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ABSTRACT 

Deconvolution is a useful tool for removing of the effects of non-constant production rate 

on the observed flowing pressures, or the effects of non-constant flowing pressure on the 

observed producing rates.  The caveat of deconvolution is that it is non-unique and 

numerically unstable.  To maximize the chance of success, an operator can run a controlled 

experiment in order to minimize these properties of the deconvolution.  Examples of such 

experiments are a stepped production rate test (constant rate steps) or stepped flowing 

pressure test (constant flowing pressure steps) where the value of a step is constant over a 

specified time interval.  These experiments are costly and therefore frequently not 

performed, thereby limiting the use of deconvolution as a practical tool for reservoir 

performance analysis. 

 

In this work we deconvolve both cases simultaneously—constant rate and constant flowing 

pressure—by correlation of the deconvolved responses.  A probabilistic graphic model 

(PGM) captures the relationships of influence (or probability) between the observed time, 

rate, and pressure values, and the unobserved latent constant-rate pressure function and 

constant-pressure rate function.  A stochastic algorithm using Hamiltonian Monte Carlo 

simulation iteratively solves and directly samples the solution space to illustrate the 

inherent non-uniqueness of the solution.  Acceptance or rejection of a specific iteration's 

proposed solution after evaluation of all functions ensures that acceptance only occurs if 
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all variables and functions are probabilistically likely given the posterior joint distribution 

of the entire PGM.  Numerical stability is achieved by solving the forward convolution 

problem–as opposed to the inverse deconvolution problem–as well as utilization of cost 

functions that are less biased by noise than the squared error cost function. 

The structure of the PGM is not altered no matter whether we choose to evaluate just the 

variable rate case or the variable pressure-drop case, both independently, both together 

(enforcing correlation), whether we impute missing data, correct data in error, or whether 

we are analyzing a single well or a multi-well case.  We verify our new method with 

analytical solutions and application to field cases. 
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1.  INTRODUCTION 

1.1 Motivation 

Recently, considerable advancements have been made in the computer science domain to 

solve problems involving operations on multi-dimensional arrays.  While these efforts have 

been primarily directed toward improving data-driven modeling, some of the algorithmic 

machinery has general application to scientific and engineering problems.  Specifically, 

research interest in convolutional neural networks has led to the development of highly-

optimized multi-dimensional convolution algorithms.  Additionally, to optimize or "train" 

neural networks, it is necessary to compute the gradient of the model's cost function with 

respect to each input.  This has led to development of frameworks that implement automatic 

differentiation algorithms that can efficiently compute the gradient of a convolution 

operation, such as TensorFlow1, PyTorch2, and Theano (Bergstra et al. 2010). 

Taken together, these algorithms enable construction of computational graphs of complex, 

high-dimensional problems involving hundreds or thousands of unknown variables and 

multiple convolution operations.  Even with such models, an exact calculation of the 

gradient can be performed, allowing optimization of these models without the instability 

or machine precision issues that stem from computing gradients numerically (such as by 

perturbation, or over iteration steps). 

 
1 Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. 
2 Paszke et al., Automatic Differentiation in PyTorch, 2017. 
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Other researchers primarily interested in solving Bayesian statistical problems, such as 

hierarchical models that are intractable with analytic methods, have developed open source 

libraries built upon the computational graph frameworks.  Some examples are Edward3, 

Stan4, PyMC3 (Salvatier et al. 2016), and TensorFlow Probability.  These libraries abstract 

much of the mechanics of constructing and manipulating multi-dimensional arrays, 

allowing a user to write simple statements that may look like trivial variable assignments, 

but actually direct complex actions of sampling random variables from probability 

distributions, relating those variables, and computing the probabilistic model likelihood 

given all variates.

Lastly, no matter the underlying framework and abstraction of a programming library, 

high-dimensional problems are difficult to optimize for the simple reason that as the 

number of dimensions increases, the probability of stepping all variables in the correct 

direction decreases exponentially.  The traditional methods of optimization of inverse 

problems involves Markov Chain Monte Carlo (MCMC), typically in combination with 

the Metropolis algorithm for acceptance of proposal steps.  Two breakthroughs have 

recently improved MCMC methods by making use of gradient information.  First, 

Hamiltonian Monte Carlo (HMC) has improved the ability to step in the correct direction 

by exploiting an analogy between the sampled variate and gradient of log likelihood, and 

the potential and kinetic energy relationship described by Hamiltonian dynamics.  This 

minimizes the random walk behavior and sensitivity to correlated parameters of MCMC, 

 
3 Tran et al., Edward: A library for Probabilistic Modeling, Inference, and Criticism, 2016. 
4 Carpenter et al., Stan: A Probabilistic Programming Language, 2017. 
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at the cost of great sensitivity to user choices of step size and length.  Second, an algorithm 

that performs automatic tuning of step size, the No-U-Turn Sampler, has been developed 

that eliminates the issues of step size and length for HMC.  By exploiting the fact that the 

Hamiltonian is invariant to time, and using an initial random momentum as a seed, forward-

time and backward-time processes of parameter steps can be simulated until a reversal in 

the momentum vector occurs.  In practical terms, the model parameters are stepped as far 

as possible, thereby gaining back sampling efficiency and reducing convergence time. 

These algorithmic tools lead us to a re-inspection of deconvolution with an optimization 

approach.  While recent methods have focused on analytic solutions via solving systems of 

linear equations, those methods require an assumption of a least-squares error model that 

is not appropriate for time-variant data series, and hand-filtering of data to avoid significant 

bias by even small outliers.  Instead, by optimizing the convolution problem, we 

immediately obtain a much more stable mathematical operation (vs. deconvolution) and 

may arbitrarily compose our model within the computational graph framework.  This 

enables us to employ robust cost functions that do not require any data filtering, and 

perform numerical operations during optimization time, such as to perform regularization 

of a proposal model evaluated from stepped parameters. 

Furthermore, deconvolution is an inherently uncertain process.  We are attempting to 

generation a function that would be the solution of the diffusivity equation for a well 

geometry corresponding to the data under analysis.  Working the forward problem, we can 

observe that multiple reservoir geometries may generate the same function; or nearly 

enough such that analysts cannot distinguish between them.  Bayesian methods are ideal 
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for this type of problem and are the de facto standard for solving inverse problems in 

another industry domain: seismic inversion.  Just as geophysicists may bound their solution 

space by a physical model that relates time and distance, we too can bound our solution 

space by enforcing positivity of rates and pressures and their time-variant characteristics 

such as monotonicity and smoothness.  This provides the basis for an a priori distribution 

of the constant-rate pressure and constant-pressure rate functions, which we will utilize in 

conjunction with well data to obtain an a posteriori distribution of possible functions.  

While prior work has generated error ranges around a mean response, our search of the 

literature shows that generation of a full distribution of possible deconvolved functions to 

be a novel approach, and therefore a worthwhile problem to explore. 

1.2 Statement of the Problem 

For decades, deconvolution has been a useful tool in the analysis of well performance.  

Removal of the effects of non-constant production rate on the observed flowing pressures, 

or the effects of non-constant flowing pressure on the observed producing rates, allows 

comparison of producing rates and pressures directly against those predicted by analytic 

derivation of rate and pressure solutions.  The caveat of deconvolution is that, typically, 

one must choose the variable rate case (Eq. 1.1) or the variable pressure-drop (Eq. 1.2) 

case; that is, whether the data are treated as a superposition of constant producing rates or 

as a superposition of constant flowing pressures. 

0

1
( ) ( ) ( )
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r

p t q p t d
q

      ..................................................... Variable Rate Case, 1.1 
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Whether the assumption of variable rate or variable pressure-drop is valid is determined by 

the deviation of the operating conditions of the well from the expected case.  For example, 

analysis of the variable rate case is hampered by any period of wide-open flow where the 

predominant boundary condition at the sand face is no longer the production rate, but 

instead the flowing pressure.  Likewise, analysis of the variable pressure-drop case is 

complicated by any period of shut-in, where the producing rate is constant at a value of 

zero.  To put it simply, we can state that the success of either approach depends on the 

assumed flowing condition matching the actual flowing conditions. 

We may derive a solution for either case from the same initial state, indicating that "the 

reservoir doesn't know the difference." In doing so, we might expect each to be accurate to 

the degree of agreement of the operating conditions with assumed by each case.  Further 

improvement may come from enforcing relationship or correlation between the two.  

However, given that we know that error may result from deviance from constant rate or 

pressure operation conditions, the correlation must also allow, or even expect, a degree of 

error.  

We use a probabilistic graphical model (PGM) (Fig. 1.1) to represent the variable rate case, 

the variable pressure-drop case, and their correlation to one another.  The PGM captures 

the conditional dependencies that exist in the relationships of our variables.  Latent 

(hidden) variables on the left represent the beta-derivatives (log-log derivatives) of the 

constant-rate pressure and constant-pressure rate functions (kernel functions).  Convolution 
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of the kernel functions with observed rates and pressures occurs in each grouped box.  The 

variables on the right represent the outputs of the convolution, with Duhamel's principle 

applied to correlate the two kernel functions.  Observed variables are indicated with double 

line borders. 

 

 
Figure 1.1 — Probabilistic graphic model (PGM) structure. 

 

Exploitation of the graph structure allows us to infer the value of a variable given 

observation of another.  For example, we may reconstruct the constant flowing pressure 

type curve from observation of the variable rate production data and use of a correlating 

function.  Further, we may provide interpretation of the constant flowing pressure type 

curve to exert influence on the constant rate type curve. 
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The use of the PGM provides a natural framework for a Bayesian approach to a situation 

in which multiple variables give evidence for a single variable.  This is an ideal property 

for the ill-conditioned problem of deconvolution, where even a known function 

(convolution), known output (observed rate profile), and known input (observed pressure 

profile) is not adequate to uniquely resolve the remaining input (constant-rate pressure 

profile).  As opposed to a frequentist statistical framework in which the "true" parameters 

are fixed and the data is uncertain, the Bayesian framework treats the data as fixed and the 

parameters uncertain.  This aligns well with our real-world perspective in which we are 

attempting to determine the parameters of an unknown function given our observation of a 

variable-rate or variable-pressure profile.  We have observed the data; it does not change.  

It is the function that must be determined. 

Given that we explicitly treat every variable's "true" parameters as uncertain, we may 

compile information from among all observed variables that contain information about 

another specific unobserved variable, respective to the inverse of variance of each variable 

we have observed.  There are several advantages to this; primarily, the data may provide 

conflicting evidence which the Bayesian approach automatically addresses: 

● First, we do not have to give preference for one variable while discarding others. 

● Second, the method should be highly tolerant of errors.  The numerical optimization 

scheme allows utilization of robust, non-analytic cost functions. 

● Third, the posterior distribution of deconvolved functions is directly sampled, and may 

be viewed for better understanding of uncertainty. 
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● Fourth, if any part of the data are missing, we may impute (i.e. reconstruct) the missing 

data from evidence among all variables.  For example, we can impute: 

— all or part of the constant-pressure rate profile when solving for the constant-rate 

pressure profile. 

—all or part of the variable-pressure profile when solving for the constant-rate 

pressure profile. 

— all or parts of both the variable-rate and variable-pressure profiles, even if the 

missing parts fall on different intervals. 

— the initial reservoir pressure, or correct an incorrect initial guess. 

— other possibilities exist, including combinations of the above. 

The PGM captures the conditional dependencies that exist between variables.  Evaluation 

of all variables, and all variable relationships, in the PGM occurs simultaneously.  In the 

multi-well case, we treat each well as an additional observation of a point in the convolved 

variable rate or variable pressure-drop function.  This representation maintains the exact 

same model no matter whether we wish to evaluate just the variable rate case (or vice 

versa), both independently, both together (enforcing correlation), or whether we are 

analyzing a single well or a multi-well case. 

A regression of the solution occurs with a stochastic algorithm, Markov Chain Monte Carlo 

simulation (MCMC).  MCMC methods are well suited for non-unique inverse model 

problems.  By random sampling the latent variables of a model and comparing the model 

output against observations, the posterior distribution of the model may be directly 

sampled.  Then, any latent variables in the model are explicitly known.  We also avoid the 
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complexity of inverting a convolution function and solving the resulting deconvolution 

function; however, we introduce the high-dimensional and non-linear problem of 

determining how to construct a proposal for the constant-rate pressure drop or constant-

pressure rate functions. 

Recent advances in machine learning techniques for direct sampling of posterior 

distributions of complex non-linear models merits an investigation into application of these 

techniques as a potential avenue for solving our problem.  Hoffman and Gelman (2014) 

have introduced the No-U-Turn Sampler (NUTS) which improves upon prior Hamiltonian 

Monte Carlo (HMC) methods.  HMC (Duane et al. 1987) is itself an improvement on 

MCMC whereby the total "energy" of a variable is conserved by consideration of the 

variable's position (the current value) and momentum (the negative log probability density 

function (PDF)).  While HMC suppresses the random walk nature of MCMC, the cost of 

implementation is that the gradient of the log-PDF must be known, and success depends 

upon hand-tuned step-size.  NUTS, then, improves upon HMC by introducing an adaptive 

form that requires no hand-tuning. 

The convolution algorithms that we make use of were developed for other machine learning 

methods such as deep learning (neural networks).  The algorithms may operate in the real 

domain or the spectral domain by automatic determination of which provides better 

computing performance.  Generally, as the length of the arrays increases, convolution 

performed by use of the Finite Fourier Transform begins to show better computing 

performance.  However, the inputs and outputs of the convolution algorithms are always 

in the real time domain. 
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We generate the constant-pressure rate and constant-rate pressure functions prior to 

acceptance of a given iteration of the MC algorithm, allowing us to state that they are 

generated simultaneously.  The functions may also be correlated by use of Duhamel's 

principle.  This allows us to apply our deconvolution algorithm no matter whether a subject 

well is in a state of constant rate or constant pressure-drop.  Observed variables may be 

"masked" over intervals where the assumption of constant-rate or constant-pressure not are 

valid.   

Due to the probabilistic nature of the approach, we may construct arbitrary cost functions 

to judge goodness of fit.  The advantage of doing so is that our method becomes less 

sensitive to outliers in the data.  Additionally, we may provide regularization to any metric 

of interest without requiring a reformulation of our cost function in contrast to what would 

occur in a minimization of least squares approach.  It follows that extension to the case of 

multi-well deconvolution is treated as repeated observations of the rate and/or pressure 

variables and is no more difficult to perform than the single well case.  The multi-well case 

is a simple hierarchical model in which we assume every well must have the same 

dimensionless rate or pressure function. 

Flow regime diagnosis is expressed as a priori knowledge (a "prior") for the beta-

derivative, β(t) (Eq. 1.3), over specified time intervals. 

ln ( )
( ) ( )

ln ( )

d f t t
t f t

dt t f t
  

 .......................................................................................... 1.3 

Eq. 1.3 can be applied to the constant-pressure rate function or the constant-rate pressure 

function – βp (t ) and βq (t ).  When the constant-rate pressure function and constant-pressure 
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rate function are correlated, a prior on βq (t ) will also affect the behavior of βp (t ) as 

influence flows left-to-right in Fig. 1.1 from to βq (t ) to t, and back right-to-left to βp (t ).  

The model's graph, e.g.  Fig. 1.1, allows visualization of the probability flows. 

The beta-derivative for each case is constructed with a Gaussian Process (GP).  A GP is 

non-parametric function that acts as a prior over functions (as opposed to a prior over scalar 

values).  Rather than expressing β (t ) as a series of distributions at each observed time step, 

the GP expresses all the possible β (t ) functions that yield the observed rates and pressures.  

The advantage of a non-parametric method is that absolutely no prior assumption is made 

regarding the form of the deconvolved response.  Transformations of the GP values enforce 

the constraints that β (t ) be strictly positive and monotonic. 

The utility of the PGM allows an interpretation of the constant-rate pressure function, such 

as would occur in pressure transient analysis (PTA), to be applied generally to any well 

history.  This extends to any other variable in the model, including variables typically in 

the domain of rate transient analysis (RTA).  By simultaneous evaluation, we take a first 

step towards merging RTA & PTA. 

1.3 Objectives 

The main objectives of the work are: 

● To provide a probabilistic graphical model for simultaneous variable rate / variable 

pressure-drop deconvolution. 

● To provide a means of inferring the posterior distribution of the probabilistic graphical 

model. 



11 

● To validate the probabilistic graphic model across a variety of single and multi-well 

cases. 

● To evaluate variable-rate / variable-pressure field performance data using the model 

to perform simultaneous deconvolution of both cases. 
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2.  LITERATURE REVIEW 

Deconvolution has been discussed in the petroleum literature for the past 70 years dating 

back to the seminal work of van Everdingen and Hurst (1949).  They presented the 

development of the relationship between the constant-rate pressure solution and the 

constant-pressure rate solution in Eqs. 1.1 & 1.2 in both the real time domain (Eq. 2.1), 

and in the Laplace domain (Eq. 2.2). 

0
( ) ( )

Dt

D D D Dt q p t d     .............................................................................................. 2.1 

2

1
( ) ( )D Dq s p s

s


 ............................................................................................................... 2.2 

Most methods introduced into the literature invert and solve a discretized form of Eq. 2.1.  

Less frequently, due to the physical challenges involved with setting a fixed pressure 

boundary condition in a well test, as opposed to a fixed flow rate boundary condition, do 

methods in the literature solve a discretized form Eq. 2.2.  Eq. 2.3 and Eq. 2.4 provide the 

discretized forms. 

 1 1
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n

i i cr i
ir

p t q q p t t
q  



    
 ................................................................................ 2.3 

 1
1

1

1
( ) ( )

n

i i cp
ii

i
r

t tq t p p q
p p 


   

 
 ........................................................................ 2.4 

Recent efforts have formulated the deconvolution problem as a system of linear equations 

solved by minimization of least squares, and have added additional constraints in efforts to 

increase stability of this approach.  Von Schroeter, Hollaender, and Gringarten (2001, 
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2002, 2004), and Ilk, Valkó, and Blasingame (2005, 2006) both introduced real time 

domain methods that solve a weighted least squares problem with additional regularization 

terms for the "non-smoothness" of the solution.  The author's approaches differ in how 

constraints are enforced.  Von Schroeter, Hollaender, and Gringarten (2001, 2002, 2004) 

enforce monotonicity of the pressure function by means of the "encoding of the solution."  

We refer to this as a variable transformation and note that an exponential transform ensures 

the positivity of the von Schroeter solution.  The Ilk method does not ensure monotonicity, 

however, their regularization scheme makes monotonicity a likely (but not certain) 

outcome. 

Levitan (2003, 2005) and Levitan, Hardwick, and Crawford (2004, 2006) presented an 

improvement to von Schroeter's method wherein the sandface rate is added to the cost 

function as a model parameter.  In a sense, the Levitan algorithm constructs a model of 

pressures and flow rates that are adjusted during optimization of the cost function. 

Çinar et al. (2006) performed a comparative study of the Von Schroeter, Hollaender, and 

Gringarten (2002, 2004), Ilk, Valkó, and Blasingame (2005, 2006), Levitan (2005), and 

Levitan, Hardwick, and Crawford (2006) methods and found each to be robust and 

accurate. 

Ilk, Valkó, and Blasingame (2007) introduced an alteration of their original method that 

uses cumulative production to achieve a variable-pressure drop deconvolution.  The 

authors then proposed use of both variable-rate and variable-pressure drop deconvolution 

as a theoretically consistent diagnostic method. 
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Pimonov et al. (2009, 2010) introduced an adjustment to the methods of von Schroeter and 

Levitan that added weights to each rate and pressure value similar to the Ilk, Valkó, and 

Blasingame (2005, 2006) method.  The effect of the weights creates an algorithm that is 

more robust to noise by adjusting the variance on specific data points when the assumption 

of gaussian error is not valid. 

Onur and Kuchuk (2010, 2012) introduced an adjustment to the prior methods of von 

Schroeter and Levitan.  The author's based their algorithm upon the pressure derivative, 

which eliminates the dependency on initial reservoir pressure.  

Ahmadi, Sartipizadeh, and Ozkan (2017) introduced a two-step process in which the first 

step involves a least squares solution in the real time domain, and then an optimization 

technique that minimizes the second log-derivative of the pressure solution.  The 

optimization step seeks to find a smooth log-derivative that is close to the exact solution. 

Cheng, Lee, and McVay (2003, 2005) developed a spectral domain method that utilizes the 

Finite Fourier Transform (FFT).  After transformation, Eq. 1 becomes a simple arithmetic 

function, ,wD D Dp q p  where the overbar refers to the transform function to the spectral 

domain – in this case, the Fourier transform.  Cheng et al. developed a novel method of de-

noising data in the spectral domain, however, the author's efforts were focused on removal 

of wellbore storage effects, and not a general algorithm for deconvolution. 

Various researchers have also developed variations on the von Schroeter, Hollaender, and 

Gringarten (2001, 2002, 2004) algorithm for multi-well scenarios.  Levitan (2006, 2007) 

presented a version that considers interference effects as a superposition in space.  
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Cumming et al. (2013, 2014) applied the Levitan multiwell concept to field data to validate 

the method as a practical tool. 

Liu and Horne (2011) introduced a machine learning method for deconvolution.  The 

author's method does not attempt to directly solve for the constant-rate pressure function, 

but rather proposes a matrix X of values x(t) composed of many possible time-rate 

functional forms, and the constant-rate pressure function is predicted by a simple linear 

model )( ()y tt  x .  The authors then make use of a kernel function to project the linear 

model into a high-dimensional phase-space where non-linear features in the low-

dimensional space may be transformed into linear features in the phase-space. 

Tian and Horne (2015, 2019) extend the method of Liu and Horne (2013) by adding L1 

and L2 regularization terms to simplified version of the kernel regression model.  The 

authors found an improvement with a lower-dimensional (fewer parameter) kernel and 

regularization over a more complex kernel and no regularization due to the tendency of 

regularization to prevent overfitting of training data. 

Tian and Horne (2017) have also applied recurrent neural networks (RNN) to the problem 

of deconvolution.  The use RNN does not require any hand-tuning of functional time-rate 

forms, providing a non-parametric optimization method.  The authors found that the use of 

the RNN improved results over the prior use of the linear regression model. 

The majority of current research has been focused on improving the algorithm laid out by 

von Schroeter, Hollaender, and Gringarten (2001, 2002, 2004).  Our approach is 

fundamentally different than any we are aware of in the petroleum literature.  Indeed, recent 
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developments by machine learning researchers in non-linear optimization have only just 

enabled our method.  We do not solve any least squares problem.  Therefore, we do not 

suffer catastrophic divergence due to minor deviations from the assumption of Gaussian 

residuals.  We also do not require an analytic representation of the solution, which allows 

us to perform complex numerical operations during solve time such as convolutions, 

evaluation of first- and second-order derivatives, and solving systems of linear equations.  

Taken together, these allow us to use alternative non-convex cost functions that may not 

have a unique analytic solution but are more robust to noise. 
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3.  BAYESIAN DECONVOLUTION MODEL DEVELOPMENT 

 We represent both the unknown constant-rate pressure function and constant-pressure-

drop rate function as a random multidimensional normal distribution, i.e. a Gaussian 

process, of the beta-derivatives evaluated over logarithmically distributed fixed knots.  

Interpolation of the knots is performed with B-splines, which requires solving a pseudo-

inverse of a non-square matrix in every iteration of our solver (although we implement a 

special case for degree 1 B-splines that eliminates this calculation).  Regularization of our 

solution comes in three forms: 1) the number of knots chosen over each log cycle, 2) the 

covariance matrix that defines the Gaussian processes, and 3) the measurement of curvature 

of the log of the unknown function with respect to the log of time. 

We perform optimization by use of Hamiltonian Monte Carlo.  By making use of modern 

software libraries that us to express our model symbolically and automatically differentiate 

with respect to any variable, we supply the gradient information of the model to the 

Hamiltonian Monte Carlo algorithm.  The algorithm can then solve non-linear, non-convex 

problems. 

Our method is enabled by expression of the deconvolution problem within a Bayesian 

context.  Our advantage is a complete separation of the mechanisms of the model—that is, 

our understanding of the physics of the problem—and how we reason about the model, as 

opposed to a domain-specific formulation.  Any parameter may be treated as uncertain and 

solved for during optimization. 



18 

We may never obtain the "true" maximum likelihood (or equivalently, minimum error) 

with this approach, only many possibilities that lie close to the maximum likelihood.  This 

is the tradeoff we make.  Our method is inherently stochastic and taking advantage of this 

fact precludes a discrete solution.  In practice, the gain in understanding from illustration 

of the uncertainty of the solution space dominates any loss in [likely false] precision of a 

discrete approach. 

3.1 Power-law Basis for Flow Rate and Pressure Drop Functions 

We are primarily interested in diagnostics for commonly observed flow regimes in onshore 

well such as those occurring from fractured vertical wells, or multi-fractured horizontal 

wells (MFHW).  In these reservoirs, transient radial flow and/or transient linear flow will 

dominate at early-times, and boundary-dominated flow and/or pseudosteady state flow will 

dominate at late times.  These flow regimes yield distinct rate-time and pressure-time 

signatures that we may use to diagnose reservoir parameters such as permeability or 

reservoir geometry.  A summary of these relationships is given in Table 3.1. 

Each of these has a unique signature of the beta-derivative (Hosseinpour-Zonoozi, Ilk, and 

Blasingame, 2006).  We generalize the pressure-time function (and equivalently, the rate-

time function) as a power-law function with stepwise values of the beta-derivative (Eq. 

3.1), and then derive a diagnostic from the beta-derivative that yields a constant for each 

flow regime.  These transforms are given in Table 3.2.  Details of the derivations are given 

in Appendix A. 
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Eq. 2.6 may be discretized for numerical evaluation: 
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We have after substitution: 
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We can write a similar function for q(t) where the beta-derivative would be negative for a 

monotonically decreasing function: 
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Equivalently, taking the reciprocal: 
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Eq. 3.4 and Eq. 3.5 are the functions used to calculate the pressure and rate functions, 

respectively.  We note that Δp1 and q1 are scalars and, therefore, will fall out as bias 

(intercept) terms to minimize the residuals. 
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Table 3.1 — Mathematical forms of flow regimes of interest 

Flow Regime  Rate-Time  Pressure-Time  Functional Form 

Radial  ( ) 1 lnq t t
 

 ( ) lnp t t   Logarithmic 

Linear, Bi-linear, etc.  ( ) 1q t t  
 ( )p t t    Power-law 

Boundary-Dominated  ( ) 1 tq t e  
 n/a  Exponential 

Pseudosteady State  n/a  ( )p t t    Linear 
       

 

Once we have the pressure function, we compute the pressure derivative as a function of 

the beta derivative.  In doing so, we can correlate the beta derivative to standard slope 

interpretations of flow regimes in rate-transient analysis and pressure-transient analysis 

workflows: 

( ) ( ) ( )t p t t p t    .......................................................................................................... 3.7 

 

Table 3.2 — Transforms of beta-derivative to diagnose flow regimes of interest 

Flow Regime  Beta-derivative Diagnostic  Well Testing Diagnostic 

Radial  ln 1t    0
t d p

p dt








 

Linear  
1

2
    

1

2

t d p

p dt







 

Boundary-Dominated  constantq

t




 
 n/a 

Pseudosteady State  1p 
   1

t d p

p dt






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We note that Δp and q1 are scalars and, therefore, will fall out as a terms to minimize the 

residuals. 

We desire that the pressure and rate functions should be monotonic.  This translates to 

enforcing the beta-derivative to be strictly positive.  Exponentiation of the reconstruction 

function is a common practice in the literature but it presents an non-linear gradient which 

may be difficult to optimize.  For our pressure function, we have chosen to use the softplus 

function (Eq. 3.7) as it combines the aspects of an exponential transform for negative 

values, and no transform for positive values.  Importantly, it is monotonic, it is a strictly 

positive transform, it has an analytic solution for its derivative, and it reduces the non-

linearity of the exponential transform.  For the rate function, where we expect exponential 

behavior during boundary-dominated flow, we do employ an exponential transform.  Fig. 

3.1 shows a comparison of the softplus function with the exponential function and the linear 

rectifier function, i.e.  ( ) max ,0f x x .  We do not use the linear rectifier function as it 

has an undefined gradient for values less than zero. 

softplus( ) ln 1 xx e     ................................................................................................... 3.7 
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Figure 3.1 — Comparison of softplus, exponential, linear rectifier functions. 

The derivative of the softplus function is the logistic sigmoid function, which itself is a 

hyperbolic tangent function with non-zero location and scale.  Using the identity for the 

derivative a logarithm and applying the chain rule: 

1 1 1
softplus( ) tanh

1 1 2 2 2

x

x x

d e x
x

dx e e   
   ............................................................... 3.8 

It is important that an analytic derivative exist for every operation performed in our 

algorithm as it is critical for parameter stepping of the optimization scheme. 

3.2 Use of Gaussian Processes to Generate Beta-Derivative Functions 

The βp (t ) and βq (t ) functions remain to be determined.  To continue with our non-

parametric approach, we introduce the use of Gaussian processes (GP) to construct the 
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beta-derivatives.  A GP is an n-dimensional Gaussian distribution fit over n data points. 

An appealing feature of a multidimensional Gaussian distribution is that the conditional 

distribution given any other number of Gaussians distributions is also a Gaussian 

distribution.  Starting with a two-dimensional Gaussian distribution with means u and 

covariance matrix  :

1 1
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The parameters of the conditional distribution of 2 1 2 1 2 1( ) ~ ( , )f x    are:

 1
1

2 21 11 12 1 ( )f x     
 ........................................................................................ 3.10 

1
22 21 11 122 1     

 ..................................................................................................... 3.11 

We can see that the GP is defined completely by its mean and covariance.  As an example, 

if we construct  our GP such that the mean is zero, i.e. every point is a normal distribution 

with mean of zero, then the GP is defined completely by its covariance matrix.  The 

covariance matrix controls the behavior of the GP, while the mean is the value the GP will 

regress to if the covariance between the current point and the nearest inducing points is 

very near zero.   

Extending the concept to apply to an arbitrary number of nx inducing points, the prediction 

at a specific point *x is the conditional distribution: 

 1 1
*

2 , ( )( ), ( ) , (, )n nf x f xx f x ff x
 ......................................................................... 3.12 

A multidimensional Gaussian distribution represents the distribution at a specific point: 
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Where z is some normalizing constant, and  is of the form: 

1 1 1 1 1 1

1 1

1 1 1 2 1 1 1 1

1

2

2 2 2 2 2

1 2 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

n n

n

n n n

n

n n n n

n n

n n

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

   
   

   
   





   





 
 
 
 
 
 
  






 





 ................................ 3.14 

By analogy to Eq. 3.10 and 3.11, we may write: 
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And by analogy to Eq. 3.9, this is given by a matrix of some kernel function, ( , )x x : 
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





 
 
 
 
 
 
  

x 

................................................................................................... 3.18 
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We summarize the GP nomenclature as: 

*( ) GP( , )f x    ........................................................................................................... 3.19 

The choice of kernel function introduces the correlation between close samples in order to 

enforce some level of smoothness on the function.  One of the most common kernel 

functions is the Squared Exponential Kernel.  Its form is similar to that of a Gaussian 

distribution: 

 2
( , ) exp

22

** xx
      

xx
  ......................................................................................... 3.20 

Where ℓ is a characteristic length (i.e. length-scale).  Illustrations of the covariance matrix 

for various values of the length-scale, ℓ, are given in Fig. 3.2: 

 

 Figure 3.2 — Evaluation of squared exponential kernel for ℓ  = 0.1, 0.3, 0.5. 

 



26 

Any function that evaluates to a valid covariance matrix can be a kernel function.  Other 

examples include: 

White Noise: 

2*( , )x x I  ................................................................................................................ 3.21 

Constant: 

2*( , )x x  .................................................................................................................. 3.22 

Laplace Kernel: 

*

*( , ) exp
x

x
  
 
 
 

x
x


 .............................................................................................. 3.23 

Linear Kernel: 

* *( , )x x x x  ................................................................................................................. 3.24 

Kernel functions may also be constructed as an additive process from other kernel 

functions, or by multiplication of other kernel functions.  One appealing choice of kernel 

functions is the Gibbs kernel, with which we make the length-scale dependent on the 

feature value.  The Gibbs kernel is: 

 
 

 

2

2 22*

*

1

*

*

*

2 ( ) ( )
( ) exp

( ) ( ) ( ) ( )

n

i

xx
x

x x




        
              


xx

x
x x

 
   

 ......................................... 3.25 

The length-scale function is given by any arbitrary function.  We have chosen a logarithmic 

function: 
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( , , ) lnb m b m x x  ..................................................................................................... 3.26 

Where b is an intercept term, and m  is a slope term.  

We have evaluated ℓ (b = 0.04, m = 0.25) for the covariance matrix in Fig. 3.3: 

 

  
Figure 3.3 — Covariance matrix for Gibbs kernel using log function.. 

 

We justify this choice by our desire to apply smoothing over log cycles to a linear time 

scale.  That is, we wish greater smoothing on large values of time than on smaller values 

of time such that the level of smoothing is somewhat even when measured across log 

cycles. 
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Recalling the similar forms of Eq. 3.9 and Eq. 3.11, we expect the same characteristic 

behavior from both the dimensionless rate and dimensionless pressure functions.  

Therefore, they both share the same GP latent function.  The posterior distribution of each 

function is computed from the latent function and the observed data.  Using the softplus 

and exponential transforms to achieve strictly positive values of what is otherwise an 

unbounded Gaussian distribution: 

 ( ) ( ), ( ) ~ softplus GP( , )p wft q t p t  
 ......................................................................... 3.27 

 ( ) ( ), ( ) ~ exp GP( , )q t p t q t    .................................................................................. 3.28 

Where the value of μ is typically set to zero.  The effect of this assumption is that the GP 

will converge to zero where there are no inducing-points and the covariance diminishes to 

zero.  In practice, this only occurs before or after our time period of interest and does not 

affect our results. 

In practice we have obtained better results with a White Noise kernel function and our 

regularization method.  This kernel function reduces to a Gaussian random walk (GRW).  

This is primarily due to the complexity of computing a GP , which is   ( n2 ) in the storage 

demands, and   ( n3 ) in computational complexity due to inversion of an n  n matrix 

(Rasmussen and Williams 2006).  With 10,000 data points, equivalent to roughly 300 hours 

of data at 120 second polling intervals, holding just the covariance matrix of a GP in 

memory, not including any decompositions or inversions, requires roughly three-quarters 
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of a gigabyte of memory.  A GRW, on the other hand, has no correlation between points, 

and therefore the covariance matrix need not be stored. 

While we may “control” the GRW by adjusting the standard deviation of the step size, the 

lack of any covariance matrix means that there is no constraint on the smoothness of the 

GRW, only the magnitude of sampled values (hence white noise).  The loss in smoothing 

achieved with the covariance function is addressed by alternative regularization schemes.  

A GRW step is summarized as: 

   1
2 2

1( ) ( ) 0, ( ),i i if x f x f x     
 ............................................................ 3.29 

From Eq. 3.29 it is obvious that each step is independent of every other step, thereby 

significantly reducing complexity of calculation. 

3.3 Contrast of Maximum Likelihood with Minimization of Error 

We use Markov Chain Monte Carlo to step the model parameters at each iteration.  While 

we obtain a posterior distribution of functions, we hope to provide an analogy for 

understanding the Bayesian maximum likelihood estimate (MLE) from a least-squares 

perspective. 

Assume that we had a model parameter that is normally distributed in accordance with an 

ordinary least squares model.  Regression proceeds by minimizing the sum of square of 

residuals between model and data.  Assume m and b to be some arbitrary model parameters 

that are also function of time.  We write a model for the prediction y of m and b as: 

i i i i ey mt b    ............................................................................................................... 3.30 
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And the cost function to minimize the residuals would be: 

  2

1

1
( , )

2

n

i i i i
i

J m b y m x b
n 

  
 

The equivalent Bayesian representation of this is a series product Gaussian likelihoods: 

  2

1

, , ,
n

i i i
i

iy t m b 



 ................................................................................................ 3.31 

We wish to impose regularization on mi.  We will show the equivalence of a Gaussian 

distribution on m with L2 regularization.  Starting with a Gaussian prior: 

 1

1

,
n

i i
i

m t  




 ........................................................................................................... 3.32 

We state Bayes’ theorem to emphasize the relationship between priors and likelihoods.  

Here, Eq. 3.31 is a likelihood, and Eq. 3.32 is a prior.  Bayes theorem indicates that we 

simply take the product of all priors and likelihoods.  We pause here to note that this 

indicates that the difference in treatment of priors and likelihoods is only one of semantics.  

Priors are model parameters for which we express a constraint as a matter of knowledge, 

or equivalently, belief, while likelihoods are model parameters or outputs over which we 

express a constraint as a matter of observed data.  Priors allow us to encode data and 

information that may not be explicitly quantifiable to a model; we emphasize that this is 

analogous equivalent to a constraint in a frequentist framework.  Proceeding with our 

demonstration, we have Bayes theorem: 

(
( ) ( )

( ) )
( | )

(( ))
f

f
y

f y
y

y d

  



 

  
  

  ..................................................................... 3.33 
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where 𝑓(𝑦|𝜃) is the likelihood of observation given prior probability of model parameters, 

and 𝜋(𝜃) is the prior probability of model parameters.  These correspond to Eq. 3.31 and 

Eq. 3.32, respectively.  Combining our equations as components of the numerator: 

    1

1

2( ) ( ) , , , ,i i i i

n

i i
i

f y y t m b m t    



 
 

Or, writing out the Gaussian distributions:  

  2
2

2 11
1

1 1 1
( ) ( ) exp exp

2 22 2

n
i ii i

i

iy t m b m
f y   

    




            


 

Taking the negative logarithm, which we will refer to as "logp" here and throughout this 

document: 

  2
2

2 11
1

ln ( ) ( ) logp ( ) ( )

1 1 1
ln ln

2 22 2

n
i i

i

i i i

f y f y

y t m b m

     

     


     

 
    

 

The first and third terms are simply constants which we group together.  We also invert the 

lambda term, giving: 

  2

2
2

1

logp ( ) ( ) constant
2 2

i

i

i
n

i i

i

y t m b
f y m

  
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 
      

 

Last, we can move the ½ on each term to the constant: 

  2

2
2

1

logp ( ) ( ) constanti
i

i
n

i i iy t m b
f y m   



 
      

 ......................................... 3.34 
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Minimization of Eq. 3.34 is equivalent to minimization of squared error, i.e. least squares 

regression, with L2 regularization on m.  Clarifying, we may impose a Gaussian prior on 

any parameter of the Bayesian model to perform L2 regularization on that parameter 

without needing to reconstruct a matrix to solve a system of linear equations.  In addition, 

we may impose a prior distribution of any form just as easily as a Gaussian distribution.  

Significantly, this enables the use of L1 regression as opposed to L2.  The advantage L1 

regression is that L1 fit is less affected by outliers than the L2 fit.  This makes our 

deconvolution algorithm able to handle a greater degree of noise as compared with other 

models in the petroleum literature.  Errors as high as 40% – 60% have still yielded 

reasonable results on test cases. 

In the Bayesian framework, an L1 cost function corresponds to a Laplace distribution: 

  1
, exp

2

x

b b
b




  
  

 


 ........................................................................................... 3.35 

And the negative log probability is: 

 logp , constant
x

b
b





   

 ............................................................................... 3.36 

Which is the absolute deviance.  Hence, the Laplace prior is equivalent to minimization of 

the sum of absolute deviance of residuals as well as an L1 regularization: 

 1logp , constantx        
........................................................................... 3.37 

Other probability distributions of interest include the Half Normal: 
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2
2

2

2
( ) exp    for 0

2
x


 

 
  

 


 ....................................................................... 3.38 

And the Exponential: 

1 1

1
( ) exp    for 0

x
x

  

    


 .................................................................................... 3.39 

Which we have written to make it obvious these are equivalent to one-half of a Normal and 

Laplace distribution, respectively.  In practice, we may use any distribution for which the 

logarithm yields a function that has an existent derivative.  Then, for any proposed 

parameter step, the change in total model probability is simply the change in the probability 

of the distributions that are a function of that parameter.  Given that the total model 

probability is proportional to the sum of all probabilities, we may find the partial derivative 

of the total model probability with respect to any model parameter.  The recognition of this 

property is powerful and provides us with a means to quickly regress a model on high-

dimension, non-linear problems. 

3.4 Hamiltonian Monte Carlo 

Markov Chain Monte Carlo simulation is a numerical technique used to solve inverse 

model problems.  The method performs random walks over model parameters at each 

iteration, computes the model as a proposal, and then accepts or rejects the proposal.  Each 

iteration improves the approximate distribution used for each parameter.  Given enough 

iterations, the method will converge to the target distribution.  Formally, we draw proposal 

values of θ* from approximate distributions θ, compute the likelihood of the model P (y | θ  ) 
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based upon the observations, and then correct θ* to better approximate the target posterior 

distribution P (θ | y  ). 

In the simplest case, the updates of each parameter at each iteration are done randomly.  

For simple problems composed of one parameter, this may work well.  However, several 

challenges present themselves—even when the number of parameters is increased to only 

two—if the correlation of the parameters cannot be neglected.  Or, for some greater number 

of parameters, even if the parameters may be assumed to be independent.  The primary 

difficulty is that, when a proposal is rejected, there is no information on which parameter(s) 

may have caused the rejection.  Thus, a single parameter may lead to rejection in a proposal, 

and the likelihood of this behavior occurring increases quadratically as the parameter count 

increases. 

The properties of an efficient sampling algorithm are (Gelman et al. 2014): 

 For any θ, it is easy to sample from J (θ*|θ  ). 

 It is easy to compute the acceptance ratio of an iteration. 

 Each parameter jump goes a reasonable distance in the parameter space (otherwise 

the random walk moves too slowly). 

 The jumps are not rejected too frequently (otherwise the random walk wastes too 

much time standing still). 

Our problem is, by its nature, high-dimensional and non-linear.  Therefore, a purely random 

walk sampling algorithm will not perform well.  Hamiltonian Monte Carlo (HMC) 

suppresses the random walk behavior, allowing a great increase in sampling efficiency, by 
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use of an analogy to Hamiltonian dynamics.  A ‘momentum’ variable, p, is added to the 

‘position’ of each parameter, q.  Both q and p are updated together, and the jump for q is a 

function of p.  Each jump can move rapidly throughout the parameter space while 

preserving the ‘energy’ (kinetic plus potential) of the trajectory.  The combination of the 

two gives a joint distribution: 

( , ) ( ) ( )q p y p q y  
 ................................................................................................ 3.40 

Or, defining logp( )P  : 

( , ) ( ) ( )q p y p q y   
 ............................................................................................. 3.41 

The sampling is performed over the joint distribution, and the result used to determine q at 

each step in the simulation.  The momentum variable p is given a multivariate normal 

distribution with mean 0 and covariance of a ‘mass matrix’ M.  If the mass matrix is 

diagonal, then the components pj are independent, i.e. pj ~ (0, Mjj ).  Convention is to use 

1jjM  .  The Hamiltonian equations then determine how p and q change as we ‘step’ in 

time: 

p

dq

dt

H



 ........................................................................................................................ 3.42 

q

d

dt

Hp






 ...................................................................................................................... 3.43 

We combine these into functions written as: 

( , ) ( ) ( )H q p U q K p   .................................................................................................. 3.44 
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Written this way, we have the potential energy, U (q), and the kinetic energy, K (p).  We 

define them as: 

( ) ( )U q q y
 ................................................................................................................ 3.45 

11
( )

2
TK p p M p

 .......................................................................................................... 3.46 

Substituting Eqs. 3.45 & 3.46 into the preceding equations, we can re-write Eqs. 3.42 & 

3.43 as: 

1 p
d

dt
M

q 
 ..................................................................................................................... 3.47 

( )
d

q y
d

d

q

p

dt


 ............................................................................................................. 3.48 

The gradient of K can be imagined as the velocity vector and is used to determine the 

distance of some number of ‘leapfrog’ steps.  The gradient is often simple to compute 

analytically for most distributions; numerical differentiation is computationally inefficient.  

This adds a restriction that the log probabilities must be differentiable; in practice this is 

rarely a constraint.  For example, the negative log probability of a Gaussian distribution is: 

 2

2
2

1
( ) logp ( ) ( , ) ln

2 2

q y
q y P q y


 

  



       ....................................... 3.49 

And its gradient is: 

2
( )

q yd

q
q y

d






  ...................................................................................................... 3.50 
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The Hamiltonian has two important properties.  First, it is reversible by negating the time 

derivative.  Thus, use of the Hamiltonian maintains the Markov property, which is that the 

conditional probability distribution of futures states depends only upon the present state, 

and not the sequence that preceded it. 

Second, the Hamiltonian is invariant (conserved).  As the parameter changes value during 

sampling, we can imagine exchanging momentum (kinetic energy) with position (potential 

energy) as shown in Eq. 3.44.  Taking the derivative of Eq. 3.44 with respect to time and 

applying the chain rule: 

( , )
H dq H dp

H q p
t q dt p dt

  
 

    ........................................................................................ 3.51 

Substituting Eqs. 3.42 & 3.43 shows the result to be zero: 

( , ) 0
dq dp dp dq

H q p
t dt dt dt dt


  

  .................................................................................... 3.52 

In terms of our parameter draws θ*, this equates to the magnitude of change θ* over the 

step (the derivative of the kinetic energy) and the probability of θ* given θ (the potential 

energy).  As θ* approaches a state space of lower probability, the rate of change will slow, 

and it will eventually reverse direction.  As θ* approaches a state space of higher 

probability, the rate of change will increase.  The effect of this behavior is that we can 

achieve quick and efficient sampling of the posterior distribution P (θ | y  ) while avoiding 

state space of low probability. 

To solve Eqs. 3.47 & 3.48 it is typical to employ Euler’s method.  Discretizing time into a 

series of steps of size δ, we update p and q by: 
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)( (( )) ) ( ) (
d d

p
d

p t p t qt p t
dt

y
q

      ............................................................ 3.53 

1( () ( ) ( )) ( )
d

q t q t tq t q t p M
dt

      
 ................................................................. 3.54 

However, Euler’s method is unstable for practical step sizes and will diverge.  

Improvement can be made with the leapfrog method as follows: 

( ) ( )
2 2

d
p

q
t p q y

d
t

    


 


 ...................................................................................... 3.55 

1(
2

) ( )q t pq t t M
     

 
 

 .................................................................................... 3.56 

)( ) (
2 2

d
p

d
p tt

q
q y

     


 
 ................................................................................ 3.57 

Each iteration in HMC has three parts: 

1.  Initialize p with a draw from its posterior distribution, which by specification is the 

same as its prior distribution: 

 p ~ (0, M ) 

2.  Leapfrog steps of q and p, each scaled by a step-size factor δ, repeated L times: 

a.  Use velocity ( )
d

q y
dq

  to make a half-step, ,
2


 of momentum p: 

( )
2

d
p q y

dq

    

b.  Use the momentum p to update the position q: 

1pq q M    
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c.  Use velocity ( )
d

q y
dq

  to make a final half-step, ,
2


 of momentum p: 

( )
2

d
p q y

dq

    

3.  Except for the first and last steps, c. and a. are performed together in a full-step. 

The pseudocode for the algorithm is: 

1 function tuple(float, float) leapfrog(float q, float p, 

2   function dUdq, int length, float step): 

3   
4   p -= step / 2.0 * dUdq(q) # first half-step 

5  

6   for i in length - 1:  # begin whole steps 

7    q += step * p 

8    p -= step * dUdq(q) 

9   

10   q += step * p    # last whole-step 

11   p -= step / 2.0 * dUdq(q) # last half-step  

12   

13   return q, -p 

 

An example of the leapfrog algorithm, with the positions drawn as lines and the momentum 

shown as arrows, is displayed in Fig. 3.4 for a Gaussian mixture model with the following 

components: 

1

2

3

1.5 1 0.8
,

2 0.8 1

0 1 0.6
,

1 0.6 1

1 1 0
,

2 0 1

    
    
    
     
         
     
    
    






 .............................................................................................. 3.58 
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Figure 3.4 —  Numerical simulation of Hamiltonian equations for a Gaussian mixture 
model. 

The leapfrog algorithm will continue to conserve the Hamiltonian for as long as it is run, 

so we must set the length of the path, and then evaluate the returned position.  The last step 

for HMC is to accept or reject a drawn sample. 

The acceptance ratio is computed as: 

1 1

( * ) ( *)

( ) ( )t t

P q y P p
r

P q y P p 


 ...................................................................................................... 3.59 

Or: 

1 1log ( * ) ( *) ( ) ( )t tr q y p q y p              ........................................................ 3.60

Last, we set the value of qt based on the acceptance ratio r: 
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 *

1

with probability min ,1

otherwise
t

t

q r
q

q 


  ......................................................................... 3.61 

The pseudocode for the algorithm is written as: 

1 function float hmc(float q0, float logp, int length, 
2  float step, int n_steps): 
3   

4   q = q0 

5   dUdq = gradient(logp)  # auto-grad function 

6   

7   for i in n_steps: 

8    p0 = std.norm.rand()  # intialize momentum 

9    q, p = leapfrog(q, p0, dUdq, lenth, step) 
10   

11    prior_logp = -logp(q0) - logp(p0) 

12    sample_logp = -logp(q) - logp(p) 

13    r = sample_logp - prior_logp # acceptance ratio 

14   

15    if log(unif.rand(0, 1)) < r: 

16     append(accepted, True) 

17    else: 

18     append(accepted, False) 

19     q = q0 

20   

21   return q 

 

Fig. 3.5 illustrates HMC on the same data as in Fig. 3.4, but without rejection of steps.  The 

blue markers indicate the end of a step, after which a new momentum is sampled and the 

velocity changes. 

 



42 

 

  
Figure 3.5 — Numerical simulation of Hamiltonian Monte Carlo for a Gaussian 

mixture model. 

 

We apply HMC to sample the kernel functions from the posterior distribution.  We apply 

priors to each model parameter, and likelihoods to observed variables such as the residuals 

of the computed flow rates and sandface flowing pressures, as well as the residuals from 

the convolution of each kernel function and Duhamel’s principle.  We note that the 

sandface rates and pressures are both model parameters and used as observed data.  By 

building a model-based representation, we can impute any missing.  We can do the same 

for initial reservoir pressure; it is expressed as a bounded random variable.  No discrete 

initial guess of initial pressure is required as the model will impute or correct the value 

unless it is specifically treated as a constant.  These concepts extend to imputing the 

constant-pressure-drop rate function when performing variable-rate deconvolution to solve 

for the constant-rate pressure drop function, or vice versa.  We also may perform both 
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deconvolutions simultaneously as an improvement upon the "double deconvolution" 

method introduced by Ilk, Valkó, and Blasingame (2007). 

HMC is implemented by PyMC3 (Salvatier, Wiecki, and Fonnesbeck 2016).  PyMC3 is a 

Python library that implements the probabilistic programming paradigm.  The library 

provides a framework for representation of variables as probability distributions or results 

of computations performed on other variables, and whether each variable is observed or 

not.  Primarily, it allows flexible specification of the model as clear expression of symbolic 

variable relationships. 

3.5 Computational Graphs 

For HMC to operate, the gradient of the target distribution π (θ | y  ) must be known.  The 

sequence of operations that occur to compute the probability must be considered, starting 

with the Gaussian processes, continuing with the convolution operations, and ending with 

the cost function that compares each predicted value with an observed value.  A 

computational graph represents the mathematical operations performed within the model.  

Storing the operator along with the variables that are operated upon enables automatic 

differentiation of any variable z in the model with respect to any other variable x that has 

been used to compute z. 

PyMC3 implements Theano (Bergstra et al. 2010) to perform these calculations.  Theano 

is a Python library that focuses on efficient evaluation of n-dimensional arrays, referred to 

as tensors.  Symbolic representations of a model are constructed in Python, and then 

Theano may be invoked to compile the model directly to C code for evaluation on a CPU 
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or GPU.  Theano performs various checks and simplifications of the model before 

compilation, such as combining duplicate expressions, improving the numerical stability 

of computations, replacing operations with faster implementations that may be more 

specialized, before finally compiling C code.  The result is highly efficient numerical 

computation constructed through user-exposed high-level symbolic representation. 

An example of a Theano computational graph is shown by Fig. 3.6.  The green boxes are 

inputs, and red ellipse are operators to be applied, and the blue boxes are outputs.  The 

numbers by each arrow represent the order of inputs to each operator.  We can understand 

the left side of Fig. 3.6 as an element-wise addition of two zero-dimensional vectors, i.e. 

scalars.  The right side outputs the gradient of the addition operator.  The gradient 

computation always starts with the inputs and operator, and performs additional operations 

to return the gradient.  In this case, the operator Elemwise{second,no_inplace} takes 

the second input (index one) and drops the first (index zero).  The output will be a scalar 

value equal to one. 
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Figure 3.6 — Example of computational graph for addition operator and its gradient. 

 

A computational graph for a power operator is given in Fig. 3.7.  This graph highlights the 

repeated application of the chain rule.  Tracking the computations starting with the input x, 

we see the original operation repeated.  The power operator and inputs (x, 2) are then 

dropped and replaced by a scalar value of one, and then this value is multiplied by the 

original exponent of two, repeating the steps involved in application of the Power rule.  We 

would write this as: 

2node 1 [ , 2, power ]

node 2 [ node 1, 1, second item ] 1

node 3 [ node 2, 1, multiply ] 1 2

x x 
 
    
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Figure 3.7 — Example of computational graph for power operator and its gradient. 

On the left side the first operation subtracts one from the exponent, then applies a power 

function with the new value to x.  The result is multiplied by the last node on the right side. 

Writing this out, we have: 

1

node 4 [ 2, 1, subtract ] 2 1

node 5 [ , node 4, power ]

node 6 [ node 3, node 5, multiply ] 2

x x

x

  
 
 

And node 6 returns the correct value.  Following this approach, a gradient is defined for 

every operation.  Building a computational graph of the gradient becomes a set of lookups 

applied to each operator.  Given that the computational graph can be walked backward 

from the final output back to the initial inputs, and that the initial inputs will always be 

given as constants, the gradient of model is known for any input.  For our use case, the 

significance is that we always know the change in the probability of the entire model when 
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determining how to step any individual parameter.  Thus, our optimization scheme does 

not rely upon numerically computed gradients, learning rates such as in a gradient descent 

algorithm, or precision thresholds to judge convergence.  Instead, we can use the gradient 

information to directly sample from the posterior distribution. 

3.6 Probabilistic Graphical Models 

Although many domain-specific algorithms have been written for the problem of 

deconvolution, in practice they are quite rigid.  Each solution is formulated for a specific 

subset or class of deconvolution problem and tends to require significant changes from one 

problem class to the next.  In contrast, probabilistic graphical models are a general 

framework that allow a computer to reason, or infer parameter values, based upon a model 

of the system that encodes our knowledge of how the system works.  "The key property of 

the model is the separation of knowledge and reasoning.  The representation has its own 

clear semantics, separate from the algorithms that one can apply to it." (Koller and 

Friedman 2009). 

For many problems and their corresponding models, it is often the case that an observation 

of a variable is fixed, and the relationship between variables is probabilistic.  For our 

problem and many science and engineering problems, the exact opposite is true.  The 

relationships between our variables is fixed to the extent of the assumptions used to derive 

the relationship, while the data we observe is probabilistic in the sense of noise, error, or 

incompatibility with a model that is over- or under-specified, thus giving rise to some 
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hyperdistribution of residuals.  Still, the same principles of PGM apply to both cases.  The 

relationship of two variables in the model is given by the conditional probability: 

(A B)
(B | A)

(A)

P
P

P




 ..................................................................................................... 3.62 

Therefore, if only one possible value of A is possible, then B must follow.  However, given 

that A itself is uncertain, then B must also be uncertain, even if it exactly follows from A.  

We formally write this as the chain rule of conditional probabilities: 

 (A B) (A) (B | A)P P P  ............................................................................................. 3.63 

And we may expand this out: 

1 2 1 3 2 1 1 11( ) ( ) ( | ) ( ) ( | )|n n nP PP P P                ............................ 3.64 

The result being that the probability of any value in the model can be put in terms of the 

probabilities of all other terms, with the other terms occurring in any order.  We also find 

Bayes' rule follows from the conditional probability: 

(B | A) (A)
(A | B)

(B)

P P
P

P


 ............................................................................................... 3.65 

Which states that we may determine the conditional probability of A from the expression 

of the conditional probability of B given A.  In our case, we may determine the conditional 

probability of the unknown constant-rate pressure or constant-pressure-drop rate function 

given the observation of the sandface rates and pressures.  Going further, we may determine 

the conditional probability of missing sandface rates and pressures, and initial reservoir 

pressure, given our observed variables.  We can also make a direct statement about the 
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probability of our unknown functions, such as a diagnosis of a specific flow regime at a 

certain time, and it will influence all other variables in the model.  The model structure 

given in Fig. 3.8 is general for any deconvolution problem.  It encodes our knowledge of 

the convolution integral as derived within the literature.  In every step of our HMC 

algorithm, every variable is computed based upon this knowledge.  Then, the model as an 

entirety is accepted or rejected given the observed data for each variable.  If we choose to 

neglect a specific part of the model, such as to focus solely on the variable-rate problem, 

then we may simplify our model as in Fig. 3.9. 

 

 
Figure 3.8 — The probabilistic graphic model (PGM) encodes the variable 

relationships from our knowledge of the system. 

 

The reduced models for these cases clearly show a direct linear path to invert for the 

unknown pressure function derivative βp (t ) as in previous direct solution methods.  We 



50 

may also simultaneously yet independently solve the variable-rate and variable-pressure 

drop cases by not treating the time variable t as unobserved as shown in Fig. 3.10.  

Enforcing the correlation of Δpcr and qcp by use of Duhamel’s principle leads us back to 

Fig. 3.8. 

 

Variable Rate Case 

 

Variable Pressure-Drop Case 

 

Figure 3.9 — Variable rate and variable pressure-drop cases as reductions of the base 
model. 
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Figure 3.10 — Variable rate and variable pressure-drop cases may be generated 

simultaneously and independent of one another. 

 

We may extend the concept of Bayes’ Rule to the multiwell case (Fig. 3.11) as a 

hierarchical model.  Rather than a multiwell case in which the wells are interfering with 

one another within a single reservoir, we consider a case in which the wells are non-

interfering.  If we assume that each well shares the same kernel function, then we may treat 

each well as a repeated observation of the convolution of the kernel function with the 

observed rates or pressures.  We illustrate this concept in Fig. 3.12, where the kernel 

function (green) is simultaneously convolved with each well (blue). 
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Figure 3.11 — Multi-well deconvolution as a hierarchical model with the kernel 

function convolved with rates or pressures from each well . 

 

The validity of this assumption remains to be seen, but it is similar in concept to that of 

rate-transient analysis workflows in which an evaluator builds a reservoir model based 

upon a limited set of high-quality data, and then applies that model to wells where they 

have less data on hand.  In both cases, there is an assumption that a same or similar reservoir 

model applies.  In our algorithm, differences in the model are accounted for by the 
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probabilistic representation; that is, it need not be exactly true that the same kernel function 

applies to all observed data, only approximately true. 

 

 

  

  
 

 
Figure 3.12 — Illustration of multi-well deconvolution.  
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3.7 B-splines 

We have mapped the relationship between our parameters with the probabilistic graphical 

model, but some method of computation remains to be implemented.  For the convolution 

operations, the implementation is obvious as a discrete convolution sum.  However, we 

have some choice in implementation of a numerical integration scheme to compute the 

pressure function from βp (t ). 

B-splines give several advantages; namely, they are defined on the discrete intervals of the 

knots while still being continuous between the knots.  B-splines also have continuous 

derivatives and integrals.  Practically, this enables us to simultaneously integrate and 

interpolate βp (t ) as a degree k spline defined over the knots, to a degree k+1 spline defined 

over the time intervals of the observed data.  The i-th degree 0 B-spline for data points x 

and knots t* is defined by the de Boor algorithm as: 

  10 1 * *
, *

0 otherwisei
i it t

B x t
x 

 

  .............................................................................. 3.66 

And any higher-degree B-spline is defined recursively: 

     
1

1 11
1

1

* *
, * , * , *

* * * *
k ki k

i
i k i k i

ki
i i

i

x t t x
B x t B x t B x t

t t t t
 






  

 
 

   ........................................ 3.67 

Fig. 3.13 illustrates B-splines of various degrees.  Importantly, we note that any set of B-

splines forms a matrix, and the spline function S is a linear combination of B-splines 

numbering the length of the interpolating grid, with each B-spline of length k+n+1, where 

n is defined as the number of knots t*: 
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 
1

( , *) , *i

n
k k
i

i

S x t c B x t


  B c
 ....................................................................................... 3.68 

or 

( , *) kx t S B c  ................................................................................................................. 3.69 

 

  

  
 

Figure 3.13 — B-splines of various degrees for n = 3 knots placed over the interval (0, 
10). 



56 

 

While this formulation differs from prior work, it allows us to generate any number of B-

splines prior to simulation and avoid the computational penalty of doing so during the 

simulation.  Thus, we generate the following sets of B-splines to 1) interpolate over the 

knots t*, 2) interpolate over the data time values t, and 3) integrate and interpolate over the 

data time values: 

 *, *k
i iS1 B t t  .............................................................................................................. 3.70 

 , *k
iiS2 B t t  ................................................................................................................ 3.71 

 1 , *k
i iS3 B t t  ............................................................................................................. 3.72 

The set of splines S1 are used in Eq. 3.69 to solve for the coefficients.  Special cases of 

solution for the coefficients exists for degree 0 and degree 1 B-splines.  From Eq. 3.66 we 

have for degree 0 B-splines: 

0 ( * , * )
1

0i j jj iB t
i j

t
i j










  ................................................................................. 3.73 

And the solution for the coefficients would just be the values of the function for which we 

are fitting the B-spline βp (t ): 

0( *, *)t t  pS Bβ c
 ........................................................................................................ 3.74 

 pc β  ............................................................................................................................. 3.75 

For degree 1 B-splines using Eq. 3.67, we have: 

1
1( * , * ) iji j jB t t  

 ........................................................................................................... 3.76 
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The subscript i - 1 comes from the fact that we must have k knots preceding the both first 

value and succeeding the last value of the data to which we are fitting the spline function.  

The coefficients are then the same as in the degree 0 case: 

1
1( *, *) it t  pβ cS B

 ...................................................................................................... 3.77 

 pc β  ............................................................................................................................. 3.78 

Continuing using Eq. 3.67 recursively, we can no longer reduce the solution for the 

coefficients but must solve the system of linear equations.  Setting S ≡ βp, and dropping the 

superscript k for simplicity, we re-arrange Eq. 3.69 to solve for c: 

1 pc B β
 ........................................................................................................................ 3.79 

We desire a matrix A such that: 

 pc Aβ ........................................................................................................................... 3.80 

and 

BAB B  ........................................................................................................................ 3.81 

If Bk were square and non-singular then B-1 would satisfy these conditions.  However, for 

certain degrees k, Bk may not be square.  For a general solution, we must find a generalized 

inverse matrix, or pseudoinverse, notated by B+.  To compute the pseudoinverse, we may 

use singular value decomposition: 

 TA UΣV  ..................................................................................................................... 3.82 

The (m ⨉ n) A decomposes into (m ⨉ m) U, (m ⨉ n) Σ, and (n ⨉ n) VT.  The pseudoinverse 

A+ of A is then: 
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  TA V Σ U  ................................................................................................................. 3.83 

where the pseudoinverse Σ+ is given by taking the reciprocal of the non-zero elements of 

the diagonal matrix Σ, and then transposing the matrix. 

To eliminate out-of-range errors in our arrays, our implementation pads the knots and data 

values with k+1 additional knots.  This adds additional coefficients of value zero on both 

ends of each B-spline, except for the case of k=0 in which there is only a preceding value 

of zero.  As a result, the size of our B-spline matrix is always (m ⨉ m + k + 1).  The 

pseudocode to generate the B-splines is: 

1 function float[] add_edges(float[] x, int k):  

2 # extend with k+1 knots 

3   for i in k + 1: 

4    x = x.prepend(min(x) * 0.99) 

5    x = x.append(max(x) * 1.01) 

6   return x 

7   

8 function float[] B(float x, int j, float[] t, int k): 

9   # compute value of Bspline recursively 

10   if k == 0: 

11    if t[j] <= x < t[j + 1]: 

12     return 1. 

13    else: 

14     return 0. 

15   

16   c1 = (x - t[i]) / (t[i + k] - t[i]) * \ 

17         B(x, k - 1, i, t) 

18   C2 = (t[i + k + 1] - x) / (t[i + k + 1] - t[i + 1] * \ 

19     B(x, k - 1, i + 1, t) 

20   

21   return c1 + c2 
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22 function float[] Bsplines(float[] x, float[] t, int k): 

23   # build Bspline matrix 

24   x = add_edges(x, k)  

25   m = len(x) 

26   n = m - k - 1 

27    b_splines = Array.zeros(m, n) 

28   

29   for i in m: 

30    for j in n: 

31     b_splines[i, j] = B(x[i], j, t, k) 

32   

33   return b_splines 

 

For our application, given that we expect the pressure function to be a stepwise power-law 

function and a constant flow-regime behavior is represented by a constant value of βp (t ), 

we represent βp (t ) as a degree 1 B-spline, which is integrated with respect to the log of 

time.  Recalling Eq. 3.4: 

1 ,
2

exp( )cr

n

i
n p i ip t p  



  
 ............................................................................................... 3.4 

Substituting in our representation of βp (t ) as a B-spline over knots τ: 

 
1

2

( exp)
n

k
ic

i
r t pp



   B c
 ............................................................................................. 3.84 

The relations for the integral of a B-spline are given by Cheney and Kincaid (2003): 
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 11( , *) * , *
1

m
mx k ki k i

i j
j i

x x
B x t dt B x t

k
 







 
 ..................................................................... 3.85 

Where m is the index of the upper limit of integration, and both sides are zero for any x < 

t*i.  The integral of the spline function S, applying the relation in Eq. 3.85, is: 

   1

1

, * * ( , *) * , *
m m

m mx x k k
i i i i

i m k i m k

S x t dt c B x t dt e B x t


    


   

 ......................................... 3.86 

where 

 1 1

1
0,    

1

i

i i i k i
i

e e c x x
k  



  
 

 ............................................................................... 3.87 

As the starting index of i is reduced by one, the corresponding value of x must be less than 

the first knot, meaning the first coefficient em – k – 1 must be zero. 

Using the identity in Eq. 3.78, pc = β , and the identity in Eq. 3.86 and applying to Eq. 3.84 

gives us: 

 1
1 exp( ) k

crp pt    B e  ................................................................................................. 3.88 

Which is equivalent to evaluation of the definite integral over the log of time: 

ln

1 ln
exp( )

i
c

t

tr
kt pp   pB β  .............................................................................................. 3.89 

The pseudocode to compute Eq. 3.89 using Eq. 3.86 and Eq. 3.87 is: 
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1 function float[] integrate_coef(float[] x, float[] c, 

2   int k): 

3   # compute coefficient of k + 1 degree splines 

4   

5   n = len(c) 

6   x = add_edges(x, k)     # x now has length of n + k + 1 

7   e = Array.zeros(n + 1) 

8   

9   for i in n: 

10    e[i + 1] = e[i] + c[i] * (x[i + k + 1] - x[i]) 

11    e /= k + 1 

12   

13   return e 

14   

15  function float[] integrate_spline(float[] b_splines_i, 

16   float[] c, float[] x, int k): 

17   # integrate a Bspline over x using k + 1 degree spline 

18   

19   e = integrate_coef(x, c, k) 

20   spline_i = dot_product(b_splines_i, e) 

21   spline_i -= spline_i[0] 

22   

23   return spline_i 

 

Again, we stress that the integration is done over the log of the knots.  Even with large step 

changes in the values of βp (t ), the resulting Δpcr tends be reasonably smooth.  Fig. 3.14 

shows an example evaluation of βp (t ) by Eq. 3.89 with values of one-half, zero, and one, 

with each constant over a log cycle.  This would correspond to linear flow, radial flow, and 

pseudosteady-state flow.  The extra knot and extrapolation of βp (t ) as a constant stabilizes 

the trend at the edges.  For illustrative purposes, Δp1
 is set equal to one. 
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Figure 3.14 — Example of degree 1 B-spline integration and interpolation to compute 

pressure drop function. 

 

The B-spline method for integration we have described is general and may be applied to 

any type of variable transformation to x- and y-values, not just a power-law function as we 

have shown.  In particular, Section 4 provides applications to computation of the well-

testing derivative, and production data q-D-b plots.  We observe that the resulting 

derivatives are smoother than traditional approaches, as well we have a posterior 

distribution of non-unique solutions that highlight periods of greater or lesser uncertainty. 

As a final thought before discussing implementation, it is of interest to contrast our method 

with that of Ilk, Valkó, and Blasingame (2005, 2006).  While both our method and their 

method use B-splines, there are several key differences.  Primarily, we generate the beta-



63 

derivative, βp (t ), and use B-splines to integrate to obtain the pressure function, while their 

method directly solves for the coefficients of the linear derivative of the pressure function 

(not the beta-derivative).  The advantage of using the beta-derivative is that it is invariant 

to scale of the pressure function, enabling implementation of a regularization scheme based 

on curvature of the beta-derivative that inherits the invariance to scale.  The level of 

regularization can be determined a priori, thereby avoiding iterative computation.  

Appendix E provides an implementation of the Ilk, Valkó, and Blasingame method using 

our Bayesian approach, and a comparison of the results. 

3.8 Huber Density Function 

Prior methods presented over the past 20 years have framed the solution for deconvolution 

as a least squares problem using an L2 norm for error in order to invert the convolution 

integral and solve the resulting system of linear equations.  In many applications in science, 

the L2 norm is chosen for computational convenience, i.e. a least squares solution has a 

unique, analytic solution.  However, if the true distribution of residuals deviates slightly 

from a Gaussian distribution, then the assumption that the mean is the best representation 

may give significant error (Huber 1964).  The L2 norm is highly sensitive to minor errors, 

and in practice its use requires strong regularization techniques that must be tuned uniquely 

for each data set under analysis.  Huber proposed a piecewise cost function (aka loss 

function, error function, residual function, etc.) that corresponds to an L2 norm for small 

values of residuals, and an L1 norm for large values of residuals.  The convenience of 

Huber’s proposed cost function is that, while it required iterative calculation to solve, it did 

have a unique solution as it is a convex function. 
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The advantage of the L1 norm over the L2 is greatly reduced sensitivity to outliers and 

deviation from the assumed Gaussian distribution of errors, which results in much better 

tolerance to noise in the data (as we will show in the next section). 

The Huber cost function adds a third parameter, t, which is the standard deviation at which 

the switch is made from the L2 form to the L1 form.  The Huber probability density 

function is given by: 

   1 2
, , )

1
| exp ( ,

2 L LH Htf x J x t 
  

 
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 ......................................................................................................... 3.92 

2 erf
2 2

L t         .................................................................................................... 3.93 

Use of the Huber function eliminates non-unique solutions for low-error or exact cases, 

while maintaining the robustness of the L1 for high-error or noisy cases.  We have used a 

value of t = 0.1 so that the L1 form dominates.  The details for the derivation of the Huber 

density function are presented in Appendix D. 
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3.9 Implementation Details 

We have laid out the major variables that we must compute in the prior sections, but the 

listing is not exhaustive of all intermediate steps.  In this section, we outline the details 

necessary to build the model.  It is important to stress that we are performing deconvolution 

by Bayesian inference, not by inversion of the convolution integral.  Thus, we are not 

building a deconvolution model, but a convolution model.  The kernel functions are 

inferred by a comparison of the model output (the convolved functions) with observed data.  

Significantly, we have an exact solution for the kernel functions as defined by the 

convolution integral.  It is the addition of a model for error measurement, or in the Bayesian 

sense the uncertainty model, that allows inference to take place. 

3.9.1 Construction of Kernel Functions 

Next, we recall the equations necessary to compute the model, ordered by sequence of 

computation.  For simplicity we will isolate the steps to the variable-rate case, noting that 

all steps are mirrored for the variable-pressure drop case.  First, we have the computation 

of βp (t ), which we simplify by assuming the GP has a mean of zero: 

 ( ) softplus GP(0, )p t 
 ............................................................................................. 3.94 

The choice of kernel function completely defines βp (t ), and the softplus function enforces 

positive values of βp (t ).  Each kernel function creates a different characteristic behavior of 

the function by encoding the covariance of data points to one another, serving as a form of 

regularization.  We will discuss regularization later, but for now we note that the choice of 

kernel function greatly effects the behavior of βp (t ). 
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Although a GP is an integrable function, in practice this is dependent upon the specific 

kernel function chosen and does not apply generally.  If an analytic form of the integral 

does not exist, numerical methods require evaluation of the integral of the covariance 

matrix, which would be computationally restrictive.  Instead, we take the sampled values 

of the GP as discrete values of the beta-derivative.  While we could use the GP to directly 

place a prior upon the pressure function itself as opposed to the beta-derivative, doing so 

would not enforce monotonicity of the pressure function, nor would it provide us with the 

ability to easily obtain the pressure derivative by inference.  The derivative of a GP is 

another GP, but it is defined by the partial derivative of the GP with respect to each 

inducing point, which once again leads us to reiterate that an analytic solution does not 

exist generally for all kernel functions.  For these reasons, we model the beta-derivative 

with the GP. 

Recalling our pressure function: 
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  
 ............................................................................................... 3.4 

It is of interest to note that Eq. 3.4 is analogous to Geometric Brownian Motion if we use 

a white noise kernel.  In this case, the GP reduces to a random walk which, following our 

analogy, is a Wiener process.  Use of a random walk has compelling numerical advantages; 

namely, the computational complexity is reduced from   ( n3 ) to   ( n).  To justify the 

increased computational demand from using another kernel, there would need to be a great 

benefit from enforcing the correlation of values at distant points.  This advantage does not 
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appear to exist, as we can enforce smoothness by other means of regularization, such as 

curvature.  We’ve found that the algorithm performance is unaffected by reduction to the 

random walk behavior of the white noise kernel, while gaining a polynomial reduction in 

runtime. 

We perform a numerical integration of βp (t ) with B-splines to compute the constant rate 

pressure, which is the kernel function for the convolution.  As shown in Section 3.7, this 

will give a smooth kernel function ever for large stepwise changes in βp (t ).  We take 

advantage of the fact that the beta-derivative is typically constant for a given flow regime, 

and changes smoothly and monotonically during flow regime transitions.  We extrapolate 

the value of the βp (t ) to the k additional  knots that have been added for the degree of the 

B-spline, using k = 1.  For the degree 1 case, the values of the spline function are equivalent 

to the values of the coefficients, so we do not require any solution to the set of linear 

equations that describe the B-splines.  Numerical evaluation of the integral identity of the 

coefficients is followed by computing the dot product of the coefficients and the degree k 

+ 1 B-spline matrix to both integrate and interpolate βp (t ). 

Determination of Δp1 in Eq. 3.4 remains.  We do not fix the value of Δp1 or make any 

strong assumption about the flow behavior prior to the first data point value as other authors 

have discussed.  Instead, we generate Δp1 directly by a priori distribution.  The choice of 

distribution may vary; in practice, we may decide to fix it at a specific value, enforce a 

range of likelihood around a specific value, or express no likelihood for any (except for, of 

course, prohibiting negative values).  For our general implementation, we use a HalfFlat 

distribution which expresses no preference for any value. 
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3.9.2 Construction of Knots 

Various researchers have addressed the value of the initial inducing point, or knot, with a 

variety of thoughts on the matter.  Çinar et al. (2006) and Onur et al. (2008) have provided 

a comprehensive discussion of the subject.  To summarize the matter, the first knot should 

be equal to or less than the first data point.  While the choice of the point at which the first 

not is placed may result in differences for other methods, we stress that it should make little 

difference to our approach.  This is due to the fact that we remove any effect of the first 

knot by setting its value equal to the first value of βp (t ), and after integration we remove 

all points preceding the first data point as a constant of integration.  The value of the kernel 

function at the first data point, Δp1, is represented by a random variable that is independent 

of the βp (t ) function.  With this formulation, we are not concerned with the choice of 

placement of the first knot; we consciously choose to exert prior belief, including no prior 

belief, for the value of the first knot by use of the prior distribution placed upon it. 

The number of knots is another choice we must make.  While some discussion of the total 

number of knots is given in recent literature, Ilk, Valkó, and Blasingame (2005, 2006) give 

a recommendation in terms of the number of knots per log cycle with a value of 2–6 in 

order to capture characteristic reservoir behavior.  They also discuss a reduction in the 

number of knots for data that is low quality, such as data containing large errors, or noise.  

We have chosen to use a constant value of 5 knots per log cycle and address low quality 

data with our robust cost function as well as our regularization scheme based on curvature. 

The set of logarithmically spaced knots are placed over the time interval of the observed 

data with additional logarithmically spaced knots beyond first and last values of the data 
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to account for the extrapolation of βp (t ).  We compute the number of log cycles that occur 

between the first and last data points: 

1

ceiling log10 nx
z

x

     
    ............................................................................................... 3.95 

We then generate the knots: 
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 .......................................................... 3.96 

Where k is the degree of the B-spline, and 5z indicates five knots per log cycle.  Eq. 3.95 

will automatically add the k + 1 knots required to evaluate the spline function, and over 

which βp (t ) is extrapolated. 

3.9.3 Initial Value of βp (t ) and Kernel Function 

To encourage quick regression to the optimization scheme, it is helpful to provide starting 

values.  Invalid starting values will result in singularities within the model, as the model 

requires the ability to compute the likelihood.  Examples of invalid values would be a 

negative value supplied for a HalfNormal distribution, or something otherwise outside the 

imposed bounds such as an initial pressure that is less than observed pressures.  "Correct" 

initial values are not strictly required; only values that fit within the defined probability 

density functions.  Valid yet divergent initial values will lead to longer optimization times 

before convergence. 

The initial value of βp (t ) should be based upon prior knowledge of the reservoir geometry 

and the suggested flow regime as provided in Table 3.2.  For example, if we are processing 
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a fractured well, we would expect the transient regime to display linear flow, so the chosen 

value of βp (t ) would be 0.5.  This must be transformed by the inverse of the softplus 

function, given by: 

1softplus ( ) ln 1xx e      ............................................................................................... 3.97 

Better still, we may determine the initial value from the slope of a regression of a power-

law function to the initial values of rate-normalized pressure (or pressure-normalized rate).  

We have found the first thirty values to yield good results. 

The initial value of Δp1 in Eq. 3.4 is assigned by the following equation based upon the 

observed data: 
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 ..................................................................................................................... 3.98 

Where the subscript iv refers to initial value.  Similarly, the initial value of q1 should be 

the scaled reciprocal of the same equation.  The scaling value is the difference between pD 

and 1/qD for transient linear and radial regimes, i.e. π/2: 
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As for the prior probability distributions, we have several choices.  We can choose a flat 

distribution which expresses that the value is a random variable but has no likelihood.  A 

uniform distribution is slightly more informative, providing a bound for upper and lower 

values of the variable, but constant likelihood that is marginalized out of the model.  If we 

do not have reliable evidence of a specific value, either of these would suffice.  Otherwise, 
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a Gaussian distribution may be preferable.  In the base case, we use a HalfFlat, but note 

that this choice can be changed arbitrarily from case-to-case: 

1 ~p   ...................................................................................................................... 3.100 

Likewise, we have for q1: 

1 ~q   ...................................................................................................................... 3.101 

3.9.4 Construction of Flow Rate and Pressure Drop Functions 

Recalling the convolution equation: 
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 .......................................................................... Eq. 2.3 

We must next compute the derivative of the rate values.  Again, we have a few choices.  If 

we consider the rate values to be stepwise constant values, we can simply take the first 

difference of the observed data, where q0 = 0.  However, this does not give us the ability 

to "correct" any data quality issues.  Prior authors have discussed this issue at length, and 

a summary of such issues may be found in Onur et al. (2008).  Instead of stepwise values, 

the application of a PGM allows us to treat the rate data as an unknown function to be 

determined. 

The choice of how to represent this presents some challenges.  In contrast to the kernel 

functions we proposed to place a GP prior upon, we may not assume that the rate function 

is smooth nor monotonic.  In fact, if we are correcting data of poor quality, then it is likely 

the rate function is quite noisy.  We do know that for a depletion case, we must constrain 
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the rates to non-negative values, and there is a realistic upper bound (but not a general 

upper bound that applies to all cases.  This suggests that we should represent the rates by a 

stepwise half flat distribution.  That is, a distribution of non-negative values in the interval 

[0,∞) that expresses no likelihood for what each stepwise value may be.  We perform the 

fit of these stepwise values by a second distribution.  Recalling that Laplace and Gaussian 

distributions are equivalent to L1 and L2 regularization, respectively, we term the second 

distribution as a regularization on the half flat distribution of stepwise rates.  Formally: 

( ) ~ ( )qf t t  .............................................................................................................. 3.102 

( )( ) ~ ( ( ), )q q tf t q t   .................................................................................................. 3.103 

The standard deviation of Eq. 3.103 states that distribution around the observed rate value 

we are willing to accept.  In practice, we have found a value of 1 BPD to work well (or 1 

psi in the case of pressure drop), but this may scale with the observed data.  While it may 

appear odd to state that the unknown rate function is both distributed semi-randomly and 

not at the same time, one can think of Eq. 3.102 as a generating function, and Eq. 3.103 as 

a constraining function. 

It may also be ideal to treat the total error in the model, rather than the error in rates and 

pressures independently.  In this case, we would have an alternative to Eq. 3.103: 

. ., . .( ) ~ (ln ( ), )t e q t ef t q t   ............................................................................................. 3.104 

. ., . .( ) ~ (ln ( ), )t e p t ef t p t   ........................................................................................... 3.105 
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where the use of the log would evaluate relative error as opposed to absolute error, and 

is some distribution to be determined. 

We may also use an ensemble method to generate the rate function, such as combining 

sequences of observed data, sequences of rate-correction, and/or sequences of generated 

rates with no observation.  We may not observe rates in all cases, meaning part of the rate 

history could be missing.  The same can, of course, apply to the observed pressures.  In 

these cases, we may impute any/all missing values, including both rates and pressure 

simultaneously. 

3.9.5 Initial Reservoir Pressure 

The details unknown function for initial pressure follows those of the initial value of Δp1. 

Some rules around the initial pressure are that it must be greater than the maximum 

observed flowing pressure (or the maximum flowing pressure must be constrained below 

the initial reservoir pressure), and that it should be less than the maximum possible value 

given the formation depth and pressure gradient.  For test cases of little-to-no noise we 

have not found any dependence on the inferred value of initial pressure with respect to the 

initial guess, so the initial value is set equal to the maximum observed flowing pressure 

unless data indicates otherwise. 
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3.9.6 Cost Function 

Next, we perform the convolutions in Eq. 2.3.  The kernel function of constant-rate pressure 

is convolved with either the data or the fit rate function.  The result is compared with the 

observed pressure data with a Huber prior. 

ln ~ (ln , , 0.1)conv convp p t    ................................................................................. 3.106 

~ (1)conv   .............................................................................................................. 3.107 

The choice of Huber distribution improves the robustness of our method, but the value of 

σconv must still be calibrated for each data set.  Here we also place a HalfNormal prior upon 

the σconv value of the Huber distribution, in which the most likely value is zero.  The 

standard deviation equal to unity avoids numerical errors while initialization and tuning of 

the Markov chain occurs during the first few iterations.  After completion of the simulation, 

the fit value of σconv may be as small as 10-3 or 10-4.  The HMC algorithm will infer the 

value(s) of σconv that fall within the posterior distribution of the entire model, thus removing 

our need to manually adjust the cost function to address noise or other types of large 

variances in the data.  The optimization will determine the value automatically. 

The variable-pressure drop case also employs a Huber prior upon residuals of the 

convolved constant-pressure rate kernel function and the observed pressure drop: 

ln ~ (ln , )conv convq q   ................................................................................................. 3.108 

The value of σconv is the same as in the variable-rate case. 



75 

3.9.7 Correlation of Kernel Functions 

We enforce the relationship between the kernel functions by utilization of Duhamel’s 

principle.  We must convolve both kernel functions together and expect that the output be 

equal to our array of time against which the kernel functions are evaluated. 

0
( ) ( )

Dt

D D D Dt q p t d     ........................................................................................ Eq. 2.1

In this case, we do wish to place a high cost upon any outliers, so we place a Gaussian prior 

on the output of Eq. 2.1: 

,ln ~ (ln , )D conv D Duhamelt t   .......................................................................................... 3.109 

Because this relationship is exact, while the kernel functions are unknown and are to be 

determined, we keep the value of σDuhamel small.  We use a value corresponding to a 

standard deviation of 2% relative error: 

ln 1.02Duhamel   .......................................................................................................... 3.110 

While this value could be decreasing even further, there is a tradeoff in the time it takes the 

algorithm to run, and potential numerical issues when the error is too large.  The output of 

Eq. 2.1 is the result of two unknown functions, so values of σDuhamel much smaller than we 

have proposed may cause the HMC algorithm to struggle to converge (find the space of 

high likelihood in the posterior distribution). 

3.9.8 Regularization for Smoothness of Kernel Functions 

We have reviewed all of the parameters fundamental to the deconvolution PGM.  What 

remains are additional constraints we wish to add, or must add, to achieve reliable results 
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from the deconvolution.  The first of these is regularization of the kernel functions.  Prior 

authors have found success in two means of ensuring the kernel functions are smooth. 

First, restricting the number of points, or knots, in the time interval of over which the 

function is evaluated.  Second, by penalizing "non-smoothness" of the function.  We 

employ both. 

The number of knots per cycle influences the amount by which the kernel function can 

change per log cycle, and the amount of potential non-smoothness in the kernel function. 

Values of the kernel function are found by interpolating the gridded knots.  We have 

evaluated both linear interpolation and B-spline based interpolation and found that while 

performance is comparable for developing the kernel functions, B-splines give superior 

results for the computation of derivatives but incur a computational penalty.  This can be 

offset by reducing the number of knots used for B-splines, and by solving for the 

coefficients before optimization time, which reduces the interpolation using B-splines to a 

dot product during optimization time.  Linear interpolation is implemented based upon a 

pre-computed slice of the time grid and can be applied during optimization as a single 

vector operation.  We recommend 5 knots per cycle for the B-splines, and 40 or 50 knots 

per cycle for the linear interpolation.  The high number of knots is a requirement to achieve 

smooth derivatives for use in regularization.  Due to their superior performance for this 

purpose, we would recommend the B-splines over linear interpolation. 

We employ regularization on curvature based upon the ideas of von Schroeter, Hollaender, 

and Gringarten (2002, 2004), but in a more general form.  This is enabled by the fact that 

computing finite difference equations is a trivial matter for our model.  We may do so in 
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either a vectorized form across arrays, or with the finite difference weights as a convolution 

kernel.  In either case, we have implemented a general solution utilizing the radius of 

curvature given by Eq. 3.111.  As we are evaluating the curvature of the log of the kernel 

function with respect to the log of time, the approximation used by von Schroeter is not 

valid.  Their implementation has not accounted for the fact that the second derivative is not 

taken of the log of the kernel function.  The second order derivative term in Eq. 3.111 will 

not return the correct result if evaluated on the log of the kernel function.  They have also 

neglected the denominator in Eq. 3.111, with the result that the method is not invariant to 

step size, and the curvature in periods where the first derivative is not negligible will be 

incorrect.  Full details of the derivation are presented in Appendix B. 
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       .................................................................................... 3.111

Some important details regarding Eq. 3.111 are as follows: We use a central difference for 

all derivatives, giving in total we have n - 2 points for dτ over which we evaluate the 

curvature.  Recall that we add additional k + 1 knots to our B-splines, so if we use degree 

1 or greater B-splines, we suffer no reduction in resolution from the discretization. 

The regularization placed upon K enforces smoothness of the kernel functions.  A Gaussian 

prior is used as we desire strong penalties for any period of sharpness. 

~ (0, )curvK 
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We note that we place an independent and identically distributed distribution on every Ki 

term.  This differs from the von Schroeter method, which placed a penalty on the sum of 

Ki terms, and an initial estimate of the proper amount of regularization to use comes from 

computing an average over the total number of rows of their solution matrix.  We do not 

require any adjustment, as our formulation already accounts for differences in the length 

of the data arrays we may evaluate. 

3.9.9 Priors Placed upon Flow Regime Behavior 

Inconsistencies, noise, limited sample size, or other issues present in the rate and/or 

pressure data may not allow for the correct deconvolution of the data.  In these cases, we 

may apply our algorithm iteratively, expressing a prior for specific behavior of the kernel 

function during specific intervals.  Utilizing the relation of the beta-derivative to the well-

testing derivative: 

( ) ( ) ( )t p t t p t   .......................................................................................................... 3.112

We may place a prior upon the derivative of the identity of the type given in Table 3.2.  As 

examples, Eq. 3.113 corresponds to radial flow, and Eq. 3.114 corresponds to boundary-

dominated flow.  Eq. 3.113 may apply to either kernel function as both yield the same 

signature for radial flow, while Eq. 3.114 must apply only to the constant-pressure rate 

kernel function.  Full details of the derivations are provided in Appendix A. 
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One can imagine using these priors as an additional form of regularization.  Analogous to 

expressing a belief of monotonicity or smoothness, we also express belief for additional 

behavior, such as periods where the beta-derivative must take specific values in addition. 

Priors allow us to overcome noise or information limits in the data. 

3.9.10 Summary 

Development of a workflow necessitates recognition of the flexibility of the PGM.  The 

PGM separates knowledge of the system, and reasoning about the system.  We never need 

to change the basic structure of the PGM.  Instead, if we wish to change how the model 

behaves, we are only required to alter the distributions placed upon the variables or mask 

the data such that a variable is no longer treated as observed.  Ideally, the PGM is a general 

solution for any deconvolution problem. 

A workflow for application of the PGM evolves from understanding the desired reasoning, 

and the necessary variables in the PGM to perform that reasoning.  For example, if we only 

wish to perform variable-rate deconvolution, then we do not need to apply Duhamel’s 

principle to correlate the constant-pressure rate kernel function, nor do we even need the 

constant-pressure rate kernel function. 

The general outline of our algorithm is as follows: 

● Determine which “case” of deconvolution to perform:

■ variable-rate,
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■ variable-pressure,

■ both simultaneously uncorrelated, or

■ both simultaneously correlated.

● Set state for the solution to determine what variables are observed, and what variables

must be generated.  “Variable” in this context refers to a single time-step observation

of rates or pressures, and initial reservoir pressure.  None, all, or any combination of

these may be missing and be imputed.  (Of course, the quality and reasonableness of

the result from the deconvolution is dependent on the data quality, as will be shown).

● Initialize the beta derivative(s) and its intercept(s).  This is performed by computing

the beta derivative of the pressure-normalized rate, or the rate-normalized pressure,

over the first 30 time-steps of the data.

● Generate the dimensionless pressure and dimensionless rate functions, depending on

the chosen deconvolution case.  Transform these to the constant-rate pressure and

constant-pressure rate functions respective to the reservoir properties.  If these are not

known, then a unit value may be used, and the dimensionless function and its

dimensional form are equivalent.

● Impute initial reservoir pressure, if necessary, using a chosen generating function.

● Impute any missing rate or pressure values, if necessary, using a chosen generating

function such as a series of Gaussian random walks over the contiguous missing time

steps.

● Perform the convolutions respective to the chosen deconvolution case.
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● Perform a convolution of the dimensionless rate and dimensionless pressure functions,

if correlating the two in the chosen deconvolution case.

● Evaluate the likelihood of each time step value from the result of the deconvolution(s)

using a prior distribution with mean equal to the respective observed value.  To clarify,

a prior distribution, such as a Gaussian, Laplace, or Huber, is placed upon each and

every value along the array of rates or pressures.  The mean of this distribution is the

observed value, and the variance is a hyperparameter with an Exponential prior

distribution that is inferred by the optimization.

● Evaluate the likelihood of the result of the convolution of the dimensionless functions,

if necessary, for the chosen deconvolution case, using a Gaussian prior.

3.10 Validation and Application 

We now validate our algorithm by comparison with the response from a known reservoir 

model.  We obtain the dimensionless pressure and rate solutions by inversion from the 

Laplace domain using the GWR algorithm (Valkó and Abate 2002, 2004) in the 

Mathematica software (Wolfram Research 2018).  For any reservoir model, we create a 

synthetic variable-rate and variable-pressure drop profile.  These profiles are then 

convolved with the reservoir model solutions in the real domain.  While we could perform 

the convolution in the Laplace domain, in practice the discontinuities we have encoded into 

our synthetic profiles present significant challenges for numerical inversion as piecewise 

functions are not defined for the inverse Laplace transform.  If, however, smoothly 

changing profiles are utilized instead of step-wise profiles, then the convolution should be 

performed in the Laplace domain. 
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We perform several validations with each data set.  First, we deconvolve the unaltered data 

for the variable-rate case.  Then, we add random noise and repeat the deconvolution to test 

our algorithm for error tolerance.  Next, we mask some intervals in the data and impute the 

missing rates and pressures.  Following this, we assume the initial reservoir pressure is 

unknown, and impute the value in addition to the missing rates and pressures. 

We repeat the sequence for the variable-pressure drop case.  Then, we consider a multi-

well case consisting of several wells with a variety of variable-pressure drop profiles and 

impute the pressure history of entire wells.  Last, we demonstrate the simultaneous 

deconvolution approach on field data. 

We run the HMC simulation for 1000 burn-in iterations in which the algorithm converges 

to the posterior distribution.  We then discarded these and sample 50 iterations from the 

posterior.  While this is a small number, we are not seeking to represent the full statistics 

of the posterior.  Rather, we explore the posterior for an understanding of the uncertainty 

of the deconvolution and identify the iteration that contains a maximum likelihood estimate 

(MLE).  We plot the MLE as a thicker opaque line whereas we plot other posterior samples 

as thinner, transparent lines.  The goal is to provide a visualization of the uncertainty of the 

deconvolution with a visual anchor around the MLE. 

The cases we run range from simple to complex, and the optimization times vary by two 

orders of magnitude from the simplest to the most complex.  At the low-end of run time 

are the field cases, which may take between five to fifteen minutes.  The field cases 

presented consist of only tens or hundreds of data points, and only ten or twenty parameters. 

At the high-end of run time are the imputation cases, which consist of ten thousand data 
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points, and several thousand parameters.  These cases were run on the Texas A&M High 

Performance Research Computing group’s Terra cluster, and generally ran for about 

twenty-four hours. 

3.10.1 Generation of Synthetic Data 

We have chosen as a base case a fractured vertical well in a circular reservoir (Fig. 3.15) 

due to the characteristic behavior of both linear and radial transient regimes.  Given a 

constant rate inner boundary and a closed outer boundary Ozkan and Raghavan (1991a, 

1991b) give the solution in the Laplace domain: 

, ,D D inf D nfp p p   ....................................................................................................... 3.115. 

That is, the sum of the infinite acting solution and the "no-flow" outer boundary solution: 
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Eqs. 4.1 to 4.3 are for a uniform flux fracture.  We obtain the infinite-conductivity case by 

using the value xD = 0.732 (Gringarten, Ramey, and Raghavan 1974).  A list of reservoir 
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properties is given in Table 3.3.  The dimensionless pressure, dimensionless rate, and 

dimensionless pressure derivative functions for these properties are plotted in Fig. 3.16. 

We require a synthetic rate and pressure profiles to demonstrate or deconvolution.  We 

have chosen the following rate and pressure profiles: 
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We have chosen these profiles to highlight the utility of our deconvolution algorithm's 

ability to impute rate and/or pressure history.  Data quality and consistency is a concern for 

any deconvolution method.  The number of switches that occur in the synthetic histories 

provide several instances over which we can evaluate the performance of the imputation. 
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Figure 3.15 — Schematic of fractured vertical well in a circular reservoir. 
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Table 3.3 — Reservoir and fluid properties for Validation Cases 

Reservoir Properties 
Reservoir Radius, xe = 283 ft 

Wellbore Radius, rw = 0.354 ft 

Fracture Half-length, xf = 50 ft 

Reservoir Thickness, h = 20 ft 

Porosity, ϕ = 0.1 (fraction) 

Permeability, k = 1.0 md 

Total Compressibility, ct = 1x10-5 psi-1

Fluid Properties 
Fluid viscosity, μ = 1 cp 

Formation Volume Factor, B = 1 RB/STB 

Figure 3.16 — Dimensionless pressure, dimensionless, and dimensionless pressure 
derivative solutions for fractured vertical well case. 
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3.10.2 Deconvolution of Variable-Rate Cases 

Using the given synthetic rate profile, we generate several validation cases: 

● Validation Case 1 is an exact result from the convolution of the rate profile with the

dimensionless pressure function.  Fig. 3.17 shows the generated data for the

deconvolution.

● Validation Case 2 adds errors to the rate and pressure histories in the form of random

error.  Each rate-time and pressure-time pair is randomly adjusted within ±5% of its

original value by multiplication with i.i.d. uniform distributions  (0.95, 1.05).

● Validation Case 3 increases the errors to within ±20% of its original value by

multiplication with i.i.d. uniform distributions  (0.8, 1.2).

● Validation Case 4 masks the rate history from 200 to 750 hours and from 800 to 1,000

hours.  The "missing" rate values are then imputed during by the deconvolution

algorithm.

● Validation Case 5 uses the input data from Case 2 with the 5% random noise, and

masks the rate history from 200 to 750 hours and from 800 to 1,000 hours as in Case

3.

● Validation Case 6 removes the known initial reservoir pressure from Case 2 with the

5% random noise.  The value of initial reservoir pressure is then imputed.

Each validation case first presents the input data, with any noise and/or masked periods as 

compared with the true values.  The results of the deconvolution are shown in dimensional 

and non-dimensional form for 50 samples from the posterior distribution.  We show the 
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constant-rate pressure function, the reconstructed-by-convolution variable-rate pressure 

function, the constant-pressure-drop rate function, and the reconstructed-by-convolution 

variable-pressure drop rate function.  These are referred to as the "trained kernel" functions, 

as they are wholly dependent on the accuracy of the deconvolution to obtain the proper 

dimensionless function. 

We also show the dimensionless rate, dimensionless pressure, dimensionless pressure 

derivative, and time functions.  The dimensionless rate and dimensionless pressure 

functions are generated by use of Eq. 3.6 and Eq. 3.4, respectively.  The dimensionless 

pressure derivative is computed by use of Eq. 3.112.  The result of convolution of the 

dimensionless rate and dimensionless pressure functions, as defined by Duhamel's 

principle in Eq. 2.1, is shown as a comparison the time step.  As this will always be a unit 

slope, we have scaled it on the y-axis for plotting convenience. 

In Validation Case 1 (Fig. 3.18) we see that our algorithm performs an exact match of the

( )Dp t and ( )Dp t functions.  Although we have no way of determining very first value of

( )Dp t  as is typical for discrete computations of derivatives, extrapolation of the beta

derivative beyond the range of data provides an assumption of a constant derivative at the 

edges, stabilizes the calculation (in plain terms, the expected value of the next step is the 

current value), and provides a good match in this case. 

We note that the generation of the ( )Dq t function is inadequate at early time.  This is a 

limitation of discrete computations with data.  Duhamel's principle only holds if we have 
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continuous functions, or the entire history of the ( )Dp t and ( )Dq t functions with arbitrary 

time resolution. 

Validation Case 2, with 5% random error on both the input flow rates and pressures, is 

presented in Fig. 3.19 and Fig. 3.20.  No change is made to the hyperparameters of the 

deconvolution algorithm for regularization – the variance parameter of the distribution 

placed upon the deconvolved function values is automatically determined by the algorithm 

as it converges to the posterior distribution.  For the most part, the result is the same as in 

the exact case, with the primary difference being an increase in variance of the posterior 

distribution, and slight deviation at the beginning and end points of the ( )Dp t function.  We 

can now see the distribution of the first value of the ( )Dp t function as well.  The

reconstructed variable-rate pressure function values are quite smooth despite the noise in 

the input rate data.  However, the reconstructed variable-pressure drop rate values now 

contain a great deal of noise, but "on average" appear correct. 

Validation Case 3 in Fig. 3.21 and Fig. 3.22 increases the random error to 20%.  Once 

again, no change to the hyperparameters is made.  The reconstructed variable-rate pressure 

function is close to the true value even with the significant level of noise.  The reconstructed 

variable-pressure drop rate values are now uninterpretable, but this is due to the noise in 

the input data, not the lack of a smooth constant-pressure rate function. 

The input data are masked in Validation Case 4, presented in Fig. 3.23 and Fig. 3.24, and 

most of the rate values are imputed.  No noise is added to the input data.  We observe a 
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greater amount of oscillation in the dimensionless rate function.  However, we see that the 

significant features of the reservoir model are still captured by all functions. 

Fig. 3.25 shows the distribution of imputed rates as compared with the true values, 

observed (non-masked) values, and the reconstructed rate values.  There is good agreement 

between all four, with a greater variance in the imputed values than those constrained by 

observation. 

Validation Case 5 adds the mask to the 5% random error of Validation Case 2.  In Fig. 3.26 

and Fig. 3.27, once again we see a considerable amount of the feature on both the 

dimensionless rate and dimensionless pressure functions, despite the now significant level 

of noise in the reconstructed variable-rate pressure function.  Fig. 3.28 also shows an 

immense spread of variance on the imputed rate values.  We emphasize the tolerance of 

the algorithm for this level of uncertainty regarding the true rate values. 

Validation Case 6 presented in Fig. 3.29 and Fig. 3.30 impute the value of initial reservoir 

pressure given the 5% random error from Validation Case 2.  While any prior can be used 

for the initial reservoir pressure, we have chosen a uniform non-informative prior of 

~ (max( ), 6000)i wfp p , where the max observed flowing pressure is 4948.1 psia.  Fig.

3.31 shows the histogram of pi in the posterior distribution.  We infer an initial reservoir 

pressure in the range of 5002–5006 psi compared with the true value of 5000 psi. 



91 

Figure 3.17 — Input data for Validation Case 1 (no error). 

Figure 3.18 — Deconvolution results for Validation Case 1 (no error). 
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Figure 3.19 — Input data for Validation Case 2 (5% random error). 

Figure 3.20 — Deconvolution results for Validation Case 2 (5% random error). 
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Figure 3.21 — Input data for Validation Case 3 (20% random error). 

Figure 3.22 — Deconvolution results for Validation Case 3 (20% random error). 
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Figure 3.23 — Input data for Validation Case 4 (imputed missing rates, no error). 

Figure 3.24 — Deconvolution results for Validation Case 4 (imputed missing rates, no 
error). 
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Figure 3.25 — Imputed Oil Rate for Validation Case 4 (imputed missing rates, no 
error). 

Figure 3.26 — Input data for Validation Case 5 (imputed missing rates 5%, random 
error). 
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Figure 3.27 — Deconvolution results for Validation Case 5 (imputed missing rates, 5% 
random error). 

Figure 3.28 — Imputed Oil Rate for Validation Case 5 (imputed missing rates, 5% 
random error). 
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Figure 3.29 — Input data for Validation Case 6 (imputed initial reservoir pressure). 

Figure 3.30 — Deconvolution results for Validation Case 6 (imputed initial reservoir 
pressure). 
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Figure 3.31 — Histogram of Imputed Initial Reservoir Pressure for Validation Case 6 
(imputed initial reservoir pressure). 

3.10.3 Deconvolution of Variable-Pressure Drop Cases 

Next, we repeat similar validation cases with a different profile for the variable-pressure 

drop case: 

● Validation Case 7, like Validation Case 1, is an exact result from the convolution of

the rate profile with the dimensionless pressure function.

● Validation Case 8 mirrors Validation Case 2 and adds errors to the rate and pressure

histories in the form of random error.  Each rate-time and pressure-time pair is

randomly adjusted within ±5% of its original value by multiplication with i.i.d.

uniform distributions  (0.95, 1.05).
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● Validation Case 9 increases the errors to within ±20% of its original value by

multiplication with i.i.d. uniform distributions  (0.8, 1.2).

● Validation Case 10 masks the input pressure history from 300 to 600 hours.  The

"missing" pressure values are then imputed during by the deconvolution algorithm.

● Validation Case 11 uses the input data from Case 2 with the 5% random noise and

masks the rate history from 300 to 600 hours as in Case 10.

In Validation Case 7 (Fig. 3.32 and Fig. 3.33) we see that our algorithm performs an exact 

match of the dimensionless rate function, performs well with the dimensionless pressure 

function, but mismatches most of the transient period of the dimensionless pressure 

derivative.  As in the variable-rate case where we saw the dimensionless rate function begin 

overlying the dimensionless pressure function, the reverse is true here.  Smaller timesteps 

would alleviate the issue. 

Aside from the early-time mismatch, the reconstructed rate and pressure functions are 

nearly an exact match.  The algorithm struggles to fit variable-rate pressure values of zero 

at late-time but reconstructs the function correctly elsewhere. 

Validation Case 8 shown in Fig. 3.34 and Fig. 3.35 demonstrates the deconvolution on 5% 

random error.  The smaller number of changes in the input data, as compared to Validation 

Case 2, result in greater uncertainty of the deconvolved result, and the results are not nearly 

as good.  However, most of the rate and pressure function characteristics are captured 

except for the early-time behavior.  The deconvolved response has not captured the high 

initial rate values as in the exact case. 
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For Validation Case 9, this is not the case, and the significant level of noise, especially the 

truncated pressure values at late time, lead to a poor result on all accounts (Fig. 3.36 and 

Fig. 3.37), and the kernel functions cannot be recovered.  The stability of the behavior of 

the model in failure is appealing.  We do not observe oscillation or divergence.  Instead, 

we see model failing to converge from the prior to the posterior, and the prior is returned. 

Validation Case 10 follows Validation Case 4 and masks a portion of the input pressure 

data from 300 to 600 hours.  Fig. 3.38 and Fig. 3.39 present the results.  The significant 

reservoir features are captured by all functions, and exceptionally well by the 

dimensionless rate function after the first 20 or 30 data points.  Fig. 3.40 shows the imputed 

pressure values.  The difficulty in imputing this profile is that the derivative of the profile 

is a constant of zero except for a single non-zero value at 500 hours.  Therefore, any set of 

constant values is a valid solution for all but three values (the first at 300 hours, the point 

at 500 hours, and the last at 600 hours), but this information regarding the relationship of 

the masked values is unavailable.  The minimal error in the imputed values, with only 

significant artifact seen around 600 hours at the end of the masked interval, is impressive 

given the non-uniqueness of this problem. 

Validation Case 11, as illustrated by Fig. 3.41 and Fig. 3.42, masks the 5% random noise 

from Validation Case 8 from 300 to 600 hours.  The resulting dimensionless rate function 

appears similar to the unmasked case – that is, it fails to capture the early-time behavior. 

Fig. 3.43 shows a greater degree of error in the imputed values, but less than in the observed 

data. 
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Figure 3.32 — Input data for Validation Case 7 (no error). 

Figure 3.33 — Deconvolution results for Validation Case 7 (no error). 
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Figure 3.34 — Input data for Validation Case 8 (5% random error). 

Figure 3.35 — Deconvolution results for Validation Case 8 (5% random error). 
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Figure 3.36 — Input data for Validation Case 9 (20% random error). 

Figure 3.37 — Deconvolution results for Validation Case 9 (5% random error). 
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Figure 3.38 — Input data for Validation Case 10 (imputed missing pressures, no error). 

Figure 3.39 — Deconvolution results for Validation Case 10 (imputed missing 
pressures, no error). 
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Figure 3.40 — Imputed bottomhole flowing pressure for Validation Case 10 (imputed 
missing pressures, no error). 

Figure 3.41 — Input data for Validation Case 11 (imputed missing pressures, 5% error). 
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Figure 3.42 — Deconvolution results for Validation Case 11 (imputed missing 
pressures, 5% error). 

Figure 3.43 — Imputed bottomhole flowing pressure for Validation Case 11 (imputed 
missing pressures, 5% error). 
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3.10.4 Deconvolution of Variable-Rate Cases with Random Rate Profile 

We next test our algorithm with a completely random rate profile and severe levels of noise. 

This test demonstrates the numerical stability of our method: 

● Validation Case 12 is an exact result from the convolution of the random rate profile

with the dimensionless pressure function.

● Validation Case 13 adds random error to Validation Case 12.  Each rate-time and

pressure-time pair is randomly adjusted within ±5% of its original value by

multiplication with i.i.d. uniform distributions  (0.08, 1.05).

● Validation Case 14 increases the errors to within ±20% of its original value by

multiplication with i.i.d. uniform distributions  (0.8, 1.2).

● Validation Case 15 increases the errors to within ±40% of its original value by

multiplication with i.i.d. uniform distributions  (0.6, 1.4).

● Validation Case 6 increases the errors to within ±60% of its original value by

multiplication with i.i.d. uniform distributions  (0.4, 1.6).

In Validation Case 12 (Fig. 3.44 and Fig. 3.45) we see that our algorithm performs almost 

identically to Validation Case 1.  The random rate profile presents no issues for the 

deconvolution.  We observe an exact match of the dimensionless pressure function, and 

reconstruction of the dimensionless rate function performs well except for the tail of the 

array.  The mismatch of the tail seems to occur only for the exact cases with no noise. 
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Validation Case 13 shown in Fig. 3.46 and Fig. 3.47 demonstrates the deconvolution on 

5% random error.  There is a minor degradation of the recovered pressure derivative, but 

the dimensionless rate function is improved as compared with Validation Case 12. 

For Validation Case 14, we begin to see oscillation in the pressure derivative and 

dimensionless rate profile in Fig. 3.48 and Fig. 3.49 due to the 20% random noise. 

Validation Case 15 in Fig. 3.50 and Fig. 3.51 adds 40% random noise and begins to present 

a challenge to recover the first few data points of the dimensionless pressure profile.  While 

the general trend of the function is recovered, the oscillation in the pressure derivative 

begins to create challenges for interpretation. 

Validation Case 16 adds severe error of 60% random noise as illustrated by Fig. 3.52 and 

Fig. 3.53.  While the level of noise of significant, the true functions are still identifiable in 

the deconvolved response.  The early-time behavior is not recovered, but on the other hand, 

the results are not far from the true functions. 

Overall, we see in these cases that the deconvolved response is stable despite unrealistically 

large noise coupled with a completely random rate profile.  There is no divergence of the 

recovered functions to infinity, and any oscillation is well controlled and centered around 

the true function.   

Interestingly, we see that, despite yielding a full posterior distribution, we do not observe 

the range of uncertainty significantly increase such that it would cover the true function. 

Any increase is rather small.  We interpret this to indicate that despite the high levels of 

noise, use of 10,000 data points should give enough confidence to converge upon the true 
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answer.  However, the true answer is not contained by the posterior distribution.  If we 

assume that our method is yielding the true posterior given the observed data, we can 

conclude that the true answers are recoverable from data that contains such high error. 
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Figure 3.44 — Input data for Validation Case 12 (random rate, no error). 

Figure 3.45 — Deconvolution results for Validation Case 12 (random rate, no error). 
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Figure 3.46 — Input data for Validation Case 13 (random rate, 5% random error). 

Figure 3.47 — Deconvolution results for Validation Case 13 (random rate, 5% random 
error). 
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Figure 3.48 — Input data for Validation Case 14 (random rate, 20% random error). 

Figure 3.49 — Deconvolution results for Validation Case 14 (random rate, 20% random 
error). 
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Figure 3.50 — Input data for Validation Case 15 (random rate, 40% random error). 

Figure 3.51 — Deconvolution results for Validation Case 15 (random rate, 40% random 
error). 
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Figure 3.52 — Input data for Validation Case 16 (random rate, 60% random error). 

Figure 3.53 — Deconvolution results for Validation Case 16 (random rate, 60% random 
error). 
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3.10.5 Deconvolution of Multi-well Variable-Rate Cases 

In this section we apply the graphical model of Fig. 3.11 to scale our method to a multi-

well case.  Due to our representation of the deconvolution problem as a probabilistic 

graphical model, extension to the multi-well case requires only minor modification to our 

method.  Recalling Fig. 3.12, we imagine a rate or pressure profile for a single well as a 2-

dimensional array.  The first dimension is time, and the second dimension is the assignment 

of a well number, e.g. for a single well, the well number is 1. 

As we have already shown the capability to deconvolve exact cases, the primary goal of 

this section is to demonstrate the capability to impute missing rate profiles from multiple 

wells, for both partial and completely missing rate profiles. 

● Validation Case 17 is an exact result from the convolution of the various rate profiles,

unique for each well, with the dimensionless pressure function.  However, the input

data for each well is missing 25% of the total duration.  Each well is missing a different

period of history.

● Validation Case 18 adds random error to Validation Case 17.  Each rate-time and

pressure-time pair is randomly adjusted within ±5% of its original value by

multiplication with i.i.d. uniform distributions  (0.08, 1.05).

● Validation Case 19 increases the errors to within ±20% of its original value by

multiplication with i.i.d. uniform distributions  (0.8, 1.2).

● Validation Case 20 changes the missing rate profiles for each well.  Well 1 has the

entire rate history, while the history is entirely missing for the other wells.
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● Validation Case 21 adds ±5% to Validation Case 17 by multiplication with i.i.d.

uniform distributions  (0.95, 1.05).

● Validation Case 22 increases the errors to within ±20% of its original value by

multiplication with i.i.d. uniform distributions  (0.8, 1.2).

The Validation Case 17 is shown in Fig. 3.54, Fig. 3.55, and Fig. 3.56.  Similar to 

Validation Case 4, we are able to impute the missing rate values.  However, the addition 

of multiple wells gives us three distinct observations of the constant-rate pressure function 

at each time step.  We observe a corresponding decrease in the uncertainty of the imputed 

rate profiles, and they are nearly exact. 

Validation Case 18 in Fig. 3.57, Fig. 3.58, and Fig. 3.59 also performs very well.  The 

difference with the results in Validation Case 5 is stark; the greater amount of information 

available across the well set improves the result as compared with that case.  We do observe 

a wider range at the later-time values as compared with the earlier-time values.  This is due 

to the nature of the convolution operator, as earlier-time values influence every time value 

afterwards.  

Validation Case 19, shown in Fig. 3.60, Fig. 3.61, and Fig. 3.62, contains clear oscillation 

in the pressure derivative in addition to increase uncertainty in the imputed rate values. 

Additionally, the pressure function is not correctly recovered at early times. 
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Validation Case 20 is illustrated by Fig. 3.63, Fig. 3.64, and Fig. 3.65. As in Validation 

Case 17, we are able to obtain near-exact reconstruction of each rate, even with a more 

difficult problem of entirely missing rate profiles. 

Validation Case 21 shows a loss of the early-time values of the pressure function and 

pressure derivative (Fig. 3.66, Fig. 3.67, and Fig. 3.68.  The performance is worse than 

that of Validation Case 19, which had a greater level of noise.  This is due to the reduction 

in observed data of the completely missing rate profiles. 

Validation Case 22, shown in Fig. 3.69, Fig. 3.70, and Fig. 3.71, is the final validation case 

for this section and demonstrates the difficult in recovering the entire rate profiles with a 

high level of noise.  As before, we note that even though the correct function is not 

recovered, the algorithm does not exhibit instability or divergence.  Instead, it reverts back 

to a power-law function with a slope based upon its initialization value, as no strong 

indication of a change from the prior is provided by the data. 
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Figure 3.54 — Input data for Validation Case 17 (multiwell, partial missing rates, no 
error). 

Figure 3.55 — Deconvolution results for Validation Case 17 (multiwell, no error) – 
Dimensionless Functions. 
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Figure 3.56 — Deconvolution results for Validation Case 17 (multiwell, partial missing 
rates, no error) – Individual Well Results. 
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Figure 3.57 — Input data for Validation Case 18 (multiwell, partial missing rates, 5% 
random error). 

Figure 3.58 — Deconvolution results for Validation Case 18 (multiwell, partial missing 
rates, 5% random error) – Dimensionless Functions. 
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Figure 3.59 — Deconvolution results for Validation Case 18 (multiwell, partial missing 
rates, 5% random error) – Individual Well Results. 
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Figure 3.60 — Input data for Validation Case 19 (multiwell, partial missing rates, 20% 
random error). 

Figure 3.61 — Deconvolution results for Validation Case 19 (multiwell, partial missing 
rates, 20% random error) – Dimensionless Functions. 
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Figure 3.62 — Deconvolution results for Validation Case 19 (multiwell, partial missing 
rates, 20% random error) – Individual Well Results. 
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Figure 3.63 — Input data for Validation Case 20 (multiwell, completely missing rates, 
no error). 

Figure 3.64 — Deconvolution results for Validation Case 20 (multiwell, completely 
missing rates, no error) – Dimensionless Functions.  
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Figure 3.65 — Deconvolution results for Validation Case 20 (multiwell, completely 
missing rates, no error) – Individual Well Results. 
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Figure 3.66 — Input data for Validation Case 21 (multiwell, completely missing rates, 
5% random error). 

Figure 3.67 — Deconvolution results for Validation Case 21 (multiwell, completely 
missing rates, 5% random error) – Dimensionless Functions. 
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Figure 3.68 — Deconvolution results for Validation Case 21 (multiwell, completely 
missing rates, 5% random error) – Individual Well Results. 
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Figure 3.69 — Input data for Validation Case 22 (multiwell, completely missing rates, 
20% random error). 

Figure 3.70 — Deconvolution results for Validation Case 22 (multiwell, completely 
missing rates, 20% random error) – Dimensionless Functions. 
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Figure 3.71 — Deconvolution results for Validation Case 22 (multiwell, completely 
missing rates, 20% random error) – Individual Well Results. 

3.11 Application to Field Cases 

With validation of the technique and confirmation of the generality of the PGM to any 

deconvolution problem and tolerance to severe levels of noise, we apply our deconvolution 

method to two field cases.  Given that our method builds upon that of Ilk, Valkó, and 
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Blasingame (2006), we can state with confidence that it will perform at least as well in the 

cases Ilk et al. tested.  (See Appendix E for a discussion of the differences, and 

modifications to our method to re-create the Ilk et al. method within our Bayesian 

framework). 

Deconvolution requires that the linearity of the relationship between rate and pressure is 

maintained.  In such cases where this does not hold, we would not expect that our method 

would be able to invert the correct deconvolved function.  However, given that we can 

enforce the linearity of the rate and pressure solutions with our method by performing a 

simultaneous correlated deconvolution, we are interested to observe the result in the case 

where the assumption of linearity is not valid.  To perform the simultaneous deconvolution, 

we require a data set in which both rates and pressures are changing.  That is, a situation in 

which the assumption that the inner boundary condition is completely controlled by the 

pressure or the flow rate, not both, is invalid.  Otherwise, an independent variable-pressure 

or variable-rate case, respectively, would be more correct to apply. 

3.11.1 Attaka Oil Well 

We analyze an oil well given by Blasingame (2009) which displays a clear non-linearity at 

late time (Fig. 3.72).  We observe a sudden decrease in the flow rate corresponding to a 

sudden increase in the decline rate, with no observable reaction from the pressure data.  We 

first perform a traditional variable-pressure deconvolution, interpolating values at missing 

time-steps but otherwise performing no data correction, to obtain the constant-pressure rate 

function (Fig. 3.73). 
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We first note that, relative to our validation cases, the much smaller size of the data set 

corresponds to a wider posterior distribution of response.  We can see that the uncertainty 

of the deconvolved constant-pressure rate increases toward the tail of the data, 

corresponding to the deviation of the reconstructed rate from the data. 

Next, we repeat the variable-pressure case, but allow our method to impute missing data 

values instead of generating them by deterministic interpolation.  The result is shown in 

Fig. 3.74.  Immediately, we note that the late-time match has been corrected, but the early-

time reconstruction is in large error, and the imputed values have an extremely large 

distribution.  Additionally, the uncertainty has increased compared to the former case.  It 

is interesting that the allowance of the model to impute values did not decreases the 

uncertainty, as this allows it to better match the observed flow rates. 

Next, we look at the variable-rate deconvolution case in Fig. 3.75.  Interestingly, we do not 

observe nearly as wide an uncertainty range as in the variable-pressure case, nor as wide a 

range on the imputed values.  The cause of this difference is not clear. 

Fig. 3.76 is the result of a simultaneous deconvolution with the two functions correlated 

by use of Duhamel's principle.  While the constant-rate pressure function is only minorly 

affected, we observe that the constant-pressure rate function reverts back to the form it took 

in the first case with the interpolated data, but with a greater range of uncertainty for the 

entire history, especially at the tail. 

Although it is clear that the linearity of rates and pressures is not holding, our method 

clearly communicates this result by displaying an increased range of uncertainty where the 
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data are inconsistent.  Compared with the first variable-pressure case, it is clear that without 

consideration of both cases, the result is an overconfident model in a case that it clearly 

does not correctly apply.  While the validity of the imputed rates and pressure needs more 

investigation, and we do not claim that it is the correct method for analysis of this data set, 

it is encouraging that the method communicates the uncertainty of its results.  Ideally, for 

a given well, each case would be run as we have done, and utilized to construct a more 

complete interpretation of the validity of deconvolution as a valid analysis method for the 

data set. 

Figure 3.72 — Flowrate and pressure data for the Attaka oil well. 
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Figure 3.73 — Deconvolution results for Attaka oil well (variable-pressure). 

Figure 3.74 — Deconvolution results for Attaka oil well (variable-pressure, imputed 
values). 
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Figure 3.75 — Deconvolution results for Attaka oil well (variable-rate, imputed values). 

Figure 3.76 — Deconvolution results for Attaka oil well (simultaneous case). 



135 

3.11.2 East Texas Gas Well 

Our second field case is a re-presentation of a well analyzed by Pratikno, Rushing, and 

Blasingame (2003), as well as Ilk, Valkó, and Blasingame (2006).  The East Texas Gas 

Well (Fig. 3.77) is a tight gas well that has had daily monitoring of production data since 

it was put on production.  The data set has slightly less than a year of production history, 

and contains multiple periods of flow and shut-ins.  While the data quality is good, we do 

note inconsistencies in the data, such as around 1500 – 2000 hours where a pressure 

increase corresponds to a rate increase.  As it is a gas well, we use pseudopressure to 

linearize the rate-pressure relationship.  Using pseudotime would of course be ideal for 

analyzing a gas case, but our current method does not include the capability for changing 

the timesteps during the Hamiltonian Monte Carlo simulation; we reserve this as a subject 

for future research. 

We first analyze the variable-rate deconvolution case (Fig. 3.78) and see that, while the 

maximum likelihood estimate is a good match of the data, the limited resolution of low-

frequency daily measurements, along with the inconsistencies in the data, lead to 

considerable uncertainty in the posterior distribution of the constant-pressure rate function, 

and correspondingly, the reconstruction variable-pressure rate function.  We observe that 

the late-time response appears to be behaving opposite of what we would expect to see for 

a transition to boundary-dominated flow. 

Analyzing the variable-pressure deconvolution (Fig. 3.79) shows that there is considerable 

more certainty in the pressure responses, particularly during the shut-in build up periods. 
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Anecdotally, this is consistent the generally higher regard for pressure build-up data as 

being of "higher-quality" than production data. 

Fig. 3.80 is the result of the simultaneous deconvolution.  We see good correlation between 

the rate and pressure functions, a considerable decrease in uncertainty of the rate functions, 

as well as a minor decrease in the pressure functions.  In effect, we see that the confidence 

gained from the higher-quality pressure build-up data is "transferring" from the variable-

pressure case to the variable-rate case, and vice versa.  The constant-pressure rate function 

is behaving more like we would expect, in that the late-time transition is toward boundary-

dominated flow as opposed to away from it.  In summary, we see that the simultaneous 

deconvolution improves upon both cases. 

Figure 3.77 — Flowrate and pressure data for East Texas gas well. 
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Figure 3.78 — Deconvolution results for East Texas gas well (variable-pressure). 

Figure 3.79 — Deconvolution results for East Texas gas well (variable-rate). 
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Figure 3.80 — Deconvolution results for East Texas gas well (simultaneous, 
correlated). 
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4. NEW METHOD FOR BAYESIAN DIFFERENTIATION

4.1 Introduction 

This chapter presents a new methodology for computing derivative functions of rate and 

pressure data.  We show that the developed methods for non-parametric representation of 

a function using B-splines, the integration of that function, and a robust cost function to 

regress the spline function, can be applied generally to compute any derivative where it is 

valid to approximate the derivative function with linear B-splines.  Practically, this applies 

to essentially all rate and/or pressure histories. 

The primary goal is to provide a robust method for computing derivatives for "high-

frequency" permanent downhole gauge and "long-term" production data.  The approach 

yields a derivative as a smooth, continuous function using a priori information that is 

available to a practitioner before they have ever observed a specific data set.  This is in 

contrast to the widely used approach of Bourdet et al. (1989), which constructs a derivative 

as a series of discrete functions that use a priori information in the form of "smoothness 

over log cycles". 

The work by Bourdet et al. (1989) is concerned with well-testing applications of pressure 

derivatives.  In contrast, while we note the applications of our method to well-testing, we 

are providing a methodology for computing derivatives of any kind and are less concerned 

with the specific application.  Furthermore, validation of the approach for computing 

derivatives also provides some level of validation for the deconvolution method, as the 



140 

deconvolution method implements the derivative method as the algorithm by which it 

obtains the unknown kernel function prior to the convolution step. 

Our expectation is that the result of our new method can achieve greater levels of 

smoothing with no loss in signal due to a) modeling the derivative function as a continuous 

function, and b) optimizing with a robust cost function.  Furthermore, sections of the data 

that would appear to be "high-noise" with the current approach will be interpreted as 

sections of "high-uncertainty" in the Bayesian interpretation of the data.  Finally, the nature 

of our B-spline approach enables us to easily process multiples of thousands of data points 

as we do not require interpolation before integration; we may wait until we have computed 

the final integral. 

4.2 Development of the Method 

In the construction of a graphical model to represent a derivative, the derivative is a latent 

variable, and the data we wish to find the derivative for is observed.  This model is shown 

in Fig. 4.1. 

 

 
Figure 4.1 — Probabilistic graphical model for derivative of a function. 
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Figure 4.2 — Alternative probabilistic graphical model for derivative of a function. 

If we instead consider the problem not as differentiation of observed data, but the unknown 

derivative as a function f (x), and the observed data is the integral of the latent function, we 

arrive at the model shown in Fig. 4.2. 

As the function f (x) is a non-parametric function in a Bayesian model, we require some 

information to place priors upon it.  The assumptions regarding f (x) follow from the 

primary focus of this work.  

● First, we have constrained f (x) to be strictly positive. 

● Second, we assume that f (x) can be represented by some number of knots per interval, 

with a Gaussian distribution for the step distance at each knot. 

● Third, we assume a smoothness for f (x) and place a prior upon its curvature. 

It stands to reason that these assumptions must be reviewed for each specific application.  

In doing so, we recognize that each has a translation to a specific step within our algorithm 

or a hyperparameter.  The implementation of the assumptions are: 

● Transformation of f (x) using exp[f (x)] or softplus[f (x)] enforces positivity. 

● The number of knots, n, is adjustable.  Recalling Eq. 3.95 and Eq. 3.96: 
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We place r evenly spaced knots every z interval, where z is using Eq. 3.95 or some other 

arbitrary method. 

The curvature of f (x) is given by: 
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can be substituted in Eq. 4.2 or Eq. 4.3.  Derivations for Eq. 4.2 and Eq. 4.3 are given in 

Appendix B. 

4.3 Implementation Details 

We have presented the solution for the coefficients of B-splines of any degree, but it is 

appealing and convenient to use B-splines of degree 1 as it obviates the expensive 

computation of a pseudo-inverse matrix.  Alternatively, we can transform the integral from 

a linear function, i.e. y = mx + b, using any type of pure function that acts on x or y; i.e. a 

function where the output is only determined by the input without observable side effects.  

Practically, this means we can compute derivatives for linear, power-law, exponential, and 

logarithmic functions.  Table 4.1 lists the x and y transforms required for these functional 

forms.  We may extend this to other concepts as well, such as polynomial or trigonometric 

functions, etc., although these are not of interest to this work and are not discussed here. 

 

Table 4.1 — Summary of variable transformations for B-spline integration 

Function  x Transform  y Transform 

Linear  ( )f x x   ( )f y y b   

Power-law  ( ) lnf x x   ( ) yf y be  

Logarithmic  ( ) lnf x x   ( )f x y b   

Exponential  ( )f x x   ( ) yf y be  

     

 

The pseudocode implementation of Fig. 4.2 for an arbitrary order of derivative is: 
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1 with model: 

2   # construct B-spline integral model for inference of 

3   # derivative function 

4  

5   j = 1  # order of derivative to computed 

6   

7    beta = GaussianRandomWalk()   # slope term 

8  beta = add_edges(beta, k) # add k+1 knots at ends 

9   beta = softplus(beta)  # enforce positivity 

10  

11   while j - i ≥ 0; i=1, i++: 

12    alpha[i] = HalfFlat()  # intercept term 

13  

14    coef = solve(beta)  # compute coefficients 

15   

16    if j – i == 0: 

17     # integrate and interpolate with f(x) 

18     y = int_interp(coef, f_x(x, i)) 

19    else: 

20     # integrate with f(X) 

21     y = integrate(coef, f_x(x, i)) 

22   

23    y -= y[0]  # remove constant of integration 

24    y = f_y(y, alpha[i], i) # transform with f(y) 

25  

26   # Compute model likelihood with cost function 

27    σ = Exponential()   # determine model sigma 

28   likelihood = Huber(μ=log(data), σ=σ, t=.1, 

29    observed=log(y))  

30   

31   # Reguarlization 

32   curvature = curvature((f_X(x, k), beta) 

33   λ = 1 / Exponential() # determine regulariztion sigma 

34   likelihood *= Normal(μ=0., σ=1 / λ, 

35    observed=curvature) 

36   

37   model.sample() 

 

And for comparison, the algorithm for the Bourdet et al. (1989) derivative method is: 
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34 function float[] get_end_L(float[] dx, float L): 

35   # find leftmost point of smoothed range 

36   idx = argwhere(dx ≤ L & dx ≥ 0.0) # non-zero elements 

37  if len(idx) > 0: 

38    return min(len(dx) – 1, idx[-1] + 1) 

39   

40   return len(dx) – 1 

41   

42 function float[] get_end_R(float[] dx, float L): 

43   # find rightmost point of smoothed range 

44   idx = argwhere(dx ≤ L & dx ≥ 0.0) # non-zero elements  

45  if len(idx) > 0: 

46    return max(0, idx[0] - 1) 

47   

48   return 0 

49  

50 function float[] get_L(float[] dx, float L): 

51   # get change at left edge 

52  idx = argwhere(dx ≤ L & dx ≥ 0.0) # non-zero elements  

53  if len(idx) > 0: 

54    return min(0, idx[0] - 1) 

55   

56   return -1 
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1 function float[] get_R(float[] dx, float L): 

2   # get change at right edge 

3  

4  idx = argwhere(dx ≤ L & dx ≥ 0.0) # non-zero elements  

5  if len(idx) > 0: 

6    return min(len(dx) – 1, idx[-1] + 1) 

7   

8   return 0 

9  

10 function float[] bourdet(float[] x, float[] y, int L, 

11   bool xlog = True, bool ylog = False): 

12   # compute Bourdet method smoothed derivative 

13  

14  logx = log10(x) # must smooth over log base 10 cycles 

15    L *= log(10)   # transform from base 10 to base e 

16  

17   if xlog: 

18    x = log(x) 

19   if ylog: 

20   y = log(y) 

21   

22   # generate arrays of zeros 

23   n = len(x) 

24   x_L = zeros(n)  

25  x_R = zeros(n)  

26  y_L = zeros(n)  

27  y_R = zeros(n) 

28   

29   # get points for forward and backward derivatives 

30    k1 = get_end_L(logx – logx[0], L) 

31   k2 = get_end_R(logx[-1] - logx, L) 

32  

33   # compute bourdet derivative 

34   for i in range(k1, k2): 

35    dx = logx[i] – logx[:i] 

36    idx = get_L(dx, L) 

37    x_L[i] = dx[idx] 

38    y_L[i] = y[i] – y[:i][idx] 
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39  

40   dx = logx[i:] – logx[i] 

41    idx = get_R(x, L) 

42    x_R[i] = dx[idx] 

43    y_R[i] = y[i:][idx] – y[i] 

44   

45   der = (y_L / x_L * x_R + y_R / x_R * x_L) / (x_L + x_R) 

46  if not xlog: 

47    der /= x 

48  

49   # compute forward difference at left edge 

50   for i in range(0, k1): 

51    idx = get_end_L(logx – logx[i], L) 

52    dx = x[idx] – x[0] 

53   dy = y[idx] – y[0] 

54  

55    der[i] = dy / dx 

56   

57  # compute backward difference at right edge 

58   for i in range(k2, n): 

59    idx = get_end_R(logx[i] - logx, L) 

60    dx = x[-1] - x[idx] 

61   dy = y[-1] – y[idx] 

62  

63    der[i] = dy / dx 

64  

65   return der 

 

4.4 Validation 

Our first validation case is the case presented by Bourdet et al. (1989) of a well in a circular 

reservoir with wellbore storage.  Although the authors present a calculation for L = 0.1 in 

their work, we have performed our own implementation and calculations for this work so 

we may also compare the methods additional cases.  For our spline function, we have 

chosen 10 knots per log cycle, and let the algorithm automatically determine the correct 
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standard deviation of the cost function, σ.  We also assume a power-law form of the 

integral.  Fig. 4.3 presents our results in which we have also allowed the algorithm to 

automatically determine the level of regularization upon the curvature of the derivative 

function, λ.  Recall from Eq. 3.34 that a larger value of λ equates to a greater level of 

regularization. 

In comparing the result of the approaches, we note that our method generates an overall 

smoother function with no loss in resolution of the reservoir signal.  We also observe that, 

rather than noise in the output of our algorithm, we instead obtain a wider posterior 

distribution.  The posterior is particularly wide on the right-hand edge where the Bourdet 

et al. method using L =  0.1 has six data points that incur edge effects.  We note that we do 

not require any special treatment of edge effects.  
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Figure 4.3 — Comparison of Bayesian derivative method with Bourdet et al. (1998) 

case using automatic regularization, λ = 0.764, vs.  L = 0.1. 

 

For comparison, Fig. 4.4 presents the same case where no regularization is used for either 

method.  For our approach, this means we do not add the prior placed upon to the model 

rather than setting λ = 0, which would result in a division by zero.  The Bourdet et al. 

approach typically communicates this with the statement L = 0.0.  This case highlights the 

strength of our method; because the spline function is a continuous function, it is not 
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possible to achieve the same level of noise as seen in the Bourdet et al. method (owed to 

their finite difference approach). 

 

 
Figure 4.4 — Comparison of Bayesian derivative method with Bourdet et al. (1998) 

case using no regularization vs.  L = 0.0. 

 

Fig. 4.5 presents a case of over regularization using our method.  Interestingly, there is a 

sharp kink around 1.05 hr, even more so than the other cases, while the rest of the noise is 
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smoothed.  The prior placed upon curvature ensures a high cost for any such kink, but the 

overall model must result in a more likely answer when such a kink is included. 

 

 
Figure 4.5 — Comparison of Bayesian derivative method with Bourdet et al. (1998) 

case using too much regularization, λ = 6.0, vs.  L = 0.1. 

 

Lastly, Fig. 4.6 shows an application to a field case (ETX Gas Well).  For the Bourdet 

method, we have performed a considerable amount of filtering to achieve a reasonable 
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response.  All data points that lie greater than 1 standard deviation from the MLE estimate 

has been excluded from the calculation.  Although the comparison does present a somewhat 

circular conclusion, the noise is otherwise unmanageable without some arbitrary method 

of filtering the data. 

 

 
Figure 4.6 — Comparison of Bayesian derivative method with Bourdet et al. (1998) 

for ETX Gas Well using automatic regularization, λ = 1.83, vs.  L = 0.1. 
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5.  USE OF PARAMETRIC KERNEL FUNCTIONS FOR 

DECONVOLUTION 

5.1 Introduction 

This chapter presents an implementation of deconvolution using parametric kernel 

functions.  We show that any function may be used to represent the unknown constant-

pressure rate function, given it conforms to the requirements as laid out in the primary 

development of the non-parametric kernel functions.  That is, it must be monotonic and 

decays to zero. 

The primary goal is to provide a robust method for evaluation of time-rate-pressure data in 

cases where 1) geologic, reservoir, and petroyphysical properties are unavailable, and 2) 

data measurement errors may be large, possibly systemically biased, and contain 

considerable noise.  We build upon the work of Ilk and Blasingame (2013) and Collins, 

Ilk, and Blasingame (2014) and mirror their motivation to apply rigorous 

convolution/superposition theory to empirical rate decline relations to typical time-rate-

pressure field data sets.  Our addition to their prior efforts is the application of our Bayesian 

method to solve the inverse problem of determination of rate decline function parameters. 

5.2 Development of the Method 

The method shares many similarities with the primary method of this thesis that utilizes 

Gaussian processes (GP) as the non-parametric function.  The probabilistic graphical 
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model is shown in Fig. 5.1.  Rather than a prior over functions as in the case of the GP, we 

place a prior of the parameters of the empirical rate decline function that is chosen to 

represent f (θi, t ).  Once the constant-pressure-drop rate function is generated, the 

convolution with the derivative of pressure-drop occurs as before. 

Figure 5.1 — Probabilistic graphical model for deconvolution of time-rate-pressure 
data using parametric kernel function. 

Aside from the choice of kernel function, there are no other differences.  We note that this 

stems from the generality of our approach, and Bayesian methods in general.  Once the 

physical relationship of all variables is laid out, the manner in which each variable is 

generated is independent of all other parameters.  The influence of variables flows along 

the edges of the graph to other variables during optimization, in which all variables are 
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evaluated, and each iteration of the model accepted (or not) from the evaluation of all 

parameters simultaneously. 

Once setup, the switch from one rate decline function to another only involves 1) a function 

to generate the rate values given the input parameters and a value of time at which to 

evaluate, and 2) an assignment of a random variable to each parameter.  While the 

popularity of the Arps (Arps 1945) relations persist, numerous time-rate relations exist for 

the evaluation of unconventional resources.  These developments evaluated in this work 

include: 

● Modified Hyperbolic Model (Robertson 1988) 
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● Stretched Exponential Model (Valkó 2009) 

  ˆ exp
n

i

t
q t q



     
    ..................................................................................................... 5.4 

● Power-Law Exponential Model (Ilk et al. 2008, 2009) 
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● Duong Model (Duong 2011) 
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● Transient Hyperbolic Model (Fulford and Blasingame 2013) 
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Alternatively, Fulford (2018) gave the discretized approximation for a series of piecewise 

hyperbolic or exponential segments: 
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 where: 
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Table 5.1 — Transient Hyperbolic discretization parameters 

Segment  b-parameter  Start Time 

1  ib   0 

2  
i f

i
i

b b
b

b


    1elft e   

3  fb    1elft e   

     

 

And the appropriate Arps hyperbolic or exponential function is applied for each segment.  

An implementation of an arbitrary n segment hyperbolic model is created for both the 

Modified Hyperbolic Model and Transient Hyperbolic Model. 

Additionally, we define the loss ratio and derivative of the loss ratio as: 

 
  1

( )
d

q t
q

D
t

t
dt

 
................................................................................................... 5.12 

 
1

( )b t
d

dt D t
      ............................................................................................................ 5.13 

From which the hyperbolic relations are derived. 

5.3 Implementation Details 

With a known model, we have significantly reduced the degrees of freedom of the problem; 

from several tens of parameters, to somewhere between three to five for the given decline 

curve models.  Therefore, we can simply represent each parameter as a uniform distribution 

with the respective bounds for the model, listed in Table 5.2. 
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Alternatively, we can specify other distributions of any type that might best represent our 

knowledge of each parameter.  For example, if we feel strongly that the correct b-parameter 

is 1.0, we can use a Normal distribution with a small standard deviation to shift the posterior 

distribution of models to this belief.  Similar logic may be applied to any parameter. 

5.4 Validation 

5.4.1 Model Hyperparameters 

We present the results of the five models based upon the same variable pressure-drop as 

the unknown kernel function case described in Fig. 3.12 and Fig. 3.13.  For consistency 

and comparability, we present the reciprocal of the dimensionless rate function.  Fig. 5.2 – 

Fig. 5.6 present the results for each model with no noise.  Fig. 5.7 – Fig. 5.11 present the 

results for 5% random uniform noise.  Fig. 5.12 – Fig. 5.16 present the results for 20% 

random uniform noise. 
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Table 5.2 — Uniform distribution bounds for decline curve models 

Modified Hyperbolic Model 

Parameter   Lower Bound Upper Bound 

qi   1e-2 1e6 

Di, secant effective   0.1 0.99 

b   0.0 2.0 

Dexp   0.0 0.2 

     

Transient Hyperbolic Model 

Parameter   Lower Bound Upper Bound 

qi   1e-2 1e6 

Di, secant effect   0.1 0.99 

bi   constant @ 2.0 

bf   0.2 2.0 

telf   0.1 100.0 

     

Stretched Exponential Model 

Parameter   Lower Bound Upper Bound 

qi   1e-2 1e6 

τ   0.01 10.0 

n   0.01 0.99 

     

Power-Law Exponential Model 

Parameter   Lower Bound Upper Bound 

qi   1e-2 1e6 

Di   0.1 .099 

n   0.01 0.99 

D∞   0.001 0.1 

     

Duong Model 

Parameter   Lower Bound Upper Bound 

qi   1e-2 1e6 

a   0.01 10.0 

m   0.01 0.99 
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Figure 5.2 — Deconvolution of variable pressure-drop case utilizing the Modified 
Hyperbolic Model (no random error). 

 

 

Figure 5.3 — Deconvolution of variable pressure-drop case utilizing the Transient 
Hyperbolic Model (no random error).  
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Figure 5.4 — Deconvolution of variable pressure-drop case utilizing the Stretched 
Model (no random error). 

 

 

Figure 5.5 — Deconvolution of variable pressure-drop case utilizing the Power-Law 
Exponential Model (no random error).  
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Figure 5.6 — Deconvolution of variable pressure-drop case utilizing the Duong Model 
(no random error). 

 

 

Figure 5.7 — Deconvolution of variable pressure-drop case utilizing the Modified 
Hyperbolic Model (5% random error).  
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Figure 5.8 — Deconvolution of variable pressure-drop case utilizing the Transient 
Hyperbolic Model (5% random error). 

 

 

Figure 5.9 — Deconvolution of variable pressure-drop case utilizing the Stretched 
Model (5% random error).  
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Figure 5.10 — Deconvolution of variable pressure-drop case utilizing the Power-Law 
Exponential Model (5% random error). 

 

 

Figure 5.11 — Deconvolution of variable pressure-drop case utilizing the Duong Model 
(5% random error).  



165 

 

Figure 5.12 — Deconvolution of variable pressure-drop case utilizing the Modified 
Hyperbolic Model (5% random error). 

 

 

Figure 5.13 — Deconvolution of variable pressure-drop case utilizing the Transient 
Hyperbolic Model (5% random error).  
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Figure 5.14 — Deconvolution of variable pressure-drop case utilizing the Stretched 
Model (5% random error). 

 

 

Figure 5.15 — Deconvolution of variable pressure-drop case utilizing the Power-Law 
Exponential Model (5% random error).  
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Figure 5.16 — Deconvolution of variable pressure-drop case utilizing the Duong Model 
(5% random error). 

5.4.2 Discussion of Results 

We note that we have successfully deconvolved the given case with each decline curve 

model.  While each model performs differently, the differences are due to the inherent 

behavior of each model and not any limitation of the implementation.  To generalize, we 

observe that the models with the largest number of parameters provide a better fit to the 

know dimensionless rate function, while those with fewer parameters are (naturally) less 

able to achieve the known solution. 

As an interesting point-of-fact, we observe that the results of the models in the cases of 5% 

and 20% random noise more clearly explain the results of the non-parametric method in 

the presence of noise.  For the chosen profile of flowing pressure for these cases, the 

algorithm cannot distinguish between the true large values of rate, and the large values as 
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a result of the added noise.  Instead, the deconvolved rate profile for both the GP and B-

spline based nonparametric method and the decline curve based parametric method have a 

lower value of initial (early-time) rate, and a lower rate of decline. 

We also observe that the three models that are able to functionally reduce to exponential 

decline at late time—the Modified Hyperbolic, Transient Hyperbolic, and Power-Law 

Exponential—are able to nearly exactly reproduce the late-time behavior.  These three are 

can be used to represent distinct flow regimes for the analyzed case, while the other two—

the Stretched Exponential and Duong, which each have three parameters best described as 

an intercept, initial slope, and curvature—attempt to represent the rate decline behavior as 

a single regime that "smooths" or "averages" the behavior of the true dimensionless rate 

function. 

The cases with 5% random noise added reveal that the hyperbolic models tend toward 

greater stability than the other models.  The biggest difference is with the Power-Law 

Exponential model, which provides an excellent answer in the case with no noise but 

diverges with only 5% noise.  Both the Power-Law Exponential and Stretched Exponential 

models have an initial rate parameter which may range over a few orders of magnitude, 

this wide range likely leads to difficulty in finding the optimal range of solution. 

We conclude that while a model with more parameters and therefore able to match more 

distinct flow regime behavior should be preferred for our deconvolution method, stability 

of the model’s range of parameter values is also an important aspect to be considered to 

handle noise. 
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5.5 Application to Field Case 

We apply the Transient Hyperbolic Model to the East Texas Gas Well.  As before, we 

stress that we do not filter any data and rely upon our cost function to handle noise and 

outlier data.  It is obvious in Fig. 5.17 that the decline curve cannot exactly reproduce the 

observed data, especially the early-time transient portion.  Like the nonparametric method, 

we observe a large degree of uncertainty for the rate functions. 

This case serves as a confirmation that our deconvolution method should be compatible 

with any type of rate function, not just our primary method that employs B-splines.  We 

have observed varying levels of stability for different parametric functions.  The success 

of the deconvolution then depends on the stability of the chosen rate function more so than 

the inference/optimization process. 

 

 

  

Figure 5.17 — Deconvolution of East Texas Gas Well (Transient Hyperbolic Model). 
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6.  SUMMARY AND CONCLUSIONS 

6.1 Summary 

We have provided a novel method of deconvolution that is unique within the existing 

petroleum literature.  The new method is based upon a probabilistic graphical model which 

describes the functional relationships of all model parameters/functions.  Given 

observation of any variable in the graph, an inference is made for every other variable in 

the graph.  The observations are the sandface rates and pressures—partial or complete 

histories—and the inference is usually—but not limited to—the unknown constant-rate 

pressure function and constant-pressure-drop rate function.  We validate the method by 

analysis of synthetic data with and without error.  We demonstrate the utility of the model 

to infer other parameters in the graph, such as missing rates and/or pressures, and unknown 

initial reservoir pressure. 

6.2 Conclusions 

● We have developed a probabilistic graphical model sampled by a nonlinear stochastic 

optimization algorithm with a non-parametric function as a generalization of the time-

based deconvolution problem.  The model is used to perform simultaneous 

deconvolution to achieve constant-rate pressure functions and constant-pressure-drop 

rate functions correlated by Duhamel's principle. 

● We have eliminated the need for tuning of the regularization scheme as an adjustment 

solely for the presence of noise, instead addressing noise by utilization of robust cost 
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functions other than squared error.  We have implemented a rigorous regularization 

scheme based upon curvature of the beta-derivative. 

● We have validated our technique against the exact dimensionless rate and 

dimensionless pressure functions, their derivatives, and by comparison of the 

reconstructed-by-convolution variable-rate pressure function and reconstructed-by-

convolution variable-pressure drop rate function.  Additional validations of the 

method are shown by deconvolving the correct response in the presence of random 

errors, partial missing histories, and unknown initial reservoir pressure. 

● We have shown that our method is not limited to our implementation of the beta-

derivative as the base parameterization by implementation of parametric functions, 

i.e. decline curves, as the generative functions for the constant-pressure rate function.  

We have also shown an alterative parameterization of a non-parametric function using 

the well-testing derivative. 

● We have developed a new method for Bayesian differentiation for analysis of 

production data.  Our new method applies to pressure data, such as to compute a well-

testing derivative, as well as production data to compute the D-parameter and b-

parameter.  We have shown that our new method illustrates non-uniqueness of the 

inverse problem of differentiation and provides smoother responses than current 

methods. 
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6.3 Recommendations for Future Work 

1. Investigate alternative methods for generating the unknown kernel functions, including 

simultaneously generation such as from correlated Gaussian processes.  As the 

signature of the rate and pressure functions is known for any single flow regime, it may 

be possible to generate correlated steps of each function. 

2. Investigate functional relationships of known flow-regimes to correlate the kernel 

functions instead of utilizing Duhamel's principle, or investigate enforcing correlation 

in the Laplace domain.  This may improve recovery of the constant-pressure rate kernel 

function in the variable rate case, and vice versa, for example by better capturing the 

exponential behavior of the constant-pressure rate function during pseudosteady-state 

constant-rate decline. 

3. Investigate back-extrapolation of the rate and pressure functions to reduce the influence 

of numerical start-up effects of the correlation. 

4. Evaluate methods for generation of sandface rate functions to deconvolve wellbore 

storage effects. 

5. Evaluate alternative parameterizations of data imputation, e.g. by regularization of 

imputed values, to reduce unrealistically large variance. 

6. Investigate inclusion of effects that break the rate-pressure linearity assumption, such 

as pseudopressure and pseudotime, as part of the calculation chain within the 

computational graph.  



173 

NOMENCLATURE 

Variables: 
k
jB  = The j-th B-spline of degree k 

f  (t ) = dummy function 

K = Curvature of function 

p (t ) = Pressure, psi 

pcr (t ) = Constant-rate pressure solution, psi 

pD (t ) = Dimensionless pressure, dimen. 

pi = Initial reservoir pressure, psi 

pr = Reference pressure, psi 

pwf = Flowing bottomhole pressure, psi 

pwD = Dimensionless flowing bottomhole pressure, dimen. 

Δp (t ) = Pressure drop, psi 

Δpcr (t ) = Constant-rate pressure drop, psi 

q (t ) = Rate, STB/D or MSCF/D 

qcp (t ) = Constant-pressure rate, STB/D or MSCF/D 

qD (t ) = Dimensionless rate, dimen. 

qr (t ) = Reference rate, STB/D or MSCF/D 

n = Total number of steps for discrete step-wise functions 

s = Laplace transform variable 

t = Time, hr or day 

 

Greek Symbols: 
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β (t ) = beta-derivative 

βp (t ) = beta-derivative of constant-rate pressure drop 

βq (t ) = beta-derivative of constant-pressure-drop rate 

κ = Kernel function 

λ = Regularization scalar, proportional to reciprocal of scale 

μ = Location of probability distribution 

σ = Scale of probability distribution 

Σ = Covariance matrix of probability distribution 

τ = Dummy variable or natural log of time 

θ = random variable representing a model parameter 

 

Bold symbols: 

Bk = B-spline or degree k 

c = B-spline coefficients 

e = Integral of B-spline coefficients 

S = Spline function, i.e. evaluation of the B-spline and coefficients 

βp = beta-derivative of constant-rate pressure drop, vector form  

 

Script: 

 = HalfNormal distribution 

 = Normal distribution 

 = Laplace distribution 

 = Uniform distribution 

ℓ = Length scale for kernel function 
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Subscript: 

i = Index for discrete sum or product functions 

iv = Initial value of model parameter 

 

Superscript: 

¯ = Laplace transform 
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APPENDIX A 

DERIVATION OF BETA-DERIVATIVE SIGNATURES FOR FLOW 

REGIMES OF INTEREST 

We propose the pressure drop function as power-law function with stepwise slope: 
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Or exponentiating both sides and writing in continuous form: 
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Consider when n = 2: 

12 1( ) n n
n n np t p t t 
   ....................................................................................................... A-3 

And when n = 3: 
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Changing the indices of Eq.  A-3 in terms of n = 3: 
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Substituting Eq.  A-5 into Eq.  A-4 we have: 
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Consider Eq.  A-2 when n = 4: 
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Writing Eq.  A-3 in terms of n = 4: 
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And Eq.  A-4 in terms of n = 4: 

1 1
3 4 1 21( ) | n n

n n n np t p t t  
      ................................................................................................ A-9 

Following from before, we can substitute Eq.  A-8 into Eq.  A-7: 

1 1
4 2 1 2 1( ) ( ) n n n n

n n n n n np t p t t t t t     
       ................................................................................. A-10 

And then substitute Eq.  A-9 into Eq.  A-10: 

4 3 1( ) ( ) n n
n n n np t p t t t 
    .............................................................................................. A-11 

Generally, we can write Δp (tn ) in Eq.  A-2 as: 

1 1 1
2

1( ) ( )i i n n

n

n i i n n n
i

p t p t t p t t t    
  



   
 ....................................................................... A-12 

The utility of Eq.  A-12 is that we can calculate Δp( tn ) with just knowledge of Δp( tn-1 ) and 

the current timestep's value of βn.  Because we are dealing with discrete timesteps, the value 

of n is a constant at each timestep, thus simplifying the computation of the derivative of 

Eq.  A-35.  We also note that although we have used the pressure function nomenclature, 

the result of Eq.  A-12 is general and may also be used for the rate function, such as: 

, , , ,

1 1
2

1 1( ) ( )q i q i q n q n

n

n i i n n n
i

q t q t t q t t t
    

  


 
 ........................................................................ A-13 
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Derivative of Step Change Power-Law Function 

To compute the derivative of Eq. 4, we will repeat the process of evaluating the first three 

discrete timesteps as a verification of the independence of pressure function only upon the 

prior timestep and a known βi for the current timestep.  Taking the derivative of Eq.  A-2: 

1 1
2

( ) ( ) i i
i

n

n n i
i

d d
p t p t p t t

dt dt
 




    


 



 ...................................................................... A-14 

Consider the case where n = 2: 

2

2 1 1 1 1
2

( ) i ni n

n

n i i n n
i

d d
p t p t t p t t

dt dt
  







  

       
 

  
 .......................................................... A-15 

Given the current timestep, any values of prior timesteps are constant as they are fixed in 

the past.  Then, 1
i

nt


 is no longer a function of time but is constant.  Factoring it out, we 

have: 

1
2 1 1 1 1( ) n n n n

n n n n n n

d
p t p t t p t t

dt
    

        
 ................................................................... A-16 

Multiplying by n

n

t

t
: 

1
2 1 1 1 1( ) n n n nn n

n n n n n n
n n

t
p t p t t p t t

t t
   

  
    

 .................................................................. A-17 

We immediately note we can substitute Eq.  A-3 into Eq.  A-17: 

2 2( ) ( ) n
n n

n

p t p t
t


   

.................................................................................................. A-18 

Similarly, for n = 3: 
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1 1

3

3 1 1 1 1 2 1
2

( ) i ni n n n

n

n i i n n n n
i

d d
p t p t t p t t t t

dt dt
      



    


       
 

  
 ............................................. A-19 

Factoring out constants as only n
nt
 is a function of time: 

1 1
3 1 1 2 1( ) nn n n

n n n n n

d
p t p t t t t

dt
    

  



     
 ............................................................................... A-20 

We immediately note that we can substitute Eq.  A-5 into Eq.  A-20: 

3 2 1( ) ( ) n n
n n n n

d
p t p t t t

dt





      
 ................................................................................... A-21 

Evaluating the derivative: 

1
3 2 1( ) ( ) nn

n n n n np t p t t t  
  

     
................................................................................... A-22 

Multiplying by n

n

t

t
: 

1
3 2 1 2 1( ) ( ) ( )n nn nn n

n n n n n n n n
n n

t
p t p t t t p t t t

t t
    

    
    

 ................................................... A-23 

And substituting Eq.  A-6 into Eq.  A-23: 

3 3( ) ( ) n
n n

n

p t p t
t


   

 .................................................................................................. A-24 

Lastly, for n = 4: 

2 2 1 1

4

4 1 1 1 2 3 1 2 1
2

( ) i ni n n n n n

n

n i i n n n n n n
i

d d
p t p t t p t t t t t t

dt dt
           



      


       
 

  
 ............................... A-25 

Factoring out constants: 
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2 2 1 1
4 1 2 3 1 2 1( ) n nn n n n

n n n n n n n

d
p t p t t t t t t

dt
      

   
  

      
 ................................................................ A-26 

Substituting Eq.  A-8 into Eq.  A-26: 

1 1
4 2 1 2 1( ) ( ) nn n n

n n n n n n

d
p t p t t t t t

dt
   

    
     

 ....................................................................... A-27 

Substituting Eq.  A-6 into Eq.  A-27: 

4 3 1( ) ( ) n n
n n n n

d
p t p t t t

dt





      
 ................................................................................... A-28 

Evaluating the derivative: 

1
4 3 1( ) ( ) nn

n n n n np t p t t t  
  

     
................................................................................... A-29 

Multiplying by n

n

t

t
: 

1
4 3 1 3 1( ) ( ) ( )nn n nn n

n n n n n n n n
n n

t
p t p t t t p t t t

t t
    

        
 ..................................................... A-30 

Finally, substituting Eq.  A-11: 

4 4( ) ( ) n
n n

n

p t p t
t


   

 ................................................................................................... A-31 

As with the pressure function, we have verified that the pressure derivative function is 

dependent only upon the immediately prior timestep.  Recalling Eq.  A-2: 

1 1
2

( ) i i

n

n i i
i

p t p t t 




  
 .................................................................................................... A-2 

And taking the derivative: 
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1 1
2

( ) ( ) i i
i

n

n n i
i

d d
p t p t p t t

dt dt
 




    


 



 ...................................................................... A-32 

Factoring out Δp1 and 1
i

it

 as a constants and dropping the subscript n  as it is no longer 

necessary: 

1 1
2

( ) i i

n

i
i

i

d
p t p t t

dt
 




     
 ........................................................................................... A-33 

Evaluating the derivative in Eq.  A-33: 

1
1

1
2

( ) ii

n

i i
i

ip t p t t 



     

 ........................................................................................ A-34 

Multiplying by i

i

t

t
: 

1 1
1

2
11

2

( ) i ii i

n n
i i

i i i
i ii i

i i

t
p t p t t p t t

t t
    

 

 
     

 ............................................................. A-35 

which matches our results for the discrete timestep derivative.  Substituting Eq.  A-2 into 

Eq.  A-35, we can compute the derivative in timestep-to-timestep as: 

( )
( ) ( )

t
p t p t

t


 

 ....................................................................................................... A-36 

Re-arranging yields the well-testing derivative on the LHS: 

( ) ( ) ( )t p t t p t    ....................................................................................................... A-37 

And solving for  , we verify that it matches the definition of the beta-derivative: 

ln ( )
( ) ( )

ln ( )

d p t t
t p t

d t p t
 


 



 ................................................................................... A-38 
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Power-law Flow Diagnostic from Beta-Derivative 

The beta-derivative is defined as the log-log derivative, as seen in Eq.  A-39.  Therefore, 

any power-law flow regime will be transformed into a linear equation, for which the 

derivative is a constant.  Starting with: 

2 1( ) np t c c t   .............................................................................................................. A-39 

Where n is an exponent corresponding to some relation of time, such as n = ½ for linear 

flow, or n = ¼ for bi-linear flow, etc.  Taking the log-log derivative (beta-derivative), we 

have: 

 2 1ln
( )

ln

nd c c t
t

d t


  
 ................................................................................................ A-40 

Applying the log-log derivative identity, this becomes: 

2 1

2 1

( )
n

n

d c c tt
t

c c t dt


  
  ......................................................................................... A-41 

Evaluating the derivative, we have: 

1
1

2 1

( )
n

nt
t c t

c c t
  

  ................................................................................................... A-42 

Simplifying: 

1

2 1

( )
n

n

c t
t

c c t

 
  ............................................................................................................. A-43 

If we assume sufficient time has passed to minimize the influence of the intercept term, 

i.e.: 
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2 1c c t  

Then we have: 

1

1

( )
n

n

c t
t n

c t

  
 ............................................................................................................ A-44 

Indicating that the beta-derivative will converge to a constant as a diagnostic of a power-

law flow regime. 

Radial Flow Diagnostic from Beta-Derivative: 

For radial flow, we have the "log approximation" from van Everdingen and Hurst (1949): 

2 1( ) ln lnp t t c c t    ................................................................................................ A-45 

Taking the derivative of Eq.  A-45 gives us: 

1( )
c

p t
t

 
 ..................................................................................................................... A-46 

Multiplying by t yields the "well-testing" derivative: 

1( )t p t c   ..................................................................................................................... A-47 

That is, Eq.  A-47 demonstrates that the well-testing derivative will yield a constant in 

radial flow with a slope of zero.  Substituting Eq.  A-37 into Eq.  A-47: 

1( ) ( )t p t c   ................................................................................................................ A-48 

Substituting Eq.  A-48 into Eq.  A-45: 

2( ) ( ) ( )lnp t c t p t t    .............................................................................................. A-49 
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Dividing by p(t ) and solving for β (t ) ln t yields: 

2( ) ln 1
( )

c
t t

p t



 

 ........................................................................................................ A-50 

Given by the fact that in Eq.-49 we have c2  → 0 as t → 0, we assume that: 

2 1
( )

c

p t


 

and we can simplify to: 

( ) ln 1t t   .................................................................................................................... A-51 

Or in other words, a value of β (t ) ln t = 1 is diagnostic of radial flow. 

Pseudosteady-state Flow Diagnostic from Beta-Derivative: 

For pseudosteady-state flow, we have a linear change in rate or pressure with respect to 

time.  Assuming the distance to reservoir boundary is much larger than the wellbore 

diameter: 

e wr r   

The solution is given by van Everdingen and Hurst (1949): 

  2

23
, ln

4wDD
DD D D

D
er r

eD

t
p r t r

r
  

  ................................................................................ A-52 

Which we may re-write as: 

2 1( )p t c c t   ............................................................................................................. A-53 

Taking the logarithm Eq.  A-53: 
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 2 1ln ( ) lnp t c c t 
 .................................................................................................... A-54 

Taking the derivative with respect to the logarithm of time: 

 2 1ln ( )

ln ln

d c c td p t

d t d t




 ................................................................................................ A-55 

We immediately note that the LHS is the definition of the beta-derivative in Eq.  A-38: 

ln ( )
( ) ( )

ln ( )

d p t t
t p t

d t p t
 


 



 ................................................................................... A-38 

Substituting Eq.  A-38 into Eq.  A-55: 

 2 1( )
ln

d c c t
t

d t





 .......................................................................................................... A-56 

Evaluating the derivative on the RHS: 

1
1

2 1 2 1

( )
c tt

t c
c c t c c t

  
   ............................................................................................. A-57 

If we assume t is large as pseudosteady state flow occurs at late-time, i.e.: 

2 1c c t  

Then we have: 

1

1

( ) 1
c t

t
c t

  
 ................................................................................................................ A-58 

Indicating that a value of β (t ) = 1 is diagnostic of pseudosteady-state flow. 
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Boundary Dominated Flow Diagnostic from Beta-Derivative 

With the same method used to derive Eq.  A-38, we can formulate the rate function 

derivative as: 

( )
( ) ( ) q t

q t q t
t


 

 ........................................................................................................... A-59 

Re-arranging yields the Arps D-parameter: 

1
( )

(

( )

)qq t
t

t

q t


 

 ........................................................................................................... A-60 

where: 

1
ln ( ) ( )( )

( )
D t

d
q t q t

dt q t

  
 .......................................................................................... A-61 

And substituting the identity yields: 

( )
( )q t

D t
t


 

 ............................................................................................................... A-62 

For boundary dominated flow, we have from the combination of the liquids relations for 

material balance and pseudosteady-state flow that rate is proportional to an exponential of 

time: 

2 1( ) Dt Dtq t e c c e     ................................................................................................. A-63 

Because rate must eventually decline to zero at late-time, we can say that: 

2 0c   

Taking the logarithm of Eq.  A-63: 
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1ln ( ) lnq t c Dt   ......................................................................................................... A-64 

Taking the derivative of Eq.  A-64: 

1ln ( ) ln
d d d

q t c Dt
dt dt dt

 
 ............................................................................................ A-65 

Evaluating the derivative: 

1
( )

( )
q t D

q t
  

 .............................................................................................................. A-66 

yields the Arps D-parameter as a constant.  Therefore, a constant value of βq( t ) / t is 

diagnostic of boundary dominated flow. 

Elimination of intercept term 

Each of the derived identities for pressure function diagnostics is not exact due to the 

existence of an intercept term we have neglected.  Alternatively, we can eliminate the c2 

slope term by transforming β (t ) to the well-testing derivative as in Eq.  A-37: 

'( ) ( ) ( )t p t t p t   ........................................................................................................ A-37 

If: 

2 1( )p t c c   ............................................................................................................. A-67 

Where τ is a function of time respective to each flow regime, such as: 

t  ........................................................................................... for pseudosteady-state flow 

ln t   ........................................................................................................... for radial flow 

nt   ....................................................................................................... for power-law flow 
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And n = ½ for linear flow, n = ¼ for bi-linear flow, etc. 

Taking the derivative of the Eq A-67 with respect to the log of time: 

 2 1( )

ln ln

d c cd p t

d t d t




 .................................................................................................... A-68 

Substituting the log derivative identity: 

 2 1( )

ln

d c cd p t
t t

dt d t






 ................................................................................................. A-69 

Evaluating the derivative for each case of τ: 

1( )
t

t p t tc
 

 
 .............................................................................................................. A-70 

1
1

ln

( )
t

c
t p t t c

t  

   
 .................................................................................................... A-71 

1
1 2( )

n

n n

t
t p t tc nt c nt

 

   
 .......................................................................................... A-72 

And taking the derivative of the log of each case with respect to the log of time: 

   1ln ( ) ln

ln ln
t

d t p t d tc

d t d t
 




 ........................................................................................... A-73 

  1

ln

ln ( ) ln

ln ln t

d t p t d c

d t d t  




 ............................................................................................. A-74 

  2lnln ( )

ln ln
n

n

t

d c ntd t p t

d t d t
 

   

 ...................................................................................... A-75 

Substituting the log-log derivative identity: 
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1

1

( )

( )
t

dtct d t p t t

t p t dt tc dt
 







 ...................................................................................... A-76 

1 ln

1( )

( )
t

dct d t p t t

t p t dt c dt
 






 ....................................................................................... A-77 

2

2

( )

( ) nt

ndc ntt dt p t t

t p t dt c nt dt
 


 




 .............................................................................. A-78 

Evaluating each derivative: 

1
1

( )
1

( )
t

t d t p t t
c

t p t dt tc
 








 ...................................................................................... A-79 

1 ln

( )
0 0

( )
t

t d t p t t

t p t dt c
 


 


 

 ................................................................................... A-80 

3

1
2

2

2

( )

( ) n

n

t

c

t d t p t t
c n t n

t p t dt c nt














 ...................................................................... A-81 

And substituting Eq.  A-38 into each: 

( ) ( )
1

( ) ( ) t

t d t p t

t p t dt 


 




 ......................................................................................... A-82 

ln

( ) ( )
0

( ) ( ) t

t d t p t

t p t dt 


 




  ...................................................................................... A-83 

( ) ( )

( ) ( )
nt

t d t p t

t p t dt
n




 




 ...................................................................................... A-84 

Which reproduces the classic well-testing diagnostic based upon a known beta-derivative. 

For boundary-dominated flow, we eliminate the intercept term in the course of the 
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derivation of the beta-derivative identity, so no additional derivation is needed.  We would 

set the slope of the log-log plot of the D-parameter to zero, resulting in Eq.  A-86. 

2 ( )

( )
n

q

q
t

tt d

t dt t
n




 

 
 

  ............................................................................................... A-86

Summarizing 

The power-law function can reproduce exponential, logarithmic, or power-law behavior: 

Table A-1 — Summary of beta-derivative diagnostics 

Flow Regime  Beta-derivative Diagnostic Well Testing Diagnostic 

Radial ln 1t  0
t d p

p dt









Linear 
1

2
 

1

2

t d p

p dt







Boundary-Dominated constantq

t


 n/a 

Pseudosteady State 1p   1
t d p

p dt






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APPENDIX B 

DERIVATATION OF RADIUS OF CURVATURE 

In this appendix we derive the radius of curvature measurement utilized as a regularization 

on smoothness of the constant-rate pressure and constant-pressure-drop rate kernel 

functions.  Radius of curvature, R, is common in other field of engineering, for example in 

beam deflection.  It represents the radius of a circle having the same curvature as a portion 

of the function of interest.  The arc length s is related to R by the angle of the arc θ as shown 

in Fig. B-1 and in Eq. B-1.  T is a tangent line at a point where we desire to measure the 

curvature. 

Figure B-1 — Relationship of arc length to radius of curvature and angle of the arc. 



198 

R s   ............................................................................................................................. B-1 

And if we take the derivative of both sides of Eq.  B-1 with respect to the change in time, 

we have: 

d ds
R

dt dt




 ....................................................................................................................... B-2 

Left-hand Side 

We will first determine the dθ / dt term on the LHS.  Given y = f ( t ), we may write: 

tan
dy

dt
 

 ....................................................................................................................... B-3 

And solving for θ we have: 

1tan
dy

dt
 

 ..................................................................................................................... B-4 

Taking the derivative with respect to t: 

1tan
d d dy

dt dt dt

       ......................................................................................................... B-5

Where the derivative of tan-1 is given by Abramowitz and Stegun (1964): 

1
2

1
tan

1

d
z

dx z
 

  ........................................................................................................... B-6

 Defining: 

dy
u

dt


 ............................................................................................................................ B-7 

Then: 
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2

2

du d y

dt dt


 ....................................................................................................................... B-8 

Recalling the chain rule: 

dy dy du

dx du dx


 

Substituting in to Eq.  B-5 and applying the chain rule, we have: 

 1tan
d d du

u
dt du dt

 
 ...................................................................................................... B-9 

Substituting in Eqs.  B-6, B-7, and B-8 we have: 

2

2

2

1

d y
d dt
dt dy

dt




      ............................................................................................................ B-10 

Right-hand Side 

Now we determine the ds / dt term on the RHS.  Starting with the change in arc length given 

a change in Cartesian position: 

2 2 2ds dy dt   .............................................................................................................. B-11 

Dividing both sides by dt2: 

2 2

2 2
1

ds dy

dt dt
 

 ................................................................................................................ B-12 

Taking the square root of Eq.  B-12: 
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2

1
ds dy

dt dt
       ........................................................................................................... B-13 

Substituting Eqs.  B-10 and B-13 into Eq.  B-2: 

2

2
2

2
1

1

d y
dydtR
dtdy

dt

           ............................................................................................. B-14 

And solving for K we obtain: 

3
2 2

2

2

1
dy
dt

R
d y
dt

      

 ......................................................................................................... B-15 

In Eq.  B-15, R will be large when y is smooth, and small when y is sharp.  We wish to 

regularize a parameter such that a model is less likely, or penalty is high, when a parameter 

is large.  Therefore, we take the reciprocal of Eq.  B-15 to obtain curvature K: 

2

2

3
2 2

1

1

d y
dtK

R
dy
dt

 
        ................................................................................................ B-16 

Eq.  B-16 is physically interpreted as the curvature being equal to the second-order 

derivative of the function of interest, with respect to the local slope (first-order derivative) 

of the function. 



201 

Transform for log values 

The curvature is applied to the first-order derivative of the log of the kernel function with 

respect to the log of time, but the second-order derivative is not with respect to the log of 

the kernel function but is with respect to the log of time.  If we substitute in the log-log 

derivative identities, 

ln

ln ln

d d y d x dy
x

d x d x dx y dx

           

We have: 

3
2 2

1

d t dy
t

dt y dt
K

t dy
y dt

 
 
 

        .................................................................................................... B-17 

Which requires the quotient rule to evaluate.  Defining: 

dy
u t

dt


 ......................................................................................................................... B-18 

v y  .............................................................................................................................. B-19 

2

2

du d y dy
t

dt dt dt
 

 ............................................................................................................ B-20 

dv dy

dt dt


 ........................................................................................................................ B-21 

Recalling the quotient rule: 

2

du dv
v ud u dt dt

dt v v




 ......................................................................................................... B-22 
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Substituting in Eqs.  B-18 – B-23 into the numerator of Eq.  B-17 we have: 

2

2

2

d y dy dy dy
y t t

dt dt dt dtd t dy
t t

dt y dt y

  
               .................................................................... B-23 

Which simplifies to: 

22 2 2

2 2

d t dy t d y t dy t dy
t

dt y dt y dt y dt y dt

            ....................................................................... B-24 

And substituting Eq.  B-24 into Eq.  B-17 results: 

22 2 2

2 2

3
2 2

1

t d y t dy t dy
y dt y dt y dt

K
t dy
y dt

     
        ..................................................................................... B-25 

If we substitute τ into Eq.  B-25,  where τ is defined as: 

ln t   .......................................................................................................................... B-26 

1
d dt

t
 

 ....................................................................................................................... B-27 

And, similarly: 

1
d dy

y
   ..................................................................................................................... B-28 

We obtain a simplified form for numerical evaluation using finite difference 

approximations: 
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22

2

3
2 2

1

d d d
y

d d d
K

d
d

  



  



     
      

 ............................................................................................. B-29 

We also note that, when 1dy dt   , then Eq.  B-16 reduces to a form similar but not equal 

to that derived by von Schroeter, Hollaender, and Gringarten (2002, 2004).  

2

2

d y
K

dt


 ....................................................................................................................... B-30 

Whereas their function in finite difference form is not a second derivative, but: 

2
1 1

1 1

i i i i

i i i i

y y y yd y
K

dt t t t t
 

 

 
 




  ...................................................................................... B-31 

And with some manipulation: 

1 1 1 1

1 1 1 1

i i i i i i i i

i i i i i i i i

y y t t y y t t
K

t t t t t t t t
   

   

      
       


   

1 1 1 1

1 1 1 1 1 1

i i i i i i i i

i i i i i i i i i i i i

y y t t y t t y
K

t t t t t t t t t t t t
   

     

    
           


   

 
   

 
   

1 11 1

1 1 1 1 1 1

i i i i i ii i

i i i i i i i i i i i i

y t t y t ty y
K

t t t t t t t t t t t t
  

     

 
  

     
 

   
  

1 11 1

1 1 1 1

i i i i ii i

i i i i i i i i

y t t t ty y
K

t t t t t t t t
  

   


     

   
 

We obtain: 

 
   

1 11 1

1 1 1 1

i i ii i

i i i i i i i i

y t ty y
K

t t t t t t t t
  

   


 

 


 
 ...................................................................... B-32 
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Which is identical to Eq. 28 in von Schroeter, Hollaender, and Gringarten (2002).  Our 

result suggests Equation B-32 can be improved by substitution into Eq.  B-30, yielding: 

 
  

1 11 1

1 1 1 1

1 i i ii i

i i i i i i i i

y t ty y
K

t t t t t t tdt t
  

   

 
   


    

 
  

1 11 1

1 1 1 1 1

1 i i ii i

i i i i i i i i i i

y t ty y
K

t t t t t t t t t t
  

    

 
  


      

 
 

      
1 11 1

2 2
1 11 1 1

i i ii i

i i i ii i i i i i

y t ty y
K

t t t tt t t t t t

  

   


 

 


 
 ............................................... B-33 

Which is, effectively, just the second-order derivative.  Fig. B-2 compares the von 

Schroeter et al. curvature function (Eq.  B-32), our "correction" (Eq.  B-33), and the 

curvature function derived in this work (Eq.  B-29).  All functions are evaluated with 

respect to the log values of βp and time.  (If we used untransformed values, the curvature 

at late times would be approximately zero.)  We observe in Fig. B-2 that the measurement 

of curvature is analogous between the von Schroeter curvature function and the other two 

functions at early-time.  However, at late-times the von Schroeter function underestimates 

the curvature.  The correction we have applied alleviates this somewhat, but another issue 

presents itself in that the sign of the functions is incorrect.  At 100 hours, the curvature of 

the beta-derivative is convex, indicating positive curvature, and continues to be so for the 

next few knots.  The von Schroeter function and the correction both evaluate to negative 

values over these knots. 

The pseudocode for our curvature function is: 
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1 function float[] deriv_1(float[] a): 

2   # 1st order central difference derivative 

3  return (a[2:] – a[:-2]) / 2 

4   

5 function float[] deriv_2(float[] a): 

6   # 2nd order central difference derivative 

7  return a[2:] – a[1:-1] + a[:-2] 

8  

9 function float[] curvature(float[] x, float[] y, 

10   bool logx, bool logy): 
11   # compute curvature 
12  if logx: 
13    x = log(x) 

14  if logy: 
15    y0 = y 

16   y = log(y) 

17  
18   dx = deriv_1(x) 
19   dy = deriv_1(y) 
20   d2y = deriv_2(y) 
21   if logy: 
22    d2y *= y0  

23  d2ydx2 = d2y / dx**2 
24   
25   if logx: 
26    d2ydx2 += dy / dx – (dy / dx)**2 

27   
28   return d2ydx2 / (1 + (dy / dx)**2)**(3 / 2) 
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Figure B-2 — Comparison of curvature functions for Validation Case 1. 

 

To investigate the issue further, we evaluate each curvature function against a sin function 

with logarithmically spaced knots.  In Fig. B-3, we observe that the von Schroeter curvature 

function is does not yield consistent values of curvature over each period of the function, 

and would in fact grow unbounded to infinity as the knots become ever closer together.  

While our correction in Eq. B-33 does resolve this behavior, the curvature as the sin 

function passes through zero grows too rapidly because the correction does not normalize 

with respect to the slope of the function.  We conclude that our derived function for 

curvature is the optimal one for regularization. 
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Figure B-3 — Comparison of curvature functions for evaluated on a sin function. 
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APPENDIX C 

DERIVATION OF B-SPLINE DERIVATIVE AND INTEGRAL 

In this appendix we derive the integration identity for B-splines.  Although B-splines are 

defined piecewise, their derivatives and integrals are continuous over the knots that define 

the B-spline.  This allows us to quickly and easily interpolate a degree k +1continuous 

spline function after numerical integration of a degree k spline function. 

Beginning with the derivative of the spline function: 

   , * , *k k
i i i i

i i

d d
c B x t c B x t

dx dx

 

  

 
 ............................................................................ C-1 

We need to compute the derivative of the B-splines.  Recalling the recursive definition of 

a B-spline for k > 1: 

     1 11
1

1 1

* *
, * , * , *

* * * *
k k ki i k
i i i

i k i i k i

x t t x
B x t B x t B x t

t t t t
  


   

 
 

   .......................................... C-2 

And taking the derivative: 

     1 1
1

1 1

1 1
, * , * , *

* * * *
k k k
i i i

i k i i k i

d d d
B x t B x t B x t

dx t t dx t t dx
 


   

 
   ............................ C-3 

Which would have k recursions such that: 

     1 1
1

1 1

, * , * , *
* * * *

k k k
i i i

i k i i k i

d k k
B x t B x t B x t

dx t t t t
 


   

 
   ..................................... C-4 

Substituting into Eq.  C-1: 



209 

     1 1
1

1 1

, * , * , *
* * * *

k k k
i i i i i

i i i k i i k i

d k k
c B x t c B x t B x t

dx t t t t
 


     

 

 

 
    

 
 ................ C-5 

Distributing the coefficient ci: 

     1 1
1

1 1

, * , * , *
* * * *

k k ki i
i i i i

i i ii k i i k i

c k c kd
c B x t B x t B x t

dx t t t t

  



 


     

 
   

 .................. C-6 

Changing the indices on the second term on the RHS: 

     1 11, * , * , *
* * * *

k k ki i
i i i i

i i ii k i i k i

c k c kd
c B x t B x t B x t

dx t t t t

 

  

  



 
   

 ...................... C-7 

Factoring out the  1 , *k
iB x t  term and combing the sum terms: 

   11, * , *
* * * *

k ki i
i i i

i i i k i i k i

c k c kd
c B x t B x t

dx t t t t







  



 

 
    

 
 .......................................... C-8 

Simplifying: 

   11, * , *
* *

k ki i
i i i

i i i k i

c cd
c B x t k B x t

dx t t


 

   




 
 ............................................................. C-9 

We can define: 

1

* *
i i

i
i k i

c c
d k

t t







  ............................................................................................................ C-10 

And substitute into Eq.  C9: 

   1, * , *k k
i i i i

i i

d
c B x t d B x t

dx

 


  

 
 ........................................................................... C-11 

Which gives us the derivative identity. 
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To derive the integral identity, we first separate the variables: 

   1, * , *k k
i i i i

i i

d c B x t d B x t dx








  

 
 ......................................................................... C-12 

And then set up a definite integral: 

   1, * , *
xk k

i i i i
i i

c B x t d B x t dx


 

 


 

 
 ...................................................................... C-13 

Adjusting the indices: 

   1 , * , *
xk k

i i i i
i i

c B x t d B x t dx






  

 
 ...................................................................... C-14 

Using Eq.  C-10 we adjust the index and solve for ci: 

 1
1 1

* * 1
* *

1 1

i
i k i

i i i i j k j
j

t t
c d c d t t

k k 




 
 


   

  
 ..................................................... C-15 

For clarity to make the integral coefficient distinct from the derivative coefficient, we re-

write the coefficients using ci to describe the known coefficients and ei to describe the 

integral coefficient (that is, ci → ei and di → ci ): 

 1

1
* *

1

i

i i j j
j

ke c t t
k 




 
 

 ........................................................................................ C-16 

And we note that: 

1 0e   ............................................................................................................................. C-17 

Substituting Eq.  C-16 into Eq.  C-14 and switching the LHS and RHS: 
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   1, * , *
x k k

i i i i
i i

c B x t dx e B x t
 







 

  
 .................................................................... C-18 

Which is the integral identity. 
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APPENDIX D 

DERIVATION OF HUBER PROBABILITY DENSITY FUNCTION 

A probability density function (PDF) represents an unknown variate, or random variable.  

For a density function f (x), the cumulative distribution function (CDF) is given by: 

)( ) (
x

F x f z dz


   ........................................................................................................... D-1 

If the upper limit of the integral in Eq.  D-1 is infinity, then by definition F (x) = 1. 

1)( ) (F x f x dx





   ..................................................................................................... D-2 

D-2 must hold for any density function to be a valid density function.  Given the piecewise 

Huber loss function, illustrated in Fig. D-1: 

 
 2

2

2

2, ,

2

,H

x x

J
t

x
xt

t

t
x

t

 
  
 

 

  
 

   



 ...................................................................... D-3 

If we exponentiate Eq.  D-3 we obtain a function that looks like a density function; that is, 

the maximum value lies at μ and the tails approach zero.  However, we require that: 

  1,
1

exp ( , , )HJ x t dx
g

 



 

 ..................................................................................... D-4 

This may not be true without some constant, g, to normalize the integral to unity.  Our goal 

in this appendix is to seek the normalizing constant and yield a valid density function.  

Setting up a definite integral for Eq.  D-3 with an unknown normalizing constant: 
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Figure D-1 — Comparison of L1, L2, and Huber Cost Functions. 
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We evaluate the first term, FT.  This term is defined in the middle, and is symmetrical, so 

we simplify the evaluation with the integral limits of zero and x: 
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 ........................................................................ D-6 



214 

Defining a variable of substitution: 

2

x
u


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


 ......................................................................................................................... D-7 

And the derivative would be: 

2
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du dx
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Or: 
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And the limits of the integral become: 
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Substituting Eq.  D-7 and Eq.  D-9 into Eq.  D-6 and changing the limits of the integral: 
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And with some manipulation we achieve: 
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 .............................................................................. D-11 

And we immediately note that Eq.  D-11 contains the error function: 

2
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2
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x
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
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 ........................................................................................ D-12 
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And by definition the second term in Eq.  D-12 equals one.  Substituting Eq.  D-12 and Eq.  

D-7 into Eq.  D-11 provides: 
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F rT e f
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 ............................................................................. D-13 

Next, we evaluate the second term: 

2
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
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Evaluating the integral: 
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Combining Eq.  D-13, Eq.  D-15, and Eq.  D-16 into a piecewise function where the 

constant at the start of each piece is the evaluation of the prior piece's integral: 
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 .......... D-17 

Recalling that we require the integral to be equal to one, we next must determine g.  Given 

that the integral is symmetrical, we need only evaluate from negative infinity to zero: 
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Thus, solving for g in Eq.  D-17 for x = 0, we have: 
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Or noting that: 
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If we define: 

x
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Then we can simplify Eq.  D-17 to: 
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And Eq.  D-18 to: 
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We define: 
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2 erf
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And rewrite Eq.  D-22 as: 
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Finally, we substitute Eq.  D-25 into Eq.  D-4: 
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Summarizing our results, the Huber density function is: 
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As the Huber density function is a mix of the L1 and L2 functions, it can re-create the 

behavior of either depending on the value of the t parameter (Fig. D-2).  It is worth noting 

that when t ≪ 1, i.e. the L1 behavior dominates and the value of σ is scaled by t.  This 

results from t only appearing in the piecewise term when z < | t |. 
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Figure D-2 — Comparison of L1, L2, and Huber Density Functions. 
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APPENDIX E 

IMPLEMENTION OF ILK, VALKÓ, AND BLASINGAME 

DECONVOLUTION METHOD USING BAYESIAN 

PROBABILISTIC GRAPHICAL MODEL 

In this appendix we implement the Ilk, Valkó, and Blasingame (2005, 2006) deconvolution 

scheme using our Bayesian PGM.  Although quite different in implementation, 

conceptually the two methods share a lot in common.  The key differences are the 

following: 

● Our method solves the inverse problem of deconvolution by a stochastic optimization 

scheme of the forward problem.  We utilize a generating function for the values of the 

beta derivative of the constant-pressure rate and constant-rate pressure functions.   

● The Ilk et al. method utilizes a direct solution to the inverse problem by setting up and 

solving a system of linear equations.  The solution is the column vector of coefficients 

for the spline function that evaluates to the derivative of the pressure function. 

Put another way, both methods represent a pressure derivative with the B-spline function 

given in Eq. 3.68: 

( , *) kx t S B c  ................................................................................................................. 3.68 

The evaluation of the spline function, 𝑆(𝑥, 𝑡∗), is a pressure derivative.  As we use the beta-

derivative, we define  𝑆(𝑥, 𝑡∗) as the beta-derivative of the pressure function: 
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 ................................................................................... A-38 

substitution of Eq. 3.68 into Eq. A-38 yields Eq. 3.89: 

1 exp( )
i

t k
cr t

pp t    pB β
 ................................................................................................ 3.89 

Where 𝐜 = 𝛃𝐩 for a degree 1 B-spline.  For clarity, 𝐁௞ is a B-spline that interpolates from 

our evenly log-spaced knots to our evenly-cartesian spaced data time series.  Re-arranging 

and integrating both sides of Eq. A-38: 

   ln

0
exp

t
p t t d     .................................................................................................. E-1 

We observe that we must integrate with respect to the log of time, and exponentiate the 

result, as shown in Eq. 3.89.  Recalling that we can simultaneously interpolate and integrate 

with our B-spline using the identity shown in Appendix C, we may re-write Eq. E-1 as: 

   1exp kp t   B e  ......................................................................................................... E-2 

Our method directly generates the values of 𝑆(𝑥, 𝑡∗) by random sampling via a Gaussian 

process, which are also the values of the beta derivative and the values of the coefficients, 

and integrates the result to obtain the pressure function. 

The Ilk et al. method differs solves the Eq. 3.68 for 𝒄, where 𝑆(𝑥, 𝑡∗) is defined as the 

derivative of the pressure function.  This is given by Eq. 7 in Ilk et al. as: 

    2,p t S t   x B c ........................................... Ilk, Valkó, and Blasingame (2006), E-3 
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Once the coefficients have been found by solution of the system of linear equations, the 

pressure function is evaluated by use of the B-spline integral identity. 

To modify our algorithm to implement the approach of Ilk et al, we perform two simple 

changes: 

● We generate the coefficients of the spline function as opposed to the values to which 

the spline function evaluates. 

● We integrate the B-spline with respect to time and do not exponentiate the result. 

A comparison of our method, and the implementation of the Ilk et al. method using our 

Bayesian scheme and regularization by curvature, follows below.  Examples from the 

validation cases in section four were selected for comparison.  As Ilk et al. did not propose 

any scheme for generation of the rate function during variable-rate deconvolution, we do 

not generate a rate function for our comparison.  For comparison, we use the variable-rate 

cases with 0%, 20%, and 60% random error, and the random rate cases with 0%, 20%, and 

60% random error. 

In general, we observe from comparison of our results with those of Ilk et al. that we 

achieve significantly greater stability of our pressure derivatives.  This is due in part to the 

inherent stability of the convolution operator as opposed to the instability of deconvolution. 

Furthermore, we observe that our use of the beta-derivative yields more stable results than 

the Ilk et al. use of the coefficients of the pressure derivative.  We attribute this to two 

factors.  First, the beta-derivative is invariant to scale.  This means that our solution is not 

sensitive to any initial value of rate or pressure.  Second, the beta-derivative is constrained 
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to a small range of values, ideally in the domain of (0, 1) for a pressure function.  A value 

of zero indicates radial flow, while a value of unity indicates pseudosteady-state.  A large 

number of commonly observed flow regimes fall within this range.  This means that our 

problem is almost always of order 1, which reduces the difficulty of the problem for the 

optimization scheme. 
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Figure E-1 — Input data for Validation Case E-1 (variable rate, no error). 

 

 
Figure E-2 — Input data for Validation Case E-2 (variable rate, 20% random error). 
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Figure E-3 — Input data for Validation Case E-3 (random rate, no error). 

 

 
Figure E-4 — Input data for Validation Case E-4 (random rate, 20% random error). 
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Figure E-5 — Input data for Validation Case E-5 (variable rate, 60% random error). 

 

 
Figure E-6 — Input data for Validation Case E-6 (random rate, 60% random error). 
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Figure E-7 — Deconvolution results for Validation Case E-1 (variable rate, no error). 
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Figure E-8 — Deconvolution results for Validation Case E-2 (random rate, no error). 
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Figure E-9 — Deconvolution results for Validation Case E-3 (variable rate, 20% 
random error). 
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Figure E-10 — Deconvolution results for Validation Case E-4 (random rate, 20% 
random error).  
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Figure E-11 — Deconvolution results for Validation Case E-5 (variable rate, 60% 
random error).  
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Figure E-12 — Deconvolution results for Validation Case E-6 (random rate, 60% 
random error). 

 




