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ABSTRACT 

Trend data have been the main source for utility plant evaluation and optimization. 

However, the current practice of trend data processing has not been well addressed in 

previous research as an important part of the workflow. As a consequence, the evaluation 

and optimization process can fail due to unreliable data, as the performance indicators are 

improperly estimated.  

The chilled water systems in the Texas A&M University utility plant have been 

investigated in this thesis. The hourly average timeseries data of chilled water systems are 

categorized with various methods in order to validate the reliability of meter records and 

performance benchmarking. After-processing, data are input for characteristic performance 

mappings and anomaly detection, which will help the plant operator in fault diagnosis and 

improving the performance of the chilled water systems. 

The outputs of this data-only–based validation process have been aligned with an 

on-site commissioning report, which requires an investment of labor and resources. It can 

be applied in other utility plants with similar configuration. 
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  I. INTRODUCTION 

I.1 RESEARCH MOTIVATION 

The campus-level utility plant often consists of an enormous number of different systems 

with specific characteristics in both load demands and production capacities. This natural 

heterogeneous character of these systems has made it nearly impossible to standardize best 

practices on evaluating and optimizing their performance and acquiring useful “know-how” 

at reasonable cost in terms of time, material, and human resources.  

Campus-level utility plants are often equipped with sophisticated industrial-grade 

control and monitoring systems at plant and equipment level (sometimes at the user level), 

which have been designed, installed, and maintained by dedicated engineering teams with 

hundreds of years of total professional and practice experience. Nevertheless, 

characterizations of useful performance benchmarking and efficient analysis of utility plant 

performance have remained questions that do not have comprehensive and widely 

recognized answers. While the adoption of a direct digital controller (DDC) and building 

management systems (BMS) have made trend data from utility plants more available than 

ever, the usable knowledge, collected from trend data, has still been very limited to a case-

by-case basis. Sometimes the trend data overloads operators and becomes useless. One of 

the limiting factors might be simply the conflicting constraints of different energy demands 

(e.g., electricity and heat production of a heat recovery generator in a cogeneration heating 

plant [CHP] or condenser flow rate and lift of chillers). However, the most frequent issues 

are often raised from: the reliability of data values (i.e., meters), the sensitivity of 
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benchmark methods, and the performance mapping (e.g., load demands vs. productivity 

capacities vs. resources consumption relationships).  

Due to the inherent characteristics of utility plant operation, the optimization process 

always has been a continuous process in which trend data is the most important input. 

However, there are several distinct disparities of data usage between the plant level, which 

mostly focuses on total productivity and efficiency rates, and the component level where 

most operating indicators are focused on the component performance and stability. This 

work attempts to filter out the less useable parts and form useful indicators of trend data for 

(semi-)automatic fault diagnostics and plant evaluation workflow mapping, which could be 

applied in different situations (i.e., plant configurations, equipment).  

This work also classifies and compares various methods of plant performance review 

and their relationships with input values in a dashboard form to assist operators.  

I.2 PURPOSE AND OBJECTIVES  

The purpose of this research is to develop a procedure to better use building automation 

system (BAS) trend data to evaluate and improve chilled water plant performance. This 

procedure will be developed in the following four steps:  

• Develop a procedure to prescreen data from chiller plant sensors and meters to 

identify obvious problems with the specific sensors/meters. 

• Develop a procedure to use data that passes the prescreening process to conduct an 

energy balance on the plant performance to detect other possible sensor errors. 

• Develop a procedure to use the cleaned data to compare actual chiller performance 

with models developed from the manufacturer’s performance data. 
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• Develop a procedure for optimizing chiller operation based on use of repetitive 

diurnal cycles of chiller loads, ambient weather data, and operational schedules. 



 

4 

 

II. LITERATURE REVIEW 

There are two key topics related to the optimization process based on use of data analysis: 

data analysis (includes statistical learning and system modeling) and visualization analytics. 

The building management and automation systems of a typical plant seem to have both of 

those aspects: the database of metered values constitutes the data, and the graphical user 

interfaces help operators visualize the data to monitor and review both real-time values and 

trend data. So, the BMS system is the core component in data collection, data mining, and 

evaluation of results for use in the optimization process. Although the amount of research 

on optimization using data analysis is extensive, my research will focus on chiller systems 

in district chiller plants. 

II.1 RAW DATA PREPROCESSING 

The raw data are often not sufficient for evaluation, as they contain errors from the 

following: 

• BMS hardware, software, and communication issues 

• Sensor bias due to installation and drift issues 

 

While the BMS-related issues could be simply filtered by a simple spreadsheet, the 

sensor bias problem is much more problematic and takes significant time and effort to 

identify and correct. The most basic validation methods are heat balance and pressure–

flow rate balance. In most cases, the normal (good) data, which could be used in chiller 

performance analysis, should satisfy the energy and flow rate balances. AHRI 
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Standard 550/590 (Air Conditioning Heating and Refrigeration Institute 2015) provides a 

good reference method for chiller performance validation and verification and is widely 

recognized by chiller manufacturers based on energy balance. Many researchers have used 

the experimental data set from the American Society of Heating, Refrigerating and 

Air-Conditioning Engineers (ASHRAE) Research Project (RP) 1043 (Braun and 

Comstock 1999), which tested a 90-ton capacity centrifugal chiller under laboratory 

conditions. However, that data may not be appropriate for modern big capacity 

chillers. The list of faults imposed to the lab chiller in ASHRAE Project 1043 is shown 

below: 

• Reduced condenser water flow 

• Reduced evaporator water flow 

• Refrigerant leak  

• Refrigerant overcharge 

• Condenser fouling 

• Non-condensable in refrigerant 

• Defective pilot valve 

• Multiple faults 

 

In order to identify sensor bias, principle component analysis (PCA) was 

preferred by many authors. Wang and colleagues applied principle component analysis 

to sensor fault detection for air handling units (AHUs) (S. Wang and Xiao 2004) and 

centrifugal chillers (S. Wang and Cui 2005, 2006) based on sensors that could be 

verified by energy balance rules. Du & Jin (2007) used energy balance, and water-side 

and air-side flow pressure balances with PCA to rule out sensor-based anomalies. Wang & 

Wang (2002) implemented sensor bias estimators based on all concerned energy balances 

for water-side systems. The typical PCA method flowchart in sensor fault detection 

diagnostics investigated for centrifugal chiller is described in Figure II.1. 
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Figure II.1. PCA method flowchart. Reprinted from S. Wang and Cui (2005). 

II.2 CHILLER PLANT AND COMPONENT MODELING  

System and component modeling describe a system or component in terms of three different 

types of variables: input variables, system structure, and output variables. System structure 

is usually a mathematical relationship or mathematical model between a (sub)set of input 

variables with one or several output variables. Typically, mathematical models are 

classified in two categories (see Figure II.2): forward-models (simulation-based) and/or 

inverse models (based on performance data). Forward models are often used in system 

design as white-box models, while inverse models typically focus on understanding, 

predicting, and controlling existing systems.  
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Figure II.2. Different types of mathematical models used in forward and inverse 

approaches. 

Chiller system models are typically one of the following types: linear empirical 

models, artificial neural network (ANN) models, physical component models, or physical 

lumped parameter models. A summary of research performed for each category is shown in 

Table II.1. Research about chiller modeling often focuses on two applications: optimizing 

chiller performance (coefficient of performance [COP]) and fault detection and diagnosis 

(FDD). 
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Table II.1. Literature review about modeling methods. 

Category Research 

Empirical model (black-box) 

Yik and Lam 1998; 

Lawrence Berkeley National Laboratory 1980; 

Reddy and Andersen 2002; 

M Hydeman et al., n.d.; 

Y.-C. Chang et al. 2013; 

ASHRAE, n.d.; 

Y. Zhao, Xiao, and Wang 2013;  

Braun and Comstock 1999; 

Zmeureanu and Vandenbroucke 2015; 

Shan et al. 2016; 

Wei, Xu, and Kusiak 2014; 

Baillie and Bollas 2017; 

Artificial neural network models 

Y.-C. C. Chang 2007; 

Swider et al. 2001; 

L.-X. X. Zhao, Shao, and Zhang 2010; 

Physical component models 
Mclntosh, Mitchell, and Beckman 2000; 

Browne and Bansal 1998; 

Physical lumped parameter models 
Ng et al. 1997; 

Lee 2004; 

 

Due to their simplicity, empirical models get a lot of attention and are widely used for 

both optimizing existing plants and predicting energy consumption of new plants at the 

conceptual design phase. However, because the empirical model coefficients are not based 

on the physical characteristics of a chiller, they are only reliable when historically measured 

data are available for a particular system. This characteristic makes their use in plants with 

multiple chillers very complex, especially when a new type of chiller is added, or new 

control sequences are proposed. Afroz et al. (2017) reviewed different modeling techniques 

and compared three basic modeling techniques based on the performance criteria shown in 

Table II.2. 
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Table II.2. Performance of different modeling techniques. Reprinted from Afroz et al. 

(2017) 

Modeling Technique 
Prediction 

Accuracy 

Generalization 

Capability 

Training 

Data 

Requirement 

Complexity 

Level 

Physics-based 

(white box/ 

mathematical/ 

forward) model 

L H L H 

Data-driven 

(black box/ empirical/ 

inverse) model 

H/ M/ L1 L/ M2 H L 

Gray-box  

(hybrid) model 
H M M M 

Note: The letters H, M, and L stand for high, medium, and low, respectively.  

1 Prediction accuracy of data-driven models usually depends on model type, e.g., data mining algorithm, fuzzy 

logic, state-space, and stochastic models give high prediction accuracy; frequency domain with dead time, 

geometric, case reasoning, and instantaneous models give medium prediction accuracy; only statistical models 

provide low prediction accuracy.  

2 Generalization capability of data-driven models is commonly medium to low depending upon the model type. 

Frequency domain with dead time, data mining algorithm, state-space, stochastic, and instantaneous models 

possess high generalization capability, while fuzzy logic, statistical, geometric, and case-reasoning models 

possess medium generalization capability. 

 

II.2.1 Empirical Chiller Models 

An empirical model might be either of two types: (1) a black-box model type with 

coefficients that have no physical interpretations and are completely based on historically 

measured data; or (2) a hybrid model type in which all or a part of the coefficients have 

some physical meanings.  
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Efficiency empirical model 

ASHRAE Research Project 1139 developed and compared four different mathematical 

models that could predict the fault-free performance of a vapor compression system. The 

evaluation used 5 months of data from a 220 Ton chiller from Toronto (800 samples) and 

about 1120 samples during 14 days from a 450-ton chiller located at Drexel University, 

which was instrumented to provide data collected specifically for that research. 

The chiller models in ASHRAE RP 1139 were steady-state performance and models 

linear in the parameters (except for ANN) and had chiller efficiency as the only response 

variable. The ASHRAE RP 1139  has four chiller models: 

• Black-box models: Linear empirical models, usually triquadratic multivariate 

polynomial (MP) models 

• Artificial neural network models: Radial basis function (RBF) and multilayer 

perceptron (MLP)  

• Gray-box model: Generic physical component model approach 

• Gray-box model: Lumped physical Gordon–Ng model  

 

The two online training models evaluated during this research are the following: 

• Ordinary recursive least squares (ORLS): All data are given the same weight in 

readjusting the parameter estimates. 

• Weighted recursive least squares (WRLS): More weight is given to newer data. 

 

The objective of fault-free chiller models is to provide chiller performance predictions to 

compare with the observed performance. 
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• Empirical model (simplest form): 

𝐶𝑂𝑃 =  𝛼 + 𝛽1𝑇𝑐𝑑𝑖 + 𝛽2𝑇𝑐ℎ𝑖 + 𝛽3𝑄𝑐ℎ 

Where, 𝑇𝑐𝑑𝑖 and 𝑇𝑐ℎ𝑖 are inlet water temperatures to the evaporator and condenser, 

respectively; and 𝑄𝑐ℎ  is chiller evaporator production; and COP is chiller 

efficiency.  

• Multivariate polynomial model: 

Braun found that a second-order linear polynomial model with 10 coefficients is 

more appropriate. This is also called a multivariate polynomial model and is given 

by: 

𝐶𝑂𝑃 =  𝛼 + 𝛽1𝑇𝑐𝑑𝑖 + 𝛽2𝑇𝑐ℎ𝑖 + 𝛽3𝑄𝑐ℎ + 𝛽4𝑇𝑐𝑑𝑖
2 + 𝛽5𝑇𝑐ℎ𝑖

2 + 𝛽6𝑄𝑐ℎ
2

+ 𝛽7𝑇𝑐𝑑𝑖𝑇𝑐ℎ𝑖 + 𝛽7𝑇𝑐𝑑𝑖𝑇𝑐ℎ𝑖 + 𝛽8𝑇𝑐𝑑𝑖𝑄𝑐ℎ + 𝛽9𝑇𝑐ℎ𝑖𝑄𝑐ℎ 

Electrical consumption empirical model 

Wang (2017) compared his own empirical model with other models for chiller electrical 

consumption estimation. The short descriptions of each model are reviewed as below: 

• Yik model: 

𝑃𝐿𝑅𝑒𝑙𝑒𝑐 = 𝛼 + 𝛼1𝑃𝐿𝑅 + 𝛼2𝑃𝐿𝑅2 +  𝛼3𝑇𝑐𝑤𝑖 + 𝛼4𝑇𝑐𝑤𝑖
2 +  𝛼5𝑃𝐿𝑅. 𝑇𝑐𝑤𝑖

+ α6𝑃𝐿𝑅2. 𝑇𝑐𝑤𝑖 + α7𝑃𝐿𝑅. 𝑇𝑐𝑤𝑖
2 + α8𝑃𝐿𝑅2. 𝑇𝑐𝑤𝑖

2 
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Where, 𝑃𝐿𝑅𝑒𝑙𝑒𝑐  and 𝑃𝐿𝑅 are part-load ratios of chiller electricity consumption 

and cooling production, respectively; and 𝑇𝑐𝑤𝑖 is the condenser inlet cooling water 

temperature. 

• Braun model: 

𝑃𝐿𝑅𝑒𝑙𝑒𝑐 = 𝛼 + 𝛼1𝑃𝐿𝑅 + 𝛼2𝑃𝐿𝑅2 + 𝛼3𝑦 + 𝛼4𝑃𝐿𝑅2 + 𝛼5𝑦. 𝑃𝐿𝑅2 

𝑦 =
Tcwo– Tchws

(Tcwo– Tchws)design
 

Where, 𝑃𝐿𝑅𝑒𝑙𝑒𝑐  and 𝑃𝐿𝑅 are part-load ratios of chiller electricity consumption 

and cooling production, respectively; and 𝑇𝑐𝑤𝑜 and 𝑇𝑐ℎ𝑤𝑠 are the condenser water 

outlet and evaporator supply temperatures.  

• Chang model: 

𝑁 = 𝛼 + 𝛼1𝑃𝐿𝑅 + α2𝑃𝐿𝑅2 + α3(𝑇𝑐𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑠)  + 𝛼4(𝑇𝑐𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑠)2  +

𝛼5. (𝑇𝑐𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑠). 𝑃𝐿𝑅  

Where, 𝑁  and 𝑃𝐿𝑅  are chiller electricity consumption and cooling production 

part-load ratio, respectively; and 𝑇𝑐𝑤𝑟 and 𝑇𝑐ℎ𝑤𝑠 are the condenser water inlet and 

evaporator supply temperatures. 

• Comstock model: 

𝑁 = 𝛼 + 𝛼1𝑇𝑐ℎ𝑤𝑠 + 𝛼2𝑇𝑐𝑤𝑟 + 𝛼3𝑄𝑒 + 𝛼4𝑇𝑐ℎ𝑤𝑠. 𝑄𝑒 + 𝛼5𝑇𝑐𝑤𝑟 . 𝑄𝑒 + 𝛼6𝑄𝑒
2 
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Where, 𝑁  and 𝑄𝑒  are chiller electricity consumption and cooling production, 

respectively; and 𝑇𝑐𝑤𝑟  and 𝑇𝑐ℎ𝑤𝑠  are the condenser water inlet and evaporator 

supply temperatures. 

• Wang model: 

𝑁 = 𝛽 + 𝛽1Δ𝑝𝑐ℎ𝑤.𝑝
0.5 + 𝛽2Δ𝑝𝑐ℎ𝑤.𝑝 + 𝛽3Δ𝑇𝑐ℎ𝑤 + 𝛽4Δ𝑇𝑐ℎ𝑤

2 + 𝛽5𝑇𝑐𝑤𝑜 + 𝛽6𝑇𝑐𝑤𝑜
2

+ 𝛽7Δ𝑇𝑐ℎ𝑤Δ𝑝𝑐ℎ𝑤.𝑝
0.5 + 𝛽8𝑇𝑐𝑤𝑜Δ𝑝𝑐ℎ𝑤.𝑝

0.5 + 𝛽9𝑇𝑐𝑤𝑜Δ𝑇𝑐ℎ𝑤 

Where, 𝑁 is chiller electricity consumption; Δ𝑇𝑐ℎ𝑤 and Δ𝑝𝑐ℎ𝑤.𝑝 are chilled water 

temperature and pressure difference; and 𝑇𝑐𝑤𝑜  is the condenser water outlet 

temperature. 

The evaluation indicators of each method are shown in Figure II.3 for mean absolute 

error (MAE), coefficient of variation of root mean square error (CV), and mean relative 

error (MRE). In addition, the squared correlation coefficient (R2) is addressed in Figure II.4. 

 

Figure II.3. Empirical model comparison for chillers. Reprinted from H. Wang (2017). 
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Figure II.4. R2 comparison for chiller. Reprinted from H. Wang (2017).  

1#, 2#, and 3# are chiller numbers. 

Moreover, due to the broad variety of supplemental components, e.g., cooling towers 

(fan and heat exchanger), and primary and secondary pumps on chilled and cooling water 

loops, no widely recognized method for optimizing chiller plant approach temperatures is 

available. In addition, energy storage systems and different chiller types (steam chiller, 

absorption chiller, and heat recovery chiller) raise new questions about optimal sequencing 

and demand control of a chiller plant with chillers using completely different energy sources 

(i.e., steam, heat resources, heating demand, etc.). Complex chiller plants are often manually 

sequenced based on a time-schedule or run-time basis rather than automatic sequencing. 

Many researchers have proposed different approaches to solve that problem. Wang (1998) 

presented a dynamic model of a plant consisting of seawater-cooled centrifugal chillers with 

energy management control system (EMCS) control, and evaluated EMCS control 

strategies. Hydeman et al. (1999) demonstrated the implementation of a chiller plant model 

to predict performance of energy conservation measures (ECMs) in an upgraded plant and 
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then verified as-installed performance with the model. Chang used different techniques to 

get optimal chiller sequencing using dynamic programming, neural networks, and branch 

and bound methods Y. C. Chang, Lin, and Lin (2005); Y.-C. C. Chang (2007); Y. C. Y.-C. 

Chang (2006). Wang proposed a data fusion scheme to improve the quality of cooling load 

measurement by using two types of building cooling load measurement: “direct 

measurement” consists of chilled water flow and temperature data, while “indirect 

measurement” is calculated from the instantaneous chiller electrical power input. 

Huang et al. (2009).  

II.3 DATA MINING TECHNIQUES 

Krarti (2003)is one of earliest authors to review the use of artificial intelligence (AI) applied 

to building energy systems to predict energy use for one or many buildings that have the 

same utility distribution source. Three methods—neural networks, fuzzy logic–based 

methods, and genetic algorithms—had been implemented in a few selected applications: 

weather forecasting, short-term load forecasting, fault detection and diagnostics, etc. 

Dounis (2010) reviewed AI techniques within two modern domains that are widely used as 

a design tool in building automation systems: computational intelligence (e.g., fuzzy logic 

and neural network) and distributed artificial intelligence (e.g., intelligent agents, multi-

agent systems, and ambient intelligence). Reddy’s book (2011) covered a lot of analysis 

techniques, including unsupervised methods. Cam et al. (2014) used the data mining process 

to extract information from BAS measurements, then developed inverse models of building 

energy performance to figure out building operation, performance, and fault detection. 
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The most demanding data analysis task (possibly the most difficult in the whole 

optimization process) might be outlier and anomaly detection. This is the procedure that 

must ensure the reasonableness of the data values that are input to the system model or 

statistical analysis. This task is often described as noise removal/accommodation or as 

novelty detection and discord detection for statistical methods. While novelty detection 

deals with unexpected behavior, discord detection focuses on finding anomalous data 

subsets among the rest of the data. Chandola et al. (2009) surveyed research on anomaly 

detection, classified by the research approach used. Janetzko et al. (2013) compared several 

anomaly detection methods for power consumption data. Munir et al. (2017) created a 

pattern-based contextual anomaly detection approach for IoT (Internet of things) based on 

an anomaly score of several HVAC systems. Their pattern-based approach was used to 

detect anomalies in HVAC time-series data. 

Clustering, which categorizes data into subgroups that are meaningful for further 

analytic tasks, is considered the most common approach among unsupervised data analytics 

research focusing on building performance data. Heidarinejad et al. (2014) examined 

simulated energy consumption of 134 offices that were certified as United States Leadership 

in Energy and Environmental Design, New Construction (LEED®-NC) to classify their 

energy use intensity into high, medium, and low clusters. Lavin and Klabjan (2015) used 

clustering methods with time-series data from smart meters. Iglesias and Kastner (2013) 

checked the effect of similarity measures when implementing clustering techniques where 

correlation might be an important factor. Bogen et al. (2013) established the framework for 

comparing the as-operated facility with expected usage patterns from sensor data sets. Li 
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and Ju (2017) applied a hierarchical cluster method to the simulation data set of a chiller 

system. 

Motif detection techniques are dedicated to time-series data investigation, which 

determines repeated patterns in data values according to time (i.e., daily, weekly, etc.) and 

is often used to form a baseline for discord detection. Miller et al. (2015) have implemented 

symbolic aggregate approximation (SAX) to analyze building electricity data. Patnaik et al. 

(2010) used sensor data to model cooling infrastructure in a data center.  

Rule extraction techniques have the ability to automatically establish relationships 

between variables in a data set. May-Ostendorp et al. (2013) applied three different data-

mining techniques to fine-tune supervisory control strategies on a mixed mode building 

during the cooling season. Domahidi et al. (2014) implemented unsupervised machine 

learning to extract prevalent information from simulation data to use with a hybrid model 

predictive controller. Yu et al. (2013) reviewed results of common data analysis methods 

applied to building-related data for exacting knowledge. 

II.4 KNOWLEDGE EXTRACTION AND VISUALIZATION 

Yu et al. (2013) proposed a step-by-step analysis method for extracting meaningful 

knowledge from a building-related database, and potential applications of this knowledge. 

Domahidi et al. (2014) and May-Ostendorp et al. (2013) extracted rules from modeling for 

model predictive control. Fan et al. (2015) applied several data mining techniques to 

identify dynamics, patterns, and anomalies in building operation along with temporal 

association rules within and between subsystems. Ahn and Park (2016) proposed wavelet 
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coherence as a tool for investigating the relationship between occupants’ presence and 

building energy consumption. 

Visualization is the mandatory task for both pre- and post-processing when the 

decisions or follow-up tasks might be determined by engineers or operators. Duarte and 

Acker (2011) review how an energy management system (EMS) controls heating, 

ventilation, and air conditioning (HVAC) and lighting systems to conserve energy while 

maintaining human comfort and productivity. Marini et al. (2011) used a package of 

performance-monitoring software; data-acquisition hardware; and a communication system 

to collect, analyze and display energy information through an information dashboard.  

II.5 SUMMARY 

Since chiller plants are the biggest energy (electrical) consumer in a utility plant, a lot of 

research and testing has investigated chiller performance to evaluate efficiency, diagnose 

faults, and optimize operation. However, there are some deficiencies: 

• AHRI Standard 550/590: While this standard is widely used by chiller 

manufacturers and energy codes, the waterside measuring tolerances are high at 

part-load conditions, particularly for low water temperature differences. For large 

utility plants, those inaccuracies are significant. However, it is still the most reliable 

method for evaluating chiller efficiency and fault data reporting since it is 

acknowledged by chiller manufacturers. 

• Chiller fault diagnostic database: Most chiller faults require vapor compression 

cycle (refrigerant loop) evaluation; however, this is not readily accessible to testing 

by operating teams. The relatively high cost of chillers, especially for larger units, 
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limits the possible tests for fault detection. While the most comprehensive fault 

testing for chillers was conducted 20 years ago, newer chillers have been improved 

greatly—30% according to energy code requirements. To reach such high 

efficiency, the chiller configuration and operation practices are also much more 

diverse than before. As a result, the gas-side fault data are not widely used today. 

• Chiller empirical models: The nature of inverse models is attractive whenever the 

operation data can be collected. Empirical models for chillers have been studied 

frequently. However, the utility plant often has multiple chillers running at 

different load ranges and weather conditions. This complexity makes empirical 

models unique to each machine even for identical chillers. In addition, the 

empirical model is of limited value for optimizing at the plant level when the 

interaction between chillers and plant loops is the main issue. 

• Machine learning (statistical-based) analysis: The availability of data sets has 

increased lately with EMSs deployed in most utility plants. The statistical methods, 

which focus on data analysis, often lack a connection between the data model and 

a physical model. In contract, inverse empirical models are often characterized 

based on well-established engineering fundamentals. The statistical-based methods 

sometimes give dramatically changed results when new batches of data are 

delivered. For utility application, where stable operation is top priority, it may not 

be a viable option when most research is based on very small amounts of data rather 

than a full year’s data.  

• While a lot of research focuses on fault detection and diagnostics on the refrigerant 

side using data from water-side sensors, a data validation scheme is often absent 
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from procedures because laboratory data or short-term data were used. Research 

investigating sensor faults often adds artificial bias to good data to test detection 

schemes. Much of the reported research used a limited data set (less than 100 points 

with 15-minute frequency spread over two weeks of operation), which covers a 

very limited portion of an annual operation cycle.  

 

Based on the issues mentioned, the priority in this study is to develop an “easy-to-

understand” and flexible method for evaluation of chiller plant operation. My approach 

focuses on data filtering and developing an anomaly detection algorithm using real 

operation data with energy balance–based validation. It needs to be “easy-to-understand” 

with a close relationship between model output, the daily data, and work practices so the 

operating team can take needed actions to achieve efficient operation. It also needs to 

recognize that field conditions often limit the use of models that require laboratory-quality 

data. It must be flexible and use plant data and rulesets with simple validation. Considering 

plant optimizing as a continuous process, data validation is the basis of applying and 

validating not only my own but also other optimizing methods.  
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III. METHODOLOGY 

The first section of this chapter describes the subject chiller plant, including all key 

equipment characteristics and plant control narratives. The chiller plant has been applying 

a plant optimization program, which has specialized control algorithms for all chilled and 

cooling water pumps and cooling tower fans using variable speed drives. The second section 

of the chapter explains the procedure for determining if a chiller is in operation. The third 

section identifies the procedure developed to examine a data set with possible faults and 

identify the reliable data by using energy balance. The fourth section shows the validation 

results of the data analysis process applying allowable tolerances from AHRI Standard 

550/590. The remaining sections (fifth to eighth) describe the results and visualization 

procedures. 

III.1 TEXAS A&M UNIVERSITY CHILLER PLANT 

III.1.1 District Plant Layout and Description 

The Texas A&M University campus has four main plants: Central Utility Plant (CUP), 

Satellite Utility Plant 1 (SUP1), Satellite Utility Plant 2 (SUP2), and Satellite Utility Plant 3 

(SUP3). The CUP and SUP3 serve the East (Main) Campus, while SUP1 and SUP2 provide 

for the West Campus. 

The tag, manufacturer, type, design capacity, and year of installation are shown for 

each chiller in Table III.1. Table III.2 shows their design characteristics. Overall, the four 
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plants have installed capacity of about 58,000 cooling tons, and all 27 are centrifugal 

chillers.  

Table III.1. Chiller list with data. 

Plant TAG Manufacturer Drive/Type 
Capacity 

(tons) 

Installed 

Year 

CUP 001 Carrier ELE/CNTRF 1500 1999 

CUP 002 Carrier ELE/CNTRF 1500 1999 

CUP 003 York ELE/CNTRF 2500 2008 

CUP 004 York ELE/CNTRF 2500 2008 

CUP 005 York ELE/CNTRF 2500 2008 

CUP 006 York ELE/CNTRF 2500 2008 

CUP 007 York ELE/CNTRF 3350 2015 

CUP 008   STM/CNTRF 3350   

CUP 009   STM/CNTRF 3350   

CUP 010 York ELE/CNTRF 3150 2015 

SUP3 301 York ELE/CNTRF 2500 2015 

SUP3 302 York ELE/CNTRF 2500 2015 

SUP3 303 Trane ELE/CNTRF 1100 1989 

SUP3 304 Trane ELE/CNTRF 1400 2004 

SUP1 101 Trane ELE/CNTRF 1000 2000 

SUP1 102 Trane ELE/CNTRF 1000 2000 

SUP1 103 York ELE/CNTRF 2500   

SUP1 104 Trane ELE/CNTRF 2500 2010 

SUP1 105 Trane ELE/CNTRF 2500 2010 

SUP1 106 Trane ELE/CNTRF 2500 2010 

SUP2 201 Trane ELE/CNTRF 1334 1984 

SUP2 202 Trane ELE/CNTRF 1500 2009 

SUP2 203 Trane ELE/CNTRF 1334 1984 

SUP2 204 York ELE/CNTRF 2250 2007 

SUP2 205 York ELE/CNTRF 2250 2007 

SUP2 206 York ELE/CNTRF 2500 2015 

SUP2 207 York ELE/CNTRF 1178 2015 
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Table III.2. Chiller design performance characteristics. 

Plant TAG 

Capacity 

(tons) 

Published 

Efficiency 

Design Water 

Return 

Conditions 

@ Condenser, 

Evaporator NPLV VSD 

CUP 001 1500 0.606 @85°F,42°F  No 

CUP 002 1500 0.606 @85°F,42°F  No 

CUP 003 2500 0.615 @85°F,42°F 0.384 Yes 

CUP 004 2500 0.615 @85°F,42°F 0.384 Yes 

CUP 005 2500 0.613 @85°F,42°F 0.512 No 

CUP 006 2500 0.613 @85°F,42°F 0.512 No 

CUP 007 3350 0.613 @87°F,42°F 0.404 Yes 

CUP 008 3350    No 

CUP 009 3350    No 

CUP 010 3150 0.595 @87°F,42°F 0.354 Yes 

SUP3 301 2500 0.611 @87.6°F,42°F 0.37 No 

SUP3 302 2500 0.611 @87.6°F,42°F 0.37 No 

SUP3 303 1100 0.615 @85°F,42°F  Yes 

SUP3 304 1400 0.599 @85°F,42°F  No 

SUP1 101 1000 0.759/0.598 @87°F,42°F 0.484 No 

SUP1 102 1000 0.759/0.598 @87°F,42°F 0.484 No 

SUP1 103 2500 0.61 @85.5°F,42°F 0.381 Yes 

SUP1 104 2500 0.582 @87°F,42°F 0.477 No 

SUP1 105 2500 0.582 @87°F,42°F 0.477 No 

SUP1 106 2500 0.582 @87°F,42°F 0.477 No 

SUP2 201 1334 0.603 @86°F,42°F  No 

SUP2 202 1500 0.588   Yes 

SUP2 203 1334 0.603 @86°F,42°F  No 

SUP2 204 2250 0.618 @85°F,42°F  Yes 

SUP2 205 2250 0.618 @85°F,42°F  Yes 

SUP2 206 2500 0.604 @85°F,42°F 0.379 No 

SUP2 207 1178 1.538 @135°F,42°F - No 

 

Some special chillers are excluded from this review due to their very different 

operational characteristics: chillers 104, 105, and 106 are duplex refrigerant cycle chillers; 

chillers 008 and 009 use steam driven compressors; and chiller 207 is a heat recovery chiller.  
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All chiller plants have a primary-buildings’ pump distribution scheme for the chilled 

water side and primary-only for the cooling water side. The pumps are all headered, except 

the primary cooling water pumps of chillers 101, 102, and 103, which are each dedicated to 

their own chiller.  

III.1.2 Plant Control System 

The plant control system automatically controls key chiller and distribution plant setpoints 

as follows: 

• Chiller:  

o Chilled water flow rate setpoint by using a valve on each chilled water line 

and a variable speed drive (VSD) on a headered primary chilled water pump. 

o Chilled water temperature setpoint using chiller manufacturer’s control 

panel. 

o Chiller lift as the difference between condenser saturation and evaporator 

saturation temperatures or, where refrigerant temperatures are not available 

between evaporator and condenser leaving water temperatures, it is 

configurable using the condenser water flow rate setpoint. 

o Condenser water flow rate setpoint using a valve on each cooling water line 

and a VSD on the headered primary cooling water pump. 

o Chilled/condenser water flow rates, chilled water setpoints, and chiller lifts 

within individually assigned operation ranges with minimum and maximum 

values for each chiller. The ranges are based on the chiller datasheet and 

manual for each chiller. 
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A chiller group is considered staged on if its electrical loading ratio value is bigger 

than 0.95 in 5 consecutive minutes and the plant output ratio is higher than 0.95 

for 10 consecutive minutes. It is considered staged off if measured plant load is 

less than the staged down capacity (after shutdown on priority chiller) and loop 

demand is below setpoint. There are several additional limits that ensure the chiller 

plant is stable during the chiller staging period. 

• Pump and cooling tower systems: 

o There are two pump types in each chiller plant:  

▪ Primary pumps serve the evaporator (chilled) water loop of chillers.  

▪ Primary cooling water pumps circulate condenser water to cooling 

towers. 

o Two flow rate manipulation methods have been applied:  

▪ Constant speed pumps use valves  

▪ Variable speed pumps use pump speed 

o Each pump has its own initial control setpoint with three scenarios: START, 

STOP, and FAST START (when rapid response is desired). The control 

setpoints are the valve open ratio for valves or pump speed ratio for VSDs. 

o Each cooling tower has its own condenser setpoint temperature and fan speed 

setpoint range.  

• Building (loop) demand feedback: 

o Building demand feedback is the control strategy that uses chilled water 

consumption feedback from key buildings to optimize pump pressure while 
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still delivering enough chilled water to meet loads. Each building has its own 

pump to meet chilled water demand. 

o Building demand feedback uses the following inputs: 

▪ Building pumps control output 

▪ Differential pressure factor, which compensates when building 

differential pressure is below setpoint 

▪ Size factor, which gives correct coefficient for feedback based on 

building size 

▪ Other critical factors, such as the importance of a particular building 

or function 

• Optimizing strategies:  

o Chilled water (temperature) reset: The chilled water temperature setpoint of 

a chiller is decreased if the chilled water flow rate is not at minimum value 

and chiller lift is less than its maximum limit. Otherwise, the chilled water 

temperature setpoint is increased. 

o Lift setpoint reset: The chiller lift is the difference between refrigerant 

evaporating and condensing temperatures. In order to keep running, a chiller 

should maintain a minimum lift setpoint, although increasing the lift makes a 

chiller operate less efficiently. The chiller lift setpoint is maintained by 

manipulating the condenser water flow rate with a pump and the return 

condenser temperature by cooling tower or bypass valve. The lift setpoint 

could be lowered by increasing the condenser water flow rate or lowering the 

condenser return temperature, e.g., cooling tower setpoint. When the chiller 
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lift setpoint needs to be increased, the condenser water flow rate is decreased. 

Once the condenser flow rate reaches its minimum value, the cooling tower 

setpoint should be adjusted to maintain the chiller lift setpoint.  

o Condenser temperature setpoint reset: The condenser water temperature 

setpoint is permitted to increase in two situations with consideration of 

current outside wet bulb temperature: 

▪ If condenser water temperature setpoint is not at maximum value, and 

fan speed setpoint is above minimum value 

▪ If any chiller on the same header reaches minimum condenser water 

flow rate setpoint  

The condenser water temperature setpoint is decreased if it is not at minimum 

and fan speed is below its maximum value. 

o Chiller efficiency factor: To optimize the runtime of efficient chillers while 

keeping rotation of the chillers in the same plant, efficiency factors would be 

applied individually to every chiller in number format with a maximum value 

of 2.0. If a chiller has efficiency factor 2.0, it would have number running 

time counted as 2 hours for every online hour, e.g., the annual operation time 

of the least efficient chiller (highest efficiency factor −2.0) would be half of 

the chiller with standard efficiency factor (1.0). 
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III.2 PROCEDURE TO PRESCREEN DATA FROM CHILLER PLANT SENSORS 

AND METERS TO IDENTIFY OBVIOUS PROBLEMS WITH SPECIFIC 

SENSORS/METERS 

Chiller meter readings are recorded continuously, but data are evaluated only when the 

chiller is operating, since the chiller uses the highest percentage of chiller plant energy. 

While the multiple-chiller plant rarely turns on all chillers at the same time, each chiller 

should be reviewed individually. 

III.2.1 Current Practice  

The Utilities & Energy Services Department (UES) at Texas A&M University is the current 

operator of all energy facilities on the Texas A&M campus in College Station, Texas, which 

includes all district plants. The Analytical Services of UES, which is responsible for chiller 

plant performance monitoring and evaluation, is using an in-house template in spreadsheet 

format to evaluate all chiller performance in weekly, monthly, and annual reports, as shown 

in Table III.3. The number of monitored meters is very high, as each chiller is monitored 

by seven meters, as shown in Table III.4. Due to data acquisition system bandwidth 

capability that limits the amount of exported data and the number of concurrent connections, 

the data collected from the chillers is average hourly data, which provides inaccurate chiller 

performance indicators (kW/ton) during periods when one or more chillers are staged on 

and off. A chiller with many on/off stagings over the duration of a data set would have a 

very high (poor) performance indicator. In Table III.3, the average kW/ton of chillers 101 

and 104 were very high due to low run-time hours and a high number of startup/shutdown 

times. Chiller 101 had run for only 19 hours in 3 shifts with an average efficiency at 0.72 
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kW/ton because kW/ton values during start/stop hours are much higher than normal values, 

e.g., more than 1.0 versus 0.5 kW/ton. Chiller 104 had run 2 hours, as it had started then 

immediately stopped with an average of 1.52 kW/ton. Figure III.1 shows the plots of chiller 

cooling production and efficiencies in SUP1 during the same period as the inaccurate chiller 

performance report, which is well described in Table III.3. 

Table III.3. Performance report (March 27–April 2, 2018). 

No. Plant Equipment 

Total 

Production 
Average 

Run 

Hour 
Efficiency 

Tons Tons/hr % kW/ton 

1 SUP1 CH101 15,342 807 11% 0.72 

2 SUP1 CH102 22,429 748 18% 0.47 

3 SUP1 CH103 357,164 2,126 100% 0.48 

4 SUP1 CH104 770 385 1% 1.52 

5 SUP1 CH105 0 0 0% 0.00 

6 SUP1 CH106 146,669 1,982 44% 0.62 

Total 542,373 1,990  0.52 

 

Table III.4. Standard chiller meters. 

Description Symbol Unit Description Symbol Unit 

Chilled Water Flow Rate Fchw gpm 
Cooling Water Flow 

Rate 
Fcw gpm 

Chilled Water Supply 

Temperature 
Toutchw °F 

Cooling Water Supply 

Temperature  
Toutchw °F 

Chilled Water Return 

Temperature 
Tinchw °F 

Cooling Water Return 

Temperature 
Tincw °F 

Electricity Consumption Pelec kWh 
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Figure III.1. Chiller performance plots. 



 

31 

 

III.2.2 New Procedure for Chiller Production and Performance Reports  

While the annual report of hourly average and total cooling production, and performance 

are insignificantly affected by the staging times, chiller characteristics data based on hourly 

values would have a lot of noise with the staging times included. In order to remove the 

unreasonable performance data at staging times, a new procedure for filtering out all staging 

hours of chillers is given in this section. The chart in Figure III.2 summarizes the workflow 

and steps from raw data to output chart. The process includes the following steps: 

• Determine chiller operation shifts (continuous operation) and staging on/off hours 

• Execute fault detection on data 

• Use filtered data (in operation) as input for the following processes: 

o Chiller performance indicators 

o Energy balance validation 

o Chiller data histogram 

• Use data analysis algorithms to create the following plots: 

o Chiller operation dashboard 

o Chiller operation plot 

o Chiller characterization map 
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Figure III.2. Process flowchart. 
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III.3 DETERMINE CHILLER OPERATION SHIFTS (CONTINUOUS 

OPERATION) AND STAGING ON/OFF HOURS  

On Lower Limit is the minimum value of a meter whose chiller is in operation. To ensure 

one chiller is in operation requires the following confirmations:  

• Condition 1: Chiller evaporator flow rate is higher than On Lower Limit  

• Condition 2: Chiller condenser flow rate is higher than On Lower Limit  

• Condition 3: Chiller power meter is higher than On Lower Limit  

 

The initial On Lower Limit for each chiller has been selected based on the design chiller 

cooling capacity as shown in Table III.5. For chillers with design evaporator and condenser 

water flow rates greater than 3500 gpm, the On Lower Limit is 300 gpm, and the remaining 

chillers, which have design evaporator and condenser water flow rates less than 3500 gpm, 

have limits of 200 gpm. The On Lower Limit for chillers with design electrical consumption 

values less than 1000 kW is 80 kW and 160 kW if the design electrical consumption is 

greater than 1000 kW. The initial On Lower Limits for flow and electrical consumption are 

based on typical values of those quantities during off times with consideration for averaged 

values during chiller start and stop hours. If a chiller had run 10 minutes in the monitored 

hours at the typical start-up demand limit (40%) and 20°F temperature differential lift, the 

chiller would have instantaneous power at 60% of design power, which is equivalent to 

about 10% (0.6 × 0.16) of the design value for average hourly electrical consumption. In 

order to simplify the procedure, each meter type has only one boundary grouping value. 

After initial filtering, the initial On Lower Limit values are reviewed by comparing with the 

identified fault hours. 
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Table III.5. Initial chiller on lower limits. 

Chiller 

Design 

Cooling 

Capacity, 

 Tons 

Evaporator 

Water Flow Rate, 

gpm 

Condenser Water 

Flow Rate, gpm 

Electrical 

Consumption, kW 

Design 

On 

Lower 

Limit 

Design 

On 

Lower 

Limit 

Design 

On 

Lower 

Limit 

001 1500 2996 200 4500 300 909 80 

002 1500 2996 200 4500 300 909 80 

003 2500 6000 300 6675 300 1538 160 

004 2500 6000 300 6675 300 1538 160 

005 2500 6000 300 6675 300 1532 160 

006 2500 6000 300 6675 300 1532 160 

007 3350 6700 300 10050 300 2053 160 

010 3150 6278 300 9770 300 1874 160 

101 1000 2000 200 3000 200 598 80 

102 1000 2000 200 3000 200 598 80 

103 2500 5000 300 7500 300 1525 160 

201 1334 5000 300 7500 300 1527 160 

202 1500 3000 200 4500 300 883 80 

203 1334 2286 200 4000 300 804 80 

204 2250 4500 300 6000 300 1391 160 

205 2250 4500 300 6000 300 1391 160 

206 2500 5000 300 7500 300 1510 160 

301 2500 5000 300 7500 300 1258 160 

302 2500 5000 300 7500 300 1258 160 

303 1100 2640 200 3315 200 676 80 

304 1400 3344 200 4197 300 839 80 

 

Each chiller has its operating data set established by finding all points of its data set which 

satisfy all three On conditions. Table III.6 shows a sample of operation data from 

chiller 103. 
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Table III.6. Sample of chiller 103 operation data. 

Time 3/27/2018 0:00 3/27/2018 1:00 3/27/2018 2:00 

Fchw CH103_1 4759.68 4972.12 4737.06 

Toutchw CH103_2 43.03 42.98 42.96 

Tinchw CH103_3 54.26 53.94 53.95 

Pelec CH103_5 1155.29 1187.71 1113.55 

Fcw CH103_6 6941.29 6937.82 6927.86 

Toutcw CH103_7 87.37 87.92 87.36 

Tincw CH103_8 78.61 78.96 78.79 

 

Based on three conditions (1, 2, and 3), a procedure is developed to find meter faults. If all 

three conditions are satisfied, the chiller is obviously on. If none of the three conditions are 

satisfied, the chiller is off. If one condition is satisfied and two are not, or two conditions 

are satisfied and one is not, then there may be a fault. The procedure is logically processed 

step-by-step as outlined below: 

• All_On – all 3 conditions are satisfied. Value: True or False 

• All_Off – all 3 conditions are not satisfied. Value: True or False  

• Possible_Fault – Both All_On and All_Off are False. Value: True or False 

• Possible_On – Possible_Fault or All_On are False. Value: True or False 

 

The purpose of those validations is finding if any meter might have a problem by filtering 

out where the Possible_Fault condition is True.  

Table III.7 shows a sample of data from chiller 004 where a possible fault was detected 

during 1/7/2017 1:00 – 1/7/2017 7:00 when the chiller evaporator flow rate is higher than 

the On Lower Limit while both electrical consumption and condenser flow rate are lower 
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than their respective On Lower Limits. Table III.7 shows chiller meter values and in 

operation confirmations in: 

• Column CH004_1 Test shows condition (1): Evaporator water flow rate values 

(column CH004_1 – Chilled Water Flow Rate, gpm), which are more than On 

Lower Limit (300 gpm)  

• Column CH004_6 Test shows condition (2): Condenser water flow rate values 

(column CH004_6 – Cooling Water Flow Rate, gpm), which are more than On 

Lower Limit (300 gpm) 

• Column CH004_5 Test shows condition (3): Electrical consumption values 

(column CH004_5 – Electrical Consumption, kWh), which are more than On 

Lower Limit (300 gpm) 

• Column CH004_All_On checks if all three On conditions are satisfied – all three 

conditions are True while Column CH004_All_Off has True values while all are 

False  

• Column CH004_Possible_Fault values are True when both columns 

CH004_All_On and CH004_All_Off have False values 

• Column CH004_Possible_On values are True when either columns 

CH004_All_On or column CH004_Possible_Fault have True values 

 

The chiller operating parameters during this possible fault time are shown in Figure III.3. 

Figure III.3 charts all seven physical meters listed in Table III.6. The red lines are flow rate 

type where the continuous red line is chilled water flow rate and the dashed red line is 

condenser flow rate. The lines with green circle markers are chilled water temperatures: 

supply temperature is represented by the filled circle, while the cross-circle is returned  



 

37 

 

 

 

 

Figure III.3. Sample of chiller meter timeseries.
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chilled water. Similarly, the diamond-shaped green lines illustrate the condenser water 

temperatures. The chiller electrical consumption is the blue line, while the violet line 

shows kW/ton. There are four axes that have color characterized by their units according 

to meter type. On the left boundary, the violet axis is the chiller efficiency value, while 

the red axis defines flow rate. On the right boundary, the blue axis shows electrical 

consumption values and the green axis characterizes temperature range. At the middle 

of the chart, two transparent color spans have been annotated: the pink span is start/stop 

time detected by the algorithm, while the violet shows the possible fault time detected. 

The yellow span on the right of the chart shows when all three On conditions were met. 

In addition, the blue span on top of the yellow span is the AHRI energy balance 

validation described in Section Four of this chapter. The chilled/cooling water flow rates 

and electricity consumption have transparent yellow spans when their values are above 

the On Lower Limits than their respective On Lower Limits. Table III.7 shows chiller 

meter values and in operation confirmations in: 

• Column CH004_1 Test shows condition (1): Evaporator water flow rate values 

(column CH004_1 – Chilled Water Flow Rate, gpm), which are more than On 

Lower Limit (300 gpm)  

• Column CH004_6 Test shows condition (2): Condenser water flow rate values 

(column CH004_6 – Cooling Water Flow Rate, gpm), which are more than On 

Lower Limit (300 gpm) 

• Column CH004_5 Test shows condition (3): Electrical consumption values 

(column CH004_5 – Electrical Consumption, kWh), which are more than On 

Lower Limit (300 gpm) 
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Table III.7. Sample of operation detection. 
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1/6/2017 22:00 246.54 FALSE 0 FALSE 107.48 FALSE TRUE FALSE FALSE FALSE FALSE 

1/6/2017 23:00 258.49 FALSE 0 FALSE 106.98 FALSE TRUE FALSE FALSE FALSE FALSE 

1/7/2017 0:00 269.96 FALSE 0 FALSE 102.42 FALSE TRUE FALSE FALSE FALSE FALSE 

1/7/2017 1:00 300.83 TRUE 0 FALSE 91.99 FALSE FALSE FALSE FALSE TRUE TRUE 

1/7/2017 2:00 315 TRUE 0 FALSE 90.64 FALSE FALSE FALSE FALSE TRUE TRUE 

1/7/2017 3:00 329.33 TRUE 0 FALSE 89.92 FALSE FALSE FALSE FALSE TRUE TRUE 

1/7/2017 4:00 327.92 TRUE 0 FALSE 90.69 FALSE FALSE FALSE FALSE TRUE TRUE 

1/7/2017 5:00 327.94 TRUE 0 FALSE 91.28 FALSE FALSE FALSE FALSE TRUE TRUE 

1/7/2017 6:00 329.36 TRUE 0 FALSE 91.56 FALSE FALSE FALSE FALSE TRUE TRUE 

1/7/2017 7:00 2,538.8 TRUE 88.74 FALSE 2,204.4 TRUE FALSE FALSE FALSE TRUE TRUE 

1/7/2017 8:00 7,201.4 TRUE 227.83 TRUE 6,492.9 TRUE FALSE TRUE TRUE FALSE TRUE 

1/7/2017 9:00 7,295.7 TRUE 227.12 TRUE 6,504.6 TRUE FALSE TRUE TRUE FALSE TRUE 

1/7/2017 10:00 7,074.0 TRUE 220.66 TRUE 6,071.5 TRUE FALSE TRUE TRUE FALSE TRUE 
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• Column CH004_All_On checks if all three On conditions are satisfied – all three 

conditions are True while Column CH004_All_Off has True values while all are 

False  

• Column CH004_Possible_Fault values are True when both columns 

CH004_All_On and CH004_All_Off have False values 

• Column CH004_Possible_On values are True when either columns 

CH004_All_On or column CH004_Possible_Fault have True values 

 

The chiller operating parameters during this possible fault time are shown in Figure III.3. 

Figure III.3 charts all seven physical meters listed in Table III.6. The red lines are flow rate 

type where the continuous red line is chilled water flow rate and the dashed red line is 

condenser flow rate. The lines with green circle markers are chilled water temperatures: 

supply temperature is represented by the filled circle, while the cross-circle is returned 

chilled water. Similarly, the diamond-shaped green lines illustrate the condenser water 

temperatures. The chiller electrical consumption is the blue line, while the violet line shows 

kW/ton. There are four axes that have color characterized by their units according to meter 

type. On the left boundary, the violet axis is the chiller efficiency value, while the red axis 

defines flow rate. On the right boundary, the blue axis shows electrical consumption values 

and the green axis characterizes temperature range. At the middle of the chart, two 

transparent color spans have been annotated: the pink span is start/stop time detected by the 

algorithm, while the violet shows the possible fault time detected. The yellow span on the 

right of the chart shows when all three On conditions were met. In addition, the blue span 

on top of the yellow span is the AHRI energy balance validation described in Section Three 
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of this chapter. The chilled/cooling water flow rates and electricity consumption have 

transparent yellow spans when their values are above the On Lower Limits. 

III.3.1 Fault Detection 

Based on the chiller meter trends, the alarm points have been reviewed to find causes. 

Observing trend data gives us some ideas about how the lower and upper limits worked. 

The algorithm can detect this typical issue with chiller operation: Evaporator or condenser 

water flow rates are still high when the chiller has been turned off.  

Whenever the evaporator or condenser flow rate remains high during chiller off time, 

energy is wasted for the pumping system and there is a cooling penalty due to mixing of 

return and supply chilled/cooling water. The cooling tower must work more than necessary 

when there is no heat rejection demand.  

The possible reasons for these issues are: 

• A leaking valve  

• Faulty control action (manual or automatic) 

• Faulty meter (physical sensor or acquisition system) 

 

Figure III.4 shows a case when chiller 001 had a high condenser flow rate while the chilled 

water flow was nearly zero at 12h on 2017-01-11. The condenser flow rate (4000 gpm) is 

higher than the normal operation flow rate (3000 gpm). This situation with high condenser 

flow continued for 2 hours, then returned to normal flow. 

Figure III.5 shows a case when the chilled water flow rate of chiller 001 unreasonably 

increased from zero to 3000 gpm without any other evidence of a running chiller at 7 am 

on 2017-09-26. Both condenser/cooling water flow rate and electrical consumption were 
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zero, while there was no difference between return and supply temperatures at the 

evaporator, i.e., chiller 001 must have been out of operation at that time. 

 

Figure III.4. Chiller 001 has problems with valve or cooling water flow meter. 

 

Figure III.5. Chiller 001 has high chilled water flow rate during off time. 
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To ensure all chiller operation hours were completely recorded and minimize the false 

alarms, the Possible_Fault alarms were reviewed to refine the On Lower Limit values for 

individual chillers.  

The tuning procedure for chiller 004 is described in the sections below. 

III.3.2 Possible Fault with Initial ‘On Lower Limit’  

Testing on the chiller 004 data set with the initial values for On Lower Limits gave 17 

alarms with many false alarms. False alarms are typically caused when the On Lower Limits 

are too low or too high. 

Case 1 – Chiller 004 at 2017-01-09 03:00 

In Figure III.6, the chilled water flow rate value (375) during off time is more than the 

default On Lower Limit of 300 gpm, so it alarmed about possible faulty operation of 

chiller 004 while the cooling water flow rate and electrical consumption were not in the 

operational ranges (slim instead of thickened lines).  

For chiller 004, the heat balance validation is good all year, so the chiller flow meter 

should not be the problem. Observing the histogram of all year chilled water flow rate 

during off time in Figure III.7, the normal value range is between 0 and 300 gpm. This case 

requires increasing the On Lower Limit so that false alarms will not be triggered any more. 

While flow meter acceptable tolerance is 5 percent of meter range (300 gpm) or 15 gpm, 

the On Lower Limit should be increased to 1.05 times the false-alarmed value.  

Table III.8 shows the values of On Lower Limit for three meters—chilled and 

condenser water flow rates, and electrical meters—with their values for “Alarmed Point 
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(Time)” at the alarm time, along with their On Lower Limits. The values in the “Down Row” 

and “Up Row” columns are the hours when the alarmed meter has the largest hourly percent 

decrease and percent increase (relative to the previous hour) in the nearest 24 or 48 hours 

(12 or 24 hours before and after), respectively. The 24- or 48-hour time period is selected 

depending on the on/off characteristics of a particular metered point. Similarly, the “Max” 

and “Min” columns show highest and lowest values in the 24 or 48 surrounding hours. All 

values in Table III.8 are based on the 48 surrounding hours, e.g., 24 hours before and 

24 hours after. 

 

Figure III.6. Chiller 004 with false alarm while chilled water flow rate is more than the 

default On Lower Limit value. 
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Figure III.7. Chiller 004 chilled water flow rate histogram. 

Table III.8. Chiller data analysis at alarm time 2017-01-09 3:00. 

Meter 

On 

Lower 

Limit 

Alarmed 

Point 

(Time) 

Down 

Row 

(Time) 

Up Row 

(Time) 

Max Min 
2017-01-

19 

03:00:00 

2017-01-

19 

09:00:00 

2017-01-

08 

15:00:00 

Chilled Water Flow 

Rate, gpm 
300.0 375.29 341.77 347.24 405.7 340.5 

Electrical 

Consumption, kWh 
160.0 0 0.00 0.00 0 0.00 

Cooling Water Flow 

Rate, gpm 
300.0 112.63 110.89 105.18 115.26 102.39 
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Case 2 – Chiller 004 at 2017-01-09 16:00 

Figure III.8 and Table III.9 show the alarm point when the condenser water flow rate value 

is 345.14 at 16:00 during the off time. The cooling water flow rate from 13:00 to 18:00 

2017-01-09 is shown thickened. This case also requires increasing the On Lower Limit of 

the condenser water flow rate so false alarms will not be triggered any more. 

 

Figure III.8. Chiller 004 with high cooling water flow rate during off time. 

Analogous to case 1, Figure III.9 shows a histogram of the condenser water flow rate 

for a time when the chiller was detected as offline. The typical high condenser flow rates 

during off time are in 300–350 gpm range. 
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Table III.9. Chiller data analysis at alarm time 2017-01-09 16:00:00. 

Meter 

On 

Lower 

Limit 

Alarmed 

Point 

(Time) 

Down 

Row 

(Time) 

Up Row 

(Time) 

Max Min 
2017-01-

19 

16:00:00 

2017-01-

20 

08:00:00 

2017-01-

19 

13:00:00 

Chilled Water Flow 

Rate, gpm 
300.0 62.4 61.02 49.19 65.05 49.19 

Electrical 

Consumption, kWh 
160.0 0 0.00 0.00 0 0.00 

Condenser Water 

Flow Rate, gpm 
300.0 345.14 265.56 170.24 345.14 103.19 
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Figure III.9. Condenser water flow rate histogram of chiller 004 during off times. 

Case 3 – On Lower Limit of electrical meter is too low 

Figure III.10 and Table III.10 describe a false alarm when chiller 004 was running with both 

evaporator and condenser water flow rates, along with high evaporator and condenser 

difference temperatures, but the On Lower Limit of the electrical consumption meter had 

classified the chiller as being in off status. Based on the histogram of electrical meters in 

Figure III.11, the typical range of values is less than 100 kWh, so the On Lower Limit of 

chiller 004’s electrical meter should be decreased accordingly. 
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Figure III.10. Chiller 004 false alarm and missed operation point. 

Table III.10. Chiller data analysis at 2017-03-03 1:00. 

Meter 

On 

Lower 

Limit 

Alarmed 

Point 

(Time) 

Down Row 

(Time) 

Up Row 

(Time) 
Max Min 

2017-03-03 

01:00:00 

2017-03-02 

04:00:00 

2017-03-02 

07:00:00 

Chilled Water 

Flow Rate, 

gpm 

300.0 4271.45 4,165.42 −1.22 7,115.40 −1.22 

Electrical 

Consumption, 

kWh 

160.0 150.77 173.13 0.06 680.58 0.06 

Cooling 

Water Flow 

Rate, gpm 

300.0 4,499.51 4,506.59 143.76 5,961.34 143.76 
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Figure III.11. Histogram of electrical meter for chiller 004. 

III.3.3 Refining Chiller ‘On Lower Limit’ 

Based on the three cases previously discussed, the On Lower Limits of chiller 004 have 

been refined. Table III.11 compares the initial and refined values. The refined values were 

increased or decreased to eliminate the unreasonable Possible Faults identified with the 

initial On Lower Limit values. 

Note: The number of 

meter values at 0 kWh 

is 4000.  
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Table III.11. Optimizing chiller 004 on lower limit.  

Meters Unit 
Initial 

On Lower Limit 

Refined 

On Lower Limit 

Chilled Water Flow Rate gpm 300 420 

Cooling Water Flow Rate gpm 160 120 

Electricity Consumption kWh 300 520 

Alarm Points  times 18 6 

  

III.4 CHILLER PERFORMANCE RATING  

All chillers at the Texas A&M UES plants are chilled water and heat pump water-heating 

packages using the vapor compression cycle. The current AHRI Standard 550/590 

establishes the definitions, test requirements, rating requirements, and minimum data 

requirements for Published Ratings, marking and nameplate data, conversions and 

calculations, nomenclature, and conformance conditions. AHRI Standard 550/590 

determines type and energy efficiency ratings of water chillers and heat pumps, and 

provides the mandatory requirements in the building energy code (ASHRAE S90.1) for 

installation in the United States, as seen in Table 6.8.1-3 of ASHRAE Standard 90.1. It also 

forms the mandatory (minimum) published requirements for datasheet and test report 

content that should be provided by chiller manufacturers and approved testing facilities for 

commercial purposes. The rating procedures described in AHRI Standard 550/590 are 

recognized by governmental agencies.  
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III.4.1 AHRI Standard 550/590 Performance Rating Allowance Limitations  

To evaluate whether chiller efficiency test results match the submitted (published) data 

provided by manufacturers, AHRI Standard 550/590 determines test/fail limitation 

boundaries with four allowable tolerance limits:  

• Tol1 – performance tolerance limit 

• Tol2 – Integrated Part Load Value (IPLV) and Non-standard Part Load Value 

(NPLV) performance tolerance limit 

• Tol3 – Tolerance on water side pressure limit 

• Tol4 – Energy balance validity tolerance limit 

 

These limits are intended to verify and confirm chiller performance ratings and take 

account of: 

• Uncertainty of measurement due to instrumentation accuracy, installation 

conditions, and facility stabilities. 

• Uncertainty of test facilities when the same unit is tested in multiple facilities with 

different setup variations, which may not give the same performance. 

• Uncertainty of manufacturing because of production tolerances, which impact 

performance unit by unit. 

• Uncertainty of performance prediction models when the manufacturer uses models 

to predict performance as a result of option complexity.  

 

The application of tolerance limit Tol1 is described in Table III.12. 
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Table III.12. AHRI Standard 550/590 allowable tolerance limit application. 

Value Type Chiller Type Limits 

Capacity 

Cooling or heating 

capacity for units with 

continuous unloading 

Full load minimum:100% – Tol1 

Full load maximum:100% + Tol1 

Cooling or heating 

capacity for units with 

discrete capacity steps 

Full load minimum: 100% – Tol1 

Full load maximum: No limit  

(Full load shall be at the 

maximum stage of capacity) 

Efficiency 

EER 
Minimum of:  

(rated EER) / (100% + Tol1) 

kW/tonR 
Maximum of:  

(100% + Tol1) · (rated kW/tonR) 

COP 
Minimum of:  

(rated COP) / (100% + Tol1) 

IPLV.IP  

NPLV.IP  

EER 

Minimum of:  

(rated EER) / (100% + Tol2) 

IPLV.IP  

NPLV.IP 

kW/tonR 

Maximum of:  

(100% + Tol2) · (rated kW/tonR) 

IPLV.IP  

NPLV.IP  

COPR 

Minimum of:  

(rated COPR) / (100% + Tol2) 

 

Based on the available meter data set, a performance tolerance limit (Tol1) and energy 

balance validity tolerance limit (Tol4) are chosen to validate the chiller meter set data using 

heat balance principles. 

Performance tolerance limit of chiller (Tol1)  

 In AHRI Standard 550/590, the tolerance limits for net capacity and for full and part-load 

efficiency have been established and are given in Table 11 of the standard. It accounts for 

the calculated cooling variation based on accuracy of instrumental devices. Test validation 
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tolerance limits are given in ARHI 550/590 Table 13. Figure III.12 shows the curves of 𝑇𝑜𝑙1 

values, which depend on the part-load ratio and the temperature difference between supply 

and return water.  

𝑇𝑜𝑙1 = 0.105 − (0.07 ∗ %𝐿𝑜𝑎𝑑) + (
0.15

∆𝑇𝐹𝐿 ∗ %𝐿𝑜𝑎𝑑
) 

(100% − 𝑇𝑜𝑙1) ∗ 𝑃𝑐ℎ𝑤 < 𝑃𝑐ℎ𝑤𝑖𝑛 < (100% + 𝑇𝑜𝑙1) ∗ 𝑃𝑐ℎ𝑤     

(100% − 𝑇𝑜𝑙1) ∗ 𝑃𝑐𝑤  < 𝑃𝑐𝑤𝑖𝑛 < (100% + 𝑇𝑜𝑙1)  ∗ 𝑃𝑐𝑤  

Where, 𝑇𝑜𝑙1 is the allowable tolerance of full and part-load point limits in decimal form; 

%𝐿𝑜𝑎𝑑 is the part-load ratio in decimal form; ∆𝑇𝐹𝐿 is the difference between supply and 

return water temperatures at full load, °F; 𝑃𝑐ℎ𝑤𝑖𝑛, 𝑃𝑐𝑤𝑖𝑛 is the calculated chilled and cooling 

water production, tons; and 𝑃𝑐ℎ𝑤, 𝑃𝑐𝑤 is the measured chilled and cooling water production, 

tons. 
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Figure III.12. Allowable tolerance of full and part-load Tol1. 

Energy balance validity tolerance limit (Tol4)  

According to AHRI Standard 550/590, the validity tolerance’s formula based on energy 

balance is: 

𝑇𝑜𝑙4 = 0.074 − (0.049 ∗ %𝐿𝑜𝑎𝑑) + (
0.105

∆𝑇𝐹𝐿 ∗ %𝐿𝑜𝑎𝑑
) 

|𝐸𝑏𝑎𝑙|  ≤ 𝑇𝑜𝑙4 ∗ 100% 

𝐸𝑏𝑎𝑙 = 2 
𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡

𝐸𝑖𝑛 + 𝐸𝑜𝑢𝑡
∗ 100% 

Where, 𝑇𝑜𝑙4  is energy balance validity tolerance limit in decimal form; and 𝐸𝑏𝑎𝑙 is energy 

balance error, %. 

Energy flows in and out of the system are calculated by the following formulas: 

𝑇𝑜𝑙1 = 0.105 − (0.07 ∗ %𝐿𝑜𝑎𝑑) + (
0.15

∆𝑇𝐹𝐿 ∗ %𝐿𝑜𝑎𝑑
) 
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𝐸𝑖𝑛 = ∑ 𝐸𝑖𝑛𝑖

𝑖

= 𝑄′𝑒𝑣 + 𝑊𝑟𝑒𝑓𝑟𝑖𝑔 ∗ 𝐾 

𝐸𝑜𝑢𝑡 = ∑ 𝐸𝑜𝑢𝑡𝑖

𝑖

= 𝑄′𝑐𝑑 + 𝑄′ℎ𝑟𝑐 

Where, 𝐸𝑖𝑛, 𝐸𝑜𝑢𝑡 is energy input and output, tons; 𝑊𝑟𝑒𝑓𝑟𝑖𝑔 is power, total of compressor 

work and auxiliary devices transferring energy into the refrigerant, kW; and 𝐾 is 

[3.51685 – conversion rate from kW to tons]. 

The gross cooling, heating, and heat reclaim capacities have been measured as: 

𝑄𝑒𝑣
′ = 𝑚𝑤. [𝑐𝑝. (𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) +

 𝐾9. ∆𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝜌
]  

𝑄𝑐𝑑
′ = 𝑚𝑤. [𝑐𝑝. (𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) +

 𝐾9. ∆𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝜌
] 

𝑄ℎ𝑟𝑐
′ = 𝑚𝑤. [𝑐𝑝. (𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) +

 𝐾9. ∆𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝜌
] 

Where, 𝑄′𝑒𝑣  ,  𝑄′𝑐𝑑 , and  𝑄′ℎ𝑟𝑐  are, respectively, the gross capacity evaporator 

(cooling), condenser (heating), and heat recovery (heat reclaim), tons; 
 𝐾9.∆𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝜌
  is the 

adjustments of pressure drop with ∆𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = Δ𝑝𝑡𝑒𝑠𝑡 − Δ𝑝𝑎𝑑𝑗, where ∆𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the 

corrected pressure, ft H2O; ∆𝑝𝑡𝑒𝑠𝑡  is the reading pressure, ft H2O; ∆𝑝𝑎𝑑𝑗  is the piping 

pressure, ft H2O; and 𝜌 is the water density, 
𝑙𝑏

𝑓𝑡3 ; and 𝐾9 is the conversion factor from 

𝑙𝑏𝑓

𝑖𝑛2  .
𝑓𝑡3

𝑙𝑏𝑚
 to 

𝐵𝑡𝑢

𝑙𝑏𝑚
 where 𝑙𝑏𝑓 and 𝑙𝑏𝑚 are pound-force and pound-mass.  
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To simplify data for monitoring purposes, the capacity adjustment for pressure drop, 

which is often minor and could fluctuate less than 0.4% of full-load capacity (1 ton 

difference at 430 tons full load) is neglected, so the gross capacities 𝑄′𝑒𝑣 , 𝑄′𝑐𝑑 , 𝑄′ℎ𝑟𝑐 

might become net capacities Pchw, Pcw, and Pelec. Most of the chillers have semi-hermetic 

compressors so 𝑊𝑟𝑒𝑓𝑟𝑖𝑔 becomes Pelec, so we get the following adjusted formulas: 

𝐸𝑖𝑛 = ∑ 𝐸𝑖𝑛𝑖

𝑖

= 𝑃𝑐ℎ𝑤 +
𝑃𝑒𝑙𝑒𝑐

𝐾
 

𝐸𝑜𝑢𝑡 = ∑ 𝐸𝑜𝑢𝑡𝑖

𝑖

= 𝑄𝑐𝑑 + 𝑄ℎ𝑟𝑐 

Figure III.13 shows the curves of 𝑇𝑜𝑙4 values, which depend on the part-load ratio and the 

water temperature difference between supply and return.  
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Figure III.13. Energy balance allowable tolerance Tol4. 

III.4.2 Using AHRI Standard 550/590 Allowable Tolerances to Evaluate the 

Reliability of Chiller Meter Datasets  

The AHRI Standard 550/590 test procedure applied validation tolerance limits to chiller test 

results based on the chiller manufacturer’s datasheet. In this thesis, those limits are the 

indicators for the chiller meter set validation. Table III.13 shows the differences between 

the AHRI Standard 550/590 performance rating and this thesis’ meter validation.  

𝑇𝑜𝑙4 = 0.074 − (0.049 ∗ %𝐿𝑜𝑎𝑑) + (
0.105

∆𝑇𝐹𝐿 ∗ %𝐿𝑜𝑎𝑑
) 
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Table III.13. Procedures with allowable tolerances. 

Procedures with Allowable Tolerances 

Tolerance 

Limits 
Formula 

Tol1 

For rating tests 

(100% − 𝑇𝑜𝑙1) ∗ 𝑃𝑐ℎ𝑤𝑑𝑎𝑡𝑎𝑠𝑒𝑡 < 𝑃𝑐ℎ𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

𝑃𝑐ℎ𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < (100% + 𝑇𝑜𝑙1) ∗ 𝑃𝑐ℎ𝑤𝑑𝑎𝑡𝑎𝑠ℎ𝑒𝑒𝑡 

(100% − 𝑇𝑜𝑙1) ∗ 𝑃𝑐𝑤𝑑𝑎𝑡𝑎𝑠𝑒𝑡 < 𝑃𝑐𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

𝑃𝑐𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < (100% + 𝑇𝑜𝑙1) ∗ 𝑃𝑐𝑤𝑑𝑎𝑡𝑎𝑠ℎ𝑒𝑒𝑡 

Tol1 

For meter 

validation 

(100% − 𝑇𝑜𝑙1) ∗ 𝑃𝑐ℎ < 𝑃𝑐ℎ 

𝑃𝑐ℎ𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 < (100% + 𝑇𝑜𝑙1) ∗ 𝑃𝑐ℎ𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

(100% − 𝑇𝑜𝑙1) ∗ 𝑃𝑐 < 𝑃𝑐; 

𝑃𝑐𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 < (100% + 𝑇𝑜𝑙1) ∗ 𝑃𝑐𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

𝑃𝑐ℎ𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 =  𝑃𝑐𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −
𝑃𝑒𝑙𝑒𝑐

𝐾
 

𝑃𝑐𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 =  𝑃𝑐ℎ𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 +
𝑃𝑒𝑙𝑒𝑐

𝐾
 

Tol4 

𝑇𝑜𝑙4 = 0.074 − (0.049 ∗ %𝐿𝑜𝑎𝑑) + (
0.105

∆𝑇𝐹𝐿 ∗ %𝐿𝑜𝑎𝑑
) 

|𝐸𝑏𝑎𝑙|  ≤ 𝑇𝑜𝑙4 ∗ 100% 

𝐸𝑏𝑎𝑙 = 2 
𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡

𝐸𝑖𝑛 + 𝐸𝑜𝑢𝑡
∗ 100% 

 

For the equations in the table:  

𝑇𝑜𝑙1 – Allowable tolerance of full- and part-load points limit in decimal form 

%𝐿𝑜𝑎𝑑 – Part-load ratio of chiller design capacity in decimal form 

∆𝑇𝐹𝐿  – Difference between supply and return water temperatures at full load, °F 

𝑃𝑐ℎ𝑤 =  𝑚𝑐ℎ𝑤 ∗
𝑇𝑐ℎ𝑤𝑖𝑛 − 𝑇𝑐ℎ𝑤𝑜𝑢𝑡

24
; 𝑃𝑐𝑤 =  𝑚𝑐𝑤 ∗

𝑇𝑐𝑤𝑜𝑢𝑡 − 𝑇𝑐𝑤𝑖𝑛

24
 

Where,   

𝑃𝑐ℎ𝑤  – Chilled water production, tons 

𝑃𝑐𝑤  – Cooling water production, tons 

𝑚𝑐ℎ𝑤 – Chilled water flow rate, gpm 

𝑚𝑐𝑤 – Cooling water flow rate, gpm 
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𝑇𝑐ℎ𝑤𝑖𝑛 , 𝑇𝑐ℎ𝑤𝑜𝑢𝑡  – Chilled water return and supply temperatures, °F 

𝑇𝑐𝑤𝑖𝑛 , 𝑇𝑐𝑤𝑜𝑢𝑡  – Condenser return and supply temperatures, °F 

24 – Conversion rate from tons-hours to gpm-°F 

 

𝑃𝑒𝑙𝑒𝑐 – Electrical consumption, KWh with  

𝐾 = 3.51685 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 𝑡𝑜𝑛𝑠 − ℎ𝑜𝑢𝑟𝑠 𝑡𝑜 𝑘𝑊ℎ  

𝑃𝑐ℎ𝑤𝑑𝑎𝑡𝑎𝑠ℎ𝑒𝑒𝑡  – Chilled water production from manufacturing datasheet data, tons 

𝑃𝑐ℎ𝑤𝑑𝑎𝑡𝑎𝑠ℎ𝑒𝑒𝑡  – Condenser water production from manufacturing datasheet data, tons 

𝑃𝑐ℎ𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  – Chilled water production from measurement data, tons 

𝑃𝑐ℎ𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  – Condenser water production from measurement data, tons 

𝑃𝑐ℎ𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡  – Chilled water production derived from measured cooling water productions and 
electrical consumption, tons 

𝑃𝑐𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡  – Condenser water production derived from measured chilled water productions and 
electrical consumption, tons 

𝐸𝑏𝑎𝑙  – Energy balance  

𝐸𝑖𝑛 , 𝐸𝑜𝑢𝑡  – Energy input and output, tons 

𝑇𝑜𝑙4 – Energy balance validity tolerance limit in decimal form 

%𝐿𝑜𝑎𝑑 − Part-load ratio of chiller design capacity in decimal form 

∆𝑇𝐹𝐿  – Different between supply and return water temperatures at full load, °F 

 

While rating tests use tolerance limits for validating real measured values with the 

manufacturer’s datasheet, the meter validations have those limits to validate real meter 

values with measured chiller cooling and heat recovery production using energy balance, 

which is calculated directly and indirectly based on the chiller meter data set. 

III.4.3 Validation Results 

The chiller validation plots are categorized into:  

• By Validation Result 

o Good: Most measured tolerance values less than allowed  
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o Bad: Measured calculated limit more than allowed value  

o Mixed: Have both  

• By Time: 

o Winter: From 2017-01-01 00:00:00 to 2017-03-12 02:00:00 and from 

2017-11-05 03:00:00 to 2017-12-31 23:00:00 

o Summer: From 2017-03-12 03:00:00 to 2017-11-05 02:00:00 

 

The validation result is a group consisting of four scatter plots. Figure III.14 is the 

heat balance tolerance validation (Tol4) for cooling (evaporator) production and 

Figure III.15 shows heating (condenser) production at the top right. Similarly, applying the 

allowable tolerance limit (Tol1), the bottom left plot is the cooling production for chiller 

cooling production and the bottom right is for heating production. The validated tolerance 

(red dot) is the maximum allowable tolerance values based on the definition of Tol4 and Tol1, 

while measured tolerance (blue dot) is calculated based on the difference between direct 

and indirect cooling/heating production values and electrical consumption. The meter data 

are considered reliable whenever the meter set has a validated tolerance (red dot) value 

bigger than the measured tolerance (blue dot).  

The climate characteristics in which the Texas A&M plants operate are also 

considered by splitting the data set into winter- and summertimes, which help show the 

effect of ambient conditions on the chiller meters. The splitting points are daylight savings 

time changes, which also prevent discontinuity in data set values at time change moments. 

Figures III.14 to III.17 show a sample of validation plots for chiller 001 with mixed 

results for the year 2018 for AHRI heat balance. Figure III.18 shows typical good results 

for chiller 010, while Figure III.19 shows bad results for chiller 204. 
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Figure III.14. Evaporator cooling load validation Tol4. 

 

Figure III.15. Condenser cooling load validation Tol4. 
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Figure III.16. Evaporator cooling load validation Tol1. 

 

Figure III.17. Evaporator cooling load validation Tol1. 
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Figure III.18. Good validation – Chiller 010. 

 

Figure III.19. Bad validation – Chiller 204. 
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Figures III.20 and III.21 contain data which show a sample of validation plots 

(chiller 001) in summer and winter, respectively. The results show that data from the meter 

set of chiller 001 has bad validation during the summertime and good validation during a 

portion of the wintertime. In addition, the chiller part-load ratio in the summertime is much 

higher than in the wintertime. This evidence might raise an issue of electrical meters 

calculated with fixed power factor values, e.g., those meters are not accurate enough over 

the whole performance range of their monitored chillers. In order to better detect errors, the 

chiller electrical meters should be recommissioned during the wintertime or upgraded using 

more suitable metering technologies.  

 

Figure III.20. Chiller 001 summer. 



 

66 

 

 

Figure III.21. Chiller 001 winter. 

The summary of chiller validation results and their annual cooling production values 

and efficiencies are shown in Table III.14. From the results in Table III.14, scatter plots of 

total annual cooling production and average cooling production vs. their efficiency with 

colors indicating the data validation results are presented in Figure III.22 and Figure III.23, 

respectively.  

It is evident that both worst and best chiller input power–to-output ratios (kW/ton) 

come from the “Bad” group. While chillers 204 and 205 have exceptionally good input 

power–to-output ratios at about 0.28 kW/ton, their bad validation results demand 

recalibration of their meter set. The same recalibration is also recommended for chiller 206, 

which has an unusually high input power–to-output ratio of 1.26 kW/ton. The current 

validation classification procedure can point out abnormalities in chiller performance data. 
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In addition, chiller 003 with a bad validation result may require calibration later, even 

though its input power–to-output ratio is like that of other chillers  

Table III.14. Chiller annual summary. 

Chiller 
All 

Year 
Summer Winter 

Total 

Cooling 

Production, 

tons-hours 

Average 

Cooling 

Production, 

tons  

Efficiency, 

kW/ton 

001 Mixed Bad Mixed 1,056,511 1,052 0.59 

002 Good Good Good 1,094,739 1,005 0.62 

003 Bad Bad Bad 8,625,556 1,911 0.55 

004 Good Good Good 7,761,593 1,955 0.52 

005 Good Good Good 8,707,785 1,997 0.64 

006 Good Good Good 9,244,471 1,983 0.57 

007 Mixed Mixed Bad 10,515,725 2,843 0.43 

010 Good Good Good 9,599,117 2,249 0.42 

101 Mixed Bad Mixed 805,982 822 0.65 

102 Good Good Good 1,099,978 827 0.41 

103 Good Good Good 11,504,428 1,981 0.51 

201 Mixed Mixed Mixed 6,840,940 2,028 0.51 

202 Good Good Good 2,104,962 1,126 0.6 

203 Mixed Bad Mixed 621,016 786 0.79 

204 Bad Bad Bad 2,633,546 1,955 0.28 

205 Bad Bad Bad 3,331,230 1,674 0.29 

206 Bad Bad Bad 7,148,606 1,924 1.26 

301 Good Good Good 14,287,567 2,159 0.51 

302 Good Good Good 14,638,211 2,132 0.49 

303 Mixed Mixed Bad 452,335 896 0.65 

304 Mixed Bad Mixed 1,091,519 935 0.35 
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From these two scatter plots, three groups of chillers can be identified based on their 

annual total cooling production:  

• Low usage – total annual cooling production less than 4 million ton-hours: Chillers 

001, 002, 101, 102, 202, 203, 303, and 304 

• Average usage – total annual cooling production from 7 million to 12 million ton-

hours: Chillers 004, 005, 006, 007, 010, 103, and 201 

• High usage – total annual cooling production higher than 12 million ton-hours: 

Chillers 301 and 302 

 

The scatter plot of total annual cooling production (Figure III.22) clearly shows the 

utilization rate of the chillers. It shows a good management of chiller operating time, with 

most chillers in the good validation group having higher cooling production rates than the 

mixed and bad groups. The control systems should increase the runtime of chiller 102, as it 

has both good efficiency and a reliable meter data set.  

Three of the six chillers in SUP2 (50%; 204, 205, and 206) have problems with their 

validation results. While they provided about 50% of the plant’s total annual cooling 

production, recalibration of their meter set should be planned, especially chiller 206 with a 

high cooling production rate of about 7 million ton-hours in 2017.  

Figures III.23 to III.25 describe the annual average cooling production per operating 

hour in tons and in part-load ratio (of design chilled water capacity). While Figures III.26 

and III.27 show the typical average chiller production rate is about 2000 tons with input-to-

output ratios in the range 0.5–0.65 kW/ton as validated data input, metering upgrades would 

be beneficial for production estimation. In terms of chiller utilization rate, the 0.7–0.85 part-

load ratio (PLR) is typical for most of the chillers. 
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Figure III.22. Chiller input-to-output ratio vs. total cooling production with AHRI validation category. 

Bad Category  
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Figure III.23. Average chiller input-to-output ratio vs average cooling production with AHRI validation category. 
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Figure III.24. Chiller average cooling production – Enlarged. 
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Figure III.25. Average annual input-to-output ratio vs. part-load ratio of design chilled water capacity, PLR.
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III.5 CHILLER OPERATIONAL CHARACTERISTICS 

III.5.1 Chiller Meter Set 

Each chiller has seven physical meters with characteristics as shown in Table III.15. The 

meters have been calibrated periodically and as requested by professional technical staff of 

the Texas A&M UES team. While the meters are industrial grade, the constraints in 

installation locations and complexity of accurate measurement have affected the 

commissioning process, as the accuracy of the meter calibrations in the field is much lower 

than the requirements of AHRI Standard 550/590.  

Table III.15. Chiller-installed meters. 

Symbol Description Index Unit 

Fchw  Return chilled water flow rate _1 gpm 

Toutchw Supply chilled water temperature _2 °F 

Tinchw  Return chilled water temperature _3 °F 

Pelec Electrical consumption _5 kW 

Tincw Supply condenser water temperature  _7 °F 

Toutcw Return condenser water temperature _8 °F 

Fcw  Return condenser water flow rate _6 gpm 

 

Table III.16 shows the meter requirements in normal practice and AHRI Standard 550/590 

requirements. The big differences between laboratory and practical measurement have been 

compensated by multiplying the AHRI allowable tolerance limits (𝑇𝑜𝑙1, 𝑇𝑜𝑙4) by 1.5. 
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Table III.16. Meter allowable tolerance requirement. 

Meter type 
Commissioning 

Requirement 

AHRI 550/590 

Requirement2 

Electricity, percent of reading 

(RDG) 
±5%1 ±2% 

Flow rate, percent of reading 

(RDG) 
±10% ±1% 

Temperature, °F ±0.5 ±0.2 

1 Chiller electrical consumption is often derived from chiller current percent, voltage, and power factor: 

Pelec (kW) = √3 × PF × I(A) × VL-L (V) / 1000. However, power factor (PF) is also varied frequently, so the 

generalized 5% accuracy has been chosen.  

2 Table C1. Requirements for Test Instrumentation – AHRI Standard 550/590. 

 

III.5.2 Chiller Performance Evaluation 

From seven chiller meters, 23 performance indicators have been derived for all points when 

a chiller is in operation. Many of these indicators are important for chiller operation and 

evaluations: 

• Chiller “efficiency”, kW/ton: The ratio between chiller energy consumption and 

production. It is the signature value of a chiller’s performance rating. 

• Chilled water capacity Pchw, tons: The chilled water capacity or how much the 

chiller can produce in 1 hour. 

• Chilled and condenser water temperature differences ΔTchw/ΔTcw, °F: The 

differences between return and supply water temperatures of evaporator and 

condenser. They indicate how well the heat exchangers (evaporator and condenser) 

work and have a big impact on chiller efficiency; typically, larger differences are 

better. Moreover, chilled and condenser water flow rates are directly affected by 
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those temperature differences. The cooling tower fan work is also directly 

proportional to condenser water temperature difference. 

• Chilled and condenser water flow rates Fchw /Fcw, gpm: the flow rates of water 

passing through the evaporator and condenser. The primary pump production and 

efficiency are greatly affected by those flow rates. Any primary pump should 

manipulate its pressure setpoint to ensure that evaporator and condenser flow rates 

are maintained. As the pressure ratio is proportional to the square of the flow rate 

ratio per the Pump Law, the flow rate setpoint is critically important, not only for 

chiller efficiency, but also for the whole plant efficiency. 

 

To compensate for the differences between actual performance and the design 

specifications (i.e., chilled water capacity, evaporator and condenser, water flow rates, 

electrical consumption), the part-load ratios relative to the design values have been 

calculated to better check the utilization rate and better understand the design limits of the 

chillers. All performance indicators are listed in Table III.17. 
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Table III.17. Chiller performance indicators. 

Description Symbol Formula Unit 

Chilled Water Temperature 

Difference 
ΔTchw Tinchw − Toutchw °F 

Condenser Water Temperature 

Difference 
ΔTcw Tincw − Toutcw °F 

Chiller Lift Temperature Difference ΔTlift Toutcw − Toutchw °F 

Original Chilled Water Capacity Pchw 
Pchw = Fchw*(Toutchw − 

Tinchw)/24 
tons 

Original Cooling Water Capacity Pcw Pcw = Fcw*(Toutcw − Tincw)/24 tons 

Original Electricity Consumption Pelec 
Same as Electricity 

Consumption (Pelec) 
kWh 

Indirect Electricity Consumption Pchw-in Pchw-in = Pcw − Pelec*0.284 kWh 

Indirect Cooling Water Capacity Pcw-in Pcw-in = Pchw + Pelec*0.284 Tons 

Indirect Chilled Water Capacity Pelec-in Pelec-in = (Pcw − Pchw)/0.284 Tons 

Original Efficiency (CW excluded) COP1 COP1 = Pelec/Pchw kW/ton 

Indirect Efficiency (CHW 

excluded) 
COP2 

COP2 = Pelec/(Pcw – Pelec-

*0.284) 
kW/ton 

Indirect Efficiency (ELEC 

excluded) 
COP3 

COP3 = (Pcw − Pchw)/(0.284* 

Pchw) 
kW/ton 

Chilled Water Capacity Original vs 

Indirect Difference 
Pchw_diff (Pchw-in− Pchw)/Pchw * 100 % 

Cooling Water Capacity Original vs 

Indirectly Different 
Pcw_diff (Pcw-in − Pcw)/Pcw * 100 % 

Electricity Consumption Original 

vs Indirectly Different 
Pelec_diff (Pelec-in − Pelec)/Pelec * 100 % 

Chilled Water Design Flow Ratio Fchw_per Fchw/Fchw-desg PLR 

Original Chilled Water Design 

Capacity Ratio 
Pchw_per Pchw/Pchw-desg PLR 

Chilled Water Design Temperature 

Difference Ratio 
ΔTchw_per 

(Tinchw−Toutchw)/ 

(Tinchw−Toutchw)desg 
PLR 

Original Design Efficiency Ratio 

(CW excluded) 
COP1_per COP1/COP1-desg PLR 

Cooling Water Design Flow Ratio Fcw_per Fchw/Fchw-desg PLR 

Original Cooling Water Design 

Capacity Ratio 
Pcw_per Pcw/Pcw-desg PLR 

Cooling Water Design Temperature 

Difference Ratio 
ΔTcw_per (Tincw−Toutcw)/(Tincw−Toutcw)desg PLR 

Design Electricity Consumption 

Ratio 
Pelec_per Pelec/Pelec-desg PLR 
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III.5.3 Chiller Performance Dashboard 

To rapidly determine chiller performance, a dashboard for chiller operation has been 

established to review historical chiller performance. That dashboard is selectable with four 

scatter charts. The chart options are drop-down lists, text input, and range bars, which 

include the selectable list as shown in Figures III.26 and III.27. 

There are drop-down list options: 

• First Column: 

o Chiller: The number of the chiller whose data is shown on the chart 

(Chiller 103 as in Figure III.26). It is selectable from a list of all chillers in 

the data sheet. 

o Color: The indicator, e.g., Original Design Efficiency Ratio (CW excluded) 

as in Figure III.27, is selectable from the list of indicators shown in 

Table III.17. The data range of the original design efficiency ratio is observed 

to set up a color bar as a legend. The chart program will review its range to 

set the color of each value (dot) on scatter plots, as seen in Figure III.28. The 

original design efficiency ratio for chiller 103 has the name 

“CH103_COP1_per” with a value range from 0.38 to 1.13. 

o Split Range and Boundary: The range number is a slide bar, which has two 

inputs (e.g., 6…8 in Figure III.26), and the boundary is the number input 

(e.g., 0.9 in Figure III.26). Those inputs determine the number of indicator 

range groups (8 colors) based on the value of the boundary (0.9). It means 

the range 0.33(min)–0.9(boundary value) will have 6 groups (0.38–0.62), 

(0.62–0.73), (0.73–0.81), (0.81–0.84), (0.84–0.88), and (0.88–0.9) with the 
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number of points in each group (range) the same. A similar rule is applied 

for 2 (of 8) remaining groups that have an indicator value, (0.9–0.94) and 

(0.94–1.13). This function is helpful to prevent the overconcentration issue 

for the scatter chart.  

o Filter rate: The input number (e.g., 2.5 in Figure III.26) is the filter rate for 

extremely high and low data in percentage. It means the chart will remove 

points (time), which are in the 2.5% lowest and highest value ranges of the 

original design efficiency ratio (color indicator). This function will remove 

extreme (i.e., unreasonably high and low) values from the data set that might 

oversize the axis. 

o Update: The green “Update” button resets the chart with all new input as 

selectable from the dashboard. 

• Second Column: 

o Top_Left_Chart: Two drop-down lists specify the y and x coordinate values. 

The list of indicators with their formulas is compatible with Table III.17. The 

Top_Left_Chart is described in Figure III.29. 

▪ Top_Left_y_axis: e.g., “Original Design Efficiency Ratio(CW 

excluded)” as selected in Figure III.27.  

▪ Top_Left_x_axis: e.g., “Chilled Water Design Flow Ratio” as 

selected in Figure III.27.  

o Bottom_Left_Chart: Similar to Top_Left_Chart for bottom left scatter plot 

with y-axis as “Original Design Efficiency Ratio(CW excluded)” and x-axis 

as “Original Chilled Water Design Capacity Ratio” 
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• Third Column: Similar to the second column, setup for the top right scatter plot 

in Top_Right_Chart and bottom right scatter plot in Bottom_Right_Chart. 

After selecting the Update button, the new chart is refreshed and shown as in Figures III.29 

to III.32. 

 

Figure III.26. Dashboard selection – First 

column. 
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Figure III.27. Dashboard selection – Second and third columns. 

 

Figure III.28. Color range. 
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Figure III.29. Top left chart – Chiller efficiency ratio versus chilled water design flow 

ratio plots. 

 

Figure III.30. Bottom left chart – Chiller efficiency ratio versus chilled water design 

capacity ratio plots. 
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Figure III.31. Top right chart – Chiller efficiency ratio versus original electricity 

consumption(kWh) plots. 

 

Figure III.32. Bottom left chart – Chiller efficiency ratio versus cooling water design 

capacity ratio plots. 
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III.6 CHILLER CHARACTERISTIC RULESET 

In general, the relationship of values from different meters is described as a function that 

has input and output as below: 

• Input: 

o Chilled water return temperature 

o Condenser water return temperature 

o Chilled water flow rate 

o Condenser water flow rate 

• Output: 

o Chilled water supply temperature 

o Condenser water supply temperature 

o Electrical consumption 

 

Typically, chilled water and condenser supply temperatures are the given setpoints of 

the chiller and cooling tower, respectively, while chiller efficiency is the ratio of chilled 

water production and electrical consumption. Therefore, the chiller performance might be 

based on the following indicators in relationship to chiller efficiency: 

• Chilled water flow rate  

• Chilled water temperature difference 

• Chiller lift temperature 

• Chiller chilled water production  
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To normalize the different chiller sizes (range from 1000 to 3500 tons), the chilled 

water flow rate and chilled water capacity are ratio values in decimal form based on design 

performance data. The ratios were specified in the last eight rows of Table III.17. After all 

plots have been established, we can start to review their plots to extract rules.  

Four scatter plots show chiller performance plots for the chiller as in Figures III.34 to 

III.37. All the plots have the design chiller efficiency ratio1 as vertical axes and the four 

mentioned indicators in the design ratio as horizontal axes. The legends indicate about the 

AHRI allowable tolerance validation, with green as UnValidated (unsatisfied) and blue as 

Validated (satisfied). 

III.6.1 Case 1 – Chiller 001 

The ruleset extracted from Figures III.33 to III.36 for chiller 001 is as follows: 

• Figure III.33: Efficiency value is not proportional to the chiller flow rate.  

• Figure III.34: Efficiency ratio is proportional when chilled water temperature 

difference is higher than 6°F and inversely proportional when less than 6°F.  

• Figure III.35: Efficiency ratio is proportional when lift temperature difference 

value is higher than 30°F. 

• Figure III.36: Efficiency ratio is inversely proportional when design chilled water 

capacity ratio is less than 0.6. 

 
1 Design chiller efficiency ratio is the ratio of actual chiller efficiency to design chiller 

efficiency. It gives an idea of how well the chiller is running compared to its own design 

data. 
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Figure III.33. Chiller efficiency versus chilled water flow ratio. 

  

Figure III.34. Chiller efficiency ratio versus chilled water temperature difference. 
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Figure III.35. Chiller efficiency versus chiller lift temperature difference. 

 

Figure III.36. Chiller efficiency ratio versus design chilled water capacity ratio. 
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III.6.2 Case 2 – Chiller 202 

In general, in case 2 there are some abnormalities in the four plots. which mostly relate to 

low design chilled water capacity ratio: 

• Figure III.37: Efficiency ratio has a large negative slope when chilled water flow 

rate ratio is less than 0.82.  

• Figure III.38: Efficiency ratio is best (lowest) when chilled water temperature 

difference is in the range 4–6°F. 

• Figure III.39: Efficiency ratio is proportional (worsens) when lift temperature 

difference is higher than 30°F. 

• Figure III.40: Efficiency ratio is poor when design chilled water capacity ratio is 

less than 0.3.  

III.6.3 Case 3 – Chiller 004 

The following ruleset was extracted from Figure III.41: 

• While chiller 004 has very good validation and uses a variable speed drive (VSD), 

the data show no strong correlation between chiller efficiency ratio and other 

performance indicators except the efficiency ratio is proportional to the lift 

temperature difference, as shown in the bottom left plot.  

• The chiller efficiency ratio reaches the best possible values while the chilled water 

difference is from 2–4°F. 
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Figure III.37. Chiller efficiency ratio versus design chilled water capacity ratio. 

 

Figure III.38. Chiller efficiency ratio versus design chilled water temperature difference. 



 

89 

 

  

Figure III.39. Chiller efficiency ratio versus design chiller lift temperature difference. 

 

Figure III.40. Chiller efficiency ratio versus design chilled water design capacity ratio. 
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Figure III.41. Chiller 004 performance map.
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III.7 CHILLER HISTOGRAMS  

Using histograms of chiller efficiency ratio and capacity ratio, we can see the big difference 

between a “bad” and “good” chiller: While the good chiller (010) in Figure III.42 has similar 

histogram plot shapes for efficiency and chilled water capacity ratios, the bad chiller (204) 

has dramatic differences in shape. 

 

Figure III.42. Chiller 010 histogram. 
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 There is no correlation between the efficiency and chilled water-cooling production rate 

ratios in Figure III.43 when chiller 204 has the highest number of operation hours near the 

design chilled water capacity ratio of 1.0 but the chiller efficiency ratio maxes out at 0.6. 

Those values for chiller 204 are unreasonable 

 

Figure III.43. Chiller 204 histogram. 



 

93 

 

III.8 DETECTION OF INCONSISTENT CHILLER OPERATION  

An algorithm to detect inconsistent chiller operation has been implemented to identify 

gradual chiller performance changes based on the change in percentage between three 

continuous timesteps. It identifies any timestep for which the chiller is in operation during 

the previous and next timesteps, but where the chilled water flow rate, electrical 

consumption, and cooling water flow rate fluctuate widely during the previous and/or next 

timesteps.  

The sharp change timestep is determined based on following sources: 

• Data observation: Three meter readings are observed for each chiller to evaluate 

the hour-to-hour slopes in percentage:  

%𝐶ℎ𝑎𝑛𝑔𝑒 =
𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑉𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

100
 

In most cases, these three key meter readings have a %Change value less than 

50%, as shown in Figure III.44 for chiller 301. While these three meters readings 

are input, %Change values for the three meters of more than 50% at the same time 

may indicate a chiller short cycle condition. This can be verified by finding if the 

hours with the sum of percentage change of all three monitored meters in the 

current timestep larger than 150% (3 × 50%) in absolute value when comparing 

with previous timestep. 
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Figure III.44. Chiller 301 histogram of percentage change. 

• Inconsistent pattern: Inconsistent chiller operation will show a V-shaped sketch on 

a timeseries plot of flow rate and electrical meters, as a short-cycled chiller is 

usually restarted immediately to meet the load demand since it is not a planned 

shutdown.  

To catch a V-shaped pattern, the second condition is established if the absolute 

value of percentage change of meter readings from the current to the next timestep 

is higher than 150% when the flow rates and electricity consumption values at 

short-cycled timestep are close to off range. From this assumption, we get the 

second condition: sum of percentage changes of all three monitored meters in the 

next timestep are more than 450%.  
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• Chiller plant control: The typical chilled water and cooling water flow rates should 

be adjusted by less than 30% of design flow during any hour because of the 

following: 

o The interaction of primary and secondary chilled water loops would be 

negatively affected when flow rate is quickly adjusted.  

o Due to the thermal mass of the chilled water in the loops and chilled water 

storage tanks, time response of chilled water demand would limit the gradual 

increase or decrease of chilled water demand and limit changes in the chilled 

and cooling water flow rates and electricity consumption except during the 

start-up and shut-off moments (hours). 

o Chillers, especially old ones, might not respond to rapid change in demand. 

 

An additional condition is set by reviewing if the sum of percentage changes of 

monitored meter value is increased more than six times (200 × 3 = 600%) after 

2 hours (timesteps) from a possible fault timestep.  

When all three conditions are triggered, the alarm should be established. 

Figure III.45 shows an inconsistent data point of chiller 001 at 2017-07-09 16:00 when the 

chiller was suddenly stopped and then started. This point was identified by the algorithm 

described above.
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Figure III.45. Chiller 001 inconsistent detection. 
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IV. SUMMARY 

Based on the results of the algorithms described above, the following assertions and rulesets 

have been established. 

IV.1 GENERAL RESULTS 

All chiller data sets have been filtered into on and off operation data collections. The fault 

detection and boundary limit reviews have been applied to find possible faulty records and 

optimize the boundary values.  

The on (in operation) chiller data have been validated using AHRI Standard 550/590 

energy balance and capacity tolerance limits. The annual performance report output 

indicated that the highest and lowest chiller power per capacity ratios are unreasonable 

values, and this data was identified as bad data using the validation algorithms. Hence, the 

validation results may be applied as indicators for chiller meter data fault detection and 

diagnostics.  

Analysis of the operating data set has determined the following regarding the chiller 

operational characteristics.  
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IV.2 DETAILED RESULTS 

IV.2.1 Validation Report 

Chillers with validated good data output  

• CUP: 002, 004, 005, 006, 010 

• SUP1: 102, 103 

• SUP2: 202 

• SUP3: 301, 302 

Chillers with mixed data validation output  

• CUP: 001 – Bad in hot weather period; 007 – Bad in cold weather period 

• SUP1: 101 – Bad in hot weather period 

• SUP2: 201, 203 – Bad in hot weather period 

• SUP3: 303 – Bad in cold weather period; 304 – Bad in hot weather period 

 

It is recommended that the power meters of the chillers above be checked when the 

chiller validation result is bad, since the chiller electrical consumption range between hot 

and cold periods is well divided with different chiller lift. 

Chillers with bad data output 

• CUP: 003 

• SUP2: 204, 205, 206 
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It is recommended that those chiller meters be calibrated to achieve more reliable 

results.  

IV.2.2 Chiller Ruleset 

• Most chillers have power per cooling production ratios (kW/ton) proportional to 

the chiller lift. 

• Chillers 001 and 002 have power per cooling production ratios that gradually 

increased when the chiller lift is higher than 45°F. 

• Chillers 001, 101, and 102 have power per cooling production ratios that increased 

when chiller lift was less than 30°F or the chiller water temperature difference was 

less than 6°F or the chilled water production ratio was less than 60% of the design 

production. 

• Chillers 004 and 010 have power per cooling production ratios that increased with 

chilled water difference and chilled water production rate. 

• Chiller 202 has a power per cooling production ratio that increased when the chilled 

water design flow rate ratio was less than 0.8. 

• Chiller 203 should keep chiller lift more than 40°F and chilled water temperature 

difference higher than 6°F and chilled water design flow rate ratio higher than 0.4. 

• Chiller 303 has power per cooling production ratio values proportional to the 

chilled water temperature difference. Its power per cooling production ratio range 

is also very narrow (0.95–1.1). 
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• Chiller 304 has a power per cooling production ratio inversely proportional to 

chiller lift, chilled water temperature difference, and chilled water production 

capacity.  

IV.3 FUTURE WORK 

Recommendations for future research are as follows: 

• Develop a new algorithm for timeseries pattern recognition based on hourly 

profiles of chiller meters to identify issues in real time or on a daily or weekly basis. 

• Establish an ordered list from the chiller power per cooling production ratio based 

on a combination of independent variables (chilled water flow rate, chiller lift, 

chilled water return temperature) to support the operation team in staging chillers 

on and off. 

• Investigate possible meter faults for the invalid data to identify exactly which 

meters need repair or recalibration. 
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