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ABSTRACT

It is accurate to say that optimization plays a huge role in the field of machine learning.

Majority of the machine learning problems can be reduced to optimization problems and

having the ability to solve such group of optimization problems becomes the goal of all

the people who are interested in diving into the deep machine learning ocean.

Speaking of doing optimization in continuous space, both convex and concave func-

tions can be efficiently and effectively optimized due to its convexity and concavity. It

seems that optimization in discrete functions is worth exploring. The most appealing point

we see in a submodular set function has to be its natural diminishing returns property. This

property makes the group of submodular functions fit in some of the real world machine

learning optimization problems, where the problem objective functions are sharing the

same characteristics. And the widely extended application of submodular maximization

also goes to typical data mining problems that are highly related to submodularity, for

example, maximizing the spread of influence in social networks.

In this thesis, we will be introducing a neural network model that has been designed

specifically to maximize a submodular set function. This synthetic submodular set func-

tion represents a group of functions with certain properties, which will be talked about

later in the thesis. This model has the fundamental structure that can be altered or used as

a portion of a new model for any other submodular or not necessary submodular set func-

tion maximization problem. And empirical results from testing will support the liability

of this designated model.
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NOMENCLATURE

NMT Neural Machine Translation

RNNs Recurrent Neural Networks

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

MSE Mean Square Error
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1. INTRODUCTION

Most of the traditional machine learning problems can be taken as making predictions

from some model. The goal of this type of machine learning problems will be predicting

the behavior of the model based on the data generated from the model, which is highly

related to that observed [1].

In machine learning, there are two main approaches of designing models for solving

problems. One of the two models is called discriminative model and the other one is called

generative model. The major difference between these two models can be concluded

as the way they learn from data. Discriminative model will be learning the differences

among all the possible classes, decision boundaries between classes and moreover, the

conditional probability distribution, p(y|x), of the label y, and the iputs x. On the other

hand, generative model will be learning the distribution of each individual class. This is

equivalent as learning joint probability distribution, p(x, y), and estimating parameters of

p(y|x) using Bayes Theorem in (1.1).

p(y|x) =
p(x|y)p(y)

p(x)
(1.1)

Training both generative classifiers and discriminative classifiers involve estimating

the mapping function f from inputs x to label y. The discriminative classifier model ap-

proaches this by assuming some functional form of the conditional probability distribu-

tion, p(y|x), and making predictions of p(y|x) directly from data. The generative model

assumes some functional form of both conditional probability distribution p(x|y) and

marginal probability distribution p(y). Then estimating these two distribution functions

from data and finally using equation (1.1) to compute p(y|x). Examples of discriminative
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models are logistic regression, scalar vector machine and nearest neighbor. For genera-

tive models, there are example classifiers such as naïve bayes, hidden markov models and

bayes networks. One of the reasons why discriminative models is more compelling has

been articulated by Vapnik [2], is that “one should solve the [classification] problem di-

rectly and never solve a more general problem as and intermediate step [such as modeling

p(x|y)].”

Rather than making predictions on model’s behavior, it is more practical to say that the

real aim is to find the optimum from all given observations of the model. The influence

maximization problem we mentioned in introduction can be used as one of the examples.

In this influence maximization problem, a given social network is modeled as an undi-

rected graph G = (V,E), with V being the vertices and E being the edges. Vertices

model the individuals and edges model the relationship between individuals in the given

social network. There are many different models designated for solving this problem but

the goal is the same, which is to find the optimal subset of individual influencers that can

mostly spread information to bring out a large cascade. In order to maintain theoretical

guarantees on decisions, the generative model will be used since its structure is amenable

to optimization. A natural structure for the generative model is submodularity in the case

of discrete decision variables [1].

Submodularity is a property of set functions. Here, the set function refers to a group

of functions f : 2V → R. V is a finite set called ground set and each subset of this

ground set, S ⊆ V , has a corresponding value f(S). There are two equivalent definitions

of submodularity from [3] are included below.

Definition 1 (Discrete derivative). For a set function f : 2V → R, S ⊆ V , and e ∈ V , let

∆f (e|S) := f(S ∪ e)− f(S) be the discrete derivative of f at S with respect to e.

Where the function f is clear from the context, we drop the subscript and simply write

2



∆(e|S).

Definition 2 (Submodularity). A function f : 2V → R is submodular if for every A ⊆

B ⊆ V and e ∈ V B it holds that

∆(e|A) ≥ ∆(e|B) (1.2)

Equivalently, a function f : 2V → R is submodular if for every A,B ⊆ V ,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B) (1.3)

Where the function f is clear from the context, we drop the subscript and simply write

∆(e|S).

Discrete derivative from the first definition is also known as the marginal distribu-

tion. This is also helpful in submodular maximization because after performing a set A

of actions, the marginal gain of any action does not increase over the actions region in

B \ A [3]. This leads to a conclusion that all the submodular set functions exhibit the

diminishing returns property. We will be using the common sensor placement example to

illustrate how the diminishing returns property implies. In the sensor placement example,

the ground set indicated by V will be all the available locations that a new sensor can

be placed and f(S) refers to the detection performance measurement when location set

S has been occupied by sensors. There exists a fixed location set S ′, two given location

sets, E1 and E2 where E1 = s1, s2 and E2 = s1, s2, s3. When the cardinality of the set

E1 and E2 increases by adding S ′ to each of them, the additional coverage actually does

not increase. There are more overlapping occurred if the intial cardinality is larger. Using

notations from the first definition, we will have ∆(s′|{s1, s2}) ≤ ∆(s′|{s1, s2, s3}).

In general, submodular set function optimization problems are divided into two cate-

3



gories, submodular maximization problems and submodular minimization problems. It is

not very clear whether submodular set functions are “convex” or “concave”, we can see

both of them from the definitions. The intuition of solving submodular set function opti-

mization is to map the set function to a continuous space and then optimize the continuous

function with existing algorithms according to its convexity or concavity. We know for

every function f : {0, 1}N → R has two canonical extensions, f+, f− : [0, 1]N → R.

These two functions are defined as the concave closure and convex closure of the submod-

ular function f . It has been proved in Dughmi’s work that both definition 3 and definition

4, which are shown below, are equivalent for convex closure [4].

Definition 3. For a set function f : 2X → R, the convex closure f− : [0, 1]X → R is the

point-wise highest convex function from [0, 1]X to R that always lowerbounds f .

Definition 4. Fix a set functino f : 2X → R. For every x ∈ [0, 1]X , let D−f (x) denote

a distribution over 2X , with marginals x, minimizing ES∼D−
f (x)[f(S)] (breaking ties ar-

bitraily). The Convex Closure f− can be defined as follows: f−(x) is expected value of

f(S) over draws S from D−f (x).

This convex closure concept is identical to the well-known “Lovász extension” for

submodular set function. The definition of Lovász extension fL is shown below.

Definition 5. For a function f : {0, 1}N → R, fL : [0, 1]N → R is defined by

fL(x) =
n∑

i=0

λif(Si) (1.4)

where φ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn is a chain such that
∑
λi1si = x and

∑
λi =

1, λi ≥ 0.

An equivalent way to define the Lovász extension is :fL(x) = E[f({i, xi] > λ})]
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Also from the theorem in [5], for every S ⊆ N and any submodular function f : 2N →

R, the problem minS⊆N f(S) can be solved in polynomial time with respect to |N |. With

given oracle access, the Lovász extension is simple to compute and can be widely used in

solving submodular minimization problem. For submodular functions, the optimization

problem can be solved efficiently by converting the problem into a continuous convex

minimization problem using Lovász extension. But this is not true for the case of concave

closure, which has been proved as NP-hard to evaluate for submodular functions. The

concave closure can be defined as, for f : 0, 1N → R, we define

f+(x) = max{
∑
S⊆N

αSf(S) :
∑
S⊆N

αs = 1, αs ≥ 0} (1.5)

This is what we are more interested about. The difficulty of evaluating concave clo-

sure makes it not suitable for solving submodular maximization problem. This is where

multilinear extension is introduced. For a set function f : 2N → R, we define its mutilin-

ear extension F : [0, 1]N → R by

F (x) =
∑
S⊆N

f(S)
∏
i∈S

xi
∏

j∈N\S

(1− xj) (1.6)

Based on the multilinear relaxation, a relaxation and rounding frame has been devel-

oped. This general framework consists of three components including optimizing the mul-

tilinear relaxation, dependent randomized rounding and contention resolution schemes

[6]. This framework can help solving submodular maximization problems of the form

max{F (S) : S ∈ I}, where f : 2N → R+ is sumbodular and I ∈ 2X is a downward-

closed family of sets and there is a (1−1/e)-approximation guarantee for the submodular

maximization problem whenever function F is the multilinear extension of a monotone

submodular function and I can be any solvable polytope [6]. But the multilinear exten-
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sion has a requirement that limits it usage in submodular maximization problem, which

is 2n queries to the value oracle of submodular function f is needed for evaluation. This

cannot be possibly afforded. This way, only approximation of the multilinear extension

will be evaluated.

For submodular maximization problem, we need to define a certain constraints to

make the problem non-trivial. Most commonly used constraints are matroid constraints

and cardinality constraints. A matroid is a pair (V, I such that V is a finite set, and I ⊆ 2V

is a collection of subsets of V satisfying the following two properties:

• A ⊆ B ⊆ V and B ∈ I imples A ∈ I

• A,B ∈ I and |B| > |A| implies ∃e ∈ B \ A such that A ∪ {e} ∈ I

Matroids generalize the idea of linear independence where sets in I are named independent

in linear algebra [3]. The cardinality constrained submodular optimization problem has

the following form:

max
S:|S|≤k

f(S) (1.7)

where k is the cardinality parameter, the goal is to find a subset S ⊆ N maximizing

f(S) such that |S| ≤ k. The case of S having exactly k elements from N is also consid-

ered. Some well-known submodular maximization problems including max-k-coverage,

max-Bisection and Max-cut with specific cut size are the optimization problems with

cardinality constraints [7].

There are two main types of submodular functions that are available to explore for the

purpose of optimization, monotone submodular functions and non-monotone submodular

functions. A submodular function f is said to be monotone if for every S ⊆ N, f(S) ≤

f(N). And a submodular function that is not monotone is called non-monotone. Some

examples of monotone submodular functions include entropy function in information the-
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ory, maximum coverage functions and budger-additive functions. Mutual information in

information theory can be taken as a standard example of nonmonotone submodular func-

tion.

Another property related to submodular functions is curvature. The curvature is a

measure of how far the function is to being modular. A function f is said to be modular if

f(S) =
∑

e∈S f(e), and has curvature c ∈ [0, 1] if fx(e) ≥ (1−c)f(e) for any S ⊆ N [1].

Curvature is crucial while solving submodular maximization problem since hard instances

often occur only when the curvature c is close to 1.

α-PMAC learnability is introduced for learning submodular functions using standard

models. Another way of saying is a function is PMAC learnable if polynomial times

of samples are provided and it is possible to construct a prediction function to fit the

original function for where the samples are coming from [3]. Based on what has been

proved in [1], for any monotone submodular function with bounded curvature c, there

is a (1 − c)/(1 + c − c2) approximation algorithm for maximization under cardinality

constraits when polynomial many samples are selected from the uniform distribution over

feasible sets. The PMAC-learning framework of optimization from samples is defined as

having a sample (S, f(S)) of submodular function f(·) , which is a set and its function

value, a distribution D where the sets Si are drawn from and some constraint M ⊆ 2N

on possible solution sets. The goal of this framework is to find a set, S, such that f(S)

is an α-approximation to the optimal solution f(S∗) [1]. For all the functions F that are

α-optimizable from samples under M , there exists an algorithm that have the following

guarantee:

f(S) ≥ α ·max
T∈M

f(T ) (1.8)

where f ∈ F .

We want to solve submodular maximization from a different perspective, which is
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utilizing different neural networks to form a model specifically to solve submodular max-

imization problem with cardinality constraint. With a given submodular function, the

objectives will be designing a model that consists of the followings:

1. An autoencoder that is able to encode a sequence of numbers and decode them from

the encoded representation

2. A predictor that is able to predict the set performance from the encoded representa-

tion

3. An optimizer that is able to optimize the encoded representation

This neural network model will be broken down into several parts as listed above and will

be talked about individually in the following chapters.
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2. AUTOENCODER MODEL

2.1 Introduction of autoencoder

A general autoencoder framework as shown in Figure 2.1 can be derived using a t-uple

n, p, m, F, G, A, B, X , ∆ where [8]:

1. F and G are sets.

2. n and p are positive integers. Here we consider primarily the case where 0 < p < n.

3. A is a class of functions from Gp to Fn.

4. B is a class of functions from Fn to Gp.

5. X = {x1, · · · , xm} is a set of m (training) vectors in Fn. When external targets are

presents, we let Y = {y1, · · · , ym} denote the corresponding set of target vectors

in Fn.

6. ∆ is a dissimilarity or distortion function (e.g. Lp norm, Hamming distance) defined

over Fn.
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Figure 2.1: Autoencoder architecture

For any set A ∈ A, B ∈ B, an n/p/n autoencoder transforms an input vector x ∈ Fn into

an output vector A ◦ B(x) ∈ Fn . Our expectation for this type of n/p/n autoencoder is

to minimize its overall distortion function as indicated in [9]:

minE(A,B) = min
A,B

m∑
t=1

E(xt) = min
A,B

m∑
t=1

∆(A ◦B(xt), xt) (2.1)

This is the same as maximizing the similarities between vector A and vector B.

2.2 RNN

Recurrent Neural Networks (RNNs) have several features that make it stand out among

all other neural networks. As illustrated in Figure 2.2, the neural network takes an input

vector x = {x1, x2, x3, · · · } with no pre-determined length and with contrast to CNNs,
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there is an intermediate vector named hidden state, h = {h0, h1, h2, h3, · · · }, which up-

dates itself and provides RNNs context of previous inputs to make a better and informative

decisions while generating outputs, y = {y1, y2, y3, · · · }.

Figure 2.2: RNN architecture

So the key difference between basic NNs and RNNs is memory. Basic NNs only

have memories about learned weights during the process of training. RNNs not only have

that but also have memories about the original inputs. RNNs can be extremely helpful

for preserving information of neighboring inputs. We can see this feature applied really

while in translation neural network.
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2.3 NMT sequence-to-sequence model

The sequence-to-sequence model in neural machine translation has the outlined au-

toencoder architecture (Figure 2.1) with detailed internal design. The model is composed

of two jointly trained neural networks: a recurrent encoder and a recurrent decoder.

The encoder RNN takes a sequence of feature frames x1..T and transforms it into a

sequence of hidden activations, h1..L [9]. The hidden activations can also be called the

encoding of the source vector, xt. Then we have a general form:

hl = f(x1..T ) (2.2)

where f(·) is an encoding function.

The decoder RNN takes the encoded source vector and produces a sequence of output

tokens, y1..K [9]. One output token is produced per step and each output token depends

on not only the encoded source vector but also the output token that has been produced in

previous time step. The general form of the decoder:

yk = g(yk−1, h1..L) (2.3)

where g(·) is a decoding function.

The encoding function often consists of a stack of recurrent layers. The most common

recurrent layers that have been used are LSTM layers or GRU layers. Recurrent neural

network will not work really well as the source vector gets larger. In the NMT case, the

input sequence can be a long paragraph that needs to be translated. Each word might

be associated with its neighboring words. RNNs will be having a hard time predicting

the correct translated words for all the original words that appear at the beginning of the

input sequence and important information could be lost. That is how LSTM and GRU
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were created, to solve this problem of RNN. GRU has two gates, reset and update gate.

LSTM has three multiplicative gates, input, output and forget gate.

Both of LSTM and GRU utilize gating information to prevent vanishing gradient prob-

lem. LSTM has been widely used with RNN architecture. Even though LSTM is compu-

tationally more complex than GRU because of the memory unit, LSTM should perform

well regardless of the length of input sequence theoretically. Another difference that

worth mentioning between LSTM and GRU is the internal state. In LSTM, there are two

types of state, cell state c and hidden state h. We will be using ht−1 to represent the hidden

state computed at time step t − 1 and ht to represent the hidden state computed at time

step t. Basically, the input x and ht will be used for computations of input, output and

forget gate. The cell state ct is dependent on not only x and ht−1 but also the previous cell

state ct−1, input gate and forget gate. The hidden state ht is then computed using result

from ct and output gate with the help of hyperbolic tangent function in a nonlinear way.

The hidden state h is what we interact the most since cell state c serves as the memory and

h is passed to the three gates of LSTM to continue processing input. GRU merges these

two and only have one hidden state. We will be focusing on LSTM layers for encoder

during the thesis. The hidden state of encoder RNN at time step t, ht, is computed in the

form:

ht = f(W (hh)ht−1 +W (xh)xt) (2.4)

where W (hh) is the weights matrix based on the previous hidden state and W (xh) is the

weights matrix based on the current input.

The decoding function often consists of a stack of recurrent units just like the encoder.

The most common recurrent units that have been used are LSTM cells or GRU cells. Cells

are contained in layers and we will be talking about LSTM cells instead of GRU cells for

consistency with encoding function. The decoding function will use the last state output
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from encoder as input and this means the initial hidden state is generated from encoder

instead of randomly generated like encoder. Each LSTM Cell accepts a hidden state from

previous state and produces an output as well as the current hidden state for the use of

next time step. The hidden state of decoder RNN at time step t, ht, is computed in the

form:

ht = f(W (hh)ht−1) (2.5)

where W (hh) is the weights matrix based on the previous hidden state.

The output of decoder will be generated one by one using the formula:

yt = softmax(W Sht) (2.6)

where W S is the weights matrix at the current time step. The Softmax activation function

f has the form [10]:

f(xi) =
exp(xi)∑
j exp(xj)

(2.7)

The Softmax function is mostly used in output layers for deep learning architecture. The

Softmax function will help create a vector of probabilities with respect to each possible

output. All the entries of this vector will be in range of values between 0 and 1 and the

sum of all entries will be equal to 1. The softmax function will look something similar to

the function in Figure 2.3 depending on input values.
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Figure 2.3: Softmax funtion

And the one with highest probability will be selected as the final output at the current

time step using argmax function. This current decoder output will be used as the decoder

input for the next time step. The NMT sequence-to sequence model will look something

like this in Figure 2.4:
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Figure 2.4: Neural Machine Translation model architecture

2.4 Our autoencoder model

Our autoencoder model will be using the same encoder-decoder architecture as the

neural machine translation model with some changes.

First, we will introduce the additive Bahdanau attention mechanism developed in [11].

The general purpose of using an attention mechanism on top of the encoder-decoder

model is to enhance the memory of original inputs and improve decoding accuracy. The

architecture of encoder-decoder model with attention that we will be using is shown in

Figure 2.5 below.
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Figure 2.5: Encoder-decoder LSTM model with attention

The goal of this attention mechanism is to produce a context vector c, which is a

weighed sum of the encoder output states. As illustrated from the above architecture, at

the beginning of decoding, we will need initial information from both the output states of

encoder, which is called query, and encoder RNN’s output, which is named value in this

attention mechanism, to prepare the attention mechanism. After the first decoder LSTM

cell output has been produced, we will be using this decoder LSTM cell output state as

the new query and previous encoder LSTM output state as value. Each element in the

input vector x will be assigned a score to show how much it matters for computing the

current wanted output. The score can be calculated using this formula:

score(q, v) = vT tanh(W1[q];W2[v]) (2.8)

where V ,W1 and W2 are learnable weight matrices. After applying softmax function to

normalize all scores, the attention weights are ready to be used. Finally the context vector
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can be obtained by:

c =
∑
s

αtshS (2.9)

where αts is the attention weights and hs is the encoder output state.

We will place a “start” token at the beginning of decoder’s input to initialize the input

of decoder to start the decoding process and generate decoder hidden state one by one

for attention mechanism to evaluate. This attention network will be jointly trained with

encoder RNN and decoder RNN.
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3. PREDICTOR AND OPTIMIZER MODEL

3.1 Fully-connected neural network

Fully-connected neural network has been widely used for many applications in the

field of machine learning due to its “input agnostic” feature. This means that we do not

necessarily need to provide any assumptions about the input data. A fully-connected neu-

ral network usually consists of a series of fully-connected layers. Each fully-connected

layer has the functionality of transforming any representation from Rn to Rm. Each neu-

ron in a fully-connected layer is connected to every neuron in the previous layer. The

dimensionality is dependent on the previous layer as well. A generalized fully-connected

neural network has the architecture in Figure 3.1.

Figure 3.1: Fully-connected neural network
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In our case, we expect the input of our predictor to be the last output of encoder RNN.

And our fully-connected neural network will use this representation to predict the per-

formance of the original input x in submodular set function. Instead of having multiple

classes as output, we will ask the fully-connected neural network to generate a single out-

put as the prediction of submodular function value. The number of hidden fully-connected

layers is dependent on the size of the ground set N as well as the cardinality constraint

on k. The larger these numbers are, the more complex the encoder output representation

is. And a deeper fully-connected neural network will be needed to fit this submodular

function over a complex but informative input. The example predictor model in Figure

3.2 has two dense layers between input layer and output layer.

Figure 3.2: Predictor model architecture
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Without changing the batch size, a flatten layer will be introduced before this fully-

connected predictor model to help prepare input data. A flatten layer will be in charge of

reshaping the representation of last LSTM output states of encoder together and reducing

its dimensionality to make it suitable for this fully-connected predictor model.

We have talked about Softmax activation function, which is also used by the last layer

in the predictor model. For the layers before output layer, the activation function we will

be using is called ReLU activation function. These two activation functions will perform

non-linear transformation in the neural network and help the model to learn complex

functions. ReLU function is half rectified and converts all numbers that are less than zero

to be zero. All other numbers including zero stay the same. A ReLU function plotted

using Python can be found in Figure 3.3.

Figure 3.3: ReLU activation function
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3.2 Our optimizer

After predicting the submodular function performance using the above fully-connected

neural network model, we will use the same input for optimizer. This input is also the

output state of encoder RNN. The weights and bias parameters will be saved from the

previous well-trained predictor. And we will calculate the negative gradient direction of

these parameters with respect to objective value, which is the only output from predictor,

over the input representation at each step. The total step size can be observed by running

different experiments.
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4. EMPIRICAL RESULT

4.1 Training data

Before generating data for training, we need to be specific of which submodular func-

tion we will be using. The submodular function, which serves as the objective function,

is a simple synthetic function f from [1] defined as following:

f(S) =


|S ∩ (G ∪B)| if |S ∩B| ≤ 5

|S ∩G|+ |S ∩B| · (1− c)− 10c otherwise
(4.1)

where S is the subset of N , | · | is the cardinality function, c is the bounded curvature,

both G and B are fixed sets.

This is also a monotone submodular function. We will prepare the training data sets

for autoencoder and predictor separately since our training strategy is to train the encoder-

decoder with attention first and then use this pre-trained autoencoder model to jointly train

with predictor model.

4.1.1 Encoder-decoder model with attention

Since we want to make the encoding process order invariant for sequence-to-sequence

model, we will sort all input elements into an ascending order and use them as the inputs

for encoder. This is because the representation of output states from encoder will carry

information of the original order. This matters a lot in the NMT case since a sentence

can have varying meanings when words are placed in different positions. But in our case,

we want the representation, for example, set S1 = {1, 2, 3}, set S2 = {3, 1, 3} and set

S3 = {3, 2, 1}, look as similar as possible. Because these three sets are identical in the set

level and we are avoiding the neural network processing them differently. The encoder
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learns a powerful representation of input set by stacking two LSTM layers together. But

these LSTM layers do not interact with the integer sets directly. All the training input

sets will go through embedding layer first so the true input of encoder is actually an

embedded representation. One-hot embedding commonly existed in NMT ror similar

machine learning problems. But this one-hot embedding can be inefficient when the input

vector gets longer. And in the long input vector case, the vector is going to be sparse and

hard to be understood by neural networks since most of the elements in one-hot vector

are zeros. We want the embedded vector to be dense and preserve more information

besides just being distinguished from others. The embedding layer will contain a trainable

embedding matrix, which can be randomly initialized. This embedding matrix will be

gradually updated during training by backpropogation. The embedded representation will

be the dot product of embedding matrix and input vector. This embedded representation

will then be used as the real input of LSTM layer. With the help of attention mechanism,

we expect the decoder perform really well after training. We will focus on the case when

the size of ground set N is 600 and k is 20. This is basically a 600 chooses 20 problem

and we have approximately 1037 number of subsets.

We have mentioned that we will be using Softmax function at the output of decoder.

So we have chosen cross-entropy as the loss function. Softmax function outputs proba-

bilities and cross-entropy measures performance of a model whose output is a probability

value. The cross-entropy loss is also called log loss and has the general equation as fol-

lowing [12]:

−
∑
j

y(j)logσ(o)(j) (4.2)

where σ(·) is the probability estimate, y is the true label and o is the output from last layer.

For the decoder part, we will be using an algorithm called teacher forcing to help

improve the decoding accuracy. Basically, the decoder RNN is fed with input data as
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well. The decoder RNN will be supplied by observed sequence values as inputs during

training and use its own one-step-ahead predictions for future steps [13]. The input of

decoder’s first LSTM Cell will always be a “start” token and the output sequence will

always end with an “end” token to mark the stop of decoding process.

Since RNNs are mainly used in our model, we will be applying layer normalization

instead of batch normalization to speed up the learning process. The comparison between

layer normalization and batch normalization is illustrated in Figure 4.1 below.

Figure 4.1: Comparison between batch and layer normalization

The idea of this type of normalization is to standardize each summed input using its
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mean and standard deviation so that the feedforward neural networks converge faster [14].

There are some limitations on using batch normalization. The biggest limitation related

to our model is batch normalization is not compatible with recurrent connections because

the activations at each time step will have different mean and standard deviation. This re-

quires a different batch normalization layer at each time step and this is not anything ideal

to do. We decided to use layer normalization, which intended to eliminate the limitations

that batch normalization has. The layer normalization statistics is computed over all the

hidden units in the same layer as follows:

µl =
1

H

H∑
i=1

ali (4.3)

σl =

√√√√ 1

H

H∑
i=1

(ali − µl)2 (4.4)

where H denotes the number of hidden units in a layer [14].

4.1.2 Predictor and Optimizer

The training data for predictor will depend on which submodular function we are in-

terested about. The training labels will be the same as the objective values of submodular

function. There is one part we should take special care of. Since we will be using gradient

descent algorithm to find the steepest decrease direction of predictor parameters, weights

and bias, we need to make all the submodular function objective values to be negative so

that our goal is to find a gradient direction where a smaller label output can be obtained.

The inputs that are passed into our optimizer are encoder RNN’s final output states

and well-trained predictor parameters, weights and bias. The output of the optimizer

will be an optimized representation of the original input set. And we will then send this

optimized representation to inference decoder model to decode it back in set form. The
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optimized objective value can be then calculated using the submodular function.

4.2 Training result

4.2.1 Encoder-Decoder model with attention

First, we need to be clear about how to set hyperparameters for our training of this

encoder-decoder model. Please see Table 4.1 for differences between hyperparameter

batch and epoch. These hyperparameters are different for different cases.

Batch Epoch
number of samples to run before updating
model parameters

number of times the learning algorithm
goes through the entire training samples

training samples are divided into one or
more batches

comprised of one ore more batches

Table 4.1: Comparison between batch and epoch

The number of epochs was not defined during the training of our encoder-decoder

model. We generated the batch size of training data randomly every time and iterate this

over and over again until the training loss converges. We have run 3500 iterations with

batch size of 100 and we can see the process of how training loss approaches 0 throughout

training with only two outlier points in Figure 4.2.
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Figure 4.2: Training loss for autoencoder

Validation datasets were generated the same way as the training datasets. We used

1000 sample sets and compared the expected outputs with the outputs decoded from our

autoencoder with attention model from elementwise. The validation accuracy can be

visualized in Figure 4.8 below.
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Figure 4.3: Validation accuracy for autoencoder

From the plot in Figure 4.8, we can observe that there were only 10 out of 1000 sample

sets that were not decoded with 100% accuracy. But the least accuracy from validation

data was still above 90%.

4.2.2 Autoencoder with predictor

After we were satisfied with the training result of encoder-decoder model, we saved

this pre-trained model to disk and we started jointly training encoder-decoder model with

predictor network. We set the hyperparameter epoch of size 40 and batch of size 100. The

training loss of this joint model with respect to the number of epoch can be visualized in

Figure 4.4 below.
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Figure 4.4: Joint training loss

After 40 epochs of joint training, the training loss has converged to a value < 0.008

and the meantime, we can also look at the validation loss for this model in Figure 4.5.
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Figure 4.5: Joint validation loss

The validation loss plot for this autoencoder with predictor model shared the same

trending of convergence as the training loss. This means our model not only performed

well on the training datasets but also the validation datasets.

Since the encoder-decoder with attention is a pre-trained model, we assign a twice-

larger weight parameter for predictor loss comparing with encoder-decoder loss so that

we can emphasize the predictor-training portion. For training loss of encoder-decoder

with attention, we have used the same cross-entropy (log) loss function.
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Figure 4.6: Encoder-decoder joint loss

Comparing with the joint loss, the encoder-decoder model started with a fairly low

loss value as expected. There was an outlier point occurred between epoch 35 and epoch

40 but the majority of epoch results is close to zero. Unlike the encoder-decoder loss, we

have chosen MSE regression loss function for predictor for single value output.
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Figure 4.7: Predictor joint loss

Even though the predictor has not been pre-trained, the starting loss after one epoch

was not too bad and it converged approximately after 10 epochs. From both the training

loss and individual loss shown above, we expect the joint model predict the objective

value of submodular function with high accuracy and also able to decode any sequence

of numbers with high rate of success.

The best way to examine our model is to generate random validation datasets to see

how the joint neural networks perform on them. Just like the individual testing, we gen-

erated 1000 sample sets with each size of 20 and obtained the validation accuracy as

follows.
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Figure 4.8: Joint validation accuracy

This time, there were only 5 sample sets received validation accuracies that are not

100%. This only represents the joint accuracy and we still want to take a look at the

prediction accuracy on testing datasets to ensure the functionality of this newly trained

predictor.
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Figure 4.9: Prediction difference plot

We generated a plot of prediction difference, which indicated the difference between

the expected objective value and prediction value from predictor. The difference ranged

from -0.2 +0.15. We considered this range as qualified for fitting our target submodular

function. It is determined that this model has been well-trained and we will then use it

with optimizer together for final testing.

4.2.3 Optimizer

We have successfully trained and validated our encoder-decoder with predictor model

for optimizing purposes. The final step of testing was to extract the input features from

our encoder model and optimize that representation to achieve a higher objective value of

submodular function after being processed by optimizer.
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Figure 4.10: Function value comparison

The graph in Figure 4.10 was based on the first 20 sample sets out of 1000. It is clear

to see that there was a significant improvement in objective value after going through

optimizer with well-trained model. There was no overlapping between the two colored

plots. We have also looked at the best sample value from 1000 testing datasets. The best

sample has an objective value of 8.5. After this best sample got optimized, it was updated

to 11.5.

We are satisfied with the overall result but there are definitely more things we consid-

ered for future work.
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5. CONCLUSION

In this thesis, we have focused on proposing a different method on solving submod-

ular maximization problem. We have combined different types of neural networks and

made them work both effectively and efficiently. Our neural network now is able to take

in a random set of distinct integers, predict its performance in simple submodular func-

tion, optimize it and decode the optimized representation back in numeric set form. We

have clearly explained the structure of our model, which is comprised of an autoencoder,

a predictor and an optimizer. The autoencoder has two separate recurrent neural networks

consisting of stacks of LSTM layers and LSTM Cells. With the help of attention mech-

anism, which carries the information of encoder’s input data with different identification

scores, the autoencoder can efficiently learn a powerful representation for a set of data.

The fully-connected neural networks, predictor and optimizer, can recognize the encoded

representation generated from the encoder and predict its objective value and optimize

such representation accordingly. And we can always take the optimized representation as

decoder’s input state to decode it back into a set form for future use. We have talked about

the training strategy and parameter tuning for this model. We evaluated the model perfor-

mance from the training and testing aspects and we have showed the results to prove the

stability and liability of this model. We definitely have considered applying this model

into different situations or into a larger scale and we have thought about where this model

can be improved.

5.1 Future research and work

There are different parts of the model that we can alter to make it better and more

general. The first thing that came into our mind was the limitation on input data. Our

encoder-decoder is more suitable for inputs with an order; in other words, we expect
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the input data to be a sequence of numbers. In our case, we have to give it an either

descending or ascending order to make the output representation consistent with all pos-

sible inputs. If we want to make it more general for sets not just sequences, we have to

consider not using the recurrent autoencoder neural network anymore. We need to de-

sign a permutation invariant neural network as the one proposed in [15]. Another part

we think is worth exploring is the optimizer. Right now with our model, we do not have

any approximation guarantee comparing with other classic way of solving submodular

maximization problem. We wanted to focus on proposing an innovative idea of solving

submodular maximization problem. But in the future research, we want to improve the

optimizer to make it more precise and promising. We have thought about using input

convex neural network and Q-learning algorithm to make this optimizer stay in feasible

space during optimizing [16]. Because the problem we observed with our model was,

when we had a large step along the gradient direction, we might step out of our feasible

space. For example, after we optimize the encoded representation of a set, we found re-

peated elements when we decoded it. A set with repeated elements does not belong to our

feasible space. And we have tested our model only on one simple submodualr function.

We see the possibility of applying our model into more complex submodular functions

and maybe just set functions in general.
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APPENDIX A

TRAINING RESULT FOR N = 300, K = 15

Figure A.1: Training loss vs. Iterations
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Figure A.2: Validation accuracy vs. Sample set index

Figure A.3: Joint training Loss vs. Epochs
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Figure A.4: Joint Validation loss vs. Epochs

Figure A.5: Joint autoencoder loss vs. Epochs
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Figure A.6: Predictor loss vs. Epochs

Figure A.7: Optimization vs. Step size

44



Figure A.8: Prediction difference vs. Sample set index
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APPENDIX B

EPOCHS TRAINING RESULT FROM PYTHON

epoch1 : trainloss : 6.956valloss : 5.826aeloss : 0.165pploss : 2.830epoch2 :

trainloss : 3.533valloss : 4.056aeloss : 0.087pploss : 1.985epoch3 : trainloss :

3.820valloss : 3.498aeloss : 0.049pploss : 1.724epoch4 : trainloss : 2.232valloss :

3.186aeloss : 0.076pploss : 1.555epoch5 : trainloss : 2.648valloss : 2.852aeloss :

0.037pploss : 1.408epoch6 : trainloss : 1.955valloss : 2.560aeloss : 0.032pploss :

1.264epoch7 : trainloss : 2.157valloss : 2.258aeloss : 0.049pploss : 1.105epoch8 :

trainloss : 1.865valloss : 1.835aeloss : 0.021pploss : 0.907epoch9 : trainloss :

1.246valloss : 1.457aeloss : 0.042pploss : 0.707epoch10 : trainloss : 0.787valloss :

0.966aeloss : 0.017pploss : 0.474epoch11 : trainloss : 0.654valloss : 0.697aeloss :

0.089pploss : 0.304epoch12 : trainloss : 0.364valloss : 0.416aeloss : 0.013pploss :

0.202epoch13 : trainloss : 0.415valloss : 0.329aeloss : 0.016pploss : 0.157epoch14 :

trainloss : 0.256valloss : 0.242aeloss : 0.013pploss : 0.114epoch15 : trainloss :

0.192valloss : 0.204aeloss : 0.008pploss : 0.098epoch16 : trainloss : 0.171valloss :

0.187aeloss : 0.027pploss : 0.080epoch17 : trainloss : 0.110valloss : 0.137aeloss :

0.009pploss : 0.064epoch18 : trainloss : 0.079valloss : 0.121aeloss : 0.011pploss :

0.055epoch19 : trainloss : 0.102valloss : 0.107aeloss : 0.011pploss : 0.048epoch20 :

trainloss : 0.062valloss : 0.089aeloss : 0.006pploss : 0.042epoch21 : trainloss :

0.059valloss : 0.073aeloss : 0.004pploss : 0.035epoch22 : trainloss : 0.078valloss :

0.101aeloss : 0.029pploss : 0.036epoch23 : trainloss : 0.060valloss : 0.076aeloss :

0.012pploss : 0.032epoch24 : trainloss : 0.071valloss : 0.053aeloss : 0.004pploss :

0.024epoch25 : trainloss : 0.043valloss : 0.056aeloss : 0.002pploss : 0.027epoch26 :
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trainloss : 0.030valloss : 0.037aeloss : 0.004pploss : 0.017epoch27 : trainloss :

0.025valloss : 0.048aeloss : 0.014pploss : 0.017epoch28 : trainloss : 0.022valloss :

0.044aeloss : 0.003pploss : 0.021epoch29 : trainloss : 0.022valloss : 0.025aeloss :

0.001pploss : 0.012epoch30 : trainloss : 0.055valloss : 0.025aeloss : 0.002pploss :

0.012epoch31 : trainloss : 0.075valloss : 0.034aeloss : 0.001pploss : 0.017epoch32 :

trainloss : 0.018valloss : 0.018aeloss : 0.002pploss : 0.008epoch33 : trainloss :

0.015valloss : 0.020aeloss : 0.003pploss : 0.008epoch34 : trainloss : 0.016valloss :

0.036aeloss : 0.005pploss : 0.015epoch35 : trainloss : 0.010valloss : 0.013aeloss :

0.001pploss : 0.006epoch36 : trainloss : 0.008valloss : 0.011aeloss : 0.001pploss :

0.005epoch37 : trainloss : 0.012valloss : 0.011aeloss : 0.001pploss : 0.005epoch38 :

trainloss : 0.219valloss : 0.305aeloss : 0.254pploss : 0.026epoch39 : trainloss :

0.012valloss : 0.017aeloss : 0.003pploss : 0.007epoch40 : trainloss : 0.008valloss :

0.008aeloss : 0.001pploss : 0.003
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