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ABSTRACT 

 

Conjugated ladder polymers consist of π-conjugated, fused-ring repeating units, 

linked together by multiple strands of bonds. Such structural feature rigidifies the 

backbone and imparts unique chemical, optical, and electronic properties into ladder 

polymers. These valuable properties create an urgent incentive for solving the challenges 

associated with these materials: synthetic and processing challenges arise from the rigid, 

multiple-stranded backbones, and characterization of the solid-state morphology of these 

materials is limited. 

To overcome the synthetic challenges, ring-closing olefin metathesis (RCM) was 

applied to two model synthetic targets. RCM annulation can construct extended fused-ring 

structures in a highly efficient manner due to the strong thermodynamic driving force 

towards aromatization. We therefore applied RCM to create the fused-ring backbone in 

previously challenging systems: a donor–acceptor ladder polymer and a crosslinked 

porous ladder polymer network. Historically, the former had been limited by inefficient 

annulation reactions with electron-deficient backbone units, and the latter requires an 

annulation which can take place within the pores of the network. The employment of RCM 

led to successful synthesis in both cases due to its lessened dependence on backbone 

electronics and the catalyst’s ability to diffuse through the network pores, respectively. 

The network was made dispersible in organic solvents using a miniemulsion 

polymerization, affording nanoparticles that remained highly porous. Chemical, optical, 

and physical properties of these polymers were studied and reported, with emphasis on the 
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importance of the rigidified backbone for various processes, including optical properties, 

gas adsorption, and fabrication into composite materials. 

In order to accelerate the use of conjugated ladder polymers in practical 

applications, a stronger understanding of solid-state morphology is required, especially 

due to the strong effect of molecular orientation on their properties. However, such 

morphological studies are lacking for ladder-type macromolecules compared to non-

ladder analogues. To this end, ladder-type molecules and molecules were studied using 

grazing incidence X-ray scattering (GIXS), demonstrating controllable morphology using 

thermal annealing and solvent vapor exposure. By studying a variety of molecular sizes 

and structures, size-dependent and structure-dependent effects were identified and 

correlated to morphological changes. 

Overall, using RCM as a synthetic method and GIXS as an analytical technique 

both contributed to the advance of the research field of conjugated ladder polymers. These 

results provide valuable strategies for design, synthesis, and characterization of conjugated 

ladder polymers in order to improve the understanding of these materials in the pursuit of 

next-generation functional organic materials. 
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IR   Infrared 
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MALDI  Matrix-assisted laser desorption/ionization 
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Mn   Number average molecular weight 

mp   Melting point 
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Mw   Weight average molecular weight 
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NIR   Near-infrared 

NMR   Nuclear magnetic resonance 

OAc   Acetate 

OFET   Organic field-effect transistor 
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OLED   Organic light-emitting diode 
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PAN   Poly(acrylonitrile) 

PDI/PdI  Polydispersity index 
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PL   Photoluminescence 
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PPN   Porous polymer network 

PTFE   Polytetrafluoroethylene 

RCM   Ring-closing olefin metathesis 

RT   Room temperature 

SDS   Sodium dodecylsulfate 

SEC   Size exclusion chromotography 

SEM   Scanning electron microscopy 

STM   Scanning tunneling microscopy 

Sphos   2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl 

TFA   Trifluoroacetic acid 

TGA   Thermogravimetric Analysis 

TLC   Analytical thin-layer chromatography 

THF   Tetrahydrofuran 

UV-Vis  Ultraviolet–visible spectroscopy 
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CHAPTER I 

INTRODUCTION* 

1.1 Fully Conjugated Linear Ladder Polymers 

1.1.1 Introduction 

Fully conjugated ladder polymers (cLPs) are an intriguing subset of 

macromolecules. Their development has relied on a wide scope of synthetic strategies to 

obtain a host of unique structures and materials useful for their physical, optical, and 

chemical properties.1-3 In general, ladder polymers are multiple stranded polymers with 

periodic linkages connecting the strands, resembling the rails and rungs of a ladder, and 

giving an uninterrupted sequence of adjacent rings that share two or more atoms.4 

Conjugated ladder polymers (cLPs) are a specific subtype of ladder polymers in which all 

the fused rings in the backbone are π-conjugated. In addition, they are distinct from 

conventional conjugated polymers in that the fused-ring constitution restricts the free 

torsional motion in between the aromatic units along the backbone. 

Stemming from the fused backbone, cLPs exhibit extraordinary thermal, chemical, 

and mechanical stability.3, 5-7 Because of the diminished torsional defects, cLPs with fully 

coplanar backbones promise coherent π-conjugation,8 fast intra-chain charge transport,9 

and long exciton diffusion length.10 In contrast, the aromatic repeating units of 

conventional conjugated polymers tend to adopt non-zero dihedral angles either because 

* Adapted with permission from “Fully Conjugated Ladder Polymers” by Jongbok Lee, Alexander J.

Kalin, Tianyu Yuan, Mohammed Al-Hashimi, and Lei Fang, Chem. Sci., 2017, 8, 2503-2521. Copyright

2017 The Royal Society of Chemistry.
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of torsional strain or thermal fluctuation (Figure 1.1). Such torsional defects partially break 

the conjugation along the polymer backbone, resulting in decreased electronic 

delocalization, widened band gaps, increased numbers of trapped charges, and less 

effective intermolecular coupling.8, 11 Since the synthesis of poly(benzimidazole 

benzophenanthroline) (BBL) 1 in the 1960s,12 many different cLPs have been prepared 

and investigated for various applications.2, 3 Despite numerous reported syntheses of cLPs, 

the field has seen inherent synthetic challenges limiting the scope of usable precursors and 

reaction designs. Limitations are mainly related to several issues; (i) there are relatively 

few synthetic strategies available to efficiently construct defect-free structures; and (ii) 

poorly soluble products caused by backbone rigidity and coplanarity. In order to construct 

a well-defined cLP, the conversion of the ring annulation reaction must be nearly 

quantitative without undesired side reactions such as intermolecular cross-linking. Due to 

Figure 1.1. Graphical representation of conjugated ladder polymer 

(cLP) and conventional conjugated polymer with free torsional 

motions. 
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the lack of backbone rotation, at least one of the building blocks’ reaction sites should 

possess C2h symmetry in order for the rigid backbone to extend linearly. Furthermore, 

adequate solubilizing groups on the backbone of the cLPs are required to allow the 

reaction to complete while still obtaining soluble products for the subsequent 

characterization and processing. 

From initial synthesis, through to characterization, analysis, and finally as potential 

end-user applications, cLPs face a number of unique challenges not found in other organic 

materials, originating from their rigid ribbon-like structures.3, 13 The low solubility and 

backbone rigidity of the polymers limits the effectiveness of common polymer analysis 

techniques such as structural elucidation by NMR or molecular weight estimation by size 

exclusion chromatography (SEC). The low solubility also impedes simple solution 

processing methods in some cases. In this context, unique methods have been developed 

to circumvent these barriers, leading to more straightforward syntheses and widespread 

uses of cLPs. 

Despite the aforementioned challenges in cLPs, their exceptional stability and 

promising electronic properties have prompted exploration in various optical and 

electronic applications, such as OLEDs2, 5, 14-16 and OFETs,17-21 among others. In many 

examples, cLP optoelectronic properties surpassed that of their non-ladder type 

counterparts. 

In this perspective, the focus will center on the general synthetic strategies and 

specific examples of cLPs followed by discussion of chemical and engineering challenges 

associated with these materials. Annulation reactions of conjugated ladder oligomers will 



4 

also be discussed to demonstrate the scope of reactions available for creation of ladder-

type backbones. The demonstrated functions and potential applications of cLPs on 

multiple fronts are also discussed and outlined. Please note that conjugated step-ladder 

polymers3 (conjugated polymers composed of oligomeric ladder-type building blocks 

connected by single-stranded σ bonds) are not included in this discussion. 

1.1.2 General Synthetic Strategies 

The synthesis of a well-defined cLP must fulfill several criteria; (i) reasonable 

solubility and (ii) quantitative conversion in the ring-closing reactions. In addition, the 

issues impacting the degree of polymerization and polydispersity must also be taken into 

consideration. Therefore, the development of an efficient and versatile synthetic strategy 

is indispensable to explore the potential for a functional cLP. In general, two distinct 

approaches can be employed to construct a fully conjugated ladder-type structure (Figure 

1.2). One is single-step “ladderization” that constructs two strands of bonds 

simultaneously, such as polycondensation of tetra-functional monomers or repetitive 

Diels-Alder cycloaddition. The other approach relies on post-polymerization annulation. 

In this two-step approach, a pre-functionalized single-stranded conjugated polymer is first 

prepared, followed by the ladderization steps in which the functional groups cyclize to 

form the second strand of bonds. This stepwise approach provides a wider scope of 

applicable synthetic methods and monomeric building blocks. For this strategy, however, 

it is essential to ensure high conversion of the post-polymerization annulation reaction, 

while keeping good solubility of the reaction intermediate to achieve a well-defined ladder 

polymer with minimum levels of structural defects. Herein, we introduce the backgrounds 
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and features of important cLP syntheses, discuss developments in the last decade, and 

offer synthetic perspective on cLPs. 

1.1.2.1 Single-Step Ladderization 

In the late 1960s, Van Deusen reported the synthesis of BBL 1 for the purpose of 

thermally stable organic materials.12 BBL 1 now represents one of the most extensively 

studied cLPs to date. The synthesis of BBL 1 was achieved by a single-step 

polycondensation of two tetrafunctional monomers (1,2,4,5-tetraaminobenzene and 

1,4,5,8-tetracarboxynaphthalene) in polyphosphoric acid (PPA) solution. It can be viewed 

as a statistical copolymer of cis and trans isomeric repeating units. In parallel, one of these 

tetrafunctional monomers, 1,2,4,5-tetraaminobenzene, was also used in the construction 

of other cLPs with different comonomers by Stille et al.22, 23 Their first trial to prepare a 

Figure 1.2. Graphical synthetic approaches to construct a ladder 

polymer. (a) Single-step ladderization and (b) post-polymerization 

modification: ladderization. 
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polyquinoxaline (PQL) ladder polymer 2 with hydroxylketone and tetraamine monomers 

provided incomplete ladder formation resulting in low thermal stability due to the low 

reactivity of the hydroxyl group.22 By replacing the hydroxyketone monomer with a 

tetraketone monomer, e.g. 1,2,6,7-tetraketopyrene, where tautomerization is restricted, 

thermally stable PQL 2 was afforded in hexamethylphosphoramide (HMPA) solution at 

180 °C.23 It is noteworthy to mention that the key monomer (tetraaminobenzene) for the 

synthesis of BBL 1 and PQL 2, is not stable to air oxidation. Therefore, oxidative side-

reactions may cause structural defects of the cLP product if the reaction was not handled 

in a rigorously oxygen free condition. A similar synthetic strategy was employed in 

exploring the synthesis of poly(phenthiazine) (PTL) 3 and poly(phenooxazine) (POL) 4 

by Kim in the 1980s.24 These single-step polycondensed cLPs, however, can usually only 

be suspended in strong acids such as PPA or sulfuric acid, and are insoluble in common 

organic solvents. As a result, common solution phase characterization techniques (NMR 

and SEC) were not feasible to fully elucidate these structures. 

Figure 1.3. Chemical structures of trans and cis poly(benzimidazole benzophenanthroline) 

(BBL) 1, polyquinoxaline (PQL) 2, poly(phenthiazine) (PTL) 3, and poly(phenooxazine) 

(POL) 4. 
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Nonetheless, a promising synthetic approach was reported by Schlüter and 

coworkers in the mid-1990s.25, 26 The fully unsaturated ladder polymer backbone was 

achieved by using Diels-Alder reaction followed by dehydrogenation (Scheme 1.1). These 

two reactions both gave high conversions on small molecule model compounds. cLP 7a 

was synthesized through an AB+AB step growth polymerization using one single 

monomer containing both diene and dienophile functionalities. The product was analyzed 

by elemental analysis, UV-vis spectroscopy, and cross polarization magic-angle spinning 

(CP-MAS) 13C NMR spectroscopy.25 The carbon resonance peak corresponding to 

saturated carbons in the backbone of 7a disappeared after dehydrogenation. Compound 

7a was insoluble in common organic solvents even with a long looped alkyl solubilizing 

group. Furthermore, film formation was not possible even when using the low molecular 

weight fraction (Mn
 = 2 - 7 kg/mol by SEC). A different solubilizing group was also 

installed to improve the molecular weight of intermediate 6.26 When an ester-linked 

dodecyl alkyl chain was used as the solubilizing group and the reaction was performed in 

Scheme 1.1. Synthesis of ladder polymer 7 by Diels-Alder reaction 

followed by dehydrogenation. 
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an airtight ampoule, Mn of 6b was relatively improved (34 kg/mol by SEC and 85 kg/mol 

by osmometry). After dehydrogenation, CP-MAS 13C NMR spectrum of product 3b 

showed complete disappearance of the sp3 carbon on the polymer backbone. Product 3b, 

however, was still insoluble in several organic solvents, preventing its analysis by 

solution-phase 1H NMR spectroscopy. Although single-step ladderization has been 

investigated for over 50 years, the methods have not been widely adopted as a general 

approach for cLP synthesis due to the limited availability of ideal multifunctional 

monomers and their related solubility issues.  

By using intramolecular non-covalent bonds, ladder-like conjugated backbones 

can be constructed through the formation of only one strand of covalent bonds. This 

strategy could also be considered as an interesting one-step approach to cLP-mimicking 

polymers. Through this approach, one strand of covalent bonds is formed through 

polymerization while another strand of non-covalent bonds can be generated 

simultaneously because of the dynamic and spontaneous nature of the non-covalent bonds. 

This approach was demonstrated in 1996, when Meijer and coworkers synthesized27 a 

ladder-like polymer using intramolecular hydrogen bonding between the nitrogen on 2,5-

dibromopyrazine and an adjacently attached amide functionality (Scheme 1.2). In this 

case, although the intramolecular hydrogen bonding feature was observed by 1H NMR and 

IR spectroscopy, the synthesized polymer 8 was not able to adopt a fully coplanar structure 

along the backbone, due to the 2,2' H–H steric repulsion on the neighboring benzene and 

pyrazine units.28 It is imperative that no steric effect should be present between 

neighboring rings in order to approach backbone coplanarity by using non-covalent 
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interactions. Intramolecular dynamic bond-assisted coplanarization has been also reported 

using various kinds of non-covalent/coordination interactions such as N–H, S–N, and B–

N interactions.29-33 In principle, these dynamic yet simultaneous bonding could be used in 

the future for a one step construction of cLPs. In general, pre-organized non-covalent 

interactions could provide an alternative method to construct a coplanar ladder-like 

polymer without the concerns of the ladderization efficiency or intermolecular cross-

linking during a ladderization step. Furthermore, the dynamic nature of intramolecular 

bonding could allow a simple approach to actively control the torsional conformation and 

intermolecular packing while processing these polymers into the solid-state. 

1.1.2.2 Two Step Approach: Polymerization Followed by Annulation 

1.1.2.2.1 Kinetic Ring Annulation 

A widely used, Friedel-Crafts method to construct ladder-type poly(para-

phenylene) structures was reported by Müllen and coworker in 1991.34 The fused-ring 

backbones are achieved by transition metal-mediated polymerization followed by 

electrophilic cyclization. The synthesis of ladder-type poly(para-phenylene)s (LPPPs) 

Scheme 1.2. Synthesis of ladder polymer 8 by self-assembled intramolecular N-H interaction. 
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started with Suzuki polymerization of benzenebisboronic ester and aromatic ketone-

functionalized dibromobenzene (Scheme 1.3). The ketone functional groups on the single-

stranded intermediate 9 were reduced by lithium aluminum hydride or alkyllithium 

reagents. Eventually, Lewis acid-mediated Friedel-Crafts ring annulation afforded the 

double-stranded LPPP products. Due to the rigid coplanar backbone of LPPPs, their UV-

vis spectra possess a well-resolved vibronic progression with a very small Stokes shift (4 

nm).35, 36 In addition, MeLPPP (R3 = Me) 12 showed identical photoluminescence (PL) 

spectra in solution and the thin film state, indicating that the molecular conformation does 

not change from the solvated state into the solid state.2 The key factor in this synthetic 

strategy is the steric hindrance on the bridgehead. It is essential that substituents on -

CR2R3OH possess moderate steric hindrance (i.e., R3 = H or alkyl).2 Less hindered 

substituents can lead to intermolecular cross-linking during the reaction, resulting in 

insoluble by-products. On the other hand, a bulkier substituent could prevent the ring 

annulation from completing. Later, this synthetic strategy was expanded to prepare a 

number of different types of ladder polymers.37-41 

Scheme 1.3. Synthesis of poly(p-phenylene) ladder polymers (LPPPs) 11 and 12 by 

Friedel-Craft ring annulation. 
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Although 1H NMR and FT-IR spectroscopy detected no defect in LPPP polymers, 

careful investigations on the structure-property relationship of these polymers were 

performed to reveal small amounts of structural defects on their backbones which can be 

detrimental to the properties of the desired cLP materials.42 These defects were mainly 

caused by incomplete reduction of ketones that afforded monoalkylated fluorene 

backbones.43, 44 As a result, these defect sites can be subsequently oxidized into 

fluorenones. The synthetic method was modified by Ma and coworkers to give a lower 

level of structural defects and thus better thermal stability.45 This method was further 

improved by Bo and coworkers5 who introduced methoxy functional groups, replacing the 

hydroxyl groups to avoid keto defects (Scheme 1.4). In this case, a spiro-bridged 

solubilizing group was installed to minimize aggregation between the polymer chains. The 

bromide end groups of the conjugated polymer were end-capped using the monoboronic 

ester of 13 to afford a well-defined ladder-type structure. As a result, the synthesized spiro-

bridged LPPP 14 showed typical properties of a rigid cLP – no obvious chromatic shift in 

the UV-Vis and PL spectra between solution and the solid state was seen. In addition, the 

Scheme 1.4. Synthesis of spiro-bridged LPPP 14 by Friedel-Craft ring annulation. 
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polymer exhibited a small Stokes shift of 2 nm, and excellent thermal and optical stability. 

The remarkable thermal stability was also demonstrated by the unchanged PL spectrum 

after annealing at 110 °C for 24 h in air. Bo and coworkers. also reported the synthesis of 

a soluble imine-bridged ladder polymer 15 by Bischler-Napieralski cyclization (Scheme 

1.5).46 The carbazole-fluorene conjugated polymer with dodecanamides was cyclized by 

POCl3 in the presence of P2O5 to form the imine bridge. It is interesting to note that the 

repeating units of the synthesized ladder polymer 15 lack a C2h symmetry, resulting in a 

backbone which possesses an angular structure and does not extend in a straight manner.  

More recently, Scherf and coworkers. reported a donor-acceptor (D-A) alternating 

ladder polymer 16, fusing electron rich thiophene units and electron deficient 

benzothiadiazole (BTD) units in the backbone. The synthesis was achieved by reduction 

of the ketones followed by the ring-closing reaction in the presence of boron trifluoride 

(Scheme 1.6).36 The key to this successful synthetic design was the ability to pre-fuse the 

Scheme 1.5. Synthesis of carbazole-fluorene-based ladder polymer 15 by Bischler-

Napieralski cyclization. 
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electron-deficient BTD unit with thiophene, which avoided electrophilic cyclization on an 

already electron deficient aromatic unit. 

Scherf and coworkers also reported47 the synthesis of ladder type poly(p-

phenacene) derivatives by using Yamamoto coupling of a diketo-functionalized monomer, 

followed by carbonyl olefination in the presence of B2S3. Alternatively, the ladderization 

step could be also carried out by the McMurry reaction. In this report, polymer 17 with a 

linear side chain (4-decyloxyphenyl) resulted in a polymer which was marginally soluble, 

so that the product was soluble only at a low molecular weight (ca. 4 kg/mol). The 

solubility and molecular weight of ladder type poly(p-phenacene) derivative 17 was 

improved by replacing the linear side chain with bulkier (3,4-dihexyloxy)phenyl units.48 

A similar ladder-type backbone was also prepared by Swager and coworkers using 

electrophile-induced cyclization (Scheme 1.7).49 The acetylenic functional group on the 

conjugated polymer was cyclized in the presence of trifluoroacetic acid (TFA) to form 

aromatic rings to afford the ladder polymer 18. 

Scheme 1.6. Synthesis of D-A type ladder polymer 16 by Friedel-Craft ring annulation. 
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Electrochemical and photochemical oxidation reactions could also be employed to 

prepare cLPs (Scheme 1.8). Bard and coworkers described an electrochemical oxidation 

polymerization of precursor 19 to afford the postulated ladder polymer 20 deposited on 

the electrode surface. Because of the uncertain regioselectivity of the oxidative coupling 

process and the insolubility of 20, the precise structure cannot be characterized by 

solution-phase analysis.50 Xiong and coworkers reported photocyclization of a conjugated 

polymer precursor under sunlight,35 to afford D-A ladder polymer 21 with a highly rigid 

and coplanar aromatic core. Due to the electron deficient nature of its perylene diimide 

components, 21 exhibited a low LUMO energy level of -3.98 eV, promising good n-type 

semiconducting behavior. Although the ladder polymer 21 had moderate solubility in 

Scheme 1.7. Synthesis of poly(p-phenacene)s 17 and 18 by carbonyl olefination and 

electrophile-induced cyclization, respectively. 
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common organic solvents at room temperature, structural characterization of the ladder 

backbone proved to be difficult.  

In the cases discussed above, metal catalyzed cross-coupling reactions were 

employed prevalently to construct the conjugated polymer precursors. A synthetic method 

free of precious metal catalyst, however, would suit better for scalable production of cLPs. 

Recently, Fang and coworkers reported a 3-step, metal-free synthesis of conjugated ladder 

polymer 22 derived from quinacridone (Scheme 1.9).51 Relying on imine 

polycondensation and a subsequent in situ oxidation in air, a conjugate backbone was 

constructed. The ring annulation was achieved through a kinetic process mediated by 

methanesulfonic acid. Although 22 was not soluble in common organic solvent, the 

structural elucidation was achieved indirectly by characterizing its soluble derivative 23, 

which is functionalized with t-butoxycarbonyl (Boc) groups.  

Scheme 1.8. Synthesis of ladder polymer 20 by electrochemical oxidation and D-A type 

ladder polymer 21 by photochemical oxidation. 
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1.1.2.2.2 Thermodynamic Ring Annulation 

Distinct from kinetically controlled annulations, which require a careful selection 

of reagents and conditions for the efficient production of a single product due to the 

irreversibility of the reactions, thermodynamically controlled annulations, in principle, 

allow “error-checking” and “proof-reading” to push the reversible equilibrium to the most 

stable state.52 Because the goal in the synthesis of cLPs is usually to construct stable 

aromatic rings, thermodynamically controlled reactions should afford the desired product 

Scheme 1.9. Metal catalyst-free synthesis of quinacridone derived ladder polymers 22 and 

23.
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with higher yield and fewer structural defects such as unreacted sites or inter-chain 

crosslinking. 

In the 1990s, Tour et al. reported a thermodynamically controlled reaction for post-

polymerization modification that afforded cLP 24.53 Imine-bridged LPPP 24 was 

synthesized by imine condensation of a conjugated polymer precursor (Scheme 1.10). To 

avoid unwanted imine condensation between free amines and ketones during the 

polymerization step, the amino group was protected by Boc group before the 

polymerization. In several small molecule model reactions, this method afforded fused 

aromatic ring formation and showed nearly quantitative conversions. The conjugated 

polymer was converted into imine-bridged cLP 24 by deprotection of the Boc group in the 

presence of TFA. However, 24 was only soluble in TFA, which can result in the 

protonation of the nitrogen atoms along the polymer chains and could partially dissociate 

Scheme 1.10. Synthesis of imine-bridged LPPP 24 and D-A type ladder polymer 25 by 

thermodynamically controlled imine condensation. 
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the C=N bond; therefore, the structural analysis of unmodified 24 remained unclear. 

Luscombe and coworkers also reported solution processable imine-bridged ladder 

polymer 25 containing naphthalene diimide (NDI) building blocks, synthesized using the 

same method as 24 (Scheme 1.10).17 The β-branched 2-octyldodecyl alkyl side chain on 

the NDI nitrogens provided sufficient solubility for ladder polymer 25 in common organic 

solvents, though there was no discussion of the effects of the side chain stereocenter on 

the properties of the polymers. It is worthy to note that the SEC-measured molecular 

weight of 25 (Mn = 14 kg/mol) was overestimated due to the increased hydrodynamic 

radius of the rigid, ribbon-like backbone, giving a higher Mn than the precursor conjugated 

polymer (7.2 kg/mol). 

Another method that has recently been recognized as an efficient strategy to 

construct fused-ring aromatic systems is the thermodynamically controlled ring-closing 

olefin metathesis (RCM) method.54 The dynamic nature of the RCM reaction can avoid 

the formation of cross-metathesis side-products and drives the reaction equilibrium to the 

desired fused-ring product, which sits in a deep energy sink because of additional 

aromaticity. Fang and coworkers reported the synthesis of carbazole-derived ladder 

polymer 27 by RCM from vinyl pendant precursor polymer 26 (Scheme 1.11).7 The 

single-stranded conjugated polymer 26 was prepared by Suzuki polymerization and 

endcapped using styrene derivatives. The reaction was conducted in the presence of a 

catalytic amount of butylated hydroxytoluene (BHT) as a radical scavenger, to avoid 

radical crosslinking of the styrene-like derivatives. Because of the strong solubilizing 

effect of the α-branched 1-octylnonyl group on carbazole, cLP 27 showed good solubility 
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in common organic solvents at room temperature, allowing for solution analysis and 

processing. 13C NMR analysis of 13C isotope-enriched 27 revealed that the average 

number of possible unreacted vinyl groups in a single polymer chain was less than one 

(Defect < 1% and DPSEC = 23-27). Due to the minimum levels of unreacted defects, the 

polymer conformation was maintained in solution and the solid state giving nearly 

identical UV-Vis spectra in both states with Stokes shift of only 1 nm.  

Overall, the development of both single-step ladderization and stepwise 

polymerization followed by ladderization methods has steadily progressed in the past 

decade. Although the single-step approach is limited in reaction scope, the strategy of 

using simultaneous dynamic bonds should provide promising advancement for cLP 

synthesis. For the stepwise approach, various synthetic methods have been explored to 

expand the selection of kinetic ring annulation. Furthermore, recent examples of 

thermodynamic ring annulation have widened the scope of the synthesis of well-defined 

Scheme 1.11. Synthesis of carbazole-based ladder polymer 27 by thermodynamically 

controlled ring-closing olefin metathesis. 
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cLPs. As synthetic methods to develop a wider range of cLPs have improved, similar 

progress has occurred in their analytical and characterization techniques. Though the 

challenges originating from cLPs' highly rigid structures have prompted the rise of many 

new techniques, continued innovation of more advanced approaches is still a potentially 

impactful opportunity. 

1.1.3 Challenges and Issues 

1.1.3.1. Structural Defects 

In conventional conjugated polymers, the planar aromatic repeating units tend to 

adopt non-zero dihedral angles between each building block due to torsional strain and 

thermodynamic fluctuation.55 Such torsional defects partially break the coherent π-

conjugation of the backbone, shorten the effective conjugated lengths along the polymer 

chain, and decrease carrier mobilities.8, 56 The torsional defects also perturb the 

intermolecular packing of the polymer materials, resulting in a higher energy barrier for 

the charge carriers and excitons to transport throughout the bulk material.11, 57 These 

combined factors cause a much lower electronic performance of polymers compared to 

the theoretical value of a conjugated polymer chain.9 Unlike conventional conjugated 

polymers, ideal conjugated ladder polymers are torsional defect-free, maximizing π-

electron delocalization. As a result, cLPs with a perfect structure should show increased 

electronic performance over conventional conjugated polymers. Such a defect-free cLP, 

however, is challenging to synthesize and characterize, as described above. Most of the 

reported cLPs are likely decorated with structural defects resulting from unreacted sites or 

side-reactions. 
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Because of the significant impacts that polymer defects could impose on the 

material’s properties, methods to remove or prevent these defects on cLPs are valuable. 

There are multiple ways in which defects can occur in a ladder polymer, including 

impurities in starting materials, incomplete or inefficient ladderization reactions, or a loss 

of solubility en route to the desired product (Figure 1.4a and b). This leads to the demand 

of quantitative ladderization reactions, because even a small decrease in conversion from 

single-stranded conjugated polymer to cLP can cause multiple defects per strand if the 

molecular weight is high.  

Figure 1.4. Defects common in cLPs. (a) Conjugation breaking torsional defects formed by 

incomplete ladderization or postsynthetic degradation, (b) regioisomeric structures created 

during nonregioselective syntheses, and non-conjugation breaking emissive defects (c) as a 

result of non-ladderized chain end groups, and (d) internally in the polymer chain. 
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An alternative way to achieve low levels of defect in cLPs is to remove defect-

containing macromolecules. In the case of cLP 27, the small amount of polymer chains 

containing unreacted pendant vinyl groups was reacted in solution with 

azobisisobutyronitrile (AIBN) to initiate the free radical cross-linking of these vinyl 

groups. This reaction only takes place on the polymers containing vinyl defects, giving 

insoluble products that can be easily removed by filtration, leaving behind the pure defect 

free macromolecules in solution. In general, the defect removal process depends heavily 

on identifying reactions that selectively react with defect sites. For soluble cLPs, cross-

linking the unwanted polymer chains through defect site reactions may be developed into 

a useful method for purification.  

The end groups are also considered defects, because undesired end groups can 

affect the properties of the polymer by both acting as a charge trap as well as affecting 

long range packing in some conjugated polymers (Figure 1.4c).58-60 In this context, end-

capping a cLP during synthesis is sometimes necessary to lower the defect level for a 

better material performance. 

In addition, some cLPs may develop defects after synthesis. The defect-property 

correlations have been investigated thoroughly in LPPP derived cLPs, by taking advantage 

of the large difference in emission characteristics between the pristine polymer and those 

with defects. For example, LPPPs 11 and 12 undergo oxidative degradation that can either 

break one of the strands of bonds and create a torsional defect or be oxidized into an 

emissive ketone defect. Both LPPPs 11 and 12 and alkylated polyfluorenes, which are 

photooxidized into fluorenones, have been studied to illustrate the effects of these 
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emissive defects (Figure 1.4d).61 After these oxidative defects are formed, both systems 

show a broad, low energy emission, sometimes called the Green Band. Though originally 

thought to be caused by excimers or other intermolecular interactions, more recent 

research has shown that it was solely the effect of ketonic defects acting as emissive 

traps.62 Such oxidation is much more likely to take place if the bridgehead carbon contains 

a hydrogen, as illustrated in HLPPP (R3 = H) 11, which has a much stronger low-energy 

band than MeLPPP 12. It is also possible for residual impurities to play a significant role 

in the degradation of cLPs. Ma’s group showed that Pd(PPh3)4, a common aryl coupling 

catalyst, could trigger the oxidation of fluorene moieties into their fluorenone forms as 

well, demonstrating the critical role residual impurities could play in defect formation.63 

PL lifetime measurements of defect formation were recently investigated by Lupton and 

coworkers using poly(9,9-dioctylfluorene) as a model system,64 showing evidence that the 

Green Band is not a single broad band but instead consists of multiple emitters, each at a 

discrete wavelength. Scherf and coworkers showed that these emissive properties are still 

maintained in the absence of any intermolecular interactions, further suggesting the lack 

of excimer involvement in emissions.65 To rectify this problem, the previously discussed 

spiro-LPPP 14 was synthesized through a slightly different, but defect-resistant synthetic 

scheme, and consequently showed a stable emission.5, 66 These studies illustrated that 

defects can often impose significant impacts on the optical properties of cLPs.  

1.1.3.2. Solubility and Processing 

The features of rigid backbones enhance the strong π-π interactions of cLPs and 

often result in their limited solubility caused by these strong intermolecular attractions.1, 
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67, 68 A notable example of a fully fused aromatic system is graphite, which is composed 

of π-stacked graphene layers and is apparently insoluble in any organic solvent. In 

addition, the presence of heteroaromatic repeating units may cause other interchain 

attractive interactions, e.g. hydrogen bonds and dipole-dipole interactions. Limited 

solubility of many cLPs due to these properties imposes challenges in processability and 

therefore in many practical applications.  

A typical method to improve the solubility of cLPs is to introduce to the backbone 

flexible yet bulky side chains, which cause enough steric hindrance between chains to 

disrupt interchain aggregation.17 For example, in LPPPs 11 and 12, the two alkyl groups 

installed on the quaternary sp3 carbon center can be viewed as a branched alkyl group. As 

the branching point is moved farther from the polymer chain, interchain π-π distance 

decreases, leading to a general trend of decreasing solubility but increasing charge carrier 

mobility in bulk.69, 70 In addition, as alkyl chains grow longer, the amount of space taken 

up by nonconductive hydrocarbons increases, further separating conductive pathways. 

Therefore, a balance must be struck between solubility and device performance for a cLP 

that is designed for applications associated with electronic performances.69, 71-74 In order 

to address this dilemma, side-chain engineering in terms of chemical structures, linkages 

to the backbone, and conformations need to be investigated extensively to best achieve the 

desired processability and properties of the cLP materials. 

A promising strategy to address the aforementioned challenge is the employment 

of cleavable side-chains. Cleavable solubilizing groups enable solution processability of 

the cLP materials and can also be easily removed after processing to potentially allow for 
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efficient packing in the solid state (Figure 1.5a). In addition, these polymers should 

possess significant solvent resistance after processing and side-chain cleavage,75, 76 

providing additional advantages for processing and operation in harsh conditions. In the 

example reported by Fang and coworkers, quinacridone derived ladder polymer 22 was 

rendered soluble by the incorporation of bulky Boc protecting groups that inhibit 

intermolecular hydrogen bonds (Figure 1.5b).77 These Boc groups were then thermally 

cleaved to regenerate the hydrogen bonds and to produce thin films with remarkable 

solvent resistance. Grazing incidence X-ray diffraction (GIXD) measurements of the 

thermally annealed polymer thin films showed a decrease in the π-π stacking distance as 

a result of removal of the bulky Boc group (Figure 1.5c).  

Figure 1.5. (a) Proposed illustration using cleavable side chains in cLPs processing to 

obtain a well-ordered, solvent resistant film from an easily processed material. (b) 

Schematic representation of Boc cleavage of 22 by thermal annealing in the solid state. 

(c) GIXD of the as-cast film of 22 (blue) in comparison with that of the annealed thin

film (red). Reproduced from ref. 77 with permission from Elsevier.
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1.1.3.3. Characterization of Conformation and Molecular Weight 

Because of the inherent rigid nature of cLPs, their conformations and dynamics in solution 

are expected to differ from prevailing non-rigid polymers significantly. Quantitatively, this 

difference should give a much higher Mark-Houwink exponent (0.8 < a < 2.0) for cLPs than that 

of flexible polymers (0.5 < a < 0.8). Correlation between hydrodynamic volumes and molecular 

weights for cLPs is therefore also drastically different from that of flexible polymers. As a result, 

traditional solution characterization techniques, such as SEC calibrated by polystyrene standards, 

cannot provide accurate depictions of the conformation and molecular weight for cLPs. Research 

has illustrated that when using multiple methods of analyzing molecular weights,78-80 the measured 

values vary between the different methods used. To date, a number of different methods have been 

applied to solve these issues, with varying levels of effectiveness. 

Small angle X-ray and neutron scattering (SAXS and SANS) have been applied to 

characterize the conformations and gain accurate molecular weights of rigid polymers. X-rays 

interact with the electron cloud of the molecule, while neutrons are scattered by elastic collisions 

with the nuclei of the material. The scattering intensity for various values of concentration (c) and 

scattering angle (θ) is plotted in a Zimm plot. Upon extrapolation to c=0 and θ=0, the intersection 

of the two lines is equal to 1/Mw and can therefore be used to determine accurate molecular 

weights. In addition, the slope of the θ=0 line is proportional to the 2nd virial coefficient. SANS in 

particular provides a unique method of characterization on partially deuterated samples in order to 

provide a higher contrast variation without largely changing the sample itself, due to the 

differences of neutron scattering between hydrogen and deuterium.81 Alternatively, a 

hydrogenated sample in deuterated solvent can also provide the needed contrast. These techniques 

were used, for example, to study the conformation of LPPP 12 in solution.79 The use of both 

methods showed a persistence length of approximately 6.5 nm, indicative of a 3D ribbon-like 
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structure instead of a one-dimensional rigid rod.  However, the complexity of the instrumentation 

and radiation sources necessary for these forms of measurement make it challenging to perform 

routine measurements on other cLP systems.  

Simpler light scattering methods have also been utilized to characterize rigid polymers, 

including dynamic light scattering (DLS), which measures the anisotropic diffusion coefficients 

of the materials in solution and can be used to estimate the length of an idealized rigid rod.82 

Because of the simplicity and accuracy of measurement, DLS has been used for other rod-like 

structures and represents an accessible method for the conformational analysis of cLPs.83, 84 

Other methods to characterize molecular weights of rigid ladder polymers include the use 

of osmometry or viscometry.85, 86 These methods rely on the change in chemical potential of a 

solution of ladder polymers compared to a pure, non-theta solvent. Osmometry measures the 

osmotic pressure of a solution by change in volume through a semipermeable membrane 

(membrane osmometry) or of vapor pressure in a closed system (vapor phase osmometry). 

Viscometry measures the change in viscosity of varying concentrations of a polymer solution in 

order to find the polymer’s intrinsic viscosity, and via the Mark-Houwink equation, the polymer’s 

molecular weight. However, unreliable results may be obtained at either sufficiently high or low 

molecular weights depending on the method used. In addition, diffusion across the membrane of 

the osmometer can take extended time to reach an equilibrium. 

In order to calculate the molecular weight and polydispersity index (PDI) of cLPs in a 

more rigorous manner, several advanced methods can be used. These include SEC with 

viscometer-assisted universal calibration87, 88 or SEC coupled with multi-angle light scattering 

detectors.89, 90 The employment of these methods for the characterization of cLPs, however, has 

not yet been well-established. 
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Structural elucidation has been another major challenge for the investigation of rigid cLPs. 

Both 1H and 13C NMR spectroscopy suffer from broad and low intensity signals, due largely to the 

limited solubility of the cLP samples and aggregation. This problem can be circumvented by the 

use of isotope labeling or alternative isotope measurements,7 in particular 13C or 19F, although the 

drawback for this method is sometimes tedious chemical synthesis. NMR analysis at higher 

temperature could also be employed to improve data quality by increasing the solubility and 

breaking up any aggregation. The incorporation of distinctive side chain or end-capping groups is 

another simple method to facilitate easier characterization. Alternatively, using the effects that 

rigid macromolecules have on NMR linewidths can also offer unique information of the polymers, 

such as the nature of solution aggregation or solid-state crystallinity.91-93 

Surface probe microscopy can also be used to visualize the conformation of cLPs. In 

particular, due to the conjugated and semiconducting nature of the backbones, individual polymer 

chains of some cLPs can be visualized by scanning tunneling microscopy (STM). STM analysis 

of cLP 27 on highly-ordered pyrolytic graphite (HOPG) showed the rigid and linear shape of the 

Figure 1.6. (a) STM images of cLP 27 on HOPG. (b) section profile along the arrow line 

drawn in (a). (c) STM images of the graphene nanoribbon on HOPG from ref. 68. (d) section 

profile along the blue line in (c). Reproduced from refs. 7 and 68 with permission from The 

Royal Society of Chemistry and Nature Publishing Group, respectively. 
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polymers with repeating units that aligned well with calculated dimensions of an oligomeric model 

(Figure 1.6).7 In addition, STM has found extended use in the visualization of graphene 

nanoribbons with improved resolution due to the extended conjugated system’s favorable 

interaction with graphite substrates.68, 94  

In general, though many accurate techniques have been adopted for cLP characterization, 

the most common method remains the use of non-rigid SEC standards. Therefore, the widespread 

application of a universally accurate method would help standardize measurements across the 

breadth of the field, increasing the quality and efficiency of related research. 

1.1.4 Applications of cLPs 

As discussed in the previous sections, cLPs possess rigid and planar backbones 

with optimum π-electron delocalization and are free of torsional defects. From this 

perspective, cLPs are analogous to graphene nanoribbons, which combine the excellent 

charge transport property of graphene with opened band gaps as high-performance 

semiconducting materials.95 In addition, the rigid and planar backbones of cLPs also 

render extremely small Stokes shifts and high photoluminescence quantum yields.96 

Furthermore, cLPs display potentially high thermal and optical stability as well as high 

resistance to chemical degradation.2 Such combination of unique properties of cLPs make 

them promising candidates for a wide range of applications.   

1.1.4.1. Optical applications 

Early examples have demonstrated that the superior optical properties of cLPs 

could lead to high performance in OLEDs.2 One area of focus has been the use of LPPPs 

as the active layer for OLEDs, taking advantage of the highly efficient yellow-green 

electroluminescence (EL).1414 OLED devices fabricated using spiro-LPPP 14 as the active 



30 

layer exhibited almost identical EL and PL spectra due to the minimal ketonic defects.5 

This result indicated again the significant impact of defects on opto-electronic properties 

of cLPs and the importance of a low level of defects in these materials. Blue-green 

emitting derivative MeLPPP 12 showed EL efficiency up to 4%.15 To improve its 

processability, nanoparticles of MeLPPP 12 have also been prepared via miniemulsion 

and employed in an OLED device.16 Although the device showed a similar maximum 

brightness with that of the device fabricated from homogeneous solution, the turn-on 

voltage for the EL was reduced by 7 V. This improvement based on the nano-particulated 

ladder polymer was attributed to a better electron injection from the nanoparticles to the 

electrode.  
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Besides OLED applications, MeLPPP 12 has also been spin-cast onto a 

poly(ethylene terephthalate) substrate97 to afford a low-cost flexible distributed feedback 

laser. The laser emitted blue light centered at 487 nm with a linewidth of less than 0.4 nm 

(Figure 1.7b). Another optically interesting example of cLPs is ladder-type triply fused 

porphyrin tapes (28a - f), which show a remarkably red-shifted absorption band in the IR 

region (Figure 1.8).98 This IR absorption band was a result of the strong intramolecular 

Figure 1.7. Optical properties of ladder polymers. (a) Absorption (—) and PL 

spectra (---) of a thin film of MeLPPP 12. (b) A photo of a blue, flexible laser 

made from MeLPPP 12. Reproduced from ref. 2 with permission from The 

Royal Society of Chemistry. 
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electronic coupling and coplanar geometry of the molecule. The IR absorption maximum 

increases linearly with the number of porphyrin units, demonstrating the large increase in 

effective conjugation length. The porphyrin polymer 28f with the highest number of 

repeating units showed an absorption peak around 3500 cm-1, making it a good candidate 

as an IR sensor. It is likely that 28f has not yet reached the maximum effective conjugation 

length. Such a unique photophysical property of 28 was originated from the large coherent 

π-conjugation through triply fused backbone. As a result, the porphyrin tapes exhibited 

much faster internal conversion processes and energy relaxation dynamics of the lowest 

excited states compared to that of monomer and the non-ladder type porphyrin 

oligomers.99 

1.1.4.2. Electronic Applications 

cLPs show promise to reach a high charge carrier mobility compared to 

conventional conjugated polymers owing to a low level of torsional defects and a long 

effective conjugation length. Siebbeles and coworkers studied the intrachain mobility of 

Figure 1.8. (a) Chemical structures of ladder-type porphyrins 28a–f. (b) UV-vis-IR 

absorption spectra of porphyrins 28a–f. (c) Plot of IR absorption maximum (band III) 

versus the number of porphyrins (N). Modified and reproduced from ref. 98 with 

permission from The American Association for the Advancement of Science. 
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LPPPs using time resolved microwave conductivity.9 With an average repeating unit of 

54, the hole mobility along the MeLPPP 12 chain reached a remarkable value of 600 cm2 

V-1 s-1. This high intrachain charge carrier mobility suggested that the bottleneck for the

charge transport in bulk cLP materials is interchain charge transport.  

In terms of bulk electronic properties in OFETs, BBL 1 has been investigated 

extensively since the late 1980s.100 A series of improvement on charge transport properties 

were achieved by doping the BBL thin films with Lewis acid, but the overall mobility of 

fabricated devices was relatively low (10-6 to 10-4 cm2 V-1 s-1).19, 20 In 2003, Jenekhe and 

coworkers achieved a record high electron mobility of BBL 1 up to 0.1 cm2 V-1 s-1 by 

doping and processing it with methanesulfonic acid (MSA).18 This value was 5 orders of 

Figure 1.9. Performance of BBL 1 based OFETs. (a) A single BBL nanobelt bridging 

the source-drain electrode to generate a transistor. (b) Output curve of a typical BBL 

nanobelt transistor. (c) Transfer curve of the corresponding transistor. (d-f) Air 

stability analysis of P3HT and BBL transistors. Plot of (d) mobility, (e)current on/off 

ratio, and (f) threshold voltage as a function of time for both BBL and P3HT 

transistors. Reproduced from refs. 21 and 102 with permission from American 

Chemical Society and The Royal Society of Chemistry, respectively. 
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magnitude higher than that obtained from a non-ladder type control polymer. Electron 

diffraction studies demonstrated a higher degree of crystallinity of the MSA-processed 

BBL film. This result also represented one of the highest electron transport mobilities 

achieved on an n-type polymer OFET at that time. Later on, Xia and Jenekhe and 

coworkers developed a high-yield solution-phase processing method to prepare BBL 

nanobelts with a good ambient stability.21 The BBL nanobelt was prepared by adding BBL 

in MSA solution dropwise to a CHCl3 and MeOH mixture with rapid stirring. These 

nanobelts can be suspended in water and used to fabricate OFET device via solution 

deposition. The n-type OFET device showed a mobility up to 7 × 10-3 cm2 V-1 s-1 and the 

on/off current ratios (Ion/off) of 104 (Figure 1.9a-c). Moreover, in contrast with many n-type 

organic semiconductors which are sensitive to oxygen during operation,101 the BBL-based 

devices demonstrated exceptionally good stability in air for more than 4 years, even better 

than p-type polythiophene devices (Figure 1.9d-f).102 The remarkable stability of BBL 

devices was attributed to its high degree of crystallinity and compact packing, which 

serves as a kinetic barrier to prevent oxygen from diffusing into the thin film.  

Because of its excellent electronic properties and stability, BBL 1 has been used 

as a photoanode for the direct light-driven water oxidation reaction.103 The BBL 

photoanode showed good photoelectrochemical stability with no sign of degradation after 

3 hours of water oxidation reaction. The electrical and thermoelectrical properties of a 

solution-processed BBL thin film was also studied very recently.104 After n-doping, the 

BBL thin film exhibited an electrical conductivity as high as 1.7 ± 0.6 S-1, three orders 

higher than that of NDI-based conventional conjugated polymer P(NDI2OD-T2). Density 
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functional theory (DFT) calculation indicated that BBL possesses a much more 

delocalized polaron along its backbone than P(NDI2OD-T2), due to its coplanar backbone 

and low level of torsional defects. After optimizing, the thermoelectric power factor (S2σ) 

of BBL reached 0.43 μW m−1 K−2
, much higher than those observed for non-ladder 

P(NDI2OD-T2).   

Luscombe and coworkers reported the fabrication of an n-type OFET using an 

NDI-based ladder polymer 25.17 OFET device fabrication using 25 from chlorobenzene 

solution by spin-coating exhibited an average electron mobility of 0.0026 cm2 V-1 s-1, 

which is three orders of magnitude larger than its non-ladder counterparts. The on/off 

current ratio of the device (Ion/off  = 104) was 2 orders of magnitude higher than that of the 

non-ladder type polymer. 

Figure 1.10. Chemical structures of (a) SBBL 29 and (b) PQL 30. Electrochemical 

performance of ladder polymer nanoparticles. Cycling performance of (c) BBL 1, SBBL 

29 and (d) PQL 30 nanoparticles showing their superb stability. Rate capability of (e) 

BBL 1, SBBL 29 and (f) PQL 30 nanoparticles. Reproduced from refs. 107 and 108 with 

permission from Wiley-VCH. 
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Recently, cLPs with a large number of heteroatoms were found to be promising 

candidates for anode materials of lithium batteries. The prevailing electrodes for lithium 

batteries in the current market are graphite and LiCoO2. The theoretical capacities of these 

materials, however, are only about 372 mAh g-1 and 140 mAh g-1, respectively.105 One 

important strategy to increase the performance is to incorporate redox active heteroatom 

sites into fused-ring sp2 systems, such as nitrogen or sulfur. Fan and coworkers 

synthesized a polysulfur-grafted ladder poly(pyridinopyridine) by heating the precursor 

poly(acrylonitrile) (PAN) with sulfur at 350 °C.106 Although the constitutional structure 

of this ladder polymer is not well-defined, the high percentage of nitrogen and sulfur atoms 

permits multi-electron states for this polymer to give a high reversible capacity of 1750 

mAh g-1. Yan and Zhang and coworkers exploited nanoparticles of BBL 1 and its 

derivative SBBL 29 as the anode materials of a rechargeable lithium ion battery.107 These 

ladder polymers showed a high capacity (1787 mAh g-1, 0.05 C), a good charge rate (317 

mAh g-1, 6 C) and an excellent reversibility (1000 cycles, 496 mAh g-1) (Figure 1.10c and 

e). Inspired by these results, PQL 30 was synthesized to represent a ladder polymer with 

a large number of nitrogen heteroatoms to serve as the lithium ion insertion sites.108 At the 

charge rate of 0.05 C under 50 oC, the lithium half-cell made from PQL 30 nanoparticles 

exhibited a capacity of 1770 mAh g-1 (Figure 1.10d). Moreover, PQL 30 maintained a 

reversible capacity (above 300 mAh g-1) at a high charge rate of 5 C (Figure 1.10f). The 

excellent electrochemical performances of cLP materials promise their applications as 

alternative electrodes for lithium ion batteries. 
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1.1.4.3. Outlook for potential applications 

Despite the aforementioned examples, large-scale applications of cLPs have not 

been widely established yet, likely due to the synthetic and processing challenges. It is 

anticipated, however, that these issues can be solved using various chemical and 

engineering tools. Therefore, advancement along this direction together with the 

promising properties of cLPs could open up a number of intriguing opportunities for cLP 

applications. 

First of all, cLPs can be viewed as functionalized fragments of single-wall carbon 

nanotubes (SWCNTs) or graphene nanoribbons. The exceptionally high Young’s modulus 

(> 1 TPa) of SWCNTs and graphene109, 110 suggest that the simplest linear cLPs, 

polyacenes, could potentially possess good mechanical properties. DFT calculations on a 

polyacene resulted in a chain moduli as high as 745 GPa, close to that of (5,5) CNT (1046 

GPa).6 Although polyacenes cannot be synthesized so far due to synthetic challenges and 

chemical stability issues,111 cLPs similar to polyacenes can be potentially prepared and 

should afford comparable mechanical performances. 

Furthermore, cLPs are also promising candidates as precursors for high 

performance carbon fibers. Currently, most high-performance carbon fibers are produced 

from PAN.112 Before carbonization, PAN fibers undergo a stabilization process in which 

they are oxidized to form a ladder polymer-like structure.113 The progress of the 

ladderization reaction largely determines the quality of the carbon fiber. Therefore, 

carbonization of a defect-free ladder polymer with a well-controlled structure could 
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potentially further enhance the mechanical properties of carbon fibers and enrich their 

functionalities. 

Another potential application for cLPs is for organic photovoltaics (OPVs). Step-

ladder polymers have been extensively studied for active layer materials in OPVs.114 For 

step-ladder polymers, the increase of the conjugation length of the polymer would 

effectively enhance charge separation and carrier mobility, contributing to a better power 

conversation efficiency of the OPVs.115 Compared to step-ladder polymers, cLPs possess 

an even more planarized structure, rendering a higher electron delocalization, larger 

charge carrier mobility, and better absorptivity, resulting in a potentially higher 

photovoltaic efficiency. OPV performances should become optimized as the active 

polymers approach a fully defect-free conjugated structure. In addition, the promising 

thermal and photo-stability of cLPs could serve as the key to address the stability issues 

of OPVs. Of course, potential morphological problems still remain when utilizing these 

highly rigid polymers in a device setting. 

Furthermore, the rigidity and concomitant low disorder of cLPs also make it an 

ideal platform to study Bose-Einstein condensate (BEC) physics of exciton-polaritons. 

BECs of exciton-polaritons were normally observed in crystalline materials considering 

the high level of disorder in the condensed phase. Due to the complexity of crystal growth 

in the microcavity, investigating BEC physics was challenging. Stoferle and coworkers 

demonstrated exciton-polaritons’ BEC state can be generated in an amorphous MeLPPP 

12, at room temperature, when coupling the polymer thin film to the confined photon mode 
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of a Fabry-Perot microcavity.116 This study suggests cLPs can provide a new approach to 

study BEC physics with a simplified experimental condition. 

1.1.5 Linear cLP Outlooks 

This section summarizes important historical syntheses, examples of processing 

and applications of cLPs, as well as significant advances in the past decade. The intriguing 

properties of cLPs promise their future as next generation functional polymer materials. 

However, in order to maximize the potential of this class of materials, the challenges 

associated with the synthesis, structural defects, characterization, solubility, and 

processability of cLPs need to be addressed. 

For the synthesis of a well-defined cLP, the development of synthetic strategies in 

either single-step ladderization or post-polymerization ladderization has seen significant 

progress. Although the single-step approach is limited by the availability of reactions 

suitable for the formation of multiple strands of bonds, the idea of using spontaneous 

intramolecular dynamic bonds enables the possibility of constructing a coplanar ladder-

like structure through a single-step polymerization. The stepwise strategy – i.e., 

polymerization followed by ladderization, – now could afford feasible approach to well-

defined cLPs with fewer structural defects. More recently, thermodynamic ring 

annulation, including RCM, has widened the scope of well-defined cLP synthesis and 

promises the production of defect-free cLPs.  

In order to analyze cLPs’ highly rigid structures, analytical and characterization 

techniques have to evolve alongside the development of synthetic strategies. In contrast 

with conventional conjugated polymers, the conformation and dynamics of cLPs in 
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solution are significantly different. Therefore, common characterization methods such as 

SEC with polystyrene standards do not provide accurate depictions of the conformation 

and molecular weight for cLPs. Several different analytical methods have been applied to 

overcome the limited effectiveness of SEC. However, the complexity of the 

instrumentation restricts extensive routine measurements for cLPs. The visualization of 

rigid ribbon-like structures was also studied by STM. Even though STM displayed 

detailed conformations of rigid structures at a small scale on solid substrate, it cannot 

provide an all-encompassing analysis of the entire batch or that in solution. 1H NMR 

spectroscopy provides rich characterization information of cLPs, but it is often limited by 

the line broadening and low signal/noise ratio. Hence, the development of accurate 

characterization methods for cLP characterization is as important as the development of 

synthetic strategies. 

Owing to the limited solubility of cLPs in common organic solvents, only a few 

successful processing methods were reported before LPPPs were first reported. Because 

LPPPs are usually soluble in common organic solvents, their electronic and optical 

properties have been extensively studied. Particularly, MeLPPP 12 has been used for many 

applications such as OLEDs and OFETs and showed excellent optoelectronic properties. 

Moreover, the advances made in processing methods allowed processability of insoluble 

cLPs like BBL 1 through the formation of nanoparticles, leading to devices showing 

exceptional air stability for multiple years. More recently, cLPs have been applied as 

electrodes for lithium ion batteries and demonstrated superior capacity and reversibility. 
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Despite these exciting progresses, the applications of cLPs have not been fully explored 

yet due to previously mentioned challenges.  

Overall, cLPs possess great potential in applications at multiple fronts due to their 

promising superior properties with remarkable stability. Throughout 50 years of 

exploration and development, we have seen the promising aspects of cLPs as functional 

organic materials. We believe, however, that many more thrilling discoveries in this class 

of materials will be made in the future.  

1.2 Crosslinked Ladder Polymer Networks 

Porous materials are of a great interest to numerous applications, including 

chemical storage, separations, catalysis, and energy, among many others, with porous 

polymers making up a significant subset of such materials.117  The versatility, modularity, 

and broad synthetic scope of organic polymer chemistry enables highly tunable, 

application-directed polymeric materials.118 A recent area of significant growth revolves 

around the use of conjugated monomers to form such polymeric systems such as covalent 

organic frameworks (COFs)119, 120 or porous polymer networks (PPNs). The latter term, 

PPN, is herein used to describe amorphous polymer networks comprised of solely 

conjugated repeating units, while COFs refer to crystalline networks. The rigid backbones 

of the materials stabilize permanent porosity, often exhibiting high Brunauer-Emmett-

Teller (BET) surface areas with different backbone functionalities giving rise to targeted 

performance for specific applications.121, 122 As with the previously discussed linear 

conjugated polymers, ladder polymer chemistries have been applied to crosslinked 

polymers to achieve improved properties.  
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The majority of reported crosslinked cLPs rely on the simultaneous creation of 

both strands of bonds in a single reaction step, though multiple examples of the sequential 

polymerization–annulation strategy are discussed below. One potential limiting factor for 

the sequential strategy is that the second annulation step must take place homogeneously 

within the pores of the initially polymerized network, which may limit diffusion of bulky 

catalysts, though appropriately sized reagents can still be successful.123 

Often, reversible reactions such as imine condensation are used to obtain both 

bonds in a similar manner to early linear cLPs. For example, Jiang and coworkers reported 

multiple aza-fused π-conjugated microporous frameworks through imine condensation of 

multifunctional monomers (Scheme 1.12). 1,2,4,5-tetraaminobenzene and triquinoyl 

hydrate were polymerized to form crosslinked cLP 31 as an amorphous network and later, 

triphenylene hexamine and t-butylpyrene tetrone gave 32 as a crystalline COF.124, 125 In 

both cases, the microporous solids possessed a high BET surface area, including up to  

1227 m2 g-1 in the case of 31 synthesized at 500 °C. The fused nitrogen sites allowed these 

networks to be used in energy applications, including for supercapacitive energy storage124 

or for photoenergy conversion and charge transport.125 Another condensation reaction 

used to give crosslinked cLPs is the acid-catalyzed trimerization of indole-containing 

molecules. Scherf and coworkers used various Lewis and Brønsted acids to polymerize 

three different monomers to obtain cLPs 33-35 with BET surface areas varying from 

nonporous up to 1165 m2 g-1.126 Ruoff and coworkers recently reported the mostly 

amorphous cLP 36 by ionothermal cyclization of o-cyanoaniline derivatives in the 

presence of ZnCl2, releasing NH3 gas as the reaction proceeds.127 The highly nitrogenous 
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backbone improved CO2 adsorption, with an uptake capacity of up to 7.16 mmol g-1 (at 

273K, 1 bar) and a CO2/N2 selectivity ratio of over 74. 

Other crosslinked ladder polymers have recently been reported using aromatic 

substitution reactions of strongly electron-deficient perflourinated aromatic monomers 

(Scheme 1.13). Swager and coworkers reported the concept of using a reversible SNAr 

reaction to create fully fused aromatic products.128 They were able to leverage this 

reversibility to obtain high yielding small molecules, macrocycles, and an amorphous cLP 

37 possessing a BET surface area of 817 m2 g-1, though the extent of polymerization was 

relatively low likely on account of poor solubility. It is certainly likely that a greater extent 

of polymerization could improve the porous characteristics of the material, as evidenced 

Scheme 1.12. Synthesis of crosslinked cLPs based on one-step condensation 

polymerizations. 
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by a similar SNAr polymerization reported by Qiu. They polymerized tetrafluorinated 

monomers with hexahydroxyltriphenylene in a base-catalyzed solvothermal reaction to 

give crystalline, ladder-type COF 38, which were highly stable in strongly acidic, basic, 

reducing, and oxidizing environments on account of their poly(aryl ether) backbones.129 

In a few cases, branched ladder polymers have been synthesized using the two-

step polymerization–annulation strategy.130, 131 These examples relied on the chemistry 

used in the synthesis of LPPP, in which an aryl coupling polymerization is followed by a 

Friedel-Crafts type annulation. Interestingly, these polymers remain soluble after both 

polymerization and annulation. The molecular weights reported indicate that this 

solubility may result from a relatively low degree of polymerization. The low degree of 

polymerization as well as the large sidechains used for solubility of the monomers also 

mean that these polymers are likely nonporous, though porosity is not discussed in the 

text. These cases illustrate that solubility is a key challenge in the synthesis and application 

Scheme 1.13. Synthesis of branched cLPs using base-catalyzed nucleophilic aromatic 

substitution reactions. 
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of crosslinked cLP networks. To date, a porous yet processable crosslinked ladder polymer 

network has remained an elusive target, motivation for the work presented in Chapter 4. 

1.3 X-ray Scattering for Thin Film Morphology Characterization 

As significant motivation behind cLP research stems from their potential as 

applied materials, characterization of their solid-state morphology is important in 

determining their propensity for different end uses. Because conjugated materials have 

anisotropic charge transport properties, the manner in which molecules are aligned on a 

substrate makes certain charge transport directions more favorable than others.132-135 In 

some devices, charge transport occurs parallel to the substrate, while in others such as 

photovoltaic cells and light-emitting diodes, charge transport typically occurs 

perpendicular to the substrate. Therefore, a reliable method to characterize the solid-state 

packing of conjugated materials on a substrate is essential. 

Grazing-incidence X-ray scattering (GIXS) has emerged as a powerful 

characterization technique to probe molecular packing and thin film nanostructure.136-139 

A material of interest on a substrate is exposed to an X-ray beam at a very shallow incident 

angle (α𝑖), generally below the critical reflective angle (α𝑐) of the substrate and above that 

of the studied film. The beam therefore penetrates the film but not the substrate and is 

subsequently scattered by the electron clouds of the molecules (Figure 1.11).  The small 

α𝑖 creates a long, narrow footprint along the surface, with a width equal to the beam width

and length equal to the beam height divided by sin(α𝑖), e.g., for a 50 µm diameter circular 

beam with α𝑖 = 0.15°, this equates to a footprint of 50 µm × 1.9 cm. This means that the 

observed scattering is averaged over a large distance in the sample, ensuring that the 
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resulting data is statistically representative of the majority of the film rather than being 

influenced by local inhomogeneities. Scattering patterns, which arise from constructive 

interference of repeating features in the film, are monitored by a 2D area detector 

downstream of the sample. Features from atomic or molecular distances of a few Å up to 

domains of hundreds of nm can be resolved, with scattering direction and intensity both 

providing valuable insight to the nature of the film. The scattering peaks themselves 

represent the intersection of the scattering vector with the Ewald sphere, resulting from 

momentum transfer of the X-rays upon interaction with the electrons in the molecules. 

The scattering data is in reciprocal-, or q-, space and can be considered the Fourier 

transform of the real-space lattice. Real-space distances 𝑑 can be calculated by the 

equation 𝑑 =
2𝜋

𝑞
 in order to determine film distances from the scattering data, though 

corrections are needed to map the spherical scattering vectors to the flat area detector.140 

Figure 1.11. Simplified schematic of GIXS setup. Different detector–sample distances 

are used for different scattering angles which provide information on different length 

scales in the film. 
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Importantly, this inverse relationship means that larger q values correspond to smaller 

repeating real-space distances and vice versa. 

The length scales of observable features are determined by the angle of scattering 

from the sample, primarily divided into wide-angle (GIWAXS) and small-angle 

(GISAXS) geometries. These angles are dependent on the sample-detector distance, 

ranging from tens of centimeters in GIWAXS to multiple meters in GISAXS (Figure 

1.11). The larger q values detectable in GIWAXS correspond to atomic or molecular 

distances of down to a few Å. In cLPs, this is often used to identify interchain distances 

with a specific emphasis on adjacent π systems due to the importance of through-space 

conjugation. The longer flightpath for scattered X-rays in GISAXS can resolve smaller 

scattering angles, corresponding to larger features such as block copolymer phase domains 

or other nanostructures. Because intermolecular distances are of greater importance to the 

performance of conjugated molecules and macromolecules, GIWAXS is often a 

preferential method for characterizing such materials and will be the focus herein. 

The direction of the scattering peaks is directly related to the orientation of the 

repeating features within the film, generally defined as being out-of-plane (qz axis) or in-

plane (qy axis) with respect to the substrate plane. Out-of-plane scattering therefore results 

from repeating features perpendicular to the substrate, whereas in-plane scattering 

indicates features parallel to the substrate plane. For conjugated molecules and 

macromolecules, correlating the π–π features with the substrate plane gives rise to the two 

most commonly described packing modes: edge-on and face-on packing. Edge-on packing 

refers to packing in which the “edges” of the π-system are aligned towards the substrate, 
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and the π-faces are aligned perpendicular to the substrate. In face-on packing, on the other 

hand, the π-face repeating structures are parallel to the plane of the substrate. It is 

important to note that these are conventions used to describe the direction of a certain 

repeating feature and do not necessarily indicate substrate–molecule angles of exactly 90 

or 0°. However, these packing geometries have been correlated with changes in device 

performance due to the direction of charge transport on a substrate.135 Therefore, they are 

useful diagnostic tools to report packing geometries of cLPs. Though there are some recent 

examples of using GIWAXS to characterize thin film morphologies of cLPs,77, 104, 141, 142 

the use of this technique and the knowledge it provides will surely be a significant part of 

the field as it continues to grow.  



49 

CHAPTER II  

DONOR–ACCEPTOR LADDER POLYMER VIA AROMATIZATION-DRIVEN 

THERMODYNAMIC ANNULATION* 

2.1 Introduction 

 Conjugated ladder-type polymers are macromolecules in which the π-conjugated 

backbone units are connected and fused with multiple strands of covalent bonds (Figure 

2.1a). These polymers possess unique properties as a result of their fused constitution, 

rigid conformation, and lack of torsional disorders.1, 2, 143-145 Integration of a ladder-type 

constitution into functional conjugated macromolecules presents an intriguing strategy for 

enhancing their materials performance. The construction of multiple strands of bonds 

along the conjugated polymer main-chain in a precise manner, however, remains a major 

*Adapted with permission from “Donor–acceptor conjugated ladder polymer via aromatization-driven

thermodynamic annulation” by Jongbok Lee, Alexander J. Kalin, Chenxu Wang, Julia T. Early,

Mohammed Al-Hashimi, and Lei Fang, Polym. Chem., 2018, 9, 1603-1609. Copyright 2018 The Royal

Society of Chemistry.

Figure 2.1. General retrosynthesis of (a) a D–A type ladder polymer and (b) a D–A type 

conjugated polymer. The curved arrows indicate free torsional motions. 
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synthetic challenge despite significant advances in the past decade. Moreover, the 

incorporation of structural features that are critical to materials applications imposes 

additional constraints on the synthesis of functional ladder polymers. It is urgently 

desirable to overcome these difficulties in order to exploit the promising material 

properties of conjugated ladder polymers,5, 15, 97, 98, 107, 108 such as their thermal and 

chemical stability,5, 7, 45, 77 high conductivity,9, 18, 104, 146, 147 and low energy bandgap.98, 148 

Conjugated polymers with alternating electron-rich donor units and electron-

deficient acceptor units (D–A polymers) predominate as active materials in high 

performance organic photovoltaic devices.149, 150 Fusing the conjugated main-chain of D–

A polymers into a ladder-type constitution can potentially break through the limits of 

exciton diffusion,10 inter-chain electronic coupling, and bandgap engineering.143 The 

syntheses of D–A ladder polymers, however, are rarely reported17, 35, 141, 151 due to the 

combined challenges originating from the electron-deficient monomer in addition to the 

ladder-type backbone. The electron deficiency of the acceptor monomer makes it difficult 

to attach functional groups necessary for backbone annulation. Moreover, the electron-

poor units often lead to decreased reaction efficiencies on the subsequent 

postpolymerization annulation, such as the widely used Friedel–Crafts intramolecular 

cyclization2, 38, 41, 152 and Scholl oxidation,35, 98 resulting in structural defects along the 

polymer chains.153-155 Scherf and coworkers reported the synthesis of a D–A ladder 

polymer by Friedel–Crafts annulation,151 in which the acceptor was prefused with 

electron-rich units before polymerization, so that the potentially inefficient cyclization 

was avoided. 
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Recently, we demonstrated that thermodynamically controlled ring-closing olefin 

metathesis (RCM) is a powerful tool to annulate conjugated polymers7 and oligomers in 

high efficiency.156 The reversible nature of RCM prevents undesired intermolecular cross-

metathesis side products, while the formation of stable aromatic rings facilitates 

quantitative conversion in the ring annulation step.7, 54, 156, 157 Furthermore, the mild and 

neutral reaction conditions allow for a wide substrate scope and excellent functional group 

tolerance.158 Although RCM of electron-deficient olefins is still potentially challenging, 

the aromatization could provide the thermodynamic driving force (e.g., approximately −28 

kcal mol−1 when converting 2,2′-divinyl-1,1′-biphenyl into phenanthrene54) to overcome 

this problem and lead to an efficient ring annulation. Herein, we report the efficient 

synthesis of a D–A ladder polymer through RCM annulation. Induced by coplanarity of 

the ladder polymer backbone, this polymer demonstrated intriguing optical properties. 

2.2 Results and discussion 

To obtain the desired D–A ladder polymer, a Suzuki coupling polymerization of 

vinyl-functionalized donor and acceptor monomers can be used to construct a conjugated 

D–A precursor (DACP), similar to the conventional synthesis of nonladder type D–A 

polymers (Figure 2.1b). Subsequently, it can undergo thermodynamically controlled RCM 

to afford the D–A ladder polymer (DALP) (Figure 2.1a). In this example, 2,1,3-

benzothiadizole (BTD) was employed as the acceptor unit due to the following factors: (i) 

its low-lying molecular orbital energy levels render it sufficiently electron-deficient, (ii) 

its 4,7-positions are easily functionalized to serve as Suzuki coupling sites, and (iii) its 

5,6-positions can be transformed into vinyl groups for RCM from pre-positioned methyl 
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groups. A key factor in the design of the monomers is the requirement for at least one of 

the monomeric units to be centrosymmetric in order to afford a linear ladder backbone. 

Due to the non-centrosymmetric nature of BTD, an indolo[3,2-b]carbazole derivative with 

C2h symmetry was selected to serve as the donor unit in order to maintain the desired linear 

constitution of the resulting rigid polymer.  

The donor monomer ICz-M was derived from 3,9-dibromoindolo[3,2-b]carbazole 

(Scheme 2.1) as described in the literature.159 First, α-branched 1-octylnonyl alkyl chains 

were installed on the N-positions to enhance the solubility of the desired D–A ladder 

polymer by breaking the potentially strong intermolecular π–π interactions.7 In order to 

enable RCM of the polymer intermediate, the molecule was functionalized ortho to the 

bromide groups through Vilsmeier-Haack formylation to give the dialdehyde derivative 

S2. Installation of one strongly electron-withdrawing formyl group onto the 

indolocarbazole core did not inhibit the second formylation reaction. Vinyl groups for 

RCM were then installed through Wittig olefination. To provide functional groups for 

Suzuki coupling, the aryl bromides were lithiated and then converted to boronic esters 

through substitution with isopropoxypinacolborane to form ICz-M. This strategy, per 

previous optimizations, helps to avoid Heck-type coupling reactions that may occur in Pd-

catalyzed borylation.7 
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The BTD-derived monomer BTD-M was derived from 5,6-dimethyl-2,1,3-

benzothiazole (Scheme 2.1b), following reported procedures.160 The BTD core possesses 

two aryl bromides for Suzuki coupling polymerization and two methyl groups for 

installation of the vinyl groups. Direct aromatic functionalization in the same manner as 

the donor was not possible on the electron-deficient ring, so the prepositioned methyl 

groups were used in the starting material to provide sites for radical benzylic reactions. 

The vinyl groups were installed in two steps, with an initial radical bromination using 

AIBN as a radical initiator to create the bis(bromomethyl) derivative S4. Then, S4 was 

was converted into the final monomer through Wittig olefination, using PPh3 and t-BuOK 

Scheme 2.1. Synthesis of DALP monomers from S1 and S4, which were prepared 

according to references 159 and 160, respectively. (a) synthesis of donor monomer ICz-

M from 3,9-dibromoindolo[3,2-b]carbazole. (b) synthesis of acceptor monomer BTD-M 

from 4,7-dibromo-5,6-dimethyl-2,1,3-benzothiadiazole. 
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to create the phosphonium ylide on the benzothiadiazole unit and reacting with 

paraformaldehyde, which decomposes to formaldehyde upon heating. 

With both monomers in hand, the conjugated D–A ladder polymer was synthesized 

in two steps (Scheme 2.2). Step-growth Suzuki polymerization between ICz-M and BTD-

M afforded a vinyl-pendant non-ladder type D–A conjugated polymer, which was 

subsequently end-capped in situ by 2-bromostyrene and 2-vinyl(phenylboronic acid 

pinacol ester) to give the polymeric intermediate DACP. Purification by recycling 

preparative size exclusion chromatography (SEC) removed lower molecular weight 

oligomers, affording a batch with a 𝑀n
SEC of 43 kg mol−1 in a 70% yield. DACP was

converted into the desired D–A ladder polymer DALP in 98% crude yield, with a 66% 

isolated yield after Soxhlet extraction of the polymer product. The decrease of the 

molecular weight as well as the isolated yield compared to previously reported RCM 

annulation steps7, 156 was mainly due to the low solubility of the high molecular weight 

material (27%). This lowered solubility is often characteristic of such rigid polymers, 

necessitating the use of the branched sidechains to interrupt intermolecular packing. 

1H NMR spectra showed the conversion of DACP into DALP, with the peaks 

associated with the vinyl groups disappearing after RCM, while other peaks shifted further 

down-field (Figure A6), including peaks downfield shifted beyond 11.0 ppm due to the 

sterically crowded environments adjacent to the thiadiazoles after ring annulation.161 

Hindered rotation of the two sets of α-branched alkyl chains creates atropisomerism in the 

monomers and polymers, resulting in distinct peaks of these alkyl chains in 1H and 13C 

NMR.  
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Optical properties of DACP and DALP were examined by UV-vis absorption and 

fluorescence emission spectra in toluene solution (Figure 2.2a). As expected, the 

absorption edge of DALP displayed an approximately 100 nm red-shift compared to that 

of DACP, as well as previously reported ladder polymer LP that lacks the D–A 

architecture.7 This observation demonstrated that the combined effect of extended π-

conjugation in the ladder-type backbone and the alternating donor–acceptor constitution 

was responsible for the lower bandgap of DALP. Furthermore, distinctive vibrational 

progressions were observed as a result of the highly rigid nature of DALP, in contrast to 

the broad and featureless spectrum of DACP. The fluorescence emission spectrum of 

DALP also showed a more structured vibrational progressions and a narrower spectral 

width than the broad and featureless emission spectrum of DACP.162 Despite its much 

lower absorption energy, DALP emitted at a similar energy (λmax = 569 nm) compared to 

DACP (λmax = 573 nm), resulting in a much smaller Stokes shift (22 nm) than that of 

ICz-M BTD-M 

Scheme 2.2. Synthesis of D–A ladder polymer DACP and DALP. (i) Pd(PPh3)4, K2CO3, 

aliquat 336, BHT, toluene, H2O, 100 °C, 24 h; then 2-bromostyrene and 2-

vinylphenylboronic acid. (ii) Grubbs’ 2nd generation catalyst, toluene, reflux, 6 h. 
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DACP (138 nm). This observation can be attributed to the small energy loss of the rigid 

ladder-type backbone during excitation and emission. The 22 nm Stokes shift, however, 

was still much larger151 than typical ladder-type molecules,2, 143 suggesting the presence 

of intramolecular charge transfer (ICT).163 In order to confirm the ICT process, absorption 

and emission of DALP were recorded in various solvents with different dielectric 

constants (Figure 2.2b). The absorption spectra in these different solvents displayed no 

significant change, while the emission spectra maxima red-shifted as the solvent polarity 

increased from toluene to dichloromethane. Furthermore, the well-structured vibrational 

progressions of emission observed in toluene became broader in more polar solvents. This 

broadening and red-shift was caused by dipole moment stabilization of the excited state 

in polar solvents, corroborating the ICT process. 
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Solution processability and the resulting solid-state packing are important for 

practical applications of donor–acceptor polymers. The good solubility of DALP allowed 

for the preparation of uniform thin films on SiO2 (300 nm)/Si substrates by spin-casting 

(5 mg mL−1 in chloroform). The thin film morphology of DALP was then studied using 

grazing-incidence X-ray wide-angle scattering (GIWAXS) under vacuum to avoid any 

scattering effects from the air. The amorphous morphology of DALP was observed in the 

as-cast film (Figure A5), which did not change after thermal annealing at 250 °C (Figure 

2.3a). The weak ring around q ≈ 1.5 Å-1 was attributed to either scattering from SiO2 on 

Figure 2.2. (a) UV-vis absorption and fluorescence emission spectra of DACP and 

DALP in toluene. (b) UV-vis absorption and fluorescence emission spectra of DALP in 

different solvents. 
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the substrate surface or from weak amorphous π–π interactions, and the diffuse reflectance 

peak above the origin is not indicative of any repeating features. However, after thermal 

annealing the thin film at 500 °C for 30 min, which cleaved the alkyl side-chains, a clear 

diffraction peak at qz ≈ 1.68 Å−1 in the out-of-plane direction was observed (Figure 

2.3b).164 500 °C was chosen as the annealing temperature due to TGA data (Figure 2.3c) 

which indicated that the alkyl chains were thermally removed between 300–400 °C, and 

was performed under N2 to avoid any potential oxidative effects from the air. The newly 

appeared GIWAXS peak suggested that the rigid and coplanar polymer backbone 

preferentially reorganized into a face-on orientation with a π–π distance of 3.7 Å after 

alkyl chain cleavage. Because π-system orientation can have significant impacts on 

electronic device performance, these data suggested that the reorganization to face-on 

orientation of DALP after thermally induced cleavage of sp3 carbons may be give the 

resulting thin film interesting properties for future applications. However, as will be 

discussed in more detail in Chapter 5, the large size of the ladder polymer leads to only a 

weakly ordered film, and greater control over thin film morphology may be more easily 

realized with shorter oligomers or small molecules. 



59 

2.3 Experimental Section 

2.3.1 General Information 

Starting materials and reagents were purchased from Aldrich, Alfa Aesar, TCI, and 

Acros, and were used as received without further purification unless specified. Toluene 

Figure 2.3. (a) GIWAXS image of DALP thin film on Si wafer after annealing at 250 

°C. (b) GIWAXS image of DALP thin film after annealing at 500 °C to cleave alkyl 

chains. (c) TGA traces of DALP and DACP. 



60 

and DMF were dried using Inert Technology pure solvent system (PureSolv-MD-5a) and 

used without further treatment. Anhydrous THF was distilled with Na/benzophenone 

before uses. 3,9-dibromo-5,11-dihydro-5,11-di(1-octylnonyl)indolo[3,2-b]carbazole 

(S1)159 and 4,7-dibromo-5,6-bis(bromomethyl)-2,1,3-benzothiadiazole (S4)160 were 

synthesized according to reported procedures. Analytical thin-layer chromatography 

(TLC) tests were performed on glass that was precoated with silica gel 60-F254 (Sorbtech). 

Flash column chromatography was carried out using a Biotage® Isolera™ Prime with 

various sizes of SiO2 Biotage ZIP® cartridges. UV-visible absorption spectra and 

fluorescence emission spectra were recorded using a Shimadzu UV-2600 and a Horiba 

Fluoromax-4 spectrometer, respectively. UV-visible-Near IR spectra were measured on a 

Hitachi U-4100 spectrometer. 1H and 13C NMR spectra were obtained on a 500 MHz 

Varian Inova at room temperature unless specified. Chemical shifts are reported in ppm 

relative to the signals corresponding to the residual non-deuterated solvents (CDCl3: δ 

7.26 for 1H and 77.16 for 13C at room temperature. Size exclusion chromatography (SEC) 

was performed on Tosoh EcoSEC (HLC-8320GPC) in THF solution at 40 °C with a flow 

rate of 0.4 mL/min through TSKgel SuperHM-M and TSKgel SuperH-RC columns. The 

molecular weights were calculated using a calibration curve based on polystyrene 

standards. Preparative SEC was performed in chloroform solution at room temperature 

using a JAI recycling preparative HPLC (LC-92XXII NEXT SERIES). High-resolution 

Thermal gravimetric analysis (TGA) was recorded under nitrogen atmosphere with 

heating rate of 10 °C min‒1 from 25 to 900 °C using TA Q500. For high-resolution mass 

spectrometry (HRMS), matrix-assisted laser desorption/ionization (MALDI) mass spectra 
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and atmospheric pressure chemical ionization (APCI) mass spectra were measured on 

Applied Biosystems 4800 MALDI-TOF and a Thermo Scientific LCQ-DECA, 

respectively.  

2.3.2 GIWAXS Preparation and Measurements 

GIWAXS measurements were carried out in Sector 8-ID-E at the Advanced 

Photon Source, Argonne National Laboratory.165 Beamline 8-ID-E operates at an energy 

of 10.91 keV and the images were collected from a Pilatus 1MF camera (Dectris), with 

two exposures for different vertical positions of the detector. Using the GIXSGUI166 

software package for MATLAB (Mathworks), data are corrected for X-ray polarization, 

detector sensitivity and geometrical solid-angle. The beam size is 0.8 mm × 0.5 mm and 

the resolution (ΔE/E) is 1 × 10−4. Sample detector distance is 278 mm. Solid-state samples 

for GIWAXS were deposited on silicon wafers by spin-casting with the solutions (5 

mg/mL in CHCl3) at a spin rate of 1500 rpm and annealed at 250 °C and 500 °C for 30 

min. More in-depth explanation of GIWAXS procedures can be found in section 5.5. 

2.4 Conclusions  

In summary, the efficient synthesis of donor–acceptor ladder polymer DALP was 

achieved by ring-closing olefin metathesis. Donor and acceptor monomers based on 

indolocarbazole and benzothiadiazole, respectively, were synthesized with Suzuki 

coupling sites and vinyl groups for RCM. The potential issue of low efficiency in the 

annulation step caused by electron-deficient acceptor units was addressed by the strong 

thermodynamic driving force of aromatization, yielding the desired ladder polymer 

without detectable structural defects. Spectroscopic investigation revealed that DALP 
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exhibits a lower energy band gap compared to non-ladder and non D–A analogues. A 

dipole moment stabilization effect of the excited state in polar solvents confirmed the 

presence of intramolecular charge transfer. The solid-state packing structure of DALP was 

investigated by GIWAXS, demonstrating its amorphous morphology. However, after the 

thermally induced alkyl chain cleavage, the residual ladder polymer backbone 

preferentially reorganized into a face-on orientation with a π–π distance of 3.7 Å. These 

results provide fundamental understanding of D–A ladder polymers for potential future 

applications in solid-state electronic and optoelectronic devices.  
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CHAPTER III 

TRUXENE-DERIVED MONOMERS FOR A POROUS LADDER POLYMER 

NETWORK WITH ENTROPICALLY FAVORABLE GAS ADSORPTION* 

3.1 Introduction 

Porous polymer networks (PPNs) possess multiple beneficial properties for a wide 

range of next-generation materials, including fields ranging from biomedical applications 

to energy and beyond.118, 121, 167 Their high surface areas allow for storage, separation, and 

delivery of smaller adsorbed molecules, which could play key roles in the ongoing search 

for innovative and practical energy-related materials. For one example, adsorbed natural 

gas (ANG) in highly porous materials has emerged as an efficient and safe technology for 

energy storage. In order to make such adsorption strategies competitive against 

commercial fuels, high methane storage capacity at room temperature is urgently 

desired.168-172 To achieve this, tremendous progress has been made in increasing the 

surface area of various methane-adsorbing materials.173, 174 However, an ultrahigh surface 

area often results in a low material density and lowers the volumetric capacity, which is 

critical for volume-sensitive applications, such as powering personal vehicles.175 

Therefore, enhancing the overall methane storage capacity by increasing the uptake per 

unit surface area becomes an important strategy for practical applications. A significant 

amount of research has focused on increasing the enthalpy gain of the methane adsorption 

*Adapted with permission from “Rigid Ladder-Type Porous Polymer Networks for Entropically Favorable

Gas Adsorption” by Sai Che, Jiandong Pang, Alexander J. Kalin, Chenxu Wang, Xiaozhou Ji, Jongbok

Lee, Dylan Cole, Jia-Luo Li, Xinman Tu, Qiang Zhang, Hong-Cai Zhou, and Lei Fang, ACS Materials

Lett. 2020, 2, 49-54. Copyright 2020 The American Chemical Society.
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process by strengthening the interactions between the adsorbent and methane 

molecules.176 However, enthalpic interactions could also potentially lead to incomplete 

desorption of methane in low-pressure region, impacting the deliverable capacity.177 An 

alternative approach to enhance methane uptake per unit surface area is decreasing the 

entropy penalty of the adsorption process, which is often significant at room temperature. 

However, such an entropic approach has rarely been employed so far.178 Therefore, we 

envisioned that lowering the initial entropy of porous materials could be an efficient 

strategy to reduce the overall adsorption entropy penalty, not only for adsorbed fuels but 

for adsorption in porous materials more broadly.  

We anticipated that this goal could be achieved by locking the conformation of the 

organic backbone via the installation of an additional strand of bonds to afford a ladder-

type structure.179 Various synthetic approaches to linear ladder polymers, including a 

number of scalable and inexpensive ones, have been established in the past three 

decades.143, 144 A few examples of porous materials with such ladder-type backbones have 

been reported.124, 126-129, 180 Preliminary results indeed showed that extended ladder-type 

ligands in metal-organic frameworks contributed to higher methane storage performance, 

although these effects were attributed to enthalpic effects.181, 182 So far, fully organic 

porous ladder polymer networks have only been synthesized through a single-step creation 

of the ladder-type backbone. As discussed in Chapter 1, this strategy typically has a limited 

synthetic scope, though the use of dynamic covalent chemistry is an efficient strategy to 

create porous crystalline materials, such as ladder-type COFs. We therefore sought to 

explore the applicability of the two-step polymerization–annulation strategy in such an 
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organic porous network. Herein, we report a route towards this concept through the design 

and synthesis of a monomer to create a porous ladder polymer network (PLAN) through 

a PPN intermediate (PPN-Precursor). 

3.2 Synthetic Design 

The PLAN model was designed to be constructed from rigid monomers through 

the kinetic formation of covalent bonds, in the same manner as other PPNs (Figure 3.1).122, 

174, 183 In general, PPNs can be imparted with high porosity and superior thermal and 

chemical stability,184-188 suitable as a model system for methane storage or other porous 

material applications. In order to create the crosslinked ladder-type network, we applied 

reported ladder polymer chemistries to trifunctional and bifunctional comonomers derived 

from truxene (formally 10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene) and benzene, 

respectively (Scheme 3.1). Two sets of monomers were designed: one for the ladder-type 

Figure 3.1 Structural formulas of the repeating units of cross-linked porous polymer 

networks PLAN, PPN-Precursor, and PPN-Ref. 
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PLAN and another set for a reference material PPN-Ref which resembles the 

constitutional structure of PLAN but with a non-ladder type backbone. The fully fused, 

coplanar, and conjugated trifunctional truxene monomer importantly allows for 

functionalization with short alkyl chains as well as with aromatic functional groups for 

polymerization.189 Pd-catalyzed Suzuki coupling was chosen for the polymerization using 

conditions previously optimized by our group.7, 190 For the polymerization, bromide 

groups were installed on the truxene monomer and boronic esters on the phenylene 

comonomer. 

The annulation reaction must be high-yielding and selective towards intrachain 

annulation rather than intermolecular crosslinking in order to successfully create the 

ladder-type backbone. Ring-closing olefin metathesis (RCM) was selected to form the 

ladder-type PLAN backbone because it typically gives a highly efficient conversion with 

few defects under thermodynamic control.7, 54, 179 Additionally, it has been shown that this 

Scheme 3.1. (a) Synthesis of PPN-Precursor, PPN-Ref, and PLAN from truxene-

derived monomers. Conditions: (i) Pd(PPh3)4, K2CO3 (ii) Grubbs’ 2nd Generation 

catalyst. 
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reaction can take place heterogeneously in porous solids, which is necessary for the 

annulation of PPN-Precursor to form PLAN.123 To accomplish this, the PLAN 

monomers were functionalized with vinyl groups for the reaction. The monomers for 

PPN-Ref did not require vinyl group functionalization. The synthesis of the monomers, 

including considerations of the vinyl group installation, is discussed below. 

3.3 Synthesis and Discussion 

The synthesis of the non-vinyl-functionalized monomer (Scheme 3.2) was 

accomplished starting from commercially available 3-phenylpropionic acid. Truxene, 1, 

was obtained through a single-step, acid-catalyzed reaction which proceeds first through 

an intramolecular cyclization to form 1-indanone, then undergoes an aldol triple 

condensation, forming the central aromatic ring. This reaction typically uses 

polyphosphoric acid (PPA) as solvent and acid catalyst, but the viscosity of PPA (6500 

cSt at 25 °C) makes handling inconvenient. We and others have reported similar acid-

catalyzed aldol trimerizations of aromatic monomers using the much less viscous 

methanesulfonic acid (MSA, 7.8 cSt at 25 °C),126, 191, 192 and so we applied the same 

strategy to the synthesis of 1. This made the reaction much easier to perform without any 

sacrifice of scale or conversion: the MSA-catalyzed trimerization proceeded in high yields 

(>90%) and the potential isomeric product, isotruxene, was never observed. The low 

solubility of 1 prevented full solution-phase characterization, but 1H NMR and mass 

spectrometry matched well with the expected results. 

The acidic protons on the methylene bridges of 1 were subsequently deprotonated 

and nucleophilic substitution of bromoethane gave hexaethyl-substituted 2, in order to 
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provide sufficient solubility for further functionalization and polymerization without 

being overly bulky. Though most ladder-type molecules or macromolecules are made 

soluble with large alkyl chains, those chains may lower the surface area of the final porous 

network by occupying pore space. Finally, electrophilic bromination installed the aryl 

bromide groups needed for Suzuki coupling polymerization of the monomer 3. 

Previous RCM-based ladder polymers utilized aromatic substitution of carbonyl 

reagents or radical benzylic bromination as strategies for installing the vinyl groups on the 

monomers.7, 190 However, neither strategy was possible on 3 due to the low reactivity of 

the free ring sites towards aromatic substitution and the lack of any free benzylic positions, 

so alternate strategies were explored to synthesize the RCM-capable monomer with vinyl 

groups (Schemes 3.3-4). Commercially available 3-(4-methylphenyl)propionic acid was 

used as the starting material, giving trimethyltruxene 4 after MSA triple condensation. The 

methyl groups created benzylic positions on the truxene core, enabling functionalization 

through radical reactions. Due to the p-substitution of the starting material, there is no 

concern for regioisomer formation in 4 based on the cyclization mechanism.193 The ethyl 

chains and aryl bromides were installed in the same manner as previously described to 

Scheme 3.2. Synthesis of non-vinyl-functionalized monomer 3. 
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give 5 and 6, respectively. No difference in reactivity was observed with the methyl 

substituent. 

To obtain the vinyl groups from 6, multiple strategies were pursued (Scheme 3.4a). 

A reported direct oxidation of arylmethanes to benzaldehydes using 2-iodoxybenzoic acid 

(IBX)194 was first attempted, but direct oxidation to 8 gave no reaction in multiple 

attempts. According to discussions regarding reproducibility of this reaction,195 the active 

species may be the hydrated form of IBX, and even when accounting for this by adding 

additional water into the reaction mixture, no reaction was observed. We additionally 

attempted radical benzylic bromination in the same manner as described previously54, 156 

to monobrominate each methyl group as a precursor to the vinyl groups by using 1 

equivalent of NBS for each reaction site. This bromination was not selective to the number 

of bromines attached at each benzylic position, so the desired product was not able to be 

isolated from the reaction mixture, which also contained over- and underbrominated 

species. Instead the benzylic bromination was performed using a large excess of NBS to 

obtain the fully brominated product 7. This reaction is known not to proceed to the 

tribromomethyl product when there is a substituent ortho to the methyl group,196 thus 7 

was the major product of the reaction but some underbrominated products were observed 

Scheme 3.3. Synthesis of truxene precursor 6. 
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on TLC. The dibromomethyl groups cannot be directly converted into the vinyl groups 

and so an additional synthetic step is required, but this serves as a suitable alternative to 

the other strategies. 

7 was then converted to the trialdehyde 8 through oxide transfer from DMSO.197 

This reaction can also be completed by hydrolysis using an aqueous AgNO3 solution, but 

the simplicity and high yield of the DMSO reaction made exploring other conditions 

unnecessary. Lastly, 8 was converted through Wittig olefination using a 

methylphosphonium salt as the carbon source, giving the trivinyl-functionalied final 

product 9. Preventing radical polymerization of the vinyl groups was an important key to 

the success of this reaction. This was primarily accomplished by cooling the reaction to 0 

°C to control the temperature of the reaction, though performing the reaction in the dark 

Scheme 3.4. (a) Synthetic strategies explored for vinyl group installation. (b) synthesis 

of vinyl-functionalized monomer 9. 
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and adding BHT as a radical scavenger are two additional methods to prevent this. After 

synthesis of the vinyl-functionalized monomers, a small amount of BHT was added to 

most monomer solutions when purity was not necessary to prevent radical formation. 

The molecules were confirmed by 1H and 13C NMR as well as high-resolution 

mass spectrometry (Section 3.4 and Appendix C). The addition of the bromines into the 

monomer precursors could clearly be seen through mass spectrometry (Figure 3.2). The 

tribromo molecules showed four peaks spaced 2, 4, and 6 m/z units from the [M] or [M+H] 

peaks, representing the four Br isotope possibilities (3:0, 2:1, 1:2, or 0:3 ratio of 79Br:81Br). 

This pattern was absent in 5 before aryl bromination. In 7, which possesses nine Br atoms, 

the masses corresponding to the extreme ends (greater than 7 of either Br isotope) of the 

Br ratios were not observed, but a similar 2 unit spacing pattern was still observed, with 

peaks corresponding to a 4:5 and 5:4 ratio of 79Br:81Br having the highest intensity, 

matching calculated values. 
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Using the synthesized monomers, the crosslinked polymer networks PPN-

Precursor and PPN-Ref were obtained through Suzuki coupling polymerization.198 RCM 

of PPN-Precursor was then performed using Grubbs 2nd Generation catalyst to obtain 

PLAN. The polymers were characterized by solid-state cross-polarization magic angle 

spinning (CP-MAS) 13C NMR spectroscopy, confirming the full conversion of the RCM 

Figure 3.2. Mass spectrometry isotope patterns of the molecular ions of 5–8 possessing 

0, 3, 9, and 3 Br atoms, respectively. 



73 

reaction. Methane sorption experiments were performed with PLAN and PPN-Ref to 

identify the effects of the ladder-type backbone. The conformationally locked backbone 

imbued PLAN with improved thermal and chemical stability over PPN-Ref as well as a 

significant increase in methane adsorption per unit surface area over other reported 

materials. This improvement was shown to result from the lowered initial entropy of the 

PLAN caused by the ladder-type backbones (Figure 3.3), illustrating the beneficial 

properties of the rigid backbone in gas adsorption applications. 

Figure 3.3. Schematic demonstrating the benefits of a ladder-type backbone for gas 

adsorption by lowering the initial entropy of the system. 
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3.4 Experimental Section 

3.4.1 General Information 

Starting materials, reagents, and solvents were purchased from Aldrich, Alfa 

Aesar, TCI, and Acros, and were used as received without further purification unless 

otherwise specified. Anhydrous THF was distilled with Na/benzophenone before use. 

Phenylene monomers 2,2’-(2,5-divinyl-1,4-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) and 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene were 

synthesized and characterized according to reported procedures in literature.156 Analytical 

thin-layer chromatography (TLC) tests were performed on glass that was precoated with 

silica gel 60-F254 (Sorbtech). Flash column chromatography was carried out using a 

Biotage® Isolera™ Prime. Solution phase 1H and 13C NMR spectra were obtained on 

Varian Inova 500 MHz and Bruker Ascend 400 MHz spectrometers at room temperature. 

Chemical shifts are reported in ppm relative to the signals corresponding to the residual 

non-deuterated solvents (for 1H NMR: CDCl3 δ = 7.26 ppm; for 13C NMR: CDCl3 δ = 

77.16 ppm). For high-resolution mass spectrometry (HRMS), atmospheric pressure 

chemical ionization (APCI) was performed using a Thermo Fisher Scientific Q Exactive 

Focus. Melting points were taken on an OptiMelt automatic melting point system at a rate 

of 1 °C/min. 
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3.4.2 Synthesis 

Truxene (1): A mixture of 3-phenylpropionic acid (10.1 g, 67.1 mmol) and 

methanesulfonic acid (50 mL) was heated at 60 °C for 60 min under N2. Deionized water 

(1 mL) was then added to the reaction and temperature was raised to 160 °C for 12 h. After 

the reaction was cooled to room temperature, the mixture was poured into ice water. The 

precipitate was collected by filtration and washed with water and methanol to yield 1 as a 

black solid (7.48 g, 21.9 mmol, 98%) and used for next step without further purifications. 

1H NMR (400 MHz, CDCl3, RT): δ 7.88 (d, J = 7.5 Hz, 3H), 7.65 (d, J = 7.3 Hz, 3H), 7.48 

(t, J = 7.1 Hz, 3H), 7.38 (td, J = 7.4, 1.0 Hz, 3H), 4.14 (s, 6H). HRMS (APCI): calcd for 

C27H18 [M+H]+ m/z=343.1481; found m/z=343.1473. 

5,5,10,10,15,15-hexaethyltruxene (2): A mixture of 1 (0.885 g, 2.59 mmol) and t-BuOK 

(10.8 g, 96.3 mmol) in dry THF (50 mL) was refluxed for 10 min under N2 and then cooled 
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to 0 °C. Subsequently, bromoethane (7.0 mL, 94 mmol) was added dropwise using a 

syringe at 0 °C. The mixture was warmed to room temperature and stirred for 24 h. The 

reaction mixture was then poured into water and extracted with CH2Cl2. The combined 

organic layer was dried over MgSO4, filtered, and concentrated under reduced pressure. 

The crude product was purified by column chromatography (SiO2, 100% hexanes) to yield 

2 as a white solid (0.845 g, 1.65 mmol, 64%) with a melting point of 215-219 °C (open 

capillary). 1H NMR (400 MHz, CDCl3, RT): δ 8.36 (m, 3H), 7.47 (m, 3H), 7.39 (m, 6H), 

3.03 (dq, J = 14.4, 7.3 Hz, 6H), 2.16 (dq, J = 14.6, 7.3 Hz, 6H), 0.21 (t, J = 7.3 Hz, 18H). 

13C{1H} NMR (100 MHz, CDCl3, RT): δ 152.88, 143.91, 140.69, 138.89, 126.50, 126.11, 

124.61, 122.31, 56.77, 29.44, 8.56. HRMS (APCI): calcd for C39H42 [M+H]+ 

m/z=511.3359; found m/z=511.3368. 

2,7,12-tribromo-5,5,10,10,15,15-hexaethyltruxene (3): A mixture of 2 (0.261 g, 0.511 

mmol) and FeCl3 (catalytic amount) in chloroform (10 mL) was cooled to 0 °C under N2. 

Br2 (0.13 mL, 2.5 mmol) was added dropwise. The mixture was warmed to room 

temperature and stirred for 12 h. The reaction mixture was then poured into a saturated 

aqueous NaHSO3 solution and extracted with CH2Cl2. The combined organic layer was 
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dried over MgSO4, filtered, and concentrated under reduced pressure. The crude product 

was purified by column chromatography (SiO2, 100% hexanes) to yield 3 as a white solid 

(0.367 g, 0.491 mmol, 96%) that decomposes slowly without melting around ~240 °C 

(open capillary). 1H NMR (400 MHz, CDCl3, RT): δ 8.16 (d, J = 8.6 Hz, 3H), 7.57 (d, J 

= 2.0 Hz, 3H), 7.52 (dd, J = 8.5, 2.0 Hz, 3H), 2.91 (dq, J = 14.4, 7.2 Hz, 6H), 2.10 (dq, J 

= 14.6, 7.4 Hz, 6H), 0.21 (t, J = 7.3 Hz, 18H). 13C{1H} NMR (100 MHz, CDCl3, RT): δ 

155.10, 143.98, 139.17, 138.17, 129.53, 125.90, 125.65, 121.19, 57.13, 29.36, 8.50. 

HRMS (APCI): calcd for C39H39Br3 [M]+. m/z=746.0576; found m/z=746.0582. 

3,8,13-trimethyltruxene (4): A mixture of 3-(4-methylphenyl)propionic acid (4.59 g, 

28.0 mmol) and methanesulfonic acid (25 mL) was heated at 60 °C for 60 min under N2. 

Water (1 mL) was then added to the reaction and temperature was raised to 160 °C for 12 

h. After the reaction was cooled to room temperature, the mixture was poured into ice

water. The precipitate was collected by filtration and washed with water and methanol to 

yield 4 as brown solid (3.22 g, 8.37 mmol, 90%) and used for next step without further 

purifications. 1H NMR (400 MHz, CDCl3, RT): δ 7.74 (s, 3H), 7.58 (d, J = 7.7 Hz, 3H), 

7.21 (d, J = 7.6 Hz, 3H), 4.22 (s, 6H), 2.55 (s, 9H). HRMS (APCI): calcd for C30H24 

[M+H]+ m/z=385.1951; found m/z=385.1942. 
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5,5,10,10,15,15-hexaethyl-3,8,13-trimethyltruxene (5): A mixture of 4 (0.72 g, 1.9 

mmol) and t-BuOK (7.57 g, 67.5 mmol) in dry THF (30 mL) was refluxed for 10 min 

under N2 and then cooled to 0 °C. Subsequently, bromoethane (5.04 mL, 67.5 mmol) was 

added dropwise through a syringe at 0 °C. The mixture was warmed to room temperature 

and stirred for 24 h. The reaction mixture was then poured into water and extracted with 

CH2Cl2. The combined organic layer was dried over MgSO4, filtered, and concentrated 

under reduced pressure. The crude product was purified by column chromatography (SiO2, 

100% hexanes) to yield 5 as a white solid (0.65 g, 1.3 mmol, 63%). 1H NMR (500 MHz, 

CDCl3, RT): δ 8.19 (s, 3H), 7.36 (d, J = 7.7 Hz, 3H), 7.22 (d, J = 7.7 Hz, 3H), 3.00 (dq, J 

= 14.4, 7.2 Hz, 6H), 2.56 (s, 9H), 2.12 (dq, J = 14.6, 7.3 Hz, 6H), 0.25 (t, J = 7.3 Hz, 18H). 

13C{1H} NMR (125 MHz, CDCl3): δ 150.00, 144.03, 140.87, 138.84, 135.22, 127.29, 

125.36, 121.84, 56.30, 29.45, 22.06, 8.59. HRMS (APCI): calcd for C42H48 [M+H]+ 

m/z=553.3829; found m/z=553.3826. 
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2,7,12-tribromo-5,5,10,10,15,15-hexaethyl-3,8,13-trimethyltruxene (6): A mixture of 

5 (0.48 g, 0.87 mmol) and FeCl3 (catalytic amount) in chloroform (50 mL) was cooled to 

0 °C under N2. Br2 (1.8 mL, 35 mmol) was added dropwise. The mixture was warmed to 

room temperature and stirred for 12 h. The reaction mixture was subsequently poured into 

saturated aqueous NaHSO3 solution and extracted with EtOAc. The combined organic 

layer was dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

product was purified by column chromatography (SiO2, 100% hexanes) to yield 6 as a 

white solid (0.61 g, 0.77 mmol, 89%) that decomposes slowly without melting around 

~300 °C (open capillary). 1H NMR (500 MHz, CDCl3, RT): δ 8.19 (s, 3H), 7.59 (s, 3H), 

2.93 (dq, J = 14.3, 7.2 Hz, 6H), 2.60 (s, 9H), 2.11 (dq, J = 14.6, 7.3 Hz, 6H), 0.25 (t, J = 

7.3 Hz, 18H). 13C{1H} NMR (125 MHz, CDCl3, RT): δ 152.32, 144.05, 139.76, 138.22, 

135.21, 126.69, 126.02, 123.62, 56.70, 29.43, 23.71, 8.55. HRMS (APCI): calcd for 

C42H45Br3 [M]+. m/z=788.1045; found m/z=788.1034. 
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2,7,12-tribromo-3,8,13-tris(dibromomethyl)-5,5,10,10,15,15-hexaethyltruxene (7): A 

mixture of 6 (0.50 g, 0.64 mmol) and NBS (10 g, 56.2 mmol) in chloroform (30 mL) was 

stirred at reflux under N2. BPO (0.15 g, 0.64 mmol) dissolved in chloroform (10 mL) was 

added for 3 h using syringe pump. The reaction mixture was stirred for an additional 12 h 

at reflux. Then it was cooled to room temperature, poured into a saturated aqueous 

NaHSO3 solution, and extracted with CH2Cl2. The combined organic layer was dried over 

MgSO4, filtered, and concentrated under reduce pressure. The crude product was purified 

by column chromatography (SiO2, 100% hexanes) to yield 7 as white solid (0.45 g, 0.36 

mmol, 56%). 1H NMR (500 MHz, CDCl3, RT): δ 8.98 (s, 3H), 7.60 (s, 3H), 7.24 (s, 3H), 

2.99 (dq, J = 14.4, 7.2 Hz, 6H), 2.28 (dq, J = 14.5, 7.3 Hz, 6H), 0.33 (t, J = 7.3 Hz, 18H).

13C{1H} NMR (125 MHz, CDCl3, RT): δ 156.58, 145.11, 140.22, 138.74, 137.63, 126.99, 

126.18, 118.36, 57.43, 40.76, 29.17, 8.75. HRMS (APCI): calcd for C42H39Br9 [M]+. 

m/z=1261.5615; found m/z=1261.5549. 
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2,7,12-tribromo-5,5,10,10,15,15-hexaethyltruxene-3,8,13-tricarbaldehyde (8): A 

mixture of 7 (0.80 g, 0.63 mmol) and DMSO (20 mL) was heated to 100 °C for 24 hours 

under N2. Then it was cooled to room temperature, poured into water, and extracted with 

EtOAc. The combined organic layer was dried over MgSO4, filtered, and concentrated 

under reduced pressure. The crude product was purified by column chromatography (SiO2, 

5% EtOAc in Hexanes) to yield 8 as a white solid (0.50 g, 0.60 mmol, 95%). 1H NMR 

(500 MHz, CDCl3, RT): δ 10.50 (s, 3H), 8.86 (s, 3H), 7.75 (s, 3H), 2.99 (dq, J = 14.4, 7.2 

Hz, 6H), 2.24 (dq, J = 14.5, 7.2 Hz, 6H), 0.23 (t, J = 7.3 Hz, 18H). 13C{1H} NMR (125 

MHz, CDCl3, RT): δ 191.76, 161.18, 145.27, 139.66, 137.47, 132.22, 127.82, 126.65, 

125.26, 57.92, 29.15, 8.57. HRMS (APCI): calcd for C42H39Br3O3 [M+H]+ m/z=831.0502; 

found m/z=831.0512. 
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2,7,12-tribromo-5,5,10,10,15,15-hexaethyl-3,8,13-trivinyltruxene (9): A 250 mL 3-

neck round bottom flask was charged with triphenylmethylphosphonium bromide (1.38 g, 

3.85 mmol) and 150 mL dry THF under N2. t-BuOK (0.41 g, 3.6 mmol) was added to the 

solution, giving a bright yellow colored suspension. The mixture was cooled to 0 °C before 

8 (0.50 g, 0.60 mmol) was added in portions. The yellow color gradually faded away. The 

mixture was warmed to room temperature and stirred for 12 h in the dark. Subsequently, 

the reaction mixture was poured into water, and extracted with EtOAc. The combined 

organic layer was dried over MgSO4, filtered, and concentrated under reduce pressure (low 

temperature). The crude product was purified by column chromatography (SiO2, 100% 

hexanes) to yield 9 as a white solid (0.43 g, 0.52 mmol, 87%). 1H NMR (500 MHz, CDCl3, 

RT): δ 8.54 (s, 3H), 7.64 (s, 3H), 7.25 (dd, J = 17.4, 10.9 Hz, 3H), 5.86 (dd, J = 17.4, 0.9 

Hz, 3H), 5.50 (dd, J = 10.9, 0.9 Hz, 3H), 2.94 (dq, J = 14.4, 7.2 Hz, 6H), 2.16 (dq, J = 

14.5, 7.3 Hz, 6H), 0.29 (t, J = 7.3 Hz, 18H). 13C{1H} NMR (125 MHz, CDCl3, RT): δ 

154.32, 144.36, 139.74, 138.12, 136.61, 135.44, 126.56, 122.68, 122.57, 115.90, 56.98, 
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29.34, 8.63. HRMS (APCI): calcd for C45H45Br3 [M+H]+ m/z=825.1124; found 

m/z=825.1113. 

3.5 Conclusions 

In conclusion, we present here a strategy for the formation of crosslinked ladder 

polymer networks formed through polymerization–annulation strategy of truxene- and 

phenylene-derived monomers. The monomers were functionalized with coupling sites for 

Suzuki coupling polymerization, and the ladder-type backbone was created through RCM 

of pendant vinyl groups. Various strategies were pursued to install the vinyl groups in 

order to find a reliable and reproducible synthetic method. The resulting networks showed 

impressive stability and methane adsorption, showing that this entropic approach may be 

widely employed in future materials once integrated with scalable synthetic methods and 

strategies for improved processability. A nanoparticulation strategy to improve the 

processability of these materials is presented in Chapter 4. 
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CHAPTER IV  

SOLUTION-PROCESSABLE POROUS NANOPARTICLES OF A CONJUGATED 

LADDER POLYMER NETWORK* 

4.1 Introduction 

Conjugated ladder polymers consist of π-conjugated, fused-ring repeating units, 

linked together by multiple strands of bonds.4 Compared to conventional non-ladder type 

polymers, the additional strand of bonds in ladder polymers induces a significantly higher 

backbone rigidity.1, 143, 144 Distinct yet intriguing chemical, optical, and electronic 

properties arise from the added rigidity, rendering conjugated ladder polymers a promising 

class of emerging organic materials with unconventional functions.199 For instance, 

increased fluorescence intensity and excited state lifetimes in solution can stem from the 

lack of backbone conformational relaxation.162 High carrier mobilities in the solid state 

can arise as a result of better orbital delocalization and lowered reorganization energy.200-

203 Rigid backbones can also render porosity in appropriately designed polymers by 

stabilizing interchain void space, whether from inefficient solid-state packing of linear 

ladder polymers204 or in fully cross-linked networks featuring ladder-type backbones.124, 

126, 128, 129, 205 Although the porosity and optical properties of conjugated ladder polymer 

networks provide an ideal framework for a number of applications, the lack of 

*Adapted with permission from “Solution-Processable Porous Nanoparticles of a Conjugated Ladder

Polymer Network” by Alexander J. Kalin, Sai Che, Chenxu Wang, Anthony U. Mu, E. Meir Duka, and Lei

Fang, Macromolecules, 2020, DOI: 10.1021/acs.macromol.9b02635. Copyright 2020 The American

Chemical Society.
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processability (either from a solution or molten phase into the desired form) limits their 

practical applications. Therefore, overcoming the obstacle of processability represents a 

key challenge before one can unlock the potential of ladder-type polymeric materials. 

The difficulty associated with solution processability of conjugated ladder 

polymers, in general, arises from their rigid and often coplanar backbones, which promote 

strong interchain aggregation. In order to mitigate this issue, they are often decorated with 

bulky side-chains on the backbone as solubilizing groups.72, 206 The installation of such 

bulky side-chains, however, introduces a large fraction of nonactive material into the bulk, 

lowering the performance that depends on the conjugated backbone.207 For organic 

electronic or photovoltaic applications, the insulating side-chains can also interrupt 

charge/exciton transport pathways in the solid state, adversely impacting the electronic 

performance.208 For other applications where high microporosity is desirable, such as 

sensing,209, 210 the flexibility of large alkyl side-chains could occupy and block the 

micropores, exerting a detrimental effect on performance.211 

Various strategies have been developed to address the issues caused by side-

chains. For example, one can install cleavable side-chains to facilitate solution processing 

of the polymers, which can be subsequently removed in order to restore the desired 

interchain interactions.75, 77, 212, 213 Another strategy entails processing soluble precursors 

into a film, followed by solid-state reactions to afford the ladder-type backbone in situ, 

perhaps best exemplified by on-surface construction of graphene nanoribbons from 

solution processable monomers through high-temperature polymerization and 

annulation.214 This method holds promise for electronic applications but is limited with 
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regards to scalability. In addition, these strategies have been largely only applied to linear 

ladder polymers, and fewer solutions have been proposed for ladder polymers with 

different topology.130, 131 We envisioned that a fully conjugated ladder polymer network 

can be made porous and solution dispersible without the introduction of excessively large 

solubilizing groups when nanoparticulated in a carefully designed manner.107, 108, 215, 216 

Herein, we report the successful synthesis of such nanoparticles and their facile solution 

processability as a proof of concept for practical applications. 

4.2 Results and Discussion 

4.2.1 Synthetic Design 

To achieve the aforementioned goal, we designed porous ladder polymer network 

nanoparticles (PLANP), synthesized from a truxene- and phenylene-derived monomers 

(M1–M4) through a miniemulsion cross-linking polymerization followed by ring-closing 

olefin metathesis (RCM) annulation (Figure 4.1). The monomers were synthesized as 

reported and as discussed in Chapter 3, and are relabeled in Figure 4.1 for clarity.198 For 

the miniemulsion polymerization, we leveraged reported synthetic strategies of 

conventional single-stranded conjugated polymer nanoparticles (CPNs), which can be 

achieved by various polymerization reactions and stabilization mechanisms.217-221 CPNs 

can be prepared non-covalently by dispersing pre-synthesized polymers or by performing 

a dispersed-phase polymerization within a surfactant-stabilized, organic-in-water 

miniemulsion, which constrains the size of the resulting colloidal particles.218, 222, 223 If the 

polymerization yields a fully cross-linked network, the shape-persistent spherical 

morphology of the CPN can be secured even after surfactants are removed. By this 
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method, normally insoluble polymer networks are rendered solution dispersible while 

retaining the desired porosity.224-227 We envisioned that this strategy could then be applied 

to develop PLANP with unprecedented solution processability (Figure 4.1).  

We have previously reported a highly efficient annulation method to construct 

ladder polymers using RCM of a polymer precursor, which can be synthesized by step-

growth Suzuki polymerization.7, 54, 190, 228 The thermodynamically driven RCM reaction is 

near-quantitative and leads to few backbone defects due to the strong driving force 

towards aromatization. Both Suzuki and RCM reactions translate well to the designed 

PLANP synthesis: Suzuki coupling is robust toward the aqueous continuous phase229 and 

RCM has previously exhibited good conversion on porous precursors, even in a 

heterogeneous reaction.123, 198  
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4.2.2 Miniemulsion Polymerization 

The A2 + B3 Suzuki coupling polymerization between a trifunctional truxene-

derived monomer (M1 or M2) and a difunctional phenylene-derived monomer (M3 or 

M4) was carried out in a toluene-in-water miniemulsion, generated by sonicating the 

organic solution mixture with an aqueous sodium dodecylsulfate (SDS) solution (150 mM, 

18× critical micelle concentration). Butylated hydroxytoluene (BHT) was added as a 

radical scavenger to prevent undesired radical addition of the vinyl groups and was 

Figure 4.1. General synthetic scheme: (a) miniemulsion polymerization affords nanoparticles 

Ref-CPN and Vinyl-CPN; (b) RCM of Vinyl-CPN dispersed in organic solvent gives PLANP. 
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dissolved along with the monomers and Pd catalyst in toluene. Through this reaction, the 

intermediate polymer nanoparticles Vinyl-CPN and a control compound Ref-CPN were 

synthesized from M1 + M3 (vinyl-functionalized) and M2 + M4 (non-vinyl-

functionalized), respectively. After the reaction, the anionic SDS was scavenged by a 

macroreticular basic ion exchange resin, allowing the resulting toluene/water mixture to 

easily phase separate for extraction and purification. The crude Ref-CPN or Vinyl-CPN 

was purified by precipitation into a nonsolvent such as methanol followed by washing. 

For the RCM annulation to form PLANP, Vinyl-CPN particles were redispersed into 

toluene together with Grubbs’ 2nd generation catalyst and heated to 100 °C. After the 

reaction was completed, the product was again purified by precipitation into methanol 

followed by washing. Ref-CPN, Vinyl-CPN, and PLANP were all isolated as fine 

powders. PLANP was obtained in a 39% overall yield in two steps. 

4.2.3 Nanoparticle Characterization 

As the key feature of the nanoparticulated polymers, the dispersibility of the 

particles was investigated. A good dispersion of the particles can be formed in various 

organic solvents without the use of any surfactants or dispersants, appearing clear with 

slight Tyndall scattering, and does not show any particle flocculation (Figure 4.2a). N-

methylpyrrolidone, the most effective dispersing solvent found for the particles, can 

disperse 5 mg/mL of PLANP and Ref-CPN effectively. Chlorinated hydrocarbon solvents 

such as chloroform and dichloromethane have lower dispersibility of about 1 mg/mL. 

Above these levels, aggregation and creaming of the particles was observed. The 

hydrodynamic diameters of the nanoparticles dispersed in chloroform were determined by 
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dynamic light scattering (DLS). The intensity distribution diameters for PLANP, Ref-

CPN, and Vinyl-CPN were all approximately 200 nm, indicating the consistent results of 

the miniemulsion conditions (Table 4.1, Figures C9–C11). All samples also had a similar 

polydispersity index (PdI) between 0.09 and 0.15. Though size control of the nanoparticles 

was not part of this study, reports indicate that altering the miniemulsion conditions can 

potentially lead to larger or smaller nanoparticles, including below 100 nm.230-232 In this 

case, using different surfactants such as CTAB, with a critical micelle concentration of 1 

mM, or using lower concentrations of SDS, led to a greater amount of oligomeric products. 

Therefore, the conditions described above were satisfactory to consistently obtain 

nanoparticles for characterization. 

The good colloidal dispersibility allowed for solution processing of these materials 

into thin films. Spin-casting a chloroform dispersion of PLANP onto 

octadecyltrichlorosilane (OTS)-coated substrates resulted in a smooth thin film, enabling 

Diameter (nm)a

Sample 

Intensity 

Average 

Volume 

Average 

Number 

Average 

Z 

Average PdIab 

Ref-CPN 202 ± 3 209 ± 3 130 ± 7 173 ± 1 0.15 ± 0.01 

Vinyl-CPN 191 ± 4 196 ± 5 129 ± 5 169 ± 1 0.11 ± 0.02 

PLANP 198 ± 2 203 ± 2 143 ± 2 179 ± 2 0.09 ± 0.01 

Table 4.1. Average diameters and PdI of Ref-CPN, Vinyl-CPN, and PLANP. aDLS 

data averaged from three measurements.  bPdI defined by ISO 22412:2008. 
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further imaging. Scanning electron microscope (SEM) images of individual nanoparticles 

and the thin films clearly show the spherical morphology of PLANP (Figure 4.2b,c). 

Larger images confirm that most of the nanoparticles are under 500 nm in diameter and 

illustrate the dispersity of sizes generated from the miniemulsion polymerization, agreeing 

with the average size measured by DLS (Figure 4.2c). 

 Structural characterization of the nanoparticles was primarily performed by solid-

state cross polarization magic angle spinning (CP-MAS) 13C NMR, as conventional 

solution-phase 1H NMR did not give observable signals due to the large particle size and 

rigid backbone conformation. In the CP-MAS 13C NMR spectrum, the three sp3-

hybridized carbons corresponding to the truxene methylene bridge and ethyl side-chains 

could clearly be distinguished (Figure C1), and the signals from the sp2 carbons of the 

fused aromatic backbone match well with the previously reported spectrum of the bulk 

network, which was polymerized and cross-linked in solution as opposed to in 

miniemulsion.198 In order to examine the efficiency of the RCM reaction, we synthesized 

Figure 4.2. (a) Dispersions of PLANP (left) and Ref-CPN (right) at 2 mg/mL in N-

methylpyrrolidone. SEM images of (b) an individual particle of PLANP and (c) PLANP thin 

film on OTS-coated Si substrate.
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a batch of isotope labeled Vinyl-CPN, in which the terminal vinyl =CH2 carbon was 

labeled with 99% 13C, so that a highly intense 13C signal of the terminal vinyl peak can be 

used to probe the conversion of the reaction. (Figure C3). After the RCM reaction, the 

=CH2 peak intensity in the resulting PLANP substantially decreases to approximately the 

same intensity as other carbons on the truxene core. Considering the 99% 13C abundance 

of the labeled carbon compared to the other carbons with natural abundance (1% 13C), the 

reaction conversion was estimated to be at least 95%. 

Additionally, Fourier-transform infrared (FTIR) spectra of the nanoparticles and 

relevant precursors were collected with a focus on the aromatic ring substitution patterns 

of C–H bending peaks in the 950–650 cm-1 region (Figures C4–C8).233, 234 The peaks of 

interest correspond to the characteristic bending of an “isolated C–H unit” with no H atoms 

on its neighboring carbons, and to the bending of two adjacent C–H groups.235 The Vinyl-

CPN and PLANP spectra were mostly similar as expected because the substitution 

patterns of the phenylene and truxene units do not change after annulation. The only 

characteristic change observed was a peak at approximately 800 cm-1 appearing in the 

spectrum of PLANP (Figure C5), attributed to bending vibrations of the two new adjacent 

aromatic C–H sites fused into the backbone after RCM. On the other hand, PLANP and 

Ref-CPN showed expected differences in relative peak intensity corresponding to the 

difference in their substitution patterns. The peak corresponding to the isolated C–H bend 

was more intense in PLANP, resulting from the greater number of such sites in its 

repeating units. The spectrum of Ref-CPN, on the other hand, exhibits more intense peaks 

between 810–840 cm-1 (Figure C6) attributed to a greater number of adjacent aromatic C–
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H sites. The nanoparticles were also compared to precursors with relevant substitution 

patterns, and peaks originating from the truxene- and phenylene-derived monomers were 

represented in the final nanoparticles, further confirming the structural composition of the 

polymer (Figures C7–C8). Raman spectroscopy was unable to produce spectra of suitable 

quality for analysis. 

Photophysical spectroscopy was employed to further characterize the conjugated 

ladder-type backbone of PLANP. High-quality optical spectra of these samples were 

collected thanks to the well-dispersed nature of the nanoparticulated polymers in CHCl3. 

Both UV-visible absorption and fluorescence emission measurements in solution showed 

significant differences between the spectra of PLANP and those of the non-ladder Vinyl-

CPN and Ref-CPN (Figure 4.3). A redshift was observed on both the absorption and 

emission spectra of PLANP compared to those of Vinyl-CPN and Ref-CPN. Meanwhile, 

PLANP exhibited clear vibrational progressions in both the absorption and emission 

spectra, while those of Vinyl-CPN are broad. PLANP also showed an extremely small 

Stoke shift of <1 nm. These optical properties resembled those observed on previously 

reported linear conjugated ladder polymers,7, 35, 36, 236, 237 suggesting that the backbone of 

PLANP was indeed in a fused-ring ladder-type constitution. Specifically, the coplanarity 

of the ladder-type backbone of PLANP rendered a more extended π-conjugation and 

therefore a red-shifted absorption spectrum. The rigid backbone suppresses vibrational 

relaxation during photoexcitation, leading to clearly observable vibrational peaks even at 

room temperature. 
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The crosslinked and rigid backbone of PLANP rendered a porous structure, similar 

to that observed in the bulk network.198 N2 sorption measurements were performed to 

characterize the porosity (Figure 4.4). Prior to RCM, the Brunauer-Emmett-Teller (BET) 

surface area of Vinyl-CPN was 808 m2 g-1. This value increased to 1096 m2 g-1 for 

PLANP. Increase of surface area was attributed to the prohibited torsional motion of the 

Figure 4.3. UV-visible (a) absorbance and (b) emission spectra of PLANP, Vinyl-CPN, 

and Ref-CPN. 
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backbone aromatic units, whereas such motion is possible in Vinyl-CPN. Additionally, 

the loss of the vinyl groups during RCM can contribute to the increase in porosity. The 

pore size distribution shows that PLANP is mostly microporous with pore sizes between 

1 and 2 nm with a smaller quantity of larger mesopores (Figure C17). It is noteworthy that 

Ref-CPN has a much lower BET surface area of only 81 m2 g-1, likely a result of lower 

steric hindrance due to the lack of the vinyl groups, which allowed for more 

interpenetration to block the pores. 

 Thermogravimetric analysis (TGA) was performed on the nanoparticles to test 

their thermal stability (Figure C18). As anticipated, the ladder-type PLANP exhibited a 

higher weight loss onset temperature at 325 °C, compared to 271 °C of Ref-CPN. In 

addition, the carbonization yield of PLANP recorded at 900 °C (35%) was approximately 

double that of Ref-CPN (18%). The higher decomposition temperature and carbonization 

Figure 4.4. N2 adsorption (filled symbols) and desorption (open symbols) isotherms of 

PLANP, Vinyl-CPN, and Ref-CPN. 
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yield indicated that the fused-ring, graphite-like constitution of the PLANP backbone is 

much more thermodynamically stable than the non-ladder constitution of Ref-CPN, in 

agreement with reported examples of linear ladder polymers and polyacrylonitrile.7, 77, 112, 

113, 238, 239

4.3 Processing 

Generally, the fully cross-linked backbones of porous polymer networks render 

them insoluble, hampering any applications that require good dispersion or solution 

processing. In the case of PLANP, the small size of the nanoparticles enables processing 

of the porous and fluorescent solids from colloidal organic dispersions, as shown above in 

the thin film casting of PLANP. We sought to demonstrate this advantageous property by 

fabricating a PLANP–polymer composite film. 

PLANP was embedded into composite films with polystyrene (PS) as a polymer 

matrix. PS was dissolved in CHCl3 and PLANP was added to the solution and 

homogenized to form the mixed dispersion. Films could be generated from the mixed 

dispersion through evaporative film formation on a glass substrate, and then easily 

delaminated to become freestanding (Figure 4.5). These films retained the characteristic 

fluorescence of PLANP (Figure 4.5a) with negligible differences between the film and 

solution-phase spectra (Figure 4.5b). Confocal laser microscopy was used to probe the 

dispersion of PLANP in the composite by visualizing the fluorescence of the particles. 

Blue emission from PLANP could clearly be seen distributed throughout the entire film, 

clustered into grains on the order of 10s of µm. This image indicated that the nanoparticles 

were well-dispersed in the polymer matrix, with only a moderate level of aggregation 
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(Figure 4.5c). PLANP was also able to be fabricated into PS films containing multiwalled 

carbon nanotubes to introduce a conductive element to the films (Appendix C). The 

maintained dispersibility of the nanoparticles in the solid state enables their future 

employment in functional composite applications. 
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Figure 4.5. Freestanding PLANP–PS composite films. (a) 

macroscopic images of film sample under ambient (left) and 365 nm 

UV light (right). (b) Fluorescence spectra comparison of film and 

CHCl3 dispersion. (c) Confocal fluorescence microscope image. 
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4.4 Experimental Section 

4.4.1 General information 

Nanomaterials can pose significant health and safety hazards, and appropriate 

exposure precautions should be taken. Starting materials, reagents, and solvents were 

purchased from Aldrich, Alfa Aesar, TCI, and Acros, and were used as received without 

further purification unless otherwise specified. Monomers M1~M4 were synthesized 

according to literature reports.156, 198 Monomers M1 and M3 were purified prior to 

polymerization by preparative size-exclusion chromatography on a JAI recycling HPLC 

with SEC columns; M2 and M4 were purified by recrystallization. All other reagents were 

used as purchased. Toluene was dried by an Inert Technology PureSolv-MD-5a solvent 

purification system. Miniemulsions were generated with a Heischler UP50H probe 

sonicator. Solid-state proton-decoupled 13C NMR spectra were obtained on a Bruker 

Avance 400 MHz spectrometer with 4 mm CP/MAS probes and MAS rates of 10 kHz at 

room temperature. Peaks were assigned in accordance with literature.198 Field-emission 

scanning electron microscopic (SEM) images were collected using a FEI Quanta 600 FE-

SEM at 20 kV. Samples were sputter coated in gold prior to imaging. Spin-coating of thin 

films was performed using an SCS spin coater from CHCl3 dispersions at 0.5 mg/mL of 

the nanoparticles onto octadecyltrichlorosilane (OTS)-coated SiO2/Si wafers. 

4.4.2 Synthesis 

Vinyl-CPN (Miniemulsion Polymerization): DI water (50 mL) was added to a two-

necked round bottom flask and degassed by bubbling N2. Sodium dodecyl sulfate (2.178 

g, 150 mM) was added under N2 and stirred until dissolved. M1 (0.222 g, 0.269 mmol, 2 
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eq), M3 (0.154 g, 0.403 mmol, 3 eq), Pd(PPh3)4 (0.032 g, 0.027 mmol), and BHT (60 mg) 

were dissolved in degassed, dry toluene (5 mL) and further degassed by three cycles of 

freeze–pump–thaw. The organic phase was injected into the aqueous surfactant solution 

under a high rate of stirring. Keeping the flask under nitrogen, a Heischler UP50 probe 

sonicator was used to sonicate the mixture for 10 minutes, until a homogeneous 

miniemulsion was formed. K2CO3 (0.379 g, 2.74 mmol) was added to the emulsion, which 

was resealed and heated to 80 °C for 24h. Subsequently, 2-bromostyrene (0.1 mL) as an 

end-capping agent was added and allowing to react for an additional 6h, before repeating 

the end-capping process with 2-vinylphenylboronic acid pinacol ester (0.2 mL). After 

cooling to room temperature, Amberlyst IRA-900 was added and stirred for 2h. The resin 

beads were filtered out and the resulting biphasic mixture was transferred to a separatory 

funnel where the organic products were extracted with CH2Cl2. The combined organic 

solution was dried over MgSO4 before the solvent was removed by rotary evaporation, to 

give the Vinyl-CPN product (355 mg, 0.228 mmol, 85% crude yield). The product was 

used for RCM without further purification. Solid-state 13C{1H} NMR: δ 151.11, 142.96, 

138.17, 135.03, 126.32, 111.22, 55.90, 28.45, 6.85. FTIR (cm-1): 3070.68, 2962.66, 

2918.30, 2873.94, 2848.86, 1471.69, 987.55, 893.04, 748.38, 692.44. 

PLANP (Ring-Closing Metathesis): Vinyl-CPN (355 mg, 0.228 mmol) and Grubbs’ 2nd 

Generation catalyst (0.015 g, 0.018 mmol) were dispersed in toluene (5 mL) and heated 

to 100 °C in a flask shielded from light. An additional portion of Grubbs 2nd generation 

catalyst (0.045 g, 0.053 mmol) was dissolved in toluene (10 mL) and added via syringe 

pump over 3 hr. The reaction was stirred overnight, then cooled and concentrated by rotary 
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evaporation. The product was precipitated into methanol followed by filtration using a 0.5 

µm membrane filter to give PLANP as a dark solid (0.139 g, 0.100 mmol, 39% two-step 

yield). Solid-state 13C{1H} NMR: δ 151.72, 145.06, 139.60, 131.07, 126.73, 115.61, 

57.64, 30.19, 7.90. FTIR (cm-1): 2962.66, 292.01, 2873.94, 2848.86, 1456.26, 1377.17, 

887.26, 794.67, 746.45, 692.44. 

Ref-CPN: Through the same minimemulsion polymerization described above using M2 

(0.209 g, 0.280 mmol) and M4 (0.139 g, 0.421 mmol), Ref-CPN was isolated as a pale 

solid (172 mg, 0.138 mmol, 49 %). Solid-state 13C{1H} NMR: δ 152.25, 138.46, 125.58, 

55.70, 28.43, 6.33. FTIR (cm-1): 3030.17, 2962.66, 2929.87, 2872.01, 1473.62, 1458.18, 

1375.25, 887.26, 831.32, 806.25, 758.02, 696.30. 

4.5 Conclusions 

In conclusion, we successfully synthesized porous ladder polymer network 

nanoparticles, using a dispersed-phase miniemulsion polymerization and subsequent 

RCM annulation in organic solvent. The well-defined nanoscale spherical morphology 

enabled excellent dispersibility of these materials in common organic solvents. Compared 

to the non-ladder type analogue, the ladder-type backbone imbued the particles with a 

significant increase in porosity, strongly structured vibrational optical spectra, and 

increased thermal stability. The particles were solution processed into freestanding 

composite films with retained optical properties. This work offers a proof of concept of 

processing typically highly insoluble, cross-linked ladder polymer networks. The 

integrated porosity, optical signal output, and processability of these materials promise 
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their utility for future application in vapor sensing and stimuli-responsive functional 

materials. 
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CHAPTER V  

GRAZING INCIDENCE X-RAY SCATTERING (GIXS) OF LADDER MOLECULE 

AND MACROMOLECULE THIN FILMS 

5.1 Introduction 

Ladder-type molecules and macromolecules are promising candidates for thin film 

electronic devices due to their beneficial electronic properties and wide scope of potential 

synthetic and processing strategies.143, 144, 240 The orientation of the molecules within the 

film is fundamental to the performance of an organic electronic device, due to the inherent 

electronic anisotropy of conjugated π-systems.241, 242 Reliable control over the overlap and 

orientation of π-systems is therefore essential for bulk intermolecular charge transport in 

the direction of the desired device geometry. GIXS from a high brilliance synchrotron 

light source enables high resolution characterization of this molecular morphology within 

the film.137, 165 A properly chosen grazing incident angle allows X-rays to penetrate the 

film but not the substrate, reducing background signal to ensure scattering is primarily 

caused by the material of interest. The scattered X-ray beams result in scattering peaks 

corresponding to repeating features in the film. By observing different scattering angles, 

different length scales can be probed in the film, ranging from atomic or molecular 

distances up to hundreds of nm. Grazing incidence wide-angle X-ray scattering 

(GIWAXS) is the technique of focus in this chapter as it probes smaller real-space 

distances (3–30 Å) relating to intermolecular distances and orientation, of great 

importance in forming charge transport pathways. 
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In addition to characterizing the film, the ability to control thin film morphology 

either through molecular design, processing methods, or external stimuli presents a 

significant opportunity to improve the functionality of the materials. The primary method 

of controlling morphology after processing is thermal annealing, which provides 

rearrangement energy to the molecules in the solid-state, enabling the film to achieve a 

more thermodynamically favorable packing. The nature of this rearrangement can provide 

information about intermolecular interactions within the film by studying the morphology 

before and after annealing. 

Ladder-type small molecules often exhibit a large degree of crystallinity and long-

range order in thin films due to their small size and well-defined structure. Electronic 

devices with mobilities of up to 10 cm2 V-1 s-1  have been generated with fused-ring 

molecules such as acenes or heteroacenes,240, 243, 244 including functionalized pentacenes245 

or  benzothieno[3,2-b]benzothiophenes (BTBT).246, 247 Molecular engineering of their 

ladder-type coplanar backbones facilitates solid-state packing structures which maximize 

π-system overlap to create charge transport pathways. BTBT and pentacene derivatives 

have served as model compounds for fundamental X-ray scattering explorations into thin 

film behaviors of ladder-type molecules. Such experiments have advanced understanding 

of thin film crystallization,248, 249 including substrate-induced phases250-252 or the effects of 

post-processing treatments like thermal253 or solvent vapor annealing.254 The wealth of 

knowledge in this area therefore provides a strong foundation on which to continue to 

study novel ladder-type small molecules with unique functionalities, pushing further 

towards high performance devices.  
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On the other hand, extended ladder-type macromolecules often lack a significant 

degree of crystallinity, translating to either isotropic scattering peaks or featureless 

images.77, 141, 142 The large size of the backbone inhibits the solid-state reorganization 

needed to undergo crystallization within the film, and the disperse molecular weight 

prevents regularly repeating features. Additionally, the large sidechains needed for 

solubility often disrupt interchain interactions between the large π-faces. The relative lack 

of GIXS studies of longer ladder-type macromolecules indicates the need for further 

research into their solid-state interactions to improve understanding of their thin film 

behaviors. 

Herein, we report various examples of controllable thin-film morphology, 

illustrated by different classes of molecules and macromolecules, ranging from fully 

conjugated ladder polymers to fused oligomers and small molecules. Both thermal and 

solvent vapor annealing were used to effect different changes in the films by controlling 

inter- and intramolecular interactions. 

5.2 Thermally Induced Morphology Changes of Ladder Polymers* 

First, the thermal annealing-induced rearrangement of donor-acceptor ladder 

polymer DALP provides valuable information as to the behavior of extended fully 

conjugated ladder polymers in thin films (Figure 5.1). As discussed in Chapter 2, the good 

solubility of DALP allowed for the preparation of uniform thin films on Si substrates by 

* Section 5.2 adapted with permission from “Donor–acceptor conjugated ladder polymer via

aromatization-driven thermodynamic annulation” by Jongbok Lee, Alexander J. Kalin, Chenxu Wang,

Julia T. Early, Mohammed Al-Hashimi, and Lei Fang, Polym. Chem., 2018, 9, 1603-1609. Copyright 2018

The Royal Society of Chemistry
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spin-casting from chloroform solution. However, the as-cast film showed no scattering 

features due to the completely amorphous morphology of DALP (Figure A5), even after 

thermal annealing at 250 °C (Figure 5.1a). Based on the large polarizable π-faces as well 

as the electron-rich donors and electron-deficient acceptors, DALP should be expected to 

organize into a π-π stacking orientation, leading to improved order in the film.255, 256 The 

lack of this phenomenon in the GIWAXS image indicates that the large α-branched side 

chains that are necessary for the good solubility of DALP also provide enough steric 

hindrance to limit efficient ordering of the films in the solid-state. 

However, thermal annealing of the film at 500 °C for 30 min cleaved the alkyl 

side-chains, leading to a clear out-of-plane scattering peak (Figure 5.1b) resulting from a 

face-on orientation with a π–π distance of 3.7 Å.164 These data suggested that thermally 

induced cleavage of sp3 carbons may provide a powerful, if irreversible, tool to induce 

rearrangement by restoring interactions between adjacent π systems. As charge transport 

is facilitated by π system overlap, this strategy may be an efficient method of imbuing 

solution processability into ladder polymers without sacrificing performance. More 

thermally labile side chains have been used in other reported systems,75, 77 and so 

continued development of such chemistries will improve the feasibility of this method. 

However, even after the restoration of the interchain packing, the large size and disperse 

molecular weights of the polymer lead to relatively weak ordering in the film. This is 

consistent with many other reported ladder polymers77, 141, 142 and this is a key limitation 

of using polymers to study solid-state morphology of ladder-type materials. 
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5.3 Solid-State Dynamics of Ladder-type Oligomers* 

Due to the weak ordering of conjugated ladder polymers, we anticipated that 

GIWAXS measurements of a series of oligomers would help bridge the gap between small 

molecules and polymers in order to better explain size-dependent solid-state properties, 

aiding future molecular design efforts. To study this, thermally induced solid-state 

rearrangements were explored in a series of fused polycyclic aromatic hydrocarbon 

* Section 5.3 adapted with permission from “Extended Ladder-Type Benzo[k]tetraphene-Derived

Oligomers” by Jongbok Lee, Haunbin Li, Alexander J. Kalin, Tianyu Yuan, Chenxu Wang, Troy Olson,

Hanying Li, and Lei Fang, Angew. Chem. Int. Ed., 2017, 56, 13727-13731. Copyright 2017 Wiley-VCH

Verlag GmbH & Co. KGaA, Weinheim.

Figure 5.1. a) GIWAXS scattering image of DALP after 250 °C 

thermal annealing. b) Scattering image after 500 °C thermal 

annealing to cleave alkyl sidechains. 
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oligomers based on benzo[k]tetraphene (BTp). Access to this series of oligomers with 

extended conjugation enabled an unprecedented, precise correlation of oligomer size with 

solid-state crystallization dynamics. Establishment of such a correlation is crucial for 

solid-state processing and device performances of sp2 carbon-based materials, and is 

important to better understand crystallization of macromolecules.257 

The series of BTp oligomers were synthesized from vinyl-functionalized oligo-p-

phenylenes (Figure 5.2) through RCM. The BTp derivatives contained from 5 fused rings 

(BTp-5) up to 13 fused rings (BTp-13), all with branched alkoxy sidechains on their 

terminal rings. The oligomers BTp-5~BTp-11 were soluble in common organic solvents 

at room temperature while BTp-13 was only slightly soluble at room temperature and 

highly soluble at 90 °C in 1,2-dichlorobenzene, thus allowing solution-phase processing 

into organic thin films through spin-coating. The oligomers were cast into thin films on Si 

wafers and annealed at 250 °C under N2. Absorption spectra and GIWAXS images were 

Scheme 5.1. Synthesis of BTp oligomers from vinyl-

functionalized oligo-p-phenylenes (VPPs). 

RCM 
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used to explore morphology and intermolecular interactions before and after annealing. 

Changes in intermolecular aggregation in the thin film were observed as shifted 

absorbance spectra from the solution-phase as well as in the GIWAXS scattering peaks. 

For BTp-5, the solid-state absorption spectrum of the as-cast film was identical to 

that in the solution phase, indicating that (i) the molecular conformation remained 

persistent as a result of the fused-ring rigidity and (ii) there was no significant 

intermolecular electronic coupling due to the small π-face and relatively bulky solubilizing 

chains (Figure D1a). The GIWAXS pattern of BTp-5 showed only moderately ordered 

face-on and edge-on packing, and no significant change before and after annealing (Figure 

5.3a), suggesting that the film was already in a thermodynamically stable, weakly 

crystalline state as cast at room temperature. For BTp-7 and 9, the solid-state spectra were 

bathochromically shifted while maintaining well-structured vibrational progression 

(Figure D1b and D1c), indicating the presence of intermolecular electronic coupling in an 

ordered packing mode due to the large π-faces. Indeed, in GIWAXS, the as-cast film of 

BTp-7 afforded highly crystalline scattering peaks with out-of-plane lamellar packing and 

edge-on π-π stacking at room temperature (Figure 5.3b). However, the as-cast film of 

BTp-9 afforded less crystalline scattering peaks than BTp-7 at room temperature and 

became less characteristic upon annealing (Figure 5.3c). For larger oligomer such as BTp-

11, however, solid-state absorption of the as-cast film showed a broad and featureless 

spectrum, indicative of a kinetically trapped amorphous phase as a result of low molecular 

mobility and over-strengthened intermolecular interaction originating from the larger π-

faces (Figure D1d).258 GIWAXS of the as-cast sample of BTp-11 demonstrated weak 
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crystallinity and only face-on π-π stacking. After annealing at 250 °C, however, the 

absorption spectrum of BTp-11 regained a well-defined vibrational progression, as a result 

of a thermally induced crystallization process that gave back the highly ordered packing 

mode. GIWAXS of the annealed sample demonstrated well-resolved and highly 

crystalline scattering peaks with out-of-plane lamellar packing and edge-on π-π stacking 

(Figure 5.3d). Such phenomena were also observed in the more extreme case of BTp-13, 

but the annealing process gave less profound m olecular reorganization due to the 

prohibitively large π-systems, hence low reorganization dynamics. It is worth noting that 

it was difficult to obtain good quality thin films of BTp-13 due to its low solubility. 

Figure 5.2. GIWAXS images of (a) BTp-5, (b) BTp-7, (c) BTp-9, and (d) 

BTp-11 thin films as-cast and after annealing. (e) Correlation chart between 

intermolecular interaction and molecular mobility based on the relative size 

of building block to the alkyl chain. 
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These results suggested that the balance between molecular mobility and 

intermolecular interaction was crucial in obtaining highly crystalline solid-state packing 

for ladder-type BTp-derived materials. Larger π-systems facilitated stronger 

intermolecular interaction but also rendered lower molecular mobility for crystallization. 

These two counteractive factors must be optimally balanced to achieve good crystallinity 

at a certain temperature. The BTp oligomers with fine-tuned size differences enabled a 

unique opportunity to strike this balance. The best ordered solid-state packing from room 

temperature casting was seen on the somewhat smaller BTp-7, while after annealing, the 

highest crystallinity thin film was observed on the larger BTp-11 (Figure 5.3e). 

Though these results and those of DALP both rely on thermally induced 

rearrangements, being able to control morphology with milder and less energetically 

intensive conditions is desirable for the stability of the materials by avoiding unwanted 

chemical decomposition. For this reason, the use of shorter ladder-type molecules may be 

of greater interest than of extended polymers. As other reports have shown, the properties 

of ladder-type molecules do not increase above a certain chain length, including band gaps 

and charge transfer.156, 200 The data from the BTp oligomer scattering may potentially 

corroborate that longer chains are not always better by showing the potential upper size 

limit to high degrees of ordering in ladder-type chains. 

5.4 Characterization of B–N Fused Small Molecules and Solvent Vapor 

Morphology Control 

Though thermal annealing is a commonly used method to effect solid state 

rearrangements, we also sought to explore other possible stimuli that could create 
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morphological changes in small molecules. Full control over morphology requires a 

dynamic component, thereby allowing for reversible changes. In the case of the previously 

mentioned molecules, there is a lack of reversibility in the morphological changes, as the 

post-annealing packing is representative of a thermodynamically favorable end state. 

Previously, we have reported systems possessing noncovalent interactions that could be 

reversibly controlled,32, 259, 260 and we therefore anticipated that a thin film possessing such 

interactions would be susceptible to external control. 

To test this, molecules were designed with intramolecular noncovalent B–N bonds 

between an electron-rich indolocarbazole core and electron-deficient benzothiazole arms 

(Figure 5.4). The B–N bonds provide rigidity to the molecules by locking the 

conformation of the central aromatic units. This locked conformation promotes charge- 

and spin-delocalization, allowing for extraordinary redox processes between the 

oxidation-active core and reduction-active arms.259 Importantly, these B–N bonds are 

dynamic and can be reversibly broken with competing Lewis acidic or basic reagents to 

disrupt the intramolecular interactions. The molecules possess either phenylene (Ph) or 

thiophene (Th) linkages to branched alkyl sidechains to provide good solubility while 

tuning the electron density of the donor core. Additionally, the benzothiazole units were 

synthesized both with (Ph-Cl; Th-Cl) and without chlorine (Ph; Th) substituents in order 

to increase the electron deficiency of the arms. The good solubility of these molecules 

allowed for efficient processing into thin films from chloroform solutions. Thermal 

annealing at 160 °C was also used to obtain the thermodynamically favorable packing 

structure of the molecules in the films. 
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GIWAXS images were taken of Ph, Ph-Cl, Th, and Th-Cl both before and after 

thermal annealing at 110 °C to compare the effects of different structures on thin film 

morphology. The thiophene-appended molecule Th shows moderate ordering in the as-

cast film, with weak crystalline scattering peaks and several intense out-of-plane lamellar 

peaks, which become sharper after annealing. When chlorinated, Th-Cl shows only one 

strong out-of-plane lamellar peak after spin-coating but annealing causes numerous 

lamellar peaks and weak crystalline scattering peaks to arise. For Ph, the as-cast film 

showed several out-of-plane lamellar peaks. After annealing, the lamellar peaks became 

sharper and more intense and weak crystalline peaks emerged. In the chlorinated case of 

Ph-Cl, the as-cast film showed a more amorphous morphology, with only one strong 

lamellar out-of-plane peak. After annealing, however, the film was highly crystalline, with 

numerous sharp diffraction peaks. 

Figure 5.3. Acceptor-donor-acceptor molecules conformationally locked by B–N 

noncovalent bonds. 
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The similar behavior of these molecules indicates that the structural difference 

between a thiophene and benzene ring attached to the indolocarbazole core does not cause 

Figure 5.4. GIWAXS images of B-N fused molecules before 

(left column) and after (right column) thermal annealing. 
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significant changes in the behavior of these molecules in a thin film. The addition of 

chlorines on the benzothiazole arms may disrupt packing at ambient conditions but 

appears to enable stronger crystallinity after annealing. In all cases, the film after 

annealing is more ordered after annealing, indicating that efficient packing is 

thermodynamically favorable for these molecules. These results are promising for tunable 

molecules for organic electron applications, by ensuring that small structural changes that 

alter molecular orbital energy levels do not prevent efficient solid-state packing. This 

facilitates the creation of specifically tuned energy levels to obtain a desired performance 

without sacrificing film quality. 

As previously stated, the key feature of these B–N fused ladder molecules is the 

dynamic nature of the noncovalent bond, enabling Lewis acidic or basic reagents to 

compete with the B–N interaction.32 We anticipated that if such a competing reagent were 

added in situ during a GIWAXS experiment, the torsion of the benzothiazole arms after 

breaking this interaction would disrupt the ordered packing within the thin film (Figure 

5.6a), which could then be observed in near real-time by changes in the GIWAXS images. 

We therefore took advantage of a sample chamber which could be connected to a solvent 

vapor flow line in order to test this hypothesis. The solvents chosen for this experiment 

were methanol and chloroform. Both should be able to compete with the B–N bond to 

some extent, but the molecules also have good solubility in chloroform and almost none 

in methanol. This helps to rule out effects that a good solvent might have on the film, such 
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as swelling. Additionally, a Filmetrics film thickness analyzer was used to measure the 

film thickness during the experiment. 

Th-Cl was chosen for this experiment because of its highly ordered thin film with 

clearly distinguishable lamellar stacking peaks. The scattering image of Th-Cl after 

annealing (Figure 5.5) in the ultrahigh vacuum sample chamber was used as a control for 

the experiment. As expected, the scattering peaks observed in the control image were no 

longer visible after exposure to methanol. The film thickness changed less than 1%, 

indicating that this loss of scattering peaks was not due to swelling of the films. 

Interestingly, after removing the film from the methanol environment and letting dry, the 

ordered scattering peaks reappeared (Figure 5.6b). The out-of-plane lamellar peaks were 

less pronounced, and some in-plane and amorphous lamellar scattering was observed in 

the reformed film. This indicates that the dynamic nature of these bonds which control 

molecular conformation can be reversibly disrupted and reformed. Through further study, 

we believe that this may lead to a “turn-off” effect of certain properties of the molecules 

or the film such as transistor performance or changes in optical spectra, which could be 

then correlated specifically to the change in morphology. This would then enable full 

control over the morphology of similar molecules that possess dynamic intramolecular 

interactions. 
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5.5 Experimental Section 

5.5.1 General Information 

Solvents for sample solutions were purchased from Aldrich, Alfa Aesar, TCI, and 

Acros, and were used as received without further purification unless otherwise specified. 

All measurements were performed at the Advanced Photon Source (APS) at Argonne 

Figure 5.5. a) Competing reagents such as MeOH can break B-N noncovalent 

interactions, which are then restored when the competing reagent is removed. b) the clear 

scattering peaks in the film can be reversibly disrupted and reformed without a measurable 

change in film thickness. 
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National Laboratory on beamline 8-ID-E.165 Beamline 8-ID-E operates at an energy of 

10.91 keV and the images were collected from a Pilatus 1MF camera (Dectris), with two 

exposures for different vertical positions of the detector. Software developed at the 

beamline provides a GUI for processing data and performing calculations based on the 

scattering images.166, 261 The X-ray beam is approximately 100 µm wide and 50 µm and 

was set to an incident angle of 0.15°. An ultrahigh vacuum chamber was used for standard 

GIWAXS measurements in order to avoid diffuse scattering effects from the air. For 

solvent vapor annealing experiments, a PTFE sample chamber was used. To introduce 

solvent vapor to the chamber, N2 was bubbled through a solvent reservoir, connected by 

tubing to the chamber. The rate of N2 flow was controlled using a mass flow controller. 

5.5.2 Sample Preparation 

Si wafers (1×2 cm) were cleaned with a UV-ozone cleaner for 15 minutes before 

creating films. Wafers were spin coated with a Specialty Coating Systems G3 spin coater 

and annealed in an N2 glovebox. Spin rate, solution concentration and solvent, and 

annealing temperature were chosen dependent on sample. Sample solution was drop cast 

onto the wafer in the spin coater, then the spin coating procedure was run to form the film. 

The wafers were then left to dry overnight. Thermal annealing was performed in an N2 

glovebox, typically at 150 °C for 2h, unless stated otherwise.  

5.5.3 Measurement Procedures 

In a typical experiment, a sample is first aligned, followed by as many scattering 

measurements as is necessary. Samples were vertically aligned so as to have the surface 

of the film centered in the beam, and the angle of the sample was aligned to be horizontal 
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with respect to the beam. The samples were then set to the incident angle and a test 

exposure was taken to ensure proper alignment. The gathered data was then taken from 

other areas on the film in order to avoid any decomposition effect that might have 

happened during alignment. Unless specifically stated otherwise, 4 exposures were taken 

on each film in 4 different spots. The images showing the fewest scattering artifacts were 

chosen for presentation. 

5.6 Conclusion & Outlook 

The previously discussed experiments have shown the potential for controllable 

thin film morphology in ladder-type molecules and macromolecules. Thermal energy was 

used in a donor-acceptor ladder polymer, a series of conjugated oligomers, and 

noncovalently fused molecules to induce favorable morphological rearrangements, while 

solvent vapor annealing could reliably disrupt noncovalent interactions. Importantly, we 

were able to compare ladder-type macromolecules of different lengths, showing that 

controllable morphology is more effective with smaller molecules, but also that 

intermolecular interactions of extended π faces can be much stronger than their shorter 

counterparts. For these reasons, it is vital that the backbone size be central to molecular 

design in order to fully take advantage of the properties of conjugated ladder-type systems. 

These experiments have helped to build a portfolio of experimental techniques, 

which can now be applied to other fundamental studies or used in more functional 

applications. With the ability to control thin film morphology, more complex experiments 

can be designed to combine multiple stimuli to provide additional structure-property 

correlations. An additional tool not explored thus far in our research is the ability to 
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connect the GIWAXS sample measurement chamber to a source measure unit, allowing 

for electric voltage and current measurement. On its own, electronic control of a thin film 

can be used to drive solid-state redox processes, which should cause conformational 

changes in the molecules. Further, combining electronic monitoring with the other 

methods described here would allow real-time correlation of electronic device 

performance with morphological changes brought on by external stimuli, something that 

to our knowledge is unexplored in such conjugated ladder molecule systems. 

We also anticipate that combinations of external stimuli can be applied to larger 

functional devices which would be outside the GIWAXS measurement regime. However, 

the modularity of modern beamline equipment makes switching to a small-angle geometry 

trivial. This would enable explorations of features at length scales up to hundreds of nm, 

enabling characterization of scalable devices. By expanding these experiments towards 

multifunctional systems, such morphological characterizations could play a key role in 

advancing and accelerating the next generation of functional organic materials. 
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CHAPTER VI  

CONCLUSIONS 

In conclusion, this dissertation discussed various aspects of conjugated ladder-type 

backbones in organic molecules and macromolecules. The importance of these materials 

stems from their rigidity and stability from a secondary strand of backbone bonds, making 

them prime candidates for various applications, but requiring new synthetic strategies to 

solve the challenges of reliable multiple bond creation. Based on historical precedents, we 

advanced the field by developing efficient chemistries for creation of conjugated ladder 

polymers with different functionalities. We showed that thermodynamically controlled 

RCM can be applicable to challenging substrates, and in doing so we could explore the 

properties offered by such systems. 

In Chapter II, donor and acceptor monomers were synthesized and polymerized to 

form an alternating donor–acceptor ladder polymer DALP was constructed using RCM 

annulation, therefore avoiding difficult intramolecular cyclization with an electron-

deficient backbone. DALP showed lower energy optical absorption and emission due to 

its lowered bandgap, as well as highly structured optical spectra, and was fabricated into 

ordered thin films using thermal annealing. 

In Chapter III, truxene-derived monomers were synthesized in order to apply RCM 

to another challenging substrate, a crosslinked ladder polymer network (PLAN). Various 

strategies were explored to add the vinyl groups necessary for RCM. PLAN provided 

unprecedentedly high methane adsorption per unit surface area due to the lessened initial 
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entropy of the rigidified ladder-type backbone, as well as being chemically and thermally 

more stable than a single-stranded counterpart. 

In Chapter IV, the truxene-based network was made solution-processable using a 

miniemulsion polymerization, affording porous ladder polymer network nanoparticles 

(PLANP). The nanoparticles were consistently measured to be approximately 200 nm in 

diameter with a narrow PdI of 0.1. PLANP retained the valuable porosity of the 

crosslinked network with a BET surface area of 1097 m2 g-1. The colloidally sized 

nanoparticles were easily dispersed in organic solvents for solution-phase optical 

characterization. PLANP possessed highly structured optical spectra due to the lack of 

conformational relaxation of the rigid backbones. Importantly, the nanoparticle 

processability allowed for implementation of the porous and fluorescent framework into 

various applications, and we showed that freestanding films could be generated that 

retained the PLANP properties in a polystyrene matrix.  

In Chapter V, we studied a series of ladder-type molecules and macromolecules 

using GIWAXS to explore thin film morphology. We were able to show that multiple 

external stimuli could be used to control morphology. In the case of a conjugated ladder 

polymer and oligomers, thermal annealing improved packing in the films by improving 

interactions between the backbone π-faces either through side-chain cleavage or by 

providing energy for solid-state reorganization driven by length-dependent intermolecular 

interactions. Additionally, solvent vapor exposure was shown to reversibly compete with 

noncovalent intramolecular bonds, increasing molecular torsion and disrupting thin film 

packing. 
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Overall, this dissertation highlighted several strategies that could tackle the 

challenges posed by rigid, fully conjugated ladder-type backbones. RCM is capable of 

creating the double-stranded backbone highly efficiently due to the thermodynamic 

driving force of aromatization, even with electron-deficient backbones or within a porous 

solid. The success of these methods establishes RCM as a valuable tool to be applied in 

further syntheses of unique ladder-type substrates, and the use of a dispersed-phase system 

in order to create processable ladder polymers provides an alternative strategy for solution 

processing without relying on long alkyl side-chains. These two approaches will help to 

efficiently combine design, synthesis, and processing in order to expand the scope of 

conjugated ladder polymers within the rapidly developing field of functional organic 

materials. 
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APPENDIX A 

SUPPLEMENTARY DATA FOR CHAPTER II 

A1. Synthesis 

3,9-dibromo-5,11-dihydro-5,11-di(1-octylnonyl)indolo[3,2-b]carbazole-2,8-

dicarbaldehyde (S2): In a 150 mL sealed tube, DMF (8.7 mL, 110 mmol) was added in 

anhydrous 1,2-dichloroethane (30 mL) and cooled to 0 °C under N2. To the mixture was 

added phosphorus oxychloride (10.5 mL, 113 mmol) dropwise at 0 °C. After the reaction 

mixture was warmed to room temperature, compound S1 (4.0 g, 4.5 mmol) was added into 

the flask, and the mixture was stirred at 95 °C for 48 h. The reaction was cooled to room 

temperature and quenched with water. The aqueous mixture was basified to pH = 7 by 2M 

KOH solution. The mixture was extracted with CH2Cl2 (3 × 50 mL), and the combined 

organic layer was dried over MgSO4, filtered through Celite, and concentrated under 

reduced pressure. The residue was purified by flash column chromatography (SiO2, 

hexane:CH2Cl2 = 100:0 to 50:50) to give the product S2 (2.7 g, 2.9 mmol, 63%) as a 

yellow solid. 1H NMR (500 MHz, CDCl3): δ 10.46 (s, 2H), 8.83, 8.81 (two s*, 2H), 8.27, 

*NMR data marked with * in Appendix A indicate that multiple peaks were observed in the spectra due to

atropisomerism from hindered rotation of the alkyl sidechains.
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8.24, 8.13, 8.10 (four s*, 2H), 7.86, 7.77 (two s*, 2H), 4.68, 4.55 (two quint*, 2H), 2.40, 

2.26 (two m*, 4H), 2.05 (m, 4H), 1.13 (m, 46H), 0.78 (t, J = 7.0 Hz, 12H). 13C{1H} NMR* 

(125 MHz, CDCl3): δ 191.98, 147.06, 143.82, 139.06, 138.93, 135.15, 125.15, 124.68, 

124.36, 124.32, 123.72, 123.30, 123.11, 122.97, 122.76, 122.41, 122.04, 121.69, 104.08, 

13.68, 103.39, 103.00, 100.96, 100.59, 57.94, 57.59, 33.77, 33.44, 31.84, 29.44, 29.23, 

27.36, 26.99, 26.66, 22.70, 14.48, 14.19, 13.84. HRMS (MALDI): calcd for 

C54H78Br2N2O2 [M+H]+ m/z = 947.4488; found m/z = 947.4431. 

3,9-dibromo-2,8-diethenyl-5,11-dihydro-5,11-di(1-octylnonyl)indolo[3,2-b]carbazole 

(S3): To a mixture of methyltriphenylphosphonium bromide (4.0 g, 11 mmol) in THF (80 

mL) was added t-BuOK (1.18 g, 10.5 mmol) in  small portions over 10 min at room 

temperature. Compound S2 (2.5 g, 2.6 mmol) was added into the flask with several 

crystals of 2,6-di-t-butyl-4-methylphenol (BHT). The mixture was stirred in the dark at 

reflux for 6 h. The reaction was quenched with water and diluted with CH2Cl2. The mixture 

was extracted with CH2Cl2 (3 × 30 mL) and the combined organic layer was dried over 

MgSO4, filtered through Celite, and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (SiO2, hexane) to give the product S3 (2.5 g, 2.6 

mmol, 99%) as a yellow solid. 1H NMR (500MHz, CDCl3): δ 8.38, 8.35 (two s*, 2H), 

8.14, 8.10, 8.00, 7.97 (four s*, 2H), 7.75, 7.59 (two s*, 1H), 7.26 (dd, J = 17.5 Hz, 11.0 
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Hz, 2H), 5.82 (dd, J = 17.5 Hz, 11.0 Hz, 2H), 5.34 (d, J = 11.0 Hz, 2H), 4.67, 4.48 (two 

br*, 2H), 2.42, 2.26 (two m*, 4H), 2.00 (m, 4H), 1.13 (m, 46H), 0.79 (t, J = 7.0 Hz, 12H). 

13C{1H} NMR (125 MHz, CDCl3): δ 143.69, 142.79, 140.14, 138.25, 137.34, 137.12, 

136.60, 136.36, 134.40, 127.47, 123.83, 123.55, 122.41, 122.17, 121.51, 120.92, 117.96, 

117.78, 117.60, 114.77, 114.55, 113.85, 113.22, 112.49, 112.31, 105.12, 102.25, 101.95, 

99.47, 99.26, 57.38, 57.02, 56.43, 33.88, 33.64, 31.88, 29.58, 29.46, 29.31, 27.04, 22.72, 

14.21, 14.16. HRMS (MALDI): calcd for C56H82Br2N2 [M+H]+ m/z = 944.4923; found 

m/z = 944.4905. 

2,8-diethenyl-3,9-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,11-dihydro-

5,11-di(1-octylnonyl)indolo[3,2-b]carbazole (ICz-M):  To the mixture of compound S3 

(1.1 g, 1.1 mmol) in anhydrous THF (20 mL) at –78 °C was added n-BuLi (1.4 mL, 2.3 

mmol, 1.6 M in hexane) dropwise over 1 h and stirred for another 1h at –78 °C. 2-

isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.53 mL, 2.6 mmol) was added into 

the mixture, and the mixture was allowed to room temperature and stirred for 24 h. The 

reaction was quenched with water and diluted with CH2Cl2. The mixture was extracted 

with CH2Cl2 (3 × 30 mL) and the combined organic layer was dried over MgSO4, filtered 

through Celite, and concentrated under reduced pressure. The residue was purified by flash 

column chromatography (SiO2, hexane:CH2Cl2 = 100:0 to 50:50) to give the product ICz-
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M (0.81g, 0.78 mmol, 71%) as a yellow solid. 1H NMR (500MHz, CDCl3): δ 8.46 (m, 

2H), 8.20 (m, 2H), 8.17, 8.05 (two s*, 1H), 8.01 (s, 1H), 7.85 (s, 1H), 7.76 (dd, J = 17.0 

Hz, 11.0 Hz, 2H), 5.85 (d, J = 17.0 Hz, 2H), 5.25 (d, J = 11.0 Hz, 2H), 4.71 (bs, 2H), 2.44, 

2.37 (two m*, 4H), 2.02 (m, 4H), 1.43 (s, 24H), 1.14 (m, 46H), 0.80 (t, J = 7.0 Hz, 12H). 

13C{1H} NMR* (125 MHz, CDCl3): 151.67, 142.52, 138.76, 134.70, 133.83, 126.38, 

125.67, 125.02, 124.16, 118.46, 116.21, 116.06, 115.88, 111.45, 102.36, 101.98, 99.55, 

99.19, 83.73, 56.88, 56.39, 34.09, 33.77, 31.91, 29.69, 29.51, 29.38, 27.12, 26.98, 25.10, 

22.73, 14.18. HRMS (MALDI): calcd for C68H106B2N2O4 [M+H]+ m/z = 1037.8417; found 

m/z = 1037.8499. 

 

4,7-dibromo-5,6-diethenyl-2,1,3-benzothiadiazole (BTD-M): A mixture of compound 

S4 (3.0 g, 6.3 mmol) and PPh3 (4.1 g, 16 mmol) in DMF (40 mL) was stirred at 80 °C for 

18 h. After being cooled to room temperature, the reaction mixture was concentrated under 

reduced pressure. The residue and paraformaldehyde (4.3 g) were suspended in THF (70 

mL) under N2. While stirring, t-BuOK (2.1 g, 19 mmol) was added in small portions over 

10 min. After 30 min, the reaction was quenched with water and extracted with CH2Cl2 (3 

× 30 mL). The combined organic layer was dried over MgSO4, filtered through Celite, and 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography (SiO2, hexane) to give the product BTD-M (1.7 g, 4.9 mmol, 78%) as a 
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white solid. 1H NMR (500 MHz, CDCl3): δ 6.70 (dd, J = 17.5 Hz, 12.0 Hz, 2H), 5.76 (d, 

J = 12.0 Hz, 1.5 Hz, 2H), 5.61 (dd, J = 17.5 Hz, 1.5 Hz, 2H). 13C{1H} NMR (125 MHz, 

CDCl3): δ 152.31, 140.56, 134.42, 124.49, 113.72. HRMS (APCI): calcd for C10H6Br2N2S 

[M+H]+ m/z = 346.87; found m/z = 346.93. 

DACP: Under N2, degassed toluene (4 mL) and water (0.8 mL) was added to a mixture of 

ICz-M (99.6 mg, 0.096 mmol), BTD-M (33.2 mg, 0.096 mmol), Pd(PPh3)4 (11 mg, 

9.5×10-6 mol), K2CO3 (80 mg, 0.6 mmol), a drop of aliquat 336, and several crystals of 

BHT. The solution was further degassed for 3 times by freeze–pump–thaw. The reaction 

mixture was stirred at 100 °C for 24 h in the dark, before it was cooled to room 

temperature. 2-bromostyrene (50 µL, 0.38 mmol) was added into the flask at room 

temperature, and the mixture was heated again to 100 °C and stirred for 24 h. 

Subsequently, 2-vinylphenylboronic acid (110 mg, 0.77 mmol) was added into the flask, 

and the mixture was stirred at 100 °C for another 24 h. The resulting product was 

precipitated from methanol, filtered, and washed with acetone. The solid was dried under 

vacuum to afford DACP (91 mg, 0.094 mmol, 98%, Mn = 28 kg mol−1, PDI = 5.16 by 

SEC). DACP was further purified by preparative recycling SEC to remove lower 

molecular weight oligomers to afford a batch with higher Mn and lower PDI (65 mg, 70%, 
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Mn = 43 kg mol−1, PDI = 4.34 by SEC). 1H NMR (500 MHz, CDCl3): δ 8.64 (bs, 2H), 

8.27, 8.15 (two m, 2H), 7.52, 7.36 (two m*, 2H), 6.78 (m, 2H), 6.58 (m, 2H), 5.90 (m, 

2H), 5.32 (m, 4H), 5.10 (m, 2H), 4.79, 4.62 (two bs*, 2H), 2.55, 2.33 (two m, 4H), 1.98 

(m, 4H), 1.18 (m, 46H), 0.82 (m, 12H). 

DALP: To a 50 mL Schlenk flask was added DACP (126 mg, 0.13 mmol) and Grubbs’ 

2nd generation catalyst (6 mg, 5 mol%) under N2. Subsequently, degassed toluene (12 

mL) was added, and the reaction mixture was heated to reflux while stirring. At this point, 

additional solution of Grubbs’ 2nd generation catalyst (16 mg, 15 mol%) in degassed 

toluene (8 mL) was injected into the reaction mixture slowly using syringe pump over the 

course of 4 h. The reaction was kept running for an additional 2 h at reflux temperature 

before cooling to room temperature. The resulting product was precipitated from methanol 

and filtered. The crude solid was washed via Soxhlet extraction with acetone and hexane, 

before being extracted by chloroform. The chloroform solution was filtered and condensed 

under reduced pressure. The desired DALP product was precipitated from methanol and 

isolated by filtration and drying under vacuum (73 mg, 0.086 mmol, 66%, Mn = 21 kg 

mol−1, PDI = 2.95 by SEC). The insoluble high molecular weight fraction left over as a 
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solid in the Soxhlet extractor was also collected and dried under vacuum (30 mg, 0.04 

mmol, 27%). 1H NMR (500 MHz, CDCl3): δ 11.21, 11.05 (two bs, 2H), 8.97 (m, 3H), 

8.82 (m, 1H), 8.54 (m, 4H), 5.33, 5.01 (two bs*, 2H), 2.94, 2.76 (two m*, 4H), 2.30 (m, 

4H), 1.10 (m, 46H), 0.70 (m, 12H). 

A2. Size Exclusion Chromatography (SEC) 

Figure A1. Size exclusion chromatogram of DACP after purification by preparative 

recycling SEC. Mn
SEC = 43 kg/mol, PDI = 4.34. An aggregation feature was observed as 

a shoulder peak in the high molecular weight region. 
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Figure A2. Size exclusion chromatogram of DALP after Soxhlet extraction from CHCl3. 

Mn
SEC = 21 kg/mol, PDI = 2.95.  

A3. Lippert-Mataga Solvatochromism Plot 

The positive solvatochromism of DALP was demonstrated by a Lippert-Mataga 

plot using the Lippert-Mataga equation (1). 

  (1) 

Herein, νA and νE are the absorption maximum and emission maximum in wavenumbers, 

μg and μE are, respectively, the ground and excited state dipole moments, h is Planck’s 

constant, c is the speed of light in vacuum, a is the Onsager cavity radius, and Δf is the 

orientation polarizability. Stokes shift is generally described by the difference of 

absorption maximum and emission maximum. However, since DALP exhibits optically 

weak HOMO-LUMO transitions in the absorption spectrum, the Stokes shift of DALP 

represents the difference of the weak HOMO-LUMO absorption and the emission 

maximum. Unfortunately, it was difficult to obtain an accurate wavelength of the weak 

HOMO-LUMO absorptions in various solvents because the weak absorption shoulder 

(468 nm) observed in toluene became less characteristic in more polar solvents. Although 

the difference between absorption maxima and emission maxima does not depicts Stokes 

shift of DALP, the difference, which is more apparent, was plotted as a function of Δf, 

which is defined as the equation (2). 

(2)
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where, ε is dielectric constant, and n is refractive index of a solvent. 

Table A1. Summary of dielectric constants (ε),6 refractive indices (n),6 orientation 

polarizabilities (Δf), absorptions, emissions, and the difference between the absorptions 

and emissions in various solvents.  

ε n Δf 

λabs

(nm) 

λem (nm) Δν (cm-1) 

Toluene 2.38 1.4969 0.013 468 569 3792 

Chlorobenzene 5.62 1.5248 0.143 469 591 4401 

Chloroform 4.81 1.4459 0.148 467 590 4464 

1,2-

Dichlorobenzene 

9.93 1.5514 0.186 470 608 4829 

Tetrahydrofuran 7.58 1.4072 0.210 468 604 4811 

Dichloromethane 8.93 1.4242 0.217 466 616 5225 

1,2-

Dichloroethane 

10.37 1.4448 0.221 466 618 5278 
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Figure A3. UV-vis absorption and fluorescence emission spectra of DALP in different 

solvents. 

Figure A4. Lippert-Mataga plot of DALP. The red line represents the linear fit (R2 = 

0.8821).  
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A5. Grazing Incidence Wide-Angle X-ray Scattering (GIWAXS) 

Figure A5. GIWAXS image of as-cast film of DALP. Weak ring around q = 1.5 Å-1 likely 

due to either SiO2 scattering or weak amorphous π–π interactions. 
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A6. 1H and 13C NMR Spectra 

Figure A6. Partial 1H NMR spectra of DACP and DALP. Dotted lines represent the 

change of chemical shifts of each resonance peak after RCM. Proton resonance peaks for 

the vinyl groups in the box all disappeared after RCM. Multiple sets of peaks result from 

atropisomerism caused by the hindered rotation of the side chains. 

Figure A7. 1H NMR of S4 (500 MHz, CDCl3, RT). 
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Figure A8. 13C{1H} NMR of S4 (125 MHz, CDCl3, RT). 

Figure A9. 1H NMR of S1 (500 MHz, CDCl3, RT). 
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Figure A10. 13C{1H} NMR of S1 (125 MHz, CDCl3, RT). 

Figure A11. 1H NMR of S2 (500 MHz, CDCl3, RT). 



174 

Figure A12. 13C{1H} NMR of S2 (125 MHz, CDCl3, RT). 

Figure A13. 1H NMR of ICz-M (500 MHz, CDCl3, RT). 



175 

Figure A14. 13C{1H} NMR of ICz-M (125 MHz, CDCl3, RT). 

Figure A15. 1H NMR of DACP (500 MHz, CDCl3, RT). 
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Figure A16. 1H NMR of DALP (500 MHz, CDCl3, RT). 
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APPENDIX B 

SUPPLEMENTARY DATA FOR CHAPTER III 

B1. 1H and 13C NMR Spectra 

Figure B1. 1H NMR of 1 (400 MHz, CDCl3, RT). 
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Figure B2. 1H NMR of 2 (400 MHz, CDCl3, RT). 

Figure B3. 13C{1H} NMR of 2 (100 MHz, CDCl3, RT). 
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Figure B4. 1H NMR of 3 (400 MHz, CDCl3, RT). 

Figure B5. 13C{1H} NMR of 3 (100 MHz, CDCl3, RT). 
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Figure B6. 1H NMR of 4 (500 MHz, CDCl3, RT). 

Figure B7. 1H NMR of 5 (500 MHz, CDCl3, RT). 
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Figure B8. 13C{1H} NMR of 5 (125 MHz, CDCl3, RT). 

Figure B9. 1H NMR of 6 (500 MHz, CDCl3, RT). 
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Figure B10. 13C{1H} NMR of 6 (125 MHz, CDCl3, RT). 

Figure B11. 1H NMR of 7 (500 MHz, CDCl3, RT). 
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Figure B12. 13C{1H} NMR of 7 (125 MHz, CDCl3, RT). 

Figure B13. 1H NMR of 8 (500 MHz, CDCl3, RT). 
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Figure B14. 13C{1H} NMR of 8 (125 MHz, CDCl3, RT). 

Figure B15. 1H NMR of 9 (500 MHz, CDCl3, RT). 
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Figure B16. 13C{1H} NMR of 9 (125 MHz, CDCl3, RT). 

B2. High Resolution Mass Spectrometry 

Figure B17. HRMS experimental (top) and calculated (bottom) spectra of 1. 
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Figure B18. HRMS experimental (top) and calculated (bottom) spectra of 2. 

Figure B19. HRMS experimental (top) and calculated (bottom) spectra of 3. 
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Figure B20. HRMS experimental (top) and calculated (bottom) spectra of 4. 

Figure B21. HRMS experimental (top) and calculated (bottom) spectra of 5. 
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Figure B22. HRMS experimental (top) and calculated (bottom) spectra of 6. 

Figure B23. HRMS experimental (top) and calculated (bottom) spectra of 7. 
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Figure B24. HRMS experimental (top) and calculated (bottom) spectra of 8. 

Figure B25. HRMS experimental (top) and calculated (bottom) spectra of 9. 
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B3. FTIR Spectra 

Figure B26. FTIR spectrum of 1. 

Figure B27. FTIR spectrum of 2. 
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Figure B28. FTIR spectrum of 3. 

Figure B29. FTIR spectrum of 4. 
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Figure B30. FTIR spectrum of 6. 

Figure B31. FTIR spectrum of 8. 
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Figure B32. FTIR spectrum of 9. 
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APPENDIX C 

SUPPLEMENTARY DATA FOR CHAPTER IV 

C1. 13C Nuclear Magnetic Resonance  

Solid-state NMR spectra were obtained on a Bruker Avance 400 MHz spectrometer with 

4 mm CP-MAS probes and MAS rates of 10 kHz at room temperature. Peaks were 

assigned in accordance with literature.198 

Scheme C1. Polymerization and annulation conditions for Vinyl-CPN, PLANP, and Ref-

CPN.
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Figure C1. 13C{1H} CP-MAS NMR Spectrum of PLANP. 

Figure C2. 13C{1H} CP-MAS NMR Spectrum of Ref-CPN. 
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Figure C3. 13C{1H} CP-MAS NMR spectra of 13C-labeled Vinyl-CPN (labeled carbon 

marked with asterisk) and spectra of PLANP after RCM. D′ is the side band of the 13C 

isotope labeled carbon. 
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C2. FTIR Spectra 

Fourier transform infrared spectroscopy (FT-IR) spectra were recorded by ZnSe 

attenuated total reflection with a Shimadzu IRAffinity-1S spectrometer. Powders of the 

samples were tested with no prior preparation. All nanoparticles showed sp3 (moderate 

intensity) and sp2 (weak to negligible) C–H stretches at 2900-3100 cm-1, aromatic C=C 

stretching around 1500 cm-1, and C–H bending peaks between 650-950 cm-1. As aromatic 

C–H bends were used for structural comparisons, precursors for fingerprint region 

comparisons were chosen for having the same aromatic substitution patterns as the 

polymers. 

Figure C4. FTIR Spectra of Vinyl-CPN, PLANP, and Ref-CPN. 
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Figure C5. FTIR fingerprint region of PLANP and Ref-CPN, with peaks highlighted 

according to corresponding structures. 

Figure C6. FTIR fingerprint region of PLANP and Ref-CPN, with peaks highlighted 

according to corresponding structures. 
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Figure C7. FTIR fingerprint region of PLANP, Vinyl-CPN, and truxene and phenylene 

precursors. 

Figure C8. FTIR fingerprint region of PLANP, Vinyl-CPN, and truxene and phenylene 

precursors. 
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C3. Dynamic Light Scattering of Nanoparticle Suspensions 

DLS data of nanoparticle dispersions was obtained on a Malvern Zetasizer Nano 

ZS. Nanoparticles were dispersed into CHCl3 at approximately 0.5 mg/mL and measured 

in a quartz cuvette. Data from three measurements runs for each sample were averaged 

together by the Malvern software package, giving the values in Table 4.1. 

Figure C9. DLS size distributions of PLANP. 
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Figure C10. DLS size distributions of Ref-CPN. 

Figure C11. DLS size distributions of Vinyl-CPN. 
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C3. Optical Spectra 

UV-Visible absorption spectroscopy was performed on a Shimadzu UV-2600 and 

fluorescence emissions were measured on a Horiba Fluoromax-4. Nanoparticles were 

dispersed in CHCl3 at low concentrations (0.5–1.5 mg/L) to prevent detector saturation 

and spectra were measured in quartz cuvettes. Emission measurements were performed 

with 5 nm slit widths. Excitation wavelengths (λex) are noted below each figure. 

Figure C12. UV-Vis absorbance and emission (λex = 385 nm) spectra of PLANP. The Stokes shift 

between the weak lowest energy absorbance peak and the highest energy emission peak is <1 nm. 
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Figure C13. UV-Vis absorbance and emission (λex = 365 nm) spectra of Ref-CPN. Ref-CPN 

possesses a slightly lower λmax than PLANP, with a Stokes shift of 57 nm. 

Figure C14. UV-Vis absorbance and emission (λex = 350 nm) spectra of Vinyl-CPN. Similar to 

Ref-CPN, Vinyl-CPN exhibits broad spectra, with a Stokes shift of 87 nm.  
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Figure C15. Fluorescence emission (λex = 385 nm) spectra of PLANP in dispersion and 

polystyrene/carbon nanotube film. 

Figure C16. Fluorescence Confocal Microscopy image of PS:CNT:PLANP film. A 405 nm 

laser was used for excitation during these measurements as the highest energy option available 

on the instrument. 
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C4. N2 sorption data 

N2 sorption measurements were performed on a Micromeritics ASAP 2020 surface 

area and pore size analyzer. Prior to the gas adsorption measurements, the sample was 

degassed for 10 h at 120 °C. Pore size distribution data were calculated from the N2 

sorption isotherms based on the Nonlocal Density Functional Theory (NLDFT) method in 

the Micromeritics ASAP 2020 software package (assuming slit pore geometry). 

Figure C17. Pore size distribution of PLANP. 
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C5. Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) data were collected on Mettler-Toledo TGA-

DSC-1 at a heating rate of 20 °C min-1 from 30 °C to 900 °C under an N2 atmosphere. 

Decomposition temperature was calculated as the temperature at which 5% mass loss 

occurred. 

Figure C18. TGA traces of PLANP and Ref-CPN. 



207 

 C6. Measurements of PS:CNT:PLANP Film Properties 

To form the PS:CNT:PLANP dispersions, polystyrene (60 mg) was dissolved in 

CHCl3 (10 g). To this, multiwalled carbon nanotubes (5 wt% of PS) were added and 

sonicated until a black dispersion was formed. Any remaining particulates were removed 

through centrifugation, leaving a PS:CNT dispersion with no visible solids. To this, 

PLANP (5 wt% of PS) was added and sonicated to homogenize to form the final 

dispersion. From these dispersions, films could be formed by drop casting onto a glass 

slide, or by evaporation from a vial. The films were left to dry overnight and then 

delaminated from the glass surface for measurements. Conductivity measurements were 

performed under vacuum using a Keithley source measure unit in a two-point geometry. 
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Figure C19. I-V curve of PS:CNT:PLANP film. 
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APPENDIX D 

SUPPLEMENTARY DATA FOR CHAPTER V 

D1. Absorbance Spectra of BTp Oligomers 

Figure D1. UV-vis spectra of BTp-5, BTp-7, BTp-9, BTp-11, and BTp-13 in CHCl3 

(red), as-cast thin film (black), and annealed thin film at 250 °C (blue). BTp-7 

showed good crystallinity even before annealing, but it was not able to observe a 

good quality UV-vis absorption after annealing due to the small grain size of the 

crystals and phase segregation on the substrate. 




