe wall thickness, dynamic vertical and lateral soil stiffness

are also statistically significant in terms of weights and play a crucial role in the prediction process.
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Rank CSL for in-line motion CSL for cross-flow motion
Relative

Importance Input feature Relative
Importance Input feature

1 35.6%
Reduced velocity for cross
flow oscillations (Vr) based

on Reynolds number Re

20.9%
Reduced velocity for cross
flow oscillations (Vr) based

on Reynolds number Re

2 18.5% Discharge rate (Q) 18.7% Discharge rate (Q)
3 11.9% Pipe wall thickness (WT) 9.7% Pipe wall thickness (WT)

4 7.9%
Reduced velocity for inline
oscillations (Vr) based on

Stability parameter Ks

8.9%
Reduced velocity for inline
oscillations (Vr) based on

Stability parameter Ks

5 7.4% Internal fluid pressure (P) 7.8%
Ratio of density of fluid
to that of pipe material
(carbon steel) (ρ/ρs)

6 7.0% Yield Strength (SMYS) 7.5%
Dynamic vertical soil

stiffness (KV )

7 5.4%
Ratio of density of fluid
to that of pipe material
(carbon steel) (ρ/ρs)

7.4%
Dynamic lateral soil

stiffness (KL)

8 2.3% River water depth (WD) 5.9% River water depth (WD)

9 1.6%
Dynamic vertical soil

stiffness (KV )
5.2% Internal fluid pressure (P)

10 1.3% Age of pipeline installed 3.7% Pipe Outer Diameter (OD)

11 1.05%
Dynamic lateral soil

stiffness (KL)
3.4% Age of pipeline installed

12 0.006% Pipe Outer Diameter (OD) 0.7% Yield Strength (SMYS)

Table 5.7: Relative importance of input parameters in predicting Critical Span Length

Table 5.7 shows the relative order of input features used to estimate Critical Span Length due

to in-line as well as cross-flow motion. We observe that factors such as reduced velocities based

on reynold’s number and stability parameter, discharge rate, pipe wall thickness and internal fluid

pressure have high relative importance in both cases. Dynamic vertical and lateral soil stiffness

values also have significant statistical contribution in terms of weights. Hence, we can conclude

that this approach results in the correct identification of variable contribution as it computes the

relative importance using raw weights and accounts for the direction of the input-hidden-output

relationship.
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5.6 Pipeline Vulnerability assessment using the ANN model

A screening level evaluation of vulnerability of pipelines at water crossings is performed by

comparing MAFSL and the maximum exposure length of the watercourse based on its geomorphic

properties. The vulnerability can be characterized using Free Span Ratio (FSR), which is defined

as the ratio of MAFSL to the maximum exposure length [28]. For the purpose of calculation, a

convenient assumption made is to use the bankfull width (Lbfw) of the water crossing in place of

the maximum exposure length, as it is relatively easier to measure either using aerial imagery or

laser rangefinder. Thus, Free Span Ratio is defined as follows,

FSR =
MAFSL

Lbfw

(5.3)

If FSR is ≤ 1.0, the maximum exposure length or bankfull width of the river is more than the

MAFSL, and hence the water crossing pipeline is said to be more vulnerable to VIV if it becomes

exposed. On the contrary, if FSR exceeds 1.0, the pipeline is unlikely to fail due to VIV even if it

becomes fully exposed as MAFSL is greater than the entire bankfull width of the river. Hence, we

can find that the vulnerability of pipeline to VIV failure is inversely proportional to FSR.

5.6.1 Estimation of river bankfull width

Moody and Troutman developed power law relationships between river width (w), depth (d)

and discharge (Q) based on data from a number of studies of world rivers that were used to char-

acterize the two dimensional structure of channel networks [29]. The proposed relationships were:

w = 7.2×Q0.5±0.02 (5.4)

d = 0.27×Q0.3±0.01 (5.5)
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Figure 5.5: Stream Corridor Structure.
Note. Reprinted from [5]

Having predicted the MAFSL for all the 180 cases using ANN model, we can proceed to

determine the vulnerability of these pipelines. Three values of the exponent namely 0.48, 0.5 and

0.52 are chosen to calculate the bankfull width using equation 5.4. Using the predicted MAFSL

values and the bankfull width, the Free Span Ratio (FSR) is calculated for the entire data set. The

calculated FSR values were found to be greater than 1 only for 4 out of the 180 cases when using all

three values for the exponent value of discharge rate. In all the remaining cases, FSR was less than

1 indicating potential threat to flood induced VIV and further validates the real time data subject

to failure of pipelines. This method of evaluating bankfull width and FSR can be considered as

a preliminary screening tool to assess the situation. The vulnerability estimate could be refined

by replacing the bankfull width with a more accurate or realistic value for the maximum exposure

length.
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6. CONCLUSION AND FUTURE WORK

Artificial Neural Network has helped develop a robust nonlinear model to predict critical span

length and scour depth of river crossing pipelines. The focus is to determine suitable input features

for the model. The overall influence of every input variable on the prediction model was analyzed

in terms of its connection weights and their relative importance was ranked for each output. It is

seen that factors such as Internal fluid pressure, dynamic lateral and vertical soil stiffness and age of

pipeline have a significant contribution in terms of weights in the ANN model and hence, cannot be

neglected. Best validation performance was observed at 11th iteration, with a mean squared error

value of 0.0129. Performance of training dataset reached its target mean squared error value of

0.001 after the 18th iteration. More than 80% of the predicted values in the validation and testing

dataset had less than 0.5% error. Free span ratio was calculated for all the cases and pipeline

failure vulnerability was estimated as the inverse of Free Span Ratio. About 97.8% of the cases

were found to be vulnerable to VIV failure which validates the model data.

This work can be further extended by collecting datasets for a particular pipeline or a specific

river having large number of water crossing pipelines, leading to the development of prediction

models for each pipeline and river. This way, all the unique environmental factors associated

with each river and pipeline can be successfully captured. Emerging wireless solutions and sensor

technologies enable unprecedented asset visibility and help understand pipeline behaviors under

different conditions including structural loads, deflection, weather changes, soil characteristics,

moisture and pH levels. This real time data from IoT based sensors play an important role to

develop reliable prediction models and optimize the effective service life of a pipeline.
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APPENDIX A

MATLAB SCRIPT FOR ANN DEPLOYMENT

% Solve an Input-Output Fitting problem with a Neural Network

% Script generated by Neural Fitting app

% This script assumes these variables are defined:

% x - input data.

% t - target data.

sheet_name = "Normalized values" ;

num = xlsread (’Database and calculations.xlsx’, sheet_name) ;

x = num (1:180, 1:12)’ ;

t = num (1:180, 13:15)’ ;

% Choose a Training Function

% For a list of all training functions type: help nntrain

% ’trainlm’ is usually fastest.

% ’trainbr’ takes longer but may be better for challenging problems.

% ’trainscg’ uses less memory. Suitable in low memory situations.

trainFcn = ’trainlm’ ; % Levenberg-Marquardt backpropagation.

% Create a Fitting Network

hiddenLayerSize = 30 ;

net = fitnet ( [hiddenLayerSize hiddenLayerSize], trainFcn ) ;
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% Choose Input and Output Pre/Post-Processing Functions

% For a list of all processing functions type: help nnprocess

net.input.processFcns = ’removeconstantrows’, ’mapminmax’ ;

net.output.processFcns = ’removeconstantrows’, ’mapminmax’ ;

% Setup Division of Data for Training, Validation, Testing

% For a list of all data division functions type: help nndivision

net.divideFcn = ’dividerand’ ; % Divide data randomly

net.divideMode = ’sample’ ; % Divide up every sample

net.divideParam.trainRatio = 75 / 100 ;

net.divideParam.valRatio = 10 / 100 ;

net.divideParam.testRatio = 15 / 100 ;

% Choose a Performance Function

% For a list of all performance functions type: help nnperformance

net.performFcn = ’mse’ ; % Mean Squared Error

% Choose Plot Functions

% For a list of all plot functions type: help nnplot

net.plotFcns = {’plotperform’ , ’plottrainstate’ , ’ploterrhist’ , ’plotregression’ , ’plotfit’} ;

net.trainParam.max_fail = 20 ;

net.trainParam.min_grad = 1e-7 ;

net.trainParam.show = 10 ;

net.trainParam.lr = 0.01 ;

net.trainParam.epochs = 1000 ;

net.trainParam.goal = 0.001 ;
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% Train the Network

[net, tr] = train (net, x, t) ;

% Test the Network

y = net (x) ;

e = gsubtract (t, y) ;

performance = perform (net, t, y)

% Recalculate Training, Validation and Test Performance

trainTargets = t .* tr.trainMask{1} ;

valTargets = t .* tr.valMask{1} ;

testTargets = t .* tr.testMask{1} ;

trainPerformance = perform (net, trainTargets, y)

valPerformance = perform (net, valTargets, y)

testPerformance = perform (net, testTargets, y)

% View the Network

view (net)

figure, plotperform (tr)

figure, plottrainstate (tr)

figure, ploterrhist (e)

figure, plotregression (t, y)

figure, plotfit (net, x, t)
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APPENDIX B

ILLUSTRATION TO QUANTIFY RELATIVE IMPORTANCE OF INPUT VARIABLES

Figure B.1: Sample calculations shown for three input neurons (1, 2 and 3), two hidden neurons
(A and B), and one output neuron (O). Note. Modified from [6]

Let us consider the model weights found after training the network to be as follows:

WA1 = −2.61 WB1 = −1.23
WA2 = 0.13 WB2 = −0.91

WA3 = −0.69 WB3 = 2.09
WOA = 1.11 WOB = 0.39

Table B.1: Input-hidden-output neuron connection weights

The overall connection weight which indicates the contribution of each input neuron to the output

is calculated as follows:

Input 1 ( WA1 ×WOA) + (WB1 ×WOB) −3.37
Input 2 ( WA2 ×WOA) + (WB2 ×WOB) −0.21
Input 3 ( WA3 ×WOA) + (WB3 ×WOB) 0.05

Table B.2: Overall connection weights corresponding to each input
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The relative importance of an input variable is computed as a percentage of magnitude of its overall

connection weight with respect to the summation of absolute values of overall connection weights

of all input variables.

e.g., RI1 = (3.37 / (3.37+0.21+0.05)) ×100 = 92.83%

Relative Importance
Input 1 92.83 %
Input 2 5.8 %
Input 3 1.3 %

Table B.3: Relative Importance of input variables
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APPENDIX C

TARGET AND PREDICTED VALUES OF THE DATASET

S.No Scour depth (in) CSL for in-line motion (ft) CSL for cross-flow motion (ft)
Target Prediction Target Prediction Target Prediction

1 12.073 12.072 9.410 9.409 15.262 15.262
2 11.487 11.491 12.351 12.352 20.020 20.018
3 10.208 10.191 17.302 17.297 28.691 28.692
4 9.694 9.707 19.397 19.400 32.381 32.378
5 6.210 6.209 30.694 30.695 52.868 52.870
6 6.211 6.211 30.745 30.745 52.958 52.957
7 6.212 6.212 30.770 30.769 53.003 52.999
8 6.215 6.216 30.791 30.790 53.040 53.042
9 5.435 5.443 9.925 9.929 16.237 16.234

10 5.435 5.439 9.938 9.939 16.259 16.258
11 5.436 5.436 9.946 9.945 16.273 16.274
12 5.442 5.434 9.948 9.945 16.277 16.279
13 6.681 6.690 115.271 116.115 194.906 196.308
14 6.681 6.683 116.222 116.223 196.514 196.514
15 6.681 6.679 116.250 116.249 196.562 196.563
16 6.681 6.675 116.410 116.286 196.832 196.627
17 9.832 9.836 7.583 7.584 12.868 12.869
18 9.834 9.835 7.587 7.585 12.874 12.872
19 9.838 9.834 7.588 7.588 12.877 12.878
20 9.841 9.832 7.593 7.589 12.884 12.881
21 4.612 4.612 15.310 15.304 23.715 23.710
22 4.612 4.611 15.321 15.328 23.732 23.744
23 4.613 4.614 15.325 15.319 23.739 23.727
24 4.613 4.613 15.329 15.332 23.745 23.748
25 12.132 12.151 20.268 20.279 32.538 32.549
26 12.142 12.146 20.274 20.275 32.547 32.546
27 12.147 12.143 20.287 20.285 32.569 32.570
28 12.154 12.139 20.297 20.291 32.585 32.586
29 12.814 12.811 94.881 94.879 167.740 167.741
30 12.817 12.834 94.987 94.982 167.934 167.909
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S.No Scour depth (in) CSL for in-line motion (ft) CSL for cross-flow motion (ft)
Target Prediction Target Prediction Target Prediction

31 12.810 12.825 95.641 95.648 169.130 169.128
32 12.795 12.783 96.788 96.783 171.224 171.226
33 12.331 12.333 45.761 45.765 82.291 82.289
34 12.332 12.332 45.771 45.770 82.310 82.310
35 12.333 12.332 45.776 45.770 82.319 82.319
36 12.334 12.332 45.779 45.772 82.325 82.326
37 6.065 6.069 17.412 17.413 30.028 30.029
38 6.071 6.072 17.423 17.423 30.049 30.049
39 6.079 6.076 17.429 17.427 30.060 30.060
40 6.077 6.076 17.487 17.487 30.164 30.165
41 13.212 13.211 25.797 25.804 42.305 42.317
42 13.206 13.207 25.900 25.891 42.474 42.458
43 13.189 13.202 26.019 26.011 42.670 42.663
44 13.196 13.196 26.141 26.144 42.873 42.878
45 32.986 32.958 17.835 17.905 28.221 28.193
46 33.014 33.014 17.846 17.845 28.238 28.237
47 33.017 33.038 17.864 17.833 28.267 28.287
48 33.032 33.076 17.878 17.801 28.289 28.338
49 11.003 11.009 7.055 7.057 12.056 12.056
50 11.003 11.005 7.062 7.062 12.061 12.060
51 11.005 11.000 7.067 7.066 12.064 12.065
52 11.001 10.998 7.079 7.076 12.073 12.072
53 7.694 7.690 10.079 10.080 17.034 17.036
54 7.587 7.591 10.307 10.304 17.445 17.436
55 7.574 7.575 10.339 10.337 17.501 17.500
56 7.553 7.552 10.387 10.389 17.588 17.596
57 8.016 8.013 30.243 30.240 51.302 51.300
58 8.017 8.009 30.404 30.426 51.587 51.623
59 8.007 8.007 30.577 30.583 51.895 51.904
60 8.001 8.005 30.719 30.715 52.146 52.138
61 4.338 4.341 13.642 13.640 22.703 22.702
62 4.339 4.338 13.653 13.652 22.723 22.725
63 4.335 4.333 13.696 13.697 22.798 22.800
64 4.326 4.325 13.773 13.774 22.931 22.929
65 4.028 4.023 17.014 17.008 27.198 27.193
66 4.029 4.026 17.020 17.019 27.209 27.209
67 4.030 4.030 17.030 17.032 27.225 27.230
68 4.030 4.033 17.053 17.054 27.263 27.263
69 4.503 4.494 14.627 14.636 25.658 25.684
70 4.496 4.495 14.707 14.685 25.804 25.769
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S.No Scour depth (in) CSL for in-line motion (ft) CSL for cross-flow motion (ft)
Target Prediction Target Prediction Target Prediction

71 4.496 4.499 14.734 14.736 25.853 25.854
72 4.495 4.502 14.765 14.774 25.909 25.917
73 9.236 9.238 14.848 14.845 24.041 24.043
74 9.236 9.237 14.850 14.850 24.045 24.046
75 9.237 9.236 14.852 14.853 24.048 24.046
76 9.237 9.236 14.853 14.855 24.050 24.047
77 4.474 4.469 72.113 72.112 124.082 124.080
78 4.474 4.471 72.174 72.149 124.187 124.145
79 4.474 4.474 72.195 72.206 124.223 124.242
80 4.474 4.475 72.232 72.221 124.288 124.268
81 32.709 32.710 36.895 36.896 114.608 114.609
82 32.726 32.724 36.896 36.895 114.605 114.606
83 32.733 32.732 36.898 36.900 114.596 114.599
84 32.737 32.738 36.902 36.903 114.583 114.583
85 29.438 29.439 35.077 35.076 97.088 97.089
86 29.453 29.452 35.078 35.078 97.086 97.086
87 29.459 29.459 35.080 35.081 97.080 97.080
88 29.463 29.463 35.084 35.083 97.071 97.071
89 16.355 16.354 21.476 21.475 40.226 40.225
90 16.363 16.363 21.476 21.477 40.226 40.226
91 16.366 16.367 21.478 21.477 40.227 40.227
92 16.368 16.369 21.480 21.478 40.229 40.230
93 14.203 14.205 39.544 39.545 66.475 66.475
94 14.202 14.204 39.577 39.607 66.534 66.591
95 14.207 14.206 39.598 39.598 66.571 66.572
96 14.209 14.207 39.624 39.622 66.617 66.618
97 13.257 13.257 44.225 44.218 76.943 76.938
98 13.251 13.247 44.404 44.410 77.274 77.279
99 13.237 13.232 44.693 44.709 77.810 77.824

100 13.210 13.220 44.997 44.985 78.372 78.363
101 5.105 5.105 25.805 25.800 43.457 43.448
102 5.105 5.105 25.837 25.844 43.514 43.525
103 5.102 5.103 25.929 25.912 43.673 43.643
104 5.102 5.102 25.952 25.950 43.713 43.710
105 10.557 10.555 12.659 12.644 20.440 20.396
106 10.558 10.550 12.669 12.673 20.455 20.453
107 10.550 10.544 12.695 12.707 20.495 20.518
108 10.531 10.539 12.734 12.730 20.558 20.560
109 3.458 3.452 50.447 50.448 97.659 97.673
110 3.458 3.455 50.524 50.521 97.809 97.809
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S.No Scour depth (in) CSL for in-line motion (ft) CSL for cross-flow motion (ft)
Target Prediction Target Prediction Target Prediction

111 3.458 3.461 50.630 50.632 98.013 98.012
112 3.458 3.464 50.682 50.706 98.115 98.149
113 14.854 14.855 21.265 21.265 42.732 42.732
114 14.871 14.865 21.297 21.297 42.795 42.796
115 14.890 14.874 21.307 21.305 42.817 42.813
116 14.850 14.871 21.400 21.403 43.008 43.011
117 5.539 5.539 9.215 9.214 17.410 17.409
118 5.538 5.540 9.219 9.220 17.417 17.419
119 5.540 5.540 9.222 9.222 17.424 17.424
120 5.542 5.541 9.228 9.228 17.435 17.435
121 15.230 15.229 9.218 9.361 21.035 21.270
122 15.191 15.192 9.280 9.279 21.042 21.042
123 15.168 15.167 9.314 9.287 21.047 21.017
124 15.165 15.165 9.330 9.330 21.050 21.050
125 8.143 8.169 6.320 6.303 11.722 11.706
126 8.140 8.141 6.335 6.330 11.748 11.748
127 8.127 8.121 6.358 6.361 11.790 11.797
128 8.096 8.101 6.405 6.407 11.877 11.873
129 10.532 10.521 13.450 13.433 26.546 26.514
130 10.527 10.525 13.463 13.461 26.571 26.573
131 10.530 10.532 13.469 13.471 26.583 26.582
132 10.530 10.535 13.473 13.479 26.590 26.592
133 8.034 8.040 16.738 16.738 32.264 32.264
134 8.035 8.037 16.747 16.748 32.282 32.283
135 8.032 8.032 16.771 16.766 32.331 32.326
136 8.034 8.026 16.784 16.783 32.358 32.357
137 22.058 22.061 26.887 26.888 58.309 58.309
138 22.042 22.039 26.957 26.956 58.385 58.375
139 22.002 21.999 27.067 27.066 58.507 58.506
140 21.907 21.924 27.264 27.272 58.733 58.805
141 6.526 6.526 25.691 25.691 47.439 47.440
142 6.524 6.525 25.743 25.743 47.540 47.538
143 6.526 6.526 25.770 25.769 47.592 47.595
144 6.523 6.523 25.839 25.839 47.725 47.725
145 11.044 11.044 14.997 14.998 29.598 29.599
146 11.031 11.034 15.033 14.971 29.671 29.552
147 11.017 11.023 15.075 14.938 29.756 29.495
148 10.985 11.014 15.151 14.888 29.912 29.424
149 12.633 12.631 13.478 13.476 24.436 24.437
150 12.629 12.632 13.492 13.493 24.452 24.451
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S.No Scour depth (in) CSL for in-line motion (ft) CSL for cross-flow motion (ft)
Target Prediction Target Prediction Target Prediction

151 12.610 12.610 13.528 13.529 24.491 24.492
152 12.587 12.585 13.571 13.570 24.539 24.539
153 27.316 27.341 29.072 29.067 61.309 61.299
154 27.139 27.107 29.414 29.420 61.869 61.882
155 26.915 26.859 29.813 29.834 62.541 62.589
156 26.395 26.404 30.725 30.723 64.137 64.133
157 17.942 17.930 48.625 48.640 95.395 95.461
158 17.941 17.940 48.654 48.653 95.454 95.453
159 17.938 17.947 48.684 48.682 95.515 95.484
160 17.937 17.960 48.718 48.696 95.585 95.473
161 9.045 9.044 14.541 14.541 26.142 26.143
162 9.045 9.046 14.545 14.545 26.151 26.152
163 9.041 9.046 14.559 14.634 26.176 26.294
164 9.039 9.046 14.567 14.689 26.190 26.382
165 3.041 3.034 10.447 10.472 18.237 18.243
166 3.041 3.037 10.450 10.464 18.243 18.243
167 3.041 3.040 10.457 10.459 18.254 18.251
168 3.040 3.042 10.469 10.466 18.276 18.279
169 9.813 9.813 14.574 14.576 27.103 27.104
170 9.818 9.818 14.575 14.574 27.103 27.103
171 9.820 9.820 14.576 14.575 27.105 27.106
172 9.821 9.820 14.577 14.577 27.108 27.110
173 17.922 17.924 24.588 24.585 52.407 52.409
174 17.922 17.920 24.596 24.600 52.417 52.415
175 17.915 17.915 24.619 24.620 52.445 52.444
176 17.910 17.912 24.632 24.630 52.460 52.461
177 3.892 3.895 3.451 3.449 5.984 5.987
178 3.893 3.892 3.452 3.451 5.986 5.985
179 3.889 3.888 3.458 3.459 5.997 5.997
180 3.886 3.884 3.464 3.467 6.008 6.007
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