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ABSTRACT 
 

A mechanistic reservoir simulation model is presented to study the time-rate relationships 

of flow in a multi-fractured horizontal well in unconventional reservoirs involving (a) a 

three-phase oil-gas-water system and (b) a two-phase gas-water system.  In addition, non-

mechanistic scenarios are also considered, including early-time high water production (i.e., 

flowback) and fracture permeability degradation.  The results are compared to those from 

previously published models of decline curve analysis, and are used to develop a new time-

rate model. 

 

A "fit-for-purpose" numerical reservoir simulator is developed and, following validation 

against analytical solutions, is used to generate time-rate data.  Several simulation cases 

were constructed from various reservoir and fluid properties that were gathered from 

published literature to model typical conditions of major US unconventional plays.  The 

reservoir simulator models the pressure-dependent reservoir and fracture properties, the 

multiphase-multicomponent flow of black oil and gas-water systems, and accounts for non-

laminar (Forchheimer/Klinkenberg) flow and gas adsorption in gas-water systems 

encountered in shale gas reservoirs.  A new decline curve analysis model is proposed based 

on the data generated in this study, and is compared to the Modified-Hyperbolic and the 

Power-Law/Stretched-Exponential decline curve analysis (DCA) models.  

 

Four flow regimes were successfully generated by the mechanistic model: an early-time 

fracture-dominated performance, a transient (linear) flow regime, a transitional flow 

behavior, and a boundary-dominated flow.  The effects of spatial discretization on the 

accuracy of the numerical solution were investigated and proved to be significant, 
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particularly for the wetting phase — leading to a conclusion that coarser grids tend to 

overpredict the wetting phase production.  

 

The "non-mechanistic" scenarios were found to only affect the early-time production 

performance when compared to a given "mechanistic" scenario both in the three-phase 

black oil case and in the two-phase gas-water case.  Production profiles generated in the 

"non-mechanistic" cases were shown to converge to the "mechanistic" ones no later than 

in 30 days.  The additional computing time that was necessitated by the simulation of the 

"non-mechanistic" behavior, coupled with the lack of any significant impact on the 

production rates, suggests that the effects investigated should not be considered. 

 

A "K1-Exponential (K1X)" DCA model is proposed based on the results generated in this 

work.  The K1X model was shown to fit the flow regimes and its derivatives observed in 

both black oil and gas-water cases quite well.  The features affecting the terminal decline 

phase of production were identified from the sensitivity analysis of production profiles to 

various simulation input parameters. Based on the sensitivity analysis results, the terminal 

decline parameter correlations to the reservoir, fracture and fluid properties were developed 

for the new K1X model, as well as for the standard DCA models. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Statement of The Problem 

 

The purpose of this research is to develop a mechanistic model for a typical multi-

fractured-horizontal well in unconventional reservoirs and to identify key features that 

affect the production rates over time (i.e., the so-called "time-rate" data).  Once validated, 

this model can be used to study time-rate relationships typical for unconventional 

reservoirs including: 

● Modified Hyperbolic Decline [Robertson 1988]. 

The modified hyperbolic decline model is the current industry standard for decline curve 

analysis (DCA) as it can model two flow regimes — linear flow (i.e., the hyperbolic part) 

and boundary-dominated flow (i.e., the terminal decline consisting of an exponential 

"tail").  However, the terminal decline parameter, required by the exponential decline 

relation, is a subjective parameter which cannot be predicted for a well in an 

unconventional reservoir during transient flow. 

 

Two newer models that were developed empirically and were tested for applicability to 

wells in unconventional gas reservoirs are: 

● The Power Law Exponential Decline [Ilk 2008, 2009] 

● The Stretched Exponential Decline [Valko 2009, Valko & Lee 2010] 

None of these models is known to be related to an analytical solution to the diffusivity 

equation.  However, each model does have a tie to a specific flow regime or some other 

characteristic behavior.  Based on my numerical modeling, a new DCA model that I 
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propose (based on the modified Bessel function (K1 (x)) may be linked to an analytical 

solution for fractured wells. 

  

An aspect of performance behavior that must be addressed is the "non-mechanistic" 

behavior of multi-fractured horizontal wells.  Such "non-mechanistic" effects occur when 

a particular flow regime cannot be clearly observed, or is "masked" by some non-ideal 

aspect of the production behavior.  This makes the choice of the correct DCA model 

impossible in a practical sense.  Such non-mechanistic scenarios include: 

 

● Early-time water unloading from the fractures 

● Late time fracture permeability degradation [El Sgher et al 2018] 

 

This study focuses on testing the applicability of the currently accepted DCA models 

against that of a mechanistic model representing typical conditions and various non-

mechanistic scenarios encountered in multiphase flow in a horizontal-multi-fractured well 

in an unconventional reservoir. 

 

1.2 Objectives 

 

The objectives of this work are as follows: 

 

● To model and evaluate the effect of pressure-dependent reservoir and fracture 

properties. 

● To model and evaluate the effect of multiphase flow behavior of black oil and dry gas 

systems 

● To determine the effects of spatial discretization on numerical solution 
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● To model non-laminar flow (turbulent/Forchheimer and inertial/Klinkenberg) and 

adsorption for dry gas systems. 

● To model early-time performance that is often dominated by very high-water 

production (i.e., flowback). 

● To develop a new DCA model based on the results of this work. 

● To compare the new/proposed DCA model to the current "standard" DCA models: 

— Modified Hyperbolic  

— Power Law Exponential/Stretched Exponential 

 

1.3 Organization of The Research 

 

Chapter II provides a review of published literature on the key concepts of Decline Curve 

Analysis (DCA), as well as descriptions of the most commonly used decline curve models 

and ties to particular flow regimes and analytical solutions.  This background helps us 

identify DCA models which are most appropriate for our specific problem of multiphase 

flow towards a multi-fractured horizontal well in an unconventional reservoir.  

 

Chapter III presents the description of the numerical simulator used as the mechanistic 

model for this study, and the description of some special features for modelling non-

mechanistic behavior. 

 

In Chapter IV the mechanistic model is validated against analytical solutions and 

numerical simulation results for both mechanistic and non-mechanistic scenarios.  

Parametric analysis results are also provided.  For example, the effect of spatial 

discretization on the accuracy of the numerical solution is investigated. 
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Chapter V describes (a) the proposed DCA model based on the cases generated in this 

study, (b) comparisons to analytical solutions, (c) the validation against the mechanistic 

model, (d) field data and (e) a comparison to the "standard" DCA models. Chapter V also 

contains the correlations developed to estimate the terminal decline parameter for each of 

the considered models, as well as the rate-time data smoothing technique that was 

developed for the field cases presented in this work. 

 

Chapter VI provides a summary of the results and the conclusions derived from this work, 

as well as recommendations for future work. 

 

Appendix A provides an inventory of the parameters and data used in the numerical 

simulation studies.  Appendix B presents the full derivation of the D- and b-parameter 

functions for the proposed "K1-Exponential (K1X)" rate-time model.  Appendix C 

provides the derivation of the approximate limiting form of the K1X model, as well as the 

derivation of the D- and b-parameter functions and the cumulative production function for 

this limiting form of the K1X model. Appendix D provides a final, generalized form of 

the approximate form of the K1X given in Appendix C, which is a hybrid "hyperbolic-

exponential" formulation.  The derivation of the D- and b-parameter functions and the 

cumulative production function for the "hyperbolic-exponential" formulation are also 

provided in Appendix D. 
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 CHAPTER II 

LITERATURE REVIEW 

 

The purpose of this chapter is to provide a brief overview of the current status of decline 

curve analysis and its ties to analytical solutions to the diffusivity equation and particular 

flow regimes. 

 

2.1 General Concepts  Decline Curve Analysis (DCA) 

 

In general, DCA is production rate extrapolation in time.  This methodology has been used 

to forecast production and estimate ultimate recovery since as early as 1908 (Arnold and 

Anderson).  Johnson and Bollens (1928) introduced the concept of loss ratio, expressed 

by: 

 

/

q
a

q t
 

 
. .......................................................................................................... (2.1) 

 

Their methodology for rate extrapolation was to calculate consequent time-rate data points 

from the loss ratio of the previous data points.  In cases where the loss ratio was not 

constant, Johnson and Bollens (1928) recommended repeating the procedure using the loss 

ratio differences. 

 

Arps (1945) generalized previous work and replaced the differences in Eq.2.1 with the rate 

derivative, thus redefining the loss ratio as: 

 

/

q
a

dq dt
  , ........................................................................................................... (2.2) 
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If iq  is the initial production rate and assuming that the loss ratio is constant, Eq.2.3 can 

be integrated to yield the exponential decline curve formulation: 

 

expi

t
q q

a
    

. ..................................................................................................... (2.3) 

 

It is important to note that this work uses a different notation from that in the original Arps 

formulation.  Thus, from this point onward, by the term loss ratio I refer to the following 

formulation: 

 

1 dq
D

q dt
  , ............................................................................................................. (2.4) 

 

With this notation, Eq.2.3 becomes: 

 

 expiq q Dt  . ..................................................................................................... (2.5) 

 

For cases in which the loss ratio is not constant, Arps (1945) introduced another parameter 

– the derivative of the loss ratio or b-parameter, which is defined as: 

 

1

( )

d
b

dt D t

 
  

 
. ......................................................................................................... (2.6) 

Integration of Eq.2.6 yields the loss ratio of hyperbolic decline: 

 

 
1

i

i

D
D t

bD t



, ...................................................................................................... (2.7) 

 

where iD  is the initial decline rate.  Substituting Eq.2.7 into Eq.2.4 yields: 

 

1
i

i

D dtdq

q bD t
 


, ....................................................................................................... (2.8) 
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Integration of Eq.2.8 provides the formulation for hyperbolic decline: 

 

    1/
1

b

i iq t q D bt
  . ............................................................................................. (2.9) 

 

Cumulative production is defined by: 

 

   
0

t
Q t q t dt  , ..................................................................................................... (2.10) 

 

For this work, the rate-integral function is defined by: 

 

   
int

Q t
q t

t
 , ........................................................................................................ (2.11) 

 

or 

 

   int 0

1 t
q t q t dt

t
  . ................................................................................................ (2.12) 

 

2.2 Decline Curve Analysis Models  

 

Modified Hyperbolic Decline 

 

The industry standard of decline curve analysis for unconventional reservoirs is the 

Modified Hyperbolic Decline model. Robertson (1988) introduced this model and 

suggested that, at a certain point in time, the rate-function behavior changes from 

hyperbolic to exponential.  Mathematically, the model is given by: 

 

 
 

 

1/

lim

lim lim lim lim

1 ,

exp ,

b

i iq D bt t t
q t

q D t t t t

   
     

, ............................................................... (2.13) 
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where limt  is the "switch" time, limq  is the rate at limt , and both of them are inferred from 

limD  – the terminal decline.  Formulation of limq  and limt  are given by: 

 

1/

lim
lim

b

i
i

D
q q

D

 
  

 
, .................................................................................................... (2.14) 

lim
lim

1
1

b

i

i

q
t

bD q

  
   
   

. ........................................................................................... (2.15) 

 

Obviously, it is necessary to know the terminal decline parameter in order to correctly 

predict the switch point (Eqs. 2.14-2.15).  Note that the lack of a rigorous method for 

estimating the terminal decline often leads to non-unique and highly variable forecasts and 

reserves estimates.  

 

Stretched Exponential Decline 

 

Valko (2009) introduced another model based on the stretched exponential function, which 

was first proposed by Kohlrausch (1854) to describe the discharge of a capacitor.  Valko 

(2009) used the data from more than ten thousand gas wells in the Barnett Shale to develop 

and validate the model.  The novelty of this approach was to ignore the Arps definitions 

(1945) and to focus on the data. The stretched exponential time-rate relationship is given 

by: 

 

  exp
n

i

t
q t q


     

   
, ........................................................................................... (2.16) 

 

where  , n  are the model parameters, and iq  is not the initial production rate but the 

maximum rate, after which the rate function starts to decline. 
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The parameters for the stretched exponential model can be determined from history 

matching either by curve fitting (non-linear regression) or from constructing case-specific 

type curves in dimensionless rate and dimensionless cumulative production coordinates. 

Having determined the parameters, one can rigorously calculate the estimated ultimate 

recovery (EUR) and the recovery potential function. 

 

The cumulative production function for the stretched exponential decline is given by: 

 

  1 1
,

n

i

t
Q t q

n n n




                   
,......................................................................... (2.17) 

 

where 
1

n
    

 and 
1

,
n

t

n 
     

   
 are the gamma and the incomplete gamma functions, 

respectively. 

 

The EUR and recovery potential (fraction) are given by: 

 

1
iEUR q

n n

      
, ................................................................................................... (2.18) 

 

   1 1
1 , ln

1 D

Q t
rp q

EUR n
n

            

, .................................................................. (2.19) 

 

where Dq  is the dimensionless rate function that is described by the following equation: 

 

   
exp

n

D
i

q t t
q t

q 
      

   
. ................................................................................. (2.20) 
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The matching technique proposed by Valko (2009) included tuning the n -parameter to 

achieve a straight line on the plot of the recovery potential vs. the dimensionless cumulative 

production. 

 

Power-Law Exponential Decline 

 

Ilk et al (2008) derived a time-rate relationship from the observed power-law behavior of 

the Arps (1945) loss-ratio parameter given by: 

 

  1
1

nD t D D t 
  , ................................................................................................. (2.21) 

 

where D  is the terminal decline constant, and 1D  and n  are model parameters. 

 

Substitution of Eq. 2.21 into Eq. 2.4 and integration yields: 

 

  1exp n
D

D
q t D t t

n
     

. .................................................................................... (2.22) 

 

Multiplying Eq. 2.22 by the so-called rate intercept and introducing a new parameter gives 

the original formulation of the power-law exponential decline curve model: 

 

  ˆexp n
i iq t q D t D t

     . .................................................................................... (2.23) 

 

Note that, if the D  parameter is set to zero, Eq. 2.23 becomes identical to Eq. 2.16 (i.e., 

the stretched exponential model).  Therefore, the only mathematical difference between 

the stretched exponential and the power-law exponential models is the terminal decline 

parameter ( )D .  
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The Arps (1945) b-parameter for the power-law exponential model can be derived from 

substituting Eq. 2.21 into Eq. 2.6, which yields: 

 

  1
2

1

( 1)

( )

n

n

D n t
b t

D t D t


 


. ............................................................................................ (2.24) 

 

For the sake of consistency, I use the stretched exponential DCA model formulated in terms 

of the Ilk et al (2008) variables.  Substituting ˆn
iD    into Eqs. 2.16 and 2.17 leads to: 

 

  ˆexp n
i iq t q D t    , ............................................................................................. (2.25) 

 

 
1/ˆ 1 ˆ,

n
ni

i i

D
Q t q D t

n n

       
. ................................................................................. (2.26) 

 

The reciprocal of the loss ratio and the loss ratio derivative for the stretched exponential 

DCA model are: 

 

  1
ˆ

niD
D t t

n
 , ......................................................................................................... (2.27) 

 

   
 2

ˆ 1

ˆ

n
i

n
i

nD n t
b t

D t


  . ............................................................................................. (2.28) 

 

2.3 Analytical Solutions 

 

It should be mentioned that all of the presented time-rate relations are empirical in nature. 

However, some among them can be shown to model a particular flow regime or an 

analytical solution. In this section I analyze the ability of DCA models to represent an 

analytical solution for a particular problem or flow regime. 
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Transient Linear Flow 

 

In their classic reference, Gringarten et al (1974) proposed an analytical solution to the 

problem of production from a vertically fractured well in an infinite reservoir.  The early-

time limiting form for that solution is known as the linear-flow solution and is given by: 

 

 wD Dxf Dxfp t t , ................................................................................................. (2.29) 

 

where  

 

 2
wD i wf

kh
p p p

q




  , ........................................................................................... (2.30) 

 

2Dxf
t f

kt
t

c x
 . ........................................................................................................ (2.31) 

 

Substituting Eqs. 2.30-2.31 into Eq. 2.29, and solving for the production rate, yields the 

linear flow "time-rate" expression: 

 

  1
2 t

f

c k
q t x h

t




 . .......................................................................................... (2.32) 

 

Recasting Eq. 2.32 in a more compact form leads to: 

 

  1/2
fq t A Ct , ....................................................................................................... (2.33) 

 

where  

2f fA x h , .............................................................................................................. (2.34) 

 

tc k
C




 . ........................................................................................................... (2.35) 
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Assuming b = 2, Eq. 2.33 can be represented by hyperbolic decline relation (Eq. 2.9): 

 

    1/2
1 2i iq t q D t

  . ............................................................................................ (2.36) 

 

As t  becomes large,   1/2
1 2 iD t

  approaches   1/2 1/22 iD t
  , which is approximated as: 

 

    1/2 1/2 1/22i iq t q D t at
    . ............................................................................... (2.37) 

 

It is clear that Eq. 2.33 is equivalent to Eq. 2.37 — and therefore, the hyperbolic decline 

relation can be used to model linear flow toward a multi-fractured horizontal well 

producing under transient flow conditions. 

 

Boundary Dominated Flow 

 

Symmetries about various planes in a multi-fractured horizontal well system suggests that 

the problem can be divided into a number of repetitive elements, or stencils, each one of 

which represents the drainage volume of the area of one-half of a single hydraulic fracture 

multiplied by the height of a single fracture and half of the fracture spacing.  Following 

this concept, the stencil can be approximated as a bounded rectangular reservoir, thus 

allowing the application of the Dietz (1965) solution that is given by: 

 

2

1 4
( ) 2 ln

2wD DA DA
A w

A
p t t s

e C r
 

   
 

, .................................................................... (2.38) 

 

where   is the Euler's constant, AC  is the Dietz shape factor, and s  is the skin. 

 

The Van Everdingen and Hurst (1949) relationship between the solutions for constant 

bottom-hole pressure and constant production rate in the Laplace domain is given by: 
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    2

1
wD Dp u q u

u
 , ................................................................................................ (2.39) 

 

where u  is the Laplace transform variable.  

 

Taking the Laplace transform of Eq. 2.38 leads to: 

 

  2 2

2 1 1 4
ln

2wD
A w

A
p u s

u u e C r

   
    

  
. .................................................................. (2.40) 

 

Substituting Eq. 2.40 into Eq. 2.39 and solving for  Dq u  yields: 

 

   
1

2 /Dq u
a u a




, ............................................................................................ (2.41) 

 

where a  is given by: 

 

2

1 4
ln

2 A w

A
a s

e C r

 
  

 
. ............................................................................................ (2.42) 

 

Taking the inverse Laplace transform of Eq. 2.41 results in the following identity: 

 

  21
exp DA

D DA

t
q t

a a

   
 

, .................................................................................... (2.43) 

where: 

DA
t

kt
t

c A 
 ............................................................................................................. (2.44) 

 

Note that Eq. 2.43 is identical to Eq. 2.3.  This observation proves that the approach 

described by Raghavan (1993) provides a theoretical basis for using the Arps (1945) 

exponential decline model for boundary-dominated flow problems. 
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Fully Penetrating Vertical Fracture in a Closed Rectangular Reservoir 

 

Ozkan and Raghavan (1988) derived a library of point source solutions in the Laplace 

domain to estimate the pressure distributions for various reservoir and fracture conditions.  

In my work, I consider the problem of a multi-fractured horizontal well using the single 

fracture solution provided by the Ozkan and Raghavan (1988) solution in a closed 

rectangular reservoir, which is given in the Laplace domain by the following equation: 

 

 
   

   

1

2 2 2 2

2 2

cosh cosh
, ,

sinh

2 1 1
sin cos cos

cosh cosh

eD D wD eD D wD

D D D
eD eD

eD wD D

k eD eD eD

eD D wD eD D wD
eD eD

u y y y u y y y
p x y u

x u u u y

x x x
k k k

k x x x

k k
u y y y u y y y

x x

u



  


 





           
  

 
     

      
     

   
         

      





2 2 2 2

2 2sinh eD
eD eD

k k
u y

x x
 




       

 .................................................................................................................................... (2.45) 

 

For D wDy y  and D wDx x  into Eq. 2.44, the Laplace-space solution at the wellbore is: 

 

 

1

2 2

2

2 2

2

coth
, ,

2 1 1 1 1
sin cos cos

2 2

coth

eD

D wD wD
eD

eD

k eD

eD
eD

eD

u y
p x y u

x u u

x
k k k

k x

k
u y

x

k
u

x



  










  
 




               
 

  
   
 


 . .......................... (2.46) 
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Assuming 1eDx  , Eq. 2.46 further simplifies to: 

 

 
coth eD

D

u y
p u

u u

  
  . ....................................................................................... (2.47) 

 

Applying Eq. 2.39 and solving for the dimensionless rate leads to: 

 

 
tanh1 eD

D

u y
q u

u

 
  . ........................................................................................ (2.48) 

 

Because the solutions given by Eqs. 2.46-2.48 cannot be analytically inverted into the real 

time domain, I use the following procedure to obtain the constant bottomhole pressure 

solution: 

 

● Apply the identity in Eq. 2.39 to obtain the Laplace domain solution for the 

dimensionless rate; 

● Numerically invert the Laplace domain solution using the Stehfest algorithm [Stehfest 

1970]. 

 

The solutions given by Eqs. 2.46-2.48 cannot be clearly connected to a specific decline 

curve model — however; the numerical inversion results will be used to validate time-rate 

relations. 

 

Trilinear Model for a Fracture in a Closed Rectangular Reservoir 

 

Lee and Brockenbrough (1986) first formulated the trilinear flow concept, the key 

assumptions of which are that the fluid flow to a fractured well can be modeled by a system 

of three 1-D segments:  
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● Flow from the fracture to the vertical wellbore; 

● Flow from the reservoir to the fracture in the direction perpendicular to the fracture; 

● Flow in the reservoir in the direction parallel to the fracture. 

 

The assumptions of the trilinear model are well-suited to the case of a multi-fractured 

horizontal well in an unconventional reservoir.  The vast difference between the fracture 

and matrix permeabilities suggest that the trilinear model is a valid approximation of the 

actual flow regimes.  

 

Olarewaju and Lee (1989) derived the trilinear solution for a finite rectangular reservoir. 

Not accounting for skin and wellbore storage, this solution is given in the Laplace domain 

as: 

 

   tanh
Dq u

bu

 
  , ............................................................................................. (2.49) 

 

where  

 

  1tanh eD fDa y w C u       , ................................................................ (2.50) 

 

 tanh 1eDu u x u      , ............................................................................... (2.51) 

2

fD

a
C

 ,................................................................................................................... (2.52) 

fD

b
C


 ,................................................................................................................... (2.53) 

f f
fD

f

k w
C

k x
 , ............................................................................................................ (2.54) 
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1
f ft

f t

k c
C

k c




 , ............................................................................................................. (2.55)
 

f
fD

f

w
w

x
 . ................................................................................................................ (2.56)

 

 

Interestingly, Eq. 2.49 is based on the same hyperbolic tangent function as that in the 

Ozkan and Raghavan (1988) solution given by Eq. 2.48, which was derived without 

simplifying 1D flow assumptions and is more general.  The fact that they both result in the 

same hyperbolic tangent function shows that the Olarewaju and Lee (1989) solution is an 

approximation of the more general Ozkan and Raghavan solution (1988). 
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CHAPTER III 

MECHANISTIC MODEL DEVELOPMENT 

 
In order to validate the applicability of DCA models, I developed a "fit-for-purpose" 

numerical reservoir simulator written in FORTRAN95. This is a fully implicit, three-phase, 

non-isothermal compositional simulator (involving three-components and/or pseudo-

components) that describes all known physical-chemical processes with minimal 

assumptions and simplifications. The three modeled phases are the organic (oil), gaseous, 

and aqueous phases, and the three modeled components are oil (actually, a pseudo-

component), natural gas and water. All components are soluble in all phases, with the 

exception of oil component in the gas phase.  

 

Note that the nomenclature in this chapter differs from that commonly found in the SPE 

literature. 

 

3.1 Governing Equations 

 

Our modeling approach follows the integral finite difference method. According to this 

method, every gridblock (element) into which the domain is subdivided, conforms to mass 

and energy balance (Pruess et al., 1999) according to: 

 

n n nV V

d
M dV F n dA q dV

dt
  


     , .................................................................... (3.1) 

 

where nV  is the volume of the subdomain n, M   is the mass accumulation term of the 

component  , A  and n  are surface area perpendicular to the direction of the unit vector 
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n and total surface area of the grid-block n, F   is the Darcy flux vector of the component 

 , q  is the source/sink term of the component  . 

 

The Mass accumulation terms for every mass component in Eq. 3.1 are defined by: 

 

, ,A G O

M S X 
  



 


  ,........................................................................................... (3.2) 

 

where   is the porosity,   is the density of phase  , S  is the saturation of phase  , 

X 
  is the mass fraction of component   in phase  . 

 

The Heat accumulation terms for every phase and the rock matrix are given by: 

 

 
, ,

1 R R
A G O

M C T S U
  



   


    , .................................................................. (3.3) 

 

where R  is the bulk density of the rock matrix, RC  is the heat capacity of the dry rock and 

U   is the specific internal energy of the phase  .  

 

The specific internal energy of the gaseous phase in Eq. 3.3 is given by: 

 

, , ,
G G G dep G

w g o s G

P
U X u U H 

 

 
    

 
 ,.................................................................. (3.4) 

 

where Gu  is the specific internal energy of component   in the gaseous phase, depU  is the 

specific internal energy departure of the gas mixture and GH  is the specific enthalpy of the 

gaseous phase. 

 

Similarly, the specific energy of the aqueous and the organic phases in Eq. 3.3 are given 

by: 
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, , ,
, ,

O A O A O A
w g o

U X u 

 

  ,............................................................................................. (3.5) 

 

where the specific internal energy of the component   in the aqueous or in the organic 

phase can be calculated as: 

 

0
, ,

T

O A O A T

P P
u h C dT  


  

    ,............................................................................. (3.6) 

 

where ,O Ah  is the specific enthalpy of component   in the aqueous or in the organic phase, 

0T  is the reference temperature and C  is the temperature-dependent heat capacity of 

component  . 

 

The Mass flux of each component consists of contributions from all mobile phases and is 

given by: 

 

, ,A G O

F F 


 

  , ....................................................................................................... (3.7) 

 

where the mass flux of the oil and water components in the aqueous and in the organic 

phase, ,o wF  is given by: 

 

 rk
F k P g 
  







    , .................................................................................... (3.8) 

 

where k  is the intrinsic rock permeability, rk   is the relative permeability of phase  (= 

O,A),   is the viscosity of phase , P  is the pressure of phase , and g is the 

gravitational acceleration vector. 
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The phase pressures P  in Eq. 3.8 are given by: 

 

A G cGWP P P  , ........................................................................................................ (3.9) 

 

O G cGOP P P  , ......................................................................................................... (3.10) 

 

g w o
G G G GP P P P   , .................................................................................................. (3.11) 

 

where ,cGW cGOP P  are the gas-water and gas-oil capillary pressures respectively, and GP  is 

the partial pressure of the component   in the gaseous phase. The gas solubility in the 

aqueous phase is obtained from Henry's law: 

 

g g g
G AP H X , ............................................................................................................ (3.12) 

 

where  ,g g
GH H P T  is a function of pressure and temperature which is equivalent to 

the Henry's constant in the physical sense. 

 

The mass flux of the gaseous phase accounts for gas slippage effects (Klinkenberg 1941) 

and is given by: 

 

 1 k rG G
G G G G

G G

b k
F k X P g

P
  


 

     
 

, ............................................................... (3.13) 

 

where kb  is the Klinkenberg parameter.  

 

The Heat flux accounts for conduction- and advection-based heat transfer and is given by: 

 

, ,A G O

F T H F
 






     , ................................................................................... (3.14) 
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where   is an appropriate composite thermal conductivity of the rock-fluid system, H  

is the specific enthalpy of the phase  . The specific enthalpy of the gaseous phase is 

calculated as: 

 

, ,
G G G dep

w g o

H X h H 



  ,......................................................................................... (3.15) 

 

where depH  is the specific enthalpy departure of the gas mixture. The specific enthalpy of 

the aqueous and the organic phase is given as: 

 

, ,w g o

H X h 
  



  , ................................................................................................... (3.16) 

 

where ,O A  . 

 

The mass source and sink term in Eq. 3.1 represents withdrawal or addition of the mass 

component  .  For injection, q  is a known quantity; for production, q  is described by: 

 

q  X 
q

A,G ,O

 , ..................................................................................................... (3.17) 

 

where q  is the mass production or injection rate of phase  . 

 

The heat source and sink term in Eq. 3.1 accounts for heat exchange associated with (a) 

either direct heat addition or withdrawal q  (e.g., electrical or microwave heating) and/or 

(b) the withdrawal or addition of mass, in which case: 

 

q  qh

w ,o,g

 ......................................................................................................... (3.18) 
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3.2 Oil Thermophysical Properties 

 

In my approach, I treat oil as a single pseudo-component, as opposed to its treatment in a 

fully compositional method that would describe each hydrocarbon compound (or families 

of compounds) as distinct components. Therefore, I can use empirical live-oil (i.e., oil with 

dissolved gas) correlations.  

 

The oil bubble-point pressure, solution gas oil ratio, oil compressibility and formation 

volume factor are calculated using the Vazquez and Beggs (1977) correlations for live-

oils. 

 

Oil bubble-point pressure is calculated as follows: 

 

21/

3
1 exp

459.67

C

s
b

API
g

R

R
P

C
C

T



 
 
 
  
     

, .......................................................................... (3.19) 

 

where g  is the dissolved gas specific gravity, API  is the oil API gravity, RT  is the oil 

temperature in degrees Rankin, and 1 3C C  are constants given in Table 3.1. 

 

Solution gas oil ratio is calculated by rearranging Eq. 3.19, yielding:  

 

2 3
1 exp

459.67
C API

s g O
R

C
R C P

T


 

    
, ........................................................................... (3.20) 

 

where OP  is the organic phase pressure. 

 

Oil compressibility and formation volume factor (FVF) have different correlation for 

saturated and undersaturated oils (above and below the bubble-point respectively). 
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Because my code uses density instead of compressibility in the governing equations, it is 

sufficient to calculate the undersaturated and the saturated oil compressibilities, and then 

use them to develop the oil density equation.  

 

Undersaturated oil compressibility is given as: 

 

5

1433 5 17.2 1180 12.61

10
sb g API

o
O

R T
c

P

         
 , .............................................. (3.21) 

 

where sbR  is the solution gas oil ratio at the bubble-point conditions. 

 

Undersaturated oil formation volume factor is given by: 

 

 expo ob o b OB B c P P    , ...................................................................................... (3.22) 

 

where obB  is the oil FVF at the bubble-point conditions. 

 

Saturated oil formation volume factor is given by: 

 

   1 2 31 60 60API API
o s s

g g

B A R A T A R T
 
 

      , .............................................. (3.23) 

where 1 3A A  are constants presented in Table 3.1. 

 

To avoid discontinuities in the FVF during the phase transition (liberation of gas), the 

following smoothing technique is used: 

 

     1 1
1 tanh 0.02 1 tanh 0.02

2 2
sat undersat

o b o o o b oB p p B p p B            , ....... (3.24) 
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Table 3.1 – Vazquez and Beggs (1977) correlation coefficients 

Coefficient 30API   30API   Coefficient 30API   30API   

A1 4.677E-04 4.670E-04 C1 3.618E-02 1.784E-02 

A2 1.751E-05 1.100E-05 C2 1.094E+00 1.187E+00 

A3 
-1.811E-

08 
1.337E-09 C3 2.572E+01 2.393E+01 

 

Dead oil viscosity is calculated using the Egbogah and Ng (1990) correlation, given by: 

 

 101.8653 0.025085 0.5644log10 1o FT
od

    . ......................................................................... (3.25) 

 

Undersaturated live oil viscosity is also calculated using the Egbogah and Ng (1990) 

correlation as follows: 

 

 1.187 52.6 exp 11.513 8.98 10o oP P

O
o ob

b

P

P
 

  
 

  
 

. ....................................................................... (3.26) 

 

Saturated live oil viscosity is computed using Bergman and Sutton (2007) correlation, 

given by: 

 

B
ob odA  , ............................................................................................................ (3.27) 

 

where  

 

2

1

1

1
a

sb

A
R

a


 

  
 

, ....................................................................................................... (3.28) 
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5

3
3

4

1

1
a

sb

a
B a

R

a


 

 
  
 

,................................................................................................ (3.29) 

 

The coefficients 1 5a a  are presented in Table 3.2. 

 

Table 3.2 – Bergman and Sutton (2007) correlation coefficients 

a1 3.442E+02 

a2 8.553E-01 

a3 3.823E-01 

a4 5.680E+02 

a5 8.193E-01 

 

Live oil density is calculated from the following relation: 

 

o g
o sc s sc

o

R

B
  

 , ..................................................................................................... (3.30) 

 

where o
sc , g

sc  is the oil density and the gas density at standard conditions respectively. 

 

Oil isobaric specific heat is estimated according to an empirical correlation developed by 

the American Petroleum Institute (API) and cited by Edwards et al. (1983) as: 

 

2
1 2 3o F FC A A T A T   , ............................................................................................ (3.31) 

 

where  

 

3

(1.14982 0.046535 )
1.17126 (0.023722 0.024907 )o

o

K
A K




     , ................ (3.32) 
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 4
2

0.27634
10 1.0 0.82463 1.12172

o

A K


  
   

 
, ................................................... (3.33) 

 

 8
1

0.70958
10 1.0 0.82463 2.9027

o

A K


  
   

 
, ..................................................... (3.34) 

where o  is the oil specific gravity and K  is the Watson characterization factor. 

 

Oil thermal conductivity is calculated using the empirical formula of Edwards et al 

(1983) as: 

 

 137.0
1.0 0.00054 273o Ko

T





     . .................................................................... (3.35) 

 

Mutual solubility of a wide range of hydrocarbons and water was studied by Tsonopoulos 

and Wilson (1983), Economou et al. (1997) and Tsonopoulos (1999). In this work I assume 

that only the light fractions of oil are soluble in water. Thus, I choose hexane-water mutual 

solubility correlation (Tsonopoulos 1999), given by: 

 

16327.128
exp 374.90804 53.89582ln( )o

A K
K

Y T
T

 
    

 
, ........................................ (3.36) 

 

4291.186
exp 6.698073w

O
K

Y
T

 
  

 
, .......................................................................... (3.37) 

 

where o
AY  is the molar fraction of the oil component dissolved in the aqueous phase. 

Heat of solution of water in normal alkanes is a constant (Tsonopoulos 1999), which for 

hexane is computed by: 
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2

4291.186solution
w

H O

R
h

MW
 , ..................................................................................... (3.38) 

 

 53.89582 16327.128solution
O K

Oil

R
h T

MW
  . ............................................................ (3.39) 

where R  is the universal gas constant. 

 

3.3 Gas Thermophysical Properties 

 

The gas component in my code is assumed to be 100% methane.  However, the gas phase 

may contain water vapor, which is fully considered. The PVT properties of methane are 

obtained from the real gas law given by: 

 

G m KP v ZRT ,........................................................................................................... (3.40) 

 

where Z  is the real gas compressibility factor and mv  is the gas molar volume. 

 

Gas Z-factor is calculated from Peng and Robinson (1977) cubic equation of state (PR-

EOS) that is given by: 

 

2 22m m m

RT a
p

v b v bv b


 

  
,................................................................................... (3.41) 

 

where  

2 2

0.45724 c

c

R T
a

p
 , .................................................................................................. (3.42) 

 

0.07780 c

c

RT
b

p
 , ..................................................................................................... (3.43) 
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  2
1/21 1 rf T    , ............................................................................................. (3.44) 

 

20.37464 1.54226 0.26992f     , ................................................................... (3.45) 

 

r
c

T
T

T
 , .................................................................................................................... (3.46) 

 

  is the acentric factor of the compound, cp and cT  are the critical pressure and 

temperature of the compound. Eq. 3.41 can be rearranged into the following cubic 

equation form: 

 

     3 2 2 2 31 2 3 0Z B Z A B B Z AB B B         , ........................................ (3.47) 

 

where  

 

2 2

ap
A

R T


 , ............................................................................................................... (3.48) 

 

bp
B

RT
 . .................................................................................................................. (3.49) 

 

Gas density is calculated from the z-factor by rearranging Eq. 3.40: 

 

g Kg

G

MW ZRT

P  . ..................................................................................................... (3.50) 

 

Gas viscosity at high pressures is estimated from the Chung et al. (1988) high-pressure 

viscosity equation that is given by: 

 

 1/2

*
2/3

36.344 g c

g
m

MW T

v
  , .................................................................................... (3.51) 
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   
1/2*

* 1 **
2 6c

v

T
F G E y   


, ........................................................................... (3.52) 

 

6 g

v
y

MW


 , .............................................................................................................. (3.53) 

 

 1 3

1 0.5

1

y
G

y





,........................................................................................................... (3.54) 

 

   4
1 2 1 5 3 1

2
1 4 2 3

1 exp
exp

E y
E E G E y E G

y
G

E E E E

 
 


 

, .................................................... (3.55) 

 

   1 2** 2 * *
7 2 8 9 10expE y G E E T E T

      
, ....................................................... (3.56) 

 

     0.14874* * *1.16145 0.52487exp 0.77320 2.16178exp 2.43787v T T T


      ,

 .................................................................................................................................... (3.57) 

 

* 1.2593 rT T , .......................................................................................................... (3.58) 

 

1 0.2756cF   . ..................................................................................................... (3.59) 

 

Parameters 1 10E E  are linear functions of the acentric factor with coefficients given in 

Table 3.3. 
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Table 3.3 – Chung et al. (1988) coefficients to calculate i i iE a b   

i ai bi 

1 6.324E+00 5.041E+01 

2 1.210E-03 -1.154E-03 

3 2.283E+00 2.542E+02 

4 6.623E+00 3.810E+01 

5 1.975E+01 7.630E+00 

6 -1.900E+00 -1.254E+01 

7 2.428E+01 3.450E+00 

8 7.972E-01 1.117E+00 

9 -2.382E-01 6.770E-02 

10 6.863E-02 3.479E-01 

 

Gas viscosity at low pressures is estimated using the Chung et al. (1984, 1988) method 

given by: 

 

 1/2

2/3
40.785

c go
g

c v

F MW T

V
 


. ..................................................................................... (3.60) 

 

All parameters in Eq. 3.60 are calculated in the same way as in Eq. 3.51. 

 

Ideal gas isobaric specific heat is calculated using a polynomial function of temperature 

presented in Poling et al (2007), which for methane takes the following form: 
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 3 5 2 8 3 11 44.568 8.975 10 3.631 10 3.407 10 1.091 10g
p

g

R
C T T T T

MW
            ,

 .................................................................................................................................... (3.61) 

 

Ideal gas isochoric specific heat is calculated using the ideal gas relation given by: 

 

g g
v pC C R  . ........................................................................................................... (3.62) 

 

Real gas specific enthalpy consists of the ideal part and the departure function and is 

given by: 

 

G ideal depH H H  . ................................................................................................... (3.63) 

 

The ideal part is the temperature integral of the specific heat function and is given by: 

 

ref

T

ideal gT
H C dT  ,.................................................................................................... (3.64) 

 

where refT  is an arbitrary reference temperature. 

The departure function for the Peng and Robinson (1977) cubic equation of state is given 

by Poling et al (2007) as: 

 

   
 
 
1 2

1 2.078 1 ln
1 2

c
dep r

g

Z BRT
H T Z f

MW Z B
 

   
     
     

, .......................... (3.65) 

where rT , f ,   and B  are calculated from Eqs. 3.46- 3.44 and Eq. 3.49 respectively. 

 

Gas thermal conductivity is calculated according to Chung et al. (1984, 1988) method for 

a high-pressure single-component real gas, which is given by: 
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 1 2 1/2
2 6 7 2

31.2 o
g

g r
g

G B y qB y T G
MW


 

   , ............................................................. (3.66) 

 

where  

 

0.215 0.28288 1.061 0.26665
1

0.6366 1.061

  
 

  
  

 
, ................................................. (3.67) 

 

3

2

g
vC

R
   , ............................................................................................................. (3.68) 

 

20.7862 0.7109 1.3168     ,.......................................................................... (3.69) 

 

22.0 10.5 rT   , ..................................................................................................... (3.70) 

 

 1/2

3
2/3

3.586 10
c g

c

T MW
q

V
  ,................................................................................... (3.71) 

 

6
c g

g

V
y

MW


 , .............................................................................................................. (3.72) 

 

 1 3

1 0.5

1

y
G

y





,........................................................................................................... (3.73) 

 

     1 4 2 1 5 3 1
2

1 4 2 3

/ 1 exp expB y B y B G B y B G
G

B B B B

     
 

, .......................................... (3.74) 

 

The parameters 1 7B B  are linear functions of acentric factor and are given by: 

 

i i iB a b  , ............................................................................................................ (3.75) 

 

The values of the coefficients ia  and ib  are listed in Table 3.4. 
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Table 3.4 – Chung et al. (1984, 1988) coefficients for Eq. 3.75 

i ai bi 

1 2.4166E+00 7.482E-01 

2 -5.0924E-01 -1.509E+00 

3 6.6107E+00 5.621E+00 

4 1.4543E+01 -8.914E+00 

5 7.9274E-01 8.202E-01 

6 -5.8634E+00 1.280E+01 

7 9.1089E+01 1.281E+02 

 

Gas Henry constant as a function of temperature for the estimation of gas solubility in the 

aqueous phase is calculated using a correlation by Dhima (1998) that is given by: 

 

3 6

2

7.8856 10 1.4196 10
exp 2.1721g

A
K K

H
T T

  
    

 
. .................................................. (3.76) 

 

3.4 Water Thermophysical Properties 

 

The thermophysical properties of water in this work are modeled according to the 

formulations of the International Association for the Properties of Water and Steam 

(IAPWS, 2018). 

 

The water vapor content in the gaseous phase is calculated from component partial 

pressures in the following manner: 

 

4 2CH H O
G G GP P P  , .................................................................................................... (3.77) 
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4 4 /CH CH
G G GY P P , ...................................................................................................... (3.78) 

 

2 41H O CH
G GY Y  , ........................................................................................................ (3.79) 

 

where 2H O
GP  is the water vapor saturation pressure for a given temperature, as computed 

using the IAPWS (2018) correlations. 

 

All liquid phase properties are assumed to be equal to the mass-weighted average of the 

properties of the components in phase. All gaseous phase properties are assumed to be 

equal to the mole-weighted average of the properties of the components in phase. 

 

3.5 Non-Darcy Flow 

 

My code can model two kinds of flow that occur outside the range of validity of Darcy's 

law, including – micro-flow and turbulent flow.  

 

Micro-flow in porous media occurs in ultra-tight porous media, where the particle-wall 

interactions interfere with the Brownian motion of gases. My code includes an option for 

micro-flow according to the Knudsen transport model. In the flux term of the diffusivity 

equation (Eq. 3.13), the extra pressure drop due to friction is accounted for by modifying 

the effective permeability through the addition of a Klinkenberg term. Freeman et al 

(2011) showed how the Klinkenberg parameter is related to the Knudsen diffusivity and 

the Knudsen number through the following equations: 

 

  4
1 1 1

1
k n

K n
G n

b K
K

P K


 
     

, ............................................................................. (3.80) 

 



37 
 

1 0.4
2

128
tan 4.0

15K nK


     ,..................................................................................... (3.81) 

 

2.81708 2
G

n
G G

RT
K

P kMW

  
 ,.................................................................................... (3.82) 

 

where bk is the Klinkenberg parameter and nK  is the Knudsen number. 

 

Turbulent flow occurs at high velocities when Darcy's law, which is valid only for 

laminar flow, is no longer valid.  In this case, the pore velocity is estimated from the 

general momentum-balance Forchheimer equation (Forchheimer, 1901; Wattenbarger 

and Ramey, 1968; Moridis and Freedman 2014), which is given by: 
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where   is the turbulence correction factor (Katz et al., 1959) and is estimated 

according to the SI-unit version of the Frederick and Graves (1994) correlation by: 
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Eq. 3.83 incorporates laminar, viscous, inertial and turbulence effects and can be 

introduced into the flux term of the diffusivity equation in a manner similar to that for 

Darcian velocity, given by: 

 

F v . ....................................................................................................................... (3.86) 
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3.6 Multiphase Flow 

 

Relative Permeability 

The relative permeabilities of the three-phase system in a porous medium (e.g., the 

matrix in the stencil-based domain in a fractured low-permeability medium) are modeled 

according to the Dietrich and Bondor (1976) modification of the Stone (1973) three-

phase relative permeability model, and are given by: 
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The matrix relative permeability curves for the parameters I used in this study are shown 

on Figs. 3.1-3.2. 

 

The relative permeabilities of the three-phase system in the proppant-filled hydraulic 

fracture of the stencil-based domain are modeled according to a linear relative 

permeability model given by: 
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The fracture relative permeability curves that correspond to the parameters I used in this 

study are shown on Figs. 3.3-3.4. 

 

Note that the same three-phase equations 3.87-3.94 are used for the two-phase systems 

for the sake of consistency. If a phase is not present in the system, a null value is supplied 

to the corresponding relative permeability equation. 

 

 
 

Figure 3.1–– Matrix relative permeability curves for the parameters used in this study – 

organic-aqueous system. 
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Figure 3.2––Matrix relative permeability curves for the parameters used in this study – 

liquid-gaseous system. 

 

 
 

Figure 3.3–– Hydraulic fracture relative permeability curves for the parameters used in 

this study – organic-aqueous system. 
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Figure 3.4––Hydraulic fracture relative permeability curves for the parameters used in this 

study – liquid-gaseous system. 

 

Capillary Pressure 

 

Capillary effects are modeled according to Parker et al. (1987) three-phase extension of 

the Van Genuchten (1980) two-phase capillary pressure model, and are given by: 
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where  , n  are capillary pressure curve parameters. The parameters for the matrix 

capillary pressure in my study were the ones for clay reported in Table 1 of Parker et al 

(1987). Zero capillary pressure was assumed in the hydraulic fracture. 

 

3.7 Adsorption 

 

In order to fully describe the behavior of organic-rich shale gas reservoirs, it is important 

to account for the occurrence of adsorbed gas. Adsorbed gas is stored in nanopores 

within the organic matter as a dense liquid-like (confined) phase. There are numerous 

different models describing gas adsorption-desorption processes, but for the purposes of 

this study, I selected the most widely used and computationally simple Langmuir 

isotherm (Langmuir, 1916). 

 

Langmuir Isotherm was developed assuming a dynamic equilibrium between adsorbed 

and free phase at a constant pressure and temperature. Another major assumption of the 

model is that there is a single layer of molecules on the solid surface. The Langmuir 

(1916) model is described by following equation: 

 

( ) L

L

V p
V p

p p



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where, V(p) is the volume of gas adsorbed at pressure p, VL and PL are the fitting 

parameters, called Langmuir volume and Langmuir pressure. The physical meaning of 

the Langmuir volume is that it is the maximum volume of gas that can be adsorbed at 

infinite pressure. The Langmuir pressure refers to the pressure at which half of the 

Langmuir volume is adsorbed. 
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To incorporate the effects of adsorption into the reservoir simulator, the mass of the 

desorbed gas needs to be added to the mass accumulation term as proposed by Ali 

(2012): 

 

(1 ) SC desorbed
G G G G G G RM S X V        , .................................................................. (3.99) 

 

where SC
G  is the gas density at standard conditions, desorbed

GV  is the desorbed gas specific 

volume, calculated from the isotherm, and R  is the rock bulk density. 

 

3.8 Fracture Permeability Degradation 

 

Fracture permeability degradation is modeled according to El Sgher et al. (2018). Their 

approach introduces a fracture conductivity multiplier tensor fitted to laboratory 

measurements of closure stress along the principal axis instead of performing an 

expensive coupling of a geomechanical simulator. The pressure-temperature dependent 

fracture permeability is given by: 
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   0 0 0exp R Rc p p a T T       , .................................................................... (3.101) 

 

where   is the fracture conductivity multiplier tensor. 

 

3.9 Stencil Model and Spatial Discretization 

 

A multi-fractured horizontal well is modeled by using the one quarter stencil approach 

(Olorode, 2011; Olorode et al., 2013), the results of which are to be later multiplied by 
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the number of fractures in a cluster and then by the number of clusters for the specific 

well. The use of the stencil was shown to be an accurate predictor of production of the 

entire multi-fractured horizontal well for very long periods (Olorode, 2011; Olorode et 

al., 2013). This approach serves my focus on modeling the flow processes from the ultra-

tight reservoir interior (the matrix) to the high-permeability fracture for long production 

times (up to 40 years) using very high-resolution grids in order to capture the full scale of 

the mechanistic and non-mechanistic response. The reservoir-fracture stencil is shown in 

Fig.3.5. The position of the stencil within the horizontal well/fracture system is shown in 

Fig.3.6 

 

 

 

Figure 3.5 –– Sketch of the stencil geometry.  
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Figure 3.6 –– Schematic diagram of the stencil as a repetitive element in the multi-

fractured horizontal well system in a rectangular reservoir.  

 

3.10 Numerical Implementation 

 

The mass and heat transport of three-phase black oil and two-phase gas-water systems in 

porous media is fully and uniquely described by a set of primary variables that 

completely define the thermodynamic state of the system, as well as the distribution of 

mass components among the various phases. The number of the primary variables is 

fixed, and the type of variables serving as primary variables are specific to the 

thermodynamic state and the present phases for a given set of conditions. 

 

The primary variables used in the three-phase black oil problem and in the two-phase 

gas-water problem are listed in Tables 3.5 and 3.6, respectively.  
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Table 3.5 –– List of primary variables used in the three-phase 

black oil numerical simulator. 

Thermodynamic State Primary 

Number of Phases Phases Present Variables 

1 Organic P, XO
g, XO

w, T 

1 Aqueous P, XA
o, XA

g, T 

2 Aqueous, Organic P, XO
g, SA  , T 

2 Gaseous, Organic P, YG
w, SG , T 

3 Aqueous, Organic, Gaseous P, SA  , SG  , T 

 

Table 3.6 –– List of primary variables used in the two-phase gas-

water numerical simulator. 

Thermodynamic State Primary 

Variables Number of Phases Phases Present 

1 Gaseous P, YG
g, T 

1 Aqueous P, XA
g, T 

2 Aqueous, Gaseous P,  SG  , T 

 

The mass and energy balance equations defined by Eq. 3.1 are discretized in time and 

space. The spatial discretization is implemented according to the integral finite difference 

(IFD) method [Narasimhan and Witherspoon, 1976; Pruess et al, 1999]. Introducing the 

volume average Vn and the volume averaged mass (or heat) Mn, the integral of 

accumulation terms in Eq. 3.1 becomes: 

 

n
n nV

M dV V M  . .................................................................................................. (3.102) 
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The use of the IFD method allows the equation of the surface integral of flux in Eq. 3.1 

by the algebraic sum of the individual fluxes through the surface area Anm of the 

connection of elements n and m as follow: 
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The averaged flux term in Eq. 3.103 is obtained in the following manner: 

 

, ,
, ,

r n m
nm nm nm nm

nmnm

k P P
F k g

D
   

 






   

     
    

, ................................................... (3.104) 

where the subscript mn denotes the upstream weighting of the mobilities, permeabilities 

and densities at the connection interface between the adjacent elements, nmD  is the 

distance between the element centers and nmg  is the adjusted gravity vector in the 

direction from m to n. 

 

Substitution of Eqs. 3.102-3.104 into Eq. 3.1 results in a set of spatially discretized 

ordinary differential equations in time given by: 

 

1
n nm nm n

mn

d
M A F q

dt V
    . .................................................................................... (3.105) 

 

The time in the time derivative of Eq. 3.105 is discretized using a first-order backward 

finite-difference scheme.  

 

All the variables on the right-hand side of Eq. 3.105 are evaluated at the new (current) 

timestep 1k kt t t    . The time discretization in Eq. 3.105 results in the following set of 

coupled algebraic equations: 
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     , .................................................. (3.106) 

 

where 1k
nR   is the residual. NE elements and Nx equations per element result in a system 

of E xN N  coupled non-linear equations in the form of Eq. 3.106. 

 

In the fully implicit scheme I used in my simulator, the system of equations at time 1kt   is 

solved for the E xN N  primary variables by Newton-Rhapson iteration. Introducing the 

iteration index p, I expand the residuals in Eq. 3.106 at iteration step p+1 in a Taylor 

series as follows: 
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Discarding all higher-order terms, Eq. 3.107 yields the following linear system: 

 

   
, 1

, 1
, 1 , ,

k
kn

i p i p n i p
i i p

R
x x R x

x










  

 , ............................................................... (3.108) 

 

where the , 1 /k
n iR x    terms represent the derivatives in the resulting Jacobian matrix 

and are evaluated by numerical differentiation.  

 

The linear system in Eq. 3.108 is solved by the Bi-Conjugate Gradient Stabilized 

(BiCGStab) iterative sparse matrix method with an incomplete-LU preconditioner.  

These are implemented in Compute Unified Device Architecture (CUDA) and GPU-

parallelized.  
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CHAPTER IV 

MECHANISTIC MODEL VALIDATION AND RESULTS 

 

In this section I demonstrate the mechanistic model response to (a) a typical three-phase 

flow to a horizontal multi-fractured well in the Wolfcamp formation and (b) a typical 

two-phase gas and water flow to a horizontal multi-fractured well in the Marcellus 

formation and how the results are affected by the non-mechanistic processes. 

 

To validate the mechanistic mode, I compared the simulation results to the analytical 

solution of Olarewaju and Lee (1989). The comparison plot for the typical three-phase 

black-oil flow case is shown on Fig. 4.1. The comparison plot for the typical two-phase 

dry gas flow case is shown on Fig. 4.2. The complete tables of input parameters as well 

as initial and boundary conditions for the cases shown on Figs. 4.1-4.2 can be found in 

Appendix A. 

 

The results in Figs. 4.1 and 4.2 indicate that the 2D numerical solution matches the 

analytical solution perfectly for both the black oil and the dry gas cases. However, the 3D 

numerical solutions differ from the analytical solution in the early-time behavior. The 

difference is caused by the assumption of the trilinear flow and the model geometry in 

the analytical solution: the trilinear model assumes 3 independent 1D linear flows and 

was developed for vertical wells, thus it cannot account for flow in the vertical direction 

and the more complex flows that deviate from the assumption of independent 1D flows 

that occur in the stencil model. Note that the analytical solution cannot account for 

gravitational and capillary pressure effects. 
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Figure 4.1 –– Log-log mechanistic model validation plot for three-phase black oil flow 

in the Wolfcamp shale. 

 

 

 

Figure 4.2 –– Log-log mechanistic model validation plot for two-phase dry gas flow in 

the Marcellus shale. 
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Four flow regimes can be observed from the mechanistic model validation plots, three of 

which are validated against the analytical solution. The modeled flow regimes are:  

 

● The early-time fracture-dominated flow (i.e., fracture unloading). This flow regime 

is not present in the analytical solution or in the 2D simulation, as both of them fail 

to model the effects of gravity, flow in the vertical direction and more complex 3D 

flows. 

● The linear flow regime (i.e., non-interfering fractures) is modeled and validated 

against the analytical solution. 

● The late-time boundary-dominated flow regime is modeled and validated against 

the analytical solution. However, the simulation cases show a short transitional 

period before converging to the analytical solution. 

● The late-time compound linear flow regime is modeled and validated against the 

analytical solution. 

 

Having validated the mechanistic model, I can now use it to study the characteristic 

behavior of multi-phase fluid flow to a multi-fractured horizontal well in unconventional 

reservoirs. 

 

4.1 Three-Phase Black Oil Case 

 

Here I demonstrate the mechanistic model behavior in the simulation of a case of a 

typical three-phase black oil flow to a multi-fractured horizontal well in the Wolfcamp 

shale. Fig. 4.3 shows the plot of the evolution of the phase production rates in the base 

case that involved the fracture and well-spacing design listed in Appendix A (Table A4).  

 

Note that wells in the Wolfcamp formation are known to have high water production 

rates. I made two different runs of the base case using the highest resolution grid (the grid 
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description is provided in Appendix A) to determine if the high initial water saturation 

affects the characteristic behavior. The first run (Fig. 4.3) was made with an initial water 

saturation of 0.4wS  , and in the second run 0.5wS   (Fig. 4.4). 

 

As can be seen from the Figs. 4.3-4.4, the increase in the initial Sw affects the overall 

phase production rates, and especially the water production rate which is almost 5 times 

higher when wS  increases from 0.4wS   to 0.5wS  . However, the characteristic 

behavior remains unchanged in both cases, the observed flow regimes are the same and 

the transition points are also the same. Consequently, I continued the study with the 

0.4wS   reference case in order to investigate a more general problem: because other 

unconventional plays do not have such high water cuts, the observations of the model can 

be extended to other plays. 
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Figure 4.3 –– Log-log phase plot of the evolution of the phase production rates in the 

base case of three-phase black oil flow in the Wolfcamp shale (Sw = 0.4). 

 
 

Figure 4.4 –– Log-log phase plot of the evolution of the phase production rates in the 

case of three-phase black oil flow in the Wolfcamp shale (Sw = 0.5). 

 

I continued the study of the mechanistic model by investigating the well and fracture 

spacing effect on production. For this purpose, I constructed a number of different 

geometry grids, described in Appendix A, and used them to quantify their effects on the 

simulation results in runs that kept all the reservoir and fluid properties unchanged from 

the base case.  

 

Fig. 4.5 shows the plot of the phase rate evolution over time for the Wolfcamp problem 

obtained with Mesh B. In this figure, the reservoir behaves as an infinite-acting system 

for the first 40 years of production when the cluster spacing is 130 ft (vs. a 50 ft cluster 

spacing in the base case). Consequently, there is no need to investigate larger cluster 
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spacing as the boundary-dominated flow does not emerge in 40 years of production. A 

comparison to the base case in Fig. 4.3 indicates that cluster spacing strongly affects the 

late-time behavior.  

 

Fig. 4.6 shows the plot of the phase rate evolution over time for the Wolfcamp problem 

obtained with Mesh C, which differs from Mesh B in the stencil height, which is 50 ft in 

Mesh C and 130 ft in Mesh B.  The behavior of the rate functions is consistent with those 

in an infinite acting reservoir, with the only difference from the Mesh B case in the early-

time behavior. The bi-linear flow regime is evident in Fig. 4.6 and is validated against the 

Lee and Brockenbrough (1986) analytical solution for an infinite-acting reservoir. The 

conclusion to be drawn from this study is that (a) the pay-zone height affects mainly the 

early-time behavior, and (b) there is no need for numerical simulation when the reservoir 

height is lower than 50 ft because the solution converges to the 2D solution and can be 

adequately resolved by the analytical solution. 
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Figure 4.5 –– Log-log phase plot of the evolution of the phase production rates in the 

case of three-phase black oil flow in the Wolfcamp shale (Mesh B, 130-ft 

cluster spacing, 150 ft pay zone height). 

 

 
 

Figure 4.6 –– Log-log phase plot of the evolution of the phase production rates in the 

case of three-phase black oil flow in the Wolfcamp shale (Mesh C, 130-ft 

cluster spacing, 50 ft pay zone height). 
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Having established the geometric boundaries of investigation, I then conducted an 

analysis of the sensitivity of the oil production rate behavior to the cluster spacing, in 

order to determine the exact relationship with the end of linear flow. To avoid the error 

introduced by the multiplication by the number of fractures and clusters in the horizontal 

well system, I conducted the sensitivity analysis using a single stencil. I introduced the 

dimensionless aspect ratio parameter, which is described by: 

 

e
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y
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x
 . ................................................................................................................. (4.1) 

 

In the stencil coordinate system, the same parameter is defined as:  

2
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x
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The sensitivity of the oil rate to the aspect ratio is shown on Fig. 4.7. The variable input 

parameters for this sensitivity analysis are listed in Table 4.1. The simulation results 

confirm the earlier observation (Fig. 4.5) that the aspect ratio only affects the time at 

which linear flow ends in this single-fracture system. The same conclusion can be 

reached by analyzing the analytical solutions of Ozkan and Raghavan (1988) and 

Olarewaju and Lee (1989). 

 

The dimensionless stencil height is defined by: 

 

2
f

eD
f

h
h

x
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The sensitivity of the oil production rate to the dimensionless stencil height is described 

in Fig.4.8.  The values of the dimensionless stencil height used in this sensitivity analysis 

are listed in Table 4.2.  
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Fig. 4.8 shows that the initial oil production rate increases with an increasing stencil 

height, which is rather obvious and is generalized by the use of dimensionless variables, 

as a fully-penetrating fracture is considered. However, there is an early-time effect that 

cannot be explained by the use of dimensionless variables, or by analytical solutions. 

This effect is caused by vertical flow inside the fracture and acts as a skin, limiting early-

time performance. 

 

The vertical flow effect needs to be investigated more thoroughly, and perhaps accounted 

for (if possible) in an analytical model, as it may distort the shut-in well test results in 

fractured wells. Note that, although this effect occurs only at very early times, it may be 

exaggerated in lower conductivity fractures. 

 

 
 

Figure 4.7 –– Log-log plot of sensitivity of the oil production rate to the cluster spacing 

in the problem of the three-phase black oil flow problem in the Wolfcamp 

shale. 
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Figure 4.8 –– Log-log plot of sensitivity of the oil production rate to the reservoir 

thickness in the problem of the three-phase black oil flow problem in the 

Wolfcamp shale. 

 

Table 4.1 –– Aspect ratio inputs for the sensitivity analysis 

studies in the three-phase black oil problem in the 

Wolfcamp shale. 

ye xf yeD 

(m) (m) (Dimensionless) 

25.00 106.68 0.234 

20.32 106.68 0.190 

20.00 106.68 0.187 

16.93 106.68 0.159 

13.85 106.68 0.130 

11.29 106.68 0.106 

10.51 106.68 0.099 

9.83 106.68 0.092 

7.62 106.68 0.071 

5.00 106.68 0.047 
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Table 4.2 –– Stencil height inputs for the sensitivity analysis 

studies in the three-phase black oil flow problem 

in the Wolfcamp shale. 

h/2 xf heD 

(m) (m) (Dimensionless) 

15.00 106.68 0.141 

20.00 106.68 0.187 

25.00 106.68 0.234 

30.00 106.68 0.281 

35.00 106.68 0.328 

40.00 106.68 0.375 

45.72 106.68 0.429 

 

Analytical solutions do not provide any parameters that might describe the late time 

behavior of the production rate, other than the aspect ratio and the parameters included in 

the dimensionless time. To investigate the possible effects of the oil composition on the 

terminal decline behavior, I investigated the sensitivity of the oil production rate to the 

initial gas content, as quantified by the gas-oil ratio (GOR). The results for the GOR 

values listed in Table 4.3 are shown in Fig. 4.9, and lead to the conclusion that an 

increasing GOR is associated with a higher oil production rate. The effect of the 

dissolved gas on the properties of the organic phase can be accounted for by correcting 

the total compressibility of the fluid. 
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Figure 4.9 –– Log-log plot of sensitivity of the oil production rate to the GOR in the 

problem of the three-phase black oil flow problem in the Wolfcamp shale. 

 

Table 4.3 –– Dissolved gas (GOR) inputs for the sensitivity 

analysis studies in the three-phase black oil 

flow problem in the Wolfcamp shale. 

XO
g RS 

(kg/kg) (scf/STB) 

0.100 752.68 

0.110 837.27 

0.120 923.79 

0.130 1012.30 

0.140 1102.88 
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4.2 Two Phase Dry Gas Case 

 

Here I demonstrate the performance of the mechanistic model in the study of the typical 

problem of two-phase dry gas flow to a multi-fractured horizontal well in the Marcellus 

shale. The simulator inputs, grid specifications along with initial and boundary conditions 

can be found in Appendix A. 

 

The cluster spacing in this case is 50 ft, i.e., the same as in the Wolfcamp base case 

described in Fig. 4.3. The gas production rate in Fig. 4.10 reaches (a) the boundary-

dominated flow regime after one year of production and (b) the compound linear flow 

regime after approximately eight years of production, indicating that the cluster spacing 

in this gas base case is too small.  

 

For a better resolution of the production behavior, I used the Mesh B (with a cluster 

spacing of 130 ft) discussed in the study of Fig. 4.5. The corresponding results are 

presented on Fig. 4.11, and show that (a) the boundary-dominated flow is reached in a 

little over three years of production and (b) the compound linear flow does not evolve in 

forty years. 
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Figure 4.10 –– Log-log phase plot of the evolution of rate over time in the two-phase gas-

water flow problem in the Marcellus shale. 
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Figure 4.11 –– Log-log phase plot of the evolution of the phase production rates in the 

case of two-phase gas flow problem in the Marcellus shale (Mesh B, 130-

ft cluster spacing, 75 ft pay zone height). 

 

Following the same approach discussed in the three-phase black flow problem, I first 

conducted an analysis of the sensitivity of production to the aspect ratio using as a basis 

the stencil domain. The aspect ratios that were used as the inputs in this sensitivity 

analysis study are listed in Table. 4.4, and the corresponding plots are shown in Fig. 4.12. 

Compared to the oil case (Fig. 4.7), the aspect ratio has a stronger effect in the two-phase 

gas problem, and this is attributed to the higher compressibility of the gas. Another 
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difference from the black oil case is the absence of a transitional period between the 

linear flow regime and the boundary-dominated flow regime. 

 

Fig. 4.13 shows the sensitivity of the gas production rate to the fracture permeability. The 

fracture permeability inputs used in the sensitivity analysis are listed in Table. 4.5. The 

solutions of the mechanistic numerical model agree well with the analytical solutions in 

the sense that fracture permeability only affects early time behavior, which in our case 

lasts less than one day. 

 

Fig. 4.14 shows the sensitivity of the gas production rate to the reservoir temperature. 

Because all of the analytical solutions used in this study are isothermal, it is interesting to 

investigate the temperature effect on production. It is evident from Fig. 4.14 that the 

effect of the temperature on gas production is minor, consequently, it will not be 

investigated further. 
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Figure 4.12 –– Log-log plot of sensitivity of the gas production rate to the aspect ratio in 

the problem of the two-phase gas flow problem in the Marcellus shale. 

 

 
 

Figure 4.13 –– Log-log plot of sensitivity of the gas production rate to the fracture 

permeability in the two-phase gas flow problem in the Marcellus shale. 
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Table 4.4 –– Aspect ratio inputs for the sensitivity analysis 

studies in the two-phase gas-water flow in the 

Marcellus shale. 

ye xf yeD 

(m) (m) (Dimensionless) 

20.96 91.44 0.229 

20.00 91.44 0.219 

16.76 91.44 0.183 

13.97 91.44 0.153 

11.18 91.44 0.122 

10.48 91.44 0.115 

9.86 91.44 0.108 

7.62 91.44 0.083 

 

Table 4.5 –– Aspect ratio inputs for the sensitivity analysis 

studies in the two-phase gas-water flow in the 

Marcellus shale. 

kf kf CfD 

(m2) (mD) (Dimensionless) 

4.00E-12 4053.00 379.12 

3.00E-12 3039.75 284.34 

2.00E-12 2026.50 189.56 

1.50E-12 1519.87 142.17 

1.30E-12 1317.22 123.21 

1.00E-12 1013.25 94.78 
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Figure 4.14 –– Log-log plot of sensitivity of the gas production rate to the temperature in 

the two-phase gas flow problem in the Marcellus shale. 

 

4.3 Effect of Water-filled Fracture  

 

In this section I investigate the non-mechanistic scenario of the effect of a water-filled 

fracture. In order to model the water-filled fracture, the saturation in the hydraulic 

fracture medium in the stencil was initialized with Sw = 0.8 initial water saturation. The 

production rates of the various phases with an initially the water-filled fracture are shown 

on Fig.4.15, which shows that the effect of the water-filled fracture is very significant at 

early times, when it causes a high water cut and reduces the oil and gas production during 

the first day. 
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Fig. 4.16 better demonstrates the overall effect of the water-filled fracture by comparing 

the associated phase production rates to those in the base case of Fig. 4.3. The two sets of 

the phase production curves converge after the first five days of production, which means 

that (a) the effect of the water-filled fracture is temporary and present only at very early-

times and, consequently, (b) it can be ignored in long-term simulations. 

 

Note that the case of the water-filled fracture is more computationally intensive 

compared to the base case because of the strong non-linearities in the numerical solution. 

Another disadvantage of this case is that it requires an extra initialization operation for 

the fracture. 

 

 
 

Figure 4.15 –– Log-log plot of the evolution over time of the phase production rates in 

the three-phase black oil flow problem in the Wolfcamp shale (water-

filled fracture case). 
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Figure 4.16 –– Log-log plot for the comparison of the evolution over time of the phase 

production rates of the base case and of the water-filled fracture case in 

the three-phase black oil flow problem in the Wolfcamp shale. 

 

4.4 Effect of Fracture Degradation 

 

Another non-mechanistic scenario I considered was the degradation of the fracture 

permeability. To investigate this effect on the phase production rates, I applied an 

anisotropic pressure-dependent permeability multiplier function to the fracture media. 

The results for the three-phase black oil case are presented on Fig. 4.17, and are 

compared to those in the base case in Fig. 4.18. The analogous results for the two-phase 

gas-water case are presented in Figs. 4.19 and 4.20, respectively. 
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Figure 4.17 –– Log-log plot of the evolution over time of the phase production rates in 

the three-phase black oil flow problem in the Wolfcamp shale (fracture 

permeability degradation case). 

 



71 
 

 
 

Figure 4.18 –– Log-log plot for the comparison of the evolution over time of the phase 

production rates of the base case and of the fracture permeability 

degradation case in the three-phase black oil flow problem in the 

Wolfcamp shale. 

 

From Fig. 4.18 shows that the effect of the fracture permeability degradation on the oil 

production rate is not significant, and that this production rate converges to that in the base 

case in the first ten days. The effect on water production rate is not very strong and 

converges to the base case in about 100 days. Conversely, the gas flow rate is significantly 

lower than that in the base case during first 100 days of production, and this is attributed 

to the higher compressibility of the fracture medium.  
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Figure 4.19 –– Log-log plot of the evolution over time of the phase production rates in 

the two-phase gas flow problem in the Marcellus shale (fracture 

permeability degradation case). 

 

Fig. 4.20 slows slight differences in the production rates between the two sets of 

solutions change during the first 2 to 10 days of production. The effect is less significant 

than that in in the black-oil problem because in the oil case the fracture compressibility 

was eight times higher than the matrix compressibility, while in the gas problem they 

were the same. From these results, I concluded that the fracture-permeability degradation 
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does not affect the late-time behavior of the system and, therefore, is not a relevant factor 

for further investigation in the decline curve validation study.  

 

 
 

Figure 4.20 –– Log-log plot for the comparison of the evolution over time of the phase 

production rates of the base case and of the fracture permeability 

degradation case in the two-phase gas flow problem in the Marcellus 

shale. 
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4.5 Effect of Non-Darcy Flow 

 

The effect of non-laminar (turbulent) flow was modeled by the Forchheimer equation 

(Eq.3.83). In the problem of multiphase flow to a multi-fractured horizontal well, the 

Forchheimer flow is expected to have an effect at high flow velocities during the early-

time fracture depletion. To test this assumption and the overall impact of Forchheimer 

flow on the numerical solution, I analyzed the mechanistic model response.  

 

The production profile for the two-phase gas-water flow in the Marcellus shale is 

presented on Fig. 4.21, and the comparison to the base case in Fig. 4.22.  Fig.4.22 

confirms the assumption of early-time occurrence of Forchheimer gas flow, and indicates 

that its effect acts like a skin, limiting the flow to the wellbore. After approximately 20 

days of production, the effect disappears and the numerical solution of Forchheimer flow 

converges to that in the base case.  

 

I did not test the effect of Forchheimer gas flow in the three-phase black oil problem 

because of its high-computational cost, and because there is no reason to think that the 

three-phase problem would behave significantly differently from the two-phase problem.  
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Figure 4.21–– Log-log plot of the evolution over time of the phase production rates in 

the two-phase gas flow problem in the Marcellus shale (Forchheimer gas 

flow case). 
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Figure 4.22–– Log-log plot for the comparison of the evolution over time of the phase 

production rates of the base case and of the Forchheimer gas flow case in 

the two-phase gas flow problem in the Marcellus shale. 

 

4.6 Effect of Adsorption 

 

The effect of gas adsorption processes was modeled using the Langmuir isotherm 

(Eq. 3.98). Common sense indicates that the occurrence of gas adsorption would increase 

the ultimate recovery and postpone the terminal decline, since it adds to the gas mass in 

the system. 
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Fig. 4.23 shows the solution of the phase flow rates that were obtained from the 

mechanistic numerical model in the two-phase gas-water flow problem in the Marcellus 

shale with Langmuir adsorption. The Langmuir volume in this study was 300 scf/ton, and 

the Langmuir pressure 500 psi. A comparison of these results to those in the base case is 

shown in Fig. 4.24, which confirms the validity of the assumption that gas adsorption 

affects only the late-time behavior and postpones the emergence of the boundary-

dominated flow regime. Additionally, the comparison tends to indicate that the effect of 

gas sorption is minor, and becomes relatively important when the phase flow rates have 

declined to low levels. To further investigate the gas sorption effect, I performed an 

analysis of the sensitivity of gas production rate to the Langmuir volume, the results of 

which are shown on Fig.4.25.  
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Figure 4.23–– Log-log plot of the evolution over time of the phase production rates in 

the two-phase gas flow problem in the Marcellus shale (Langmuir 

adsorption case). 
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Figure 4.24–– Log-log plot for the comparison of the evolution over time of the phase 

production rates of the base case and of the Langmuir adsorption case in 

the two-phase gas flow problem in the Marcellus shale. 
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Figure 4.25 –– Log-log plot of the sensitivity of the production rate to the Langmuir 

volume in the two-phase dry gas flow problem in the Marcellus shale. 

 

4.7 Effect of Spatial Discretization 

 

To investigate the effect of spatial discretization on the accuracy of the numerical 

solution, I constructed a set of grids that discretized the same stencil in a number of 

elements that varied between 768 and 220,000.  The latter is the grid in the base case of 

the Wolfcamp shale stencil and the Marcellus stencil. 

 

A comparison plot of the effect of discretization on the evolution of the phase production 

rates in the three-phase black oil flow problem in the Wolfcamp shale is shown on 

Fig. 4.26. The solutions for the two coarsest grids, i.e., those comprising 768 and 1,980 

elements, oscillate and, therefore, these grids are too coarse for an accurate description of 

the three-phase flow in the Wolfcamp shale. Another observation from the comparison 

plot in Fig. 4.26 is the spread of the water production curves. For a higher resolution of 
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the water rate discrepancies, I plotted the first 300 days of water production in Fig. 4.27 

and observed deviations of up to 50% between the finest and the coarsest grids. The 

coarser grids appear to generate significantly higher water production rates, and slightly 

lower gas and oil production rates for the same problem. The effect is most likely caused 

by the specifics of the three-phase relative permeability and capillary pressure functions. 

 

 
 

Figure 4.26–– Log-log plot of the evolution over time of the phase production rates in 

the three-phase black oil flow problem in the Wolfcamp shale (variable 

domain discretizations). 
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Figure 4.27–– Effect of the level of domain discretization on the evolution of the water 

production rate in the three-phase black oil flow problem in the Wolfcamp 

shale. 

 

To further investigate the accuracy of the numerical solution, I constructed error plots for 

the oil, gas and water rates. The finest grid solution is assumed to be accurate and was 

used as the reference solution.  The error time series of the production rate of phase   

for a grid of n blocks was calculated using the following formula: 

 

 
   

 

220

220

k n
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q t
 
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


 . ........................................................................................ (4.4) 

 

The error time series of the oil, gas and water rates for different domain discretizations 

(grid sizes) are shown on Figs. 4.28, 4.29 and 4.30 respectively. Figs. 4.28 and 4.29 show 

that the errors for grids finer than comprising 2,000 elements do not exceed 10% when 

compared to the reference solution (for 200,000 elements). These solutions do not 
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obviously oscillate, as the ones for the 768 and 1,980 elements do in Fig. 4.26, however, 

oscillations are observed for all discretizations when plotted in the log-log error figures in 

Figs. 4.28-4.29. The minor oscillations that are observed in the oil and gas rates for very 

coarse discretizations need to be smoothed out in order to accurately calculate derivative-

based functions like the loss ratio and the loss ratio derivative defined by Eqs. 2.4 and 

2.6; otherwise, these oscillations can result in errors and discontinuities in the derivative 

functions. For such oscillations, we apply a spline-based smoothing algorithm 

implemented in Python. 

 

Fig. 4.30 shows a different error trend. Solutions for grids finer than 1,980 blocks do not 

oscillate.  However, the water production error for the second finest (144,480 elements) 

solution is around 20% for most of the production time, and can rise to 50-60% for 

coarser grids. 

 

 
 

Figure 4.28–– Effect of the level of domain discretization on the error in the oil 

production rate in the three-phase flow problem in the Wolfcamp shale. 
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Figure 4.29–– Effect of the level of domain discretization on the error in the gas 

production rate in the three-phase flow problem in the Wolfcamp shale. 

 

 

 

Figure 4.30–– Effect of the level of domain discretization on the error in the water 

production rate in the three-phase flow problem in the Wolfcamp shale. 
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Fig. 4.31 shows the effect of domain discretization on the accuracy of the solutions of the 

phase production rates in the base case of the gas-water flow in the Marcellus shale. The 

water rates for the different discretizations show the most pronounced deviations from 

the reference case (involving 200,000 elements), but even the coarsest grids do not suffer 

from the oscillations observed in the three-phase black oil case. The lack of oscillations 

may be caused by the reduced complexity of the two-phase flow problem vs. that in the 

three-phase problem, including the relative permeability relationships. The linear scale of 

the vertical axis in Fig. 4.32 reveals even higher spreads in the water production rates for 

varying discretizations than those in the three-phase case, which can even reach 100%. 

 

Figs. 4.33-4.34 show the error time series (calculated using Eq. 4.4) corresponding to the 

gas and water production rate solutions, respectively, obtained for the various grid 

discretizations. Fig. 4.33 exhibits oscillations in the gas rates that are not visible in 

Fig. 4.31, supporting the need for the application of smoothing techniques. The gas rate 

solutions for the two-phase gas-water problem appear to be the least affected by the 

spatial discretization, as the coarsest (768-element) solution error barely differs by 10%, 

from that obtained for the 220,000-element discretization.  

 

The time series of the error in the water rate that is shown in Fig. 4.34 demonstrates a 

trend similar to the one shown by Fig. 4.30, only greater in magnitude. The error is 

around 20% for the second finest grid of 144,480 blocks, but exceeds 100% for grids 

coarser than 6,000 blocks and reaches a high of 500% at t = 1000 days.  
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Figure 4.31–– Log-log plot of the evolution over time of the phase production rates in 

the two-phase gas-water flow problem in the Marcellus shale (variable 

domain discretizations). 
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Figure 4.32–– Effect of the level of domain discretization on the evolution of the water 

production rate in the two-phase, gas-water flow problem in the Marcellus 

shale (variable domain discretizations). 

 

 
 

Figure 4.33–– Effect of the level of domain discretization on the error in the gas 

production rate in the two-phase gas-water flow problem in the Marcellus 

shale (variable domain discretizations). 
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Figure 4.34–– Effect of the level of domain discretization on the error in the water 

production rate in the two-phase gas-water flow problem in the Marcellus 

shale (variable domain discretizations). 

 

I summarized the investigation of the effect of spatial discretization on the accuracy of 

the numerical solution by calculating the average of each error time series and plotting it 

versus the number of elements. The average error in a given phase rate solution for a 

given grid size is calculated in the following manner: 
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Fig. 4.35 presents the log-log plot of the average error versus the number of grid-blocks 

for the three-phase black-oil flow problem in the Wolfcamp shale, and Fig. 4.36 shows 

the analogous plot for the two-phase gas-water flow problem in the Marcellus shale. 

These plots can be used to estimate the error (defined as the deviation from the solution 



89 
 

obtained for the finest discretization of 200,000 elements) of the numerical solution for a 

given grid size. 

 

Another important conclusion derived from Figs. 4.35-4.36 is that the current relative 

permeability and capillary pressure models deliver solutions for the wetting phase flow 

that are highly dependent on grid discretization as the water error trends are much higher 

than those for the gas and oil. Some of this dependence on discretization may be 

attributed to the relative permeability and capillary pressure functions.  Note that in this 

work water is considered the wetting phase and the error in the water may not be very 

important as the focus is on the gas and oil rates; however, this can be a major issue for 

oil-wet systems. 

 

 
 

Figure 4.35–– Log-log plot of the average relative error in the phase rates vs. the number 

of elements in the three-phase black-oil flow problem in the Wolfcamp 

shale.  
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Figure 4.36–– Log-log plot of the average relative error in the phase rates vs. the number 

of elements in the two-phase gas-water flow problem in the Marcellus 

shale.  
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CHAPTER V 

PROPOSED TIME RATE MODEL 

 

5.1 Model Description 

 

Based on results generated in this work, a new time-rate relationship is proposed: 

 

q(t)  q
i
K

1
(a

2
a

3
t) exp a

2
 t  , ..............................................................................  (5.1) 

 

where K1(x) is the modified Bessel function of the second kind, the parameter qi is a 

scaling unit factor, and the parameters a2 and a3 control early time behavior and terminal 

decline, respectively. Introduction into Eq. 5.1 the initial and the terminal decline rates 

that correspond to the various a
i
 (i = 2,3) parameters yields: 

 

 1 inf exp( ) [ (1 ) ] i i iq q Kt D D t D t    . .................................................................  (5.2) 

 

To further investigate behavior of this model, it is necessary to derive an expression for 

the so-called reciprocal of the loss-ratio function (Eq. 2.4) and for the derivative of the 

loss ratio function (Eq. 2.6): 

 

1 ( )

( )
( )

dq t
D
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Substitution of Eq. 5.1 into Eq. 2.4 yields: 
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Recall the definition of the derivative of loss ratio as 
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Substitution of Eq. 5.3 into Eq. 2.6 results in 
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 ................  (5.4) 

 

The full derivation of Eqs. 5.3 and 5.4 can be found in Appendix B. 

 

Eqs. 5.1, 5.3, 5.4 are used to construct type curves in the "qDb" diagnostic plot format to 

show how the proposed K1-Exponential (K1X) DCA model behaves with respect to the 

model parameters. Fig. 5.1 demonstrates the K1X model type curves with respect to 

variable a2 or the Di initial decline parameter. Fig. 5.2 presents the K1X model type 

curves with respect to variable 3a  or the infD  terminal decline parameter. 

 
 

Figure 5.1–– Log-log "qDb" plot of the proposed K1X model type curves with respect 

to various values of the initial decline parameter. 
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Fig. 5.2 shows that the proposed model degenerates into a hyperbolic decline curve when 

infD  is equal to zero (or 3 1a  ).   

 

 
 

Figure 5.2–– Log-log "qDb" plot of the proposed K1X model type curves with respect 

to various values of the terminal decline parameter. 

 

5.2 Theoretical Basis 

 

In order to validate the proposed time-rate K1X model, I compare it first to the Olarewaju 

and Lee (1989) analytical solution. The comparison plot against the analytical solution 

and the simulation data for the three-phase black-oil flow in the Wolfcamp shale is 

presented in Fig. 5.3. The comparison plot against the analytical solution and the 

simulation data for the two-phase gas-water flow in the Marcellus shale is presented in 

Fig. 5.4. 
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In Fig. 5.3 I observe that the K1X model almost perfectly follows the 3D numerical 

solution, while the analytical solution conforms to the 2D numerical solution. The main 

deviation of the K1X model from the trilinear solution occurs during the early times. 

Another difference from the analytical solution is the smoother K1X transition between 

the linear flow regime and the boundary-dominated flow. I also note that the K1X does 

not model the compound linear flow. However, this is not a needed feature for the 

purpose of decline-curve analysis because the compound linear flow usually occurs 

beyond the economic limit. All of the above observations and comments apply also to the 

observations in Fig. 5.4. 

 

 

 

Figure 5.3 –– Log-log K1X model validation plot for the three-phase black oil flow 

problem in the Wolfcamp shale. 
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Figure 5.4 –– Log-log K1X model validation plot for the two-phase gas-water flow 

problem in the Marcellus shale. 

 

Because the K1X model appears capable of reproducing both the analytical and the 

numerical solutions up to the onset of the secondary linear flow, I attempt to relate the 

model parameters to the reservoir and fluid properties.  

 

In this section I investigate possible correlations between the K1X model parameters and 

the reservoir and fluid properties by matching the model to the analytical solution. 

 

Because the early-time behavior of the analytical solution does not conform with our 

numerical prediction or the K1X model, I focus on the late-time behavior. Inspection of 
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the Olarewaju and Lee (1989) solution (Eqs. 2.48-2.54) indicates that there are only two 

things affecting the terminal decline: 

 

● Aspect ratio, eDy ; 

● Dimensionless time group, 
2

t f

k

c x
. 

 

All other parameters only affect the early-time behavior or the magnitude of the rate 

function.  To establish a relation between the K1X terminal decline parameter infD  and 

the terminal decline parameters of the analytical solution, I begin by generating a set of 

five analytical curves with variable eDy  values. Then, I fit the K1X model to the 

analytical curves using a non-linear least-squares curve-fitting algorithm developed in 

Python. Finally, I plot the infD  vs. eDy  values in a cartesian plot (Fig. 5.5). 

 

 
 

Figure 5.5 –– Cross-plot of the infD -parameter vs. the aspect ratio eDy  from the fit of 

the K1X model to the Olarewaju and Lee (1989) analytical solution. 
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Fig. 5.5 suggests a power-law relationship between infD  and eDy , which is confirmed by 

the non-linear regression. Mathematically, infD  is expressed as a function of eDy  in the 

following way: 

 

2
inf 1

c
eDD c y . .............................................................................................................. (5.5) 

 

Knowing that infD  must be a function of dimensionless time group ( D ) leads to the 

assumption that Eq. 5.5 can be rewritten as: 

 

2
inf 3

c
D eDD c y , .......................................................................................................... (5.6) 

 

where  

 

2D
t f

k

c x



 . ............................................................................................................. (5.7) 

 

The 3c  and 2c  coefficients are determined in the following manner: I construct several 

sets of analytical curves, with every set consisting of various eDy  rate solutions for a fixed 

D ; all the individual values of eDy  are unique, and the D  values are unique for each 

set. Then, a D -normalized terminal decline parameter is defined as: 

 

inf
inf D

D

D
D

  . .............................................................................................................. (5.8) 

 

Finally, the K1X model is fit to the analytical curves, and inf DD   is plotted vs. eDy  on a 

log-log scale, exploiting the known fact that the relationship is a power-law. The result is 

shown in Fig. 5.6. 
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Figure 5.6 –– Log-log Cross-plot of the inf DD  -parameter vs. the aspect ratio eDy , 

obrained from the fit of the K1X model to the Olarewaju and Lee (1989) 

analytical solution. 

 

The non-linear regression of the data presented on Fig. 5.6 yields the relationship: 

 

2.3726
inf 2

0.34292 eD
t f

k
D y

c x
 . ................................................................................ (5.9) 

 

Thus, I have established a direct connection of the infD  terminal decline parameter of the 

K1X model to the reservoir and fluid properties, as well as the system geometry, through 

the Olarewaju and Lee (1989) analytical solution. Moreover, the relationship appears so 

strong, that it suggests that the proposed time-rate model may be a form of an analytical 

solution itself. 



99 
 

 

5.3 Validation Against the Mechanistic Model 

 

I now use Eqs. 5.1, 5.3, 5.4 to construct a "qDb" diagnostic plot to observe how well the 

results from the proposed modified K1X DCA model conform to the results of the 

mechanistic model. To calculate the D(t) and b(t) functions corresponding to the results 

from the mechanistic model, I used cubic splines to smooth the data and to compute the 

derivatives. I conducted the regression of the proposed model parameters to the results of 

the mechanistic model using a non-linear least squares regression algorithm implemented 

in Python. 

 

As can be seen from Fig. 5.7, the proposed K1X DCA model is successfully fitted to all 

of the flow regimes present in the mechanistic model response: 

 

● The early-time fracture-dominated performance (i.e., fracture (water) unloading). 

● The "linear flow" regime (i.e., non-interferring fractures). 

● The transitional flow behavior, from linear flow to boundary-dominated flow. 

● The late-time boundary-dominated flow. 

 

It can be seen from Fig. 5.7 that the proposed model easily describes both the hyperbolic 

and the exponential behavior (e.g., the Modified Hyperbolic DCA relation) in a single 

equation. To prove that the late time behavior of the K1X model is exponential, I plotted 

these data on a semilog scale and observed the expected straight line (Fig. 5.8). 
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Figure 5.7 –– Log-log "qDb" plot and K1X model fit for the three-phase black oil flow 

problem in the Wolfcamp shale, base case. 

 

 

 

Figure 5.8 –– Semi-log "qDb" plot and K1X model fit for the three-phase black oil flow 

problem in the Wolfcamp shale, base case. 
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The proposed K1-Exponential model seems to match the base case mechanistic response 

very well, and it also matches the behavior of the derivative functions that describe the 

D- and b-parameters.  

 

I continue the study of the proposed time-rate relation's applicability by matching other 

cases generated in this work. Figs. 5.9-5.13 show the K1X model fit to the mechanistic 

model solutions to the problem of the various cases of the three-phase black-oil 

Wolfcamp problem presented on Figs. 4.4-4.6, and to the solutions of the cases of the 

two-phase gas-water Marcellus problem presented on Figs. 4.10-4.11, 4.21 and 4.23. The 

model provides a very good fit, with an average coefficient of determination 

2 0.9988R   for the Wolfcamp cases and 2 0.9960R   for the Marcellus cases. Again, I 

notice that the derivative functions of the D- and b-parameters are accurately modeled by 

the K1-Exponential decline curve relationship both for the three-phase black oil and the 

two-phase gas problems. 

 

The K1X model, however, suffers of the same problem afflicting the Modified-

Hyperbolic model, which does not need the terminal decline parameter to match the early 

data. Thus, it cannot be inferred from the curve fitting procedure before the start of the 

boundary-dominated flow regime. To mitigate this major issue, I tested the correlation 

for the K1X terminal decline parameter (Eq. 5.9) inferred from an exhaustive validation 

against the analytical solutions in the mechanistic model cases. I applied the same 

procedure I used to develop the data presented in Fig 5.6 on the sensitivity to production 

to the aspect ratio cases, as shown in Figs. 4.7, 4.12 and 4.25. The resulting cross-plot is 

presented on Fig. 5.16. 
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Figure 5.9 –– Log-log "qDb" plot and K1X model fit for the three-phase black oil flow 

problem in the Wolfcamp shale, 0.5wS   case. 

 

 

 

Figure 5.10 –– Log-log "qDb" plot and K1X model fit for the three-phase black oil flow 

problem in the Wolfcamp shale, Mesh B case. 
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Figure 5.11 –– Log-log "qDb" plot and K1X model fit for the three-phase black oil flow 

problem in the Wolfcamp shale, Mesh C case. 

 

 

 

Figure 5.12–– Log-log "qDb" plot and K1X model fit for the two-phase gas-water flow 

problem in the Marcellus shale, base case. 
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Figure 5.13–– Log-log "qDb" plot and K1X model fit for the two-phase gas-water flow 

problem in the Marcellus shale, Mesh B case. 

 

 

 

Figure 5.14–– Log-log "qDb" plot and K1X model fit for the two-phase gas-water flow 

problem in the Marcellus shale, Forchheimer flow case. 
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Figure 5.15–– Log-log "qDb" plot and K1X model fit for two-phase gas-water flow in 

the Marcellus shale, Langmuir Adsorption case. 

 

 
 

Figure 5.16–– Log-log Cross-plot of the inf DD  -parameter vs. the aspect ratio eDy  from 

the K1X model fit of the Wolfcamp simulation cases, Marcellus 

simulation cases and Olarewaju and Lee (1989) analytical solution. 
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I propose the following correction to the dimensionless time group (Eq. 5.7) to 

incorporate the effect of adsorption on the terminal decline demonstrated in Fig. 4.25: 

 

  2D
a t f

k

c x


  



, ................................................................................................ (5.10) 

 

where  

 

 1 sc L LR
a

g L

V p

p p

 


 


. ........................................................................................... (5.11) 

 

Fig. 5.16 indicates that Eq. 5.9 holds true for the mechanistic cases, suggesting that the 

K1X model is a form of an analytical solution for the 3D-stencil. I am not yet able to 

mathematically prove that the K1X is indeed an analytical solution, however, I believe 

that I established a relationship of the model parameter to the reservoir and fluid 

properties, as well as to the system geometry, and demonstrated it using the analytical 

solution of Olarewaju and Lee (1989) and the numerical cases that I investigated in this 

work. 

 

For the sake of consistency, I performed the same analysis using the Modified 

Hyperbolic and the Power-Law Exponential DCA models. The results are shown on the 

Figs. 5.17 and 5.18, respectively. The mathematical formulation of the terminal decline 

parameter for the Modified Hyperbolic is given by: 

 

2.1373
lim, 2

1.3386MHYP eD
t f

k
D y

c x
 . .......................................................................... (5.12) 

 

The correlation for the Power-Law Exponential is given by: 

 

2.5851
inf,PLE 2

0.16892 eD
t f

k
D y

c x
 . .......................................................................... (5.13) 
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The overall correlations seem to be well defined.  However, there is a number of outliers 

in Fig. 5.17 corresponding to the Wolfcamp larger spacing cases (e.g. Fig. 4.5). The 

outliers are due to the inability of the least-squares curve-fitting algorithm to capture the 

terminal decline behavior at very early stages for the Modified Hyperbolic DCA model. 

This is not an issue in the K1X and PLE models because these can obtain the decline 

trend from the D- and b- parameters. 

 

The correlations depicted on Figs. 5.16-5.18 can be used to predict the terminal decline 

parameters from the reservoir, fluid and geometric properties.  

 

 

 

Figure 5.17–– Log-log Cross-plot of the inf DD  -parameter vs the aspect ratio eDy  from 

the Modified Hyperbolic DCA model fit of the Wolfcamp simulation 

cases, the Marcellus simulation cases and the Olarewaju and Lee (1989) 

analytical solution. 
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Figure 5.18–– Log-log Cross-plot of the inf DD  -parameter vs the aspect ratio eDy  from 

the Power-Law Exponential DCA model fit of the Wolfcamp simulation 

cases, the Marcellus simulation cases and the Olarewaju and Lee (1989) 

analytical solution. 

 

5.4 Validation Against Field Data 

 

In this section I test the performance of the K1X model on the field data. Unfortunately, I 

have been unable to find publicly available production data with sufficient parameters to 

test Eq. 5.9. However, I can use another advantage of the K1X model – the characteristic 

behavior of the D- and b- parameters. Production data often need to be smoothed and 

edited in order to develop representative D- and b-functions. I describe my own 

methodology for preprocessing highly distorted daily-production data below. 
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I begin the data preprocessing procedure by calculating a weekly-average rate-time series 

from the daily production data. Then, I perform a numerical integration to calculate the 

cumulative production time series. The next step is to fit a smoothing spline S through the 

cumulative data in the following manner: 

 

   log ,logS f Q t    , ........................................................................................... (5.14) 

 

If our spline representation of the cumulative data is accurate, the following relation 

holds for the derivative of the spline: 

 

 
 
 

d log

log d log

QdS

d t t
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Because a spline is a piecewise polynomial function by definition, it is fairly easy to 

compute the derivatives of a spline, and most of programming environments have library 

functions for computing such spline derivatives. Denoting the spline derivative as S', I 

apply the chain rule to Eq. 5.15 to obtain: 

 

 
 

d log
'

dt log

Q dt
S

t
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Applying the derivatives to Eq. 5.16 yields: 

 

'
q

S t
Q

 . ................................................................................................................... (5.17) 

 

Rearranging Eq. 5.17 for rate results in: 

 

'QS
q

t
 . ................................................................................................................... (5.18) 
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The smoothed rate-time series from this procedure can be now used for calculating the D- 

and b-parameters. 

 

This technique was applied to the poor-quality data from the South Texas Wells A and B, 

and from the East Texas Gas Well A. The results of the smoothing and fitting the K1X 

model to the field data are presented in Figs. 5.19-5.24. 

 

 

 

Figure 5.19–– Log-log "qDb" plot and K1X model fit for the three-phase oil flow 

problem in the South Texas Well A. 
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Figure 5.20–– Semi-log "qDb" plot and K1X model fit for the three-phase oil flow 

problem in the South Texas Well A. 

 

 

 

Figure 5.21–– Log-log "qDb" plot and K1X model fit for the gas flow problem in the 

East Texas Well A. 
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Figure 5.22–– Semi-log "qDb" plot and K1X model fit for the gas flow problem in the 

East Texas Well A. 

 

 

 

Figure 5.23–– Log-log "qDb" plot and K1X model fit for the three-phase oil flow 

problem in the South Texas Well B. 
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Figure 5.24–– Semi-log "qDb" plot and K1X model fit for the three-phase oil flow 

problem in the South Texas Well B. 

 

5.5 Comparison to Standard Decline Models 

 

In this section, the proposed K1X model is compared to the industry standard models: 

the Modified Hyperbolic (MHYP) and the Power-Law Exponential (PLE) applied to the 

mechanistic and the field cases.  

 

It is important to mention the metric used to describe the model goodness of fit. The 

standard measure of a model fit is the coefficient of determination R2, given by: 

 

2 1 err
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SS
R

SS
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where y  is the observed data vector, ˆiy  is the predicted data vector and y  is the mean of 

the observed data, given by: 

 

1

1 N

i
i

y y
N 

  . ............................................................................................................. (5.22) 

 

However, this is not the best metric for our specific problem that involves rapidly 

declining functions, because the sums of squares in Eqs. 5.20-5.21 and the mean in the 

Eq. 5.22 will be inflated by the large values of the early-time rates. On the other hand, 

the contribution of the late time rates in the sums of squares and in the mean will be 

minimal, meaning that the best fit of the early-time data will yield the highest R2. To 

equalize the impact of the data on the statistic, I modified Eqs. 5.20-5.22 in the following 

manner: 
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SS y y
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1
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y y
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Figs. 5.25-5.26 show the comparison of the goodness of fit of the various models in the 

"qDb" format using the Wolfcamp simulation cases. Figs. 5.27-5.30 present the 

comparison of the goodness of fit of the models in the "qDb" format using the Marcellus 

simulation cases. Figs. 5.31-5.36 show the comparison of the fit of the models in the 

"qDb" format using the field cases described in the previous section.  
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Figure 5.25–– Log-log "qDb" plot and DCA model fit for the three-phase black-oil flow 

problem in the Wolfcamp shale (base case). 

 

 

 

Figure 5.26–– Log-log "qDb" plot and DCA model fit for the three-phase black-oil flow 

problem in the Wolfcamp shale (Mesh B). 
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In the Wolfcamp simulation cases that are shown in Figs. 5.25-5.26, all the models yield 

very high R2 values that are larger than 0.99. That does not mean however that all of 

them predict the same EUR. For example, the MHYP fit shown in Fig. 5.26 clearly 

underestimates production for the reasons mentioned in Section 5.3.  

 

In the Marcellus simulation cases that are shown in Figs. 5.27-5.30, all the models also 

yield very high R2 values that exceed 0.99. The EUR discrepancies are minimal for the 

gas-water cases. K1X provides the best representation of the D- and b-parameter 

functions compared to the standard models. In fact, the K1X model accurately describes 

the behavior of the derivatives until the onset of the compound linear flow at very late 

times.  

 

The field cases described in Figs. 5.31-5.33 also yield R2 values larger than 0.99 and 

similar EUR predictions.  The more complicated case described by Figs. 5.34-5.35 shows 

overfitting of the PLE model. Automatic fitting algorithm ignore the slope change 

described by the stepwise change in the b-parameter from two to one, leading to 

overestimation of recovery. 

 

Comparison of the K1X model to the MHYP and PLE models leads to the following 

conclusions: 

 

● Given a full production history with established terminal decline, all three models 

can accurately model the production rate behavior of a multi-fractured horizontal 

well in an unconventional (ultra-tight) reservoir with R2 greater than 0.99. 

● Without the established terminal decline or the estimate from Eq. 5.12, MHYP 

cannot accurately predict ultimate recovery and should not be used for diagnostics. 
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● Both K1X and PLE can be used for EUR estimation when the terminal decline is 

signaled by the derivative functions D- and b- parameters. 

● PLE model can be subject to overfitting because of the power-law behavior of the 

model b- parameter, unsupported by the mechanistic model. 

● Without sufficient production data to signal the terminal decline in the D- and b- 

parameters, the EUR should be estimated using the correlations given by Eqs. 5.9, 

5.12, 5.13. 

● K1X appears to be the most powerful model out of three, as it captures and models 

the characteristic behavior of the rate function as well as the characteristic behavior 

of the derivative functions D- and b- parameters. 

 

Further study of the K1X model revealed that it may be approximated by a much simpler 

limiting form, not involving special functions. The full derivation of the limiting form, as 

well as the comparison to the original K1X model is given in Appendix C. The limiting 

form of K1X can be easily extended to model other forms of transient flow regimes.  The 

extended form is given in Appendix D.  
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Figure 5.27–– Log-log "qDb" plot and DCA model fit for the two-phase gas-water flow 

problem in the Marcellus shale (base case). 

 

 

 

Figure 5.28–– Log-log "qDb" plot and DCA model fit for the two-phase gas-water flow 

problem in the Marcellus shale (Mesh B). 
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Figure 5.29–– Log-log "qDb" plot and DCA model fit for the two-phase gas-water flow 

problem in the Marcellus shale (Forchheimer Flow). 

 

 

 

Figure 5.30–– Log-log "qDb" plot and DCA model fit for the two-phase gas-water flow 

problem in the Marcellus shale (Langmuir Adsorption). 
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Figure 5.31–– Log-log "qDb" plot and DCA model fit for the three-phase oil flow 

problem in the South Texas Well A. 

 

 

 

Figure 5.32–– Semi-log "qDb" plot and DCA model fit for the three-phase oil flow 

problem in the South Texas Well A. 
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Figure 5.33–– Log-log "qDb" plot and DCA model fit for the gas flow problem in the 

East Texas Well A. 

 

 

 

Figure 5.34–– Semi-log "qDb" plot and DCA model fit for the gas flow problem in the 

East Texas Well A. 
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Figure 5.35–– Log-log "qDb" plot and DCA model fit for the three-phase oil flow 

problem in the South Texas Well B. 

 

 

 

Figure 5.36–– Semi-log "qDb" plot and DCA model fit for the three-phase oil flow 

problem in the South Texas Well B.  
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

6.1 Summary 

 

In this work I developed a mechanistic (stencil-based) model for a multi-fractured 

horizontal well in unconventional (i.e., ultra-low permeability) reservoirs.  The model 

was validated using the Olarewaju and Lee (1989) analytical solution.  The model was 

used to generate production profiles for a 3-phase black-oil flow problem in the 

Wolfcamp shale oil play, and for the 2-phase gas-water flow problem in the Marcellus 

shale gas reservoir.  Five flow regimes were successfully generated: 

 

● Early-time fracture-dominated performance (i.e., fracture (water) unloading). 

● Linear flow regime (i.e., non-interferring fractures). 

● Transitional flow behavior, from linear flow to boundary-dominated flow. 

● Late-time boundary-dominated flow. 

● Late-time compound linear flow regime. 

 

For completeness, a large variety of stencil configurations and reservoir and fluid 

properties were evaluated for a wide range of black-oil and dry gas reservoir cases.   

 

In addition to various mechanistic effects, I also investigated the effect of spatial 

discretization on the production predictions and concluded that coarser gridding yields 

higher production of the wetting phase in the 3-phase black oil and the 2-phase gas-water 

cases. 

 

The non-mechanistic behavior scenarios that I modeled included: 
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● Early-time performance dominated by very high-water production (i.e., flowback). 

● Degradation of fracture permeability during well production. 

● Non-laminar flow. 

● Effects of gas adsorption. 

 

I proposed a K1-Exponential (K1X) DCA model based on the results generated in this 

work.  The K1X model was validated against the analytical solution and the mechanistic 

cases.  This model was also compared to the standard DCA models that include the 

Modified Hyperbolic (MHYP) and Power Law Exponential (PLE) models, and was 

tested and validated using both synthetic and field well performance data. 

 

Using analytical solutions and data from simulation cases, I developed a correlation for the 

estimation of the terminal decline parameter for the K1X model from reservoir and 

fluid properties, as well as geometric characteristics of the system.  I also developed 

similar correlations for the MHYP and the PLE models. 

 

I also derived a limiting form (approximation) of the K1X model and demonstrated its 

accuracy.  Based on the limiting form of the K1X model, I proposed a generalized form.  

Both the limiting form and the generalized form models appear to have theoretical bases 

(see Appendices B, C, and D). 
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6.2 Conclusions 

 

Parametric studies of the analytical, mechanistic, and non-mechanistic cases helped 

determine the geometric, reservoir and fluid properties that affect the late-time terminal 

decline behavior.  These include: 

 

● The stencil aspect ratio (fracture spacing)  

● The fracture half-length 

● The reservoir porosity and permeability 

● The total compressibility 

● The fluid viscosity 

● The Langmuir adsorption parameters (Langmuir volume and Langmuir pressure) 

 

All the other mechanistic and non-mechanistic parameters and scenarios were found to 

have minor to negligible effects and/or to only affect the early-time performance — these 

include: 

 

● The fracture height 

● The fracture conductivity 

● The early-time water flowback from the fracture 

● The fracture permeability degradation 

● Non-laminar flow 

 

My in-depth study of the effect of spatial discretization on the accuracy of the numerical 

solution revealed that the use of coarser grids leads to a significant overprediction of the 

wetting phase production. 
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I proposed a new K1-Exponential (K1X) DCA model based on results generated in this 

work.  The primary form of this model (based on the K1(x) and exp(x) functions) is 

shown to match the expected flow regimes very well.   The K1X DCA model was tested 

against the analytical solution, as well as to the standard DCA models, i.e., the Modified 

Hyperbolic and the Power-Law/Stretched Exponential model, and performed as well or 

better in the prediction of the phase flow rate, as well as in the description of the D- and 

b-parameter functions.  There were very few cases where this model did not produce a 

superior match of the data, hinting that the K1X DCA model may become a standard for 

the analysis and interpretation of time-rate data from wells in unconventional reservoirs. 

 

In addition to the comparative performance studies, I conducted another to develop 

correlations estimating the terminal decline parameters for the K1X, Modified 

Hyperbolic, and Power-Law Exponential DCA models.  Conceptually, the proposed 

correlations can be used for reserves estimation in unconventional plays and for fracture 

spacing design. 

 

The appearance of a modified Bessel function in the proposed model suggests a relation 

to a form of analytical solution to diffusivity equation for a fractured well (e.g., the 

Ozkan and Raghavan solution (1988)).  A significant effort was made to mathematically 

establish the K1X DCA model as either an analog to, or a part of an analytical solution. 

no uniquely theoretical (analytical) result could be obtain.  However, the observation that 

the K1X DCA model can accurately model the production behavior, as well as its first 

and second derivative functions, suggests that this method may have an underlying 

mathematical proof. 
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In addition, the limiting forms and the general extension formulations of the K1X DCA 

model (see Appendices B, C, and D) suggest a strong relation to an analytical 

solution/formulation.  As an example, the cumulative production expression for the 

limiting form contains error functions, while the cumulative production expression for the 

generalized form contains exponential integrals — both these special functions are found 

in the real domain solutions of flow in bounded reservoirs, line sources, and fractured 

wells. 

 

6.3 Recommendations for Future Research 

 

Further investigations of the K1-Exponential (K1X) DCA model should be conducted, 

with the specific objective of establishing a link to analytical solutions for flow to wells 

in fractured reservoirs (a wide array of possibilities should be considered, including the 

case of a multi-fractured horizontal well). 

 

In addition, the limiting form of the K1X model should be deconstructed to provide a 

theoretical proof that this form represents an analytical solution or approximation to the 

rectangular reservoir problem.  Lastly, the proposed correlations for the terminal decline 

parameters should be tested and validated against field data. 

 

  



128 
 

REFERENCES 

 

Abramowitz, M., & Stegun, I. A. (1970). Handbook of Mathematical Functions with 
Formulas, Graphs, and Mathematical Tables. Washington, D.C.: United States 
Government Printing Office. 

Ali, W. (2012). Modeling Gas Production from Shales and Coal-Beds (M.Sc. Thesis). 
Energy Resources Engineering Department, Stanford University. 

Arps, J.J. (1945). Analysis of Decline Curves. Trans. AIME 160: 228–247. 

Chung, T. H., Lee, L. L., & Starling, K. E. (1984). Applications of Kinetic Gas Theories 
and Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal 
Conductivity. Industrial & Engineering Chemistry Fundamentals, 23(1), 8–13. doi: 
10.1021/i100013a002. 

Chung, T. H., Ajlan, M., Lee, L. L., & Starling, K. E. (1988). Generalized 
Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties. 
Industrial & Engineering Chemistry Research, 27(4), 671–679. doi: 
10.1021/ie00076a024 

Dietrich, J. K., & Bondor, P. L. (1976). Three-Phase Oil Relative Permeability Models. 
SPE Annual Fall Technical Conference and Exhibition. doi: 10.2118/6044-MS 

Economou, I. G., Heidman, J. L., Tsonopoulos, C., & Wilson, G. M. (1997). Mutual 
Solubilities of Hydrocarbons and Water: III. 1-Hexene; 1-Octene; C10-C12 
Hydrocarbons. AIChE Journal, 43(2), 535–546. doi: 10.1002/aic.690430226 

Egbogah, E.O., Ng, J.T. (1990). An Improved Temperature-Viscosity Correlation for 
Crude-Oil Systems. J. Pet. Sci. Eng. 4 (3): 197–200. doi:10.1016/0920-
4105(90)900009-R 

El Sgher, M., Aminian, K., & Ameri, S. (2018). The Impact of Stress on Propped 
Fracture Conductivity and Gas Recovery in Marcellus Shale. Society of Petroleum 
Engineers. doi:10.2118/189899-MS 

Forchheimer, P. (1901). Wasserbewegung durch Boden, ZVDI. Vol. 45, 1781. 

Frederick, D., & Graves, R. (1994). New Correlations to Predict Non-Darcy Flow 
Coefficients at Immobile and Mobile Water Saturation. SPE Annual Technical 
Conference and Exhibition. doi: 10.2118/28451-MS 

Freeman, C. M., Moridis, G. J., & Blasingame, T. A. (2011). A Numerical Study of 
Microscale Flow Behavior in Tight Gas and Shale Gas Reservoir Systems. Transport 
in Porous Media, 90 (1), 253–268. doi: 10.1007/s11242-011-9761-6 



129 
 

Gringarten, A. C., Ramey, H. J., & Raghavan, R. (1974). Unsteady-State Pressure 
Distributions Created by a Well with a Single Infinite-Conductivity Vertical Fracture. 
Society of Petroleum Engineers Journal, 14(04), 347–360. doi: 10.2118/4051-PA 

de Hemptinne, J-C, Dhima, A., Shakir, S. (2000). The Henry Constant for 20 
hydrocarbons, CO2 and H2S in Water as a Function of Pressure and Temperature. 
Paper presented at the Fourteenth Symposium on Thermophysical Properties, 
Boulder, CO, 25-30 June 2000. 

Ilk, D., Rushing, J.A., and Blasingame, T.A. (2009). Decline Curve Analysis for HP/HT 
Gas Wells: Theory and Applications. Paper SPE 125031 presented at the SPE Annual 
Technical Conference and Exhibition, New Orleans, LA, 04–07 October 2009. 

Ilk, D., Rushing, J.A., Perego, A.D., and Blasingame, T.A. (2008) Exponential vs. 
Hyperbolic Decline in Tight Gas Sands: Understanding the Origin and Implications 
for Reserve Estimates Using Arps' Decline Curves. Society of Petroleum Engineers. 
doi:10.2118/116731-MS. 

International Association for the Properties of Water and Steam, IAPWS R6-95(2018), 
Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties 
of Ordinary Water Substance for General and Scientific Use (2018). 

Johnson, R.H. and Bollens, A.L. (1927). The Loss Ratio Method of Extrapolating Oil 
Well Decline Curves. Trans. AIME 77: 771. 

Katz, D. L., et al, (1959). Handbook of Natural Gas Engineering. New York: McGraw-
Hill. 

Kohlrausch, R. (1854). Theorie des elektrischen Rückstandes in der Leidner Flasche. 
Annalen Der Physik Und Chemie. 91 (1): 56–82, 179–213. 
doi:10.1002/andp.18541670103. 

Langmuir, I. (1918). The Adsorption of Gases on Plane Surfaces of Glass, Mica and 
Platinum. J. Am. Chem. Soc. 40: 1361-1403. https://doi.org/10.1021/ja02242a004. 

Lee, S.-T., & Brockenbrough, J. R. (1986). A New Approximate Analytic Solution for 
Finite-Conductivity Vertical Fractures. SPE Formation Evaluation, 1(01), 75–88. doi: 
10.2118/12013-PA 

Moridis, G. J., & Freeman, C. M. (2014). The RealGas and RealGasH2O options of the 
TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas 
systems. Computers & Geosciences, 65, 56–71. doi: 10.1016/j.cageo.2013.09.010 

Narasimhan, T. N., & Witherspoon, P. A. (1976). An integrated finite difference method 
for analyzing fluid flow in porous media. Water Resources Research, 12(1), 57–64. 
doi: 10.1029/wr012i001p00057 



130 
 

NIST. (2011). Thermophysical Properties of Fluid Systems. 
http://webbook.nist.gov/chemistry/fluid/. 

Olarewaju, J.S., & Lee, W.J. (1989). A New Analytical Model of Finite-Conductivity 
Hydraulic Fracture in a Finite Reservoir. SPE Gas Technology Symposium. doi: 
10.2118/19093-MS 

Olorode, O. (2011). Numerical Modeling and Analysis of Shale-Gas Reservoir 
Performance Using Unstructured Grids (M.Sc.thesis). Petroleum Engineering 
Department, Texas A&M University. 

Olorode, O.M., Freeman, C.M., G.J. Moridis, and T.A. Blasingame. (2013). High-
Resolution Numerical Modeling of Complex and Irregular Fracture Patterns in Shale 
Gas and Tight Gas Reservoirs, SPE Reservoir Evaluation & Engineering, 16(4), 443–
455. https://doi.org/10.2118/152482-PA. 

Ozkan, E., & Raghavan, R. (1988). Some New Solutions to Solve Problems in Well Test 
Analysis: Part 1 - Analytical Considerations. Society of Petroleum Engineers 

Parker, J. C., Lenhard, R. J., & Kuppusamy, T. (1987). Correction to "A Parametric 
Model for Constitutive Properties Governing Multiphase Flow in Porous Media" by 
J. C. Parker, R. J. Lenhard, and T. Kuppusamy. Water Resources Research, 23(9), 
1805–1805. doi: 10.1029/wr023i009p01805 

Peng, D. Y.; Robinson, D. B. (1976). "A New Two-Constant Equation of State". 
Industrial and Engineering Chemistry: Fundamentals. 15: 59–64. 
doi:10.1021/i160057a011 

Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2007). The Properties of Gases and 
Liquids (5th ed.). Boston: McGraw-Hill. 

Pruess, K., Oldenburg, C., & Moridis, G. (1999). TOUGH2 User's Guide, Version 2.0, 
Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, California. 
doi: 10.2172/751729 

Raghavan, R. (1993). Well test analysis. Englewood Cliffs, NJ: PTR Prentice Hall. 

Robertson, S. (1988). Generalized Hyperbolic Equation. Paper SPE 18731 available 
from SPE, Richardson, Texas. 

Stehfest, H. (1970). Algorithm 368: Numerical Inversion of Laplace Transforms [D5]. 
Communications of the ACM, 13(1), 47–49. doi: 10.1145/361953.361969 

Stone, H.L. (1973). Estimation of Three-Phase Relative Permeability and Residual Oil 
Data. Journal of Canadian Petroleum Technology, 12(04). doi: 10.2118/73-04-06 



131 
 

Tsonopoulos, C., & Wilson, G. M. (1983). High-Temperature Mutual Solubilities of 
Hydrocarbons and Water. Part I: Benzene, Cyclohexane and n-Hexane. AIChE 
Journal, 29(6), 990–999. doi: 10.1002/aic.690290618 

Tsonopoulos, C. (1999). Thermodynamic Analysis of The Mutual Solubilities of Normal 
Alkanes and Water. Fluid Phase Equilibria, 156(1-2), 21–33. doi: 10.1016/s0378-
3812(99)00021-7 

Valko, P.P. (2009). Assigning Value to Stimulation in the Barnett Shale: A Simultaneous 
Analysis of 7000 Plus Production Histories and Well Completion Records. Paper SPE 
119369 presented at the SPE Hydraulic Fracturing Technology Conference, College 
Station, TX, 19-21 January 2009. 

Valko, P. P., & Lee, W. J. (2010). A Better Way to Forecast Production from 
Unconventional Gas Wells. Society of Petroleum Engineers. doi:10.2118/134231-MS 

Van Everdingen, A. F., & Hurst, W. (1949). The Application of the Laplace 
Transformation to Flow Problems in Reservoirs. Society of Petroleum Engineers. 
doi:10.2118/949305-G 

Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic 
Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 
892–898. doi: 10.2136/sssaj1980.03615995004400050002x 

Vazquez, M., & Beggs, H. D. (1977). Correlations for Fluid Physical Property 
Prediction. Society of Petroleum Engineers. doi:10.2118/6719-MS 

Wattenbarger, R. A., & Ramey, H. J. (1968). Gas Well Testing With Turbulence, 
Damage and Wellbore Storage. Journal of Petroleum Technology, 20(08), 877–887. 
doi: 10.2118/1835-PA 

Ye, Z., Chen, D., Pan, Z., Zhang, G., Xia, Y., Ding X. 2016.An improved Langmuir 
model for evaluating methane adsorption capacity in shale under various pressures 
and temperatures. Journal of Natural Gas Science and Engineering. 31: 658-
680.https://doi.org/10.1016/j.jngse.2016.03.070. 

  



132 
 

NOMENCLATURE 

 

Field Variables 

 

A  = Surface area, [m2] 

fA  = Fracture surface area, [m2] or [ft2] 

Ra  = Rock thermal expansivity, [K-1] or [R-1] 

oB  = Oil formation volume factor, [RB/STB] 

obB  = Oil formation volume factor at the bubble-point conditions, [RB/STB] 

kb  = Klinkenberg parameter, [Pa] or [psi] 

C  = Heat capacity, [J kg-1 K-1] 

c  = Compressibility, [Pa-1] or [psi-1] 

fD  = Fracture spacing, [m] or [ft] 

F  = Mass or heat flux, [kg m-2 s-1] or [J m-2 s-1] 

g  = Gravitational acceleration vector, [m/s2] or [ft/s2] 

H  = Phase specific enthalpy, [J/kg] 

h  = Specific enthalpy of a component in phase, [J/kg] 

K  = Watson characterization factor, [K1/3] or [R1/3] 

nK  = Knudsen number, [dimensionless] 

k  = Rock intrinsic permeability tensor, [m2] or [mD] 

rk  = Phase relative permeability, [dimensionless] 

M  = Mass or heat accumulation, [kg/m3] or [J/m3] 

MW  = Molecular weight 
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q  = Mass or volumetric flow rate, [kg/s] or [STB/day] or [scf/day] 

P  = Pressure, [Pa] or [psi] 

cP  = Phase capillary pressure, [Pa] or [psi] 

p  = Pressure, [Pa] or [psi] 

bp  = Bubble-point pressure, [Pa] or [psi] 

cp  = Critical pressure, [Pa] or [psi] 

Lp  = Langmuir pressure, [Pa] or [psi] 

R  = Universal gas constant, [J kg-1 mol-1] 

sR  = Solution gas-oil ratio, [scf/STB] 

sbR  = Solution gas-oil ratio at the bubble-point conditions, [scf/STB] 

S  = Phase saturation, [dimensionless] 

irrS  = Irreducible phase saturation, [dimensionless] 

T  = Reservoir temperature, [°C] or [°F] 

cT  = Critical temperature, [°C] or [°F] 

rT  = Reduced temperature, [dimensionless] 

U  = Phase specific internal energy [J/kg] 

u  = Specific internal energy of a component in phase [J/kg] 

V  = Volume, [m3] or [scf] 

cV  = Critical volume, [m3] or [scf] 

LV  = Langmuir volume, [m3/kg] or [scf/ton] 

v  = Pore velocity, [m/s] or [ft/s] 
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mv  = Molar volume, [m3/mol] 

X  = Mass fraction, [kg/kg] 

Y  = Mole fraction, [mol/mol] 

Z  = Real gas Z-factor, [dimensionless] 

 

Decline Curve Model Variables 

 

2a  = K1X model initial decline parameter, also denoted iD  [dimensionless] 

3a  = K1X model decline parameter, [1/day] 

b  = Arps "b-parameter" function, derivative of the loss-ratio, [dimensionless] 

D  = Arps "D-parameter" function or loss-ratio, [1/day]  

iD  = Arps initial decline rate, [1/day] 

1D  = PLE model initial decline at 1 time-unit, [1/day] 

D  = PLE model infinite decline, [1/day] 

ˆ
iD  = PLE model decline constant defined by 1

ˆ /iD D n , [1/day] 

infD  = K1X model terminal decline parameter defined by inf 3 1D a  , [1/day] 

limD  = MHYP model terminal decline rate, [1/day] 

n  = PLE/STE/K1X model time exponent, [dimensionless] 

Q  = Cumulative production function, [STB] or [MSCF] 

q  = Production rate function, [STB/day] or [MSCF/day] 

iq  = Initial production rate, [STB/day] or [MSCF/day] 

ˆiq  = PLE/STE model rate intercept, [STB/day] or [MSCF/day] 

limq  = MHYP model rate at the time of the terminal decline, [STB/day] or [MSCF/day] 
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limt  = MHYP model time to the terminal decline, [days] 

 

Dimensionless Field Variables 

 

1C  = Dimensionless fracture storage factor, inverse of fracture diffusivity 

fDC  = Dimensionless fracture conductivity 

wDp  = Dimensionless wellbore pressure 

Dq  = Dimensionless production rate 

DQ  = Dimensionless cumulative production 

DAt  = Dimensionless time based on drainage area 

Dxft  = Dimensionless time based on fracture half-length 

u  = Laplace transformation variable 

fDw  = Dimensionless fracture width 

Dx  = Dimensionless coordinate in x-direction 

eDx  = Dimensionless coordinate of the outer boundary in x-direction 

wDx  = Dimensionless coordinate of the inner boundary in x-direction 

Dy  = Dimensionless coordinate in y-direction 

eDy  = Dimensionless coordinate of the outer boundary in y-direction 

wDy  = Dimensionless coordinate of the inner boundary in y-direction 

 

Greek Variables 

 

  = Turbulence correction factor, [m-1] or [ft-1] 

API  = Oil API gravity, [°API] 
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g  = Gas specific gravity, [air = 1] 

o  = Specific gravity, [water = 1] 

  = Thermal conductivity, [W m-1 K-1] 

  = Viscosity, [Pa s] or [cp] 

  = Density, [kg/m3] or [lbm/scf] 

  = Fracture conductivity multiplier tensor, [dimensionless] 

  = Porosity, [fraction]  

  = Acentric factor, [dimensionless] 

 

Subscripts 

 

A  = Aqueous phase 

G  = Gaseous phase 

R  = Rock 

O  = Organic phase 

 

Superscripts 

 

o  = Oil component 

g  = Methane component 

w  = Water component 

  = Heat pseudo-component 

 

Mathematical Functions 

 

mE  = General form of the exponential integral 

erf  = Error function 
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  = Gamma function 

vK  = Modified Bessel function of the second kind of the order v 
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APPENDIX A 

SIMULATION INPUT PARAMETERS 

 

Table A1 –– Simulation inputs for the three-phase black oil flow problem 

in the Wolfcamp shale. 

Reservoir Properties   

  Net pay thickness, h 91.44 m 

  Formation permeability, k 1.5e-19 m2 

  Fracture permeability, kf  2.0e-12 m2 

  Wellbore Radius, rw 0.05 m 

  Formation compressibility, cf 1.0e-9 Pa-1 

  Porosity, ϕ 0.06 (fraction) 

  Initial reservoir pressure, pi  3.15e7 Pa 

  Initial water saturation, Sw 0.4 (fraction) 

  Reservoir temperature, T 120 °C 

Fluid properties:   

  Oil API gravity, γAPI 42 °API 

  Oil bubble-point pressure, pb 2.07e7 Pa 

  Oil bubble-point GOR, Rsb 1,200 scf/bbl 

  Initial GOR, Rs  1,100 scf/bbl 

Hydraulically fractured well model parameters: 

  Fracture half-length, xf 106.68 m 

  Number of fractures 200 

  Fracture spacing, Df = 2ye  15.24 m 

  Horizontal well length 3,048 m 

Production parameters:   

  Flowing pressure, pwf 1.21e7 Pa 

  Production time, t 14,600 days (~40 years) 
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Table A2 –– Simulation inputs for the two-phase gas-water flow problem 

in the Marcellus shale. 

Reservoir Properties   

  Net pay thickness, h 45.72 m 

  Formation permeability, k 1.5e-19 m2 

  Fracture permeability, kf  2.0e-12 m2 

  Wellbore Radius, rw 0.05 m 

  Formation compressibility, cf 1.0e-9  Pa-1 

  Porosity, ϕ 0.08 (fraction) 

  Initial reservoir pressure, pi  3.15e7 Pa 

  Initial water saturation, Sw 0.4 (fraction) 

  Reservoir temperature, T 120 °C 

Fluid properties:   

  PR-EOS for CH4 

Hydraulically fractured well model parameters: 

  Fracture half-length, xf 91.44 m 

  Number of fractures 110 

  Fracture spacing, Df = 2ye  15.24 m 

  Horizontal well length 1,676 m 

Production parameters:   

  Flowing pressure, pwf 1.21e7 Pa 

  Production time, t 14,600 days (~40 years) 
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Table A3 –– Domain discretization table for the 

Wolfcamp and Marcellus shale plays. 

Discretization Table (Number of Elements) 

NX NY NZ TOTAL 

50 80 55 220000 

43 70 48 144480 

38 65 42 103740 

34 60 37 75480 

25 45 28 31500 

20 35 22 15400 

15 25 16 6000 

10 18 11 1980 

8 12 8 768 
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Table A4 –– Grid specifications for the Wolfcamp and Marcellus shale plays. 

PLAY 

Cluster Half Spacing Well Half Spacing Fracture Half Height Fracture Half Width Fracture Half Length Wellbore Radius 

Df / 2 Ly hf / 2 wf / 2 xf rw 

ft m ft m ft m in m ft m m 

Wolfcamp 25.0 7.6 656.0 200.0 150.0 45.7 0.05 0.00127 370.0 112.8 0.05 

Wolfcamp b 65.6 20.0 656.0 200.0 150.0 45.7 0.05 0.00127 370.0 112.8 0.05 

Wolfcamp c 65.6 20.0 656.0 200.0 49.2 15.0 0.05 0.00127 370.0 112.8 0.05 

Marcellus 25.0 7.6 600.0 182.9 75.0 22.9 0.05 0.00127 300.0 91.4 0.05 

Marcellus b 65.6 20.0 600.0 182.9 75.0 22.9 0.05 0.00127 300.0 91.4 0.05 
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APPENDIX B 

DERIVATION OF THE K1X DECLINE CURVE MODEL PARAMETERS 

 

Here I present the derivation of the D- and b-parameter functions of the K1X decline 

curve analysis model. 

 

Recalling the formulation of the K1X model given by Eq. 5.1: 

 

 1 2 3 2( ) ( ) expiq t q K a a t a t   . ................................................................................ (5.1) 

 

The definition of the D-parameter is given by Eq. 2.4: 

 

1 ( )
( )

( )

dq t
D t

q t dt
  . .................................................................................................... (2.4) 

 

Substituting Eq. 5.1 into Eq. 2.4 yields: 

 

 
 

1 2 3 2

1 2 3 2

( ) exp
( )

( ) exp

i

i

d
q K a a t a t

dtD t
q K a a t a t

   
 

 
. ................................................................... (B1) 

 

Applying the product rule to Eq. B1 results in: 

 

     
 

2 1 2 3 1 2 3 2

1 2 3 2

exp ( ) ( )  exp
( )

( ) exp

d d
a t K a a t K a a t a t

dt dtD t
K a a t a t

      
 

 
. .................... (B2) 

 

Differentiating the exponential function leads to: 

 

     
 

2 1 2 3 1 2 3 2

1 2 3 2

exp ( ) ( ) exp
( )

( ) exp

d
a t K a a t K a a t a t

dtD t
K a a t a t

    
 

 
. ............................... (B3) 
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Simplifying Eq. B3 yields: 

 

 1 2 3

1 2 3

( ) 
( ) 1

( ) 

d
K a a t

dtD t
K a a t


  


..................................................................................... (B4) 

 

Now I can focus on differentiating the modified Bessel function. From Abramowitz and 

Stegun, Handbook of Mathematical Functions (p. 376, Eq. 9.6.26(III)) the recurrence 

relation between the modified Bessel functions is given by: 

 

           1 12 exp exp 1 exp 1v v v

d
v i K z v i K z v i K z

dz
                 . ............... (B5) 

 

Substituting the arguments of the Bessel function in Eq. B4 into Eq. B5 leads to: 

         1 2 3 3 0 2 3 2 2 32 exp exp 2
d

i K a a t a K a a t i K a a t
dt

            ................... (B6) 

 

Recalling the Euler's Identity: 

 

 exp 1 0i    ........................................................................................................... (B7) 

 

Rearranging Eq. B7 results in: 

 

 exp 1i   . ............................................................................................................. (B8) 

 

Taking Eq. B8 to the power of two yields: 

 

 exp 2 1i  . .............................................................................................................. (B9) 

 

Substituting Eqs. B8-B9 into Eq. B7 and dividing by two yields: 

 

     3
1 2 3 0 2 3 2 2 32

ad
K a a t K a a t K a a t

dt
            . ........................................... (B10) 
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Substituting Eq. B10 into Eq. B4 we get the formulation for the K1X D-parameter: 

 

   3
0 2 3 2 2 3

1 2 3

2( ) 1
( ) 

a
K a a t K a a t

D t
K a a t

    
 


. ............................................................. (B11) 

 

I can further simplify Eq. B11 by using another recurrence relation from Abramowitz and 

Stegun, Handbook of Mathematical Functions (p. 376, Eq. 9.6.26(I)) given by: 

 

           1 1

2
exp 1 exp 1 expv v v

v
v i K z v i K z v i K z

z
             . .................. (B12) 

 

Rearranging Eq. B12 for the highest order Bessel function leads to: 

 

           1 1

2
exp 1 exp 1 expv v v

v
v i K z v i K z v i K z

z
             . .................. (B13) 

 

Substituting 1v   and 2 3z a a t   into Eq. B13 results in: 

 

         2 2 3 0 2 3 1 2 3
2 3

2
exp 2 expi K a a t K a a t i K a a t

a a t
     


. .................... (B14) 

Substituting Eqs. B8-9 into Eq. B14 yields: 

 

     2 2 3 0 2 3 1 2 3
2 3

2
K a a t K a a t K a a t

a a t
    


. ................................................. (B15) 

 

Substituting Eq. B15 into Eq. B11, I dispose of the K2 Bessel function to obtain: 

 

     3 0 2 3 0 2 3 1 2 3
2 3

1 2 3

2

( ) 1
2 ( ) 

a K a a t K a a t K a a t
a a t

D t
K a a t

 
       


. .......................... (B16) 
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Simplifying Eq. B16 yields the final formulation of the K1X D-parameter as given by 

Eq. 5.3: 

 

 3 0 2 33

2 3 1 2 3

( ) 1
( ) 

a K a a ta
D t

a a t K a a t


  

 
. ........................................................................... (5.3) 

 

I can now proceed with the derivation of the b-parameter formulation for the K1X DCA 

model. I begin by recalling the formulation of the b-parameter function given by Eq. 2.6: 

 

1
( )

( )

d
b t

dt D t

 
  

 
. ........................................................................................................ (2.6) 

 

Eq. 5.3 is not well suited for direct substitution into the definition given by Eq. 2.6, since 

it is not in a full fraction form. I find that Eq. B11 is more suitable for the substitution, but 

I need to turn it into the full fraction form given by: 

 

   3 0 2 3 2 2 3 1 2 3

1 2 3

2 ( )
( )

2 ( ) 

a K a a t K a a t K a a t
D t

K a a t

      


. .......................................... (B17) 

 

Substituting Eq. B17 into Eq. 2.6 yields: 

 

    
1 2 3

3 0 2 3 2 2 3 1 2 3

2 ( )

2 ( )
( )

K a a td
b

dt a K a a t K a a t K a a t
t




    

 
 
 

. ..................................... (B18) 

 

To simplify the derivation, I introduce the following substitution functions: 

 

1 2 3( )A K a a t  , ....................................................................................................... (B19) 

 

 0 2 3B K a a t  , ...................................................................................................... (B20) 

 

 2 2 3C K a a t  . ...................................................................................................... (B21) 
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Rewriting Eq. B18 in terms of the substitution functions given by Eqs. B19-B21 yields: 

 

3 3

2
( )

2

d A
b t

dt a B a C A

 
    

. ..................................................................................... (B22) 

 

Applying the quotient rule to the Eq. B22 results in: 

 

   

 

3 3 3 3

2

3 3

2 2 2 2
( )

2

d d
A a B a C A A a B a C A

dt dt
b t

a B a C A

       
 

 
. .................................... (B23) 

Applying the sum rule to the Eq. B23 yields: 

 

 

 

3 3 3 3

2

3 3

2 2 2 2
( )

2

d d d d
A a B a C A A a B a C A

dt dt dt dt
b t

a B a C A

          
   

 
. ........................ (B24) 

 

Now I need to differentiate the substitution functions A, B and C. I begin with the 

function A. The derivative of the Eq. B19 is given by: 

 

1 2 3( )
d d

A K a a t
dt dt

  . ............................................................................................. (B25) 

 

Notice that Eq. B25 is equivalent to the Eq. B10. Therefore Eq. B25 becomes: 

 

   3
0 2 3 2 2 32

ad
A K a a t K a a t

dt
       . ............................................................... (B26) 

 

Taking the derivative of Eq. B20 yields: 

 

 0 2 3

d d
B K a a t

dt dt
  . ............................................................................................ (B27) 
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From Abramowitz and Stegun, Handbook of Mathematical Functions (p. 376, 

Eq. 9.6.27(II)): 

 

   0 1

d
K z K z

dz
  . ................................................................................................. (B28) 

 

Using the identity given by Eq. B28 to the Eq. B27 and applying the chain rule yields: 

 

 3 1 2 3

d
B a K a a t

dt
   . ............................................................................................ (B29) 

 

The derivative of Eq. B21 is given by: 

 

 2 2 3

d d
C K a a t

dt dt
  . ............................................................................................ (B30) 

 

Substituting 2v   and 2 3z a a t   into Eq. B5 leads to: 

 

   
   
   

1 2 3

2 2 3 3

3 2 3

exp
2 exp 2

exp 3

i K a a td
i K a a t a

dt i K a a t






 
         

................................... (B31) 

 

Substituting Eqs. B8-B9 and their product into Eq. B31 yields: 

 

     3
2 2 3 1 2 3 3 2 32

ad
K a a t K a a t K a a t

dt
            . ............................................ (B32) 

 

Notice that Eq. B32 is equivalent to Eq. B30. Therefore Eq. B30 becomes: 

 

   3
1 2 3 3 2 32

ad
C K a a t K a a t

dt
       . ............................................................... (B33) 
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However, I do not need the third order Bessel function in my derivation, so I apply the 

order reduction recurrence relation given by Eq. B13. Substituting 2v   and 2 3z a a t   

into Eq. B13 results in:  

 

       

   

3 2 3 1 2 3

2 2 3
2 3

exp 3 exp

4
exp 2

i K a a t i K a a t

i K a a t
a a t

 



  

 


 .......................................... (B34) 

 

Substituting Eqs. B8-B9 and their product into Eq. B34 yields: 

 

     3 2 3 1 2 3 2 2 3
2 3

4
K a a t K a a t K a a t

a a t
    


. ................................................. (B35) 

 

Substituting Eq. B35 into Eq. B33 leads to: 

 

   3
1 2 3 2 2 3

2 3

4
2

2

ad
C K a a t K a a t

dt a a t

 
      

. ................................................. (B36) 

 

Opening the brackets in Eq. B36 yields: 

 

   3
3 1 2 3 2 2 3

2 3

2ad
C a K a a t K a a t

dt a a t
    


......................................................... (B37) 

 

Now I write out all the results needed to complete the derivation: 

 

  

 

3 3 3 3

2

3 3

2 2 2 2
( )

2

d d d d
A a B a C A A a B a C A

dt dt dt dt
b t

a B a C A

      
 

 
, ......................... (B24) 

 

1 2 3( )A K a a t  , ....................................................................................................... (B19) 

 

 0 2 3B K a a t  , ...................................................................................................... (B20) 
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 2 2 3C K a a t  , ...................................................................................................... (B21) 

 

   3
0 2 3 2 2 32

ad
A K a a t K a a t

dt
       , ............................................................... (B26) 

 

 3 1 2 3

d
B a K a a t

dt
   , ............................................................................................ (B29) 

 

   3
3 1 2 3 2 2 3

2 3

2ad
C a K a a t K a a t

dt a a t
    


......................................................... (B37) 

 

I am ready to substitute Eqs. B19-B21, B26, B29, B37 into Eq. B24. Note that, since all 

the arguments of the modified Bessel functions are equivalent, I will not write them out 

until the final stage of the derivation procedure to avoid overcrowding. After the 

substitution Eq. B24 becomes: 

 

   

   

 

3
0 2 3 0 3 2 1

3 3
1 3 3 1 3 3 1 2 0 2

2 3

2

3 0 3 2 1

2 2
2

2
2 2

2
( )

2

a
K K a K a K K

a a
K a a K a a K K K K

a a t
b t

a K a K K

       
                  

 
. .............. (B38) 

 

Opening the first round of brackets yields: 

 

  

 

3 0 2 3 0 3 2 1

2
2 3

1 3 1 2 3 0 3 2
2 3

2

3 0 3 2 1

2

2
2 2

( )
2

a K K a K a K K

a
K a K K a K a K

a a t
b t

a K a K K

   

 
      

 
. ................................................ (B39) 

 

Opening the second round of brackets yields: 
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  

 

3 0 3 2 3 0 3 2 1

2
2 3

1 3 1 2 3 0 3 2
2 3

2

3 0 3 2 1

2

2
2 2

( )
2

a K a K a K a K K

a
K a K K a K a K

a a t
b t

a K a K K

   

 
      

 
. ................................................ (B40) 

 

Opening the brackets of the first term of the numerator of the Eq. B40 leads to: 

 

   2 2 2
3 0 3 2 3 0 3 2 1 3 0 3 0 2 3 0 1

2 2 2
3 0 2 3 2 3 1 2

2 2

2

a K a K a K a K K a K a K K a K K

a K K a K a K K

       

  
. .................. (B41) 

 

Adding similar terms yields: 

 

    2 2 2
3 0 3 2 3 0 3 2 1 3 0 3 0 2 3 0 1

2 2
3 2 3 1 2

2 2 2

2

a K a K a K a K K a K a K K a K K

a K a K K

       

 
. .................. (B42) 

 

Substituting Eq. B42 into the numerator of the Eq. B40 and opening the last round of 

brackets results in: 

 

2 2 2 2 2
3 0 3 0 2 3 0 1 3 2 3 1 2

2
2 2 3

3 1 1 2 3 0 1 3 1 2
2 3

2 2 2

4
4 2 2

Numerator a K a K K a K K a K a K K

a
a K K K a K K a K K

a a t

     

   


. .......................... (B43) 

 

Cancelling the similar terms yields: 

 

2
2 2 2 2 2 2 2 3

3 0 3 0 2 3 2 3 1 1 2
2 3

4
2 4

a
Numerator a K a K K a K a K K K

a a t
     


. .................... (B44) 

 

Simplification of Eq. B44 results in: 

 

2 2 2 2
3 0 0 2 2 1 1 2

2 3

4
2 4Numerator a K K K K K K K

a a t

 
       

. ............................. (B45) 
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Recall Eq. B15 given by: 

 

     2 2 3 0 2 3 1 2 3
2 3

2
K a a t K a a t K a a t

a a t
    


. ................................................. (B15) 

 

Substituting Eq. B15 into the combined terms of Eq. B45 yields: 

 

2 2
0 0 0 1 2

2 32
3

2
1 1 0 1

2 3 2 3

2
2

4 2
4

K K K K K
a a t

Numerator a

K K K K
a a t a a t

  
                  

. ................................... (B46) 

 

Opening the brackets leads to: 

 

 

2 2 2
0 0 0 1 22

3 2 3

2 2
1 0 1 12

2 3 2 3

4
2

4 8
4

Numerator
K K K K K

a a a t

K K K K
a a t a a t

    


  
 

. ............................................ (B47) 

 

Cancelling out the similar terms in Eq. B47 results in: 

 

 
2 2 2 2

0 2 1 122
3 2 3

8
3 4

Numerator
K K K K

a a a t
    


. ................................................ (B48) 

 

Combining the similar terms yields: 

 

 
2 2 2

0 1 222
3 2 3

8
3 4

Numerator
K K K

a a a t

 
     

  
. .................................................. (B49) 

 

Simplifications of Eq. B49 results in: 
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 
 

2 2
2 3 12 2 2

3 0 22

2 3

4 2
3

a a t K
Numerator a K K

a a t

        
 
 

......................................... (B50) 

 

Finally, I substitute Eq. B50 into Eq. B40 to get the formulation of the b-parameter of the 

K1X model as given by Eq. 5.4: 

 

   
 

 

     

22
2 22 3 1 2 3

0 2 3 2 2 32

2 32
3 2

3 0 2 3 2 2 3 1 2 3

4[( ) 2]
3

( )
[ ] 2

a a t K a a t
K a a t K a a t

a a t
b t a

a K a a t K a a t K a a t

   
     

  
      

. ........ (5.4) 
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APPENDIX C 

DERIVATION OF THE LIMITING FORM OF THE K1X DECLINE CURVE 

MODEL 

 

The D-parameter function for the K1X model is given by Eq. 5.3: 

 

3 3 0 2 3

2 3 1 2 3

( )
( ) 1

( )

a a K a a t
D t

a a t K a a t


  

 
. ............................................................................ (C1) 

 

Now let us inspect the second term containing the modified Bessel functions. Recall the 

Hankel's asymptotic expansion of the modified Bessel function of the second kind for a 

large argument: 

 

  
 

   
 

2 2 2 2 22

2 3

4 1 4 9 4 1 4 9 4 254 1
( ) 1

2 8 2! 8 3! 8
z

v

v v v v vv
K z e

z z z z

 
         
  

  . ........ (C2) 

 

Since the second term of Eq. C1 is not dominant, I substitute the first order expansion 

given in Eq. C2 to find a limiting form of the ratio of the Bessel functions in Eq. C1 

yielding: 

 

2

0
2

1

4 0 1
1

2 8( )

( ) 4 1 1
1

2 8

z

z

e
z zK z

K z
e

z z









  
 

 
  
 

 

. .................................................................................. (C3) 

 

Simplification of Eq. C3 yields: 

 

0

1

1
1( ) 8 1 48 1

3( ) 8 3 8 31
8

K z zz
K z z z

z

 
   

 
. ........................................................................... (C4) 
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Substituting the argument into Eq. C4 and further simplifying yields: 

 

 
   

0 2 3

1 2 3 2 3

1
1

2 3 / 4

K a a t

K a a t a a t


 

  
. .......................................................................... (C5) 

 

To simplify further operations, I discard the ¾ term as it is not significant for large values 

of t and obtain: 

 

 
   

0 2 3

1 2 3 2 3

1
1

2

K a a t

K a a t a a t


 

 
. .................................................................................... (C6) 

 

Substituting Eq. C6 into Eq. C1 I get: 

 

 
3 3

3
2 3 2 3

( ) 1
2

a a
D t a

a a t a a t
   

 
. .......................................................................... (C7) 

 

Performing simple algebraic operations on Eq. C7 yields: 

 
3

3
2 3

( ) 1
2

a
D t a

a a t
  


, .......................................................................................... (C8) 

 

Eq. C8 is a limiting form of the D-parameter of the K1X model. Taking the limit of 

Eq. C8 as t approaches infinity, I obtain the expression for the terminal decline parameter 

as: 

 

inf 3 1D a  . ................................................................................................................ (C9) 

 

Notice that Eq. C9 is identical to the K1X terminal decline formulation. 

 

To get the expression for the rate-time relationship, I substitute Eq. C8 into the definition 

of the D-parameter given by Eq. 2.4, yielding: 
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 
 

 
3

3
2 3

1
1

2

dq t a
a

q t dt a a t
   


. .......................................................................... (C10) 

 

Separating and integrating Eq. C10 results in: 

 

     
3

3
2 3

1
1

2

a
dq t a dt

q t a a t

 
      
  , ............................................................... (C11) 

 

   3 2 3

1
ln ln

2
q t c a t a a t t        , ................................................................... (C12) 

 

Introducing the initial production rate iq  as the integration constant c yields: 

 

   3 2 3

1
ln / ln

2iq t q a t a a t t       . ................................................................... (C13) 

 

Exponentiation of Eq. C13 leads to: 

 

   3 2 3

1
/ exp ln

2iq t q a t a a t t      
 

. ................................................................. (C14) 

 

Simplifying Eq. C14 yields: 

 

   

 
3

2 3

exp
/

1
exp ln

2

i

a t t
q t q

a a t

 


  
 

, ............................................................................... (C15) 

 

   
 

3

1/2

2 3

exp 1
i

a t
q t q

a a t

   


. ....................................................................................... (C16) 

 

Eq. C16 is the limiting form of the K1X rate-time relationship given by Eq. 5.1. 

Substituting Eq. C9 into Eq. C16, I obtain the formulation of the limiting form of the 

K1X model in terms of terminal decline given by: 
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   
 

inf
1/2

2 inf

exp

1
i

D t
q t q

a D t




   
. ................................................................................... (C17) 

 

I continue by deriving the formulation for the b-parameter. In order to do so, I begin by 

manipulating Eq. C8 in the following manner: 

 

   
 

3 2 3 3 2 3

2 3

2 2
( )

2

a a a t a a a t
D t

a a t

   



, ..................................................................... (C18) 

 

  
 

3 2 3 3

2 3

2 1
( )

2

a a a t a
D t

a a t

  



. ................................................................................. (C19) 

 

Now I substitute Eq. C19 into the definition of the b-parameter given by Eq. 2.6, 

yielding: 

 

    
 

3 2 3 3

2 3

2 1
1

2

a a a t ad
b t

a a tdt

   
   

, ..................................................................... (C20) 

 

   
  

2 3

3 2 3 3

2

2 1

a a td
b t

dt a a a t a

 
     

. ......................................................................... (C21) 

 

The derivative of Eq. C21 results in: 

 

 
         

  

2 3
3 2 3 3 2 3 3 2 3 3

2

3 2 3 3

2 2 1 2 2 1

2 1

d a a t d
a a a t a a a t a a a t a

dt dtb t
a a a t a


              


     

 .. (C22) 

 

 
      

  

2
3 3 2 3 3 2 3 3 2 2 3 3 3

2

3 2 3 3

2 2 1 2 2

2 1

d
a a a a t a a a t a a a a t a t a

dtb t
a a a t a

              


     
, ........ (C23) 
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       
  

2
3 3 2 3 3 3 2 3 3

2

3 2 3 3

4 1 2 4 1

2 1

a a a a t a a a a t a
b t

a a a t a

     


     
. ............................................ (C24) 

 

Finally, I have a formulation for the limiting form of the b-parameter of the K1X model: 

 

 
  

2
3

2

3 2 3 3

2

2 1

a
b t

a a a t a


    
. ........................................................................... (C25) 

 

I continue by deriving the expression for cumulative production for the limiting form of 

the K1X model. To do so, I need to integrate Eq. C15: 

 

   
 

3

1/20
2 3

exp 1t

D

a t
Q t dt

a a t

   
 . ................................................................................. (C26) 

 

I will attempt to take the integral using the method of substitution. In order to do so, I 

need to transform the arguments. I begin with the argument of the exponential function: 

 

 3 2 3 21a t a a t t a     , ........................................................................................ (C27) 

 

   3 2
3 2 3

3

1
a t a

a t a a t
a


    , ................................................................................ (C28) 

 

    3 3 2 2 2
3 2 3

3

1
a t a a a a

a t a a t
a

  
    , ............................................................... (C29) 

 

     2 3 2
3 2 3 2

3 3

1
a a t a

a t a a t a
a a


      , ............................................................... (C30) 

 

    3 2 3 2
3 2

3 3

1
1

a a a t a
a t a

a a

 
    . ..................................................................... (C31) 

 

Substituting Eq. C31 into Eq. C26, and moving the constant outside the integral, leads to: 
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     
 
3 2 3 32

2 1/2
03 2 3

exp 1 /
exp[ ]

t

D

a a a t aa
Q t a dt

a a a t

     
 . ......................................... (C32) 

 

Introducing the substitution function z defined by: 

 

    3 2 3

3

1a a a t
z t

a

 
 . ....................................................................................... (C33) 

 

I continue by manipulating the argument of the power-law in the denominator to get an 

expression with respect to the substitution variable: 

 

2
2 3a a t Cz  , ........................................................................................................... (C34) 

 

   3
2 3 2 3

3

1a
a a t C a a t

a


   , .................................................................................. (C35) 

 

3

3 1

a
C

a



, ................................................................................................................ (C36) 

 

23
2 3

3 1

a
a a t z

a
 


. .................................................................................................... (C37) 

 

The last step in the substitution procedure is to calculate the derivative of the substitution 

function: 

 

     3 2 3

3

1a a a t
dz t d dt

a

 
 , ................................................................................ (C38) 

     
  
3 2 3 3

3 2 3

3

1 /

1
2

d a a a t a
dz t dt

a a a t

a

   
 

, ........................................................................ (C39) 
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 
  

3

3 2 3

3

1

1
2

a
dz t dt

a a a t

a




 
. ............................................................................... (C40) 

 

Substituting Eq. C33 into Eq. C40 and rearranging for dt yields: 

 

3

2

1

z
dt dz

a



. ............................................................................................................ (C41) 

 

Now, I can integrate by substitution using Eqs. C32, C33, C37, C41, arriving at: 

 

 
2

2
2 1/2

03 323

3

exp 2
exp[ ]

1

1

t

D

za z
Q t a dz

a aa
z

a

   
 

  

 . ........................................................ (C42) 

 

Assuming z to be non-negative, Eq. C42 becomes: 

 

 
 

2
2

23

0
3 3

exp[ ]

2 exp
1

t

D

a
a

a
Q t z dz

a a


     . ................................................................... (C43) 

 

Recall the definition of the error function: 

 

  2

0

2
exp

t

erf t z dz


    . ................................................................................... (C44) 

 

Substituting Eq. C44 into Eq. C43, and returning to the original variables, yields the 

expression for the dimensionless cumulative production of the limiting form of the K1X 

DCA model: 

 

 
 

     3 2 3 3 22 2 3

3 33 3

1 1exp[ / ]

1
D

a a a t a aa a a
Q t erf erf

a aa a

             
         

. ....... (C45) 
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I can derive an alternate form of Eq. C45 by applying the incomplete Gamma function 

definition of the error function that is given by: 

 

  21 1
1 ,

2
erf x x


    
 

. ....................................................................................... (C46) 

 

Substituting Eq. C46 into Eq. C45, I obtain the following alternate form of the 

dimensionless cumulative production relation: 

 

 
 

    3 2 3 2 32 2 3

3 33 3

1 1exp[ / ] 1 1
, ,

2 21
D

a a a a a ta a a
Q t

a aa a

      
      

      
. ............... (C47) 

 

Now I need to compare the derived limiting form of the K1X model with the original 

form. Figs. C1-C2 show the type curves for the limiting form of the K1X model with 

respect to the variable Di- (or a2-) parameter and the terminal decline Dinf- (or a3-) 

parameter respectively. 

 

From the assumptions made during the derivation, I only expect a difference in the early-

time behavior of the limiting form of the K1X model. From Figs. C1-C2, I observe that 

the characteristic behavior is very similar to the K1X model. To get a higher resolution of 

the deviation between the limiting form and the model, I plot the "qDb" values for both 

models with all parameters kept equal. The comparison plot is shown on Fig. C3. 

 

Inspecting Fig. C3, I note that the derivative functions D- and b-parameter converge in 10 

days, thus confirming the validity of our assumption that the limiting form will only 

differ during very early times. The rate function, however, is shifted down for the 

limiting form, meaning that the Di (a2-) and qi- parameters should be different for the two 
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models when approximating the same data, while the terminal decline parameter remains 

identical for both models. Thus, the correlation given by Eq. 5.9 is valid for the limiting 

form. 

 

 

 

Figure C1–– Log-log "qDb" plot of the limiting form of the K1X model type curves 

with respect to various values of the initial decline parameter. 
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Figure C2–– Log-log "qDb" plot of the limiting form of the K1X model type curves 

with respect to various values of the terminal decline parameter. 
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Figure C3–– Log-log "qDb" plot of the comparison between the K1X and the limiting 

form of the K1X model with equal parameter values.  
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APPENDIX D 

DERIVATION OF THE GENERAL FORM OF THE K1X DECLINE CURVE 

MODEL 

 

The original form of the K1X model as given by Eq. 5.1 as well as the limiting form 

given by Eq. C16 are valid only for a well experiencing transient "linear flow" regime 

characterized by the -1/2 slope. However, this is a specific case that is not necessarily 

observed in the production data. In order to generalize the model for other types of 

transient flow regimes, I propose a new form of a rate-time relationship given by: 

 

   
 

3

1/

2 3

exp 1
i n

a t
q t q

a a t

   


, ......................................................................................... (D1) 

 

where n is the "slope of transient flow" parameter. 

 

Recalling the definition of the D-parameter we have: 

 

   
 1 dq t

D t
q t dt

  , .................................................................................................. (2.4) 

 

   
 

 
 

1/
32 3

1/
3 2 3

exp 1

exp 1

n

n

a ta a t d
D t

dta t a a t

        
       

, ...................................................... (D2) 

 

   
 

     

 

3
1/ 3 3 3

2 3 2 3
1/

3 2 3

1
1 exp 1 exp 1

exp 1

n

n

a
a a t a t

a a t n a a t
D t

a t a a t

             
 

    
, ... (D3) 

 

   
3

3
2 3

1
a

D t a
n a a t

  


. ......................................................................................... (D4) 
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Recall the definition of the b-parameter: 

 

   
1d

b t
dt D t

 
   

 
, ...................................................................................................... (2.6) 

 

   
  

2 3

2 3 3 31

n a a td
b t

dt n a a t a a

 
      

, .......................................................................... (D5) 

 

         
  

3 2 3 3 3 2 3 3 3

2

2 3 3 3

1 1

1

na n a a t a a n a a t na a
b t

n a a t a a
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    

, ................................... (D6) 

 

 
  

2
3

2

2 3 3 31

na
b t

n a a t a a


    
. ............................................................................. (D7) 

Finally, I derive an expression for the cumulative production function. In order to 

simplify the derivation, I integrate the dimensionless rate function: 

 

   
 

3

1/
0

2 3

exp 1t

D n

a t
Q t dt

a a t

   
 , ................................................................................... (D8) 

 

I approach the integration using the method of variable substitution. From Eq. C31: 

 

    3 2 3 2
3 2

3 3

1
1

a a a t a
a t a

a a

 
    . ..................................................................... (C31) 

 

Then, I introduce the substitution function z given by: 

 

     3 2 3

3

1a a a t
z t

a

 
 . ............................................................................................ (D9) 

 

With the new variable, Eq. C37 becomes: 
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3
2 3

3 1

a
a a t z

a
 


. ..................................................................................................... (D10) 

 

Taking the derivative of Eq. D9 results in: 

 

 3 1dz a dt  . ......................................................................................................... (D11) 

 

Rearranging Eq. D11 for dt leads to: 

 

3 1

dz
dt

a



. ................................................................................................................ (D12) 

 

Substituting Eqs. D9, D10 and D12 into Eq. D8 yields: 
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2
2

3
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3
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1

t
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z a

a dz
Q t

aa
z

a

 
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 

 
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 . .................................................................... (D13) 

 

Moving all the constants outside the integral in Eq. D13 results in: 

 

 
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a

a
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
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Simplifying Eq. D14 yields: 

 

 
 

 
2

2
3
1 1/ 1/1/

0
3 3

exp[ ]
exp

1

t

D n nn

a
a
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Q t dz
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





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Recalling the definition of the incomplete Gamma function: 
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   1

0

, exp
x

mm x z z dz   . ................................................................................... (D16) 

 

Substituting Eqs. D9 and D16 into Eq. D15 yields a formulation of the dimensionless 

cumulative production function: 
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Recall the relation between the incomplete Gamma function and the general form of the 

exponential integral is given by: 

 

   1 1 ,m
mE x x m x   . .......................................................................................... (D18) 

 

Substituting Eq. D18 into Eq. D17, I derive the following alternative formulation for the 

dimensionless cumulative production function: 
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 ........................... (D20) 

 

Fig. D1 shows the type curves for the generalized form of the K1X model derived above 

with respect to the slope parameter n. Since the behavior of the other parameters should 
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be identical to the limiting form of the K1X model derived in Appendix C, I do not plot 

them.  

 

From Fig. D1 I observe that the slope values of the parameter n result in the same value 

of the b-parameter function before the onset of the terminal decline. I also observe that all 

the rates and the D-parameter functions shown on Fig. D1 converge at late times, proving 

that the terminal decline parameters are equivalent in the different slope curves and in the 

limiting form of the K1X, as well as in the original K1X model. Thus, the correlation 

given by Eq.5.9 is valid for the generalized model of the K1X rate-time model. 

 

 

 

Figure D1–– Log-log "qDb" plot of the generalized form of the K1X model type curves 

with respect to various values of the slope parameter. 


