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ABSTRACT

Side channel attacks exploit physical information that leaks from a cryptographic device in

order to extract secret information, such as secret keys, passwords, or instructions that may be

stored inside the device. The physical information used in side-channels can be electromagnetic or

acoustic emanations, timing, power consumption, or others. A widely used form of side channels

relies on the analysis of power consumption. The exploited physical information in these forms

of side channel attacks is the leakage traces of the power consumed during a computation. This

dissertation focusses on studying power-analysis based side-channel attacks to better understand

this threat to modern cryptographic devices and their implementations.

The effectiveness of side-channel attacks is based on the fact that the physical leakages are

dependent on the internal state of the device. This dependency is represented by a leakage model

or leakage function. To better understand the leakage model in side-channel attacks, we propose

to model the side channel as a communication channel in the traditional sense. This allows us

to use a weighted leakage model and then to propose an `2-norm based re-weighted algorithm to

further tune the leakage model. Compared to previous methods, our algorithm shows significant

improvements in key recovery performance. Typically, secrets in cryptographic systems have a

large number of bits, for example 128 bits in AES 128. Therefore, directly applying side-channel

attacks that have proven effective for small secret with 8 or 16 bits, such as the Template Attack

or the Stochastic Model, is computationally impossible. Most of the side-channel attacks typically

apply a divide-and-conquer strategy to attempt to scale to larger number of bits. However, how to

efficiently implement the Stochastic Model using divide-and-conquer is not obvious. This disser-

tation proposes two models to explore how to efficiently extend the Stochastic Model to non-linear

cryptographic systems. The experimental results illustrate that our proposed methods show signif-

icant improvements in key recovery. Finally, how to efficiently exploit the samples in the leakage

traces is always an important problem in side channel attacks. In the case of AES, side channel

attacks are usually launched on either the first round or the last round of the AES encryption. We
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propose an algorithm that exploits the information during both rounds, which significantly im-

proves the key recovery. Compared to previous methods that attempt to integrate information from

multiple AES rounds, such as the Algebraic Side-Channel Attacks and the Soft Analytical Side-

Channel Attacks, our method brings saving in computing cost and complexity due to our pragmatic

implementation.
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1. INTRODUCTION

Over the years, side-channel attacks have increasingly shown to be successful in breaking a

large number of cryptographic algorithms, implementations of cryptographic algorithms, or secu-

rity and privacy measures in general. In a side-channel attack, the adversary infers a secret (the

key) based on the observable physical information that is leaked from the cryptographic implemen-

tation. Such physical information can be electromagnetic [4] or acoustic [5] emanations, power

consumption [6], or others. The effectiveness of these attacks is based on the fact that the ob-

servable physical leakages are dependent on the internal state of the system implementation. This

dependency is represented as a leakage model or leakage function [7].

Power consumption models [6], which analyze the power consumed during the computation,

are widely studied both in profiled and non-profiled side-channel attacks. Power consumption

attacks measure the power consumption of the attacked device as it performs the computation.

Fig. 5.1 shows an example of the power consumption trace of an AES-128 encryption device. It

is encrypting a plaintext with a given key. The side channel attack in this case attempts to infer

the key from the collected power consumption traces. In the analysis of power consumption, two

a-priori models have gained prominence: they are the Hamming Weight (HW) [7] model and the

Hamming Distance (HD) [8] model. The importance of these two models stems from the fact that

in many systems the computation cost (and thus the power consumption) depends to some extend

on the number of "ones" in the secret values, or number of bit flips in two consecutive states during

the computation. These two models therefore can be applied in non-profiled attacks. In some cases,

the leakage models are known a-priori, and the attacker does not need to learn these by training

on the target device in advance; this kind of attack is also called non-profiled side channel attacks.

In so-called profiled side channel attacks, the attacker learns the leakage model by training on the

identical or on a similar target device. In profiled side channel attacks, there are two widely-used

techniques: the Template Attack [9, 10] and the Stochastic Model [11]. In the Template Attack, the

attacker develops, for each key, a special model, called a template, typically in form of a Gaussian

1



Model. The key extraction then becomes a problem of selecting the key with maximum likelihood,

where the power consumption during computation with the secret key is matched against all the

templates. In the Stochastic Model, it is assumed that the side-channel leakage can be represented

as a linear model: each time-sample point of a leakage trace consists of a deterministic part and a

random part, where the latter is usually considered as independent noise. The deterministic part

is a linear combination of a base function and a coefficient vector. Hence, profiling the leakage

function is equivalent to estimating the coefficient vector at each time-sample point.

For improving the attack’s performance, a variety of approaches have been proposed to model

the side channel attacks from the communication theory. In [12], it proposes a general framework

to integrate the side channel attacks and communication theory together. In [13], the authors focus

on modeling the side channels as AWGN channels. In the first part of the dissertation, we also focus

on the specific issue of how to model a side channel as a communication channel and how to profile

it. However, rather than treating the side channel model as a noisy channel, as in [12, 13], we treat

the side channel as a fading channel [14]. This allows us to treat the leakage model’s coefficients

as channel gains and to construct a weighted leakage model. Then we formulate the leakage

model profiling problem in side channel attacks as a channel estimation problem in communication

theory. We then propose an `2-norm based re-weighted algorithm to estimate the leakage model

in the second part of the dissertation. The experimental results show that our re-weighted iterative

algorithm leads to better key recovery compared to other stat-of-the-art methods, such as the Least

Squares [11] and the Ridge-Based method [15].

Since the secret in cryptographic system usually has a large number of bits, such as AES 128,

the majority of side-channel attacks usually apply a divide-and-conquer strategy to separately re-

cover portion of the secret key, like in [16, 17]. Under this strategy, each phase of the attack only

focuses on a portion of the key, typically one byte and it treats the other portions as noise. At

the end, the partial results are combined to get the key. In the context of AES, where encryption

operations execute using one byte of the round key at a time, such DC attacks come naturally. We

call these "independent" attacks because they treat each byte of the key independently. However,
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this comes with a problem that under these independent attacks, the measurements on each byte

are corrupted by both the noise and the leakages from other bytes, especially when the number of

the profiling traces is limited. In the third part of this dissertation, we study the problem of how

to efficiently extend the stochastic model, to non-linear cryptographic systems, such as AES [18].

More specifically, we explore how to build leakage models for the AES implementations that im-

prove on the previous independent model. Our first method is based on the idea of taking the

average of the leakage models which are built for each byte independently. This will obviously

reduce the noise corruption of the leakage model estimation. We call this first model the average

measurement model. A second method is based on a long linear leakage model. It assumes that the

leakage model’s coefficient for the same bit position are approximately the same for the different

byte. Based on this assumption, we develop the second model, which we call the approximated

model. The experimental results show that our models have significantly improvement in terms of

key guessing compared to the state-of-the-art methods.

For the particular case of attacks on AES, divide-and-conquer approaches have proven to be

effective. They are, however, realized typically in forms that do not take advantage of the power

consumption data that can be collected during the entire encryption process. Rather, they attack

either the early stage of the encryption, when the unencrypted text (the plaintext) may be available,

or the late stages, in the more common cases where the encrypted text (the so-called ciphertext)

is known. We investigate an approach to efficiently use the leakage samples from multiple AES

rounds to improve the attack performance 1. We set out to investigate if we can find a pragmatic

way that can leverage the leakage samples from multiple rounds but at the same time also limit the

computing cost. This leads us to develop what we call reinforcement strategies for side-channel

attacks. By keeping track of possible key candidate for different rounds, and by reconciling theses

sets across rounds, we enhance the power of the attack.

The rest of this dissertation is organized as follows. In Chapter 2, we introduce the power side

channels. In Chapter 3, we discuss how to model a side channel as a communication channel.

1Some previous work has already considered this problem, such as Algebraic Side-Channel Attacks (ASCA) [19]
and Soft Analytical Side-Channel Attacks (SASCA) [20]. We will discuss these approaches in Chapter 6.
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Chapter 4 presents how to use the `2-norm based re-weighted algorithm to estimate the leakage

model. Chapter 5 explores how to efficiently extend the Stochastic Model to the non-linear cryp-

tographic systems. In Chapter 6, we present the reinforcement strategies based algorithm for effi-

ciently breaking the secret in cryptographic system. We present our conclusion and lay out a path

for future work in Chapter 7.
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2. POWER SIDE CHANNELS

2.1 Introduction

In a power side-channel attack, the attacker tries to reconstruct a secret value (the "key") by

leveraging information about power consumption that is leaked by the particular device that con-

tains the secret. We assume that the secret key is B bit long. Hence, the set of all possible keys

is K, where |K| = 2B. When a secret key k is manipulated during the operation, the power traces

that leak from the target device are referred to as raw leakage traces (vectors), which we denote

as xr
ki = [xrki(1), xrki(2), . . . , xrki(M)] ∈ RM (here r stands for ’raw’), where M is the length of

the trace in time samples, and i stands for the i-th trace [9, 10, 21, 22]. Fig. 2.1 displays a sample

power trace that comes in form of the current that is drawn from a 8-bit micro-controller. This

sample is part of the Grizzly dataset [1]. We will describe the Grizzly dataset in more details in

Chapter 4. In this figure, we represent the power consumption.

Due to the high sampling rates used during the data acquisition, M is usually a very large

number. Often, only a few sample points, primarily where machine instruction are triggered by

fixed Input/Output (I/O) activities, contain useful leakage information [10, 23, 24]. Hence, in

order to extract the valid information and to save computing cost, attackers need to compress the

length of the raw leakage vectors before further processing. We will elaborate on compression

techniques in Chapter 4. After data compression, we obtain the leakage vector from the i-th trace

of key k, which we refer to as xki = [xki(1), xki(2), . . . , xki(m)] ∈ Rm where m is the length of

the (compressed) leakage vector.

In non-profiled side channel attacks, the attacker does not need to learn the leakage model sice

it has already known. In profiled side channel attacks, the attacker needs to build a leakage model

using an identical or a similar device in advance. Suppose that the attacker has recorded np leakage

vectors for each key during the leakage model profiling. She constructs the Xk ∈ Rnp×m leakage

matrix by combining all of the vectors xki together. Finally, she builds the leakage model based

5
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Figure 2.1: Sample of a Power Trace (Derived from the Dataset in [1])

on the leakage matrix. More details about how to learn the leakage model will be introduced in

Chapter 4.

The objective of the attack is to recover the secret key from the leakage traces. Typically an

attack is structured as follows:

1. The attacker has access to a set of leakage traces x1,x2, . . . ,xna . Each trace xi is of the

form xi = [xi(1), xi(2), . . . , xi(m)] ∈ Rm, where m is the length of the leakage trace (in

number of discrete samples), and na is the number of recorded traces.

2. The attacker knows that the secret key is one of the keys in k1, . . . , k2B , whereB is the length

of the key in bit.

3. The attacker estimates the secret key by generating an order (in decreasing likelihood) of

the possible keys. The attacker succeeds if the actual key is among the most likely keys as

determined by the attack.
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2.2 Power Models

The likelihood of a particular key ki in the generic attack described above is determined by

how well the power model key ki matches the leakage trace that was measured on the device for

the secret key.

Two models have gained prominence: they are the Hamming Weight (HW) model [7], which

counts the number of non-zeros in the secret string that represents the key, and the Hamming

Distance (HD) model [8], which counts the number of bit changes between the current secret key

and the reference state (the previous secret key). The importance of these two models stems from

the fact that in many systems the computation cost (and thus the power consumption) depends to

some extend on the number of "ones" in the values, including any secret, or on the number of bit

flips in two consecutive states, that are used for the computation. In practice, however, purely HW-

based or HD-based models fail to accurately reflect the available information that leaks through

the side channel. In addition, both HW and HD models are limited to identify classes modulo

Hamming Weight. For example, key=1 and key=128 both have a HW value of 1, and therefore

an attack that is based purely on HD model would fail to distinguish these two key values. Means

must be found to leverage the additional information in the leakage to identify keys beyond their

HW. Thus, there is still an expectation to build more effective leakage models and also find more

powerful key-extraction approaches to be used during attacks.

In recent years, profiled side-channel attacks, such as the Template Attack [9] and its advanced

version, the Efficient Template Attack [10, 25], have shown excellent performance in breaking

implementations of cryptographic algorithms. By creating a power model (template) for each

key, typically in form of a multivariate Gaussian model, the key extraction becomes a problem of

selecting the key with maximum likelihood [9, 21, 22].

In [11], rather than making a priori assumptions about the leakage model, the authors proposed

a general approach to learn the leakage function based on the recorded leakage traces during

profiling. The underlying assumption is that the leakage traces can be linearly represented: each

time-sample point of a leakage trace consists of a deterministic part and a random part (considered

7



as independent noise), which can be represented as follows:

xki(j) = δj(k) + ρj , (2.1)

where xki(j) is the j-th sample point of trace xki with 1 ≤ j ≤ m, δj(k) is the deterministic

part, and ρj is the random part. The random part is a random variable that is independent of the

secret key and the plaintext, and it usually is modeled as noise. The deterministic part is modeled

as a linear combination of a set of base functions: gj(k) = [gj0(k), gj1(k), . . . , gjB(k)] and a

coefficients vector: βj = [βj0, βj1, . . . , βjB], which is expressed as:

δj(k) =
B∑
b=0

βjb · gjb(k) . (2.2)

A common definition of the base function is:

gjb(k) =


1, where b = 0

bitb(k), where 0 < b ≤ B ,

(2.3)

where bitb(k) is the b-th bit value of the binary string of key k. In addition, in order to ensure that

the measurement matrix F in Eq. (4.3), which we will introduce later, does not become singular,

gjb(k) = 1 when b = 0. The coefficients vector reflects the leakage model’s behaviour and is un-

known to the adversary before profiling. As a result, profiling the leakage function is equivalent to

estimating the coefficient vector in each time-sample point. The authors in [11] call this approach

the Stochastic Model.

The authors in [22, 26] give a solution to combine the Template Attack approach with the

Stochastic Model and so improve the attack’s performance. As we will show in the following sec-

tions, there is still room for improvement by focusing on the modeling of the leakage information,

and the further profiling and attacking schemes based on it.
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2.3 Conclusion

In this chapter, we first introduce what is the power side-channel attack and then present the

generic procedure to perform it. Furthermore, we discuss the power models in both non-profiled

and profiled side channel attacks. As examples of non-profiled side-channel attacks, we introduce

the HW/HD models. As examples of profiled side-channel attacks, we present the Template Attack

and the Stochastic Model.
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3. SIDE CHANNELS AS CLASSICAL COMMUNICATION CHANNELS*

3.1 Introduction

A variety of approaches have been proposed to build the connection between side-channel at-

tacks and traditional communication theory. The authors in [12] present a general uniform frame-

work that integrates side channel attacks and classical communication theory. This framework al-

lows to quantify the effect of a modeled leakage function. The attackers also measure the strength 

of the adversary through the use of information theoretic metrics, such as success rate, guessing 

entropy, or mutual information. The authors in [13] focus on the design of optimal side-channel 

distinguishers by viewing the side-channel model as a communication channel. The authors focus 

on side channels that can be represented as AWGN (Additive White Gaussian Noise) channels in 

communication theory, and the main analysis results are based on the HW model. The authors 

in [27] propose a side-channel modelling procedure for CPU-type system by incorporating the lin-

ear regression model at the instruction level. They focus on the leakage model mapping between 

the leakage traces and the instructions matrix, which is concatenated by the matrix of operand bits 

and the matrix of bit transitions that go across the buses. The authors also show that this leakage 

characterisation methodology is applicable to ARM Cortex M0 and M4, which are relevant for 

IoT (Internet of Things) setting.

In this dissertation, similarity to the previous work, we also employ the idea of formulating the 

side-channel model as a communication channel model in the traditional sense. However, different 

from those previous works, we focus on the specific issues of how to model the side channel as a 

communication channel and also how to do the profiling based on the proposed model. Specifically, 

rather than treating the side-channel model as a kind of AWGN channel, as in [12, 13], we treat the 

side channel as a fading channel [14]. Hence, the leakage model coefficients in the side channel 

are the channel gains in the fading channel. This allows us to treat the model coefficients as the

*Parts of this chapter are adapted with permission from ”Adaptive Channel Estimation in Side Channel 
Attacks” by Shan Jin and Riccardo Bettati, 2018. 2018 IEEE International Workshop on Information Forensics and 
Security (WIFS’18), Dec 2018, ©c 2018 IEEE.
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weights (gains) of the power leakage and to construct the side channel as a weighted leakage model.

This in turn enable us to formulate the leakage model profiling problem in side channel attacks as

a channel estimation problem in communication. We then perform the attack based on the profiled

leakage model. In Chapter 4, we will show that this scheme has a number of benefits:

1. By mapping the leakage model to a communication channel model, the adversary can use

channel-estimation (signal estimation) techniques, which have been validated in the com-

munication research community, to do the profiling. We will show that this results in higher

key-identification probabilities over other techniques, especially compared to the standard

profiled side-channel attack [9] as well as more sophisticated approaches, such as [10].

2. The weighted leakage model is particularly well-suited for situations where the key space is

too large to allow for an exhaustive profiling for all possible keys. The experimental results

show that the weighted leakage model performs extremely well for even very small numbers

of profile runs, such as small multiples of B in case of 2B keys (B is the number of bits in

the target device).

In the following, we will first introduce how to model the side channel as a communication

channel. We then discuss how to construct the side channel as a weighted leakage model from the

view of the communication theory in traditional sense.

3.2 Weighted Leakage Model

In this section, we generalize the leakage model proposed in [11]. To be more specific, we

build a weighted leakage model of the power leakage information. Similarly to the previous work,

described earlier, our work model the side channel as communication channel. However, different

from the previous works in [12] and [13], our work uses a different view to treat the side channel

by modeling it as a fading channel, rather than a general noisy channel. This has two effects: First,

the coefficients of the leakage model become the gains of the channel, which are equivalent to the

weights of the power leakage. Second, the coefficients profiling problem in side channel attacks
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translates to a channel estimation (signals estimation) problem in communication. As a result, we

can use more efficient signal estimation technologies when we do the profiling.

3.2.1 Modeling Side Channels

Figure 3.1 illustrates how side channel attacks compare to traditional communication channels.

In our model, the target register is viewed as the transmitter, and the secret key k is the input

message. Since the internal state of the target register is based on the state of the encryption

operation Enck(p) (for example, exclusive-or for the first round encryption in AES [18]) between

key k and the (partial) plaintext p, the plaintext can be viewed as the code and the encryption

operation as the encoder. However, since the adversaries’ target is the internal state of the secret

device after the encryption operation, we treat the plaintext as a constant machine word and hence

use k to represent the current internal state in the secret device, where we treat k := Enck(p). In

this case, k can be viewed as the transmitted signal after the front-end processing in the transmitter.

The communication channel is the side channel, which is represented by the leakage function. The

adversary is the receiver, and each recorded trace is the received signal added with the noise. The

adversary uses the distinguisher, which can be thought of as the decoder, to guess the target key.

Finally, the target key is the same as the decoded signal/decoded message.

Note that the representation of the modeling of side channel through communication channel

in Figure 3.1 differs from the description in [13], which also depicts side channel attacks in the

context of general communication systems. In our case, we treat the coefficients of the leakage

model (leakage function) as the gains of the communication channel and make our side chan-

nel model becomes a fading channel, not an AWGN as in [13]. This also allows us to view the

coefficients as the weights of the leakage power.
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Figure 3.1: Viewing the Side Channel Model as the Communication Channel Model (Reprinted
with permission from [3])

3.2.2 Mathematical Model

Based on the representation of the side channel model as a communication channel in Fig-

ure 3.1, we develop a generalized weighted leakage model, which we express as:

L = AHSb(k) +R , (3.1)

where L ∈ Rm is the leakage trace vector that is recorded by the adversary, R ∈ Rm is the

independent random part, which is caused by the noise, and Sb(k) ∈ RB+1 is the advanced base

function, which is equivalent to the transmitted signal and is defined as

Sb(k) =


c, where b = 0

Fb(k), where 1 ≤ b ≤ B ,
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where c is a constant number. The definition of Fb(k) generalizes that of bitb(k) in Eq. (2.3) and

can be adapted to different application scenarios. For example, Fb(k) could be±1 for representing

a positive/negative level. We therefore call Fb(k) the generalized base function. For simplicity,

we will use Fb(k) = bitb(k) in the rest of this paper. H is the weight matrix of the data leakage,

which is expressed as:

H =



h10 h11 h12 . . . h1B

h20 h21 h22
... h2B

...
...

... . . . ...

hm0 hm1 hm2 . . . hmB


(3.2)

where hij (1 ≤ i ≤ m, 0 ≤ j ≤ B) is the weight coefficient for the data leakage. The linear

combination of Sb(k) andH reflects that the data leakage of key k depends on not only how many

number of bits are switching but also which specific bits are switching. A is the scalar gain matrix,

which plays the same role as the amplifier in communication systems. It is expressed as:

A =



α 0 0 . . . 0

0 α 0
... 0

...
...

... . . . ...

0 0 0 . . . α


(3.3)

where α is the gain between the data leakage in each sample point and the leakage trace L’s power

consumption in the real circuit ∗. Since the adversary is only interested in the extraction of the

secret keys based on the recorded leakage traces, the value of the gain α is of no interest. Instead,

the result of the scalar gain matrix A multiplied by the weight matrix of the data leakage H can

be viewed as a unified weight matrix for the leakage, which finally represents the communication

∗Here we consider that all sample points have the same gain value. If α is different for each sample point in some
circuit designs,A becomes a non-identical diagonal matrix
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channel. Hence, Eq. (3.1) could be reformulated as:

L = WSb(k) +R (3.4)

where

W = AH =



αh10 αh11 αh12 . . . αh1B

αh20 αh21 αh22
... αh2B

...
...

... . . . ...

αhm0 αhm1 αhm2 . . . αhmB



=



w10 w11 w12 . . . w1B

w20 w21 w22
... w2B

...
...

... . . . ...

wm0 wm1 wm2 . . . wmB


and wij (1 ≤ i ≤ m, 0 ≤ j ≤ B) is the weight coefficient at sample point i for the leakage brought

by bit j + 1.

Given this model, the question remains how to determine its parameters wij , and thus how to

compute the matrixW . If we compare Eq. (3.4) with the formula of the fading channel in [14], this

question is equivalent to determining the channel gains in the communication channel, a problem

that is known as channel estimation [28]. The profiling problem therefore becomes a channel

estimation problem, for which powerful systematic approaches can be used.

In the following, we will describe the applications of channel estimation (signals estimation)

in side channel attacks. The details of the estimation algorithm will be discussed in Chapter 4.

3.3 Conclusion

In this chapter, by extending previous work on leakage model building, we generalize the

weighted leakage model to describe the mathematical relationship between the measurable physi-

cal leakages and the internal state of the cryptographic implementation. Although our work is also
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based on the idea of formulating the side channel as a communication channel, we use a different

view to model the side channel and treat the model coefficients as the weights of the power leakage,

similarity to the gains of a communication channel. This allows us to treat the profiling problem

in side-channel attack as a channel estimation problem in communication.
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4. PROFILING AS A CHANNEL ESTIMATION PROBLEM*

4.1 Introduction

Since the prior information of the side channel is unknown to the adversary, the profiling be-

comes a blind estimation problem. Hence, we propose a `2-norm based re-weighted algorithm to 

profile t he l eakage model i n t his p aper. The authors i n [11] a lso propose a  Least Squares (LS) 

method to do the profiling. This method has been widely used in s ide channel a ttacks, such as 

Stochastic Model based Template Attack [26] and also the Linear-Regression (LR) based DPA (D-

ifferential Power Analysis) [29, 30]. Compared to these Least Square (Linear Regression)-based 

algorithms, our algorithm takes the noisy corruption or distortion among the leakage traces into 

consideration and hence obtains excellent performance. We also compared our approach with the 

recently proposed Ridge Regression-based (RB) method [15], and we found that our re-weighted 

iterative algorithm leads to a more efficient leakage function estimation, which also results in bet-

ter key recovery. Our method is also easier to deploy, since it does not require a special step 

for parameter pre-training. Instead, the re-weighted algorithm adaptively obtains the penalty pa-

rameters that are used for the side-channel estimation at run time, compared to multiple off-line 

goodness-of-fit trials in the Ridge-based m ethod. The choice of the set of parameters used during 

these goodness-of-fit trials has a significant impact on the final recovery performance. In addition, 

the re-weighted algorithm does away with the need to estimate a reasonable set for candidates of 

penalty parameters when profiling a new device.

Given that our algorithm is iterative in nature, we will give an analysis of its convergence. We 

will also show how to build the templates based on the profiled leakage m odel. Finally, experi-

mental results are provided to show the effectiveness of the proposed scheme.

In the following, we will describe the profiling problem and introduce the side channel estima-

tion algorithm. We will then describe the attack and show the advantage of our scheme under the

*Parts of this chapter are adapted with permission from ”Adaptive Channel Estimation in Side Channel 
Attacks” by Shan Jin and Riccardo Bettati, 2018. 2018 IEEE International Workshop on Information Forensics and 
Security (WIFS’18), Dec 2018, ©c 2018 IEEE.
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case of limited traces recorded during profiling. Finally, we present the experimental results for

our proposed scheme.

4.2 Data Processing Technologies

One immediate problem that comes up during profiling is the large amount of data that needs

to be processed due to the individual samples usually being very large. A variety of compression

technologies has been proposed to reduce the length of the leakage samples. Based on how the

samples are processed, the proposed methods can be divided into two categories:

• Sample Selection: The number of samples is reduced by considering only a subset of all

recorded samples. Samples are selected using Difference of Means (DoM) [9], Sum of

Squared Pairwise T-Differences (SOST) [31], or Signal-to-Noise Ratio (SNR) [32].

• Linear Combination: Using a linear transformation for projecting the raw samples onto a

low-dimensional subspace. This is done by using Principal Component Analysis (PCA) and

Linear Discriminant Analysis (LDA) [10, 24, 33, 34].

One question is: Does the linear model from Eq. (3.4) hold after the samples have been com-

pressed? This is clearly the case for the Sample Selection approach, since this method is directly

picking valid sample points from the raw data. On the other hand, any of the Linear Combination

approaches, whether LDA or PCA, use a projection matrix, call it U , to transform the raw leakage

vector into a lower-dimensional vector. The transformation process can be represented as:

L̃ = UL = UWSb(k) +UR = W̃Sb(k) + R̃ . (4.1)

Thus, the linear relationship between the compressed leakage vector L̃ and the internal state

of the target register still holds after the PCA/LDA processing. More details about the analysis

of the linear relationship between the data sampling and leakage measures in PCA/LDA can be

found in [35]. For sake of simplicity of the following discussion, we will continue to use Eq. (3.4)

as the general model to describe the leakages independently of whether the leakage data has been
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processed or not.

In the experimental part, the compression methods that we will use include: 20ppc (DoM),

PCA, and LDA. More details about how to efficiently apply these compression technologies in

side channel attacks are in [10].

4.3 Weighted Leakage Model based Profiling

4.3.1 Side Channel Estimation

As we described in Chapter 3, we can treat the profiling problem as a side channel estimation

problem. The procedure goes as follows: First, the attacker records a number Na of leakage traces

xi ∈ Rm (1 ≤ i ≤ Na). These traces come from a uniform distribution of the set of keys K. The

size of the set is N , and hence Na = npN . Finally, all the combined traces that come from the N

profiled keys are considered to generate the trace matrix X ∈ RN×m, whose i-th row belongs to

key ki used for profiling.

Then, based on Eq. (3.4), we have

X = (W [Sb(k
1) Sb(k

2) . . . Sb(k
N)] + [R1 R2 . . . RN ])T

= FW T + Φ (4.2)

where Φ = [R1 R2 . . . RN ]T is the noise matrix, and F acts as the measurement matrix, which is

expressed as:

F = [Sb(k
1) Sb(k

2) . . . Sb(k
N)]T

=



c F1(k
1) . . . FB(k1)

c F1(k
2)

... FB(k2)

...
... . . . ...

c F1(k
N) . . . FB(kN)


. (4.3)
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For each column ofX in Eq. (4.2), we have

X :,j = Fwj + φj (4.4)

where wj (1 ≤ j ≤ m) is the j-th row of matrix W and φj (1 ≤ j ≤ m) is the j-th column of

matrix Φ. Since the coefficient vector wj (we call it agent here) in sample point j is independent

of other coefficient vectors, the weight matrix W can be computed by solving m linear equations

from Eq. (4.4).

Previous work used the Least Squares method to get the solutions in Eq. (4.4) under the S-

tochastic Model [11, 26]. A similar idea has also been used in the work on so called Linear-

Regression based DPA [29, 30]. In this work, the Pearson coefficient is obtained by computing

the correlation between the actual traces and the predictions (templates) with the use of the linear

regression method to profiling the leakage model. Previous results in channel estimation and sig-

nals estimation show that Least Squares (Linear Regression) does not show stable performance,

especially in the case when measurements (received signals) are corrupted by noise or other distor-

tions [28]. We will illustrate this in our experiments by comparing the LS (LR) algorithm with our

proposed scheme in the case of strong corruption caused by noise, for example when the number

of profiling traces is small.

Hence, we formulate the estimation of the weight coefficients as the following decentralized

optimization problem:

min
w1,w2,...,wm

m∑
j=1

Gj(wj) (4.5)

where

m∑
j=1

Gj(wj) =
m∑
j=1

‖Fwj −X :,j‖2`2 +
m∑
j=1

λjJ(wj) (4.6)
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and

J(wj) ,
B∑
l=0

qjl|wjl|2 . (4.7)

We denote by qj = [qj1, qj2, . . . , qjB] (1 ≤ j ≤ m) the weight associated with agent wj , and by

J(wj) the weighted `2-norm (diversity measure).

Finding the solution of Eq. (4.5) becomes a weighted `2-norm minimization problem. In gener-

al, weighted `p-norm minimization (0 ≤ p ≤ 2) [36, 37] and `p diversity measure optimization [38]

are very common approaches in data recovery. For example, weighted `2-norm minimization is ef-

ficient in solving the nuclear norm minimization (NNM) problem [39]. Similarly, `p diversity

measure optimization is widely used to solve underdetermined system problems [38]. For our par-

ticular side channel problem, we choose the weighted `2-norm rather than traditional `2-norm in

order to attain more focal estimations.

Wang et al. recently proposed a Ridge-Regression based algorithm for DPA [15]. This method

determines the value of the penalty parameter λ by selecting the "best" value from a predefined set

of candidates. The selection is done by running multiple goodness-to-fit trials. The choice of the

set of candidates also has a significant impact on the final recovery performance. The estimation of

the coefficients is computed by putting the selected final penalty parameter in the ridge regression

estimator.

In this paper, we propose an iterative, self-adaptive algorithm: As the values inW are unknown

a priori, the recovery algorithm has to proceed iteratively. This includes updating the value of the

weight qj and penalty parameters as well. Suppose now we have the solution for the j-th agent

w
(t)
j at iteration step t, then the value for qj to be used for step t+ 1 is

q
(t+1)
jl =

1

|w(t)
jl |2

, l = 0, 1, . . . , B . (4.8)
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This gives rise to the diagonal matrixQ(t+1)
j , where

Q
(t+1)
j = diag(q

(t+1)
j ) =


q
(t+1)
j0 . . . 0

0
. . . 0

0 . . . q
(t+1)
jB

 . (4.9)

The algorithm iterates until the optimal point of Eq. (4.5) is reached, which we denote as

W ∗ = [w∗1 w
∗
2 . . . w

∗
m] . (4.10)

In the following sections, we will describe the algorithm to findW ∗ and then prove its conver-

gence.

We notice that the Template Attack proposed in [9] and also [10] used all 2B keys in profiling.

This would require the attackers to collect a very large number of time samples. The number is

Na = np2
B where np is the number of recorded samples per key during profiling. To reduce

the profiling overload, in our scheme, the attacker can select only a subset keys for profiling, for

example keys with Hamming Weight (HW) = 1. Now, for an N -bit key (e.g., N = 8), one could

close to profile with k ∈ {1, 2, 4, . . . , 2N}, which would reduce the profiling cost by a factor of 2N

N

while achieving acceptable key recovery rates.

4.3.2 Iterative `2-norm based Re-weighted Algorithm

In this section, we describe an iterative algorithm for estimating the weight matrix W . In

Eq. (4.5), after applying

∂[
∑m

j=1Gj(wj)]

∂wj

=
∂Gj(wj)

∂wj

= 0 ,

a necessary condition of the optimal solution for each agent wj is that

w∗j = (F TF + λjQj)
−1F TX :,j (4.11)
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where j = 1, 2, . . . ,m.

The right-hand side the of above equation is equivalent to

(F TF + λjQj)
−1F T = Q

−1/2
j (Q

−1/2
j F TFQ

−1/2
j +

λjI)−1Q
−1/2
j F T

= Q−1j F
T (FQ−1j F

T + λjI)−1 , (4.12)

where λj is the penalty parameter, which is controlled by the noise’s energy. At the beginning of

the side-channel estimation procedure (i.e., at t = 0), we don’t have any information aboutW , and

eachQ(0)
j is an empty matrix. This reduces Eq. (4.11) to be a LS estimator. After the first iteration

on Eq. (4.11), we obtain the initial estimation w(1)
j , which is then used for computing Q(1)

j . This

procedure iterates until the algorithm converges.

The computing of λj is important since it has a direct impact on the performance of recov-

ery [40]. Given that the noise energy is unknown to the attacker, the penalty parameter λj can not

be limited to a fixed value across all iterations. Rather, a value that is dependent on the iteration is

more suitable. To ease the implementation of our algorithm, different to the work in [40] and [38],

we give a simple approach that has been previously validated before [41, 42], and which also works

in this application: We set λj = β(δj)
−1 where we compute δj as follows:

δj = ‖Fw(t)
j −X :,j‖22

by iteratively estimating the error. The value for β is selected based on the choice of the compres-

sion method. We will describe the details of how to select β in the experimental part.

The framework for our algorithm is illustrated in Algorithm 1. The algorithm takes as input

the traces matrixX and the measurement matrix F . It initializes the index setψ. It then iteratively

computes the weight matrix Q(t)
j through Eq. (4.9). Once computed, Q(t)

j is used to update w(t)
j .

This iterative process stops for agent wj once that particular agent converges to the optimal point,

that is, once the difference betweenw(t+1)
j andw(t)

j is less or equal to the threshold θ. If this is the
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case, the index j is removed from the index set ψ. Once ψ becomes an empty set, the algorithm

comes to an end. It then combines each agent’s optimal point together and outputs W ∗. As we

mentioned earlier, the wj’s are mutually independent, which makes the algorithm parallelizable:

each agent wj can be computed in parallel.

Algorithm 1 Side Channel Estimation Algorithm
Input: X,F

initialize ψ = {1, 2, . . . ,m}, j ∈ ψ, t = 0
repeat
w

(t+1)
j = (Q

(t)
j )−1F T (F (Q

(t)
j )−1F T + λjI)−1X :,j

updateQ(t+1)
j and λj

t = t+ 1;

If
∥∥∥w(t)

j −w
(t−1)
j

∥∥∥
2
< θ

w∗j = w
(t)
j ;

ψ = ψ\j;
end

until ψ = ∅
Output: W ∗ = [w∗1 w

∗
2 . . . w

∗
m]T

The threshold value θ that controls the convergence can be adapted to different application

scenarios. In some situations, we also suggest to use the relative error rather than the absolute

error to control the iterative process, which is

∥∥∥w(t)
j −w

(t−1)
j

∥∥∥
2∥∥∥w(t−1)

j

∥∥∥
2

< θ .

In addition, the attacker can also bound the computation cost by putting a limit on the number

of iterations as the halting condition. In this paper, we fix the number of the iterations as 20 in

the experiments. We note that, once the traces used for profiling have been recorded, the leakage

model estimation can be done off-line. In this case, the constant-factor changes to the computation

cost caused by modifications to the number of iterations are not critical.
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4.3.3 Convergence Analysis for the Algorithm

In order to demonstrate the convergence of Algorithm 1, we define the sum of each agent’s

objective function as follows:

G(W ) =
m∑
j=1

Gj(wj) . (4.13)

The convergence then follows from this theorem:

Theorem 1. For Algorithm 1, if W (t) 6= W (t−1), the objective function G(W ) is strictly mono-

tonically decreasing, i.e., G(W (t)) < G(W (t−1)).

Proof. Based on Eq. (4.5) and Eq. (4.8), we have

G(W (t))−G(W (t−1))

=
m∑
j=1

[‖Fw(t)
j −X :,j‖2`2 + λj‖[Q(t)

j ]
1
2w

(t)
j ‖2`2

− ‖Fw(t−1)
j −X :,j‖2`2 + λj‖[Q(t)

j ]
1
2w

(t−1)
j ‖2`2 ] .

We define

f
(t)
j (wj) = ‖Fwj −X :,j‖2`2 + λj‖[Q(t)

j ]
1
2wj‖2`2 .

When t is determined, the function f (t)
j (wj) is a L2-function. It is also continuously differentiable.

In this case, the minimum of f (t)
j (wj) can be obtained and is also unique. Based on Eq. (4.11), the

solution of this minimization problem, which is

arg min
wj

f
(t)
j (wj) , (4.14)

is w(t)
j . This then leads to

25



f
(t)
j (w

(t)
j )− f (t)

j (w
(t−1)
j ) < 0

and hence for all agents

m∑
j=1

[f
(t)
j (w

(t)
j )− f (t)

j (w
(t−1)
j )] < 0 .

Finally, we have

G(W (t))−G(W (t−1)) < 0 .

Thus, G(W ) is decreasing at every iteration step of our algorithm.

4.4 Using the Weighted Leakage Model in An Attack

Once we get the weight matrixW in the profiling phase, the template parameters for each key

k can be easily obtained by computing the stochastic mean vector x̄k and the covariance matrix

Ck (same as [9]), which are

x̄k = WSb(k) (4.15)

and

Ck =
1

np − 1
(Xk − F+

kW
T )T (XT

k − F+
kW

T ) , (4.16)

where

F+
k = I1×npSb(k)T , (4.17)
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and I1×np = [1, 1, . . . , 1]T ∈ Rnp×1. Here we consider that the adversary has obtained the traces

for all the keys in k ∈ K for profiling and hence can generate the Ck for each k. If the adversary

only gets the traces from only a subset of K, denoted by Ks, we use a pooled covariance matrix

Cpool, which is introduced in [10], for all keys to replace each key’s covariance matrix. It is

expressed as

Cpool =
1

N

N∑
i=1

Cki , (4.18)

where now N = |Ks|.

As described in [10], the computing result of Eq. (4.18) is equivalent to the computing of

Cpool =
ZTZ

N ∗ np − 1
, (4.19)

where

Z =


Xk1 − F+

k1W
T

...

XkN − F+
kN
W T

 .

Compared to the standard profiled side channel attack, our model simplifies the computation.

For example, in our model, the adversary can use the traces from a subset of K to profile the

leakage model W and obtain the mean vector for all k by computing Eq. (4.15). This saves time

compared to the previous Template Attack, where the adversary has to use all np traces to compute

the mean vector for each k. In the following, we use Ωk to represent the template for each key k

as

Ωk := {x̄k,Ck(Cpool)} . (4.20)

From [9], we know that the side channel leakage can be modeled by a multivariate normal dis-
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tribution. Hence, based on the template parameters, the probability density function (pdf) f(x|Ωk)

of a given leakage trace vector x in k is

f(x|Ωk) =
1√

(2π)m|Ck|
exp

(
−1

2
(x− x̄k)T (Ck)−1(x− x̄k)

)
. (4.21)

During the attacks phase, the adversary guesses the unknown target key k∗ ∈ K, which is

executed in the cryptographic implementation, through the analysis of the recorded leakage traces.

Suppose that the adversary has recorded na raw leakage traces for the target key k∗. After applying

the same data processing techniques (see Section 4.2) as during the profiling phase, the adversary

obtains the leakage matrixXk∗ ∈ Rna×m. From [10], we can see that according to the Bayes’ rule,

the likelihood for a given trace (row) xk∗i (1 ≤ i ≤ na) in matrix Xk∗ to come from secret key k

is

l(k|xk∗i) = d(k|xk∗i) = l(Ωk|xk∗i) = f(xk∗i|Ωk) (4.22)

where d(·|·) is the function of the discriminant score. Since usually na is a large number, to

efficiently implement a template attack, the attacker needs to combine all na likelihood values

l(k|xk∗i) together to get a final likelihood value (discriminant score). This combination can be

done through average/joint rule, as described in [10]. Hence, for each k ∈ K, the attacker applies

the combination rule and obtains a final likelihood value l(k|Xk∗) through Eq. (4.22).

We sort all final likelihood values and find the correct key k∗ by picking the one with the max-

imum value. We observe that now the maximum value finding works as the argmax distinguisher

in our model, and k∗ is the target key in Figure 3.1. The main principle of our attack algorithm is

based on the Template Attack [9]. To better illustrate the attacking procedure, we summarize the

attacking algorithm in Algorithm 2, shown in the following.

More details about how to implement the combination of the likelihood value of each trace and

how to efficiently calculate the final likelihood value can be found in [10].
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Algorithm 2 Gaussian Model based Attacking Algorithm

Input: Xk∗ , {Ωi}2
B−1

i=0

For j = 0, . . . , 2B − 1
Computes l(j|Xk∗) through Eq. (4.22);

End
Computes j∗ := argmax{j=0...,2B−1}l(j|Xk∗);

Output: k∗ = j∗

4.5 Advantage of the Proposed Scheme for Limited Traces

The advantage of the linear model compared to the Template Attack is that the construction of

the templates for all keys only needs the leakage traces that have been collected from a subset of

K. For example, the adversary may attack a secret implementation with an 8-bit key (B = 8). To

speed up the profiling, the adversary only collects leakage traces for k = 0 and keys in the group

with HW=1. This makes for 9 keys in total. From Eq. (4.11), the measurement matrix now is

F ′ =



1 0 0 0

1 0
... 1

...
... . . . ...

1 1 . . . 0


. (4.23)

We point out that in comparison to Eq. (4.2), c in the fist column is set to 1.

F ′ is a square nonsingular matrix. As a result, theoretically we should obtain a unique solution

for each wj in Eq. (4.4). After acquiring the weight matrix W , the attackers can compute the

templates for all k ∈ K: the mean vector through the use of Eq. (4.15) and the pooled covariance

matrix through Eq. (4.18). Although those templates may not be very accurate due to the limited

amount of data collected during profiling, the accuracy is still sufficient for the adversary to find the

correct key by applying the profiled attack. Standard profiled side channel attacks like Template

Attack, in comparison, do not allow for the approximate computation of templates. Thus, if the

adversary only gets 9 templates during profiling, only 9 classifiers can be used for classifying the
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unknown leakage traces. At best, the standard Template Attack can recover 9 keys in total.

In general, the attacker faces a trade-off between the attacking performance (key’s recovery

rate, mutual information) and the profiling resource cost (profiling traces, profiling time, keys

used). As the profiling resource cost increases, so does the performance of the attack. However,

in many application scenarios, there are a variety of constraints on the profiling resources that

the attackers may be able to afford. Hence, how to find a smart strategy to allocate the limited

resources for getting optimal attacking performance goes beyond the scope of this dissertation but

is a problem of practical important that is well worth studying.

4.6 Experimental Results

We evaluate our proposed algorithm and compare it to the other state-of-the-art algorithms by

using it against two targets. One target is the data bus of the Atmel XMEGA 256 A3U [43], a

widely used 8-bit micro-controller. The other target is the implementation of the AES 128 algo-

rithm [18] on the SASEBO-GII board [44].

In the following performance figures, we use the term HW to denote the Hamming Weight

model, TA to represent the Template Attack, LS to denote Least Square, RB for Ridge-based, and

L2-Re to denote our proposed algorithm. We notice that in [15], the Ridge-based method uses

B bits instead of B + 1 bits to construct the measurement matrix F , which could easily render

F singular. Hence, in order to fairly compare our algorithm with the Ridge-based method, we

also present the experiments that use the Ridge-based method under our model with B + 1 base

functions. We use the term RB-U9 to denote the experiment results for this notation of the Ridge-

based method.

4.6.1 Results on 8-Bit Micro-controller

For the experiment on the Atmel 8-bit processor, we use the Grizzly benchmark datasets,

which were collected by Choudary and Kuhn [10, 26] and shared in [1], to compare the attacking

performance between the standard Template Attack, Least Squares, Ridge-Based, and Re-weighted

`2-norm algorithms under our linear model with three different compression methods: 20ppc, PCA,
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and LDA.

In the experiments, we use the successful guessing rate as the measure of merit to compare all

methods. This rate is defined as the average of the successful guessing probability for all keys, that

is:

Successful Guessing Rate =

∑2B−1
k=0 Pattack(k)

2B

where Pattack(k) = Nhit(k)
NT

. Here NT is the number of tests and Nhit(k) is how many times that

key k is successfully guessed in all NT tests.

For the constant number c in F , we choose 1 in all our experiments. We encourage readers to

choose different values for c when doing their own testing. The choice of β is based on the choice

of the compression methods. The authors in [36] describe a practical approach to updating β in

each iteration. The parameter β plays the role of trade-off between the effect of trial and error,

and the iteration speed. The value of β will decrease across iterations, and the minimum value is

decided by the power of the leakage data, which could be easily observed once the data is recorded

by the adversary. In our experiment, we recommend β = max{(0.8)t, 1
(B+1)|N |} for 20ppc case

and β = max{ (0.92)
t

9
, 1
(B+1)|N |} for PCA/LDA. To fairly test our algorithm, we fix the number of

the iterations in Algorithm 1 to 20 for absolute error control case and θ = 10−3 for relative error

control case in all experiments. Here we should note that when we set β = 1 and the iteration

number to 1, our algorithm becomes the joint algorithm of MMSE [28]. In the attacking phase, for

each k, we independently run the attacking 100 times by randomly picking the leakage traces from

the attacking set.

As described in [10], the attacker’s target in 8-bit Grizzly is a 8-bit CPU Atmel XMEGA

256 A3U micro-controller (B=8 in this case). For each key k ∈ {0, 1, . . . , 255}, 3072 raw

traces xr
ki (1 ≤ i ≤ 3072) are recorded. These traces are divided into two sets: a profiling set

and an attacking set. Each raw trace xr
ki has 2500 samples, which is the total current consump-

tion in all CPU ground pins. The samples are recorded when the target micro-controller executes
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the same sequence of instructions: a MOV instruction and followed by several consecutive LOAD

instructions. One of these LOAD instruction loads the secret k, and the others load the constant

value 0. This guards against variability of the recorded traces that would be caused by the data that

was loaded in the nearby instructions.

Note the term "Key=All" to indicated that all 2B keys have been chosen for profiling (For

example B = 8, Key=256). The term "Key=HW1" indicates that only keys with the HW value of

1, in addition to k = 0 and k = 2B − 1, have been chosen for profiling. For example, if B = 8,

Key=HW1 is the group of the keys {0, 1, 2, 4, 8, 16, 32, 64, 128, 255}. The same notation holds for

Key=HW2 and Key=HW4, etc.

In Fig. 4.1, we show the successful guessing rate with different numbers of profiling traces

under different profiling schemes. We use 20ppc as the compression approach here. The number

of attacking traces na is fixed to 10, 1000, and 1000 respectively, and the number of profiling

traces np varies from 10 to 2000 in each figure. From the figure we can see that, for the case of

Key=All (Key=256), our algorithm is generically better than all other methods: the basic Tem-

plate Attack, the Least Squares method, the Ridge-based method and the RB-U9, the Ridge-based

method fitted to our mode, in all cases of attacking. When the number of profiling traces is limited,

for example np = 50, compared to Template Attack, our method has nearly 15% higher guessing

rate when na = 10, nearly 40% higher guessing rate when na = 100, and almost 55% higher

guessing rate when na = 1000. Even when the number of profiling traces increase, our method

outperforms the Template Attack. Compared to Least Square, our method also shows better perfor-

mance, especially when the adversary only has a small number of profiling traces, where the noise

is strong. Our algorithm outperforms the other two Ridge-based schemes. When na = 1000 and

np = 50, our method has at least 13 more keys successfully guessed compared to the Ridge-based

and the Ridge-based-U9 methods. From all the experimental results, we observe that our method

always shows particular better performance.

In Fig. 4.2, we present the successful guessing rate when na is fixed to 1000 and np again varies

from 50 to 2000. The compression approach is still 20ppc. The keys used for profiling come from
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Figure 4.1: Probability of Successful Guessing versus Different Profiling Traces np with Different
Attack Traces na = 10, na = 100, and na = 1000 under 20ppc Compression (Adapted with
permission from [3])
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HW2 group and HW4 group respectively. In general, our method still shows great performance

for both cases where we only use subsets of keys to do the profiling. If we choose the subset

of keys whose HW value is no less than 2, our method performs better than even the Template

Attack, which uses all 256 keys. When Key=HW2 and Key=HW4, our method outperforms the

Least Square with the same subset of keys in all cases. Compared to Ridge-based and Ridge-based

U9 with the same subset of keys during profiling, our method still wins in almost all cases. When

the number of profiling traces is small, for example np = 100, our method has a nearly 8% higher

guessing rate than RB-U9 and at least 10% higher guessing rate than RB under Key=HW4. This

also shows that our algorithm is applicable in the case when the selection of profiling traces and

profiled keys are very limited.

In Fig. 4.3, the guessing rate is computed with na = 1000, and the values for np are the

same as in the previous experiment in Fig. 4.2. All experimental data is still compressed using

the 20ppc approach. For all four profiling methods, LS, RB, RB-U9,and L2-Re, the profiling

traces come from these different subsets of keys: HW1 group, HW2 group and HW4 group. The

results show that by using the linear model, selecting only a subset of keys to do the profiling will

also bring a huge performance improvement compared the standard Template Attack with all keys

used (Key=256). Note that when the adversary only uses Key=HW1, our method is a bit worse

than the Template Attack with Key = 256. This comes as no surprise, given that the profiling

cost is only a small fraction compared to that of the Template Attack. In fact, we now use only

B + 2 = 10 keys for profiling instead of 2B = 256. Compared with the huge saving in profiling

cost, such performance loss is indeed acceptable. When the keys that are used for profiling come

from HW2 group (i.e., Key=HW2), or the HW=4 group (i.e., Key=HW4), even the Least Square

method can get higher recovery rate compared to Template Attack, let alone our method.

In Fig. 4.4, we test the successful guessing rate for two compression methods: PCA and LDA.

We choose na = 100 and use the same values for np as in the previous experiments. We use all 256

keys for profiling. We see from the figure that for both LDA and PCA, generally our method shows

excellent performance compared to all other methods. For LDA, when np = 100, our method has
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Figure 4.2: Probability of Successful Guessing versus Different Profiling Traces np with Attack
Traces = 1000 under 20ppc Compression, to Different HW Groups (Adapted with permission
from [3])
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Figure 4.3: Probability of Successful Guessing versus Different Profiling Traces np with Attack
Traces = 1000 under 20ppc Compression, to Each Profiling Methods: Least Square; Ridge-based;
Ridge-based-U9; L2-Re-weighted. (Adapted with permission from [3])
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nearly a 20% performance improvement compared to the Template Attack. For PCA, we also have

a 15% improvement in the case of np = 100. Compared to Least Squares, our method shows 5%

better performance in both LDA and PCA for np = 100. Compared to Ridge-based schemes, our

method still performs better in both LDA and PCA. For LDA with np = 200, our method shows

nearly 5% performance improvement compared to RB-U9 and also far more compared to RB.

4.6.2 Result on 128-Bit AES Implementation

For the experiment on long keys (B = 128), our target is the implementation of an unmasked

AES 128 algorithm. The details of the implementation, and also the power traces, are introduced

in [45] and shared in TeSCASE [2]. The attacker’s target is a AES 128 core on the Xilinx Virtex-5

LX30 FPGA with a clock signal at 24MHz. The data contains 50000 raw traces, each of which

corresponds to a different ciphertext (that is, np=1) with 3124 sample points each. All traces are

from the same secret key, which is "00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F". The

attack targets on the last round operations in AES 128, which means that we want to guess the

last-round key and subsequently get the AES secret key by reversing the AES key expansion. We

divided the traces into two part: a profiling set and an attacking set. In the following figures, we

use Np to represent the total number of profiling traces and Na as the total number of attack traces.

Since AES 128 has 128 bits, we can not directly apply the Template Attack on the AES im-

plementation due to the huge computing cost (now the number of templates is 2128). Instead, we

use the Correlation Power Analysis [7] based on the divide-and-conquer (DC) strategy. Under this

strategy, in the profiling phase, each time we only focus on a single byte of the round key, which

we call subkey, and treat the other bytes as independent noise. We then train the leakage model

on each byte independently; in the attack phase, we still attack each byte independently and then

combine all the guessed subkeys to construct the round key.

We use the successful-recovery rate as the measure for evaluation, which is defined as the
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average of the successful recovery probability for attacking all subkyes:

Successful-Recovery Rate =

∑Ne

i=1 Phit(i)

Ne

, (4.24)

where

Phit(i) =
Nhit(i)

I
.

Here I is the number of bytes, Ne is the number of the independent experiments, and Nhit(i) is

how many bytes that have been successfully guessed in the i-th experiment.

We use the HW-model based attack as the baseline to compare with the linear-model based

methods: LS, RB-U9, and our L2-Re. Since the HW-model based attack is a non-profiled side

channel attack, in the experiments, we report its successful-recovery rate by averaging the recovery

rate on all the cases whereNa is fixed butNp is different. This is valid because for any fixed number

of attack traces, the successful-recovery rate of HW-model will not change when the number of

profiling traces changes.

In Fig. 4.5, we present the results of the successful recovery rate for different numbers of

profiling traces. The number of attack traces Na is fixed to 3000 and 4000, respectively, and the

number of profiling traces Np varies from 100 to 8000 in each figure. From the two sub-figures,

we can see that when the number of profiling traces is small, for example when Np is less than

2000, the HW based method works better than the other, profile-based, methods. This is because

for limited training resources, the estimation of the leakage model is not accurate, due to the strong

noise corruption. As a result, profiled side-channel attacks can not show their full power. However,

since we can do the training offline, we are able to spend more resource for improving the profiling

performance. With more traces collected for profiling, for example Np > 3500, we can see all

three profile based methods are significantly better than the HW model, because more accurate

leakage models have been built at this time. When Na = 3000 and Np = 6000, the recovery

rate of our reweighted algorithm is about 77%, LS is near 71%, RB-U9 is 72.6% and HW is only
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around 55%. Besides, we can see in general, our reweighted algorithm always outperforms other

two profile-based methods: LS and RB-U9. As a example, when Na = 3000 and Np = 3000, our

method has about 8% performance improvement compared to LS, and around 5% performance

improvement compared to RB-U9. The experimental results in AES implementation also support

the effectiveness of our algorithm in leakage model building.

From the experimental results in Fig. 4.5, we can see that when the number of profiling traces

is small, the performance of the profile-based methods are poor. This is because when we use

the DC-based attack, each time we only focus on an independent part of the key and treat others

as noise. This leads to additional noise on each byte. As a result, each byte has to encounter a

strong noise corruption, especially when the number of profiling traces is small. Hence, we need

to investigate whether there are methods that can improve the profiling performance of the leakage

model under the DC strategy. We will discuss this in next chapter.

4.7 Conclusion

In this chapter, we proposed a `2-norm based re-weighted algorithm to estimate the leakage

model in profiling phase, which outperforms the previous LS method and Ridge-based method as

illustrated by the experimental results. We also discussed the convergence behavior of our algorith-

m. In the attacking phase, we showed how to build the templates based on the proposed model. We

also discussed the advantage of our scheme when attackers only obtain leakage traces that come

from a subset keys compared to the standard profiled side-channel attack. Finally, experimental

results are provided to show the effectiveness of our proposed scheme.
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5. EXTENDING THE STOCHASTIC MODEL TO NONLINEAR SYSTEMS

5.1 Introduction

As we discussed in Chapter 4, profiled side-channel attack have shown to be successful in

breaking a number of cryptographic algorithms. Their performance, however, relies on the quality

of the profiling to get the leakage function. The scalability (data complexity) of profiling is also a

key point to efficiently implementing the profiled side-channel attack, especially for the Template

Attack. For small-size system, for example 8-bit register, the profiling cost of the Template Attack

is acceptable since there are only 256 templates that need to be built. Many systems have a much

larger key size. AES-based systems [18], for example, have key sizes that can be 128-bit long (for

AES 128) or even 256-bit or longer. In the case of AES 128, directly applying the Template Attack

on the AES implementations will exponentially increase the computing cost (now the number of

templates is 2128), which is a hard task. Although the Stochastic Model can lead to significant sav-

ing in profiling cost by using a small number of keys to build the leakage function as we discussed

in Chapter 4, attacking the full key in an AES system at once is also not a wise idea, since based

on the problem of selecting the key with maximum likelihood [9, 21, 22], now the guessed key

is selected from all 2128 possible candidates. Hence, how to efficiently implement side-channel

attacks in breaking complex cryptographic systems such as AES is non-trivial.

To address the above issues, the majority of side-channel attacks usually apply a divide-and-

conquer (DC) strategy to separately recover the partial secrets and then combine them to form the

full secret key, such as in [16, 17, 46]. In this strategy, the attackers focus on attacking independent

parts of the key (these are called subkeys) separately, and then combine all the subkeys to construct

the key. One successful example of applying DC for side channel attacks is the Correlation Power

Analysis (CPA) [7]. In CPA, the attacker first collects a set of power traces using different plaintext.

Then, for each byte, the attacker generates a set of hypothesis power vectors, which are based on

the leakage model and the candidates for the subkey, and computes the correlation coefficient
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between the hypothesis power vector and the vector of the real power data. The attacker then picks

that guessed subkey among the candidates which has the maximum correlation value. Finally,

combing the subkeys from each byte yields the full key.

We note that in the DC strategy the attacker only focuses on one byte value at a time. For

the special case of the Stochastic Model this means that during profiling, the attacker will only

consider the value of the target byte, while at the same time treating the other bytes as independent

noise. This has the problem that if the the number of profiling traces is small, the measurements

for each byte will be corrupted by strong noise, which comes from the real independent noise in

the power signal, as well as the leakage generated from other bytes during computation. We also

note that using a DC strategy in combination with the Stochastic Model also results in having to

generate a separate leakage model for each target byte. In the case of AES 128 the attacker would

have to generate and manage 16 leakage models. This increases the data complexity for storing the

leakage models on the attackers’ side. Hence, finding approaches to construct a general leakage

model that can be applied to all bytes, and also improve the profiling performance by reducing

the overall noise corruption on leakage model building, will be an interesting and also important

problem.

In this chapter, we will discuss how to efficiently extend the Stochastic Model to a class of non-

linear cryptographic systems, such as the implementations of AES. More specifically, we explore

methods to build leakage models that perform better than the previous widely-used independent

model for breaking the AES implementations. Our first method is based on the idea that taking the

average of the independent models reduces the noise corruption on the general model and leads

to what we call the average measurement model. Another method is based on the assumption

that the leakage model coefficient for the same bit position of each byte can be approximated,

which develops the approximated model from the long linear model ∗. We compare models with

the HW model for non-profiled side-channel attacks, and also the independent model for profiled

∗The long linear model is defined as a linear model which considers all bits in an AES implementation. For
example, in AES 128, the number of the coefficients in the long linear model is 128 (or 129, which considers an
additional bit as we introduced in Section 3.2.2).
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side-channel attacks. The experimental results show that our models has significant performance

improvements in terms of key recovery rate compared to the state-of-the-art methods.

In the following, we will first introduce the AES algorithm and its vulnerabilities with regards

to side-channel attacks. After recalling the mathematical model of the Stochastic Model, we then

discuss how to efficiently extend the Stochastic Model to the case of AES implementations. Finally,

we present the experimental results for our proposed scheme.

5.2 Implementation of AES: Overview

The Advanced Encryption Standard (AES) [18] is a widely-used symmetric encryption algo-

rithm [47]. Fig. 5.1 illustrates the framework of the encryption algorithm of the 128-bit version of

AES, called AES 128. At the very beginning of the encryption, the secret key (we call it K0) is

expanded into a number of so-called round keys, which areK1, K2, . . . , K10, by using the so-called

Rijndael’s key schedule [18] †. In the following, for simplicity, we enumerate the rounds by calling

the first AES round the 0-th round and the last AES round the 10-th round.

In many standard AES implementations, the secret key and the plaintext are represented as a

square matrix, which in the case of AES 128 is of size 4× 4 byte. The first step of the encryption

is the computation of the exclusive-or between the plaintext and the secret key. The result of the

exclusive-or is called the state. Then, the state is sent into the following operations, which will be

repeated 9 times:

1. SubBytes: Each byte in the state is replaced with another byte from a 8-bit substitution box.

2. ShiftRows: For each row of the state, the bytes in the row are cyclically shifted by a number

of positions that is different for each row.

3. MixColumns: For each column of the state, a linear transformation is computed with the

matrix whose elements are generated from GF(28).

4. AddRoundKey: Each byte in the state is combined with the corresponding subkey of current

round key through bitwise XOR.
†The 256-bit version of AES, called AES 256, uses 12 round keys, K1,K2, . . . ,K12.
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In the last round, the above operations are still performed, but the MixColumns is excluded. We

call the output of the encryption algorithm the ciphertext.

Fig. 5.2 illustrates the framework of the AES 128 decryption. The steps in AES decryption are

exactly the reverse of those in the AES encryption. The operations for decryption are the inverse

versions of the operations used in encryption: InvSubBytes, InvShiftRows, InvMixColumns, while

the inverse of AddRoundKey is just itself.

Previous work shows that side-channel attacks on AES can be launched by exploiting the power

consumption leakage from a hardware structure, such as a register or a data bus. This attack is

typically performed on either the first round, where the plaintext is known, or the last round, where

the ciphertext is obtained, during the AES encryption [45]. The power consumption is dependent

on the internal state S in the AES implementation, which is the result of the XOR operation

between the state of the hardware before and after the cryptographic operations, respectively, and

is represented as

S = XOR(Spre,Spost) = Spre ⊕ Spost , (5.1)

where XOR stands for the exclusive-or operation, Spre is the state before the operations, and Spost

is the state after the operations. The computation in each round is broken down into multiple

blocks (bytes), and the operations on each byte are also independent to each other. Hence, all the

states in Eq. (5.1) are on one byte.

In typical non-profiled version of side channel attacks, the power consumption is modeled as

the Hamming Weight of the internal state [7], which is:

L = αHW(S) +R , (5.2)

where L ∈ Rm is a vector of leakage samples with the size of m, R ∈ Rm is the noise vector,

HW is the Hamming Weight function, and α is the scalar gain. In comparison, in profiled side-

channel attacks, the relationship between the power consumption and the state is still unknown
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before profiling.

In this dissertation, for our study of side channel attack on AES implementations, we target the

leakages and cryptographic operations in the last round. In the last round of the AES, the internal

state is the result of the changes between the state in the 9-th round and the state in the 10-th round,

which is the ciphertext itself. In next section, we will introduce how to build the leakage model

between the power leakage trace and the internal state using the Stochastic Model.

5.3 Background for Stochastic Model

From our work in Chapter 3, we know that the leakage function can be modeled as a weighted

linear model. Hence, by applying Eq. (5.1) to the weighted model in Eq. (3.4), we can obtain a

linear relationship between the power consumption and the internal state, which is:

L = WFb(S) +R , (5.3)

where m is the sample point, L ∈ Rm is the samples vector of a leakage trace, R ∈ Rm is the

independent random part, which is modeled as noise, and Fb(S) ∈ RN×B+1 is the vector of a

binary string, which is defined as

Fb(S) =


c, where b = 0

bitb(S), where 1 ≤ b ≤ B ,

where c is a constant number, and B is the number of bits in the structure (now for one byte,

it is 8). The definition of bitb(S) is the b-th bit value of the binary string of the byte state S.

W ∈ Rm×(B+1) is the weight matrix of the power leakage, where each element wij (1 ≤ i ≤

m, 0 ≤ j ≤ B) is the weight coefficient at sample point i for the leakage caused by bit j + 1.

5.4 The Efficient Implementations of Stochastic Model on AES

We discussed in Chapter 4 how the Stochastic Model works very well in systems with small-

size keys, like the case of the 8-bit CPU Atmel XMEGA 256 A3U micro-controller [26, 3]. We
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also discussed that directly applying the Stochastic Model to more complex systems such as AES

is very costly: while the Stochastic Model significantly reduces the cost of profiling, the cost of

attacking remains unchanged. In the case of AES 128, the attacker computes the likelihood values

for all 2128 keys for one attack. Hence, we need to find ways to efficiently implement the Stochastic

Model in side-channel attacks in ways that are particularly effective against AES implementations.

5.4.1 Profiling Phase for Stochastic Model for Side-Channel Attacks

Before discussing the implementation of the Stochastic Model, first we introduce how the ad-

versary sets up the profiling of the AES module. In the profiling phase, the adversary first records

a number Np of leakage traces xi ∈ Rm (1 ≤ i ≤ Np). These traces come from a fixed secret key

and a set of uniform distributed plaintexts. The size of this set is N and hence Np = npN where

np is the number of traces collected per plaintext. For our case, each ciphertext only generates a

single trace, which leads to np = 1. Finally, all the traces that come from the N profiled plaintexts

are combined together, which leads to a traces matrix X ∈ RN×m, whose i-th row belongs to

plaintext Pi.

Based on Eq. (5.3), for the i-th byte, we have

X = (W i[Fb(S
(1)
i ) . . . Fb(S

(N)
i )] + [R

(1)
i . . . R

(N)
i ])T

= F iW
T
i + Φi (5.4)

where S(j)
i is the internal state for the j-th plaintext in the i-th byte with 1 ≤ i ≤ I and 1 ≤ j ≤ N ,

I is the total number of bytes in the system (for AES 128, I = 16), W i is the leakage model on

i-th byte, Φi = [R
(1)
i . . . R

(N)
i ]T is the noise matrix, and F i ∈ RN×B+1 acts as the measurement
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matrix, which is expressed as:

F i = [Fb(S
(1)
i ) . . . Fb(S

(N)
i )]T

=


c bit1(S

(1)
i ) . . . bitB(S

(1)
i )

...
...

...
...

c bit1(S
(N)
i ) . . . bitB(S

(N)
i )

 . (5.5)

Finally, based on the leakage traces matrix X and the measurement matrix F i, the leakage

model on an i-th byteW i can be obtained by solving the linear equations in Eq. (5.4).

5.4.2 Independent Model

The main idea of the implementation of the independent model is based on the divide-and-

conquer strategy [16, 17, 45]: when the adversary performs the profiling, for each byte, she con-

siders that the target byte is known, and the remaining bytes are represented by noise. That is, for

each byte, the attacker solves the linear equation in Eq. (5.4), and repeat this procedure I times, as:

W 1
T = (F 1)

−1X ,

W 2
T = (F 2)

−1X ,

...

W I
T = (F I)

−1X . (5.6)

In the profiling phase, the attacker obtains the leakage modelW i (1 ≤ i ≤ I) for each byte. In

the subsequent attack phase, for each byte, the attacker applies the leakage model profiled for that

byte on the recorded leakage traces.

We discussed earlier that an attacker using the DC strategy for profiling only considers the

target byte, and treats the other bytes as independent noise. This will lead to noise corruption on

the measurements for the target byte. In addition, errors in the profiling will compound: if the

leakage model for one byte is inaccurate, the recovery of the entire key fails too. Hence, in the
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following, we will explore more efficient methods to develop models that are more accurate than

the independent model.

5.4.3 General Model: Average Measurement

The problem with independent model is that if any byte’s model is inaccurate, the attack on that

byte will fail and so will the attack on the full key. However, if we use a general model to represent

all the independent leakage models, we can exploit the joint structure among all the independent

models, and reduce the noise corruption on the leakage model’s building. Hence, we can use an

average model on all the bytes, instead of a separate model for each of them.

The expression of the average model can be easily obtained:

W =

∑I
i=1W i

I
. (5.7)

In this way, the attacher can use a general modelW for all the bytes and attack each subkey of

the master secret key through this general model.

Now, let’s consider another question: if the average model works, it should also satisfy the

linear relationship between the "averaged" internal state and the power consumption in the target

hardware structure. Based on Eq. (4.2), let’s assume there is a matrix F that satisfies the following

equation:

X = F ·W T
+ Φ , (5.8)

where Φ is assumed to be the average noise matrix across all bytes during the encryption opera-

tions.
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Since from Eq. (5.4), we have

X = F 1W 1
T + Φ1 ,

X = F 2W 2
T + Φ2 ,

...

X = F IW I
T + ΦI , (5.9)

where F i is the measurement matrix for the i-th byte, and Φi is the latter’s noise matrix. Based on

Eq. (5.8) and Eq. (5.9), we can obtain

F =

[∑I
i=1 F

−1
i

I

]−1
. (5.10)

In this way, during the profiling phase, the attackers can obtain a general average model W

through the following equation:

W
T

= (F )−1X . (5.11)

We call this method as average measurement method.

5.4.4 General Model: Approximated Long Linear Model

The approximated long linear model is also based on the main idea of the Stochastic Model.

The rationale for this model is as follows: if we consider all the 128 bits of an AES 128 system at

same time, the linear model between a leakage trace and the state that considering all bytes is:

L =
128∑
i=0

W :,iSK(i) +R , (5.12)

where SK(i) is the i-th bit of the full state array SK (we set SK(0) = 1 here), W :,i is the

leakage model coefficients for the i-th column of W , which is the leakage model for the 128-bit
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system, andR is the noise matrix.

As we mentioned before, the computing cost for Eq. (5.12) is huge since there are 128 coeffi-

cients to be estimated during profiling and 2128 classifiers to be built for computing the likelihoods

during the attack. Hence, to efficiently apply the linear model in long-key side channel attacks, we

do some approximation of this long linear model.

First, from Eq. (5.12), we have:

L =

BI∑
i=0

W :,iSK(i) +R ,

= W :,0 +

(
I∑

i=1

W 1
:,iSi(1)

)
+

(
I∑

i=1

W 2
:,iSi(2)

)
+ · · ·+

(
I∑

i=1

WB
:,iSi(B)

)
+R ,

where B = 8 for one byte, BI is the total number of bits in the system (BI = 128 when I = 16),

W j
:,i is the leakage model coefficient for the j-th bit in the i-th byte, and Si(j) is the bit value of

the state in the j-th bit on the i-th byte, with 1 ≤ j ≤ B and 1 ≤ i ≤ I .

Since the bits in the same bit position should have a similar physical behavior across all bytes,

we assume that the coefficients for the same bit position are identical for all bytes, that is:

W 1
:,1 = W 1

:,2 = · · · = W 1
:,I = w(1) ,

W 2
:,1 = W 2

:,2 = · · · = W 2
:,I = w(2) ,

...

WB
:,1 = WB

:,2 = · · · = WB
:,I = w(B) .

Hence, we can model an approximated linear model to describe the leakage emitted through
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the side channel as follows:

L = W :,0 +

(
w(1)

I∑
i=1

Si(1)

)
+

(
w(2)

I∑
i=1

Si(2)

)
+ · · ·+

(
w(B)

I∑
i=1

Si(B)

)
+R

= [w(0) w(1) w(2) . . . w(B)]



c∑I
i=1 Si(1)∑I
i=1 Si(2)

...∑I
i=1 Si(B)


+R

= W̃ S̃K +R , (5.13)

where we setW :,0 = w(0), W̃ = [w(0) w(1) w(2) . . . w(B)], and

S̃K =



c∑I
i=1 Si(1)∑I
i=1 Si(2)

...∑I
i=1 Si(B)


.

Now, based on Eq. (5.4), we can easily estimate the approximated linear model by computing:

W̃
T

= (F̃ )−1X , (5.14)

where

F̃ =

[
S̃

(1)
K S̃

(2)
K . . . S̃

(N)
K

]
=

[
cIN×1

∑I
i=1 F

∗
i

]
. (5.15)

In Eq. (5.15), IN×1 = [1, 1, . . . , 1]T ∈ RN×1 and F ∗i is the submatrix of F i excludes the first
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column.

5.5 Correlation Power Analysis on AES Implementation

Once the attacker obtains the leakage model, she can proceed to perform the profiled side-

channel attack. In the correlation power analysis, the attacker first records Na leakage traces from

Na different ciphertexts but under the same key K∗ on the target device. Since the attacker only

targets the last round of the AES encryption algorithm, she only stores the sample points in the

last round, which is expressed by XK∗ ∈ RNa×m. The attacker also has to access to a ciphertext

table C, which has Na rows with each row having I byte ciphers. Starting from here, the attacker

computes the correlation between the power leakage traces and the hypothesis power vector, which

is computed based on the candidate subkey and the power leakage model, where the leakage model

could be the HW/HD model in the case of the non-profiled side channel attacks [45], or one of the

implementations of the Stochastic Model in the case of profiled side channel attacks, which we

summarized in Section 5.4.

Although the obtained traces have a large number of samples, only a small number of sample

points has useful leakage information. Hence, usually attackers only collect a very small number

of samples from each trace for further analysis. We follow the lead in [45] and choose the one

sample in the trace of the AES last round with the largest power value. Note that this means that

m = 1.

Since our target is the last round of the AES encryption, the input of the attack algorithm

includes the ciphertextC, the power tracesXK∗ , and the leakage model LM, which is defined as:

LM =


HW, for Non-profiled Attack;

W , for Profiled Attack;

here W could be independent leakage model, average measurement model, or the approximated

model, as shown above.

The main idea of our attack algorithm is based on the DC-strategy based CPA, which is de-
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scribed in [45]. In contrast to [45], which is a non-profiled attack where the leakage model is

based on the HW/HD model, we use a profiled side-channel attack where the leakage model is

trained during a profiling phase by the methods that we discussed in Chapter 4. To better illustrate

the attack procedure, we go through each steps of the algorithm in the following.

The first step in the attack algorithm initializes a multi-dimensional vector P ts ∈ RI×2B×Na×m

which is used to store the hypothesis power vectors for each subkey candidate on each byte, and a

matrix Rts ∈ RI×2B , which stores the correlation coefficients between the real power traces and

the hypothesis power vectors for each subkey candidate for each byte.

Once the initialization has been completed, the algorithm decrypts the ciphertext by applying

the inverse of the AES last-round operations, as is shown in Fig. 5.2. Since the last-round key is the

target and of course unknown to the attacker, the attacker has to decrypt the ciphertext byte with

every possible hypothesis on the last-round key byte (256 possible guesses for B=8). As a result,

for a given ciphertext, and for every byte, the attacker has its final state (also called as post state),

which is the ciphertext byte, and also 2B = 256 possible input bytes (also called as pre states). As

a result, the attacher can obtain 256 possible internal states from Eq. (5.1). By applying all 256

possible internal states to the leakage model LM, the attacker obtains 256 hypothesis power values

for one byte in a ciphertext. Since the attacker collects the traces from Na ciphertexts, the above

procedure repeats Na times and finally fills all the values into the matrix P ts.

To recover the round key, the attacker follows the DC strategy and analyzes each byte individ-

ually. Since P ts is already obtained, for each byte, the attacker goes through all 256 hypothesis

power vectors, and iteratively computes the correlation between the chosen hypothesis power vec-

tor and the vector of the real power tracesXK∗ . The computing of the correlation uses the Pearson

Correlation Coefficient [48] method. At the end, the attacker finds the guessed subkey by picking

the one that has the highest correlation result. This process is repeated until all subkeys are re-

covered. The last-round key is the combination of the recovered subkeys. In order to get the AES

secret key, the attacker only needs to reverse the key expansion schedule, which is a standard algo-

rithm in AES decryption, and inputs the last-round key. The output will be the secret key, which is
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the attacker’s ultimate target. To better illustrate the attack procedure, the framework of the attack-

ing algorithm is described in Algorithm 3. In this description, the function Pearson computes the

Pearson Correlation Coefficient, the vector RoundKey is the guessed round key in the last round,

the function InvKeyExpansion performs the reverse of the AES key expansion schedule, and the

variable AESKey is the AES secret key after reversing the round key. More details about how to

implement CPA to attack the 10-th round of AES 128 can be found in [45].

Algorithm 3 Correlation Power Analysis based Side Channel Attack (Derived from [45])
Input: C,XK∗ ,LM

Initialize: P ts,Rts

For i = 0, . . . , Na − 1
For j = 0, . . . , I − 1

PostState = C[i][j];
For k = 0, . . . , 2B − 1

PreStateID = InvShiftRows(j);
PreState = C[i][PreStateID];
PreState = AddRoundKey(PreState, k);
PreState = InvSubBytes(PreState);
P ts[j][k][i] = LM(PreState⊕ PostState);

End
End

End

For j = 0, . . . , I − 1
For k = 0, . . . , 2B − 1
Rts[j][k] = Pearson(P ts[j][k],XK∗);

End
Computes k∗ := argmax{k=0...,2B−1}Rts[j][k];
RoundKey[j] = k∗

End
AESKey=InvKeyExpansion(RoundKey);

Output: AESKey
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5.6 Experimental Results

Our experiments target an unmasked implementation of the AES 128 algorithm. The data used

in these experiments is the same as we used for the performance evaluation in Section 4.6.2, where

the attacker’s target is a AES 128 core on a Xilinx Virtex-5 LX30 FPGA with a clock signal at

24MHz. The data contains 50000 raw traces, each of which is corresponds to a ciphertext (that is,

np=1) with 3124 sample points each, with a fixed secret key, which is "00 01 02 03 04 05 06 07

08 09 0A 0B 0C 0D 0E 0F". We divided the traces into two parts: a profiling set and an attack set.

In the following description we use Np to represent the total number of profiling traces and Na the

total number of attack traces.

We compare the recovery performance of the standard Hamming Weight model, the indepen-

dent models, the average measurement model, and the approximated long linear model. We use

the successful-recovery rate as the measure for evaluation. This rate is defined as the average of

the successful recovery rate for attacking across all subkyes, as follows:

Successful-Recovery Rate =

∑Ne

i=1 Phit(i)

Ne

,

where Phit(i) = Nhit(i)
I

. Here I is the number of bytes, Ne is the number of independent tests,

and Nhit(i) is how many bytes that are successfully recovered in the i-th test. During the attack

phase, we independently perform the attacks 100 times by randomly picking the leakage traces

from the attack set. Since the Hamming Weight model based attack is not profiled, the value of

Np is irrelevant. In order to compare the performance of this model with those of the other profile-

based models, when in the case where Na is fixed but Np varies, we do the experiments Ne · T

times under the fixed Na, where T is the number of different Np, and then take the average. Hence,

the successful recovery rate of the Hamming Weight model is constant for differentNp at this time.

In the following, we use the term Hamming Weight to represent the Hamming weight model,

Independent Model to denote the independent model, Average Measurement for the average

measurement model, and Approximated Model to denote the approximated linear model. For
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all the profile-based methods, in order to make fair comparisons, we use the Least Squares (LS)

method to take the inverse of the measurement matrix for computing the coefficients of the leakage

model.

In Fig. 5.3, we show the results of the successful recovery rate for different numbers of pro-

filing traces. The number of attack traces, Na, is fixed to 4000 and 5000 respectively, and the

number of profiling traces Np varies from 100 to 3000 in each figure. The result indicates that for

very small numbers of profiling traces, such as Np = 100, the profiled side-channel attacks are all

worse than the, non-profiled, Hamming Weight based side channel attack. This is natural because

when the number of profiling traces is small, the estimation of the leakage model is not accurate.

We also note that even in this case, the recovery performance of the Average Measurement and

the Approximated Model are still much better than that of the Independent Model. For example,

when Np = 100 and Na = 4000, the recovery rate of the average measurement model is about

62%, that of the approximated model is near 64%, and that of the independent model is only 0.5%.

AsNp increases, for example whenNp ≥ 500, all the general models will have better recovery per-

formance compared to the Hamming Weight model and the independent model. When Np = 1500

andNa = 4000, the recovery rates of both average measurement model and approximated are larg-

er than 91%, compared to the Hamming Weight model, which is around 80% and the independent

models at only about 51%. We also note that the recovery rate of independent model is always

worse than the other three models, except for the case of Np = 3000, where their performance

is close to the Hamming Weight model. This illustrates the independent model’s weak resistance

against noise: In order to show the same recovery rate, the number of the profiling traces spent for

the approximated model is about 200, where for the independent models it is 3000. For our general

models, whenNp = 3000, they both show excellent recovery performance: near 99% recovery rate

when Np = 3000 and Na = 5000.

In practice, an attacker operates under a number of constraints. For example, she may have only

limited access to the device, and can therefore only do limited profiling. Similarly, the number of

attack traces may be limited as well. We represent these constraints by giving the attacker a given
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Figure 5.3: Probability of Successful Recovery versus Different Profiling Traces Np with Different
Attack Traces Na = 4000, and Na = 5000
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budget, in terms of number of traces available, which the attacker can use either for profiling or

for attacking. Fig. 5.4 shows the recovery result for the case where the attacker is given such fixed

budgets for measurement. Given a budget, the attacker can decide what portion of it to use for

profiling vs. how much for attacking. The question for the attacker is how to best allocate the

given budget. We run two experiments, where the overall number traces (the budget) is fixed to

6000 and 8000, respectively. For the case of a 6000 traces budget, Na varies from 100 to 5900,

and hence Np varies from 5900 to 100. When we increase the budget to 8000 traces, Na varies

from 100 to 7900, and hence Np varies from 7900 to 100. From the figure we observe for very

small value for Na, such as Na < 1000, the recovery rate of all models is poor. This is because

the CPA based attack relies on the number of attack traces. Even though the attacker has a large

number of profiling traces, the small number of attack traces leads to a bad performance. For

larger numbers of attack traces, say Na > 1000, the recovery performance of all models increases

rapidly. This is because attacker has more traces to do the CPA at this time. However, we notice

that when Na increases to a certain stage (for example Na = 4000 for 6000 total traces), the

recovery rate of independent models starts to decrease. In comparison, the recovery rate of the

two general models still keeps increasing as the budget get-transferred from profiling to attack.

When most of the budget is allocated to profiling, the performance of the independent model starts

to decrease. This means that the independent model is more susceptible to the decrease in the

number of profiling traces. This also shows that the independent models have a higher requirement

on the number of profiling traces in order to get a more accurate estimation of the leakage models.

For small number of profiling traces, for example Np = 100, the recovery rate of independent

model is near zero, where the two general models still show high performance (the recovery rates

for both the average measurement model and the approximated model are larger than 83% even

whenNp = 100 andNa = 5900). We also find that our general models outperform the independent

model for all cases, and are almost better than the Hamming Weight model when Np > 200. For

example, when Na = 3000 and Np = 3000, the recovery rates for both average measurement

model and approximated are larger than 74%, while at same time Hamming Weight model is
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around 54.5% and the independent models is only about 58%. This experiment also shows that our

general models can work very well in the case where the attacker only has a very limited traces

for profiling the traces. For the case of 8000 overall traces, when Np = 100, the recovery rates for

both the average measurement model and approximated are larger than 90%.

5.7 Conclusion

In this chapter, we focused on the problem of how to efficiently apply the Stochastic Model

in breaking non-linear cryptographic systems using profiled side-channel attacks. Since usually

the cryptographic system has a large number of bits in the secret key, such as 128 bits in the case

of AES 128, previous work applies a Divide-and-Conquer strategy to recover the key. Under this

strategy, the attacker only focuses on one byte at a time, and treats the other bytes as noise during

profiling. This leads to the problem that a model built for each independent byte will be corrupted

by the noise that comes both from the independent noise and from the leakage from the other

bytes, especially when the number of profiling traces is small. This inaccurate modeling for one

single byte will definitely decrease the recovery performance for the whole key. To solve these

problems, we propose two methods to build the leakage model for profiled side-channel attacks for

the special case where the target is an AES implementation. One method, which we call the average

measurement model, is based on the idea of averaging the noise from all the bytes. The second

method is based on the assumption that the leakage model’s coefficients are identical for each given

bit position across all bytes, which leads to a more robust model. We call this the approximated

model. Finally, experimental results show the effectiveness of our proposed methods.
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6. IMPLEMENTING REINFORCEMENT STRATEGIES IN SIDE CHANNEL ATTACKS

6.1 Introduction

We discussed in the previous chapter that in power analysis, one common method is Correlation

Power Analysis (CPA) [7], which computes the correlation between the power leakage traces and

the hypothesis power vector, which is dependent on the key candidates and the power leakage

model. We also observed that in many practical systems, such as AES [18], the number of bits in

the secret can be very large (128 bits for AES 128). Using side-channel attacks to guess the full

key at once is computationally impossible (for AES 128, 2128 candidates need to be generated).

Hence, the majority of side-channel attacks use a divide-and-conquer (DC) strategy.

Although DC-strategy-based side-channel attacks are effective, one remaining question is if the

DC strategy alone is sufficient for analyzing the security of the cryptographic system. In fact, a con-

siderable amount of previous work has been proposed for exploring this question: In [19, 49, 50],

Algebraic Side-Channel Attacks (ASCA) were introduced and further analyzed. Totally different

from the DC strategy, ASCA has access to the full design of the system and so can attempt to

build a fine-granularity power model. For the case of AES, the attacker then can proceed to exploit

the samples in all rounds of the encryption process to build a system of equations describing the

target cryptographic algorithm. The equations are solved by using a SAT solver [51]. As a result,

ASCA is able to extract the key of an AES implementation from very few leakage traces (usually

just a single trace). However, the computing cost of ASCA is huge, both in terms of computa-

tion and memory requirement. For example, the SAT representation for a single trace [52] has

approximatively 18000 equations with 10000 variables. In addition, ASCA also displays a very

weak resistance to noise. This led to the design of an attack framework called Soft Analytical

Side-Channel Attacks (SASCA) which was introduced in [20]. Different from ASCA, which en-

codes the cryptographic implementation and all the leakages as equations, SACSA describes them

as a code, which is eventually modeled as a factor graph [53]. To decode the leakage information,
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the Belief Propagation (BP) [54] algorithm is used. Since SASCA can directly exploit the soft

information, such as the posterior probabilities obtained during a Template Attack, it reduces the

memory requirement, compared to ASCA. More recently, Local Random Probing Model (LRPM)

was used to model the SASCA from a coding theory viewpoint in [55]. However, the conclusion

in [56] shows that in general SASCA is still significantly more computationally intensive than

DC-based side-channel attacks. We observe that, compared to the standard DC-based attacks, the

profiling effort in SASCA is more expensive since it requires characterizing the leakages from all

the intermediate values. In the case of AES 128, this means that in a worst-case scenario, leakage

is characterized for all 11 AES encryption rounds. Hence, this leads to the interesting question

whether it is possible to find a pragmatic method that can on one hand uses the leakage samples

from multiple rounds, but on the other only requires a moderate computing cost.

In this chapter, we propose a method to address the above question. Our method still relies

on the DC-based Correlation Power Analysis (CPA) that we described in Chapter 5. However,

different from the previous DC-based methods, which use the leakage samples that are emitted

from either the first round or the last round, our method leverages the samples that come from

more than one round. The attack relies on CPA as follows:

During the attack phase, based on the received ciphertext, we apply CPA on the leakage samples

in the last round for each byte independently. As a result, we obtain a matrix that records the

correlation coefficients for each candidate subkey at each byte position. In typical CPA fashion,

the attack ends once the roundkey has been found. The guessed subkey at each byte position is the

one subkey that has the maximum correlation value. In our method, we use this same last-round

attack to determines a set of candidate keys rather than a single candidate key. This is easy to

do, since we already recorded the correlation values for all possible subkey guesses for each byte.

By applying a simple key enumeration algorithm [57], we can obtain a list of candidates for the

last round-key in order of the their overall likelihood as determined by the last-round attack. The

attacker can vary the size of the list of candidate keys. For each of the last roundkey candidates,

we can determine all round keys by reversing the schedule of the AES key expansion. Based on

65



this information, we can compute the likelihood between the samples and the hypothesis power

values in the previous rounds. Once we get the likelihood values mapped to all the last roundkey

candidates, we can find the most-likely last roundkey, which has the largest likelihood value or

smallest reconstruction error. In other words, we use the result from previous rounds to validate

the selection of keys in the last round thus reinforcing the selection of the key. We call this approach

"Reinforcement Strategies" for the side-channel attack.

Compared to previous DC-based CPA approaches, our method improves the attack perfor-

mance by exploiting the samples from multiple rounds. The experimental results also show that

reinforcement leads to significant improvements in key-recovery performance. Different from AS-

CA and SASCA, we don’t need to solve a large number of linear equations in the attack phase, or

spend a large effort in profiling, which leads to significant computing cost saving.

In the following, we will briefly introduce how the side-channel attacks target the first and

the last rounds of AES. After introducing the key enumeration algorithm, we present our Rein-

forcement strategy based Side Channel Attack algorithm. Finally, we present and analyze the

experimental results for our proposed scheme.

6.2 Side Channel Attacks on AES Implementation

In Fig. 6.1, we display a sample power trace for one AES 128 encryption. The power trace

comes from the TeSCASE dataset [2]. We will describe this dataset in more details in the exper-

imental part. In this figure, we represent the power consumption in form of the voltage. We see

from Fig. 6.1 how the voltage curve clearly indicates the 11 rounds of the AES encryption. From

the previous chapter, we know that the power consumption in the AES implementation is depen-

dent on the changes of the internal staet S during the operations, as shown in Eq. (5.1). Hence, by

analyzing the power consumptions among the leakage traces, the internal state cane be guessed,

and so can be the secret key.

As we described in Chapter 5, previous work shows that side-channel attacks can be launched

on either the first round, where plaintext is supposed to be known, or the last round, where cipher-

text is obtained after the AES encryption. In the following, we take the first round and the last
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Figure 6.1: The Sample of AES 128 Trace (Derived from the Dataset in [2])

round as the case studies to show how side channel attacks break the AES in these rounds.

6.2.1 Side Channel Attacks on First-Round AES Implementation

In the first AES encryption round, the plaintext is XOR-ed with the secret key. Hence, if the

plaintext P is known, guessing the secret key K is equivalent to guessing the intermediate value

V . Given the simplicity of the XOR operation, it is tempting to recover the intermediate value V

using a side channel attack.

Since AES 128 has 128-bit keys, directly using the Template Attack or the Stochastic Model on

all the 16-bytes is computational impossible. Hence, the attack on the intermediate value V must

use a DC strategy. If we can assume that the XOR operation is at byte level and linear in terms

of power consumption, then we can assume that the power consumption of the XOR operations

as applied to different bytes of the key are independent. This makes the first-round analysis an

effective attack. In fact, a lot of previous work, such as [20, 25, 55], targets the AES first-round

leakage as part of side-channel attacks. However, the success of the attack on the first round relies
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on the assumption that the plaintext is known to the attacker, which severely limits the applicability

of this attack. Hence, analyzing the traces in the last round is more reliable, since one can assume

that the attacker has access to the ciphertext.

6.2.2 Side Channel Attacks on Last-Round AES Implementation

As we described in Chapter 5, for the last round of AES 128, the internal state is the changes

between the states before and after the 10-th round which is the ciphertext. The DC strategy

finds the subkey guess with the maximum correlation, for each byte, by generating 256 hypothesis

power vectors and computing the correlation values with the leakage samples in the last round.

This process is repeated 16 times, and all the guessed subkeys are combined together to produce

the recovered last roundkey. The guessed AES secret key is obtained by reversing the AES key

expansion on the guessed last roundkey.

Although the last-round attack is proven to be effective in this work as well as in previous

work [45], we investigate whether exploiting more samples that come from other rounds would

result in improved recovery performance. This is because samples from other rounds also contain

information about the internal state in their round. For the AES algorithm, we know that the

internal state in any previous round is also related to the internal state in the last round. Hence, if

we can find a way that utilizes the samples from the previous rounds, especially the samples in the

first round, the key-recovery performance would improve significantly. Our approach to leverage

information from other rounds is to treat the last-round attack as the initial guessing for generating

a set of candidates, and then use the other round attack to validate and further narrow the set of

original candidates. The rationale for this approach is that the most-likely guess in the last round

is not always correct, and that we need the information from other rounds to validate it. Hence, the

attack on the other round will help the attacker to validate the selection of the candidate keys and

finally pick the most-likely key from among the candidates.
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6.3 Candidate Keys Selection

Before introducing the reinforcement-based DC strategy in detail, we describe how to select

the candidate keys. Suppose our target is AES 128. In the last round-attack, for each byte, we

compute the correlation between the real power vector and the hypothesis power vector, which

in turn is defined by the power-leakage model and the subkey candidate. This will lead to 256

correlation values for the 256 subkey candidates. Hence, after computing these correlations for

every byte position, the attacker will get a table of the correlation values, whose size is 16 × 256.

To standard DC-based side channel attacks, the attacker independently sorts the correlation values

for each byte position (i.e., 0 to 15) in this table and finds the most likely subkey by picking the one

with the highest correlation value. Finally, the attacker obtains the most-likely full key by combing

all the selected subkeys together.

In the reinforcement-based DC strategy, different from the previous methods, we do not directly

guess the last-round key after we get the table of the correlation values. Instead, we want to get

a list of the most-likely roundkey candidates, by using an enumeration algorithm, such as the one

described in [57].

The objective of the key enumeration algorithm is to generate a sequence of keys in order of

decreasing likelihood shifting with the most likely key. The main idea of the particular enumeration

algorithm in [57] is the merging of a set of lists of subkeys based on the likelihood values in each

list. The algorithm starts by merging two bytes together, based on the rule that for any pair of

subkeys, for example (k
(i)
1 , k

(j)
2 ), if the sum of their likelihoods is larger compared to another pair,

for example (k
(l)
1 , k

(t)
2 ), then pair (k

(i)
1 , k

(j)
2 ) will be placed in front of the pair (k

(l)
1 , k

(t)
2 ) in the

merged list.

For the case of merging multiple lists of subkyes, the authors in [57] applied a recursive de-

composition on this problem: every time, they only use the enumeration algorithm to merge two

lists, and its outputs are used to form larger subkey lists which are in turn merged together. like

the AES 128 case, the algorithm fist merges a pair of bytes together, which generates 8 groups

now (each group stands for the merging result of two bytes). Then, The enumeration algorithm
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works on the 8 groups again and get a 4 new groups. This process is repeated until only a single

group remains. Theoretically, the algorithm will generate a table, which records the candidates

of the full key, ordered by the likelihood values in the key enumeration. However, since usually

it’s unnecessary to get a full table of key candidates due to its huge size (2128 for AES 128), the

algorithms also support the function that by inputting a number of expected candidates n, it only

outputs the first n candidate keys in the final merged list.

In our algorithm, we send the table of correlation values and the number of candidate into

the key enumeration algorithm, and we get a new table of the candidates of the most-likely last

roundkey, which is ranked by the accumulation of the candidates’ correlation values.

6.4 Reinforcement-based DC Strategy in Side Channel Attacks

In this section, we introduce our reinforcement-based DC strategy attack algorithm. At the

beginning of the attack, the attacker records Na leakage traces from different ciphertexts but for

the same key K∗ on the target device. Since now the attacker wants to exploit the samples from

multiple rounds, it creates a space to store the sample points from the multiple rounds, which is

represented byXK∗ ∈ RNa×ra×m where ra stands for the number of rounds that the attacker wants

to exploit, and m is the number of samples in each trace. For example, if we only use the samples

from the first round and the last round, then ra = 2. The samples from the last round are always

stored in XK∗ [:][ra − 1][:] and the samples from the previous rounds are stored from XK∗ [:][0][:]

to XK∗ [:][ra − 2][:] ordered by the round’s index. The attacker also records a ciphertext table C

who has Na rows where each row has I byte ciphers.

Similarly to Section 5.5, we choose one sample (nowm = 1) for each of the chosen AES round

in a trace. The selected sample is the one who has the largest power value in the chosen round.

The input of our algorithm includes a ciphertext table C, the power traces XK∗ , the number

of the roundkey candidates Numc, the set of the indices of the previous rounds that the attacker

exploits r, and the leakage model LM, which is as same as in Section 5.5.

The algorithm first initializes a multi-dimensional vector P ts ∈ RI×2B×Na×m, which is used to

store the hypothesis power vectors for each candidate subkey on each byte, a matrixRts ∈ RI×2B ,
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which stores the correlation coefficients between the real power vector and the hypothesis power

vector for each candidate subkey under each byte, a table for recording the round key candidate

T c, whose size is I × 2B, and a vector Lc ∈ RNumc×|r|, which is used to store the likelihood value

for each roundkey candidate.

The first part of the algorithm decrypts the ciphertext by applying the inverse procedure on the

AES last-round operations, as shown in Fig. 5.2, and also introduced in Algorithm 3. Here we

choose AES 128 as case study, which gives us I = 16 and B = 8. At the end of the first part, we

obtain the matrix P ts, which stores the hypothesis power values for 256 possible subkeys under

each 16 bytes. Then, for each byte, the attacker goes through all 256 hypothesis power vectors and

iteratively computes the correlation with the vector of the real power samples from the AES last

round, which is stored in XK∗ [:][ra − 1][:]. We uses the Pearson Correlation Coefficient [48] to

compute the correlation coefficients. After computing the correlation on all 16 bytes, the attacker

obtains a table that stores the correlation values for each possible subkey under every byte, which

isRts.

The algorithm then goes to its second part. The attacker inputs Rts into the key enumeration

algorithm [57], which we described in Section 6.3, with the parameter Numc which stands for

how many last-round key candidates that the attacker want to use. Theoretically Numc is in the

range of [1, 2128]. Once we get the output from the key enumeration algorithm, which is T c, we

iteratively pick one last-round key candidate with the order in the ranking, and decode the roundkey

in the r-th round where r ∈ r, through the reversing of the AES key expansion. Since we already

know the ciphertext and also the last-roundkey candidate, based on the r-th roundkey, it is easy to

get the pre-state and post-state in the r-th round by the AES decryption. Then, we compute the

mean squared error (MSE) between the vector of the real power samples and the hypothesis power

vector in the r-th round. We specify the computing of the MSE value for a given round and a given

candidate as follows:

We use θ(K,C) to stand for the internal state of the all 16 bytes in a given round, with the
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roundkey K and the ciphertext C, such that

θ(K,C) = {PreStatej ⊕ PostStatej}I−1j=0 ,

where PreStatej and PostStatej are the pre-state and post-state in the j-th byte. Here we want to

note that for the first round, the internal state is equivalent to the first-round key itself.

Once we obtained the internal state in r-th round by applying the function θ(RoundKeyr, C),

where RoundKeyr is the r-th roundkey, we compute the hypothesis power vector based on a

general leakage model LM as follows:

LM(θ(RoundKeyr, C)) =


∑I−1

j=0 LM(θ(RoundKeyr, C)[j]), for Approximated Model ;

{LM(θ(RoundKeyr, C)[j])}I−1j=0, for other Models ;

where LM is always the same model that we trained in the last AES round. For the case of

approximated model, we get a hypothesis power value for the full roundkey. For other models, we

get a vector of hypothesis values one for each byte. After obtaining the hypothesis power values

for allNa traces, we compute the MSE between the hypothesis power vectorP r and the real power

samples in the r-th round, which is:

MSE(P r,XK∗ [:][ri][:]) =


∥∥P r −XK∗ [:][ri][:]

∥∥
`2
, for Approximated Model ;∑I−1

j=0

∥∥P r[j]−XK∗ [:][ri][:]
∥∥
`2
, for other Models ,

where ri is the index of r in vector r with 0 ≤ ri ≤ ra − 2, P r is a vector with size Na × 1 for the

approximated model and a matrix with the size of Na × 16 for other models.

Once the MSE values of all |r| previous rounds for every candidate are obtained, we aggregate

those values by taking the average and obtain an averaged MSE value for each candidate. After

computing the averaged MSE for all Numc roundkey candidates, we put the results into the vector

Lc ∈ RNumc × 1 and find the one who has the minimal error. Finally, we pick the most-likely
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roundkey, which leads us to the guessed AES key through the reversing of the AES key expansion.

The framework for the attack algorithm is described in Algorithm 4, shown in the following.

In the algorithm, InvKeyExpansion(K, r) stands for reversing the last-round key K to the r-th

roundkey. If r = 0, this means that we need to get the AES secret key, and hence we just use

InvKeyExpansion(K) to represent this operation. Mean(·) stands for taking the average on the

vector.

Although our algorithm supports the implementation of multiple previous rounds for attacking,

we want to note that here we take the case that only one additional round (the first round) is used

except the last round (now ra = 2) as case study in the experimental part. This also means now

|r| = 1, and Lc becomes a vector and replaces the role of Lc.

Besides, although here we use MSE to compute the error between the vector of the real power

samples and the vector of hypothesis power for given previous round for each last-round candi-

date, and select the most-likely last roundkey from the candidates, which has the minimal error,

our algorithm also supports to use the standard CPA to find the most possible last roundkey: af-

ter we obtain the internal state for a given previous round for each candidate, we compute the

Pearson Correlation Coefficient [48] between the vector of the real power samples and the vector

of hypothesis power on each byte and aggregate the correlation values on all bytes (for the case

of AES 128, for a given round, we obtain 16 correlation values and take the aggregation), which

means now we use the operation Pearson to replace the MSE in the algorithm, and matrix Lc

stores the correlation values in all previous rounds for each candidate. Lc stores the aggregated

correlation values for each candidate. Finally, we select the most-likely last roundkey, which has

the maximum correlation value in Lc.

6.5 Experimental Results

Our experiments target an unmasked implementation of the AES-128 algorithm. We use the

same dataset as we used in Section 5.6. We compare the performance of the standard Hamming

Weight model, the independent leakage models, the average measurement model, and the approx-

imated long linear model. We use the successful-recovery rate as the measure for performance
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Algorithm 4 Reinforcement Strategies based Side Channel Attack
Input: C,XK∗ ,LM, Numc, r, ra

Initialize: P ts,Rts,T c,Lc

For i = 0, . . . , Na − 1
For j = 0, . . . , I − 1

PostState = C[i][j];
For k = 0, . . . , 2B − 1

PreStateID = InvShiftRows(j);
PreState = C[i][PreStateID];
PreState = AddRoundKey(PreState, k);
PreState = InvSubBytes(PreState);
P ts[j][k][i] = LM(PreState⊕ PostState);

End
End

End

For j = 0, . . . , I − 1
For k = 0, . . . , 2B − 1
Rts[j][k] = Pearson(P ts[j][k],XK∗ [:][ra − 1][:]);

End
End
T c = KeyEnumeration(Rts, Numc);

For l = 0, . . . , Numc − 1
For t = 0, . . . , |r| − 1

RoundKeyr = InvKeyExpansion(T c[l], r[t]);
For i = 0, . . . , Na − 1
P r[i] = LM(θ(RoundKeyr));

End
Lc[l][t] = MSE(P r,XK∗ [:][t][:]);

End
Lc[l] = Mean(Lc[l][:]);

End
Computes l∗ := argmin{l=0...,Numc}Lc[l];
RoundKey = T c[l

∗];
AESKey=InvKeyExpansion(RoundKey);

Output: AESKey
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evaluation, which is also defined in Section 5.6. In the attack phase, we independently perform the

attacking 100 times by randomly picking the leakage traces from the attack set.

We compare our reinforcement-based DC strategy with the standard CPA based attack descried

in Section 5.5, which focuses on the 10-th round attack only. In our experiment, our algorithm only

uses the samples in the first AES round to reinforce the result of the last AES round attack. In the

following, for the last AES round attack, we use HW to represent the Hamming Weight model,

Independent Model to denote the independent model, Average Measurement for the average

measurement method, and Approximated Model to represent the approximated linear model. We

use Reinforcement in front of each model to represent the using of the reinforcement-based DC

strategy on that model. For all the profile-based methods, in order to make fair comparisons, we

use the Least Squares (LS) method to take the inverse on the measurement matrix for computing

the coefficients in the leakage model.

In Fig. 6.2, we present the experimental results for different numbers of attack traces, with

different models. The number of roundkey candidatesNumc is set to 100 here. In each experiment,

the number of profiling traces Np is fixed to 3000 and the number of attack traces Na varies from

100 to 5000. The results indicate that by using reinforcement-based DC strategy, each of the

models show huge performance improvements compared to the results of only attacking 10-th

round. For example, for the Hamming Weight model with Na = 2000, the recovery rate for 10-th

round attack is about 15% and for reinforcement-based DC strategy is near 56%. Besides, when

Na ≥ 4000, all the models that using reinforcement-based DC strategy can achieve almost 100%

recovery rate, which is an excellent result.

In Fig. 6.3, we show the successful recovery rate for reinforcement-based DC strategy for

different numbers of roundkey candidates Numc. The number of profiling traces Np is fixed to

3000, the number of attack traces Na is fixed to 4000 and 5000 respectively, and the number

of roundkey candidates Numc varies from 1 to 2000 in each figure. We want to note that for

the special case where the number of candidates Numc is one, and there is subsequently only

one candidate in the table T c, our reinforcement-based DC strategy degrades to the standard DC
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strategy based CPA, since now there is only one candidate to select from the validation. She

only uses the last-round’s information for attacking. From the Fig. 6.3, we can see that when

Numc increases, so will be the recovery rate for all models. This is reasonable since when more

candidates are in T c, more validations can be performed and hence more chances that the correct

key will be picked. This also tells us that if attacker only gets a limited number of traces for

attacking, increasing the number of roundkey candidates is another way to to improve the recovery

performance in our Reinforcement strategy. For example, when Na = 2000, the recovery rate

for Hamming Weight model with Numc = 1 (DC strategy based CPA) is about 15.8%, and with

Numc = 2000 is near 84%, which is a huge improvement.

6.6 Conclusion

In this chapter, we propose a Reinforcement strategies based side channel attacks. By using a

key enumeration algorithm, we successfully combine the leakage information from different AES

rounds together and hence enhance the power of the attack. Although our method is still based

on the idea of Divide-and-Conquer, we exploit the samples from multiple rounds and hence get

more information in order to improve the attack performance. Different to the previous methods,

such as ASCA and SASCA, which also use the all samples during the entire AES operations, our

method doesn’t solve a large number of linear equations during the attack phase, or spend large

efforts during the profiling phase, which reduces the computing cost. Finally, experimental results

are provided to prove the effectiveness of our algorithm.
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7. SUMMARY AND CONCLUSIONS

In a side-channel attack, the adversary exploits physical information that leaks from particular

system implementations to extract secret information, such as secret keys, instructions. Since the

physical leakages are dependent on the internal state of the cryptographic implementation, profiling

this dependency (which is also called leakage model or leakage function) and using it in attack is

a powerful technique in side channel attacks.

Power analysis [6] is a widely-used method in side channel attacks, which analyzes the physical

leakage information in form of power consumption of the cryptographic device. This power con-

sumption based model relies on the fact that there is relationship between the power consumption

among the data-dependent components in the circuits, and the bit flips/state transitions caused by

the presumably secret key. Typically, these side-channel attacks can be divided into non-profiled

and profiled side-channel attack, respectively. Non-profiled side-channel attacks, use some a priori

information about the leakage model, such as HW or HD model. Profiled side-channel attacks, on

the other hand, learn the leakage model by doing the training on an identical or similar target de-

vice. There are two widely used techniques in profiled side-channel attacks: the Template Attack

and the Stochastic Model.

By extending previous work on leakage model building, in Chapter 3, we generalize the weight-

ed leakage model to describe the mathematical relationship between the measurable physical leak-

ages and the internal state of the cryptographic implementation. We model the side channel as a

fading channel in communication theory and treat the leakage model coefficients as the gains of

a communication channel. This also allows us to treat the profiling problem in side-channel at-

tack as a channel estimation problem in communication. Furthermore, in Chapter 4, we proposed

a `2-norm based re-weighted algorithm to estimate the leakage model in profiling phase, which

outperforms the previous LS method and Ridge-based method as illustrated by the experimental

results. We also discussed the convergence behavior of our algorithm. We also discussed the ad-

vantage of our scheme when only a limited profiling traces is obtained compared to the standard
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profiled side channel attack.

In Chapter 5, we focus on the problem of how to efficiently apply the Stochastic Model to

the non-linear cryptographic systems as part of profiled side-channel attack. Since usually the

cryptographic system has a large number of bits in the secret register, such as AES 128, most of

the side-channel attacks use a Divide-and-Conquer strategy to break the cryptographic algorithms.

Under this strategy, the attacker only focus on one byte at a time, and treats the other bytes as noise

during profiling. This leads to the problem that the model built for each independent byte will be

corrupted by the noise comes from both the independent noise, and also the leakage traces gener-

ated by other bytes, especially under the case of only small number of profiling traces are given.

To address this issue, we propose two methods to build the leakage model for profiled side-channel

attacks targeted on AES implementations. One method is based on the idea of averaging the noise

from all the bytes, which we call it average measurement model. Another method is based on the

idea of using the joint structure for the same bits position, which we call it approximated model.

Finally, experimental results are provided to show the effectiveness of our proposed methods.

In Chapter 6, we proposed a reinforcement-based DC strategy for side-channel attacks. By us-

ing a key enumeration algorithm, we successfully combine the leakage information from different

AES rounds together and hence enhance the power of the side channel attack. Different from the

previous methods such as ASCA and SASCA, which also use all leakage samples during the AES

encryption, our method doesn’t solve a large number of linear equations during the attack phase,

or spend large effort during the profiling phase, since our algorithm is also based on the idea of DC

strategy, which reduces the computing cost saving compared to those algebraic-based methods.

The experimental results are provided to prove the effectiveness of our algorithm.

7.1 Further Study

Our work of exploring the relation between the secret keys and side channel signals leads us

to believe that there are inherent structural characteristics of the system that express themselves

in how side channel information is leaked. This is also supported by the effectiveness of linear

leakage models, such as the Stochastic Model. We plan to further explore their relationships by
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using a deep learning framework.

Some previous work have investigated the application of deep learning techniques in the con-

text of side channel attacks. In [58], the authors conduct a comprehensive study of the application

of deep learning theory in the context of side channel attacks. In [59], the authors propose a new

deep learning architecture called SCANet, and compare it with other machine learning techniques,

in side channel attacks. However, in both of these work, the attacker’s target is only the HW value

of the keys, rather than the real value of keys. This HW information is far from enough to be a

threaten to the security of the target devices, especially for the AES based system. Besides, the

architectures used in both of these works are complex, which lead to a huge computing cost dur-

ing profiling. Hence, how to build efficient Convolutional Neural Networks (CNNs) architectures,

which can directly guess the binary string of the secret key will be an interesting future work.
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