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ABSTRACT

Determining the complexity of matrix multiplication has been a central problem in complex-

ity theory ever since Strassen showed, in 1969, that one can multiply matrices in O(n2.81)

arithmetic operations, strictly better than with the usual algorithm. Bini reduced the prob-

lem of the complexity of matrix multiplication to one in multilinear algebra, that of de-

termining the border rank of the matrix multiplication tensor. In this thesis, I prove new

border rank bounds, both upper and lower, on certain matrix multiplication tensors as well

as on the little Coppersmith-Winograd tensor and its recently introduced skew variant, aux-

iliary tensors relevant to the study via Strassen’s laser method. Upper bounds are obtained

through explicit rank and border rank decompositions. The lower bounds are are obtained

principally through representation theory, both of finite and Lie groups. In particular, I

present new results for matrix multiplication coming from a recent development in lower

bounds due to Buczyńska and Buczyński, the idea of border apolarity.
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1. INTRODUCTION AND BACKGROUND

1.1 The complexity of matrix multiplication

Linear algebra is central to applications of mathematics, and matrix multiplication is the

essential operation of linear algebra. The standard algorithm to multiply two n×n matrices

uses n3 multiplications. In 1969, while attempting to show that the standard algorithm was

optimal, V. Strassen [1] discovered an explicit algorithm to multiply 2 × 2 matrices using

seven multiplications rather than eight. This algorithm may also be used to multiply n × n

matrices using O(n2.81) arithmetic operations rather than the usual O(n3) (see §1.2).

The exponent ω of matrix multiplication is defined as

ω ∶= inf{τ ∣ n × n matrices may be multiplied using O(nτ) arithmetic operations}.

Trivially, ω ≥ 2, as any matrix multiplication must at least look at all n2 entries of the matrices

to be multiplied, and it is conjectured that, in fact, ω = 2. There was steady progress in the

research for upper bounds from 1968 to 1988: after Strassen’s famous ω < 2.81, Bini et. al. [2],

using border rank (see §1.4), showed ω < 2.78, then a major breakthrough by Schönhage [3]

(the asymptotic sum inequality, §1.6) was used to show ω < 2.55, and then Strassen’s laser

method was introduced and used by Strassen to show ω < 2.48, and refined by Coppersmith

and Winograd to show ω < 2.3755 [4] (§1.7). Then there was no progress until 2011 when a

series of improvements by Stothers, Williams, and Le Gall [5, 6, 7] lowered the upper bound

to the current state of the art ω < 2.373.

1



1.2 Strassen’s algorithm

Consider the product of a pair of 2n × 2n matrices, where we have blocked them into n × n

quadrants,
⎛
⎜⎜
⎝

A11 A12

A21 A22

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

B11 B12

B21 B22

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

C11 C12

C21 C22

⎞
⎟⎟
⎠
.

Computing the Cij blockwise via the usual algorithm for 2 × 2 matrix multiplication takes

eight block multiplications:

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C21 = A21B12 +A22B22,

If, however, we instead compute

I = (A11 +A22)(B11 +B22)

II = A11(B12 +B22)

III = (A21 −A22)B11

IV = (A12 +A22)(B21 −B22)

V = A22(B11 +B21)

V I = (−A11 +A12)B22

V II = (A11 +A21)(−B11 +B12),

(1.1)

2



we may form
C11 = I + IV − V + V I

C12 = II + V I

C21 = III + V

C22 = I − II + III + V II.

(1.2)

That is, we may compute the product of a pair of matrices using only seven block multipli-

cations. This is enough to obtain an algorithm for square matrix multiplication which uses

asymptotically fewer arithmetic operations than the standard algorithm.

Let A and B be n × n matrices. First, if n = 1, return the product. Otherwise, if n is odd,

reduce to the even case by padding each of A and B with a row and column of zeroes. Divide

A and B into quadrants as above, and compute the products I–V II by recursively calling

this algorithm. Finally, form the Cij as above and return the corresponding C.

We analyze the above algorithm. Let T (n) denote the number of arithmetic operations

required to carry out the above algorithm on n×n matrices. The formation of the appropriate

linear combinations of blocks to compute the arguments to the recursive calls, and then to

compute the Cij from the results takes O(n2) arithmetic operations. Then, we have T (1) = 1,

T (n) = 7T (⌈n2 ⌉) +O(n2). Applying the master theorem of [8], we obtain T (n) = O(nlog2 7),

where log2 7 ≅ 2.81.

1.3 Reduction to tensor rank

The existence of Strassen’s algorithm depends only on the existence of the equations 1.1 and

1.2. These equations have a special structure such that a corresponding algorithm for fast

matrix multiplication can be derived. We will describe this special structure in geometric

terms as a property of matrix multiplication considered as a tensor. The notion we define will

be independent of coordinates, so our presentation will be in the coordinate free language of

composition of linear maps, rather than multiplication of matrices.

3



In what follows, we will make extensive use of finite dimensional vector spaces over C. We

denote such vector spaces with capital letters and by convention use the corresponding bold

lower case letter to denote dimension. Define the tensor product U⊗V as the C-vector space

with basis {(u, v) ∣ u ∈ U, v ∈ V } modulo the relations

(u + u′, v) = (u, v) + (u′, v)

(u, v + v′) = (u, v) + (u, v′)

(au, v) = a(u, v) = (u, av),

where u,u′ ∈ U , v, v′ ∈ V , and a ∈ C. We write u ⊗ v for the equivalence class of (u, v) in

U ⊗ V . Then, for instance, dimU ⊗ V = uv. Any bilinear map ϕ ∶ U × V → W satisfies

ϕ(u, v) = ϕ̂(u⊗ v) for some unique linear map ϕ̂ ∶ U ⊗V →W , and U ⊗V is characterized by

this property.

Denote by Hom(U,V ) the vector space of linear maps U → V , and write U∗ for Hom(U,C).

When U and V are finite dimensional, the natural inclusion V ⊗ U∗ → Hom(U,V ), v ⊗ f ↦

[u ↦ vf(u)] is an isomorphism. Write IdU ∈ Hom(U,U) = U ⊗ U∗ as the identity operator

under this identification. Similarly, the natural inclusion V → (V ∗)∗, v ↦ [f ↦ f(v)] is an

isomorphism. Finally the map (Hom(U,V )⊗Hom(V,U))∗, A⊗B ↦ trace(AB) is a perfect

pairing, yielding a natural isomorphism Hom(U,V )∗ → Hom(V,U). We will freely identify

spaces under these isomorphisms.

Linear maps W → V and V → U may be composed, and the composition operator is bilinear.

In other words, there is a tensor M⟨u,v,w⟩ ∈ Hom(Hom(V,U) ⊗ Hom(W,V ),Hom(W,U)).

This tensor is called the matrix multiplication tensor. There are additional ways to conceive

of this tensor, modulo the identifications above. For instance, under the natural isomorphism

to the space (Hom(V,U)⊗Hom(W,V )⊗Hom(U,W ))∗, M⟨u,v,w⟩ has the form A⊗B ⊗C ↦

trace(ABC). Under the natural isomorphism to the space (U ⊗U∗)⊗ (V ⊗V ∗)⊗ (W ⊗W ∗),

4



M⟨u,v,w⟩ = IdU ⊗ IdV ⊗ IdW . We will most frequently consider M⟨u,v,w⟩ to lie in the space

(U∗ ⊗ V )⊗ (V ∗ ⊗W )⊗ (W ∗ ⊗U). The grouping of the terms is significant in what follows.

We write M⟨n⟩ =M⟨n,n,n⟩.

We define a notion of complexity of tensors, called rank, which, for the matrix multiplication

tensor, corresponds up to a factor of two to the minimal number of multiplications needed to

compute matrix multiplication via an arithmetic circuit [9, Equation 14.8]. More precisely,

for a tensor T ∈ A ⊗B ⊗ C, its rank R(T ) is the smallest r such that T = ∑r
j=1 aj ⊗ bj ⊗ cj

for some aj ∈ A, bj ∈ B, cj ∈ B. We will call such an expression of T as a sum of rank one

tensors a rank decomposition, even in cases where the number of terms is not minimal. For

instance, R(M⟨2,2,2⟩) ≤ 7, as Strassen’s algorithm (§1.2) may equivalently be written

M⟨2⟩ = (u1v1 + u2v2)⊗ (v1w1 + v2w2)⊗ (w1u1 +w2u2)

+ u1v1 ⊗ (v1w2 + v2w2)⊗ (w2u1 −w2u2)

+ (u2v1 − u2v2)⊗ v1w1 ⊗ (w1u2 +w2u2)

+ (u1v2 + u2v2)⊗ (v2w1 − v2w2)⊗w1u1

+ u2v2 ⊗ (v2w1 + v1w1)⊗ (w1u2 −w1u1)

+ (u1v2 − u1v1)⊗ v2w2 ⊗ (w2u1 +w1u1)

+ (u2v1 + u1v1)⊗ (v1w2 − v1w1)⊗w2u2.

(1.3)

Here we have written ui, vi, wi for bases of U , V and W , i ∈ {1,2}, and ui, vi and wi for

the corresponding dual bases of U∗, V ∗ and W ∗, and we have suppressed the tensor product

sign for elements of U∗ ⊗ V , V ∗ ⊗W , and W ∗ ⊗U .

Given a rank r decomposition of M⟨n0⟩, there is a corresponding algorithm to multiply

square n×n matrices. Namely, if n < n0, return the matrix product via the usual algorithm.

Otherwise pad with zero rows and columns to reduce to the case that n is divisible by n0, so

that each matrix can be blocked into n2
0 blocks of dimensions ⌈ nn0

⌉×⌈ nn0
⌉. For each summand of

5



the rank decomposition, form the appropriate corresponding linear combination of the blocks

and recursively call the fast multiplication algorithm. Finally, form the blocks of the answer

as appropriate linear combinations of the products as prescribed by the rank decomposition.

As with Strassen’s algorithm, the formation of all required linear combinations of blocks

requires O(n2) arithmetic operations, so if T (n) is the number of arithmetic operations to

multiply a pair of matrices via this algorithm, then T (n) satisfies T (n) = rT (⌈ nn0
⌉) +O(n2),

and by the master theorem, it follows T (n) = O(nlogn0
r). Hence, if R(M⟨n⟩) ≤ r, then

ω ≤ logn r. Strassen showed the converse holds in the following sense.

Theorem 1.3.1 (Strassen [1]). ω = lim infn→∞ lognR(M⟨n⟩)

Hence, the study of the exponent of matrix multiplication can be entirely reduced to the

study of the rank of the matrix multiplication tensor. In fact, the problem can be further

reduced to a more geometric question. Unlike the matrix rank, the set of tensors in A⊗B⊗C

with tensor rank at most r does not form a closed set, either in the Euclidean or Zariski

sense. There is thus an additional notion in the context of tensors, that of border rank.

1.4 Tensor border rank

For a tensor T ∈ A ⊗B ⊗ C, its border rank R(T ) is the smallest r such that T lies in the

closure of the set of rank at most r tensors, either in the Euclidean or Zariski sense. That is,

the set of tensors of border rank at most r is precisely the cone over σr(Seg(PA×PB ×PC)),

the r-th secant variety of the Segre variety of rank one tensors. In fact, R(T ) ≤ r if and only

if there is an expression T = limt→0∑r
i=1 ai(t)⊗ bi(t)⊗ ci(t). We call such an expression for T

a border rank decomposition. The set of tensors of border rank at most r is by definition a

closed set. Thus, from the standpoint of geometry, border rank is a more natural measure of

complexity. Moreover, from the standpoint of the complexity of matrix multiplication, there

is no loss in generality, in view of the following.

Theorem 1.4.1 (Bini [10]). ω = lim infn→∞ lognR(M⟨n⟩)

6



One has R(T ) ≤ R(T ) and the inequality can be strict: let T = a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 +

a2 ⊗ b1 ⊗ c1, then R(T ) = 3 and R(T ) = 2 as

T = lim
t→ 0

1

t
[(a1 + ta2)⊗ (b1 + tb2)⊗ (c1 + tc2) − a1 ⊗ b1 ⊗ c1]. (1.4)

In [11], it was shown that R(M⟨2⟩) = 7. Until the results of chapter 3, this was the only

nontrivial matrix multiplication tensor whose border rank was known exactly. In chapter 3,

we prove R(M⟨2,2,3⟩) = 10 and R(M⟨2,3,3⟩) = 14, expanding the list of tensors whose border

rank is known from one to three, as well as giving other significant new bounds.

1.5 Waring (border) rank and symmetrized matrix multiplication

The symmetric group on k elements acts on the space A⊗k by permuting factors, and we call

tensors invariant under this action symmetric. The space of symmetric tensors is written

Sk(A) ⊂ A⊗k. For symmetric tensors T , there is a more specialized notion of rank and

border rank, namely, the symmetric or Waring rank Rs(T ) is the smallest r so that T can

be written as the sum of r symmetric rank one tensors, and we call such an expression a

Waring decomposition. The Waring border rank Rs(T ) is defined analogously.

Define the symmetrized matrix multiplication tensor sM⟨v⟩ ∈ S3(V ∗ ⊗ V ) as the result of

symmetrizing M⟨v⟩ ∈ (V ∗⊗V )⊗3 under the action of the symmetric group on three elements.

For the complexity of matrix multiplication, there is no loss in generality to study Waring

(border) rank of sM⟨n⟩, in view of the following.

Theorem 1.5.1 ([12]). ω = lim infn→∞ lognRs(sM⟨n⟩) = lim infn→∞ lognRs(sM⟨n⟩)

In chapter 4, I show Rs(sM⟨3⟩) ≤ 18 and Rs(sM⟨4⟩) ≤ 40 by providing explicit Waring

decompositions.
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1.6 Asymptotic sum inequality

Schönhage’s advance comes from his discovery that it can be more efficient to perform

two matrix multiplications together than one at a time. For tensors T ∈ A ⊗ B ⊗ C and

T ′ ∈ A′ ⊗ B′ ⊗ C ′, define a new tensor T ⊕ T ′ ∈ (A ⊕ A′) ⊗ (B ⊕ B′) ⊗ (C ⊗ C ′) whose

computation is equivalent to computing T and T ′. He gave explicit examples of matrix

multiplication tensors where R(T ⊕ T ′)≪R(T ) +R(T ′). To explain how he exploited this

we need some more definitions:

Given T ∈ A ⊗ B ⊗ C and T ′ ∈ A′ ⊗ B′ ⊗ C ′, the Kronecker product of T and T ′ is the

tensor T ⊠ T ′ ∶= T ⊗ T ′ ∈ (A ⊗A′) ⊗ (B ⊗B′) ⊗ (C ⊗ C ′), regarded as 3-way tensor. Given

T ∈ A⊗B ⊗C, the Kronecker powers of T are T ⊠N ∈ A⊗N ⊗B⊗N ⊗C⊗N , defined iteratively.

We have R(T ⊠T ′) ≤R(T )R(T ′), and similarly for border rank. The matrix multiplication

tensor has the following important self-reproducing property, corresponding to the fact that

matrices may be multiplied block-wise: M⟨l,m,n⟩ ⊠M⟨l′,m′,n′⟩ =M⟨ll′,mm′,nn′⟩.

Given T,T ′ ∈ A⊗B⊗C, we say that T degenerates to T ′ if T ′ ∈ GL(A) ×GL(B) ×GL(C) ⋅ T ,

the closure of the orbit of T under the natural action of GL(A)×GL(B)×GL(C) on A⊗B⊗C.

Here, GL(A) denotes the general linear group of invertible linear maps A→ A. We extend

this notion to tensors T ∈ A ⊗B ⊗ C and T ′ ∈ A′ ⊗B′ ⊗ C ′ by picking inclusions A and A′

into a common space A′′, and likewise for B and C. Border rank is upper semi-continuous

under degeneration: if T ′ is a degeneration of T , then R(T ′) ≤R(T ).

Schönhage observed that if one takes a high Kronecker power of M⟨l,m,n⟩ ⊕M⟨l′,m′,n′⟩, that

because of the reproducing property, it will be a sum of matrix multiplication tensors, some

of them quite large. One can then perform a degeneration to obtain a single very large

matrix multiplication tensor and exploit the strict sub-additivity to get an upper bound on

this large matrix multiplication tensor. This reasoning results in the celebrated
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Theorem 1.6.1 (Shönhage’s asymptotic sum inequality [3]). For all li, mi, ni with 1 ≤ i ≤ s,

s

∑
i=1
(minili)

ω
3 ≤R (

s

⊕
i=1
M⟨mi,ni,li⟩)

1.7 Strassen’s laser method

After Schönhage, Strassen realized that the starting tensor need not be a sum of matrix

multiplication tensors, as long as some high power of it degenerates to a large matrix mul-

tiplication tensor. This gave rise to his laser method, where the starting tensor “resembles”

the sum of disjoint matrix multiplication tensors. All upper bounds since 1984 are obtained

via Strassen’s laser method. The best starting tensor for Strassen’s method (so far) was

discovered by Coppersmith and Winograd, the big Coppersmith-Winograd tensor,

TCW,q ∶=
q

∑
j=1
a0 ⊗ bj ⊗ cj + aj ⊗ b0 ⊗ cj + aj ⊗ bj ⊗ c0

+ a0 ⊗ b0 ⊗ cq+1 + a0 ⊗ bq+1 ⊗ c0 + aq+1 ⊗ b0 ⊗ c0 ∈ (Cq+2)⊗3.

It was used to obtain the current world record ω < 2.373 and all bounds below ω < 2.41 [4].

In 2014 [13] gave an explanation for the limited progress since 1988, followed by further

explanations in [14, 15, 16, 17]: there are limitations to the laser method applied to the big

Coppersmith-Winograd tensor and other auxiliary tensors. These limitations are referred

to as barriers. We are interested in two kinds of barriers: to proving the exponent is two,

and barriers to proving the exponent is less than 2.3. In [13], it was shown that the big

Coppersmith-Winograd tensor is subject to this second kind of barrier, that the laser method

applied to it is not sufficient to prove ω < 2.3.

The second best tensor for the laser method so far has been the little Coppersmith-Winograd
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tensor,

Tcw,q ∶=
q

∑
j=1
a0 ⊗ bj ⊗ cj + aj ⊗ b0 ⊗ cj + aj ⊗ bj ⊗ c0 ∈ (Cq+1)⊗3. (1.5)

The laser method implies the following.

Theorem 1.7.1. [4] For all k and q,

ω ≤ logq( 4
27(R(T ⊠kcw,q))

3
k ). (1.6)

It is a fact that R(Tcw,q) = q + 2 [4]. Applying Theorem 1.7.1 with k = 1 and q = 8 yields

ω < 2.404. In chapter 2, we address [18, Problem 9.8], which was motivated by Theorem

1.7.1: Is R(T ⊠2cw,q) < (q + 2)2? We give an almost complete answer:

Theorem 1.7.2. For all q > 2, R(T ⊠2cw,q) = (q + 2)2, and 15 ≤R(T ⊠2cw,2) ≤ 16.

We also examine the Kronecker cube:

Theorem 1.7.3. For all q > 4, R(T ⊠3cw,q) = (q + 2)3.

Proofs are given in §2.2.

Proposition 2.2.1 below, combined with the proofs of Theorems 1.7.3 and 1.7.2, implies

Corollary 1.7.4. For all q > 4 and all N ,

R(T ⊠Ncw,q) ≥ (q + 1)N−3(q + 2)3,

and R(T ⊠Ncw,4) ≥ 36 × 5N−2.

Previously, in [19] it had been shown that R(T ⊠Ncw,q) ≥ (q + 1)N + 2N − 1 for all q,N , whereas

the bound in Corollary 1.7.4 is (q + 1)N + 3(q + 1)N−1 + 3(q + 1)N−2 + (q + 1)N−3.
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Previous to this work one might have hoped to prove ω < 2.3 simply by using the Kronecker

square of, e.g., Tcw,7. Now, the smallest possible calculation to give a new upper bound

on ω from a tensor that has been used in the laser method would be, e.g., to prove the

fourth Kronecker power of a small Coppersmith-Winograd tensor achieves the lower bound

of Corollary 1.7.4 (which we do not expect to happen). Of course, one could work directly

with the matrix multiplication tensor, in which case the cheapest possible upper bound

would come from proving the border rank of the 6 × 6 matrix multiplication tensor equaled

its known lower bound of 69 from [20].

1.8 New tensor for the laser method not subject to barriers

In light of the bad news for upper bounds of §1.7, we have the following.

Problem 1.8.1 (AFL Challenge [13]). Find new tensors for Strassen’s laser method not

subject to known barriers.

One promising tensor is the following skew cousin of the little Coppersmith-Winograd tensor,

first introduced in [21] and defined when q is even.

Tskewcw,q ∶=
q

∑
j=1
a0 ⊗ bj ⊗ cj + aj ⊗ b0 ⊗ cj +

q
2

∑
ξ=1
(aξ ⊗ bξ+ q

2
− aξ+ q

2
⊗ bξ)⊗ c0 ∈ (Cq+1)⊗3. (1.7)

In the language of [9], Tskewcw,q has the same “block structure” as Tcw,q, which immediately

implies Theorem 1.7.1 also holds for Tskewcw,q:

Proposition 1.8.2. For all k,

ω ≤ logq( 4
27(R(T

⊠k
skewcw,q))

3
k ). (1.8)

In particular, the known barriers do not apply to Tskewcw,2 for proving ω = 2 and to any

Tskewcw,q for q ≤ 10 for proving ω < 2.3. Unfortunately, we have
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Proposition 1.8.3. R(Tskewcw,q) ≥ q + 3.

Proposition 1.8.3 is proved in §2.2.

Thus R(Tskewcw,q) >R(Tcw,q) for all q, and in particular R(Tskewcw,2) = 5.

However, unlike Tcw,2, substantial strict sub-multiplicativity holds for the Kronecker square

of Tskewcw,2:

Theorem 1.8.4. R(T ⊠2skewcw,2) = 17.

In fact, the tensor T ⊠2skewcw,2 is much more familiar than it may at first seem. We say that

two tensors are isomorphic if they are the same up to a change of bases in A, B and C.

Let det3 ∈ (C9)⊗3 and perm3 ∈ (C9)⊗3 be the 3 × 3 determinant and permanent polynomials

considered as symmetric tensors.

Proposition 1.8.5. We have the following isomorphisms of tensors:

T ⊠2cw,2 ≅ perm3

T ⊠2skewcw,2 ≅ det3.

Proposition 1.8.5 is proved in §2.1.1. Hence, Theorem 1.8.4 is a consequence of the following.

Theorem 1.8.6. Rs(det3) =R(det3) = 17.

Proof. Rs(det3) ≤ 17 is proved in §2.3.2. R(det3) ≥ 17 is Theorem 3.1.2 and proved in §3.5.

The theorem then follows as R(det3) ≤Rs(det3).

We also prove the following in §2.3.1 (note that the first inequality is trivial).

Theorem 1.8.7. R(det3) ≤Rs(det3) ≤ 18.
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2. KRONECKER POWERS OF LASER METHOD TENSORS

Write Sk for the symmetric group on k letters. The wedge product α1 ∧⋯∧ ak is defined as

∑σ∈Sk
sgn(σ)aσ(1)⋯aσ(k) ∈ A⊗k, where ai ∈ A. The span of all such wedge products is denoted

by ΛkA ⊂ A⊗k. The special linear group SL(A) ⊂ GL(A) is set of linear automorphisms with

determinant one or, equivalently, those that preserve a1∧⋯∧aa under the induced action on

A⊗a, where a1, . . . , aa is a basis of A. Write GLn = GL(Cn) and SLn = SL(Cn). For X ⊂ A,

X⊥ ∶= {α ∈ A∗ ∣ α(x) = 0, x ∈X} is its annihilator.

2.1 Symmetry groups of tensors and polynomials

The group GL(A) ×GL(B) ×GL(C) acts naturally on A ⊗B ⊗ C. The map Φ ∶ GL(A) ×

GL(B)×GL(C)→ GL(A⊗B⊗C) has a two dimensional kernel kerΦ = {(λIdA, µIdB, νIdC) ∶

λµν = 1} ≃ (C∗)2.

In particular, the group (GL(A) ×GL(B) ×GL(C)) /(C∗)×2 is naturally identified with a

subgroup of GL(A⊗B ⊗C). Given T ∈ A⊗B ⊗C, the symmetry group of a tensor T is the

stabilizer of T in (GL(A) ×GL(B) ×GL(C)) /(C∗)×2, that is

GT ∶= {g ∈ (GL(A) ×GL(B) ×GL(C)) /(C∗)×2 ∣ g ⋅ T = T}. (2.1)

2.1.1 Proof of Proposition 1.8.5

Let

det3 = ∑
σ,τ∈S3

sgn(τ)aσ(1)τ(1) ⊗ bσ(2)τ(2) ⊗ cσ(3)τ(3),

perm3 = ∑
σ,τ∈S3

aσ(1)τ(1) ⊗ bσ(2)τ(2) ⊗ cσ(3)τ(3)

be the 3 × 3 determinant and permanent polynomials regarded as tensors in C9 ⊗C9 ⊗C9.
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Proof of Lemma 1.8.5. After the change of basis b̃0 ∶= −b0 and c̃1 ∶= c2, c̃2 ∶= −c1, we obtain

Tskewcw,2 = a0 ⊗ b1 ⊗ c̃2 − a0 ⊗ b2 ⊗ c̃1 + a2 ⊗ b̃0 ⊗ c1

− a1 ⊗ b̃0 ⊗ c̃2 + a1 ⊗ b2 ⊗ c0 − a2 ⊗ b1 ⊗ c0.

This shows that, after identifying the three spaces, Tskewcw,2 = a0 ∧ a1 ∧ a2 is the unique (up

to scale) skew-symmetric tensor in C3 ⊗C3 ⊗C3. In particular, Tskewcw,2 is invariant under

the action of SL3 on C3 ⊗C3 ⊗C3.

Consequently, the stabilizer of T ⊠2skewcw,2 in GL(C9) contains (and in fact equals) SL×23 ⋊Z2.

This is the stabilizer of the determinant polynomial det3. Since the determinant is charac-

terized by its stabilizer, we conclude.

The tensor Tcw,2 is symmetric and, after identifying the three spaces, it coincides with a0(a21+

a22) ∈ S3C3. After the change of basis ã1 ∶= a1+a2, ã2 ∶= a1−a2, we obtain Tcw,2 = a0ã1ã2 ∈ S3C3

is the square-free monomial of degree 3. The stabilizer of Tcw,2 under the action of GL3 on

S3C3 is TSL
3 ⋊S3, where TSL

3 denotes the torus of diagonal matrices with determinant one,

and S3 acts permuting the three basis elements.

Consequently, the stabilizer of T ⊠2cw,2 in GL(C9) contains (and in fact equals) (TSL
3 ⋊S3)×2 ⋊

Z2. This is the stabilizer of the permanent polynomial perm3. Since the permanent is

characterized by its stabilizer, we conclude.

Remark 2.1.1. For the reader’s convenience, here are short proofs that detm,permm are

characterized by their stabilizers: To see detm is characterized by its stabilizer, note that

SLm ×SLm = SL(E) × SL(F ) acting on Sm(E ⊗ F ) decomposes it to

⊕
∣π∣=m

SπE ⊗ SπF
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which is multiplicity free, with the only trivial module S1mE ⊗ S1mF = ΛmE ⊗ ΛmF . Here,

we have written Sπ for the Schur functor corresponding to the partition π. To see that

permm is characterized by its stabilizer, take the above decomposition and consider the

TSL(E) × TSL(F )-invariants, these are the weight zero spaces (SπE)0 ⊗ (SπF )0. By [22], one

has the decomposition of the weight zero spaces as SE
m ×SF

m-modules to (SπE)0⊗ (SπF )0 =

[π]E ⊗ [π]F . The only such that is trivial is the case π = (d).

Remark 2.1.2. Even Kronecker powers of Tskewcw,2 are invariant under SL×2k3 , and coincide, up

to a change of basis, with the Pascal determinants (see, e.g., [23, §8.3]), T ⊠2kskewcw,2 = PasDetk,3,

the unique, up to scale, tensor spanning (Λ3C3)⊗2k ⊂ S3((C3)⊗2k).

Remark 2.1.3. One can regard the 3 × 3 determinant and permanent as trilinear maps C3 ×

C3 ×C3 → C, where the three copies of C3 are the first, second and third column of a 3 × 3

matrix. From this point of view, the trilinear map given by the determinant is Tskewcw,2 as a

tensor and the one given by the permanent is Tcw,2 as a tensor. This perspective, combined

with the notion of product rank, immediately provides the upper bounds R(perm3) ≤ 16

(which is also a consequence of Lemma 1.8.5) and R(det3) ≤ 20, see [24, 25].

Remark 2.1.4. A similar change of basis as the one performed in the second part of proof of

Lemma 1.8.5 shows that, up to a change of basis, Tskewcw,q ∈ Λ3Cq+1. In particular, its even

Kronecker powers are symmetric tensors.

2.2 Koszul flattenings and lower bounds for Kronecker powers

In this section we review Koszul flattenings, prove a result on propagation of Koszul flattening

lower bounds under Kronecker products, and prove Theorems 1.7.2 and 1.7.3.

Respectively fix bases {ai}, {bj}, {ck} of the vector spaces A,B,C. Given T = ∑ijk T
ijkai ⊗
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bj ⊗ ck ∈ A⊗B ⊗C, define the linear map

T ∧pA ∶ ΛpA⊗B∗ → Λp+1A⊗C

X ⊗ β ↦ ∑ijkT
ijkβ(bj)(ai ∧X)⊗ ck.

Then [26, Proposition 4.1.1] states

R(T ) ≥
rank(T ∧pA )
(dim(A)−1

p
)
. (2.2)

This type of lower bound has a long history: in general, one takes the space A⊗B ⊗C and

linearly embeds it into a large space of matrices. Then if a rank one tensor maps to a rank

q matrix, a rank r tensor maps to a rank at most rq matrix, so the size rq + 1 minors give

equations testing for border rank r. In this case the size of the matrices is (ap)b× (
a

p+1)c and

a rank one tensor maps to a matrix of rank (a−1p ).

In practice, one takes a subspace A′∗ ⊂ A∗ of dimension 2p + 1 and restricts T (considered

as a trilinear form) to A′∗ ×B∗ ×C∗ to get an optimal bound, so the denominator (dim(A)−1p
)

is replaced by (2pp ) in (2.2). Write ϕ ∶ A → A/(A′∗)⊥ =∶ A′ for the projection onto the

quotient: the corresponding Koszul flattening map gives a lower bound for R(ϕ(T )), which,

by linearity, is a lower bound for R(T ). The case p = 1 is equivalent to Strassen’s equations

[27]. There are numerous expositions of Koszul flattenings and their generalizations, see,

e.g., [23, §7.3], [28, §7.2], [29], [30, §2.4], or [31].
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Proof of Proposition 1.8.3. Write q = 2u. Fix a space A′ = ⟨e0, e1, e2⟩. Define ϕ ∶ A→ A′ by

ϕ(a0) = e0,

ϕ(ai) = e1 for i = 1, . . . , u,

ϕ(as) = e2 for s = u + 1, . . . , q.

As an element of Λ3A, we have Tskewcw,q = a0 ∧∑u
i=1 ai ∧ au+i.

We prove that for T = Tskewcw,q, one obtains rank(T ∧1A′ ) = 2(q+2)+1. This provides the lower

bound R(T ) ≥ ⌈2(q+2)+12 ⌉ = q + 3.

We record the images via T ∧1A′ of a basis of A′ ⊗B∗. Fix the range of i = 1, . . . , u:

T ∧1A′ (e0 ⊗ β0) = (e0 ∧ e1)⊗∑u
i=1cu+i − (e0 ∧ e2)⊗∑u

i=1ci,

T ∧1A′ (e0 ⊗ βi) = (e0 ∧ e2)⊗ c0,

T ∧1A′ (e0 ⊗ βu+i) = (e0 ∧ e1)⊗ c0,

T ∧1A′ (e1 ⊗ β0) = (e1 ∧ e2)⊗∑u
i=1cu+i,

T ∧1A′ (e1 ⊗ βi) = (e0 ∧ e1)⊗ cu+i + e1 ∧ e2 ⊗ c0,

T ∧1A′ (e1 ⊗ βu+i) = e0 ∧ e1 ⊗ ci,

T ∧1A′ (e2 ⊗ β0) = (e1 ∧ e2)⊗∑u
i=1ci,

T ∧1A′ (e2 ⊗ βi) = e0 ∧ e2 ⊗ cu+i,

T ∧1A′ (e2 ⊗ βu+i) = (e0 ∧ e2)⊗ ci − e1 ∧ e2 ⊗ c0.

Notice that the image of ∑u
i=1(e1 ⊗ βi) −∑u

i=1(e2 ⊗ βu+i) − e0 ⊗ β0 is (up to scale) e1 ∧ e2 ⊗ c0.
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This shows that the image of T ∧1A′ contains

Λ2A′ ⊗ c0 + e1 ∧ e2 ⊗ ⟨∑u
i=1ci,∑u

i=1cu+i⟩ + ⟨e0 ∧ e1, e0 ∧ e2⟩⊗ ⟨c1, . . . , cq⟩.

These summands are in disjoint subspaces, so we conclude

rank(T ∧1A′ ) ≥ 3 + 2 + 2q = 2q + 5.

2.2.1 Propagation of lower bounds under Kronecker products

A tensor T ∈ A⊗B ⊗C, with dimB = dimC is 1A-generic if T (A∗) ⊂ B ⊗C contains a full

rank element. Here is a partial multiplicativity result for Koszul flattening lower bounds

under Kronecker products:

Proposition 2.2.1. Let T1 ∈ A1 ⊗B1 ⊗C1 with dimB1 = dimC1 be a tensor with a Koszul

flattening lower bound for border rank R(T ) ≥ r given by T1∧pA1
(possibly after a restriction

ϕ). Let T2 ∈ A2 ⊗B2 ⊗C2, with dimB2 = dimC2 = b2 be 1A2-generic. Then

R(T1 ⊠ T2) ≥
⎡⎢⎢⎢⎢⎢

rank(T1∧pA1
) ⋅ b2

(2p
p
)

⎤⎥⎥⎥⎥⎥
. (2.3)

In particular, if
rank(T1

∧p
A1
)

(2p
p
) ∈ Z, then R(T1 ⊠ T2) ≥ rb2.

Proof. After applying a restriction ϕ as described above, we may assume dimA1 = 2p + 1 so

that the lower bound for T1 is

R(T1) ≥
⎡⎢⎢⎢⎢⎢

rank(T1∧pA1
)

(2p
p
)

⎤⎥⎥⎥⎥⎥
.

Let α ∈ A∗2 be such that T (α) ∈ B2 ⊗ C2 has full rank b2, which exists by 1A2-genericity.
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Define ψ ∶ A1⊗A2 → A1 by ψ = IdA1⊗α and set Ψ ∶= ψ⊗ IdB1⊗C1⊗B2⊗C2 . Then (Ψ(T1⊠T2)∧pA1
)

provides the desired lower bound.

Indeed, the linear map (Ψ(T1 ⊠ T2)∧pA1
) coincides with T1

∧p
A1
⊠ T1(α). Since matrix rank is

multiplicative under Kronecker product, we conclude.

2.2.2 A short detour on computing ranks of equivariant maps

We briefly explain how to exploit Schur’s Lemma (see, e.g., [32, §1.2]) to compute the rank

of an equivariant linear map. This is a standard technique, used extensively e.g., in [33, 34]

and will reduce the proof of Theorems 1.7.2 and 1.7.3 to the computation of the ranks of

specific linear maps in small dimension.

Let G be a reductive group. In the proof of Theorems 1.7.2 and 1.7.3, G will be the product

of symmetric groups. Let ΛG be the set of irreducible representations of G. For λ ∈ ΛG, let

Wλ denote the corresponding irreducible module.

Suppose U,V are two representations of G. Write U =⊕λ∈ΛG
W⊕mλ

λ , V =⊕λ∈ΛG
W⊕ℓλ

λ , where

mλ is the multiplicity of Wλ in U and ℓλ is the multiplicity of Wλ in V . The direct summand

corresponding to λ is called the isotypic component of type λ.

Let f ∶ U → V be a G-equivariant map. By Schur’s Lemma [32, §1.2], f decomposes as

f = ⊕fλ, where fλ ∶ W⊕mλ

λ → W⊕ℓλ
λ . Consider multiplicity spaces Mλ, Lλ with dimMλ = mλ

and dimLλ = ℓλ so that W⊕mλ

λ ≃Mλ ⊗Wλ as a G-module, where G acts trivially on Mλ and

similarly W⊕ℓλ
λ ≃ Lλ ⊗Wλ.

By Schur’s Lemma, the map fλ ∶Mλ ⊗Wλ → Lλ ⊗Wλ decomposes as fλ = ϕλ ⊗ Id[λ], where

ϕλ ∶Mλ → Lλ. Thus rank(f) is uniquely determined by rank(ϕλ) for λ ∈ ΛG.

The ranks rank(ϕλ) can be computed via restrictions of f . For every λ, fix a vector wλ ∈Wλ,

so that Mλ ⊗ ⟨wλ⟩ is a subspace of U . Here and in what follows, for a subset X ⊂ V , ⟨X⟩
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denotes the span of X. Then the rank of the restriction of f to Mλ ⊗ ⟨wλ⟩ coincides with

the rank of ϕλ.

We conclude

rank(f) = ∑λ rank(ϕλ) ⋅ dimWλ.

The proof of Theorem 1.7.2 and proof of Theorem 1.7.3 will follow the algorithm described

above, exploiting the symmetries of Tcw,q. Consider the action of the symmetry group Sq on

A ⊗B ⊗C defined by permuting the basis elements with indices {1, . . . , q}. More precisely,

a permutation σ ∈ Sq induces the linear map defined by σ(ai) = aσ(i) for i = 1, . . . , q and

σ(a0) = a0. The group Sq acts on B,C similarly, and the simultaneous action on the three

factors defines an Sq-action on A⊗B ⊗C. The tensor Tcw,q is invariant under this action.

2.2.3 Proof of Theorem 1.7.2

When q = 3, the result is true by a direct calculation using the p = 2 Koszul flattening with

a sufficiently generic C5 ⊂ A∗, which is left to the reader. In what follows we treat the case

q > 3.

Write aij = ai ⊗ aj ∈ A⊗2 and similarly for B⊗2 and C⊗2. Let A′ = ⟨e0, e1, e2⟩ and define the

linear map ϕ2 ∶ A⊗2 → A′ via

ϕ2(a00) = ϕ2(a01) = ϕ2(a10) = e0 + e1,

ϕ2(a11) = e0,

ϕ2(a03) = ϕ2(a30) = e1 + e2

ϕ2(a22) = ϕ2(a31) = e2

ϕ2(a02) = ϕ2(a20) = e1

ϕ2(a0i) = ϕ2(ai0) = e1 for i = 4, . . . , q

ϕ2(aij) = 0 for all other pairs (i, j).
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For q ≥ 4, we apply the p = 1 Koszul flattening map to the restriction of T ⊠2cw,q determined by

ϕ2.

The tensor Tcw,q is invariant under the action of Sq acting on the indices {1, . . . , q} of the basis

elements of Cq+1. Therefore T ⊠2cw,q is invariant under the action of Sq×Sq on A⊗2⊗B⊗2⊗C⊗2.

Let Γ ∶= Sq−3 ×Sq−3 where Sq−3 is the permutation group on {4, . . . , q}; T ⊠2cw,q is invariant

under the action of Γ.

The projection ϕ2 is invariant under the action of Γ, so (ϕ2(T ⊠2cw,q)∧1A′ is Γ-equivariant, because

in general Koszul flattenings are equivariant under the product of the three general linear

groups, which is GL(A′) ×GL(B⊗2) ×GL(C⊗2) in our case.

We now apply the method described in §2.2.2 to compute rank((Tq)∧1A′).

Let [triv] denote the trivial Sq−3-representation and let V denote the standard representation,

that is the Specht module associated to the partition (q−4,1) of q−3. We have dim[triv] = 1

and dimV = q − 4. When q = 4 only the trivial representation appears.

The spaces B,C are isomorphic as Sq−3-modules and they decompose as B = C = [triv]⊕5⊕V .

After fixing a 5-dimensional multiplicity space C5 for the trivial isotypic component, we

write B∗ = C = C5 ⊗ [triv] ⊕ V . To distinguish the two Sq−3-actions, we write B∗⊗2 =

([triv]⊕5L ⊕ VL)⊗ ([triv]⊕5R ⊕ VR) and similarly for C⊗2

Thus,

B∗⊗2 = C⊗2 =C5⊗2 ⊗ ([triv]L ⊗ [triv]R)⊕

C5 ⊗ ([triv]L ⊗ VR) ⊕

C5 ⊗ (VL ⊗ [triv]R) ⊕

(VL ⊗ VR).
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Write W1, . . . ,W4 for the four irreducible representations in the decomposition above and let

M1, . . . ,M4 be the four corresponding multiplicity spaces.

Recall from [35] that a basis of V is given by standard Young tableaux of shape (q − 4,1)

(with entries in 4, . . . , q for consistency with the action of Sq−3); let wstd be the vector

corresponding to the standard tableau having 4,6, . . . , q in the first row and 5 in the second

row. We refer to [35, §7] for the straightening laws of the tableaux. Let wtriv be a generator

of the trivial representation [triv]. Writing Cq+1 = ⟨e0, . . . , eq⟩, we explicitly have wstd = e5−e4

and the multiplicity space 5-dimensional multiplicity space of the trivial representation is

⟨e0, . . . , e3,∑q
4ej⟩.

For each of the four isotypic components in the decomposition above, we fix a vector wi ∈Wi

and explicitly realize the subspaces Mi ⊗ ⟨wi⟩ of B∗⊗2 as follows:

Wi wi dimMi Mi ⊗ ⟨wi⟩

[triv]L ⊗ [triv]R wtriv ⊗wtriv 25

⟨βij ∶i,j=0,...,3⟩⊕
⟨∑q

j=4 βij ∶i=0,...,3⟩⊕
⟨∑q

i=4 βij ∶j=0,...,3⟩⊕
⟨∑q

i,j=4 βij⟩

[triv]L ⊗ VR wtriv ⊗wstd 5
⟨βi5−βi4∶i=0,...,3⟩⊕
⟨∑q

i=4(βi5−βi4)⟩

VL ⊗ [triv]R wstd ⊗wtriv 5
⟨β5j−β4j ∶j=0,...,3⟩⊕
⟨∑q

j=4(β5j−β4j)⟩

VL ⊗ VR wstd ⊗wstd 1 ⟨β55 − β45 − β54 + β44⟩.

The subspaces in C⊗2 are realized similarly.

Since (T ⊠2cw,q)∧1A′ is Γ-equivariant, by Schur’s Lemma, it has the isotypic decomposition (T ⊠2cw,q)∧1A′ =
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f1 ⊕ f2 ⊕ f3 ⊕ f4, where

fi ∶ A′ ⊗ (Mi ⊗Wi)→ Λ2A′ ⊗ (Mi ⊗Wi). (2.4)

As explained in §2.2.2, it suffices to compute the ranks of the four restrictions Φi ∶ A′⊗Mi⊗

⟨wi⟩→ Λ2A′ ⊗Mi ⊗ ⟨wi⟩ to the multiplicities spaces.

The four matrices representing Φ1, . . . ,Φ4 are computed by a routine which exploits their

structure. The script to compute the matrices and their ranks is available at

https://www.math.tamu.edu/~jml/CGLVkronsupp.html, Appendix D. The method to com-

pute the matrices is explained in Section 2.4.

The script provides an expression for the entries of the matrices Φi which are univariate

polynomials in q up to a global univariate polynomial factor. The expressions are valid for

q ≥ 5. The rank of the Koszul flattening in the cases q = 3 and q = 4 is computed directly.

We determine a lower bound on rank(Φi) by computing a matrix Pi ⋅ Φi ⋅Qi, where Pi is a

rectangular matrix whose entries are rational functions of q (well defined for q ≥ 5) and Qi is

a rectangular matrix whose entries are constant. The resulting matrix Pi ⋅Φi ⋅Qi is a square

matrix, upper triangular with ±1 on the diagonal, so that the size of PiΦiQi gives a lower

bound on rank(Φi).

We summarize the results of the script in the following table.

Wi dimWi dimMi rank(Φi) contribution to total rank

[triv]L ⊗ [triv]R 1 25 72 72

[triv]L ⊗ VR q − 4 5 12 12(q − 4)

VL ⊗ [triv]R q − 4 5 12 12(q − 4)

VL ⊗ VR 1 (q − 4)2 2 2(q − 4)2
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Adding the total contributions, we obtain

rank(T ∧1A′ ) = 2 ⋅ (q − 4)2 + 12 ⋅ (q − 4) + 12 ⋅ (q − 4) + 72 ⋅ 1 = 2(q + 2)2.

This concludes the proof of Theorem 1.7.2.

2.2.4 Proof of Theorem 1.7.3

We will give a lower bound on R(T ⊠3cw,q) by computing its Koszul flattening for p = 2. Write

aijk = ai ⊗ aj ⊗ ak ∈ A⊗3 and similarly for B⊗3 and C⊗3. Let {αijk} ⊂ A∗⊗3 be the dual basis

to {aijk} ⊂ A⊗3. Let A′ = ⟨e0, . . . , e4⟩ be a 5-dimensional space and let {e0, . . . , e4} be the

dual basis of {e0, . . . , e4} and define ϕ3 ∶ A⊗3 → A′ to be the linear map whose transpose

ϕT
3 ∶ A′

∗ → A∗⊗3 is given by

ϕT
3 (e0) = α000

ϕT
3 (e1) = ∑

q
i=1(αi00 + α0i0 + α00i)

ϕT
3 (e2) = α001 + α010 + α012 + α102 + α110 + α121 + α200 + α211

ϕT
3 (e3) = α022 + α030 + α031 + α100 + α103 − α120 + α210 + α212 + α300

ϕT
3 (e4) = α002 + α004 + α011 + α014 + α020 + α023 + α032 + α040 + α100 + α122 + α220 + α303.

Let Tq = ϕ3(T ⊠3cw,q) ∈ A′ ⊗B⊗3 ⊗C⊗3 and consider the Koszul flattening

(Tq)∧2A′ ∶ Λ2A′ ⊗B∗⊗3 → Λ3A′ ⊗C⊗3.

We will show rank((Tq)∧2A′) = 6(q + 2)3, which implies R(T ⊠3cw,q) ≥ (q + 2)3.

We employ the same method as in Section 2.2.3 in the case of T ⊠2cw,q. The Koszul flattening

is equivariant for the action of Γ = S×3q−4 where Sq−4 acts on {5, . . . , q}. In particular Cq+1
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splits under the action of Sq−4 into a 6-dimensional subspace of invariants C6 ⊗ [triv] =

⟨e0, . . . , e4, e5 + ⋯ + eq⟩ and a copy of the standard representation V = ⟨ei − e5 ∶ i = 6, . . . , q⟩,

with dimV = q − 5.

Hence, the spaces B⊗3 and C⊗3 split into the direct sum of 8 isotypic components for the

action of Γ as follows (we use indices 1,2,3 to denote the trivial or the standard representation

on the first, second or third factor):

B∗⊗3 ≃ C⊗3 = (C6)⊗3 ⊗ ([triv]1 ⊗ [triv]2 ⊗ [triv]3)

⊕ (C6)⊗2 ⊗ [([triv]1 ⊗ [triv]2 ⊗ V3)

⊕ ([triv]1 ⊗ V2 ⊗ [triv]3)

⊕ (V1 ⊗ [triv]2 ⊗ [triv]3)]

⊕ (C6)⊗ [([triv]1 ⊗ V2 ⊗ V3)

⊕ (V1 ⊗ V2 ⊗ [triv]3)

⊕ (V1 ⊗ [triv]2 ⊗ V3)]

⊕ V1 ⊗ V2 ⊗ V3

Similarly to the square case, for each of the eight isotypic components, we consider wi ∈Wi

where Wi is the corresponding irreducible and we compute the rank of the restriction Ψi ∶

Λ2A′ ⊗Mi ⊗ ⟨wi⟩→ Λ3A′ ⊗Mi ⊗ ⟨wi⟩ of the Koszul flattening.

The matrices representing the maps Ψi are computed exploiting the structure of the tensors

involved, following the method described in Section 2.4. The expression computed by the

script is valid for q ≥ 6. The case q = 5 is computed explicitly. Their ranks are computed by

reducing Ψi to a triangular matrix as in the previous case.

The ranks of the restrictions are recorded in the following table:
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Wi dimWi dimMi rank(Ψi) total contribution

[triv]1 ⊗ [triv]2 ⊗ [triv]3 1 63 = 216 2058 2058

[triv]1 ⊗ [triv]2 ⊗ V3

(and permutations)

(q − 5)

(three times)

62 = 36

(three times)

294

(three times)
3 ⋅ 294(q − 5)

[triv]1 ⊗ V2 ⊗ V3

(and permutations)

(q − 5)2

(three times)

6

(three times)

42

(three times)
3 ⋅ 42(q − 5)2

V1 ⊗ V2 ⊗ V3 (q − 5)3 1 6 6(q − 5)3

Adding all the contributions together, we obtain

rank(T ∧2A′ ) =6(q − 5)3 + 3 ⋅ 42(q − 5)2 + 3 ⋅ 294(q − 5) + 2058 ⋅ 1 = 6 ⋅ (q + 2)3.

This concludes the proof of Theorem 1.7.3.

2.3 Upper bounds for Waring rank and border rank of det3

2.3.1 Proof of upper bound in Theorem 1.8.7

We give the rank 18 decomposition for det3 explicitly, as a collection of 18 linear forms on

C9 = C3⊗C3 whose cubes add up to det3. The linear forms are given in coordinates recorded

in the matrices below: the 3 × 3 matrix (ζij) represents the linear forms ∑ij ζijxij. This

presentation highlights some of the symmetries of the decomposition.

Let ϑ = exp(2πi/6) and let ϑ be its inverse. The tensor det3 = T ⊠2skewcw,2 = det(xij) ∈ S3(C3 ⊗

C3) satisfies

det3 =
18

∑
1

L3
i
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where L1, . . . , L18 are the 18 linear forms given by the following coordinates:

L1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−ϑ 0 0

0 −1
3 0

0 0 ϑ

⎞
⎟⎟⎟⎟⎟⎟
⎠

L2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−ϑ 0 0

0 −1
3 0

0 0 ϑ

⎞
⎟⎟⎟⎟⎟⎟
⎠

L3 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−ϑ 0 0

0 1
3ϑ 0

0 0 ϑ

⎞
⎟⎟⎟⎟⎟⎟
⎠

L4 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−1 0 0

0 0 −ϑ

0 −1
3ϑ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L5 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

ϑ 0 0

0 0 1

0 −1
3ϑ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L6 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

ϑ 0 0

0 0 −ϑ

0 −1
3ϑ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L7 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1
3ϑ 0

−ϑ 0 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

L8 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1
3ϑ 0

−ϑ 0 0

0 0 −ϑ

⎞
⎟⎟⎟⎟⎟⎟
⎠

L9 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1
3ϑ 0

−ϑ 0 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

L10 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −1
3ϑ 0

0 0 ϑ

−1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L11 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −1
3ϑ 0

0 0 ϑ

−1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L12 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1
3 0

0 0 −1

−1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L13 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1

−1 0 0

0 −1
3 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L14 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1

ϑ 0 0

0 1
3ϑ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L15 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1

ϑ 0 0

0 1
3ϑ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L16 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 ϑ

0 −1
3ϑ 0

1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L17 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 ϑ

0 −1
3ϑ 0

−ϑ 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L18 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 ϑ

0 −1
3ϑ 0

1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The equality can be verified by hand. A Macaulay2 file performing the calculation is available

at https://www.math.tamu.edu/~jml/CGLVkronsupp.html, Appendix B.
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2.3.2 Proof of Theorem 1.8.6

As in the case of Theorem 1.8.7, we prove Theorem 1.8.6 by explicitly giving 17 linear forms,

depending on a parameter t, whose cubes provide a border rank 17 expression for det3. The

algebraic numbers involved are more complicated than in the previous case.

The result was achieved by numerical methods, which allowed us to sparsify the decom-

position and ultimately determine the value of the coefficients. The linear forms in the

decomposition are described below.
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Consider

L1(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z1 0 0

0 z2t 0

−1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L2(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z3 0 0

z4 0 z5t

z6 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L3(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−z36 z7t 0

−z38 0 −z39t

0 0 t

⎞
⎟⎟⎟⎟⎟⎟
⎠

L4(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 t

−z34 0 0

0 z8t −z35t

⎞
⎟⎟⎟⎟⎟⎟
⎠

L5(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −z19t −z20t

0 0 0

−1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L6(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−z22 z9t 0

−z23 0 −z24t

−z25 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L7(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z10 z11t 0

z12 0 z13t

z14 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L8(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z15 −t 0

z16 0 z17t

z18 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L9(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 z19t z20t

0 z21t 0

1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L10(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−z41 0 0

0 0 0

−z44 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L11(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z22 0 0

z23 0 z24t

z25 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L12(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−z31 z26t 0

0 z27t 0

0 0 t

⎞
⎟⎟⎟⎟⎟⎟
⎠

L13(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z28 z29t 0

z30 0 −t

0 t 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

L14(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z31 z32t 0

0 0 0

0 z33t −t

⎞
⎟⎟⎟⎟⎟⎟
⎠

L15(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 −t

z34 0 0

0 0 z35t

⎞
⎟⎟⎟⎟⎟⎟
⎠

L16(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z36 z37t 0

z38 0 z39t

0 z40t −t

⎞
⎟⎟⎟⎟⎟⎟
⎠

L17(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z41 z42t 0

0 z43t 0

z44 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

The coefficients z1, . . . , z44 are algebraic numbers described as follows. Let y∗ be a real root
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of the polynomial

x27 − 2x26 + 17x25 − 29x24 + 81x23 + 52x22 − 726x21 + 3451x20 − 10901x19 + 25738x18−

50663x17 + 72133x16 − 72973x15 + 10444x14 + 138860x13 − 308611x12 + 427344x11

− 267416x10 − 196096x9 + 762736x8 − 1236736x7 + 1092352x6 − 537600x5 − 42240x4+

684032x3 − 1136640x2 + 1146880x − 520192.

For i = 1, . . . ,44, we consider algebraic numbers yj in the field extension Q[y∗], described

as a polynomial of degree (at most) 26 in y∗ with rational coefficients. Notice that all

the yj’s are real. The expressions of the y1, . . . , y44 in terms of y∗ are provided in the file

yy_exps.m2 at https://www.math.tamu.edu/~jml/CGLVkronsupp.html, Appendix C. Let

zj be the unique real cubic root of yj.

We are going to prove that, with this choice of coefficients zj,

t2det3 +O(t3) =
17

∑
i=1
Li(t)3. (2.5)

The condition t2det3 + O(t3) = ∑17
i=1Li(t)3 is equivalent to the fact that the degree 0 and

the degree 1 components of ∑17
i=1Li(t)3 vanish and that the degree 2 component equals det3.

Given the sparse structure of the Li(t), this reduces to a system of 54 cubic equations in the

44 unknowns z1, . . . , z44. Our goal is to show that the algebraic numbers described above are

a solution of this system.

We show that the zi’s satisfy each equation as follows. After evaluating the equations at the

zi’s, there are two possible cases

1. all monomials appearing in the equation are elements of Q[y∗]; we say that this is an
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equation of type 1; there are 14 such equations;

2. at least one monomial appearing in the equation is not an element of Q[y∗]; we say

that this is an equation of type 2; there are 40 such equations.

For equations of type 1, we provide expressions of each monomial in terms of y∗. To verify

that each expression is indeed equal to the corresponding monomial, it suffices to compare

the cube of the given expression and the expression obtained by evaluating the monomial

at the yj’s. Finally, the equation can be verified in Q[y∗]. This is performed by the file

checkingType1eqns.m2.

For equations of type 2, let u be one of the monomials which do not belong to Q[y∗]. We

claim that it is possible to choose the monomial in such a way that Q[u3] = Q[y∗]. For each

equation, we choose one of the monomials and we verify the claim as follows. The element

u3 has an expression in terms of y∗ which equals the chosen monomial evaluated at the yi’s.

Let Mu be the 27 × 27 matrix with rational entries such that

(1, u3,⋯, u3⋅26) = (1, y∗, . . . , y26∗ ) ⋅Mu;

Mu can be computed directly by considering the expressions of the powers of u3 in terms of

y∗. Then Q[u3] = Q[y∗] if and only if Mu is full rank.

In particular y∗ has an expression in terms of u3, which can be computed inverting the matrix

Mu. A consequence of this is that Q[u] = Q[y∗, u].

At this point, we observe that Q[u] contains the other monomials occurring in the equation

as well. To see this, we proceed as in the case of equations of type 1. For each monomial

occurring in the equation, we provide an expression in terms of u (in fact, to speed up

the calculation, we provide an expression in terms of u and y∗, which is equivalent to an

expression in u because Q[u3] = Q[y∗] and y∗ has a unique expression in terms of u3); we
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compare the cube of this expression (appropriately reduced modulo the minimal polynomial

of y∗ and the relation between u3 and y∗) with the expression obtained by evaluating the

monomial at the yi’s (expressed in terms of y∗). This shows that all monomials occurring

in the expression belong to Q[u], and verifies that the given expressions are indeed equal to

the corresponding monomials. Finally, the equation is verified in Q[u] as in the case of type

1. This is performed by the file checkingType2eqns.m2.

2.3.3 Discussion of how the decomposition was obtained

Many steps were accomplished by finding solutions of polynomial equations by nonlinear

optimization. In each case, this was accomplished using a variant of Newton’s method

applied to the mapping of variable values to corresponding polynomial values. The result of

this procedure in each case is limited precision machine floating point numbers.

First, we attempted to solve the equations describing a Waring rank 17 decomposition of det3

with nonlinear optimization, namely, det3 = ∑17
i=1(w′i)⊗3, where w′i ∈ C3×3. Instead of finding a

solution to working precision, we obtained a sequence of local refinements to an approximate

solution where the norm of the defect is slowly converging to to zero, and some of the

parameter values are exploding to infinity. Numerically, these are Waring decompositions of

polynomials very close to det3.

Next, this approximate solution needed to be upgraded to a solution to equation (2.5).

We found a choice of parameters in the neighborhood of a solution, and then applied local

optimization to solve to working precision. We used the following method: Consider the

linear mapping M ∶ C17 → S3(C3×3), M(ei) = (w′i)⊗3, and let M = UΣV ∗ be its singular

value decomposition (with respect to the standard inner products for the natural coordinate

systems). We observed that the singular values seemed to be naturally partitioned by order

of magnitude. We estimated this magnitude factor as t0 ≈ 10−3, and wrote Σ′ as Σ where

we multiplied each singular value by (t/t0)k, with k chosen to agree with this observed
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partitioning, so that the constants remaining were reasonably sized. Finally, we let M ′ =

UΣ′V ∗, which has entries in C[[t]]. Thus M ′ is a representation of the map M with a

parameter t.

Next, for each i, we optimized to find a best fit to the equation (ai + tbi + t2ci)⊗3 = M ′(ei),

which is defined by polynomial equations in the entries of ai, bi and ci. The ai, bi and ci we

constructed in this way proved to be a good initial guess to optimize equation (2.5), and we

immediately saw quadratic convergence to a solution to machine precision. At this point,

we greedily sparsified the solution by speculatively zero-ing values and re-optimizing, rolling

back one step in case of failure. After sparsification, it turned out the ci were not needed.

The resulting matrices are those given in the proof.

To compute the minimal polynomials and other integer relationships between quantities, we

used Lenstra-Lenstra-Lovász integer lattice basis reduction [36]. As an example, let ζ ∈ R

be approximately an algebraic number of degree k. Let N be a large number inversely

proportional to the error of ζ. Consider the integer lattice with basis {ei + ⌊Nζ i⌋ek+1} ⊂

Zk+2, for 0 ≤ i ≤ k. Then elements of this lattice are of the form v0e0 + ⋯ + vkek + Eek+1,

where E ≈ Np(ζ), p = v0 + v1x + ⋯xkxk. Polynomials p for which ζ is an approximate root

are distinguished by the property of having relatively small Euclidean norm in this lattice.

Computing a small norm vector in an integer lattice is accomplished by LLL reduction of a

known basis.

For example, the fact that the number field of degree 27 obtained by adjoining any z3α to Q

contains all the rest was determined via LLL reduction, looking for expressions of z3α as a

polynomial in z3β for some fixed β. These expressions of z3α in a common number field can be

checked to have the correct minimal polynomial, and thus agree with our initial description

of the zα. LLL reduction was also used to find the expressions of values as polynomials in

the primitive root of the various number fields.
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After refining the known value of the parameters to 10,000 bits of precision using Newton’s

method, LLL reduction was successful in identifying the minimal polynomials. The degrees

were simply guessed, and the results checked by evaluating the computed polynomials in the

parameters to higher precision.

Remark 2.3.1. With the minimal polynomial information, it is possible to check that equa-

tion (2.5) is satisfied to any desired precision by the parameters.

2.4 A method to compute flattenings of structured tensors

In this section, we explain how to compute the matrices Φ1, . . . ,Φ4 in Section 2.2.3 and the

matrices Ψ1, . . . ,Ψ8 in Section 2.2.4.

The matrices Φ1, . . . ,Φ4 and Ψ1, . . . ,Ψ8 arise via a series of tensor contractions of highly

structured tensors. In this section, we introduce the notion of box parametrized sequence of

tensors. Lemma 2.4.2 below shows that contraction of box parametrized tensors gives rise

to box parametrized tensors; in addition, the expression of the tensors resulting from the

contraction is particularly easy to control.

We will then show that the tensors in Section 2.2.3 and Section 2.2.4 which give rise to the

matrices Φ1, . . . ,Φ4 and Ψ1, . . . ,Ψ8 are box parametrized. This allows us to track down the

entries of the final matrices as functions of the dimension q.

The full calculation of the matrices is left to the scripts available in Appendix D at https:

//www.math.tamu.edu/~jml/CGLVkronsupp.html.

The point of view is partially inspired to the interpretation of tensors in communication

models, where a tensor on k factors is regarded as a function from N ×⋯ ×N
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

→ C with

finite support sending a k-tuple of integers to the corresponding coefficient of the tensor.

Explicitly, for every j = 1, . . . , k fix a basis {v(j)i } on the j-th factor: given a finite support

Σ ⊂ N×k, the tensor T = ∑(i1,...,ik)∈Σ ti1,...,ikv
(1)
i1
⊗⋯⊗ v(k)ik

corresponds to the function defined
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by T (i1, . . . , ik) = ti1,...,ik . We do not explicitly write the dimensions of the factors.

Let T = {Tq ∶ q ∈ N} be a sequence of tensors of order k. We say that T is basic box-

parametrized if, for every q

Tq = p(q) ∑
(i1,...,ik)∈Σq

v
(1)
i1
⊗⋯⊗ v(k)ik

where p(q) is a univariate polynomial in q and the support Σq is defined by conditions

ηjq + ϑj ≤ ij ≤ Hjq +Θj for ηj,Hj ∈ {0,1} and ϑj,Θj ∈ Z≥0, and any number (not depending

on q) of equalities ij = ij′ among indices. Without loss of generality, assume that the

inequalities are sharp for every j, in the sense that for every ij satisfying the j-th inequality,

the basis element v(j)ij
does appear in Tq. We often say that T is basic box-parametrized for

q ≥ q0 for some q0, in the sense that the sequence has the desired structure for q ≥ q0.

Example 2.4.1. The sequence Tq = v(1)0 ⊗∑
q
i=1 v

(2)
i ⊗v

(3)
i is basic box-parametrized for q ≥ 1,

with support Σq defined by the conditions

0 ≤ i1 ≤ 0, 1 ≤ i2 ≤ q, 1 ≤ i2 ≤ q, i2 = i3.

We define a contraction operation between the j1-th and the j2-th factor of T , obtained by

summing over the corresponding indices: in other words, the contraction is the image of T

via the trace map ∑u(j1)i ⊗ u(j2)i applied to the j1-th and j2-th factors, where {u(j)i } is the

dual basis to the fixed basis {v(j)i } on the j-th factor.

Lemma 2.4.2. Let T , T ′ be basic box-parametrized tensors for q ≥ q0 and q ≥ q′0 respectively.

Then

• T ⊗ T ′ is basic box-parametrized for q ≥max{q0, q′0};

• the contraction of T on factors j1 and j2 is basic box-parametrized for q ≥ max{∣ϑj1 −
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ϑj2 ∣, ∣Θj1 −Θj2 ∣, q0}; moreover, if the univariate coefficient p(q) of T is a polynomial of

degree e, then the coefficient of the tensor resulting from the contraction has degree at

most e + 1.

Proof. The first statement is immediate.

For the second statement, without loss of generality assume j1 = 1 and j2 = 2. First observe

that if T is basic box-parametrized, then summing over the first index, or equivalently

applying the linear map ∑i u
(1)
i , generates a basic box-parametrized tensor; the coefficient of

this tensor has the same degree as the coefficient of T unless the first index i1 is not related

by equality to any other index, and η1 = 0 and H1 = 1; in the latter case, the degree of the

coefficient is increased by one.

Now, contraction of T on factors 1 and 2 is equivalent to first imposing the equality i1 = i2 on

the support Φq and then summing up on the first and second index. Imposing the equality

i1 = i2 effects the inequalities of i1 and i2 as follows:

max{η1q + ϑ1, η2q + ϑ2} ≤ i1 = i2 ≤min{H1q +Θ1,H2q +Θ2}.

Each of the two bounds can be replaced by one the two linear functions (uniformly in q)

whenever q ≥ {∣ϑ1 − ϑ2∣, ∣Θ1 −Θ2∣}. This, together with the previous observation, concludes

the proof.

Given two sequences of tensors T (1),T (2) of order k, we define their sum as T1 + T2 = {T (1)q +

T
(2)
q ∶ q ∈ N}. We say that a sequence T is box parametrized (for q ≥ q0) if T is a finite sum of

basic box-parametrized sequences of tensors(for q ≥ q0). Observe that a sequence of tensors

with constant dimensions is box parametrized if and only if its coefficients are univariate

polynomials in q.
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We will show that the maps Φ1, . . . ,Φ4 in the proof of Theorem 1.7.2 in Section 2.2.3 and

the maps Ψ1, . . . ,Ψ8 in the proof of Theorem 1.7.3 in Section 2.2.4 are box parametrized.

The scripts in Appendix D perform the contraction of box parametrized tensors according to

Lemma 2.4.2, keeping track of the univariate polynomial coefficients and of the lower bound

q0 for which the expressions are valid. The final result is that the maps Φ1, . . . ,Φ4 are box

parametrized for q ≥ 5 and the maps Ψ1, . . . ,Ψ8 are box parametrized for q ≥ 6.

In the following, we show that the tensors involved in the various contractions are box

parametrized. Lemma 2.4.2 guarantees that the results of the contractions are box parametrized

as well.

First, notice that Tcw,q is box parametrized for q ≥ 1, as it is the sum of three tensors as

the ones described in Example 2.4.1. By Lemma 2.4.2, we deduce that T⊗2cw,q (regarded as a

tensor of order 6) and T⊗3cw,q (regarded as a tensor of order 9) are box parametrized. In all

three cases, the polynomials defining the coefficients have degree 0.

2.4.1 Restriction

We show that the two restriction maps ϕ2 ∶ A⊗2 → C3 and ϕ3 ∶ A⊗3 → C5 are box parametrized

as tensors of order 3 and 4 respectively.

Write ϕ2 =X0⊗e0+X1⊗e1+X2⊗e2, where C3 = ⟨e0, e1, e2⟩ and X0,X1,X2 ∈ A⊗2∗. It suffices

to show that X0,X1,X2 are box parametrized, regarded as tensors of order two. Using a

basis dual to the basis of A⊗2, we have

X0 = α0 ⊗ α1 + α1 ⊗ α0 + α1 ⊗ α1

X1 = α0 ⊗∑q
1αi +∑q

1αi ⊗ α0

X2 = α0 ⊗ α2 + α2 ⊗ α0 + α2 ⊗ α1 + α3 ⊗ α3.

This shows that X0,X1,X2 are box parametrized.
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Similarly, write ϕ3 = Y0⊗e0+⋯+Y4⊗e4, where C5 = ⟨e0, . . . , e4⟩ and Y0, . . . , Y4 ∈ A⊗3∗. Directly

from the definition in Section 2.2.4, it is immediate that Y0, . . . , Y4 are box parametrized and

therefore ϕ3 is box parametrized as well.

Applying Lemma 2.4.2, we deduce that the two sequences ϕ2(T⊗2cw,q) and ϕ3(T⊗3cw,q) are box

parametrized.

2.4.2 Koszul maps

The Koszul differentials on C3 and C5 used in the definition of the Koszul flattenings are the

skew-symmetric projections C3 ⊗ C3 → Λ2C3 and Λ2C5 ⊗ C5 → Λ3C5. They are both fixed

size, therefore they are box parametrized.

By Lemma 2.4.2, we deduce that the resulting Koszul flattenings (ϕ2(T ⊠2cw,q))∧1 and (ϕ3(T ⊠3cw,q))∧2

are box parametrized, regarded as tensors of order 6 and 8 respectively.

2.4.3 Diagonalizing maps

Recall that the maps Φ1, . . . ,Φ4 in the proof of Theorem 1.7.2 and the maps Ψ1, . . . ,Ψ8

in the proof of Theorem 1.7.3 are the restrictions of (ϕ2(T ⊠2cw,q))∧1 and (ϕ3(T ⊠3cw,q))∧2 to the

multiplicity spaces of the isotypic components for the action of Sq−3 and Sq−5.

We analyze the square case in detail. For the square case, let M be the matrix of change

of basis on Cq from the basis {e1, . . . , eq} to the basis {e1, e2, e3,∑q
4 ei, e5 − e4, . . . , eq − eq−1}.

Explicitly

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Id3

1 1 ⋯ 1

−1 1

⋱ ⋱

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In particular,M diagonalizes the action of Sq−3 and therefore the change of basis defined by

IdC3 ⊠M⊠2 on C3 ⊗B⊗2 brings the matrix representing (ϕ2(T ⊠2cw,q))∧1 into a block diagonal
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matrix, whose diagonal blocks are matrices representing the maps fi ∶ C3 ⊗ (Mi ⊗Wi) →

Λ2C3 ⊗ (Mi ⊗Wi) from (2.4); denote the diagonal blocks by fM1 , . . . , fM4 .

Because of our choice of basis, the multiplicity subspaces C3⊗⟨wi⟩⊗Mi and Λ2C3⊗⟨wi⟩⊗Mi

described in Section 2.2.3 are spanned by basis vectors, so that the matrices representing

Φ1, . . . ,Φ4 are given by submatrices of fM1 , . . . , fM4 . More precisely, setting πinv, πstd to be

the matrices of the two coordinate projections of Cq onto ⟨e1, . . . , e4⟩ and ⟨e5⟩, we have

Φ1 = (IdΛ2C3 ⊠ πinv ⊠ πinv) ○ fM1 ○ (IdC3 ⊠ πinv ⊠ πinv)T ,

Φ2 = (IdΛ2C3 ⊠ πinv ⊠ πstd) ○ fM2 ○ (IdC3 ⊠ πinv ⊠ πstd)T ,

Φ3 = (IdΛ2C3 ⊠ πstd ⊠ πinv) ○ fM3 ○ (IdC3 ⊠ πstd ⊠ πinv)T ,

Φ4 = (IdΛ2C3 ⊠ πstd ⊠ πstd) ○ fM4 ○ (IdC3 ⊠ πstd ⊠ πstd)T .

Since the composition can be performed on the single factors, by Lemma 2.4.2 it suffices to

show that the four matricesM−1○πT
inv,M−1○πT

std, πinv○M and πstd○M are box parametrized.

From the structure of M, it is clear that πinv ○M and πstd ○M are box parametrized. The

computation of M−1 is straightforward, and it is easy to see that M−1 ○ πT
inv, M−1 ○ πT

std are

box parametrized.

This shows that Φ1, . . . ,Φ4 are box parametrized. The script available in Appendix D com-

putes the box parametrized representation of Φ1, . . . ,Φ4 starting from the box parametrized

version of Tcw, the restriction map ϕ2, the Koszul differential and the four matricesM−1○πT
inv,

M−1 ○ πT
std, πinv ○M and πstd ○M.

The cube case is similar. Now, restriction space C3 is a C5, the top left block in the matrix

M is a 5 × 5 identity block, the result of the conjugation by M is block diagonal with 8

blocks, corresponding to the eight isotypic components. The coordinate projections πinv and
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πstd are onto ⟨e1, . . . , e6⟩ and ⟨e7⟩. The script computes the box parametrized representation

of the matrices Ψ1, . . . ,Ψ8.
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3. BORDER APOLARITY OF TENSORS

3.1 History of border rank lower bounds

This chapter deals exclusively with border rank lower bounds. Initially border rank lower

bounds for tensors were obtained by finding a polynomial vanishing on the set of tensors

of border rank at most r, σr(Seg(PA × PB × PC)), and then showing the polynomial is

nonzero when evaluated on the tensor in question. These polynomials were found by reducing

multi-linear algebra to linear algebra [37], and also exploiting the large symmetry group of

σr(Seg(PA × PB × PC)) to help find the polynomials [38, 33]. Such methods are subject

to barriers [31, 39] (see [40, §2.2] for an overview). A technique allowing one to go slightly

beyond the barriers was introduced in [41]. The novelty there was, in addition to exploiting

the symmetry group of σr(Seg(PA × PB × PC)), to also exploit the symmetry group of the

tensor one wanted to prove lower bounds on. This border substitution method of [41] relied

on first using the symmetry of the tensor to study its degenerations (via the Normal form

lemma), and then to use polynomials on the degeneration of the tensor.

The classical apolarity method was introduced for studying the decomposition of a homo-

geneous polynomial of degree d into a sum of d-th powers of linear forms (Waring rank).

It was generalized to study ranks of points with respect to toric varieties. To prove rank

lower bounds with it, one takes the ideal of linear differential operators annihilating a given

polynomial P and proves it does not contain an ideal annihilating r distinct points. In [42],

Buczyńska and Buczyński introduce new language that enables them to extend this classical

method to the border rank setting. They then extend the normal form lemma to the entire

ideal associated to the border rank decomposition of the tensor (their Fixed ideal theorem).

(In the language introduced below, the Normal form lemma is the (111) case of the Fixed

ideal theorem.) Our contribution to their theory is to convert their Fixed ideal theorem
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into an effective algorithm in the situation of tensors with large symmetry groups and to

successfully apply it to important tensors. This contribution was obtained while [42] was

being developed and in regular discussions with Buczyńska and Buczyński.

Given r, the algorithm builds a candidate ideal step by step, starting in low (multi)-degree

and building upwards. At each building step, there is a test that, if the so-far built ideal

fails to pass, it is eliminated from consideration. If at any point there are no candidates,

one concludes there is no border rank r decomposition. All the results of this chapter just

use the first steps of this algorithm. For tensors with symmetry, the Fixed ideal theorem

drastically reduces the candidates one needs to consider, see §3.2.3 restriction (iv).

The eliminations are obtained when the ranks of certain linear maps are too large. The linear

maps are multiplication maps. On one hand, in order for a candidate space of polynomials

to be an ideal, it must be closed under multiplication. On the other hand, our hypothesis

that the ideal arises via a border rank r decomposition upper-bounds its dimension in each

multi-degree (in fact one may assume it has codimension r in each multi-degree).

We use representation theory at several levels: The border apolarity method applied to

tensors involves the study of an ideal of polynomials in three sets of variables, so we have

a Z3-graded ring of polynomials. This enables us to study a putative ideal I in each multi-

degree. For tensors with “large” symmetry groups, for each (i, j, k) ∈ Z3 the Fixed ideal

theorem reduces the possible candidate Iijk’s to a short list. Given such data, one then must

compute the ranks of the above-mentioned multiplication maps for each candidate. One

can do this by computer. This is how we obtain our results for M⟨3⟩ and det3, although, in

both cases, since the matrices are large, numerous, and with parameters appearing, several

innovations were required to perform the computations.

For M⟨2,n,n⟩ and M⟨3,n,n⟩ a computer calculation is not possible for all n. Here we show there

are no Borel-fixed (110)-spaces that could possibly be extended to ideals by splitting the
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problem into a local and a global problem: We show that the total contribution to a test

can be computed by adding local contributions. This enabled us to set-up an optimization

problem to bound all possible sums of local contributions, which we then solved (Lemma

3.7.9) by showing a modification of it is convex. We emphasize that this method for proving

lower bounds is completely different from previous techniques.

We also make standard use of representation theory to put the matrices whose ranks we

need to lower-bound in block diagonal format via Schur’s lemma. For example, to prove

R(M⟨2⟩) > 6, the border apolarity method produces three size 24 × 40 matrices whose ranks

need to be lower bounded. Decomposing the matrices to maps between isotypic components

reduces the calculation to computing the ranks of several matrices of size 4 × 8 with entries

0,±1, making the proof easily hand-checkable.

To enable a casual reader to see the various techniques we employ, we return to the proof that

R(M⟨2⟩) > 6 multiple times: first using the general algorithm naïvely in §3.4, then working

dually to reduce the calculation (Remark 3.4.1), then using representation theory to block

diagonalize the calculation in §3.6.2, and finally we observe that the result is an immediate

consequence of our localization principle and Lemma 3.7.1 (Remark 3.7.2).

3.1.1 Results

Theorem 3.1.1. R(M⟨3⟩) ≥ 17.

The previous lower bounds were 14 [37] in 1983, 15 [33] in 2015, and 16 [41] in 2018.

Theorem 3.1.2. R(det3) ≥ 17.

In [43] a lower bound of 15 for the Waring rank of det3 was proven. The previous border rank

lower bound was 12 as discussed in [44], which follows from the Koszul flattening equations

(§2.2).
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Previous to these results M⟨2⟩ was the only nontrivial matrix multiplication tensor whose

border rank had been determined, despite fifty years of work on the subject. We add two

more cases to this list:

Theorem 3.1.3. R(M⟨2,2,3⟩) = 10.

The upper bound dates back to Bini et. al. in 1980 [2]. Koszul flattenings give R(M⟨2,2,n⟩) ≥

3n [33]. Smirnov [45] showed that R(M⟨2,2,n⟩) ≤ 3n + 1 for n ≤ 7, and we expect equality to

hold for all n.

Theorem 3.1.4.

1. R(M⟨2,3,3⟩) = 14.

2. We have the following border rank lower bounds:

n R(M⟨2,n,n⟩) ≥ n R(M⟨2,n,n⟩) ≥ n R(M⟨2,n,n⟩) ≥

4 22 = 42 + 6 11 136 = 112 + 15 18 348 = 182 + 24

5 32 = 52 + 7 12 161 = 122 + 17 19 387 = 192 + 26

6 44 = 62 + 8 13 187 = 132 + 18 20 427 = 202 + 27

7 58 = 72 + 9 14 215 = 142 + 19 21 470 = 212 + 29

8 75 = 82 + 11 15 246 = 152 + 21 22 514 = 222 + 30

9 93 = 92 + 12 16 278 = 162 + 22 23 561 = 232 + 32

10 114 = 102 + 14 17 312 = 172 + 23 24 609 = 242 + 33.

3. For 0 < ϵ < 1
4 , and n > 6

ϵ
3
√
6+6−ϵ

6
√
6−ϵ , R(M⟨2,n,n⟩) ≥ n2 + (3

√
6 − 6 − ϵ)n. In particular,

R(M⟨2,n,n⟩) ≥ n2 + 1.32n + 1 when n ≥ 25.

Previously only the near trivial result that R(M⟨2,n,n⟩) ≥ n2 + 1 was known by [46, Rem.
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p175], see §3.8.

The upper bound in (1) is due to Smirnov [45], where he also proved R(M⟨2,4,4⟩) ≤ 24, and

R(M⟨2,5,5⟩) ≤ 38. When n is even, one has the upper bound R(M⟨2,n,n⟩) ≤ 7
4n

2 by writing

M⟨2,n,n⟩ =M⟨2,2,2⟩ ⊠M⟨1,n
2
,n
2
⟩.

Theorem 3.1.5. For all n ≥ 18, R(M⟨3,n,n⟩) ≥ n2 +
√

8
3n > n2 + 1.6n.

Previously the only bound was the near trivial result that when n ≥ 4, R(M⟨3,n,n⟩) ≥ n2 + 2

by [46, Rem. p175], see §3.8.

Using [46, Rem. p175], one obtains

Corollary 3.1.6. For all n ≥ 18 and m ≥ 3, R(M⟨m,n,n⟩) ≥ n2 +
√

8
3n +m − 3.

Remark 3.1.7. Koszul flattenings fail to give border rank lower bounds for tensors in A⊗B⊗C

when the dimension of one of A,B,C is much larger than that of the other two, such as

M⟨2,n,n⟩ ∈ C2n ⊗ C2n ⊗ Cn2 and M⟨3,n,n⟩ ∈ C3n ⊗ C3n ⊗ Cn2 . Theorems 3.1.4 and 3.1.5 show

that the border apolarity method does not share this defect.

3.2 Preliminaries

Projective space is PA = (A/{0})/C∗, and if x ∈ A/{0}, we let [x] ∈ PA denote the associated

point in projective space (the line through x). For a set Z ⊂ PA, Z ⊂ PA denotes its Zariski

closure, Ẑ ⊂ A denotes the cone over Z union the origin, I(Z) = I(Ẑ) ⊂ Sym(A∗) denotes

the ideal of Z, and C[Ẑ] = Sym(A∗)/I(Z), denotes the homogeneous coordinate ring of Ẑ.

Both I(Z), C[Ẑ] are Z-graded by degree.

We will be dealing with ideals on products of three projective spaces, that is we will be

dealing with polynomials that are homogeneous in three sets of variables, so our ideals with

be Z3-graded. More precisely, we will study ideals I ⊂ Sym(A∗)⊗Sym(B∗)⊗Sym(C∗), and

Iijk denotes the component in SiA∗ ⊗ SjB∗ ⊗ SkC∗.
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Given T ∈ A ⊗ B ⊗ C, we may consider it as a linear map TC ∶ C∗ → A ⊗ B, and we let

T (C∗) ⊂ A ⊗ B denote its image, and similarly for permuted statements. A tensor T is

concise if the maps TA, TB, TC are injective, i.e., if it requires all basis vectors in each of

A,B,C to write down in any basis.

3.2.1 Border rank decompositions as curves in Grassmannians

A border rank r decomposition of a tensor T is normally viewed as a curve T (t) = ∑r
j=1 Tj(t)

where each Tj(t) is rank one for all t ≠ 0, and limt→ 0 T (t) = T . It will be useful to change

perspective, viewing a border rank r decomposition of a tensor T ∈ A ⊗ B ⊗ C as a curve

Et ⊂ G(r,A⊗B ⊗C) satisfying

1. for all t ≠ 0, Et is spanned by r rank one tensors, and

2. T ∈ E0.

For example the border rank decomposition

a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1 = lim
t→ 0

1

t
[(a1 + ta2)⊗ (b1 + tb2)⊗ (c1 + tc2) − a1 ⊗ b1 ⊗ c1]

may be rephrased as the curve

Et = [(a1 ⊗ b1 ⊗ c1) ∧ (a1 + ta2)⊗ (b1 + tb2)⊗ (c1 + tc2)]

= [(a1 ⊗ b1 ⊗ c1) ∧ (a1 ⊗ b1 ⊗ c1 + t(a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1)

+ t2(a1 ⊗ b2 ⊗ c2 + a2 ⊗ b1 ⊗ c2 + a2 ⊗ b2 ⊗ c1) + t3a2 ⊗ b2 ⊗ c2)]

= [(a1 ⊗ b1 ⊗ c1) ∧ (a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1

+ t(a1 ⊗ b2 ⊗ c2 + a2 ⊗ b1 ⊗ c2 + a2 ⊗ b2 ⊗ c1) + t2a2 ⊗ b2 ⊗ c2)]

⊂ G(2,A⊗B ⊗C).
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Here

E0 = [(a1 ⊗ b1 ⊗ c1) ∧ (a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1)].

3.2.2 Multi-graded ideal associated to a border rank decomposition

Given a border rank r decomposition T = limt→ 0∑r
j=1 Tj(t), we have additional information:

Let

It ⊂ Sym(A∗)⊗ Sym(B∗)⊗ Sym(C∗)

denote the Z3-graded ideal of the set of r points [T1(t)] ⊔⋯ ⊔ [Tr(t)], where Iijk,t ⊂ SiA∗ ⊗

SjB∗ ⊗ SkC∗. If the r points are in general position, then codim(Iijk,t) = r as long as

r ≤ dimSiA∗ ⊗ SjB∗ ⊗ SkC∗ (in our situation r will be sufficiently small so that this will

hold if at least two of i, j, k are nonzero, see e.g., [47, 39, 48]). For all (ijk) with i+ j +k > 1,

we may choose the curves such that codim(Iijk) = r by [42, Thm. 1.2].

Thus, in addition to E0 = I⊥111,0 defined in §3.2.1, we obtain a limiting ideal I, where we

define Iijk ∶= limt→ 0 Iijk,t and the limit is taken in the Grassmannian G(dim(SiA∗ ⊗ SjB∗ ⊗

SkC∗)−r, SiA∗⊗SjB∗⊗SkC∗). We remark that there are subtleties here: the limiting ideal

may not be saturated. See [42] for a discussion.

Thus we may assume a multi-graded ideal I coming from a border rank r decomposition of

a concise tensor T satisfies the following conditions:

(i) I is contained in the annihilator of T . This condition says I110 ⊂ T (C∗)⊥, I101 ⊂ T (B∗)⊥,

I011 ⊂ T (A∗)⊥ and I111 ⊂ T ⊥ ⊂ A∗ ⊗B∗ ⊗C∗.

(ii) For all (ijk) with i + j + k > 1, codim Iijk = r.

(iii) I is an ideal, so the multiplication maps

Ii−1,j,k ⊗A∗ ⊕ Ii,j−1,k ⊗B∗ ⊕ Ii,j,k−1 ⊗C∗ → SiA∗ ⊗ SjB∗ ⊗ SkC∗ (3.1)
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have image contained in Iijk.

One may prove border rank lower bounds for T by showing that for a given r, no such I

exists. For arbitrary tensors, we do not see any way to prove this, but for tensors with a

nontrivial symmetry group, we have a vast simplification of the problem as described in the

next subsection.

3.2.3 Lie’s theorem and consequences

Lie’s theorem may be stated as: Let H be a solvable group, let W be an H-module, and let

[w] ∈ PW . Then the orbit closure H ⋅ [w] contains an H-fixed point.

Assume GT (see §2.1) is reductive (or contains a nontrivial reductive subgroup). Let BT ⊂ GT

be a maximal solvable subgroup, called a Borel subgroup. By Lie’s theorem and the Normal

Form Lemma of [41], in order to prove R(T ) > r, it is sufficient to disprove the existence of

a border rank decomposition where E0 is a BT -fixed point of PΛr(A⊗B ⊗C).

By the same reasoning, as observed in [42], we may assume Iijk is BT -fixed for all i, j, k.

When GT is large, this can reduce the problem significantly.

Thus we may assume a multi-graded ideal I coming from a border rank r decomposition of

T satisfies the additional condition:

(iv) Each Iijk is BT -fixed.

As we explain in the next subsection, Borel fixed spaces are easy to list.

3.2.4 Borel fixed subspaces

We review standard facts about Borel fixed subspaces. In this chapter only general and

special linear groups and products of such appear. A Borel subgroup of GLm is the group of

invertible matrices that are zero below the diagonal, and in products of general linear groups,

the product of Borel subgroups is a Borel subgroup. Let Cm have basis e1, . . . , em, with dual
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basis e1, . . . , em. Assign ej weight (0, . . . ,0,1,0, . . . ,0), where the 1 is in the j-th slot, and ej

weight (0, . . . ,0,−1,0, . . . ,0). For vectors in (Cm)⊗d, wt(e⊗a11 ⊗⋯⊗e
⊗am
m ) = (a1, . . . , am) and

the weight is unchanged under permutations of the d = a1 + ⋯ + am factors. Partially order

the weights so that (i1, . . . , im) ≥ (j1, . . . , jm) if ∑s
α=1 iα ≥ ∑s

α=1 jα for all s. The action of the

Borel on a monomial µ sends it to a sum of monomials whose weights are higher than that of

µ in the partial order plus a monomial that is a scalar multiple of µ. Each irreducible GLm

module appearing in the tensor algebra of Cm has a unique highest weight which is given by

a partition π = (p1, . . . , pm) and the module is denoted SπCm. Write d = ∣π∣ = ∑pi. See any

of, e.g., [30, §8.7], [49, §9.1], or [50, I.A] for details. Let T ⊂ GLm denote the maximal torus

of diagonal matrices. A vector w (or line [w]) is a weight vector (line) if the line [w] is fixed

by the action of T. For reductive groups G, we let B denote a choice of Borel subgroup.

We will use SLm weights, which we write as c1ω1 + ⋯ + cm−1ωm−1, where the ωj are the

fundamental weights. Here wt(e1) = ω1, wt(em) = −ωm−1, for 2 ≤ s ≤m− 1, wt(es) = ωs −ωs−1

and for all j, wt(ej) = −wt(ej). See the above references for explanations.

After fixing a (weight) basis of Cm, an irreducible G-submodule M of (Cm)⊗d has a basis of

weight vectors, which is unique up to scale if M is multiplicity free, i.e., there is at most one

weight line of any given weight. In this case the B-fixed subspaces of dimension k, considered

as elements of the Grassmannian G(k,M), are just wedge products of choices of k-element

subsets of the weight vectors of M such that no other element of G(k,M), considered as

a line in ΛkM , has higher weight in the partial order. In the case a weight occurs with

multiplicity in M , one has to introduce parameters in describing the subspaces. In the case

of direct sums of irreducible modules M1 ⊕M2, a subspace is B-fixed if it is spanned by

weight vectors and, setting all the M2-vectors in a basis of the subspace zero, what remains

is a B-fixed subspace of M1 and similarly with the roles of M1,M2 reversed.

In discussing weights, it is convenient to work with Lie algebras. Let b denote the Lie algebra

of B and let u ⊂ b be the space of upper triangular matrices with zero on the diagonal. We
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refer to elements of u as raising operators. A vector (or line) is a highest weight vector (line)

if it is a weight vector (line) annihilated by the action of u. A subspace of M of dimension

k is B-fixed if and only if, considered as a line in ΛkM , it is a highest weight line.

x21 ⊗ y21

x21 ⊗ y22 x11 ⊗ y21

x11 ⊗ y22

x21 ⊗ y11 − x22 ⊗ y21

x21 ⊗ y12 − x22 ⊗ y22 x11 ⊗ y11 − x12 ⊗ y21

x11 ⊗ y12 − x12 ⊗ y22

x22 ⊗ y11

x22 ⊗ y12 x12 ⊗ y11

x12 ⊗ y12

(1∣2∣1)

(1∣2∣−1) (−1∣2∣1)

(−1∣2∣−1)

(1∣0∣1)

(1∣0∣−1) (−1∣0∣1)

(−1∣0∣−1)

(1∣−2∣1)

(1∣−2∣−1) (−1∣−2∣1)

(−1∣−2∣−1)

Figure 3.1: Weight diagram for U∗ ⊗ sl(V )⊗W when U = V =W = C2. Left are the weight
vectors and right the weights: since sl2 weights are just jω1, we have just written (i∣j∣k) for
the sl(U) ⊕ sl(V ) ⊕ sl(W ) weight. Raisings in U∗ correspond to NW (north-west) arrows,
those in W to NE arrows and those in sl(V ) to upward arrows.

Example 3.2.1. When U,V,W each have dimension 2, Figure 3.1 gives the SL(U)×SL(V )×

SL(W )-weight diagram for U∗⊗ sl(V )⊗W . Here, in each factor u is spanned by the matrix
⎛
⎜⎜
⎝

0 1

0 0

⎞
⎟⎟
⎠

(raising goes from bottom to top). There is a unique B-fixed (highest weight) line,

spanned by x21 ⊗ y21, (here xij = ui ⊗ vj, yij = vi ⊗ wj, and zij = wi ⊗ uj) three highest weight

2-planes, ⟨x21⊗y21, x11⊗y21⟩, ⟨x21⊗y21, x21⊗y22⟩, and ⟨x21⊗y21, x21⊗y11−x22⊗y21⟩, four highest weight 3-

planes, ⟨x21⊗y21, x11⊗y21, x21⊗y11−x22⊗y21⟩, ⟨x21⊗y21, x21⊗y11−x22⊗y21, x21⊗y22⟩, ⟨x21⊗y21, x11⊗y21, x21⊗y22⟩,

and ⟨x21 ⊗ y21, x21 ⊗ y11 − x22 ⊗ y21, x22 ⊗ y11⟩, etc..

Example 3.2.2. Let dimU = 3. Figure 3.2 gives the weight diagram for U ⊗U = S2U ⊕Λ2U .

There are two B-fixed lines ⟨(u1)2⟩ and ⟨u1∧u2⟩, there is a 1-(projective) parameter [s, t] ∈ P1

space of B-fixed 2-planes, ⟨(u1)2, su1u2 + tu1 ∧ u2⟩ plus an isolated one ⟨u1 ∧ u2, u1 ∧ u3⟩ etc..
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u21

u1u2

u1u3

u22

u2u3

u23

u1 ∧ u2

u1 ∧ u3

u2 ∧ u3

2ω1

ω2

ω1 − ω2

−2ω1 + 2ω2

−ω1

−2ω2

Figure 3.2: Weight diagram for U ⊗U when U = C3. There are 6 distinct weights appearing,
indicated on the right. On the far left are the weight vectors in S2U and in the middle are
the weight vectors in Λ2U .

Example 3.2.3. Figure 3.3 gives the weight diagram for sl3. Here vij = vj ⊗ vi. The oval is

around the two-dimensional weight zero subspace, which has four distinguished vectors: two

with only two weight vectors above them in the partial order, and two with only two weight

vectors below them in the partial order. Equivalently, the distinguished vectors up to scale

are images and kernels of the two raising operators.

The B-fixed subspaces of dimension 3 are X = ⟨v31, v32,2v33−(v11+v22)⟩, X = ⟨v31, v21,2v11−(v22+v33)⟩

and X = ⟨v31, v21, v32⟩.

The B-fixed subspaces of dimension 4 are a family parametrized by [s, t] ∈ P1: X = ⟨v31, v32, s(2v33−

(v11 + v22)) + t(2v11 − (v22 + v33))⟩.

The B-fixed subspaces of dimension 5 are, the weight ≥ 0 space, X = ⟨v31, v21, v32, v22 − v32, v23⟩,

and X = ⟨v31, v21, v32, v11 − v22, v12⟩.

The other B-fixed subspaces are clear from the picture.

3.3 The algorithm

Input: An integer r and a concise tensor T ∈ A⊗B ⊗C whose symmetry group contains a
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v31

v32 v21

2v33 − (v11 + v22) v22 − v33 v11 − v22 2v11 − (v22 + v33)

v23 v12

v13

Figure 3.3: Weight diagram for sl3.

reductive group with Borel subgroup BT .

Output: Either a proof that R(T ) > r or a list of all Borel-fixed ideals that could potentially

arise in a border rank r decomposition of T .

The following steps build an ideal I in each multi-degree. We initially have I100 = I010 =

I001 = 0 (by conciseness), so the first spaces to build are in total degree two.

(i) For each BT -fixed weight subspace F110 of codimension r−c in T (C∗)⊥ ⊂ A∗⊗B∗ (and

codimension r in A∗ ⊗B∗) compute the ranks of the multiplication maps

F110 ⊗A∗ → S2A∗ ⊗B∗, and (3.2)

F110 ⊗B∗ → A∗ ⊗ S2B∗. (3.3)

If both have images of codimension at least r, then F110 is a candidate I110. Call these

maps the (210) and (120) maps and the rank conditions the (210) and (120) tests.
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(ii) Perform the analogous tests for potential I101 ⊂ T (B∗)⊥ and I011 ⊂ T (A∗)⊥ to obtain

spaces F101, F011.

(iii) For each triple F110, F101, F011 passing the above tests, compute the rank of the map

F110 ⊗C∗ ⊕ F101 ⊗B∗ ⊕ F011 ⊗A∗ → A∗ ⊗B∗ ⊗C∗. (3.4)

If the codimension of the image is at least r, then one has a candidate triple. Call this

map the (111)-map and the rank condition the (111)-test. A space F111 is a candidate

for I111 if it is of codimension r, contains the image of (3.4) and it is contained in T ⊥.

(iv) For each candidate triple F110, F101, F011 obtained in the previous step, and for each

BT -fixed subspace F200 ⊂ S2A∗ of codimension r, compute the rank of the maps F110⊗

A∗⊕F200⊗B∗ → S2A∗⊗B∗ and F101⊗A∗⊕F200⊗C∗ → S2A∗⊗B∗. If the codimension

of these images is at least r, then one may add F200 to the candidate set.

Do the same for BT -fixed subspaces F020 and F002, and collect all total degree two

candidate sets.

(v) Given an up until this point candidate set {Fuvw} including degrees (i − 1, j, k), (i, j −

1, k), and (i, j, k − 1), compute the rank of the map

Fi−1,j,k ⊗A∗ ⊕ Fi,j−1,k ⊗B∗ ⊗ Fi,j,k−1 ⊗C∗ → SiA∗ ⊗ SjB∗ ⊗ SkC∗. (3.5)

If the codimension of the image of this map is less than r, the set is not a candidate.

Say the codimension of the image is ξ ≥ r. The image will be BT -fixed by Schur’s

Lemma, as (3.5) is a BT -module map. Each (ξ − r)-dimensional BT -fixed subspace of

the image (i.e., codimension r BT -fixed subspace of SiA∗⊗SjB∗⊗SkC∗ in the image)

is a candidate Fijk.
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(vi) If at any point there are no such candidates, we conclude R(T ) > r.

Despite appearances, the algorithm is finite: it must stabilize at latest in multi-degree (r, r, r),

see [42]. That is, if all maps up to that point have the correct ranks, the higher degree maps

also will and there will be no new generators of the ideal in higher multi-degrees. Thus the

output is either a certificate that R(T ) > r or a collection of multi-graded ideals representing

all possible candidates for a BT -fixed border rank decomposition. In current work with

Buczyńska and Buczyński we are developing tests to determine if a given multi-graded ideal

comes from a border rank decomposition.

The algorithm above in total degree three suffices to obtain the lower bounds proved in this

article.

Sometimes it is more convenient to perform the tests dually:

Proposition 3.3.1. The codimension of the image of the (210)-map is the dimension of the

kernel of the skew-symmetrization map

F ⊥110 ⊗A→ Λ2A⊗B. (3.6)

The codimension of the image of the (ijk)-map is the dimension of

(F ⊥ij,k−1 ⊗C) ∩ (F ⊥i,j−1,k ⊗B) ∩ (F ⊥i−1,j,k ⊗A). (3.7)

Proof. The codimension of the image of the (210)-map is the dimension of the kernel of its
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transpose,

S2A⊗B → F ∗110 ⊗A = [(A⊗B)/F ⊥110]⊗A

= A⊗A⊗B/(F ⊥110 ⊗A)

= (Λ2A⊗B ⊕ S2A⊗B)/(F ⊥110 ⊗A).

Since the source maps to S2A⊗B, the kernel equals (S2A⊗B) ∩ (F ⊥110 ⊗A), which in turn

is the kernel of (3.6).

The codimension of the image of the (ijk)-map is the dimension of the kernel of its trans-

pose. Let X ∈ SiA ⊗ SjB ⊗ SkC. Write Projij,k−1(X) = XmodF ⊥ij,k−1 ⊗ C, Projij−1,k(X) =

XmodF ⊥ij−1,k ⊗B, and Proji−1,jk(X) =XmodF ⊥i−1,jk ⊗A. The transpose is the map

SiA⊗ SjB ⊗ SkC → F ∗ij,k−1 ⊗C ⊕ F ∗i,j−1,k ⊗B ⊕ F ∗i−1,jk ⊗A

X ↦ Projij,k−1(X)⊕Proji,j−1,k(X)⊕Proji−1,jk(X)

so X is in the kernel if and only if all three projections are zero. The kernels of the three

projections are respectively (F ⊥ij,k−1⊗C), (F ⊥i,j−1,k⊗B), and (F ⊥i−1,jk⊗A), so we conclude.

3.4 Matrix multiplication

Let A = U∗ ⊗ V , B = V ∗ ⊗W , C = W ∗ ⊗ U . The matrix multiplication tensor M⟨u,v,w⟩ ∈

A⊗B⊗C is the re-ordering of IdU⊗IdV ⊗IdW . Thus GM⟨u,v,w⟩ ⊇ GL(U)×GL(V )×GL(W ) =∶ G.

As a G-module A∗⊗B∗ = U⊗sl(V )⊗W ∗⊕U⊗IdV ⊗W ∗. We have M⟨u,v,w⟩(C∗) = U∗⊗IdV ⊗W .

We fix bases and let B denote the induced Borel subgroup of G.

For dimension reasons, it will be easier to describe Eijk ∶= F ⊥ijk ⊂ SiA⊗SjB ⊗SkC than Fijk.

Note that Eijk is B-fixed if and only if E⊥ijk is.

Any candidate E110 is an enlargement of U∗ ⊗ IdV ⊗W obtained from choosing a B-fixed
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(r −wu)-plane inside U∗ ⊗ sl(V ) ⊗W . Write E110 = (U∗ ⊗ IdV ⊗W ) ⊕ E′110, where E′110 ⊂

U∗ ⊗ sl(V )⊗W and dimE′110 = r −wu.

Since M⟨n⟩ has Z3-symmetry (via cyclic permutation of factors), to determine the candidate

I110, I101 and I011 it will suffice to determine the candidate I110’s. Similarly, since M⟨n,l,n⟩

has Z2-symmetry, the list of candidate I110’s is isomorphic to the list of candidate I011’s.

First proof that R(M⟨2⟩) = 7. Here u = v = w = 2. We disprove border rank at most six by

showing no B-fixed six dimensional F110 (i.e., two dimensional E′110) passes both the (210)

and (120) tests. The weight diagram for U∗ ⊗ sl(V )⊗W appears in Figure 3.1.

By Figure 3.1, there are three B-fixed 2-planes in U∗ ⊗ sl(V )⊗W :

⟨(u2 ⊗ v1)⊗ (v2 ⊗w1), (u1 ⊗ v1)⊗ (v2 ⊗w1)⟩,

⟨(u2 ⊗ v1)⊗ (v2 ⊗w1), (u2 ⊗ v1)⊗ (v2 ⊗w2)⟩,

and ⟨(u2 ⊗ v1)⊗ (v2 ⊗w1), (u2 ⊗ v1)⊗ (v1 ⊗w1) − (u2 ⊗ v2)⊗ (v2 ⊗w1)⟩.

For the first, the rank of the 24×40 matrix of the map E⊥110⊗A∗ → S2A∗⊗B∗ is 20 > 24−6 = 18.

For the second, by symmetry, the rank of the (120)-map is also 20. For the third the rank

of the (210)-map is 19 and the result follows.

For readers unhappy with computing the rank of a sparse 40 × 24 matrix whose entries

are all 0,±1, the following remark reduces to 24 × 24 matrices, and in §3.6.2, using more

representation theory, we reduce to 4×8 matrices whose entries are all 0,±1. Finally we give

a calculation free proof in Remark 3.7.2.

Remark 3.4.1. One can simplify the calculation of the rank of the map E⊥110⊗A∗ → S2A∗⊗B∗

by using the map (3.6). In the case above, the resulting matrix is of size 24×24. The images
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of the basis vectors of E110 ⊗A in the case E′110 = ⟨x21 ⊗ y21, x11 ⊗ y21⟩ are

x11 ∧ x21 ⊗ y21, x12 ∧ x21 ⊗ y21, x22 ∧ x21 ⊗ y21,

x12 ∧ x11 ⊗ y21, x22 ∧ x11 ⊗ y21,

x11 ∧ (x11 ⊗ y11 + x12 ⊗ y21), x12 ∧ (x11 ⊗ y11 + x12 ⊗ y21), x21 ∧ (x11 ⊗ y11 + x12 ⊗ y21), x22 ∧ (x11 ⊗ y11 + x12 ⊗ y21),

x11 ∧ (x21 ⊗ y11 + x21 ⊗ y21), x12 ∧ (x21 ⊗ y11 + x21 ⊗ y21), x21 ∧ (x21 ⊗ y11 + x22 ⊗ y21), x22 ∧ (x21 ⊗ y11 + x22 ⊗ y21),

x11 ∧ (x21 ⊗ y12 + x22 ⊗ y22), x12 ∧ (x21 ⊗ y12 + x22 ⊗ y22), x21 ∧ (x21 ⊗ y12 + x22 ⊗ y22), x22 ∧ (x21 ⊗ y12 + x22 ⊗ y22)

x11 ∧ (x21 ⊗ y12 + x22 ⊗ y22), x12 ∧ (x21 ⊗ y12 + x22 ⊗ y22), x21 ∧ (x21 ⊗ y12 + x22 ⊗ y22), x22 ∧ (x21 ⊗ y12 + x22 ⊗ y22)

and if we remove one of the two x21 ∧ (x21 ⊗ y11 + x22 ⊗ y21)’s we obtain a set of 20 independent

vectors.

3.5 Explanation of the proofs of Theorems 3.1.1 and 3.1.2

The actual proofs to these theorems are in the code at the webpage https://www.math.

tamu.edu/~jml/bapolaritycode.html. What follows are explanations of what is carried

out.

In the case of M⟨3⟩, the weight zero subspace of sl3 has dimension two, so there are B-fixed

spaces of dimension 7 = 16−3 ⋅3 in U∗⊗sl(V )⊗W ⊂ A⊗B that arise in positive dimensional

families. (Here 16 is the border rank we wish to rule out and 3 ⋅ 3 = dimU∗ ⊗ IdV ⊗W .)

Fortunately the set of 7-planes that pass the (210) and (120) tests is finite. When there are

no parameters present, these tests consist of computing the ranks of the 144 × 405 matrices

of E⊥110 ⊗ A∗ → S2A∗ ⊗ B∗, and E⊥110 ⊗ B∗ → A∗ ⊗ S2B∗. When there are parameters, one

determines the ideal in which the rank drops to the desired value. There are eight 7-planes

that do pass the test, giving rise to 512 possible triples (or 176 triples taking symmetries

into account). Among the candidate triples, none pass the (111)-test.

We now recall the relevant module structure for the determinant, first discussed in §2.1.1:
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Write U,V = Cm and A1 = ⋯ = Am = U ⊗ V . The determinant detm, considered as a tensor,

spans the line ΛmU ⊗ΛmV ⊂ A1⊗⋯⊗Am. Explicitly, letting Aα have basis xαij,

detm = ∑
σ,τ∈Sm

sgn(στ)x1σ(1)τ(1)⊗⋯⊗xmσ(m)τ(m).

We will be concerned with the case m = 3, and we write A1⊗A2⊗A3 = A⊗B⊗C. As a tensor,

det3 is invariant under (SL(U) × SL(V )) ⋊Z2 as well as S3. In particular, to determine the

candidate E110’s it is sufficient to look in A ⊗ B, which, as an SL(U) × SL(V )-module is

U⊗2⊗V ⊗2 = S2U ⊗S2V ⊕S2U ⊗Λ2V ⊕Λ2U ⊗S2V ⊕Λ2U ⊗Λ2V , and det3(C∗) = Λ2U ⊗Λ2V .

In the case of det3, each of the three modules in the complement to det3(C∗) in A⊗B are

multiplicity free, but there are weight multiplicities up to three, e.g., u1u2⊗v1v2, u1u2⊗v1∧v2,

and u1∧u2⊗v1v2 each have weight (ωU
2 ∣ωV

2 ). We examine all 7-dimensional B-fixed subspaces

of S2U ⊗ S2V ⊕ S2U ⊗Λ2V ⊕Λ2U ⊗ S2V . There are four candidates passing the (210) and

(120) tests, but no triples passed the (111) test.

In both cases, for the E′110 with parameters, the tests all reduce to determining the ideal in

which a given matrix with polynomial entries drops rank to at most a given value r. If the

matrix or r is small enough, we can simply take the ideal of r + 1× r + 1 minors. Sometimes,

however, this is computationally infeasible. In this case, we use the following algorithm,

which effectively allows us to do row reduction: First, generalize to matrix entries in some

quotient of some ring of fractions of the polynomial ring, say R. If there is a matrix entry

which is a unit, pivot by it, reducing the problem. Otherwise, select a nonzero entry, say p.

Recursively compute the target ideal in two cases: 1. Pass to R/(p), the computation here is

smaller because the entry is zeroed. 2. Pass to Rp, the computation here is smaller because

now p is a unit, and one can pivot by it. Finally lift the ideals obtained by 1 and 2 back to

R, say to J1 and J2, and take J1J2. Its zero set is the rank < r locus and computing with it

is tractable.
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3.6 Representation theory relevant for matrix multiplication

Theorems 3.1.3 and 3.1.4(1),(2) may also be proved using computer calculations but we

present hand-checkable proofs to both illustrate the power of the method and lay groundwork

for future results. This section establishes the representation theory needed for those proofs.

3.6.1 Refinement of the (210) test for matrix multiplication

Recall A = U∗ ⊗ V , B = V ∗ ⊗W , C = W ∗ ⊗ U . We have the following decompositions

as SL(U) × SL(V )-modules: (note Vω2+ωv−1 does not appear when v = 2, and when v = 3,

Vω2+ωv−1 = V2ω2):

Λ2(U∗ ⊗ V )⊗ V ∗ = (S2U∗ ⊗ Vω1)⊕ (Λ2U∗ ⊗ Vω1)⊕ (S2U∗ ⊗ Vω2+ωv−1)⊕ (Λ2U∗ ⊗ V2ω1+ωv−1),

(3.8)

S2(U∗ ⊗ V )⊗ V ∗ = (S2U∗ ⊗ V2ω1+ωv−1)⊕ (Λ2U∗ ⊗ Vω2+ωv−1)⊕ (S2U∗ ⊗ Vω1)⊕ (Λ2U∗ ⊗ Vω1),

(3.9)

A⊗M⟨u,v,w⟩(C∗) = (U∗ ⊗ V )⊗ (U∗ ⊗ IdV ⊗W ) = (S2U∗ ⊗ Vω1 ⊗W )⊕ (Λ2U∗ ⊗ Vω1 ⊗W ),

(3.10)

V ⊗ sl(V ) = Vω1 ⊕ V2ω1+ωv−1 ⊕ Vω2+ωv−1 , (3.11)

(U∗ ⊗ V )⊗ (U∗ ⊗ sl(V )) = (S2U∗ ⊗ V2ω1+ωv−1)⊕ (Λ2U∗ ⊗ V2ω1+ωv−1)⊕ (S2U∗ ⊗ Vω1)

⊕ (Λ2U∗ ⊗ Vω1)⊕ (S2U∗ ⊗ Vω2+ωv−1)⊕ (Λ2U∗ ⊗ Vω2+ωv−1).

(3.12)

Here we have written Vω1 for embedded submodules isomorphic to V . Note that

dim(V2ω1+ωv−1) = 1
2v

3 + 1
2v

2 − v, dim(Vω2+ωv−1) = 1
2v

3 − 1
2v

2 − v.

The map (U∗ ⊗ V )⊗ (U∗ ⊗ IdV ⊗W )→ Λ2(U∗ ⊗ V )⊗ (V ∗ ⊗W ) is injective, which implies:
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Proposition 3.6.1. Write E110 ∶=M⟨u,v,w⟩(C∗) ⊕E′110. The dimension of the kernel of the

map (3.6) E110 ⊗A→ Λ2A⊗B equals the dimension of the kernel of the map

E′110 ⊗A→ S2U∗ ⊗ Vω2+ωv−1 ⊗W ⊕Λ2U∗ ⊗ V2ω1+ωv−1 ⊗W, (3.13)

and the kernel of (3.13) is

(E′110 ⊗A) ∩ [U∗⊗2 ⊗ Vω1 ⊗W ⊕ S2U∗ ⊗ V2ω1+ωv−1 ⊗W ⊕Λ2U∗ ⊗ Vω2+ωv−1 ⊗W ]. (3.14)

The second assertion follows by applying Schur’s lemma using (3.12) as the map (3.13) is

the restriction of an equivariant map.

3.6.2 R(M⟨2⟩) > 6 revisited

In this case the map (3.13) takes image in Λ2U∗ ⊗ S2V ⊗ V ∗ ⊗W . We have the following

images:

For the highest weight vector x21 ⊗ y21 times the four basis vectors of A (with their sl(V )-

weights in the second column, where we suppress the ω1 from the notation), the image of

(3.13) is spanned by

x11 ∧ x21 ⊗ y21 3

x12 ∧ x21 ⊗ y21 1

(Note, e.g., x22⊗x21⊗y21 maps to zero under the skew-symmetrization map as u2⊗u2 projects

to zero in Λ2U∗.) For x21 ⊗ y11 − x22 ⊗ y21 (the lowering of x21 ⊗ y21 under sl(V )), the image is
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spanned by

x11 ∧ (x21 ⊗ y11 − x22 ⊗ y21) 1

x12 ∧ (x21 ⊗ y11 − x22 ⊗ y21) −1

Since W has nothing to do with the map, we don’t need to compute the image of, e.g.,

A⊗ x21 ⊗ y22 to know its contribution to the kernel, as it must be the same dimension as that

of A⊗ x21 ⊗ y21, just with a different W -weight.

Were R(M⟨2⟩) = 6, E′110 would have dimension two and be spanned by the highest weight

vector and one lowering of it, and in order to be a candidate, its image in Λ2U∗ ⊗ S3V ⊗W

would have to have dimension at most two. Taking E′110 = ⟨x21 ⊗ y21, x21 ⊗ y11 − x22 ⊗ y21⟩, the

image of (3.13) has dimension three. Taking E′110 = ⟨x21⊗y21, x21⊗y22⟩, the image of (3.13) has

dimension four. Finally, taking E′110 = ⟨x11⊗ y21, x21⊗ y21⟩, by symmetry (swapping the roles of

U∗ and W , which corresponds to taking transpose), the image of the (120)-version of (3.13)

must have dimension four, and the result follows.

3.7 Proofs of Theorems 3.1.4 and 3.1.5

Let E′110 ⊂ U∗⊗sl(V )⊗W be a B-fixed subspace. Define the outer structure of E′110 to be the

set of sl(U) ⊕ sl(W ) weights appearing in E′110, counted with multiplicity. We identify the

sl(U) weights of U∗ and the sl(W ) weights of W each with {1, . . . ,n}, where 1 corresponds

to the highest weight. In this way we consider the outer structure of E′110 as an n × n

grid, with each grid point labelled by the dimension of the corresponding weight space. In

what follows, we will represent such filled grids by the corresponding Young diagrams on the

nonzero labels, where the upper left box corresponds with the highest weight. Here, labels

weakly decrease going to the right and down. We speak of the inner structure of E′110 to

be the particular sl(V )-weight spaces which occur at each weight (s, t) ∈ n × n. The set of

possible inner structures over a grid point (s, t) corresponds to the set of B-fixed subspaces
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of sl(V ) that are contained in or equal to the chosen B-fixed subspaces at sites (s− 1, t) and

(s, t − 1).

We may filter E′110 by B-fixed subspaces such that each quotient corresponds to the inner

structure contribution over some site (s, t). Call such a filtration admissible. Let Σg ⊂ E′110

be an admissible filtration, and put

Kg = (Σg ⊗A) ∩ [U∗⊗2 ⊗ Vω1 ⊗W ⊕ S2U∗ ⊗ V2ω1+ωv−1 ⊗W ⊕Λ2U∗ ⊗ Vω2+ωv−1 ⊗W ]. (3.15)

Then the dimension of (3.14) can be written as the sum over g of dimKg/Kg−1, and we

may upper bound the dimension of (3.14) by upper bounding each dimKg/Kg−1. We obtain

bounds on dimKg/Kg−1 which depend only on s and j ∶= dimΣg/Σg−1. For sl2, this is Lemma

3.7.1, and for sl3, this is Lemma 3.7.3. Bounds on the kernel of the (120) map are obtained

by symmetry; specifically, the bound is the same as that on (3.14) with s replaced by t.

These lemmas reduce the problem to a combinatorial optimization problem over possible

outer structures of fixed total dimension. In particular, the claims on fixed finite values of

n may be immediately settled by enumerating the finitely many possible outer structures

and checking that none gives a large enough kernel for both the (210) and (120) maps. The

claims on infinite sequences of n require us to work more carefully, and we prove the required

bounds on the solution to such problems parameterized by n in Lemma 3.7.6.

3.7.1 The local argument

Lemma 3.7.1. Let dimV = 2, dimU = n. Fix an admissible filtration such that Σg ⊂ E′110

contains the sl(V )-subspace at site (s, t) and Σg−1 does not. Write j for the dimension of the

sl(V )-subspace at site (s, t). Then the differences in the dimensions of the kernels of (3.13)

with Σg and Σg−1 in the place of E′110 equals the function ajs + bj where
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j aj bj

1 2 0

2 3 n

3 4 2n.

Lemma 3.7.1 is proved later this section.

Remark 3.7.2. Revisiting the proof that R(M⟨2⟩) > 6 in this language, the possible outer

structures of B-fixed two planes are 2 , 1
1 , 1 1 , which, according to Lemma 3.7.1, have (210)

map kernel dimensions 5, 4, and 4, respectively, all of which are smaller than 6. This gives

our shortest proof that R(M⟨2⟩) > 6.

Proof of Theorem 3.1.3. Here we take u = 2, w = 3, v = 2. We show that there is no E′110

of dimension 3 = 9 − 6 passing the (210) and (120) tests. The possible outer structures are

3 , 2 1 , 1 1 1 , and 2
1 . From Lemma 3.7.1, the corresponding (210) map kernel dimensions are

8, 7, 6, and 9, respectively, so only 2
1 passes. However, 2

1 has (120) kernel dimension 8, and

fails this test.

Proof of Theorem 3.1.4(1),(2). For Theorem 3.1.4(1), u =w = 3, v = 2. The outer structures

corresponding to 13 − 9 = 4 dimensional subpaces of U∗ ⊗ sl(V )⊗W are 1 1 1
1 , 1 1

1 1 , 1 1
1
1

, 2 1 1 ,

2 2 , 2
1
1
, 2 1

1 , 2
2 , 3 1 , 3

1 . Of these, 1 1
1
1

, 2
1
1
, 2

2 , and 3
1 pass the (210) test with kernel dimensions of

size 14, 16, 15, and 14, respectively. However, none of these pass the (120) test (this can be

seen as none appear in this list whose conjugate tableau also appear).

For Theorem 3.1.4(2), the result follows by similar complete enumeration of outer structures

on a computer.

Lemma 3.7.3. Let dimV = 3, dimU = n. Fix an admissible filtration such that Σg ⊂ E′110

contains the sl(V )-subspace at site (s, t) and Σg−1 does not. Write j for the dimension of
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the sl(V )-subspace at site (s, t). The differences in the dimensions of the kernels of (3.13)

with Σg and Σg−1 in the place of E′110 is bounded above by a function ajs + bj where

j aj bj

1 3 −2

2 6 0

3 8 n

4 11 n

j aj bj

5 14 n

6 17 n

7 21 2n − 6

8 21 3n − 6.

In order to prove Lemmas 3.7.1 and 3.7.3, we first observe the following:

Proposition 3.7.4. The included module Vω1 ⊂ V ⊗ sl(V ) has weight basis vi = ∑j≠i[vvj ⊗

(vi ⊗ vj) − vi ⊗ (vj ⊗ vj)] + (v − 1)vi ⊗ vi ⊗ vi, 1 ≤ i ≤ v.

Proof. The line [v1] has weight ω1 and is B-stable, and the span of the vj is fixed under the

action of SL(V ).

Proof of Lemmas 3.7.1 and 3.7.3. We begin in somewhat greater generality, not fixing v =

dimV . We must bound dimKg − dimKg−1, Kg given by (3.15). Write

K = U∗⊗2 ⊗ Vω1 ⊗W ⊕ S2U∗ ⊗ V2ω1+ωv−1 ⊗W ⊕Λ2U∗ ⊗ Vω2+ωv−1 ⊗W (3.16)

so that Kg = Σg ⊗ A ∩K. Write X ⊂ sl(V ) for the inner structure at (s, t), so that Σg =

Σg−1⊕un−s+1⊗X ⊗wt. Write V0 = ∅, V1 = Vω1 , V2 = Vω1 ⊕V2ω1+ωv−1 , and V3 = Vω1 ⊕V2ω1+ωv−1 ⊕

Vω2+ωv−1 = V ⊗ sl(V ). Note that V2 = V3 when v = 2. Then {Vf}f is a flag of V ⊗ sl(V ), and

Sf = U∗ ⊗U∗(s−1) ⊗ V3 ⊗W +U∗⊗2 ⊗ Vf ⊗W +U∗⊗2 ⊗ V3 ⊗W(t−1)

is a flag of U∗⊗2 ⊗ V3 ⊗W , where we have written U∗s = span{un, . . . , un−s+1} and W(t−1) =
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span{w1, . . . ,wt}. Hence, Sf ∩Kg is a flag of Kg with Kg−1 = S0 ∩Kg. Use the isomorphism

Kg ∩ Sf

Kg ∩ Sf−1
=
Kg ∩ Sf + Sf−1

Sf−1
(3.17)

to obtain the successive quotients of {Sf ∩Kg}f as subspaces of

U∗⊗2 ⊗ V3 ⊗W
Sf−1

= U∗⊗2

U∗ ⊗U∗(s−1)
⊗ V3
Vf−1

⊗ W

W(t−1)
. (3.18)

Write Kf for the f -th summand of (3.16), so that K ∩ Sf = Kf +K ∩ Sf−1. Intersecting

with Σg ⊗ A and adding Sf−1, we obtain Kg ∩ Sf + Sf−1 = (Kf + Sf−1) ∩ (Σg ⊗ A) + Sf−1 =

(Kf + Sf−1) ∩ (U∗ ⊗ un−s+1 ⊗ V ⊗ X ⊗ wt + Sf−1). We may now pass in each side of the

intersection to the right hand side of (3.18), after which the intersection may be computed

term by term. To compute the intersection in the U∗⊗2/(U∗ ⊗ U∗(s−1)) term, momentarily

write Z = Z + U∗ ⊗ U∗(s−1) for Z ∈ U∗⊗2 and observe that S2U∗ ∩ U∗ ⊗ un−s+1 = U∗s ⊗ un−s+1

and Λ2U∗ ∩ U∗ ⊗ un−s+1 = U∗(s−1) ⊗ un−s+1. Therefore, the right hand side of (3.17) may be

written, for f = 1, 2, and 3 respectively,

U∗ ⊗ (un−s+1 +U∗(s−1))⊗ [(V ⊗X) ∩ V1]⊗ (wt +W(t−1))

U∗s ⊗ (un−s+1 +U∗(s−1))⊗ [(V ⊗X + V1) ∩ V2]⊗ (wt +W(t−1))

U∗(s−1) ⊗ (un−s+1 +U∗(s−1))⊗ [V ⊗X + V2]⊗ (wt +W(t−1)).

Write Y = (V ⊗X) ∩ V1, Y ′ = ((V ⊗X + V1) ∩ V2)/V1, and Y ′′ = (V ⊗X + V2)/V2. We obtain

dimKg = dimKg−1 + yn + y′s + y′′(s − 1), the sum of the successive quotient dimensions of

{Tf ∩Kg}f .

Thus, when j = v2 − 1, that is, X = sl(V ), the desired result follows from y = v, y′ =

dimV2ω1+ωv−1 , and y′′ = dimVω2+ωv−1 .

In all cases Y has a basis consisting of weight vectors and is closed under raising operators.
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Hence, by Proposition 3.7.4, Y = span{vi ∣ i ≤ y}.

Consider the case j = v2−2, that is X is the span of all weight vectors of sl(V ) except vv⊗v1.

Then vv is not an element of Y because in the monomial basis, the monomial v1 ⊗ (vv ⊗ v1)

fails to have a nonzero coefficient in any element of Y . Hence y ≤ v − 1, and the trivial

y′ ≤ dimV2ω1+ωv−1 , and y′′ ≤ dimVω2+ωv−1 give the asserted upper bounds.

By similar reasoning when v = 3, considering Example 3.2.3, we obtain the bounds y = 0

when j = 1,2 and y ≤ 1 when j = 3,4,5,6. For all values of j except 1, the result then follows

from

dimKg − dimKg−1 = (jv − y)s + yn − y′′ ≤ (jv − y)s + yn, (3.19)

as y + y′ + y′′ = jv. The only remaining upper bound for v = 2, j = 1, is settled similarly.

We must argue more for the j = 1 upper bound for v = 3, namely that y′′ ≥ 2. For this

consider V ⊗ sl(V )⊕Vω1 = V ⊗V ⊗V ∗ = S2V ⊗V ∗⊕Λ2V ⊗V ∗ and Λ2V ⊗V ∗ = Vω2+ωv−1 ⊕Vω1 .

Because we have y = 0, the dimension y′′ of the projection of V ⊗X onto Vω2+ωv−1 is the same

as that onto Λ2V ⊗ V ∗. We have the images v2 ∧ v1 ⊗ v3 and v3 ∧ v1 ⊗ v3 of v2 ⊗ v1 ⊗ v3 and

v3 ⊗ v1 ⊗ v3, respectively, whence y′′ ≥ 2 as required.

To see the upper bounds in the v = 2 cases are sharp, note that in this case Vω2+ωv−1 = ∅, so

y′′ = 0. The j = 1 case is thus automatic from (3.19), and for j = 2, we must show y ≥ 1. In

this case, however, we have v1 = 2v2⊗(v1⊗v2)+v1⊗(v1⊗v1−v2⊗v2) ∈ V ⊗X, as required.

Remark 3.7.5. Although the bounds are essentially sharp when one assumes nothing about

previous sites (σ, t) for σ < s, with knowledge of them one can get a much sharper estimate,

although it is more complicated to implement the local/global principle. For example, if we

are at a site (s, t) with v = 3, j = 1 and for (σ, t) with σ < t one also has j = 1, then the new

contribution at site (s, t) is just s, not 3s − 2.
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In Lemma 3.7.6 below the linear functions of s in the lemmas above appear as aµs,ts + bµs,t .

3.7.2 The globalization

Write µ for a Young diagram filled with non-negative integer labels. The label in position

(s, t) is denoted µs,t, and sums over s, t are to be taken over the boxes of µ. As before, we

take such µ to correspond to outer structures.

Lemma 3.7.6. Fix k ∈ N, 0 ≤ a1 ≤ ⋯ ≤ ak, and bi ∈ R, 1 ≤ i ≤ k. Let µ be a Young diagram

filled with labels in the set {1, . . . , k}, non-increasing in rows and columns. Write ρ = ∑s,t µs,t.

Then

min{∑
s,t

aµs,ts + bµs,t ,∑
s,t

aµs,tt + bµs,t} ≤ max
1≤j≤k
{
ajρ2

8j2
+ (aj + bj)

ρ

j
}. (3.20)

Remark 3.7.7. The bound in the lemma is nearly tight. Taking µ to be a balanced hook

filled with j makes the left hand side equal aj
8 (

ρ2

j2 − 1)+ (aj + bj)
ρ
j . Hence, for any fixed ρ, ai,

bi, the maximum of the left hand side is within 1
8 maxj aj of the right hand side.

Lemma 3.7.6 is proved in §3.7.3.

Proof of Theorem 3.1.4(3). Let E′110 ⊂ U∗ ⊗ sl(V )⊗W be a B-fixed subspace, and let µ be

the corresponding outer structure. We apply Lemma 3.7.6 with k = 3 and ai and bi from

Lemma 3.7.1 to obtain an upper bound on the smaller of the kernel dimensions of the (120)

and (210) maps. The resulting upper bound is max{14ρ2 + 2ρ,
3
32ρ

2 + 3+n
2 ρ, 1

18ρ
2 + 4+2n

3 ρ}.

Fix ϵ > 0. We must show that if ρ = (3
√
6 − 6 − ϵ)n, then each of 1

4ρ
2 + 2ρ, 3

32ρ
2 + 3+n

2 ρ, and
1
18ρ

2 + 4+2n
3 ρ is strictly smaller than n2 + ρ. Substituting and solving for n, we obtain that

this holds for the last expression when

n > 6

ϵ

3
√
6 + 6 − ϵ

6
√
6 − ϵ

,

and when ϵ < 1
4 , this condition implies the other two inequalities.
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Proof of Theorem 3.1.5. Proceeding in the same way as in the proof of Theorem 3.1.4(3),

we apply Lemma 3.7.6 with µ the outer structure corresponding to an arbitrary B-fixed

subspace E′110 ⊂ U∗ ⊗ sl(V ) ⊗W , k = 8, and ai and bi corresponding to the inner structure

contribution upper bounds obtained in Lemma 3.7.3. We obtain the smaller of the kernel

dimensions of the (120) and (210) maps is at most the largest of the following,

j Lemma 3.7.6

1 3
8ρ

2 + ρ

2 3
16ρ

2 + 6
2ρ

3 1
9ρ

2 + 8+n
3 ρ

4 11
128ρ

2 + 11+n
4 ρ

j Lemma 3.7.6

5 7
100ρ

2 + 14+n
5 ρ

6 17
288ρ

2 + 17+n
6 ρ

7 3
56ρ

2 + 15+2n
7 ρ

8 21
512ρ

2 + 15+3n
8 ρ.

Now, if one takes ρ = ⌊
√

8
3n⌋, the kernel upper bound for each j is strictly less than n2 + ρ.

This fact for j = 1 follows as
√

8
3n is irrational. This fact for 2 ≤ j ≤ 8 follows from the

restriction on n. Hence, at least one of the kernels of the (120) and (210) maps is too small,

and R(M⟨3nn⟩) > n2 + ρ, as required.

3.7.3 Proof of Lemma 3.7.6

For a partition λ = (λ1, . . . , λq), write ℓ(λ) = q and n(λ) = ∑i(i − 1)λi. Let λ′ denote the

conjugate partition. We remark that the results in this section may be used for M⟨mnn⟩ for

any n ≥m.

To establish Lemma 3.7.6 we need two additional lemmas:

Lemma 3.7.8. Let λ be a partition not of the form (n,2). Then n(λ) ≤ 1
8(∣λ∣+λ′1 −λ1)2 −

1
8 .

In particular, for all λ, n(λ) ≤ 1
8(∣λ∣ + λ′1 − λ1)2.

Proof. We prove the result by induction on λ1 = ℓ(λ′). When ℓ(λ′) = 1, we have n(λ) =

(λ
′
1
2
) = 1

2(λ′1 −
1
2)2 −

1
8 =

1
8(∣λ∣ + λ′1 − λ1)2 −

1
8 , as required. Now, assume k = ℓ(λ′) > 1. Write
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µ for the partition where ℓ(µ′) = k − 1 and µ′i = λ′i, i ≤ k − 1. If λ = (3,3), we are done by

direct calculation, hence otherwise we may assume the result holds for µ by the induction

hypothesis.

n(λ) = n(µ) + (λ
′
k
2
)

≤ 1
8(∣µ∣ + µ′1 − µ1)2 − 1

8 + (
λ′k
2
)

= 1
8(∣λ∣ − λ′k + λ′1 − (λ1 − 1))2 −

1
8 +

1
2λ
′
k(λ′k − 1)

= 1
8(∣λ∣ + λ′1 − λ1)2 −

1
8 −

1
4(∣λ∣ + λ′1 − λ1 −

5
2λ
′
k +

1
2)(λ′k − 1)

We must show the right hand term is non-positive. If λ′k = 1, this is immediate; otherwise,

we show the first factor is nonnegative. We have ∣λ∣−λ1 ≥ kλ′k − k, so ∣λ∣+λ′1 −λ1 − 5
2λ
′
k +

1
2 ≥

(λ′1 − λ′k) +
2k−3
2 (λ′k − 1) − 1. If k = 2, then by assumption λ′1 ≥ 3, and considering separately

the cases λ′2 = 2 and λ′2 ≥ 3 yields that the first factor is nonnegative. Otherwise k ≥ 3, and

because λ′k ≥ 2, the first factor is nonnegative. This completes the proof.

Lemma 3.7.9. Fix k ∈ N, ci ≥ 0, di ∈ R, for 1 ≤ i ≤ k. Write Cj = ∑j
i=1 ci and Dj = ∑j

i=1 di.

For all choices of xi, yj satisfying the constraints x1 ≥ ⋯ ≥ xk ≥ 0, y1 ≥ ⋯ ≥ yk ≥ 0, and

∑i xi + yi = ρ, the following inequality holds:

min{∑
i≤k
cix

2
i + di(xi + yi),∑

i≤k
ciy

2
i + di(xi + yi)} ≤ max

1≤j≤k
{ ρ

2

4j2
Cj +

ρ

j
Dj}. (3.21)

Remark 3.7.10. The maximum is achieved when x1 = ⋯ = xj = y1 = ⋯ = yj = ρ
2j and xs, ys = 0

for s > j, for some j.

Proof. As both the left and right hand sides are continuous in the ci, it suffices to prove the

result under the assumption ci > 0. The idea of the proof is the following: any choice of xi

and yi which has at least two degrees of freedom inside its defining polytope can be perturbed
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in such a way that the local linear approximations to the two polynomials on the left hand

side do not decrease; that is, two closed half planes in R2 containing (0,0) also intersect

aside from (0,0). Each polynomial on the left strictly exceeds its linear approximation at

any point, and thus one can strictly improve the left hand side with a perturbation. The

case of at most one degree of freedom is settled directly.

Write xk+1 = yk+1 = 0, and define x′i = xi − xi+1 and y′i = yi − yi+1 so that xi = ∑k
j=i x

′
j and yi =

∑k
j=i y

′
j. Then x′i, y′i ≥ 0 and ∑k

i=1 i(x′i+y′i) = ρ. Suppose at least three of the x′i, y′j are nonzero,

we will show the expression on the left hand side of (3.21) is not maximal. Write three of the

nonzero x′i, y′j as x, y, z. Replace them by x + ϵ1, y + ϵ2, z + ϵ3, with the ϵi to be determined.

This will preserve the summation to ρ only if ϵ1 + ϵ2 + ϵ3 = 0, so we require this. Substitute

these values into EL ∶= ∑i≤k cix
2
i +di(xi + yi) and ER ∶= ∑i≤k ciy

2
i +di(xi + yi). View EL,ER as

two polynomial expressions in the ϵj. Then EL = ∑i ciS
2
L,i + LL + d, ER = ∑i ciS

2
R,i + LR + d

where SL,i, SR,i and LL, LR are linear forms in the ϵi, and d ∈ R. Each SL,i, SR,i is a sum of

some subset of the ϵi, and the union of them span the space ⟨ϵ1, ϵ2, ϵ3⟩/⟨∑ ϵj = 0⟩. Consider

the linear map T = LL ⊕ LR ∶ ⟨ϵ1, ϵ2, ϵ3⟩/⟨∑ ϵj = 0⟩ → R2. If T is nonsingular, then for any

ϵ > 0, there are constants ϵj, with ∑ ϵj = 0 so that T (ϵ1, ϵ2, ϵ3) = (ϵ, ϵ), and it is possible

to choose ϵ so that x + ϵ1, y + ϵ2, z + ϵ3 ≥ 0. Then this new assignment strictly improves the

old one. Otherwise, if T is singular, then there is an admissible (ϵ1, ϵ2, ϵ3) ≠ 0 in the kernel

of T , where again we may assume the same non-negativity condition. The corresponding

assignment does not change LL, LR, but as the SL,i, SR,i span the linear forms, at least one

them is nonzero. Consequently, at least one of the modified EL,ER is strictly larger after

the perturbation, and neither is smaller. If, say, only EL is strictly larger, and x′i > 0, we

may substitute x′i − ϵ and y′i + ϵ for x′i and y′i for some ϵ > 0 to make both EL and ER strictly

larger.

Thus, the left hand side is maximized at an assignment where at most two of x′i and y′i are

nonzero. It is clear that at least one of each of x′i and y′i must be nonzero, so there is exactly
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one of each, say x′s = α and y′t = β. It is clear at the maximum that ∑i≤k cix
2
i + di(xi + yi) =

∑i≤k ciy
2
i + di(xi + yi), from which it follows that α2Cs = ∑i≤k cix

2
i = ∑i≤k ciy

2
i = β2Ct and

α
√
Cs = β

√
Ct. We also have sα + tβ = ρ. Notice that

α = ρ
√
Ct

s
√
Ct + t

√
Cs

, β = ρ
√
Cs

s
√
Ct + t

√
Cs

satisfy the equations, so that the optimal value obtained is

∑
i≤k
cix

2
i + di(xi + yi) = α2Cs + αDs + βDt =

ρ

s
√
Ct + t

√
Cs

( ρCsCt

s
√
Ct + t

√
Cs

+
√
CtDs +

√
CsDt) .

By the arithmetic mean-harmonic mean inequality, we have

ρCsCt

s
√
Ct + t

√
Cs

= ρ
s

Cs
√
Ct
+ t

Ct
√
Cs

≤ ρ
4
[Cs

√
Ct

s
+ Ct

√
Cs

t
],

so that

ρCsCt

s
√
Ct + t

√
Cs

+
√
CtDs +

√
CsDt ≤

ρ

4
[Cs

√
Ct

s
+ Ct

√
Cs

t
] +
√
CtDs +

√
CsDt

= s
√
Ct + t

√
Cs

ρ
[sα
ρ
( ρ

2

4s2
Cs +

ρ

s
Ds) +

tβ

ρ
( ρ

2

4t2
Ct +

ρ

t
Dt)]

≤ s
√
Ct + t

√
Cs

ρ
max{ ρ

2

4s2
Cs +

ρ

s
Ds,

ρ2

4t2
Ct +

ρ

t
Dt},

with the last inequality from the fact that sα
ρ +

tβ
ρ = 1. Multiplying both sides by ρ

s
√
Ct+t

√
Cs

,

we conclude the optimal value is achieved at one of the claimed values.

Proof of Lemma 3.7.6. For each 1 ≤ i ≤ k, let λi be the partition corresponding to the boxes
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of µ labeled ≥ i. Write a0 = b0 = 0. Then

∑s,t aµs,ts + bµs,t = ∑s,t∑
µs,t

i=1 (ai − ai−1)s + bi − bi−1

= ∑k
i=1∑s,t∈λi(ai − ai−1)s + bi − bi−1

= ∑k
i=1(ai − ai−1)n(λi) + (ai − ai−1 + bi − bi−1)∣λi∣

≤ ∑k
i=1 [12(ai − ai−1)] (

1
2(∣λi∣ + (λi)′1 − λi1))

2 + [ai − ai−1 + bi − bi−1] ∣λi∣ (3.22)

where we have used Lemma 3.7.8 to obtain the last inequality. Set

ci = 1
2(ai − ai−1)

di = ai − ai−1 + bi − bi−1

xi = 1
2(∣λi∣ + (λi)′1 − λi1)

yi = 1
2(∣λi∣ − (λi)′1 + λi1).

Then (3.22) becomes
k

∑
i=1
cix

2
i + di(xi + yi).

Similarly, ∑s,t aµs,tt + bµs,t ≤ ∑k
i=1 ciy

2
i + di(xi + yi). Now, ∑i xi + yi = ∑i∣λi∣ = ρ and the xi and

yi are each nonnegative and non-increasing. Hence, by Lemma 3.7.9,

min{∑
s,t

aµs,ts + bµs,t ,∑
s,t

aµs,tt + bµs,t} = max
1≤j≤k
{
ajρ2

8j2
+ (aj + bj)

ρ

j
},

as required.
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3.8 Proof that R(M⟨l,m,n⟩) ≥R(M⟨l−1,m,n⟩) + 1

Here is a simple proof of the statement, which was originally shown in [46]. By the border

substitution method [41], for any tensor T ∈ A⊗B ⊗C

R(T ) ≥minA′⊂A∗R(T ∣A′⊗B∗⊗C∗) + 1,

where A′ ⊂ A∗ is a hyperplane. Moreover, if T has symmetry group GT , and GT has a unique

closed orbit in PA∗, then we may restrict A′ to be a point of that closed orbit by the Normal

Form Lemma of [41]. In the case of matrix multiplication, GM⟨l,m,n⟩ ⊃ SL(U) × SL(V ) can

degenerate any point in PA = P(U∗ ⊗ V ) to the annihilator of x1l , so it amounts to taking

T ∣A′⊗B∗⊗C∗ to be the reduced matrix multiplication tensor with x1l = 0. But now we may

(using GL(A) ×GL(B) ×GL(C)) degenerate this tensor further to set all xil and ylj to zero

to obtain the result.
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4. SYMMETRIZED MATRIX MULTIPLICATION UPPER BOUNDS

4.1 A rank 18 Waring decomposition of sM⟨3⟩∗

Let V have dimension three. Pick a basis of V to fix an identification of 3× 3 matrices with

V ∗ ⊗ V , and consider the 18 matrices m1, . . . ,m18 below, where ζ = e2πi/3 and a = −21/3.

m1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 −1 0

−1 1 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

m2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0 1 −ζ

0 −ζ2 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

m3 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 −ζ

0 0 0

−ζ2 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

m4 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0 1 −ζ2

0 −ζ 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

m5 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 −1

0 0 0

−1 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

m6 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 −ζ 0

−ζ2 1 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

m7 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 −ζ2

0 0 0

−ζ 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

m8 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 −ζ2 0

−ζ 1 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

m9 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0 1 −1

0 −1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

m10 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a 0 0

0 a 0

0 0 a

⎞
⎟⎟⎟⎟⎟⎟
⎠

m11 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0

0 0 ζ

ζ2 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

m12 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1

ζ2 0 0

0 ζ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

m13 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0

0 0 ζ2

ζ 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

m14 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

m15 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 ζ 0

0 0 ζ2

⎞
⎟⎟⎟⎟⎟⎟
⎠

m16 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1

ζ 0 0

0 ζ2 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

m17 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 ζ2 0

0 0 ζ

⎞
⎟⎟⎟⎟⎟⎟
⎠

m18 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

∗Acknowledgement: This section is derived in part from an article published in Experimental Mathe-
matics April 5, 2019 ©Taylor & Francis 2019, available online: 10.1080/10586458.2018.1547231
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Theorem 4.1.1. sM⟨3⟩ = 1
6 ∑

18
i=1m

(3)
i . That is, the mi form a rank 18 Waring decomposition

of 6sM⟨3⟩.

The group Γ = GL(V ∗ ⊗ V ) naturally acts on S3(V ∗ ⊗ V ), and the stabilizer of sM⟨n⟩ is

ΓsM⟨n⟩ = PGL(V ) ⋊ Z2 [51]. Here the action of PGL(V ) is induced by its natural action on

V ∗ ⊗ V , and, after choosing a basis and its dual, Z2 acts as matrix transposition. Such a

choice of matrix transposition is not canonical, but any choice generates the same group

modulo PGL(V ).

Notice that any mi could be replaced by ζmi as these matrices define the same rank 1 tensor.

4.1.1 Symmetries of the decomposition

To study symmetry, we wish to consider the mi modulo this identification. Therefore, write

Ti =m(3)i , the rank one symmetric tensors corresponding to the mi, and define the symmetry

of the decomposition as the subgroup ΓS of ΓsM⟨n⟩ which leaves the set S = {T1, . . . , T18}

invariant under the natural induced action on subsets of S3(V ∗ ⊗ V ). A symmetry of the

decomposition preserves the set {m1, . . . ,m18} up to powers of ζ.

Theorem 4.1.2. The symmetry group ΓS ≅ (Z2
3 ⋊ SL(2,F3)) ⋊Z2, which has order 432.

The expression in parentheses is the PGL(V ) action, and the Z2 is generated by matrix

transposition with respect to the basis of the decomposition. To describe the PGL(V ) part

of the action, we label each 3 × 3 block of matrices with elements of the vector space F2
3 as

follows:

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2).
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Then Z2
3 ⋊ SL(2,F3) acts on the first 3× 3 block as affine transformations of F2

3 according to

this labelling: Z2
3 acts by translation and SL(2,F3) acts by linear transformation. On the

second 3 × 3 block, Z2
3 acts trivially and SL(2,F3) again acts as linear transformations. One

can alternatively view the action of Z2
3 ⋊SL(2,F3) on the second 3× 3 block as equivalent to

the action on its normal subgroup Z2
3 by conjugation.

The decomposition is also closed under complex conjugation, which acts by transposing each

3 × 3 block. A Galois-type symmetry like this is not in general in Γ and represents another

kind of symmetry of decompositions of tensors defined over Q. There are no other nontrivial

Galois symmetries for this decomposition, for any such symmetry must be an automorphism

of Q[ζ] fixing Q. Including complex conjugation as a symmetry of the decomposition yields

a group of order 864.

Proof of Theorem 4.1.2. We first describe the representation ρ ∶ Z2
3 ⋊ SL(2,F3) → PGL(V )

explicitly by giving the images of a generating set. These elements of PGL(V ) can then be

observed to act as claimed on the 3 × 3 blocks. Let er and ed denote the generators of Z2
3

corresponding to translation right and down, respectively, and denote elements of SL(2,F3)
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by their matrices with respect to the standard basis of F2
3. Then

ρ(er) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1

ζ2 0 0

0 ζ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

ρ(ed) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1

ζ 0 0

0 ζ2 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

ρ

⎛
⎜⎜
⎝

1 1

0 1

⎞
⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−ζ + 1 ζ2 − 1 2ζ + 1

ζ2 − 1 −ζ + 1 2ζ + 1

−ζ + 1 −ζ + 1 −ζ + 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

ρ

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−ζ2 + 1 ζ − 1 −ζ2 + 1

ζ − 1 −ζ2 + 1 −ζ2 + 1

ζ − 1 ζ − 1 −2ζ − 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

ρ

⎛
⎜⎜
⎝

0 1

−1 −1

⎞
⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 ζ2

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

It remains to show there are no symmetries of the decomposition other than those claimed.

Name the entries of a 3 × 3 block by the numbers 1, . . . ,9, like on a telephone. Since all

symmetries of ΓsM⟨3⟩ preserve matrix rank, we first observe that any symmetry of the de-

composition must preserve in particular the first 3 × 3 block. This, combined with the fact

that there is evidently a matrix transposition in ΓS, shows it is sufficient to check the set of

PGL(V ) symmetries of the first 3 × 3 block is as claimed. Call this group G. We wish to

show G = Z2
3 ⋊ SL(2,F3). The first block consists of only rank 1 matrices, so they uniquely

determine column vectors up to multiplication by scalars. Let H denote the symmetry group

of the corresponding projective configuration of points in P2. The vectors corresponding to

matrices (1,3,4,6) are in general linear position, so each element of H determines at most

one element of PGL(V ) which induces it. Hence, the natural homomorphism G → H is

injective, so it suffices to show H ≤ Z2
3 ⋊ SL(2,F3).
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First we show Z2
3 ⋊GL(2,F3) is the symmetry group of the combinatorial affine plane con-

sisting of 9 points and 12 lines determined by the points and collinearity relations of the

configuration (Figure 4.1). Clearly Z2
3 are symmetries of this configuration. To see that

GL(2,F3) are also symmetries, notice that we may identify points of the configuration with

the group Z2/3Z2, and any line through points in the lattice Z2 projects down to one of our

12 lines when modding out by 3Z2. Then since GL(2,Z) preserves the lines of Z2, it must be

that GL(2,F3) preserves the lines of our configuration Z2/3Z2, as desired. Observe that any

symmetry is determined by the image of 3 noncollinear points. For instance, fixing the image

of 1,2, and 5 determines by collinearity the image of 3,8, and 9, which in turn determines

the image the remaining 3 points. Then, since Z2
3 ⋊GL(2,F3) are all indeed symmetries of

the configuration, the full symmetry group has order at most 9 ⋅ 8 ⋅ 7 = 504 and contains a

subgroup of size 9 ⋅ 48 = 432. The only possibility is then equality with Z2
3 ⋊GL(2,F3), as

claimed.

Figure 4.1: The configuration determined by column vectors of the rank one block. This is
classically known as the Hesse configuration [52].

Now we show that the elements of Z2
3⋊GL(2,F3) where the second factor has determinant −1

do not induce symmetries of the projective configuration of points. Because Z2
3 ⋊ SL(2,F3)

does induce such symmetries, it suffices to show the failure for only one element. A convenient

choice is the map F2
3 → F2

3 which interchanges coordinates. The unique matrix taking the
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general frame (1,2,7,8) to (1,4,3,6) is

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −ζ2 −1

−ζ2 0 −ζ

0 0 ζ2

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

and one readily checks this matrix does not send, e.g. 3 to any of the other points. Hence

Z2
3⋊SL(2,F3) ≤ G ≤H ≤ Z2

3⋊SL(2,F3), and the full symmetry group is (Z2
3⋊SL(2,F3))⋊Z2,

as claimed.

The rank one block of the decomposition consists of orthogonal projections onto one dimen-

sional subspaces times a factor of two. In this sense, each such matrix is determined by

its column space. We have already seen that these 9 points of P2 form a certain projective

configuration (Figure 4.1). It is a classical fact that any set of 9 points in this configuration

are the inflections points of a plane cubic. Indeed, our configuration is precisely the inflection

points of x3 + y3 + z3 = 0. Equivalently, it is determined as the zeros of x3 + y3 + z3 = 0 and

its Hessian xyz = 0.

The Waring decomposition presented here was derived from a numerical decomposition given

in [12]. I would like to thank Grey Ballard for his work transforming that numerical decom-

position into a sparse numerical one.

4.2 A rank 40 Waring decomposition of sM⟨4⟩

Let V have dimension four, and fix a basis, with respect to which all matrices in PGL(V )

and V ∗ ⊗ V will be presented. Let Γ ≤ PGL(V ), be the group generated by the following

79



matrices,
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1 0 0

0 0 0 −1

i 0 0 0

0 0 −i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2i +

1
2 i 0 1

2i −
1
2

−1
2i −

1
2 0 0 −1

2i −
1
2

1
2i −

1
2 0 0 −1

2i +
1
2

1
2i +

1
2 0 i −1

2i +
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Consider the following matrices m1, m2, and m3 of V ∗ ⊗ V (here i2 = −1).

m1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2

1
2 −

1
2

1
2i

1
2

1
2 −

1
2

1
2i

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, m2 =
3
√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
4i +

1
4 −

1
4i −

1
4 −

1
4i −

1
4 0

1
4i −

1
4 −

1
4i +

1
4 0 1

4i +
1
4

0 −1
4i +

1
4 0 0

1
4i −

1
4 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

m3 =
3
√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 −1
4i −

1
4

0 0 1
4i +

1
4 0

1
4i +

1
4 −1

2
1
4i −

1
4 −

1
4i +

1
4

−1
2i

1
4i +

1
4

1
4i +

1
4 −

1
4i −

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Theorem 4.2.1. Γ ≅ S4, and the orbits of the mi under Γ acting by conjugation form a

rank 40 Waring decomposition of sM⟨4⟩, with orbit sizes 8, 8, and 24, respectively.

We omit the proof, but the claims can be verified entirely computationally.

4.2.1 Symmetries of the decomposition

The decomposition of §4.2 there is an orbit consisting of rank one matrices, similar to the

decomposition of §4.1. If we consider the eight column vectors associated to this rank one

orbit as points of P3 and compute which subsets of them lie on a common plane, we find that

there are exactly six nontrivial such planes which contain four points. Moreover, one can

identify the eight points of P3 with the vertices of a cube in such a way that the coplanarity

relations precisely correspond to the faces of the cube.
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Now, any symmetry of the decomposition must preserve this configuration, so must in par-

ticular must be contained inside the symmetries of the cube, S4 × Z2. One can then argue

similarly to the proof of Theorem 4.1.2 to see that in fact there are no other symmetries of

the decomposition beside Γ (that is, one checks that a nonproper symmetry of the cube does

not actually induce a symmetry of the decomposition).

What is not as obvious here is that there is a transpose symmetry. However, the action

following element of PGL(V ) after transposition preserves the decomposition,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1
2

1
2 0

−1
2 0 0 1

2i

1
2 0 0 1

2i

0 1
2i

1
2i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

More specifically, this symmetry fixes the first orbit pointwise, and transposes pairs of points

in the other two orbits.

We have proved

Theorem 4.2.2. The symmetry group ΓS ≅S4 ⋊Z2, which has order 48.
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5. CONCLUSIONS

In this chapter I discuss possible improvements and future work regarding the contents of

this thesis.

Theorem 1.7.2 and 1.7.3 were proved with Koszul flattenings, but this technique could not

prove results for the smallest values of q. It remains to decide the border rank of T ⊠2cw,2 and

T ⊠3cw,q for q = 2,3,4. Assuming that multiplicativity also holds for these values, this result

requires proving lower bounds, and a natural idea is to apply the lower bound technique of

chapter 3. Carrying out this process is future work.

The technique of §2.3.3 remains to be fully understood and automated; I anticipate that it

may be used to obtain border rank decompositions for many other small tensors.

The border apolarity technique of chapter 3 is still new, and it is current work to obtain

further lower bounds for the ordinary matrix multiplication tensor. In §3.7, the technique

was used in its most basic form to obtain results on an infinite sequence of tensors, but only

the (210) and (120) tests were applied. One direction of generalization is therefore to apply

the higher tests of border apolarity, in particular the (111) test, to infinite families of tensors.

Another direction for future work is implied by the algorithm of §3.3, which can fail to prove

a border rank lower bound by producing a list of candidate ideals. If this happens, the next

step is to either rule out these candidate ideals via some other method or to use them to

construct a border rank decomposition.

The results of chapter 4 are suggestive that it may be profitable to search for decomposi-

tions with large symmetry groups for symmetrized matrix multiplication. For instance, if

a symmetry group and orbit structure may be guessed in advance, the search space for a

fixed small decomposition may be reduced to the point of tractability. If one can find small
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decomposition examples whose corresponding symmetry groups and representations occur

in natural infinite families, one may be able to generalize to an infinite sequence of decom-

positions. If this program were successful, it would imply an upper bound to ω by Theorem

1.5.1.
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