
MODEL REDUCTION, BAYESIAN & DEEP LEARNING APPROACHES FOR FLOWS IN

FRACTURED POROUS MEDIA

A Dissertation

by

SIU WUN CHEUNG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Yalchin Efendiev
Co-Chair of Committee, Tsz Shun Eric Chung
Committee Members, Eduardo Gildin

Raytcho Lazarov
Jianxiin Zhou

Head of Department, Sarah Witherspoon

May 2020

Major Subject: Mathematics

Copyright 2020 Siu Wun Cheung



ABSTRACT

Numerical modelling of flow problems in fractured porous media has important applications in

many engineering areas, such as unconventional reservoir simulation and nuclear waste disposal.

Simulation of the flow problems in porous media is challenging as numerical discretization results

in a very fine mesh for capturing the finest scales and high contrast of the physical properties. On

the other hand, the effects of fractures are often modelled by multicontinuum models, resulting

coupled systems of equations describing the interactive flow of different continua in heteroge-

nous porous media. While multicontinuum models are widely adopted by different applications,

for instance, naturally fractured porous media is modelled by dual porosity approach, shale gas

production is modelled by the interactive flow of organic matter, inorganic matter and multiscale

fractures in a heterogeneous media, and vuggy carbonate reservoir simulation is characterized by

the complex interaction between matrix, fractures and vugs, numerical solutions on the fine grid

are often prohibitively expensive in these complex multiscale problems.

Extensive research effort had been devoted to developing efficient methods for solving multi-

scale problems at reduced expense, for example, numerical homogenization approaches and mul-

tiscale methods, including Multiscale Finite Element Methods, Variational Multiscale Methods,

Heterogeneous Multiscale Methods. The common goal of these methods is to construct numeri-

cal solvers on the coarse grid, which is typically much coarser than the fine grid which captures

all the heterogeneities in the medium properties. In numerical homogenization approaches, effec-

tive properties are computed and the global problem is formulated and solved on the coarse grid.

However, these approaches are limited to the cases when the medium properties possess scale sep-

aration. In this dissertation, we discuss and analyze novel multiscale model reduction techniques

with different model problems arising from flows in porous media and numerical discretization

techniques, which can be used for obtaining accurate coarse-scale approximations, even in the

case of absence of scale separation.

On the other end, Bayesian approaches have been developed for forward and inverse problems

ii



to address the uncertainties associated with the solution and the variations of the field parame-

ters, and neural networks approaches are proposed for prediction of flow problems. In the disser-

tation, we also present methodologies of combining model reduction approaches with Bayesian

approaches and deep learning approaches for efficient solution sampling and prediction for flow

problems in porous media.
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NOMENCLATURE

Ω Spatial domain

κ Permeability

T h Fine-scale partition

T H Coarse-scale partition

h Fine mesh size

H Coarse mesh size

K Coarse grid element

E Coarse grid edge

ω Coarse neighborhood

χ Partition of unity

Ki,m Coarse oversampled region

φ Spectral basis function

ψ Multiscale basis function
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1. INTRODUCTION

1.1 Literature

Many engineering applications require numerical simulation in heterogeneous media. For

example, Darcy flow equation in heterogeneous media is used to describe fluid flow in porous

medium in reservoir simulation, and wave equation in heterogeneous media has been widely used

for subsurface modeling. Physical properties in heterogeneous media possess multiple scales and

high contrast, while the interactive effects between the microscope and the macroscopic scales

have to be taken account in order to obtain accurate solutions. Examples of high-contrast physical

properties are shown in Figure 1.1.
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Figure 1.1: Examples of high-contrast permeability fields. Left: a channelized media. Right:
SPE10 benchmark in logarithmic scale.

There has been extensive research effort devoted to develop and computational methods for

flow simulations, resulting in a class of mature and well studied numerical methods, such as fi-

nite element methods [1, 2, 3, 4, 5, 6] and discontinuous Galerkin methods [7, 8, 9, 10, 11]. In

order to resolve the multiscale features in numerical approximations, the computational mesh has

to be sufficiently fine to capture the variations of the physical properties in the finest scale. As

a result, direct numerical simulations on the fine grid are often prohibitively expensive in these
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Figure 1.2: Illustration of fine grid, coarse grid and coarse neighborhood.

complex multiscale problems. To this end, extensive research effort had been devoted to develop-

ing efficient methods for solving multiscale problems at reduced expense, for example, numerical

homogenization approaches [12, 13] and multiscale methods, including Multiscale Finite Element

Methods (MsFEM) [14, 15, 16, 17, 18], Variational Multiscale Methods (VMS) [19, 20, 21, 22],

Heterogeneous Multiscale Methods (HMM) [23, 24, 25] and and Generalized Multsicale Finite

Element Methods (GMsFEM) [26, 27, 28, 29, 30, 31]. While a fine grid is used to capture all the

heterogeneities in the medium properties, the objective of these methods is to construct numerical

solvers on a coarse grid, which is typically much coarser than the fine grid. An illustration of the

fine grid and the coarse grid and a coarse element are shown in Figure 1.2.

In numerical homogenization approaches, coarse-scale effective properties are computed and

the global problem is formulated and solved on the coarse grid. However, these approaches are

limited to the cases when the medium properties possess scale separation. On the other hand,

multiscale methods construct of multiscale basis functions which are responsible for capturing the

local oscillatory effects of the solution. Once the multiscale basis functions, coarse-scale equations

are formulated. Moreover, fine-scale information can be recovered by the coarse-scale coefficients
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and mutliscale basis functions. Meanwhile many existing mutliscale methods, such as MsFEM,

VMS and HMM, construct one basis function per local coarse region to handle the effects of

local heterogeneities. However, for more complex multiscale problems, each local coarse region

contains several high-conductivity regions and multiple multiscale basis functions are required

to represent the local solution space. In the cases where there is no scale separation, a systemic

approach for adding degrees of freedom that capture the interactive effects between different scales

is required.

GMsFEM is developed to allow systematic enrichment of the coarse-scale space with fine-scale

information and identify the underlying low-dimensional local structures for solution representa-

tion. The main idea of GMsFEM is to extract local dominant modes by carefully designed local

spectral problems in coarse regions, and the convergence of the GMsFEM is related to eigenvalue

decay of local spectral problems. For a more detailed discussion on GMsFEM, we refer the readers

to [32, 26, 33, 27, 34, 29, 35, 36, 37, 38] and the references therein. One of the main key feature

of GMsFEM is a relation between the numbers of high-conductivity regions and multiscale ba-

sis functions used in local coarse neighborhoods for obtaining good approximations as supported

by analysis. In general, an error estimate dependent on the coarse mesh size is non-trivial for

multiscale model reduction methods, which is an emerging field in research [39, 40, 35, 41].

In many real-life applications, media properties may contain uncertainties and limited observa-

tion data about the flow profile may be available. It is important to take the effects of uncertainties

and data into account to obtain quality solutions. Through using a Bayesian framework, one can

include uncertainties in the media properties and compute the solution and the uncertainties as-

sociated with the solution and the variations of the field parameters. Bayesian approaches have

also been widely used for forward and inverse problems [42, 43, 44, 45, 46, 47, 48, 49, 50, 51].

On the other side, there have been many works discovering the expressivity of deep neural nets

theoretically [52, 53, 54, 55, 56, 57]. The universal approximation property of neural networks

has been investigated in a lot of recent studies. It has been shown that deep networks are powerful

and versatile in approximating wide classes of functions. Many researchers are inspired to take ad-
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vantages of the multiple-layer structure of the deep neural networks in approximating complicated

functions, and utilize it in the area of solving partial differential equations and model reductions.

For instance, in [58], the authors propose a deep neural network to express the physical quantity of

interest as a function of random input coefficients, and shows this approach can solve parametric

PDE problems accurately and efficiently by some numerical tests. There is another work by E et.

al [59], which aims to represent the trial functions in the Ritz method by deep neural networks

(DNN). Then the DNN surrogate basis functions are utilized to solve the Poisson problem and

eigenvalue problems. In [60], the authors build a connection between residual networks (ResNet)

and the characteristic transport equation. Increasingly more research efforts have been devoted

to build robust neural network techniques for approximations of multiscale problems related to

reservoir simulation [61, 62, 63, 64, 65, 66, 67].

1.2 Organization of this dissertation

In this dissertation, we will study the development of a new class of local multiscale model

reduction framework, namely Constraint Energy Minimizing Generalized Multiscale Finite Ele-

ment Methods (CEM-GMsFEM), on flow problems in porous heterogeneous media. The new

approach is motivated by GMsFEM and achieves spectral convergence. Through the design of

local spectral problems, our method results in the minimal degree of freedom in representing high-

contrast features. At the same time, the new multiscale method exhibits convergence on coarse

mesh size independent of scales and contrast. Two formulations, namely the symmetric interior

penalty discontinuous Galerkin (IPDG) model reduction for Darcy flow and coupled model reduc-

tion for multicontinuum flow problems, are considered. The advantages of the method is verified

both theoretically and numerically. We establish a criterion for the oversampling size which is

sufficient for linear coarse-mesh convergence independent of the contrast. Numerical results are

presented to show the performance of the method for simulation on flow problem in high-contrast

heterogeneous media.

In the later chapters of this dissertation, we will study the application of the model reduc-

tion techniques to solution sampling and prediction in the scenarios with limited observation data
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and subject to uncertainties, with the use of probabilistic and machine learning tools. We propose

Bayesian and neural network approaches for addressing the difficulties in these problems and high-

light the advantages brought by the model reduction techniques, which justify the usefulness and

importance for accurate and reliable reduced-order models.
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2. CONSTRAINT ENERGY MINIMIZING GENERALIZED MULTISCALE

DISCONTINUOUS GALERKIN METHOD

In this chapter, we present Constraint Energy Minimizing Generalized Multiscale Discontinu-

ous Galerkin Method (CEM-GMsDGM). There are two key ingredients of the presented approach.

The first main ingredient is the local spectral problems in each coarse block for identification of

auxiliary basis functions. The low-energy dominant modes, which are eigenvectors corresponding

to small eigenvalues of local spectral problems, are used as auxiliary basis functions for further

construction. The auxiliary basis functions possess the information related to high conductivity

channels and it suffices to use the same number of auxiliary basis functions as the number of chan-

nels in a coarse block. The second ingredient is the constraint energy minimization problems for

definition of multiscale basis functions. Each of the auxiliary basis functions sets up an indepen-

dent constraint and uniquely defines a corresponding multiscale basis function. The multiscale

basis functions will then be used to span the multiscale space and used to solve the coarse-scale

global problem in IPDG formulation. We remark that the local spectral problems and the constraint

energy minimization problems are carefully designed and supported by our analysis. Thanks to

the design of local spectral problems, the auxiliary space is of minimal dimension for representing

high-contrast features and obtaining a contrast-independent convergence. Due to the fact that the

dimensions of the auxiliary space and the multiscale space are identical, the multiscale space is of

minimum dimension as well. In the construction of multiscale basis functions, the constraints are

responsible for handling non-decaying components represented by the auxiliary basis functions in

the high conductivity regions and achieving linear convergence in coarse mesh size. On the other

hand, the multiscale basis functions are supported in oversampled coarse regions and allowed to

have discontinuity on the coarse grid. Therefore, the IPDG bilinear form is also used to define

the energy term in the constraint energy minimization problems. The advantages of the method is

verified both theoretically and numerically. We analyze the method for solving Darcy flow prob-

lem and establish a criterion for the oversampling size which is sufficient for linear coarse-mesh
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convergence independent of the contrast. Numerical results are presented to show the performance

of the method for simulation on flow problem in high-contrast heterogeneous media.

The chapter is organized as follows. In Section 2.1, we will introduce the notions of grids,

and essential discretization details such as DG finite element spaces and IPDG formulation on the

coarse grid. The details of the proposed method will be presented in Section 2.2. The method will

be analyzed in Section 2.3. Numerical results will be provided in Section 2.4.

2.1 Preliminaries

We consider the following high-contrast flow problem

− div (κ∇u) = f in Ω, (2.1)

subject to the homogeneous Dirichlet boundary condition u = 0 on ∂Ω, where Ω ⊂ R2 is the

computational domain and f is a given source term. We assume that the permeability field κ is

highly heterogeneous with very high contrast κ0 ≤ κ ≤ κ1.

Next, we introduce the notions of coarse and fine meshes. We start with a usual partition T H

of Ω into finite elements, which does not necessarily resolve any multiscale features. The partition

T H is called a coarse grid and a generic element K in the partition T H is called a coarse element.

Moreover, H > 0 is called the coarse mesh size. We let Nc be the number of coarse grid nodes and

N be the number of coarse elements. We also denote the collection of all coarse grid edges by EH .

We perform a refinement of T H to obtain a fine grid T h, where h > 0 is called the fine mesh size.

It is assumed that the fine grid is sufficiently fine to resolve the solution. An illustration of the fine

grid and the coarse grid and a coarse element are shown in Figure 2.1.

We are now going to discuss the discontinuous Galerkin (DG) discretization and the interior

penalty discontinuous Galerkin (IPDG) global formulation. For the i-th coarse blockKi, we denote

the restriction of the Sobolev space H1(Ω) on Ki by V (Ki). We let Vh(Ki) be the conforming
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Figure 2.1: An illustration of the fine grid and the coarse grid and a coarse element.

bilinear elements defined on the fine grid T h in Ki, i.e.

Vh(Ki) =
{
v ∈ V (Ki) : v|τ ∈ Q1(τ) for all τ ∈ T h and τ ⊂ Ki

}
, (2.2)

where Q1(τ) stands for the bilinear element on the fine grid block τ . The DG approximation space

is then given by the space of coarse-scale locally conforming piecewise bilinear fine-grid basis

functions, namely

Vh = ⊕Ni=1Vh(Ki). (2.3)

We remark that functions in Vh are continuous within coarse blocks, but discontinuous across the

coarse grid edges in general. The global formulation of IPDG method then reads: find uh ∈ Vh

such that

aDG (uh, w) =

∫
Ω

fw dx for all w ∈ Vh, (2.4)
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where the bilinear form aDG is defined by:

aDG (v, w) =
∑
K∈T H

∫
K

κ∇v · ∇w dx−
∑
E∈EH

∫
E

{κ∇v · nE}JwK dσ

−
∑
E∈EH

∫
E

{κ∇w · nE}JvK dσ +
γ

h

∑
E∈EH

∫
E

κJvKJwK dσ,
(2.5)

where γ > 0 is a penalty parameter and nE is a fixed unit normal vector defined on the coarse edge

E ∈ EH . Note that, in (2.5), the average and the jump operators are defined in the classical way.

Specifically, consider an interior coarse edge E ∈ EH and let K+ and K− be the two coarse grid

blocks sharing the edge E, where the unit normal vector nE is pointing from K+ to K−. For a

piecewise smooth function G with respect to the coarse grid T H , we define

{G} =
1

2

(
G+ +G−

)
,

JGK = G+ −G−,
(2.6)

where G+ = G|K+ and G− = G|K− . Moreover, on the edge E, we define κ = (κK+ + κK−) /2,

where κK± is the maximum value of κ over K±. For a coarse edge E lying on the boundary ∂Ω,

we define {G} = JGK = G, and κ = κK on E, where we always assume that nE is pointing

outside of Ω.

First, we define the energy norm on the space V of coarse-grid piecewise smooth functions by

‖w‖2
a = aDG(w,w) for all w ∈ V. (2.7)

We also define the DG-norm on V by

‖w‖2
DG =

∑
K∈T H

∫
K

κ|∇w|2 dx+
γ

h

∑
E∈EH

∫
E

κJwK2 dσ for all w ∈ V. (2.8)

The two norms are equivalent on the subspace of piecewise bi-cubic polynomials in V : there exists
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C0 ≥ 1 such that

C−1
0 ‖w‖a ≤ ‖w‖DG ≤ C0‖w‖a. (2.9)

The continuity and coercivity results of the bilinear form aDG with respect to the DG-norm is

ensured by a sufficiently large penalty parameter γ. While the method works well for general

highly heterogeneous field κ, we assume κ is piecewise constant on the fine grid T h for the sake

of simplicity in our analysis presented in Section 2.3.

2.2 Method description

In this section, we will present the construction of the multiscale basis functions. First, we

will use the concept of GMsFEM to construct our auxiliary multiscale basis functions on a generic

coarse block K in the coarse grid. We consider Vh(Ki) as the snapshot space in Ki and perform a

dimension reduction through a spectral problem, which is to find a real number λ(i)
j and a function

φ
(i)
j ∈ Vh(Ki) such that

ai

(
φ

(i)
j , w

)
= λ

(i)
j si

(
φ

(i)
j , w

)
for all w ∈ Vh(Ki), (2.10)

where ai is a symmetric non-negative definite bilinear operator and si is a symmetric positive

definite bilinear operators defined on Vh(Ki) × Vh(Ki). We remark that the above problem is

solved on the fine mesh in the actual computations. Based on our analysis, we can choose

ai (v, w) =

∫
Ki

κ∇v · ∇w dx,

si (v, w) =

∫
Ki

κ̃vw dx,

(2.11)

where κ̃ =
∑Nc

j=1 κ|∇χmsj |2 and {χmsj }Nc
j=1 are the standard multiscale finite element (MsFEM)

basis functions. We let λ(i)
j be the eigenvalues of (2.10) arranged in ascending order in j, and use

the first Li eigenfunctions to construct our local auxiliary multiscale space

V (i)
aux = span{φ(i)

j : 1 ≤ j ≤ Li}. (2.12)
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The global auxiliary multiscale space V h
aux is then defined as the sum of these local auxiliary

multiscale spaces

Vaux = ⊕Ni=1V
(i)
aux. (2.13)

For the local auxiliary multiscale space V (i)
aux, the bilinear form si in (2.11) defines an inner product

with norm ‖v‖s(Ki) = s (v, v)
1
2 . These local inner products and norms provide a natural definitions

of inner product and norm for the global auxiliary multiscale space Vaux, which are defined by

s (v, w) =
N∑
i=1

si (v, w) for all v, w ∈ Vaux,

‖v‖s = s (v, v)
1
2 for all v ∈ Vaux.

(2.14)

We note that s (v, w) and ‖v‖s are also an inner product and norm for the space Vh. Before we

move on to discuss the construction of multiscale basis functions, we introduce some tools which

will be used to describe our method and analyze the convergence. We first introduce the concept

of φ-orthogonality. For 1 ≤ i ≤ N and 1 ≤ j ≤ Li, in coarse block Ki, given auxiliary basis

function φ(i)
j ∈ Vaux, we say that ψ ∈ Vh is φ(i)

j -orthogonal if

s
(
ψ, φ

(i′)
j′

)
= δi,i′δj,j′ for all 1 ≤ j′ ≤ Li′ and 1 ≤ i′ ≤ N. (2.15)

We also introduce a projection operator π : Vh → Vaux by π =
∑N

i=1 πi, where

πi(v) =

Li∑
j=1

si

(
v, φ

(i)
j

)
si

(
φ

(i)
j , φ

(i)
j

)φ(i)
j for all v ∈ Vh, for all i = 1, 2, . . . , N. (2.16)

Next, we construct our global multiscale basis functions in Vh. The global multiscale basis function

ψ
(i)
j ∈ Vh is defined as the solution of the following constrained energy minimization problem

ψ
(i)
j = argmin

{
aDG (ψ, ψ) : ψ ∈ Vh is φ(i)

j -orthogonal
}
. (2.17)
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By introducing a Lagrange multiplier, the minimization problem (2.17) is equivalent to the follow-

ing variational problem: find ψ(i)
j ∈ Vh and µ(i)

j ∈ Vaux such that

aDG

(
ψ

(i)
j , ψ

)
+ s

(
ψ, µ

(i)
j

)
= 0 for all ψ ∈ Vh,

s
(
ψ

(i)
j − φ

(i)
j , µ

)
= 0 for all µ ∈ Vaux.

(2.18)

Now we discuss the construction our localized multiscale basis functions. We first denote by Ki,m

an oversampled domain formed by enlarging the coarse grid block Ki by m coarse grid layers.

An illustration of an oversampled domain is shown in Figure 2.2. We introduce the subspace

Vh (Ki,m), which contains restriction of fine-scale basis functions in Vh on the oversampled domain

Ki,m. We also define Vh,0 (Ki,m) = Vh(Ki,m)∩H1
0 (Ki,m) by the subspace of functions in Vh (Ki,m)

vanishing on the boundary of the oversampled domain Ki,m. Motivated by the construction of our

K i

K i ,m

Figure 2.2: An illustration of an oversampled domain formed by enlarging Ki with 1 coarse grid
layer.

global multiscale basis functions, the method for construction of the localized multiscale basis

functions are as follows: The localized multiscale basis function ψ(i)
j,ms ∈ Vh (Ki,m) is defined as
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the solution of the following constrained energy minimization problem

ψ
(i)
j,ms = argmin

{
aDG (ψ, ψ) : ψ ∈ Vh (Ki,m) is φ(i)

j -orthogonal
}
. (2.19)

Using the method of Lagrange multiplier, the minimization problem (2.19) is equivalent to the

following variational problem: find ψ(i)
j,ms ∈ Vh (Ki,m) and µ(i)

j,ms ∈ ⊕Ki′⊂Ki,m
V

(i′)
aux such that

aDG

(
ψ

(i)
j,ms, ψ

)
+ s

(
ψ, µ

(i)
j,ms

)
= 0 for all ψ ∈ Vh (Ki,m) ,

s
(
ψ

(i)
j,ms − φ

(i)
j , µ

)
= 0 for all µ ∈ ⊕Ki′⊂Ki,m

V (i′)
aux .

(2.20)

We use the localized multiscale basis functions to construct the multiscale DG finite element space,

which is defined as

Vms = span{ψ(i)
j,ms : 1 ≤ j ≤ Li, 1 ≤ i ≤ N}. (2.21)

We remark that the multiscale finite element space Vms is a subspace of Vh. After the multiscale

DG finite element space is constructed, the multiscale solution ums is given by: find ums ∈ Vms

such that

aDG (ums, w) =

∫
Ω

fw dx for all w ∈ Vms. (2.22)

2.3 Convergence analysis

In this section, we will analyze the proposed method. Besides the energy norm and the DG

norm, we also define the s-norm on V by

‖w‖2
s =

∑
K∈T H

∫
K

κ̃|w|2 dx. (2.23)

Given a subdomain Ω′ ⊆ Ω formed by a union of coarse blocks K ∈ T H , we also define the local

s-norm by

‖w‖2
s(Ω′) =

∑
K⊆Ω′

∫
K

κ̃|w|2 dx. (2.24)
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The flow of our analysis goes as follows. First, we prove the convergence using the global

multiscale basis functions. With the global multiscale basis functions constructed, the global mul-

tiscale finite element space is defined by

Vglo = span{ψ(i)
j : 1 ≤ j ≤ Li, 1 ≤ i ≤ N}, (2.25)

and an approximated solution uglo ∈ Vglo is given by

aDG (uglo, w) =

∫
Ω

fw dx for all w ∈ Vglo. (2.26)

We remark that the construction of global multiscale basis functions motivates the construction

of localized multiscale basis functions. The approximated solution uglo will also be used in our

convergence analysis. Next, we give an estimate of the difference between the global multiscale

functions ψ(i)
j and the localized multiscale basis functions ψ(i)

j,ms, in order to show that using the

multiscale solution ums provide similar convergence results as the global solution uglo. For this

purpose, we denote the kernel of the projection operator π by Ṽh. Then, for any ψ(i)
j ∈ Vglo, we

have

aDG

(
ψ

(i)
j , w

)
= 0 for all w ∈ Ṽh, (2.27)

which implies Ṽh ⊆ V ⊥glo, where V ⊥glo is the orthogonal complement of Vglo with respect to the inner

product aDG (·, ·). Moreover, since dim (Vglo) = dim (Vaux), we have Ṽh = V ⊥glo and Vh = Vglo⊕Ṽh.

The convergence analysis will start with the following lemma, which concerns about the con-

vergence of the approximated solution by the global multiscale basis functions.

Lemma 2.3.1. Let uh ∈ Vh be the solution of (2.4) and uglo ∈ Vglo be the solution of (2.26)

with the global multiscale basis functions defined by the constrained energy minimization problem

(2.17). Then we have uh − uglo ∈ Ṽh and

‖uh − uglo‖a ≤ Λ−
1
2‖κ̃−

1
2f‖L2(Ω), (2.28)
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where

Λ = min
1≤i≤N

λ
(i)
Li+1. (2.29)

Moreover, if we replace the multiscale partition of unity {χmsj } by the bilinear partition of unity,

we have

‖uh − uglo‖a ≤ CHΛ−
1
2‖κ−

1
2f‖L2(Ω). (2.30)

Proof. By the definitions of uh in (2.4) and uglo in (2.26), we have

aDG (uh, w) =

∫
Ω

fw dx for all w ∈ Vh,

aDG (uglo, w) =

∫
Ω

fw dx for all w ∈ Vglo.
(2.31)

Since Vglo ⊆ Vh, this yields the Galerkin orthogonality property.

aDG (uh − uglo, w) = 0 for all w ∈ Vglo, (2.32)

which implies uh − uglo ∈ V ⊥glo = Ṽh. In particular, if we take w = uglo in (2.32), together with

(2.4), we have

‖uh − uglo‖2
a = aDG (uh, uh − uglo)

= (f, uh − uglo)0,Ω

≤ ‖κ̃−
1
2f‖L2(Ω)‖uh − uglo‖s.

(2.33)

Since uh − uglo ∈ Ṽh, we have π (uh − uglo) = 0. Furthermore, since Ki are disjoint, we have

πi (uh − uglo) = 0 for all i = 1, 2, . . . , N . This implies

‖uh − uglo‖2
s =

N∑
i=1

‖uh − uglo‖2
s(Ki)

=
N∑
i=1

‖ (I − πi) (uh − uglo) ‖2
s(Ki)

(2.34)
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By the si-orthogonality of the eigenfunctions φ(i)
j , we have

‖ (I − πi) (uh − uglo) ‖2
s(Ki)

≤
(
λ

(i)
Li+1

)−1

ai(uh − uglo, uh − uglo)

≤ Λ−1ai(uh − uglo, uh − uglo).
(2.35)

Therefore, we have

‖uh − uglo‖2
s ≤ Λ−1

N∑
i=1

ai(uh − uglo, uh − uglo)

≤ Λ−1‖uh − uglo‖2
a.

(2.36)

Using (2.33) and (2.36), we obtain our desired result. The second part of the result follows from

the property |∇χj| = O (H−1) of the bilinear partition of unity.

The next step is to prove the global basis functions are indeed localizable. This makes use of

the following lemma, which states some approximation properties of the projection operator π. In

the analysis, we will make use of the Lagrange interpolation operator and a bubble function in the

coarse grid. We define the Lagrange interpolation operator Ih : C0(Ω) ∩ H1
0 (Ω) → C0(Ω) ∩ Vh

by: for all u ∈ C0(Ω) ∩ H1
0 (Ω), the interpolant Ihu ∈ C0(Ω) ∩ Vh is defined piecewise on each

fine block τ ∈ T h by

(Ihu)(x) = u(x) for all vectices x of τ, (2.37)

which satisfies the standard approximation properties: there exists CI ≥ 1 such that for every

u ∈ C0(Ω) ∩H1
0 (Ω),

∥∥∥κ̃ 1
2 (u− Ihu)

∥∥∥
L2(τ)

+ h
∥∥∥κ 1

2∇ (u− Ihu)
∥∥∥
L2(τ)

≤ CIh
∥∥∥κ 1

2∇u
∥∥∥
L2(τ)

, (2.38)

on each fine block τ ∈ T h. For any coarse grid block K, we define a bubble function B on K, i.e.

B(x) = 0 for all x ∈ ∂K and B(x) > 0 for all x ∈ int (K). More precisely, we take B =
∏

j χ
ms
j ,

where the product is taken over all the coarse grid nodes lying on the boundary ∂K. We can then
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define the constant

Cπ = sup
K∈T H ,µ∈Vaux

∫
K
κ̃µ2∫

K
κ̃Bµ2

. (2.39)

In our following analysis, we will assume the following smallness criterion on the fine mesh size

h:

CπCI(C
2
T + λmax)‖Θ‖

1
2

L∞(Ω)h < 1, (2.40)

where CT is the maximum number of vertices over all coarse elements K ∈ T H and

λmax = max
1≤i≤N

λ
(i)
Li
,

Θ =
∑
j

|∇χmsj |2.
(2.41)

Lemma 2.3.2. Assume the smallness criterion (2.40) on the fine mesh size h. For any vaux ∈ Vaux,

there exists a function v ∈ C0(Ω) ∩ Vh such that

π(v) = vaux, ‖v‖2
a ≤ D‖vaux‖2

s, supp(v) ⊆ supp(vaux), (2.42)

where the constant D is defined by

D =

 2Cπ(1 + C2
I ) (C2

T + λmax)

1− CπCI (C2
T + λmax) ‖Θ‖

1
2

L∞(Ki)
h

2

. (2.43)

Proof. Let vaux ∈ V (i)
aux. We consider the following constraint minimization problem on the block

Ki:

v = argmin
{
aDG(v, v) : v ∈ Vh,0(Ki), si(v, ν) = si(vaux, ν) for all ν ∈ V (i)

aux

}
. (2.44)

The minimization problem (2.44) is equivalent to the following variational problem: find (v, µ) ∈

17



Vh,0(Ki)× V (i)
aux such that

ai (v, w) + si (w, µ) = 0 for all w ∈ Vh,0(Ki),

si (v − vaux, ν) = 0 for all ν ∈ V (i)
aux.

(2.45)

The existence of solution of (2.45) is based on an inf-sup condition:

inf
ν∈V (i)

aux

sup
w∈Vh,0(Ki)\{0}

si(w, ν)

ai(w,w)
≥ β, (2.46)

where β > 0 is a constant independent to be determined. Pick any ν ∈ V
(i)
aux. We take w =

Ih(Bν) ∈ C0(Ω) ∩ Vh. Since ν ∈ Vh(Ki) and B(x) = 0 for all vertices of Ki, we have w ∈

Vh,0(Ki). First, we see that

si(w, ν) =

∫
Ki

κ̃Bν2 +

∫
Ki

κ̃(Ih(Bν)−Bν)ν

≥ C−1
π ‖ν‖2

s(Ki)
− ‖Ih(Bν)−Bν‖s ‖ν‖s(Ki)

≥ C−1
π ‖ν‖2

s(Ki)
− CIh

∥∥∥κ̃ 1
2∇(Bν)

∥∥∥
L2(Ki)

‖ν‖s(Ki)

≥ C−1
π ‖ν‖2

s(Ki)
− CI‖Θ‖

1
2

L∞(Ki)
h
∥∥∥κ 1

2∇(Bν)
∥∥∥
L2(Ki)

‖ν‖s(Ki).

(2.47)

On the other hand, we observe that

ai(w,w) ≤ 2

(∥∥∥κ 1
2∇(Bν)

∥∥∥2

L2(Ki)
+
∥∥∥κ 1

2∇(Bν − Ih(Bν))
∥∥∥2

L2(Ki)

)
≤ 2(1 + C2

I )
∥∥∥κ 1

2∇(Bν)
∥∥∥
L2(Ki)

.

(2.48)

It remains to estimate the term
∥∥∥κ 1

2∇(Bν)
∥∥∥
L2(Ki)

. Since 0 ≤ χmsj ≤ 1, we have 0 ≤ B ≤ 1 and

|∇B|2 ≤ C2
TΘ. Using these facts together with∇(Bν) = (∇B)ν +B(∇ν), we imply

∥∥∥κ 1
2∇(Bν)

∥∥∥2

L2(Ki)
≤ C2

T ‖ν‖2
s(Ki)

+ ai(ν, ν)

≤
(
C2
T + λmax

)
‖ν‖2

s(Ki)

(2.49)
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By taking the inf-sup constant

β =
1− CπCI (C2

T + λmax) ‖Θ‖
1
2

L∞(Ki)
h

2Cπ(1 + C2
I ) (C2

T + λmax)
, (2.50)

we prove the inf-sup condition (2.46) and therefore the existence of (v, µ) ∈ Vh,0(Ki) × V (i)
aux in

(2.45). It is then direct to check that the solution v ∈ Vh,0(Ki) satisfies the desired properties.

We remark that, without loss of generality, we can assume D ≥ C2
0(1 + C2

I ). We are now

going to establish an estimate of the difference between the global multiscale basis functions and

localized multiscale basis functions. We will see that the global multiscale basis functions have a

decay property, and their values are small outside a suitably large oversampled domain. We will

make use of a cutoff function in our proof. For each coarse blockKi andM > m, the oversampling

regions Ki,M and Ki,m define an outer neighborhood and an inner neighborhood respectively. We

define χM,m
i ∈ span{χmsj } such that 0 ≤ χM,m

i ≤ 1 and

χM,m
i = 1 in Ki,m and χM,m

i = 0 in Ω \Ki,M . (2.51)

Moreover, we define the following DG norm for w ∈ V on Ki,M \Ki,m.

‖w‖2
DG(Ki,M\Ki,m) =

∑
Kk⊂Ki,M\Ki,m

ak(w,w) +
γ

h

∑
E∈EH(Ki,M\Ki,m)

∫
E

κJwK2dσ, (2.52)

where EH(Ki,M \Ki,m) denotes the collection of all coarse grid edges in EH which lie within in

the interior of Ki,M \Ki,m and the boundary of Ki,M . We remark that the definition also applies

to a region Ω \Ki,m in the case when M is sufficiently large.

Lemma 2.3.3. Assume the smallness criterion (2.40) on the fine mesh size h. Supposem > 2 is the

number of coarse grid layers in the oversampled domain Ki,m extended from the coarse grid block

Ki. Let φ(i)
j ∈ Vaux be a given auxiliary multiscale basis function. Let ψ(i)

j ∈ Vglo be the global

multiscale basis function obtained from (2.17), and ψ(i)
j,ms ∈ Vh (Ki,m) be the localized multiscale
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basis function obtained from (2.19). Then we have

‖ψ(i)
j − ψ

(i)
j,ms‖2

a ≤ E‖φ(i)
j ‖2

s(Ki)
, (2.53)

where E = 40D3(1 + Λ−1)

(
1 + 6D−2

(
1 + Λ−

1
2

)−1
)1−m

.

Proof. By the variational formulations (2.18) and (2.20), we have

aDG

(
ψ

(i)
j − ψ

(i)
j,ms, ψ

)
+ si

(
ψ, µ

(i)
j − µ

(i)
j,ms

)
= 0 for all ψ ∈ Vh(Ki,m). (2.54)

By Lemma 3.3.2, there exists φ̃(i)
j ∈ Vh such that

π(φ̃
(i)
j ) = φ

(i)
j , ‖φ̃(i)

j ‖2
a ≤ D‖φ(i)

j ‖2
s(Ki)

, supp
(
φ̃

(i)
j

)
⊆ Ki. (2.55)

We take η = ψ
(i)
j − φ̃

(i)
j ∈ Vh and ζ = φ̃

(i)
j − ψ

(i)
j,ms ∈ Vh(Ki,m). By definition, we have π(η) =

π(ζ) = 0 and therefore η, ζ ∈ Ṽh. Again, by Lemma 3.3.2, there exists ρ ∈ Vh such that

π(ρ) = π(Ih(χ
m,m−1
i η)), ‖ρ‖2

a ≤ D‖π(Ih(χ
m,m−1
i η))‖2

s, supp (ρ) ⊆ Ki,m \Ki,m−1. (2.56)

Take τ = ρ−Ih(χm,m−1
i η) ∈ Vh. Again, π(τ) = 0 and hence τ ∈ Ṽh. Takingψ = τ−ζ ∈ Vh(Ki,m)

in (2.54) and making use of the fact τ − ζ ∈ Ṽh, we have

aDG

(
ψ

(i)
j − ψ

(i)
j,ms, τ − ζ

)
= 0, (2.57)

and therefore

∥∥∥ψ(i)
j − ψ

(i)
j,ms

∥∥∥2

a
= aDG

(
ψ

(i)
j − ψ

(i)
j,ms, η + ζ

)
= aDG

(
ψ

(i)
j − ψ

(i)
j,ms, η + τ

)
≤
∥∥∥ψ(i)

j − ψ
(i)
j,ms

∥∥∥
a
‖η + τ‖a ,

(2.58)
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which in turn implies

∥∥∥ψ(i)
j − ψ

(i)
j,ms

∥∥∥2

a
≤ ‖η + τ‖2

a

=
∥∥Ih((1− χm,m−1

i )η) + ρ
∥∥2

a

≤ 2
(∥∥Ih((1− χm,m−1

i )η)
∥∥2

a
+ ‖ρ‖2

a

)
≤ 2

(
C2

0

∥∥Ih((1− χm,m−1
i )η)

∥∥2

DG
+ ‖ρ‖2

a

)
≤ 2

(
2C2

0(1 + C2
I )
∥∥(1− χm,m−1

i )η
∥∥2

DG
+ ‖ρ‖2

a

)
.

(2.59)

For the first term on the right hand side of (2.59), by using ∇
(
(1− χm,m−1

i )η
)

= −∇χm,m−1
i η +

(1− χm,m−1
i )∇η and 0 ≤ 1− χm,m−1

i ≤ 1, we have

∥∥(1− χm,m−1
i )η

∥∥2

a
≤ 2

(
‖η‖2

DG(Ω\Ki,m−1) + ‖η‖2
s(Ω\Ki,m−1)

)
. (2.60)

For the second term on the right hand side of (2.59), using the definition of ρ in (2.56) and 0 ≤

1− χm,m−1
i ≤ 1, we obtain

‖ρ‖2
a ≤ D‖π(χm,m−1

i η)‖2
s ≤ D‖χm,m−1

i η‖2
s ≤ D‖η‖2

s(Ω\Ki,m−1). (2.61)

Moreover, since η ∈ Ṽh, by the spectral problem (2.10), we have

‖η‖2
s(Ω\Ki,m−1) ≤ Λ−1

∑
Kk⊂Ω\Ki,m−1

ak(η, η). (2.62)

Combining all these estimates, we obtain

∥∥∥ψ(i)
j − ψ

(i)
j,ms

∥∥∥2

a
≤ 10D(1 + Λ−1)‖η‖2

DG(Ω\Ki,m−1). (2.63)

Next, we will provide a recursive estimate for η in the number of oversampling layers m. We take

ξ = 1 − χm−1,m−2
i . Then 0 ≤ ξ ≤ 1 and ξ = 1 in Ω \Ki,m−1. Using ∇(ξ2η) = ξ2∇η + 2ξη∇ξ,
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for every K ∈ T H , we have

∫
K

κ∇η · ∇(ξ2η) =

∫
K

κ∇η ·
(
ξ2∇η + 2ξη∇ξ

)
=

∫
K

κ|∇(ξη)|2 −
∫
K

κ|∇ξ|2η2. (2.64)

In addition, using∇(ξη) = ξ∇η + η∇ξ, for every E ∈ EH , we have

−
∫
E

{κ∇η · nE}Jξ2ηK−
∫
E

{κ∇(ξ2η) · nE}JηK +
γ

h

∫
E

κJηKJξ2ηK

= −
∫
E

{κ∇η · nE}Jξ2ηK−
∫
E

{
κ(ξ2∇η + 2ξη∇ξ) · nE

}
JηK +

γ

h

∫
E

κJηKJξ2ηK

= −2

(∫
E

{κξ∇η · nE}JξηK +

∫
E

{κη∇ξ · nE}JξηK
)

+
γ

h

∫
E

κJξηK2

= −2

∫
E

{κ∇(ξη) · nE}JξηK +
γ

h

∫
E

κJξηK2.

(2.65)

Summing over K ∈ T H and E ∈ EH , we obtain

‖ξη‖2
a ≤ aDG(η, ξ2η) + ‖η‖2

s(Ki,m−1\Ki,m−2), (2.66)

where we make use of the fact that ∇ξ = 0 outside Ki,m−1 \Ki,m−2. We start with estimating the

first term on the right hand side of (2.66). For any coarse element Kk ∈ Ω \Ki,m−1, since ξ = 1 in

Kk and η ∈ Ṽh, we have

s
(
ξ2η, φ

(k)
j

)
= s

(
η, φ

(k)
j

)
= 0 for all j = 1, 2, . . . , Lk. (2.67)

On the other hand, for any coarse element Kk ∈ Ki,m−2, since ξ = 0 in Kk, we have

s
(
ξ2η, φ

(k)
j

)
= 0 for all j = 1, 2, . . . , Lk. (2.68)

Therefore, supp(π(Ih(ξ
2η))) ⊂ Ki,m−1 \Ki,m−2. By Lemma 3.3.2, there exists σ ∈ Vh such that

π(σ) = π(Ih(ξ
2η)), ‖γ‖2

a ≤ D‖π(Ih(ξ
2η))‖2

s, supp(σ) ⊂ Ki,m−1 \Ki,m−2. (2.69)
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For any coarse element Kk ⊂ Ki,m−1 \Ki,m−2, since 0 ≤ ξ ≤ 1 and π(η) = 0, we have

‖π(Ih(ξ
2η))‖2

s(Kk) ≤ ‖Ih(ξ2η)‖2
s(Kk) ≤ ‖Ih(η)‖2

s(Kk) = ‖η‖2
s(Kk) ≤ Λ−1ak(η, η). (2.70)

Summing over Kk ⊂ Ki,m−1 \Ki,m−2, we obtain

‖π(Ih(ξ
2η))‖2

s ≤ Λ−1
∑

Kk⊂Ki,m−1\Ki,m−2

ak(η, η). (2.71)

We take θ = Ih(ξ
2η)− σ. Again, π(θ) = 0 and θ ∈ Ṽh, which yields

aDG

(
ψ

(i)
j , θ

)
= 0. (2.72)

On the other hand, supp(θ) ⊂ Ω \ Ki,m−2 and supp(φ̃
(i)
j ) ⊂ Ki. Since θ and φ̃(i)

j has disjoint

supports, we have

aDG

(
φ̃

(i)
j , θ

)
= 0. (2.73)

Therefore, we obtain

aDG(η, θ) = aDG

(
ψ

(i)
j − φ̃

(i)
j , θ

)
= 0. (2.74)

Recall from the definition that Ih(ξ2η) = θ + σ and supp(σ) ⊂ Ki,m−1 \Ki,m−2. Hence we have

aDG(η, Ih(ξ
2η)) = aDG(η, σ)

≤ C0‖η‖DG(Ki,m−1\Ki,m−2)‖σ‖a

≤ C0D
1
2‖η‖DG(Ki,m−1\Ki,m−2)‖π(Ih(ξ

2η))‖s

≤ DΛ−
1
2‖η‖2

DG(Ki,m−1\Ki,m−2).

(2.75)

On the other hand, making use of the fact that ξ2 = 0 in Ki,m−2 and ξ2 = 1 in Ω \ Ki,m−1,

we observe that ξ2η = Ih(ξ
2η) outside Ki,m−1 \ Ki,m−2. Moreover, ξ2η − Ih(ξ

2η) is globally
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continuous. Thus, we obtain

aDG(η, ξ2η − Ih(ξ2η)) ≤ C2
0‖η‖DG(Ki,m−1\Ki,m−2)

∥∥ξ2η − Ih(ξ2η)
∥∥
DG(Ki,m−1\Ki,m−2)

≤ C2
0CI‖η‖DG(Ki,m−1\Ki,m−2)

∥∥ξ2η
∥∥
DG(Ki,m−1\Ki,m−2)

≤ D

2

(
‖η‖2

DG(Ki,m−1\Ki,m−2) +
∥∥ξ2η

∥∥2

DG(Ki,m−1\Ki,m−2)

)
.

(2.76)

Again, using∇(ξ2η) = ξ2∇η + 2ξη∇ξ, we have

∥∥ξ2η
∥∥2

DG(Ki,m−1\Ki,m−2)
≤ 2‖η‖2

DG(Ki,m−1\Ki,m−2) + 8‖η‖2
s(Ki,m−1\Ki,m−2). (2.77)

Combining (2.66), (2.75), (2.76) and (2.77), we arrive at

‖ξη‖2
a ≤ D

((
3

2
+ Λ−

1
2

)
‖η‖2

DG(Ki,m−1\Ki,m−2) + 5‖η‖2
s(Ki,m−1\Ki,m−2)

)
. (2.78)

Moreover, since π(η) = 0, we have

‖η‖s(Ki,m−1\Ki,m−2) ≤ Λ−
1
2‖η‖DG(Ki,m−1\Ki,m−2), (2.79)

which implies

‖ξη‖2
a ≤ 6D

(
1 + Λ−

1
2

)
‖η‖2

DG(Ki,m−1\Ki,m−2). (2.80)

By the equivalence of norms, we have

‖η‖2
DG(Ω\Ki,m−1) ≤ C2

0‖ξη‖2
a ≤ 6D2

(
1 + Λ−

1
2

)
‖η‖2

DG(Ki,m−1\Ki,m−2). (2.81)

We obtain the recurrence estimate

‖η‖2
DG(Ω\Ki,m−2) = ‖η‖2

DG(Ω\Ki,m−1) + ‖η‖2
DG(Ki,m−1\Ki,m−2)

≥
(

1 + 6D−2
(

1 + Λ−
1
2

)−1
)
‖η‖2

DG(Ω\Ki,m−1).
(2.82)
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Inductively, we have

‖η‖2
DG(Ω\Ki,m−1) ≤

(
1 + 6D−2

(
1 + Λ−

1
2

)−1
)1−m

‖η‖2
DG(Ω\Ki,1)

≤ D

(
1 + 6D−2

(
1 + Λ−

1
2

)−1
)1−m

‖η‖2
a.

(2.83)

Combining (2.63) and (2.83), we see that

∥∥∥ψ(i)
j − ψ

(i)
j,ms

∥∥∥2

a
≤ 10D2

(
1 + Λ−1

)(
1 + 6D−2

(
1 + Λ−

1
2

)−1
)1−m

‖η‖2
a (2.84)

By the energy minimizing property of ψ(i)
j , we have

‖η‖a ≤ ‖ψ(i)
j ‖a + ‖φ̃(i)

j ‖a ≤ 2‖φ̃(i)
j ‖a ≤ 2D

1
2‖φ(i)

j ‖s(Ki). (2.85)

We obtain the desired result.

Now, we are ready to establish our main theorem, which estimates the error between the solu-

tion uh and the multiscale solution ums.

Theorem 2.3.4. Let uh ∈ Vh be the solution of (2.4), uglo ∈ Vglo be the solution of (2.26) with the

global multiscale basis functions defined by (2.17), and ums ∈ Vms be the multiscale solution of

(2.22) with the localized multiscale basis functions defined on an oversampled domain with m > 2

coarse grid layers by (2.19). Then we have

‖uh − ums‖a ≤ CΛ−
1
2‖κ̃−

1
2f‖L2(Ω) + CmdE

1
2‖uglo‖s, (2.86)

Moreover, if we let k = O
(

log
(κ1

H

))
and replace the multiscale partition of unity {χmsj } by the

bilinear partition of unity, we have

‖uh − ums‖a ≤ CHΛ−
1
2‖κ−

1
2f‖L2(Ω). (2.87)
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Proof. First, we write uglo in the linear combination of the basis {ψ(j)
k }

uglo =
N∑
i=1

Li∑
j=1

α
(i)
j ψ

(i)
j . (2.88)

and define ûms ∈ Vms by

ûms =
N∑
i=1

Li∑
j=1

α
(i)
j ψ

(i)
j,ms. (2.89)

From (2.4) and (2.22), we obtain the Galerkin orthogonality

aDG(uh − ums, w) = 0 for all w ∈ Vms, (2.90)

which gives

‖uh − ums‖a ≤ ‖uh − ûms‖a ≤ ‖uh − uglo‖a + ‖uglo − ûms‖a. (2.91)

Using Lemma 3.3.3, we see that

‖uglo − ûms‖2
a =

∥∥∥∥∥
N∑
i=1

Li∑
j=1

α
(i)
j (ψ

(i)
j − ψ

(i)
j,ms)

∥∥∥∥∥
2

a

≤ Cmd

N∑
i=1

∥∥∥∥∥
Li∑
j=1

α
(i)
j (ψ

(i)
j − ψ

(i)
j,ms)

∥∥∥∥∥
2

a

≤ CmdE
N∑
i=1

∥∥∥∥∥
Li∑
j=1

α
(i)
j φ

(i)
j

∥∥∥∥∥
2

s

= CmdE‖uglo‖2
s,

(2.92)

where the last equality follows from the orthogonality of the eigenfunctions in (2.10). Using the

estimates (2.28) and (2.92) in (2.91), we have

‖uh − ums‖a ≤ Λ−
1
2‖κ̃−

1
2f‖L2(Ω) + Cm

d
2E

1
2‖uglo‖s. (2.93)

This completes the first part of the theorem. Next, we assume the partition of unity functions are
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bilinear, and we are going to estimate ‖uglo‖s. Using the fact that |∇χk| = O(H−1), we have

‖uglo‖2
s ≤ CH−2κ1‖uglo‖2

L2(Ω). (2.94)

Then, by Poincaré inequality, we have

‖uglo‖2
L2(Ω) ≤ Cκ−1

0 ‖uglo‖2
a. (2.95)

By taking w = uglo ∈ Vglo in (2.26), we obtain

‖uglo‖2
a = (f, uglo)0,Ω ≤ ‖κ̃−

1
2f‖L2(Ω)‖uglo‖s. (2.96)

Combining these estimates, we have

‖uglo‖s ≤ CH−2κ−1
0 κ1‖κ̃−

1
2f‖L2(Ω). (2.97)

To obtain our desired result, we need

H−2κ1m
d
2E

1
2 = O(1). (2.98)

Taking logarithm, we have

log(H−2) + log(κ1) +
d

2
log(m) +

1−m
2

log
(

1 + Λ−
1
2

)
= O(1). (2.99)

Thus, taking m = O
(

log
(κ1

H

))
completes the proof of the second result.

2.4 Numerical results

In this section, we will present numerical examples with high contrast media to demonstrate

the convergence of our proposed method with respect to the coarse mesh size H and the number

of oversampling layers m, and illustrate possible improvements in error robustness with respect
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to contrast by employing the idea of constructing multiscale basis function by relaxation method

introduced in [39]. In all the experiments, the IPDG penalty parameter in (2.5) is set to be γ = 4,

so as to ensure the coercivity of the bilinear form aDG. We consider a highly heterogeneous

permeability field κ in Ω = [0.1]2 as shown in Figure 2.3, with the background value is κ = 1 and

the value in the channels and inclusions is 104. and the resolution is 400× 400, i.e. κ is piecewise

constant on a fine grid with mesh size h = 1/400. The coarse mesh size varies from H = 1/80

to H = 1/10, and the number of oversampling layers varies from m = 3 to m = 6. In all these

combinations, there are no more than 3 high conductivity channels in a coarse block K ∈ T H .

As a result, we have 3 small eigenvalues in a local spectral problem (2.10), and it suffices to use 3

auxiliary basis functions per coarse block to construct the correspoding localized multiscale basis

functions. The source function is taken as

f(x, y) = 2π2 sin(πx) sin(πy) for all (x, y) ∈ Ω. (2.100)

Table 2.1 records the error when we take the number of oversampling layer to be approximately

m ≈ 4 log(1/H)/ log(1/10). The results show that the method provides optimal convergence in

energy norm, which agrees with our theoretical finding in Section 2.3, and the L2 error converges

with second order. Table 2.2 records the error with various number of oversampling layers and a

fixed coarse mesh sizes H = 1/40. It can be observed that increasing the number of oversampling

layers improves the quality of approximations, but the decay in error is limited when the oversam-

pling region is sufficiently large. This numerically verifies that the multiscale basis functions can

indeed be localized.

m H Energy error L2 error
4 1/10 7.4625% 0.7653%
6 1/20 1.5392% 0.0625%
7 1/40 0.7266% 0.0160%
8 1/80 0.3433% 0.0035%

Table 2.1: History of convergence with different coarse mesh size H for Experiment 1.
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Figure 2.3: The permeability field κ for Experiment 1.

m Energy error L2 error
3 84.7517% 72.3079%
4 19.0936% 3.6716%
5 2.6687% 0.0720%
6 0.7836% 0.0161%
7 0.7266% 0.0160%
8 0.7259% 0.0160%

Table 2.2: Error table with different number of oversampling layers m and a fixed coarse mesh
size H = 1/40 for Experiment 1.

Next, we present the idea of the relaxed formulation of (2.19). Instead of using the method of

Lagrange multiplier as in (2.20), the φ-orthogonality is imposed weakly by a penalty formulation.

The localized multiscale basis function ψ(i)
j,ms ∈ Vh (Ki,m) is defined as the solution of the following

relaxed constrained energy minimization problem

ψ
(i)
j,ms = argmin

{
aDG (ψ, ψ) + s

(
π (ψ)− φ(i)

j , π (ψ)− φ(i)
j

)
: ψ ∈ Vh (Ki,m)

}
. (2.101)

The minimization problem (2.101) is equivalent to the following variational problem: find ψ(i)
j,ms ∈
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Vh (Ki,m) such that

aDG

(
ψ

(i)
j,ms, ψ

)
+ s

(
π
(
ψ

(i)
j,ms

)
, π (ψ)

)
= s

(
φ

(i)
j , π (ψ)

)
for all ψ ∈ Vh (Ki,m) . (2.102)

The construction of multiscale finite element space and coarse-scale model then follow (2.21) and

(2.22) respectively. We compare the performance of the multiscale method with multiscale basis

functions constructed by method of Lagrange multiplier (2.20) and the relaxation method (2.102)

at different contrast values, where the coarse mesh size is taken as H = 1/10 and the number of

oversampling layers as m = 4. In Table 2.3, we record the energy error and L2 error with different

contrast κ1, where κ1 � 1 is the value of κ in the high conductivity channels. It can be seen that

the relaxation method is more robust with respect to contrast.

Lagrange multiplier Relaxation
κ1 Energy error L2 error Energy error L2 error
104 7.4625% 0.7653% 6.3757% 0.6395%
105 12.6299% 1.6977% 6.3986% 0.6467%
106 32.1465% 10.5146% 6.4020% 0.6478%
107 64.1190% 41.8127% 6.4049% 0.6481%
108 77.1229% 60.4947% 6.4301% 0.6503%

Table 2.3: Comparison of the method of Lagrange multiplier and the relaxation method with dif-
ferent contrast values for Experiment 1.
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3. CONSTRAINT ENERGY MINIMIZING GENERALIZED MULTISCALE FINITE

ELEMENT METHOD FOR DUAL CONTINUUM MODEL ∗

Dual continuum models are used to describe a wide range of scientific and engineering applica-

tions, for example, complex processes in shale reservoirs, where such models are used to describe

a complex interaction of the organic and inorganic matter. In real world applications, properties

of the dual continuum models are highly heterogeneous and leads to the construction of the fine

grids to resolve also small scale heterogeneity in level of mesh construction. Direct simulation on

the fine grid is computationally expensive. In this chapter, we consider a dual continuum model

for describing fluid flow in porous media with highly connected fracture network, where we have

coupled system of equations for porous matrix and for fracture network with specific mass transfer

between them. We present Constraint Energy Minimizing Generalized Multiscale Finite Element

Method (CEM-GMsFEM) as a model reduction technique for the dual continuum model. We es-

tablish theoretical results showing that the method provides a convergence depends only on the

coarse mesh size and independent of scales and contrast. we will construct a set of local auxil-

iary multiscale basis functions, as in GMsFEM. These functions are dominant eigenfunctions of

local spectral problems, and the number of these functions is the same as the number of high con-

trast channels. We emphasize that this is the minimal number of degrees of freedoms required to

represent channelized effects. We also remark that these eigenfunctions are crucial in the construc-

tion of localized basis functions. The second key component is multiscale basis functions. These

functions are obtained by minimizing an energy functional subject to certain constraints. These

constraints are formulated using the auxiliary functions with the purpose of obtaining localized

multiscale basis functions. In particular, for each of the auxiliary function, the constraints require

the minimizer of the energy functional is orthogonal, in a weighted L2 sense, to all other auxiliary

functions except the selected one. For the selected auxiliary functions, the constraints require the

∗ Reprinted with permission from “Constraint Energy Minimizing Generalized Multiscale Finite Element Method
for Dual Continuum Model” by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Wing Tat Leung and Maria
Vasilyeva. To be published in Communications in Mathematical Sciences by International Press of Boston, Inc.
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minimizer of the energy functional to satisfy a normalized condition. Combining the effects of

auxiliary functions and energy minimization, we show that the minimizer of the energy functional

has exponential decay property, and is very small outside an oversampling region obtained by the

support of the selected auxiliary function. Moreover, the resulting multiscale method obtained by

a Galerkin formulation has a mesh dependent convergence rate.

Similar to Chapter 2, we will first construct a set of local auxiliary multiscale basis functions.

These functions are dominant eigenfunctions of local spectral problems, and the number of these

functions is the same as the number of high contrast channels. We emphasize that this is the mini-

mal number of degrees of freedoms required to represent channelized effects. We also remark that

these eigenfunctions are crucial in the construction of localized basis functions. Using the auxiliary

basis functions, we define multiscale basis functions by minimizing an energy functional subject to

certain constraints. These constraints are formulated using the auxiliary functions with the purpose

of obtaining localized multiscale basis functions. In particular, for each of the auxiliary function,

the constraints require the minimizer of the energy functional is orthogonal, in a weightedL2 sense,

to all other auxiliary functions except the selected one. For the selected auxiliary functions, the

constraints require the minimizer of the energy functional to satisfy a normalized condition. Com-

bining the effects of auxiliary functions and energy minimization, we show that the minimizer of

the energy functional has exponential decay property, and is very small outside an oversampling re-

gion obtained by the support of the selected auxiliary function. Moreover, the resulting multiscale

method obtained by a Galerkin formulation has a mesh dependent convergence rate.

The chapter is organized as follows. In Section 3.1, we will introduce the dual continuum

model. Our multiscale method will be presented in Section 3.2 and analyzed in Section 3.3. Finally,

in Section 3.4, we will present some numerical tests.
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3.1 Dual continuum Model

We consider the following dual continuum model

c1
∂p1

∂t
− div(κ1∇p1) + σ(p1 − p2) = f1,

c2
∂p2

∂t
− div(κ2∇p2)− σ(p1 − p2) = f2,

(3.1)

in a computational domain Ω ⊂ R2. Here, for i = 1, 2, ci is the compressibility, pi is the pressure,

κi is the permeability, and fi is the source function for the i-th continuum. In addition, the continua

are coupled through the mass exchange, and σ is a parameter which accounts for the strength of

mass transfer between the continua. One particular application of the dual continuum model 3.1 is

to represent the global interactive effects of the unresolved fractures and the matrix.

Let Ω be domain with high conductive channels (heterogeneous media)

Ω = Di
m ∪Di

f , Di
f = ∪nf

l=1D
i
f,l (3.2)

where indices m and f represent the two subdomains with low and high permeability, nf is the

number of high conductive channels, i is the continuum. We prescribe the initial condition

pi(0, ·) = p0
i in Ω and the boundary condition pi(t, ·) = 0 on ∂Ω for t > 0. Furthermore, we have

κi(x) =

κ
m
i , x ∈ Di

m,

κfl,i, x ∈ Di
f,l,

, ci(x) =

c
m
i , x ∈ Di

m,

cfl,i, x ∈ Di
f,l,

, i = 1, 2, l = 1, ..., nf ,

where κfl,i and cfl,i are the permeability and compressibility on the l-th channel for the continuum i

in subdomain Di
f,l; κ

m
i and cmi are the permeability and compressibility in subdomain Di

m. Here,

we assume the permeability fields are uniformly bounded, i.e.

0 < κ ≤ κi(x) ≤ κ for x ∈ Ω, for i = 1, 2. (3.3)
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Let V = [H1
0 (Ω)]2. Also, for a subdomain D ⊂ Ω, we denote the restriction of V on D by

V (D), and the subspace of V (D) with zero trace on ∂D by V0(D). The weak formulation of 3.1

then reads: find p = (p1, p2) such that p(t, ·) ∈ V 0 and

c

(
∂p

∂t
, v

)
+ aQ(p, v) = (f, v), (3.4)

for all v = (v1, v2) with v(t, ·) ∈ V 0. Here, (·, ·) denotes the standard L2(Ω) inner product.

Moreover, the bilinear forms are defined as:

ci(pi, vi) =

∫
Di

m

cmi pivi dx+
∑
l

∫
Di

f,l

cfl,ipivi dx =

∫
Ω

ci(x)pivi dx,

c(p, v) =
∑
i

ci(pi, vi),

ai(pi, vi) =

∫
Di

m

κmi ∇pi · ∇vi dx+
∑
l

∫
Di

f,l

κfl,i∇pi · ∇vi dx =

∫
Ω

κi(x)∇pi · ∇vi dx,

a(p, v) =
∑
i

ai(pi, vi),

q(p, v) =
∑
i

∑
l

∫
Ω

σ(pi − pl)vi dx,

aQ(p, v) = a(p, v) + q(p, v), (f, v) =
∑
i

(fi, vi),

(3.5)

3.2 Method description

In this section, we will describe the details of our proposed method. To start with, we introduce

the notions of coarse and fine meshes. We start with a usual partition T H of Ω into finite elements,

which does not necessarily resolve any multiscale features. The partition T H is called a coarse

grid and a generic element K in the partition T H is called a coarse element. Moreover, H > 0 is

called the coarse mesh size. We let Nc be the number of coarse grid nodes and N be the number

of coarse elements. We also denote the collection of all coarse grid edges by EH . We perform a

refinement of T H to obtain a fine grid T h, where h > 0 is called the fine mesh size. It is assumed
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that the fine grid is sufficiently fine to resolve the solution. An illustration of the fine grid and the

coarse grid and a coarse element are shown in Figure 2.1. We remark that the fine grid is only

used in solving local problems numerically. In our analysis, the fine grid does not play a role as

we assume that all local problems are solved continuously.

We define local bilinear forms on a coarse element Kj by:

a
(j)
i (pi, vi) =

∫
Kj

κi(x)∇pi · ∇vi dx,

a(j)(p, v) =
∑
i

a
(j)
i (pi, vi),

q(j)(p, v) =
∑
i

∑
l

∫
Kj

σ(pi − pl)vi dx,

a
(j)
Q (p, v) = a(j)(p, v) + q(j)(p, v),

s
(j)
i (pi, vi) =

∫
Kj

κ̃i(x)pivi dx,

s(j)(p, v) =
∑
i

s
(j)
i (pi, vi),

(3.6)

where κ̃i = κi
∑Nc

k=1 |∇χk|2 and {χk} is a set of bilinear partition of unity functions for the coarse

grid partition of the domain Ω. We also define the bilinear form s by:

s(p, v) =
∑
j

s(j)(p, v). (3.7)

Next, we will use the concept of GMsFEM to construct our auxiliary multiscale basis functions.

The auxiliary basis functions are coupled, and defined by a spectral problem, which is to find a real

number λ(j)
k and a function φ(j)

k ∈ V (Kj) such that

a
(j)
Q (φ

(j)
k , v) = λ

(j)
k s(j)(φ

(j)
k , v) for all v ∈ V (Kj). (3.8)

We let λ(j)
k be the eigenvalues of 3.8 arranged in ascending order in k, normalize the eigenfunctions

in the norm induced by the inner product s, and use the first Lj eigenfunctions to construct our local
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auxiliary multiscale space

V (j)
aux = span{φ(j)

k : 1 ≤ k ≤ Lj}. (3.9)

The global auxiliary multiscale space Vaux is then defined as the sum of these local auxiliary

multiscale spaces

Vaux = ⊕Nj=1V
(j)
aux. (3.10)

Before we move on to discuss the construction of multiscale basis functions, we introduce some

tools which will be used to describe our method and analyze the convergence. We first introduce

the notion of φ-orthogonality. In a coarse block Kj , given an auxiliary basis function φ(j)
k ∈ Vaux,

we say that ψ ∈ V is φ(j)
k -orthogonal if

s
(
ψ, φ

(j′)
k′

)
= δj,j′δk,k′ for 1 ≤ k′ ≤ Lj′ and 1 ≤ j′ ≤ N. (3.11)

We also introduce a projection operator π : [L2(Ω)]2 → Vaux by π =
∑N

j=1 πj , where πj :

[L2(Kj)]
2 → Vaux is given by

πj(v) =

Lj∑
k=1

s(j)(v, φ
(j)
k )

s(j)(φ
(j)
k , φ

(j)
k )

φ
(j)
k for all v ∈ [L2(Kj)]

2. (3.12)

Next, we construct our global multiscale basis functions. The global multiscale basis function

ψ
(i)
j ∈ V is defined as the solution of the following constrained energy minimization problem

ψ
(j)
k = argmin

{
aQ(ψ, ψ) : ψ ∈ V is φ(j)

k -orthogonal
}
. (3.13)

The minimization problem 3.13 is equivalent to the following variational problem: find ψ(j)
k ∈ V

and µ(j)
k ∈ Vaux such that

aQ(ψ
(j)
k , w) + s(w, µ

(j)
k ) = 0 for all w ∈ V,

s(ψ
(j)
k − φ

(j)
k , ν) = 0 for all ν ∈ Vaux.

(3.14)
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Motivated by the construction of global multiscale basis functions, we define our localized

multiscale basis functions. For each element Kj , an oversampled domain formed by enlarging the

coarse grid block Kj by m coarse grid layers. An illustration of an oversampled domain is shown

in Figure 2.2. The localized multiscale basis function ψ(j)
k,ms ∈ V0(Kj,m) is defined as the solution

of the following constrained energy minimization problem

ψ
(j)
k,ms = argmin

{
aQ(ψ, ψ) : ψ ∈ V0(Kj,m) is φ(j)

k -orthogonal
}
. (3.15)

The minimization problem 3.15 is equivalent to the following variational problem: find ψ(j)
k,ms ∈

V0(Kj,m) and µ(j)
k,ms ∈ ⊕Kj′⊂Kj,m

V
(j′)
aux such that

aQ(ψ
(j)
k,ms, w) + s(w, µ

(j)
k,ms) = 0 for all w ∈ V0(Kj,m),

s(ψ
(j)
k,ms − φ

(j)
k , ν) = 0 for all ν ∈ ⊕Kj′⊂Kj,m

V (j′)
aux .

(3.16)

We use the localized multiscale basis functions to construct the multiscale finite element space,

which is defined as

Vms = span{ψ(j)
k,ms : 1 ≤ k ≤ Lj, 1 ≤ j ≤ N}. (3.17)

The multiscale solution is then given by: find pms = (pms,1, pms,2) with pms(t, ·) ∈ Vms such that

for all v = (v1, v2) with v(t, ·) ∈ Vms,

c

(
∂pms
∂t

, v

)
+ aQ(pms, v) = (f, v). (3.18)
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3.3 Convergence Analysis

In this section, we will analyze the proposed method. First, we define the following norms and

semi-norms on V :

‖p‖2
c = c(p, p),

‖p‖2
a = a(p, p),

|p|2q = q(p, p),

‖p‖2
aQ

= aQ(p, p),

‖p‖2
s = s(p, p).

(3.19)

For a subdomain D =
⋃
j∈J Kj composed by a union of coarse grid blocks, we also define the

following local norms and semi-norms on V :

‖p‖2
a(D) =

∑
j∈J

a(j)(p, p),

|p|2q(D) =
∑
j∈J

q(j)(p, p),

‖p‖2
aQ(D) =

∑
j∈J

a
(j)
Q (p, p),

‖p‖2
s(D) =

∑
j∈J

s(j)(p, p).

(3.20)

The flow of our analysis goes as follows. First, we prove the convergence using the global multi-

scale basis functions. With the global multiscale basis functions constructed, the global multiscale

finite element space is defined by

Vglo = span{ψ(j)
k : 1 ≤ k ≤ Lj, 1 ≤ j ≤ N}, (3.21)
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and an approximated solution pglo = (pglo,1, pglo,2), where pglo(t, ·) ∈ Vglo, is given by

c

(
∂pglo
∂t

, v

)
+ aQ(pglo, v) = (f, v), (3.22)

for all v = (v1, v2) with v(t, ·) ∈ Vglo. Next, we give an estimate of the difference between the

global multiscale functions ψ(j)
k and the local multiscale basis functions ψ(j)

k,ms, in order to show

that using the multiscale solution pms provides similar convergence results as the global solution

pglo. For this purpose, we denote the kernel of the projection operator π by Ṽ . Then, for any

ψ
(j)
k ∈ Vglo, we have

aQ(ψ
(j)
k , w) = 0 for all w ∈ Ṽ , (3.23)

which implies Ṽ ⊆ V ⊥glo, where V ⊥glo is the orthogonal complement of Vglo with respect to the inner

product aQ. Moreover, since dim(Vglo) = dim(Vaux), we have Ṽ = V ⊥glo and V = Vglo ⊕ Ṽ .

In addition, we introduce some operators which will be used in our analysis, namely Rglo :

V → Vglo given by: for any u ∈ V , the image Rglou ∈ Vglo is defined by

aQ(Rglou, v) = aQ(u, v) for all v ∈ Vglo, (3.24)

and similarly, Rms : V → Vms given by: for any u ∈ V , the image Rmsu ∈ Vms is defined by

aQ(Rmsu, v) = aQ(u, v) for all v ∈ Vms. (3.25)

We also define C : V → V given by: for any u ∈ V , the image Cu ∈ V is defined by

(Cu, v) = c(u, v) for all v ∈ V. (3.26)

Moreover, the operator A : D(A) → [L2(Ω)]2 is defined on a subspace D(A) ⊂ V by: for any
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u ∈ D(A), the image Au ∈ [L2(Ω)]2 is defined by

(Au, v) = aQ(u, v) for all v ∈ V. (3.27)

We will first show the projection operator Rglo onto global multiscale finite element space has

a good approximation property with respect to the aQ-norm and L2-norm.

Lemma 3.3.1. Let u ∈ D(A). Then we have u−Rglou ∈ Ṽ and

‖u−Rglou‖aQ ≤ CHκ−
1
2 Λ−

1
2‖Au‖[L2(Ω)]2 , (3.28)

and

‖u−Rglou‖[L2(Ω)]2 ≤ CH2κ−1Λ−1‖Au‖[L2(Ω)]2 , (3.29)

where

Λ = min
1≤j≤N

λ
(j)
Lj+1. (3.30)

Proof. From 3.24, we see that u−Rglou ∈ V ⊥glo = Ṽ . Taking v = Rglou ∈ Vglo in 3.24, we have

aQ(u−Rglou,Rglou) = 0. (3.31)

Therefore, we have

‖u−Rglou‖2
aQ

= aQ(u−Rglou, u−Rglou)

= aQ(u−Rglou, u)

= aQ(u, u−Rglou)

= (Au, u−Rglou)

≤ ‖κ̃−
1
2Au‖[L2(Ω)]2‖u−Rglou‖s,

(3.32)

where κ̃(x) = min{κ̃i(x), κ̃l,i(x)}. Since u − Rglou ∈ Ṽ , we have πj(u − Rglou) = 0 for all
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j = 1, 2, . . . , N and

‖u−Rglou‖2
s =

N∑
j=1

‖u−Rglou‖2
s(Kj)

=
N∑
j=1

‖(I − πj)(u−Rglou)‖2
s(Kj).

(3.33)

By the orthogonality of the eigenfunctions φ(j)
k , we have

N∑
j=1

‖(I − πj)(u−Rglou)‖2
s(Kj) ≤

1

Λ

N∑
j=1

‖u−Rglou‖2
aQ(Kj) ≤

1

Λ
‖u−Rglou‖2

aQ
. (3.34)

Finally, using the fact that |∇χk| = O(H−1), we obtain the first estimate 3.28.

For the second estimate 3.29, we use a duality argument. Define w ∈ V by

aQ(w, v) = (u−Rglou, v) for all v ∈ V. (3.35)

Then we have

‖u−Rglou‖2
[L2(Ω)]2 = (u−Rglou, u−Rglou) = aQ(w, u−Rglou). (3.36)

Taking v = Rglow ∈ Vglo in 3.24, we have

aQ(u−Rglou,Rglow) = 0. (3.37)
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Note that w ∈ D(A) and Aw = u−Rglou. Hence

‖u−Rglou‖2
[L2(Ω)]2 = aQ(w −Rglow, u−Rglou)

≤ ‖w −Rglow‖aQ‖u−Rglou‖aQ

≤
(
CHκ−

1
2 Λ−

1
2‖Aw‖[L2(Ω)]2

)(
CHκ−

1
2 Λ−

1
2‖Au‖[L2(Ω)]2

)
≤ CH2κ−1Λ−1‖u−Rglou‖[L2(Ω)]2‖Au‖[L2(Ω)]2 .

(3.38)

We remark that the quantity Λ is contrast independent as we include all eigenfunctions corre-

sponding to small contrast dependent eigenvalues in our basis construction.

We are now going to prove the global basis functions are localizable. For each coarse block

K, we define B to be a bubble function with B(x) > 0 for all x ∈ int(K) and B(x) = 0 for all

x ∈ ∂K. We will take B =
∏

j χ
ms
j where the product is taken over all vertices j on the boundary

of K, and {χj} is a set of bilinear partition of unity functions for the coarse grid partition of the

domain Ω. Using the bubble function, we define the constant

Cπ = sup
K∈T H ,ν∈Vaux

s(ν, ν)

s(Bν, ν)
. (3.39)

We also define

λmax = max
1≤j≤N

max
1≤k≤Lj

λ
(j)
k . (3.40)

Lemma 3.3.2. For all vaux ∈ Vaux, there exists a function v ∈ V such that

π(v) = vaux, ‖v‖2
aQ
≤ D‖vaux‖2

s, supp(v) ⊂ supp(vaux). (3.41)

We write D = 2(1 + 2C2
pσκ

−1)(CT + λ2
max), where CT is the square of the maximum number of

vertices over all coarse elements, and Cp is a Poincaré constant.

Proof. Let vaux ∈ V (j)
aux with ‖vaux‖s(Kj) = 1. We consider the following minimization problem
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defined on a coarse block Kj .

v = argmin
{
aQ(ψ, ψ) : ψ ∈ V0(Kj), s(j)(ψ, ν) = s(j)(vaux, ν) for all ν ∈ V (j)

aux

}
. (3.42)

We will show that the minimization problem 3.42 has a unique solution. First, we note that the

minimization problem 3.42 is equivalent to the following variational problem: find v ∈ V0(Kj)

and µ ∈ V (j)
aux such that

a
(j)
Q (v, w) + s(j)(w, µ) = 0 for all w ∈ V0(Kj),

s(j)(v − vaux, ν) = 0 for all ν ∈ V (j)
aux.

(3.43)

The well-posedness of 3.43 is equivalent to the existence of v ∈ V0(Kj) such that

s(j)(v, vaux) ≥ C‖vaux‖2
s(Kj), ‖v‖aQ(Kj) ≤ C‖vaux‖s(Kj), (3.44)

where C is a constant to be determined. Now, we take v = Bvaux ∈ V0(Kj). Then we have

s(j)(v, vaux) = s(j)(Bvaux, vaux) ≥ C−1
π s‖vaux‖2

s(Kj). (3.45)

On the other hand, since ∇vi = ∇(Bvaux,i) = vaux,i∇B + B∇vaux,i, |B| ≤ 1 and |∇B|2 ≤

CT
∑

k |∇χmsk |2, we have

‖v‖2
a(Kj) ≤ 2(CT ‖vaux‖2

s(Kj) + ‖vaux‖2
aQ(Kj)). (3.46)

By the spectral problem 3.8, we have

‖vaux‖aQ(Kj) ≤ max
1≤k≤Lj

λ
(j)
k ‖vaux‖s(Kj). (3.47)

43



Moreover, by Poincaré inequality, we have

|v|2q ≤ 2σ‖v‖2
L2(Kj) ≤ 2C2

pσκ
−1‖v‖2

a(Kj). (3.48)

Combining these estimates, we have

‖v‖2
aQ(Kj) ≤ (1 + 2C2

pσκ
−1)‖v‖2

a(Kj) ≤ 2(1 + 2C2
pσκ

−1)(CT + λ2
max)‖vaux‖2

s(Kj). (3.49)

This shows that the minimization problem 3.42 has a unique solution v ∈ V0(Kj), which satisfies

our desired properties.

Here, we make a remark that we can assume D ≥ 1 without loss of generality.

In order to estimate the difference between the global basis functions and localized basis func-

tions, we need the notion of a cutoff function with respect to the oversampling regions. For each

coarse grid Kj and M > m, we define χM,m
j ∈ span{χmsk } such that 0 ≤ χM,m

j ≤ 1 and χM,m
j = 1

on the inner region Kj,m and χM,m
j = 0 outside the region Kj,M .

The following lemma shows that our multiscale basis functions have a decay property. In par-

ticular, the global basis functions are small outside an oversampled region specified in the lemma,

which is important in localizing the multiscale basis functions.

Lemma 3.3.3. Given φ(j)
k ∈ V

(j)
aux and an oversampling region Kj,m with number of layers m ≥ 2.

Let ψ(j)
k,ms be a localized multiscale basis function defined on Kj,m given by 3.15, and ψ(j)

k be the

corresponding global basis function given by 3.13. Then we have

‖ψ(j)
k − ψ

(j)
k,ms‖

2
aQ
≤ E‖φ(j)

k ‖
2
s(Kj), (3.50)

where E = 24D2(1 + Λ−1)

(
1 +

Λ
1
2

2D
1
2

)1−m

.
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Proof. By Lemma 3.3.2, there exists φ̃(j)
k ∈ V such that

π(φ̃
(j)
k ) = φ

(j)
k , ‖φ̃(j)

k ‖
2
aQ
≤ D‖φ(j)

k ‖
2
s, supp(φ̃

(j)
k ) ⊂ Kj. (3.51)

We take η = ψ
(j)
k − φ̃

(j)
k ∈ V and ζ = φ̃

(j)
k − ψ

(j)
k,ms ∈ V0(Kj,m). Then π(η) = π(ζ) = 0 and hence

η, ζ ∈ Ṽ . Again, by Lemma 3.3.2, there exists β ∈ V such that

π(β) = π(χm,m−1
j η), ‖β‖2

aQ
≤ D‖π(χm,m−1

j η)‖2
s, supp(β) ⊂ Kj,m \Kj,m−1. (3.52)

Take τ = β − χm,m−1
j η ∈ V0(Kj,m). Again, π(τ) = 0 and hence τ ∈ Ṽ . Now, by the variational

problems 3.14 and 3.16, we have

aQ(ψ
(j)
k − ψ

(j)
k,ms, w) + s(w, µ

(j)
k − µ

(j)
k,ms) = 0 for all w ∈ V0(Kj,m). (3.53)

Taking w = τ − ζ ∈ V0(Kj,m) and using the fact that τ − ζ ∈ Ṽ , we have

aQ(ψ
(j)
k − ψ

(j)
k,ms, τ − ζ) = 0, (3.54)

which implies

‖ψ(j)
k − ψ

(j)
k,ms‖

2
aQ

= aQ(ψ
(j)
k − ψ

(j)
k,ms, ψ

(j)
k − ψ

(j)
k,ms)

= aQ(ψ
(j)
k − ψ

(j)
k,ms, η + ζ)

= aQ(ψ
(j)
k − ψ

(j)
k,ms, η + τ)

≤ ‖ψ(j)
k − ψ

(j)
k,ms‖aQ‖η + τ‖aQ .

(3.55)
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Therefore, we have

‖ψ(j)
k − ψ

(j)
k,ms‖

2
aQ
≤ ‖η + τ‖2

aQ

= ‖(1− χm,m−1
j )η + β‖2

aQ

≤ 2
(
‖(1− χm,m−1

j )η‖2
aQ

+ ‖β‖2
aQ

)
.

(3.56)

For the first term on the right hand side of 3.56, since ∇
(
(1− χm,m−1

j )ηi
)

= (1− χm,m−1
j )∇ηi −

ηi∇χm,m−1
j and |1− χm,m−1

j | ≤ 1, we have

‖(1− χm,m−1
j )ηi‖2

ai
≤ 2

(
‖ηi‖2

ai(Ω\Kj,m−1) + ‖ηi‖2
si(Ω\Kj,m−1)

)
. (3.57)

On the other hand, we have

|(1− χm,m−1
j )η|2q ≤ |η|2q(Ω\Kj,m−1). (3.58)

For the second term on the right hand side of 3.56, we first see that for Kj′ ⊂ Kj,m−1,

s
(
χm,m−1
j η, φ

(j′)
k

)
= s(j′)

(
χm,m−1
j η, φ

(j′)
k

)
= s(j′)

(
η, φ

(j′)
k

)
= 0, (3.59)

since χm,m−1
j = 1 on Kj,m−1 and η ∈ Ṽ . On the other hand, for Kj′ ⊂ Ω \Kj,m,

s
(
χm,m−1
j η, φ

(j′)
k

)
= s(j′)

(
χm,m−1
j η, φ

(j′)
k

)
= 0, (3.60)

since χm,m−1
j = 0 on Ω \Kj,m. Therefore, we have supp

(
π(χm,m−1

j η)
)
⊂ Kj,m \Kj,m−1. Using

3.52 and |χm,m−1
j | ≤ 1, we have

‖β‖2
aQ
≤ D‖π(χm,m−1

j η)‖2
s(Kj,m\Kj,m−1) ≤ D‖χm,m−1

j η‖2
s(Kj,m\Kj,m−1) ≤ D‖η‖2

s(Kj,m\Kj,m−1).

(3.61)
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Since η ∈ Ṽ , by the spectral problem 3.8, we obtain

‖η‖2
s(Kj,m\Kj,m−1) ≤ Λ−1‖η‖2

aQ(Ω\Kj,m−1). (3.62)

Combining these estimates, we have

‖ψ(j)
k −ψ

(j)
k,ms‖

2
aQ
≤ (4+4Λ−1 +2DΛ−1)‖η‖2

aQ(Ω\Kj,m−1) ≤ 6D(1+Λ−1)‖η‖2
aQ(Ω\Kj,m−1). (3.63)

Next, we will prove a recursive estimate for ‖η‖2
aQ(Ω\Kj,m−1). We take ξ = 1 − χm−1,m−2

j . Then

ξ = 1 in Ω \Kj,m−1 and 0 ≤ ξ ≤ 1. Hence, using∇(ξ2ηi) = ξ2∇ηi + 2ξηi∇ξ, we have

|ξη|2a = a(η, ξ2η) + ‖η‖2
s(Kj,m−1\Kj,m−2), (3.64)

which results in

‖η‖2
aQ(Ω\Kj,m−1) ≤ ‖ξη‖2

aQ
≤ aQ(η, ξ2η) + ‖η‖2

s(Kj,m−1\Kj,m−2). (3.65)

We will estimate the first term on the right hand side of 3.65. First, we note that, for any coarse

element Kj′ ⊂ Ω \Kj,m−1, since ξ = 1 in Kj′ and η ∈ Ṽ , we have

s
(
ξ2η, φ

(j′)
k′

)
= s

(
η, φ

(j′)
k′

)
= 0 for all k′ = 1, 2, . . . , Lj′ . (3.66)

On the other hand, for any coarse element Kj′ ⊂ Kj,m−2, since ξ = 0 in Kj,m−2, we have

s
(
ξ2η, φ

(j′)
k′

)
= 0 for all k′ = 1, 2, . . . , Lj′ . (3.67)

Therefore, supp(π(ξ2η)) ⊂ Kj,m−1 \Kj,m−2. By Lemma 3.3.2, there exists γ ∈ V such that

π(γ) = π(ξ2η), ‖γ‖2
aQ
≤ D‖π(ξ2η)‖2

s, supp(γ) ⊂ Kj,m−1 \Kj,m−2. (3.68)
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Take θ = ξ2η − γ. Again, π(θ) = 0 and hence θ ∈ Ṽ . Therefore, we have

aQ(ψ
(j)
k , θ) = 0. (3.69)

Additionally, supp(θ) ⊂ Ω \Kj,m−2. Recall that, in 3.51, we have supp(φ̃
(j)
k ) ⊂ Kj . Hence θ and

φ̃
(j)
k have disjoint supports, and

aQ(φ̃
(j)
k , θ) = 0. (3.70)

Therefore, we obtain

aQ(η, θ) = aQ(ψ
(j)
k , θ)− aQ(φ̃

(j)
k , θ) = 0. (3.71)

Note that ξ2η = θ + γ. Using 3.68, we have

aQ(η, ξ2η) = aQ(η, γ)

≤ ‖η‖aQ(Kj,m−1\Kj,m−2)‖γ‖aQ(Kj,m−1\Kj,m−2)

≤ D
1
2‖η‖aQ(Kj,m−1\Kj,m−2)‖π(ξ2η)‖s(Kj,m−1\Kj,m−2).

(3.72)

For any coarse element Kj′ ⊂ Kj,m−1 \Kj,m−2, since π(η) = 0, we have

‖π(ξ2η)‖s(Kj′ )
≤ ‖ξ2η‖s(Kj′ )

≤ ‖η‖s(Kj′ )
≤ Λ−

1
2‖η‖aQ(Kj′ )

. (3.73)

Summing up over all Kj′ ⊂ Kj,m−1 \Kj,m−2, we obtain

‖π(ξ2η)‖s(Kj,m−1\Kj,m−2) ≤ Λ−
1
2‖η‖aQ(Kj,m−1\Kj,m−2). (3.74)

Hence, the first term on the right hand side of 3.65 can be estimated by

a(η, ξ2η) ≤ D
1
2 Λ−

1
2‖η‖2

aQ(Kj,m−1\Kj,m−2). (3.75)

For the second term on the right hand side of 3.65, a similar argument gives supp(ξη) ⊂ Kj,m−1 \
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Kj,m−2, and

‖η‖s(Kj,m−1\Kj,m−2) ≤ Λ−
1
2‖η‖aQ(Kj,m−1\Kj,m−2). (3.76)

Putting 3.65, 3.75 and 3.76 together, we have

‖η‖2
aQ(Ω\Kj,m−1) ≤ (1 +D

1
2 )Λ−

1
2‖η‖2

aQ(Kj,m−1\Kj,m−2) ≤ 2D
1
2 Λ−

1
2‖η‖2

aQ(Kj,m−1\Kj,m−2). (3.77)

Therefore,

‖η‖2
aQ(Ω\Kj,m−2) = ‖η‖2

aQ(Ω\Kj,m−1) + ‖η‖2
aQ(Kj,m−1\Kj,m−2) ≥

(
1 +

Λ
1
2

2D
1
2

)
‖η‖2

aQ(Ω\Kj,m−1).

(3.78)

Inductively, we have

‖η‖2
aQ(Ω\Kj,m−1) ≤

(
1 +

Λ
1
2

2D
1
2

)1−m

‖η‖2
aQ(Ω\Kj) ≤

(
1 +

Λ
1
2

2D
1
2

)1−m

‖η‖2
aQ
. (3.79)

Finally, by the energy minimzing property of ψ(j)
k and 3.51, we have

‖η‖aQ = ‖ψ(j)
k − φ̃

(j)
k ‖aQ ≤ 2‖φ̃(j)

k ‖aQ ≤ 2D
1
2‖φ(j)

k ‖s(Kj). (3.80)

Combining 3.63, 3.79 and 3.80, we obtain our desired result.

The above lemma motivates us to define localized multiscale basis functions in 3.15. The

following lemma suggests that, similar to the projection operator Rglo onto the global multiscale

finite element space, the projection operatorRms onto our localized multiscale finite element space

also has a good approximation property with respect to the aQ-norm and L2-norm.

Lemma 3.3.4. Let u ∈ D(A). Let m ≥ 2 be the number of coarse grid layers in the oversampling

regions in 3.15. If m = O

(
log

(
κ

H

))
, then we have

‖u−Rmsu‖aQ ≤ CHκ−
1
2 Λ−

1
2‖Au‖[L2(Ω)]2 , (3.81)
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and

‖u−Rmsu‖[L2(Ω)]2 ≤ CH2κ−1Λ−1‖Au‖[L2(Ω)]2 . (3.82)

Proof. We write Rglou =
∑N

j=1

∑Lj

k=1 α
(j)
k ψ

(j)
k , and define w =

∑N
j=1

∑Lj

k=1 α
(j)
k ψ

(j)
k,ms ∈ Vms. By

the Galerkin orthogonality in 3.25, we have

‖u−Rmsu‖aQ ≤ ‖u− w‖aQ ≤ ‖u−Rglou‖aQ + ‖Rglou− w‖aQ . (3.83)

Using Lemma 3.3.3, we see that

‖Rglou− w‖2
aQ

=

∥∥∥∥∥∥
N∑
j=1

Lj∑
k=1

α
(j)
k (ψ

(j)
k − ψ

(j)
k,ms)

∥∥∥∥∥∥
2

aQ

≤ (2m+ 1)d
N∑
j=1

∥∥∥∥∥∥
Lj∑
k=1

α
(j)
k (ψ

(j)
k − ψ

(j)
k,ms)

∥∥∥∥∥∥
2

aQ

≤ E(2m+ 1)d
N∑
j=1

∥∥∥∥∥∥
Lj∑
k=1

α
(j)
k φ

(j)
k

∥∥∥∥∥∥
2

s

= E(2m+ 1)d‖Rglou‖2
s,

(3.84)

where the last equality follows from the orthogonality of the eigenfunctions in 3.8. Combining

3.83, 3.84, together with 3.28 in Lemma 3.3.1, we have

‖u−Rmsu‖aQ ≤ CHκ−
1
2 Λ−

1
2‖Au‖[L2(Ω)]2 + E

1
2 (2m+ 1)

d
2‖Rglou‖s. (3.85)

Next, we are going to estimate ‖Rglou‖s. Using the fact that |∇χk| = O(H−1), we have

‖Rglou‖2
s ≤ CH−2κ‖Rglou‖2

[L2(Ω)]2 . (3.86)
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Then, by Poincaré inequality, we have

‖Rglou‖2
[L2(Ω)]2 ≤ Cpκ

−1‖Rglou‖2
aQ
. (3.87)

By taking v = Rglou in 3.24, we obtain

‖Rglou‖2
aQ

= aQ(u,Rglou) = (Au,Rglou) ≤ CHκ−
1
2‖Au‖[L2(Ω)]2‖Rglou‖s. (3.88)

Combining these estimates, we have

‖Rglou‖s ≤ CH−1κκ−
1
2‖Au‖[L2(Ω)]2 . (3.89)

To obtain our desired result, we need

H−2κ(2m+ 1)
d
2E

1
2 = O(1). (3.90)

Taking logarithm, we have

log(H−2) + log(κ) +
d

2
log(2m+ 1) +

1−m
2

log

(
1 +

Λ
1
2

3D
1
2

)
= O(1). (3.91)

Thus, taking m = O

(
log

(
κ

H

))
completes the proof of 3.81. The proof of 3.82 follows from a

duality argument as in Lemma 3.3.1.

We are now ready to establish our main theorem, which estimates the error between the solution

p and the multiscale solution pms.

Theorem 3.3.5. Suppose f ∈ [L2(Ω)]2. Let m ≥ 2 be the number of coarse grid layers in the

oversampling regions in 3.15. Let p be the solution of 3.4 and pms be the solution of 3.18. If
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m = O

(
log

(
κ

H

))
, then we have

‖p(T, ·)− pms(T, ·)‖2
c +

∫ T

0

‖p− pms‖2
aQ
dt ≤ CH2κ−1Λ−1

(
‖p0‖2

aQ
+

∫ T

0

‖f‖2
[L2(Ω)]2 dt

)
.

(3.92)

Proof. Taking v =
∂p

∂t
in 3.4, we have

∥∥∥∥∂p∂t
∥∥∥∥2

c

+
1

2

d

dt
‖p‖2

aQ
=

(
f,
∂p

∂t

)
≤ C‖f‖2

[L2(Ω)]2 +
1

2

∥∥∥∥∂p∂t
∥∥∥∥2

c

. (3.93)

Integrating over (0, T ), we have

1

2

∫ T

0

∥∥∥∥∂p∂t
∥∥∥∥2

c

dt+
1

2
‖p(T, ·)‖2

aQ
≤ C

(
‖p0‖2

aQ
+

∫ T

0

‖f‖2
[L2(Ω)]2dt

)
. (3.94)

Similarly, taking v =
∂pms
∂t

in 3.18 and integrating over (0, T ), we have

1

2

∫ T

0

∥∥∥∥∂pms∂t

∥∥∥∥2

c

dt+
1

2
‖pms(T, ·)‖2

aQ
≤ C

(
‖p0‖2

aQ
+

∫ T

0

‖f‖2
[L2(Ω)]2dt

)
. (3.95)

On the other hand, from 3.4, we see that

Ap = f − C ∂p
∂t
, (3.96)

and therefore

‖Ap‖[L2(Ω)]2 ≤ C

(
‖f‖[L2(Ω)]2 +

∥∥∥∥∂p∂t
∥∥∥∥
c

)
. (3.97)

By the definition of p in 3.4 and pms in 3.18, for all v ∈ Vms, t ∈ (0, T ), we have

c

(
∂(p− pms)

∂t
, v

)
+ aQ(p− pms, v) = 0. (3.98)
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Therefore, we have

1

2

d

dt
‖p− pms‖2

c + ‖p− pms‖2
aQ

= c

(
∂(p− pms)

∂t
, p− pms

)
+ aQ(p− pms, p− pms)

= c

(
∂(p− pms)

∂t
, p−Rmsp

)
+ aQ(p− pms, p−Rmsp)

≤
∥∥∥∥∂(p− pms)

∂t

∥∥∥∥
c

‖p−Rmsp‖c + ‖p− pms‖aQ‖p−Rmsp‖aQ

≤
(∥∥∥∥∂p∂t

∥∥∥∥
c

+

∥∥∥∥∂pms∂t

∥∥∥∥
c

)
‖p−Rmsp‖c +

1

2
‖p− pms‖2

aQ
+

1

2
‖p−Rmsp‖2

aQ
.

(3.99)

Integrating over (0, T ) and using 3.97 with Lemma 3.3.4, we have

1

2
‖p(T, ·)− pms(T, ·)‖2

c +
1

2

∫ T

0

‖p− pms‖2
aQ
dt

≤
∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥
c

+

∥∥∥∥∂pms∂t

∥∥∥∥
c

)
‖p−Rmsp‖cdt+

1

2

∫ T

0

‖p−Rmsp‖2
aQ
dt

≤

(∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥
c

+

∥∥∥∥∂pms∂t

∥∥∥∥
c

)2

dt

) 1
2 (∫ T

0

‖p−Rmsp‖2
c dt

) 1
2

+
1

2

∫ T

0

‖p−Rmsp‖2
aQ
dt

≤

(∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥
c

+

∥∥∥∥∂pms∂t

∥∥∥∥
c

)2

dt

) 1
2
(∫ T

0

CH4κ−2Λ−2

(
‖f‖[L2(Ω)]2 +

∥∥∥∥∂p∂t
∥∥∥∥
c

)2

dt

) 1
2

+∫ T

0

CH2κ−1Λ−1

(
‖f‖[L2(Ω)]2 +

∥∥∥∥∂p∂t
∥∥∥∥
c

)2

dt

≤ CH2κ−1Λ−1

∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥2

c

+

∥∥∥∥∂pms∂t

∥∥∥∥2

c

+ ‖f‖2
[L2(Ω)]2

)
dt.

(3.100)

Finally, combining 3.94, 3.95 and 3.100, we obtain our desired result.

3.4 Numerical Examples

In this section, we present two numerical examples. We perform numerical experiments with

high-contrast media to see the orders of convergence of our proposed method in energy norm and

L2 norm. We will also study the effects of the number of oversampling layers m on the quality
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of the approximations. In all the experiments, we take the spatial domain to be Ω = (0, 1)2 and

the fine mesh size to be h = 1/256. An example of the media κ1 and κ2 used in the experiments

is illustrated in FIgure 3.1. In the figure, the contrast values, i.e. the ratio of the maximum and

the minimum in Ω, of the media are κ1 = 104 and κ2 = 104. We will also see the effects of the

contrast values of the media on the error, while the configurations of the media remain unchanged.
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Figure 3.1: Media used in numerical experiments. κ1 (left) and κ2 (right). Reprinted with permis-
sion from “Constraint Energy Minimizing Generalized Multiscale Finite Element Method for Dual
Continuum Model” by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Wing Tat Leung and
Maria Vasilyeva. To be published in Communications in Mathematical Sciences by International
Press of Boston, Inc.

3.4.1 Experiment 1.

In this experiment, we consider the dual continuum model in the steady state, i.e.

−div(κ1∇p1) + σ(p1 − p2) = f1,

−div(κ2∇p2)− σ(p1 − p2) = f2,

(3.101)

where the configuration of the media κ1 and κ2 are illustrated in FIgure 3.1. The conductivity

values in the background are fixed to be κm1 = 1 and κm2 = 1, while the conductivity values κf1

and κf2 in the channels are high. The physical parameter for mass transfer is set to be σ = 1. The
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source functions are taken as f1(x, y) = 2π2 sin(πx) sin(πy) and f2(x, y) = 1 for all (x, y) ∈ Ω.

The steady-state equation 3.101 has a weak formulation: find p = (p1, p2) with pi ∈ V such that

aQ(p, v) = (f, v), (3.102)

for all v = (v1, v2) with vi ∈ V . The numerical solution is then given by: find pms = (pms,1, pms,2)

with pms,i ∈ Vms such that

aQ(pms, v) = (f, v), (3.103)

for all v = (v1, v2) with vi ∈ Vms. In other words, we have pms = Rmsp according to the definition

3.25, and the theoretical orders of convergence follow Lemma 3.3.4.

Figure 3.2 illustrates the numerical solution of the steady-state flow problem. Tables 3.1–

3.3 record the error in L2 norm and aQ norm with various settings. In Table 3.1, we take the

conductivity values in the channels to be κf1 = 104 and κf2 = 106. We use 6 basis functions

per oversampled region since there are 6 small eigenvalues in the spectrum, and according to our

analysis, we need to include the first 6 spectral basis functions in the auxiliary space to have good

convergence. As we refine coarse mesh size H , we fix the number of oversampling layers to be

m ≈ 9 log(1/H)/ log(64), which is suggested by our analysis. The results show that the numerical

approximations are very accurate, and the errors converge with refinement of the coarse mesh size.

Table 3.2 shows the same quantities when the number of basis functions used in each coarse region

is reduced to 4. By comparing to Table 3.1, it can be seen that the errors are larger than those

when we use 6 basis functions. Figure 3.3 depicts the log-log plot (in exponential base) of L2 error

and energy error against coarse mesh size H . The least-squares fit suggests that we obtain a better

convergence order in our numerical experiment compared with the theoretical result. Table 3.3

compares the aQ error with various combinations of number of layers m and contrast value κ,

where the conductivity values in the channels are the same, with 6 basis functions per coarse

region and coarse mesh size H = 1/16. It can be seen that with a larger oversampled region, the

error decreases. On the other hand, the error increases with the contrast value.
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Figure 3.2: Plots of numerical solution: pms,1 (left) and pms,2 (right). Reprinted with permis-
sion from “Constraint Energy Minimizing Generalized Multiscale Finite Element Method for Dual
Continuum Model” by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Wing Tat Leung and
Maria Vasilyeva. To be published in Communications in Mathematical Sciences by International
Press of Boston, Inc.

H m aQ error order L2 error order
1/8 4 33.4293% – 15.8783% –
1/16 6 5.7191% 2.55 0.6265% 4.66
1/32 7 1.2437% 2.20 0.0504% 3.64
1/64 9 0.3585% 1.79 0.0067% 2.91

Table 3.1: History of convergence with 6 basis functions in Experiment 1. Reprinted with permis-
sion from “Constraint Energy Minimizing Generalized Multiscale Finite Element Method for Dual
Continuum Model” by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Wing Tat Leung and
Maria Vasilyeva. To be published in Communications in Mathematical Sciences by International
Press of Boston, Inc.

3.4.2 Experiment 2.

In this experiment, we consider the time-dependent dual continuum model 3.1. We are inter-

ested in finding a numerical approximation in the temporal domain [0, T ], where the final time

is set to be T = 5. The configuration of the media κ1 and κ2 are illustrated in FIgure 3.1. The

conductivity values in the background are set to be κm1 = 10−1 and κm2 = 100, while the values in

the channels are taken as κf1 = 104 and κf2 = 106. The velocities in the background are taken as
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H m aQ error order L2 error order
1/8 4 43.9247% – 34.2923% –
1/16 6 7.7963% 2.49 1.0463% 5.03
1/32 7 1.5417% 2.34 0.0709% 3.88
1/64 9 0.4993% 1.63 0.0124% 2.52

Table 3.2: History of convergence with 4 basis functions in Experiment 1. Reprinted with permis-
sion from “Constraint Energy Minimizing Generalized Multiscale Finite Element Method for Dual
Continuum Model” by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Wing Tat Leung and
Maria Vasilyeva. To be published in Communications in Mathematical Sciences by International
Press of Boston, Inc.
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Figure 3.3: Log-Log plot for errors in Experiment 1. Left: energy error; the slope for 6 basis
functions is 2.18 and for 4 basis functions is 2.17. Right: L2 error; the slope for 6 basis functions
is 3.73 and for 4 basis functions is 3.82. Reprinted with permission from “Constraint Energy
Minimizing Generalized Multiscale Finite Element Method for Dual Continuum Model” by Siu
Wun Cheung, Eric T. Chung, Yalchin Efendiev, Wing Tat Leung and Maria Vasilyeva. To be
published in Communications in Mathematical Sciences by International Press of Boston, Inc.

cm1 = 101 and cm2 = 103, while the values in the channels are taken as cf1 = 102 and cf2 = 104. The

physical parameter for mass transfer is set to be σ = 25. The source functions are taken as time-

independent, where f1(t, x, y) = 0 for all (t, x, y) ∈ [0, T ] × Ω and f2 is depicted in Figure 3.4.

The initial condition is given as p1(0, x, y) = 0 and p2(0, x, y) = 0 for all (x, y) ∈ Ω.

Figure 3.5 illustrates the numerical solutions at time instants t = 1.25, t = 2.5 and t = 5

respectively. Tables 3.4 records the error in L2 norm and aQ norm with 6 basis functions per

oversampled region and number of oversampling layers set to bem ≈ 9 log(1/H)/ log(64). Again,
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m κ = 104 κ = 105 κ = 106

3 22.4683% 51.0835% 69.4279%
4 6.3274% 10.1892% 25.6786%
5 5.7205% 5.7978% 6.4329%
6 5.7122% 5.7220% 5.7231%

Table 3.3: Comparison of aQ error with different number of layers m and contrast value κ in
Experiment 1. Reprinted with permission from “Constraint Energy Minimizing Generalized Mul-
tiscale Finite Element Method for Dual Continuum Model” by Siu Wun Cheung, Eric T. Chung,
Yalchin Efendiev, Wing Tat Leung and Maria Vasilyeva. To be published in Communications in
Mathematical Sciences by International Press of Boston, Inc.

 

 

50 100 150 200 250

50

100

150

200

250

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Figure 3.4: Source function f2 in Experiment 2. Reprinted with permission from “Constraint
Energy Minimizing Generalized Multiscale Finite Element Method for Dual Continuum Model”
by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Wing Tat Leung and Maria Vasilyeva. To
be published in Communications in Mathematical Sciences by International Press of Boston, Inc.

the results show that the numerical approximations are very accurate, and the errors converge with

with refinement of the coarse mesh size. Figure 3.6 shows the log-log plots of the energy error and

L2 error against coarse mesh size H in exponential base. The least-squares fits again illutstrate our

method provides good convergence rates.
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Figure 3.5: Plots of numerical solution at different time instants: pms,1 (left) and pms,2 (right) in
Experiment 2. Reprinted with permission from “Constraint Energy Minimizing Generalized Mul-
tiscale Finite Element Method for Dual Continuum Model” by Siu Wun Cheung, Eric T. Chung,
Yalchin Efendiev, Wing Tat Leung and Maria Vasilyeva. To be published in Communications in
Mathematical Sciences by International Press of Boston, Inc.
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H m ∆t aQ error order L2 error order
1/8 4 1 92.0441% – 58.6453% –
1/16 6 0.5 20.9725% 2.13 5.2984% 3.47
1/32 7 0.25 6.7504% 1.64 0.7718% 2.78
1/64 9 0.125 1.9074% 1.82 0.0934% 3.05

Table 3.4: History of convergence with 6 basis functions in Experiment 2. Reprinted with permis-
sion from “Constraint Energy Minimizing Generalized Multiscale Finite Element Method for Dual
Continuum Model” by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Wing Tat Leung and
Maria Vasilyeva. To be published in Communications in Mathematical Sciences by International
Press of Boston, Inc.
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Figure 3.6: Log-Log plot for errors in Experiment 2. Left: energy error; the slope for 6 basis
functions is 1.84. Right: L2 error; the slope for 6 basis functions is 3.07. Reprinted with permis-
sion from “Constraint Energy Minimizing Generalized Multiscale Finite Element Method for Dual
Continuum Model” by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Wing Tat Leung and
Maria Vasilyeva. To be published in Communications in Mathematical Sciences by International
Press of Boston, Inc.
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4. BAYESIAN MUITLSCALE APPROACH FOR MODELING MISSING SUBGRID

INFORMATION WITH UNCERTAINTIES AND OBSERVATION DATA ∗

In many science and engineering applications, such as composite material and porous media,

the underlying PDE model may contain high-dimensional coefficient field which varies in mul-

tiple scales. Detailed description of the media at the finest scale often comes with uncertainties

due to uncertainties. Moreover, limited observational data for the solution may be available. It is

therefore desirable to compute realizations of solutions and estimate the associated uncertainties

in a probabilistic setting. Through using a Bayesian framework, one can include uncertainties in

the media properties and compute the solution and the uncertainties associated with the solution

and the variations of the field parameters. An uncertainty band around the solution can be com-

puted. In some applications, there is observational data of the solution available. For example, in

reservoir modeling, oil/water pressure data from different well locations can be measured. This

observational data can serve as an important information and be used as additional constraints on

our solution and basis selection. In practical applications, the accuracy of the data is essential in

the quality of the solution. It is therefore desirable to develop methods for regularizing the solution

in terms of our quantity of interest.

In our approach, we make use of the advantages of numerical discretization of the underlying

PDE by GMsFEM, develop a regression set-up and use Bayesian variable selection techniques to

devise a method for posterior modeling and uncertainty quantification. The main ingredients of

our method include:

• permanent basis functions – dominant modes in local regions for computing an inexpensive

multiscale approximation (called the “fixed” solution),

• additional basis functions – remaining modes in resolving missing subgrid information,

∗ Reprinted with permission from “Dynamic Data-driven Bayesian GMsFEM” by Siu Wun Cheung and Nilabja
Guha, 2019. Journal of Computational and Applied Mathematics, Volume 353, Pages 72–85, Copyright [2019] by
Elsevier.
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• prior distribution – residual-based probability distribution for sampling realizations of mul-

tiscale solution built around the fixed solution,

• posterior distribution – probability distribution including minimization of residual of the

PDE system and mismatch of the dynamic observational data.

We construct local multiscale basis functions using GMsFEM, and use a few basis functions in

each local region as permanent basis functions. The remaining multiscale basis functions are cate-

gorized as additional basis functions, and are selected stochastically using the residual information.

Using the permanent basis functions, a fixed solution is built and the residual is computed, which

is used to impose a prior probability on the additional basis functions accordingly. Using a like-

lihood for penalizing the residual and the mismatch in observational data, we define our posterior

probability on the additional basis functions.

The chapter is organized as follows. First, we briefly describe the ideas of GMsFEM in Sec-

tion 4.1. Next, we discuss our Bayesian formulation in Section 4.2. In Section 4.3, we present

numerical examples for our problem.

4.1 Preliminaries

Let Ω be the computational domain. We consider the forward model

∂u

∂t
− div(κ(x, t)∇u) = f in Ω× (0, T ), (4.1)

subject to smooth initial and boundary conditions. Here f is a given source term and L is a

multiscale elliptic differential operator. Using standard numerical discretizations such as finite

element or discontinuous Galerkin methods, the fine-scale solution uh ∈ Vh can be obtained by

solving the variational problem:

∫ T

0

∫
Ω

∂u

∂t
v + a(u, v) =

∫ T

0

∫
Ω

fv for all v ∈ Vh, (4.2)
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in a suitably definedH1-conforming finite element space Vh depending on the boundary condition.

In this work, for the sake of simplicity, we assume homogeneous Dirichlet boundary condition

in the numerical examples. The Bayesian approach can be easily extended to other boundary

conditions. Here the bilinear form a(u, v) is a symmetric and positive-definite bilinear form defined

as

a(u, v) =

∫ T

0

∫
Ω

κ∇u · ∇v.

However, in practice, the mesh size has to be very small in order to resolve all scales. The resultant

linear system is huge and ill-conditioned, and solving such a system is computationally expensive.

The objective of GMsFEM is to develop a multiscale model reduction which allows us to seek

an inexpensive approximated solution by solving (4.1) on a coarse grid (see Figure 1.2 for an

illustration).

We introduce the notation for the coarse and fine grid. The computational domain Ω is par-

titioned by a coarse grid T H . The coarse grid contains multiscale features of the problem and

require many degrees of freedom for modeling. We denote by the numbers of nodes and edges in

the coarse grid by Nc and Ne respectively. We also denote a generic coarse grid element by K and

the coarse mesh size by H . Next, we let T h be a partition of Ω obtained from a refinement of T H .

We call T h the fine grid and h > 0 the fine mesh size h > 0. The fine mesh size h is sufficiently

small such that the fine mesh resolves the multiscale features of the problem.

Using GMsFEM, multiscale basis functions, which capture local information, are constructed

on the fine grid T h. A reduced number of basis functions is used in computations, which are done

on the coarse grid T H . For each coarse region ωi (or K) and time interval (Tn−1, Tn), we identify

local multiscale basis functions φn,ωi

j (j = 1, ..., Nωi
) and seek an approximated solution in the

linear span of these basis functions. For problems with scale separation, a small number of basis

functions is sufficient. For more complicated heterogeneities in many real-world applications, one

needs a systematic approach to seek additional basis functions. Next, we will discuss some basic

ingredients in the construction of our multiscale basis functions.

In each coarse region ωi, the necessary information is contained in a local snapshot space
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V n,ωi
snap = span{ψn,ωi

j } ⊆ Vh(ωi). The choice of the snapshot space depends on the global discretiza-

tion and the particular application. One can also reduce the computational cost by computing fewer

snapshot basis functions using randomized boundary conditions or source terms.

Next, based on our analysis, we design a local spectral problem for our multiscale basis

functions φn,ωi

j from the local snapshot space, and construct the local offline space V n,ωi

H,off =

span{φn,ωi

j } ⊂ V n,ωi
snap , which is a small-dimensional principal component subspace of the snap-

shot space. Through the spectral problem, we can select the dominant eigenvectors (corresponding

to the smallest eigenvalues) as important degrees of freedom. We will then find an approximated

solution in the linear span of multiscale basis functions in the offline space: find unH ∈ V n
H,off can

be obtained by solving the variational problem:

∫ Tn

Tn−1

∫
Ω

∂unH
∂t

v + an(unH , v) +

∫
Ω

unH(x, T+
n−1)v(x, T+

n−1)

=

∫ Tn

Tn−1

∫
Ω

fv +

∫
Ω

un−1
H (x, T−n−1)v(x, T+

n−1) for all v ∈ V n
H,off,

(4.3)

where V n
H,off = ⊕iV n,ωi

H,off and an(u, v) =
∫ Tn
Tn−1

∫
Ω
κ∇u · ∇v.

We remark that the choice of the spectral problem is important as the convergence rate of the

method is proportional to 1/Λ∗, where Λ∗ is the smallest eigenvalue among all coarse blocks whose

corresponding eigenvector is not included in the offline space. Therefore, we have to select a good

local spectral problem in order to to remove as many small eigenvalues as possible so that we can

obtain a reduced dimension coarse space and achieve a high accuracy.

In GMsFEM, the subgrid information is represented in the form of local multiscale basis func-

tions. Local degrees of freedom are added as needed. It results in a set of numerical macroscopic

equations for problems without scale separation and identifies important features for multiscale

problems. Because of the local nature of proposed multiscale model reduction, the degrees of free-

dom can be added adaptively based on error estimators. However, due to the computational cost,

one often uses fewer basis functions, which leads to discretization errors. Next, we discuss the

detailed formulation of our Bayesian approach.
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4.2 Bayesian formulation

We propose a Bayesian approach to resolve the missing subgrid information probabilistically

in multiscale problems. The method starts with constructing multiscale basis functions and uses

a few basis functions as permanent basis functions. Using these basis functions, an approximated

solution can be obtained. Using the residual information, we can select additional basis functions

stochastically. The construction of prior distribution and likelihood, which consists of residual

minimization, is discussed. Such a probabilistic approach is useful for problems with limited

additional information about the solution, as the additional information can be included in the like-

lihood. In this section, using the framework of GMsFEM, we will discuss a Bayesian formulation

with measured data taken into account as an information on the solution.

4.2.1 Modeling the solution using GMsFEM multiscale basis functions

First, we select the dominant scale corresponding to the small eigenvalues in GMsFEM spectral

problem to form a set of “permanent” basis functions, denoted by φn,ωi

j (x, t) ∈ V n
H,off. We can solve

the Galerkin projection of (4.3) onto the span of permanent basis functions for an inexpensive fixed

solution

un,fixed
H (x, t) =

∑
i,j

βni,j φ
n,ωi

j (x, t),

where βni,j’s are defined in each computational time interval.

The rest of the basis functions from local spectral problems, denoted by φn,ωi

j,+ , are called addi-

tional basis functions and correspond to unresolved scales. Using all the basis functions results a

prohibitively large linear system and therefore, a mechanism that can select a small subset of the

unused basis can be useful. The selected additional multiscale functions constitutes a linear space

and gives a correction to the fixed solution. The coarse-scale solution at n-th time interval can then

be written as the sum of the fixed and the additional part:

unH = un,fixed
H + un,+H .
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Here, the solution of the coarse-scale system is assumed to be normal around the fixed solution

with small variance. The solution involving unresolved scales can be expanded as

unH(x, t) =
∑
i,j

βni,j φ
n,ωi

j (x, t) +
∑
i,j

βni,j,+ φ
n,ωi

j,+ (x, t),

where all but few coefficients βi,j,+ are expected to be zero. Hence, the problem boils down to a

model selection problem involving unused basis functions.

The linearization of a PDE system and the linear form involving additional basis provide a

natural framework for Bayesian variable selection [68, 69, 70]. Suppose some observational data

of Dn(un) depending on the solution un are available at some grid points with some measure-

ment error. The objective of our Bayesian formulation is to select and add appropriate additional

multiscale functions φn,ωi

j,+ in a systematic manner.

4.2.2 Bayesian formulation on variable selection problem

In this section, we discuss all the ingredients in our Bayesian formulation, including the prior

and the posterior used in our sampling algorithms. Our proposed algorithm is residual-driven

and also takes mismatch in observational data into account. We sample the correction un,+H by

drawing samples of the indicator functions In and J n, and the coefficient vector βn+. We define

suitable probability function for each of these random variables. Finally, this structure enables us to

compute the posterior or conditional distribution of the basis selection probability and conditional

solution of the system given by the observational data and the coarse-scale model.

We now define the residual and discuss the selection probability on the subregion and additional

basis function based on the residual. Building our solution around the fixed solution, the residual
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operator of equation (4.3) is defined as

Rn(un,+H ; v) =

∫ Tn

Tn−1

∫
Ω

fv +

∫
Ω

un−1
H (x, T−n−1)v(T+

n−1)

−
∫ Tn

Tn−1

∫
Ω

∂un,fixed
H

∂t
v + an(un,fixed

H , v)−
∫

Ω

un,fixed
H (x, T+

n−1)v(T+
n−1)

−
∫ Tn

Tn−1

∫
Ω

∂un,+H
∂t

v + an(un,+H , v)−
∫

Ω

un,+H (x, T+
n−1)v(T+

n−1).

(4.4)

We note that, since the fixed solution is the Galerkin projection onto the linear span of the perma-

nent basis functions, for any permanent basis function φn,ωi

j , we actually have

Rn(0;φn,ωi

j ) = 0.

For the additional basis functions φn,ωi

j,+ , the term Rn(0;φn,ωi

j,+ ) provides a correlation of that basis

function. We also denote the fine-scale residual vector by Rn.

Suppose an observational data model Y n = Dn(un) is supplemented to the PDE model. Here,

observations Y n are available in some coarse regions, and Dn is a function which describes the

relation between the solution un and the the observations Y n. In general, the function Dn can be

nonlinear. In the numerical examples in this paper, Dn is taken to be some linear coarse-scale

observations. We denote by En the mismatch between the given measurement Y n and the image

of the coarse-scale solution unH under Dn, i.e.

En = Y n −Dn(unH).

Since we have a linear PDE model and a linear observation function Dn, the fine-scale resid-

ual Rn and the measurement mismatch En can be written in an affine representation in terms of

coefficients βn+ of the additional basis functions, i.e.

Rn = Knβn+ − bn and En = Snβn+ − gn.
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4.2.2.1 Residual-based Bernoulli prior on indicator functions

First, we identify some local neighborhoods for which multiscale basis functions should be

added. Independent Bernoulli prior can be assumed for each local region being selected for adding

basis. Next, for each local region ωi selected, each multiscale basis function φn,ωi

j,+ is selected with

another independent Bernoulli prior given that corresponding subregion is selected. The selection

probability for the Bernoulli distribution is given by residual in the fine-scale system, where prior

favors the scales that have more correlation with the residual.

In the construction of the Bernoulli prior on the local subregions, we consider the 1-norm of

the residual vector

α(ωi) =
∑
j

|Rn(0;φn,ωi

j,+ )|.

Let Nω be the average number of subregions where additional basis functions will be added. Then

we rescale the norm by

α̂(ωi) =
α(ωi)∑
k α(ωk)

Nω, (4.5)

and set the selection probability of the region ωi as min{α̂(ωi), 1}. An indicator function J n can

then be defined according to the activity of the local neighborhoods. In a sample, we use J n
i = 1

to denote the region ωi being selected, and J n
i = 0 otherwise.

Next, we discuss the prior probability on the additional basis functions. For a selected region

ωi, suppose we would select Nbasis additional basis functions on average. Then we consider

α(φn,ωi

j,+ ) = |Rn(0;φn,ωi

j,+ )|,

and rescale it by

α̂(φn,ωi

j,+ ) =
α(φn,ωi

j,+ )∑
k α(φn,ωi

k,+ )
Nbasis, (4.6)

and set the selection probability of the basis function φn,ωi

j,+ as min{α̂(φn,ωi

j,+ ), 1}. Similarly, we

define an indicator function In on the basis functions. We write Ini,j = 1 if the basis function φn,ωi

j,+

is active and Ini,j = 0 otherwise.
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4.2.2.2 Residual-data-based prior on coefficient vector

Next, using this residual information, a sequential scheme to add coarse regions and additional

basis functions for each selected region is introduced. The probability of each coarse region region

or additional basis function being selected are proportional to the residual information they con-

tain. Later, using the residual information as prior, a full Bayesian method is developed to select

additional basis functions given the observations and the model. The likelihood of Y n is

P (Y n|βn+) ∼ exp

(
−‖E

n‖2

2σ2
d

)
. (4.7)

Assuming the true solution Gaussian around the fixed model which gives a model based prior of

the form for unH :

π(unH |βn(In,J n), un−1
H ) ∼ exp

(
−‖R

n‖2

2σ2
L

)
(4.8)

where Rn is the vector of residual when the test functions are varied over the all fine-scale basis

functions. This gives a pseudo-likelihood for the residuals. For the coefficient vector βn+ indepen-

dent normal priors are assumed with mean zero and a large prior variance, i.e. a flat normal prior

is assumed. The distribution of the new coefficients given the indices corresponding to the basis/

sub-region selection and new observations

P (βn+|Y n, (In,J n), un−1
H ) ∝ P (Y n|βn+)π(unH |βn(In,J n), un−1

H ). (4.9)

4.2.2.3 Posterior around fixed solution using residual-data-minimizing likelihood

Using residual information from the PDE model as prior for basis selection, a Bayesian variable

selection method can be devised. Posterior estimates are computed in each time interval sequen-

tially from the estimates of the earlier time intervals. In each time interval, one or more coarse

regions are selected by the ad hoc cut off min{α̂(ωi), 1} on the rescaled residual norm defined in

(4.5). At each selected coarse region, extra useful basis functions are selected from the following

69



posterior distribution involving the joint prior distribution based on the PDE model and the prior

on the coefficient:

π1(βn+, (In,J n), unH) ∼ π(unH |βn(In,J n), un−1
H )

π(βn+|In,J n)π(In|J n)cd(In,J n),

(4.10)

for a model dependent constant cd(In,J n). On βn+ flat normal priors are used. The model de-

pendent constant cd(In,J n) depends on the PDE model and the design matrix for the observation

Dn(unH). The posterior is then given by:

P (βn+, In|Y n) ∼ P (Y n|βn+(In,J n))π1(βn+, (In,J n), unH). (4.11)

Remark 4.2.1. The term cd(In,J n) is proportional to the square root of the determinant of the

information matrix of βn+ for given In,J n, in the posterior distribution without the normalizing

term cd, and gives a empirical Bayes type prior for the model probability. This choice is motivated

by selecting basis based on only likelihood and the residual information and not penalizing the

model size. The term cd is cancelled in the MCMC step (given later) after integrating out the

coefficient βn+.

4.2.3 Sampling algorithms

Based on our Bayesian formulation, we propose two different sampling methods, namely se-

quential sampling and full posterior MCMC sampling, for modeling unresolved scales. The se-

quential sampling method uses prior information to directly select additional basis functions and is

inexpensive. The MCMC sampling method requires full posterior sampling and is more accurate

than the sequential sampling method. A schematic representation of the methods is presented in

Figure 4.1.
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Figure 4.1: A schematic illustration of sequential sampling (left) and MCMC sampling (right).
Reprinted with permission from “Dynamic Data-driven Bayesian GMsFEM” by Siu Wun Cheung
and Nilabja Guha, 2019. Journal of Computational and Applied Mathematics, Volume 353, Pages
72–85, Copyright [2019] by Elsevier.

4.2.3.1 Sequential sampling

First, we present a sequential sampling method which uses the prior distributions as discussed

in the previous section to generate realizations of the solution.

Algorithm 1 Generation of sequential sample
1: Sample J n according to Bernoulli prior

2: Sample In in the regions ωi for which J n
i = 1 according to Bernoulli prior

3: Sample βn+ according to (4.7), (4.8) and (4.9).

4: return In,J n, βn+
The sequential sampling method directly makes use of the prior information given from the

fixed solution. While the sequential sampling method is inexpensive, the usefulness of the selected

basis functions in sequential sampling method therefore heavily depends on the quality of the fixed

solution. In order to provide a better distribution of the additional basis functions, a full posterior

sampling method is proposed to model the resolved scales.
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4.2.3.2 Full posterior MCMC sampling

Next, we present the details of full posterior MCMC sampling for modeling unresolved scales.

More precisely, we discuss the details of the acceptance-rejection mechanism in a Markov-chain

Monte Carlo (MCMC) method. In a sampling step for a particular basis function φn,ωi

j,+ , suppose

we have a original configuration In for the indicator function on the additional basis functions.

We define two configurations In+ and In− by setting φn,ωi

j,+ active in In+ and inactive in In−, while

indicators on all other additional basis functions being the same as In. (One of these two configu-

rations should be exactly In itself.) For each configuration, the mode of the posterior distribution

is achieved by the solution of their respective linear system

(
1

2σ2
L

(Kn)TKn +
1

2σ2
d

(Sn)TSn
)
βn+ =

1

2σ2
L

(Kn)T bn +
1

2σ2
d

(Sn)Tgn, (4.12)

while the solution minimizes a weighted sum of the residual and the mismatch in each system. If

we denote the residual and the mismatch by Rn
+ and En

+ for the system for the configuration In+,

and Rn
− and En

− similarly for In−, then the acceptance-rejection probability ratio is given by

p(φn,ωi

j,+ )

1− p(φn,ωi

j,+ )
=

α̂(φn,ωi

j,+ )

1− α̂(φn,ωi

j,+ )
exp

(
−
‖Rn

+‖2 − ‖Rn
−‖2

2σ2
L

−
‖En

+‖2 − ‖En
−‖2

2σ2
d

)
. (4.13)

Then we update the configuration with In+ and In− with probability p(φn,ωi

j,+ ) and 1 − p(φn,ωi

j,+ ) re-

spectively.

The posterior sampling can be performed by a Gibbs sampling algorithm after marginalizing

over βn+. Here we present a flow of the MCMC algorithm. The posterior distribution given the

index set In follows multivariate normal with mean with βn(In)+. In the generation of a particular

example, the MCMC steps go as follows:
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Algorithm 2 Generation of MCMC sample
1: Sample J n according to Bernoulli prior

2: Sample In in the regions ωi for which J n
i = 1 according to Bernoulli prior

3: for all φn,ωi

k,+ with J n
i = 1 do

4: Generate the linear system (4.12) for each of configurations In+ and In−

5: Solve for modes βn+ of posterior distribution in the two systems (4.12)

6: Calculate p(φn,ωi

j,+ ) by (4.13)

7: Generate a random number ξ ∼ U [0, 1]

8: if ξ < p(φn,ωi

j,+ ) then

9: In ← In+, i.e. Ini,j ← 1

10: else

11: In ← In−, i.e. Ini,j ← 0

12: end if

13: end for

14: return In,J n, βn+

4.3 Numerical results

In this section, we present two numerical examples. In both examples, the computational

domain is Ω = (0, 1)2. We consider the parabolic equation

∂u

∂t
− div(κ∇u) = f,

where f is a given source term, and κ is a space-time permeability field. The initial permeability

field κ0 = κ(·, 0) are shown in Figure 4.2, and the contrast
maxκ

minκ
is increasing over time t as

maxκ

minκ
= 10000e250t. For simplicity, homogeneous Dirichlet boundary condition is prescribed.

Next, we discuss the discretization used in the examples. We divide the domain Ω into a 10×10
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Figure 4.2: The permeability field κ0. Reprinted with permission from “Dynamic Data-driven
Bayesian GMsFEM” by Siu Wun Cheung and Nilabja Guha, 2019. Journal of Computational and
Applied Mathematics, Volume 353, Pages 72–85, Copyright [2019] by Elsevier.

coarse grid and 100 × 100 fine grid. For the sake of simplicity, we make use of the continuous

Galerkin formulation in spatial discretization, use local fine-scale spaces consisting of fine-grid

basis functions with a coarse region ωi as our snapshot basis functions, construct multiscale basis

functions independent of time, and employ the implicit Euler formula in temporal discretization.

At each time instant tn, we seek numerical solution un+1
h in the standard conforming bilinear finite

space space Vh on the fine grid T h, i.e.

Vh =
{
v ∈ C0(Ω) : v|τ ∈ Q1(τ) for all τ ∈ T h

}
⊂ H1

0 (Ω).

The variational formulation is given by: find un+1
h ∈ Vh such that

∫
Ω

un+1
h − unh

∆t
v +

∫
Ω

κ∇un+1
h · ∇v =

∫
Ω

fv for all v ∈ Vh.

The multiscale basis functions are obtained from eigenfunctions in the local snapshot space

with small eigenvalues in the following spectral problem: find (φωi
j , λ

i
j) ∈ V ωi

snap × R such that

ai(φ
ωi
j , w) = λijsi(φ

ωi
j , w) for all w ∈ V ωi

snap.
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Here the bilinear forms ai and si are defined by

ai(v, w) =

∫
ωi

κ0∇v · ∇w and si(v, w) =

∫
ωi

κ̃0vw,

where κ̃0 =
∑Nc

i=1 κ0|∇χmsi |2 and χmsi are the standard multiscale finite element basis functions.

The eigenvalues λij are arranged in ascending order, and the multiscale basis functions are con-

structed by multiplying the partition of unity to the eigenfunctions. We will use the first Li eigen-

functions to construct our offline space V ωi
H,off. We construct the offline space VH,off = ⊕iV ωi

H,off.

4.3.1 Experiment 1

In the first example, we investigate the performance our proposed method. The source function

is taken as f = 1. We will compare the solutions at the time instant T = 0.02.

We compute 2 permanent basis functions and 18 additional basis functions per coarse neighbor-

hood. The permanent basis functions are used to compute “fixed” solution and use our Bayesian

framework to seek additional basis functions by solving small global problems and making use of

given dynamic observational data. In this example, we consider four observational data

Dn
i =

∫
Ki

un, i = 1, 2, 3, 4,

where the locations of the centers of the coarse grid elements Ki are shown in Figure 4.3. On

average we select 27 local regions at which multiscale basis functions are added. In these coarse

blocks, we apply both sequential sampling and full sampling and generate 100 samples.

Figure 4.4 shows the reference solution and the sample mean at T = 0.02. The L2 error for

the mean at T = 0.02 is 0.63% in the full sampling method, lower than 1.92% in the sequential

sampling method.

In Figure 4.5, the residual and L2 errors are plotted over the sampling process. We observe that

the errors and the residual in full sampling decrease and stabilize in a few iterations. Moreover, the

full sampling gives more accurate solutions associated with our error threshold in the residual.
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Figure 4.3: Locations of the centers of the coarse grid elements Ki. Reprinted with permission
from “Dynamic Data-driven Bayesian GMsFEM” by Siu Wun Cheung and Nilabja Guha, 2019.
Journal of Computational and Applied Mathematics, Volume 353, Pages 72–85, Copyright [2019]
by Elsevier.
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Figure 4.4: Plots of the reference solution (left), sequential sample mean (middle) and full sam-
ple mean (right) of numerical solution at T = 0.02. Reprinted with permission from “Dynamic
Data-driven Bayesian GMsFEM” by Siu Wun Cheung and Nilabja Guha, 2019. Journal of Com-
putational and Applied Mathematics, Volume 353, Pages 72–85, Copyright [2019] by Elsevier.

In Table 4.1, we compare the percentages of additional basis selected by the full sampling

method with different combinations of σL and σd. Tables 4.2 and 4.3 record the L2 error of the

solution and the maximum observational error, i.e.

max
1≤i≤4

∣∣∣∣∫
Ki

(uN − uNH)

∣∣∣∣ ,
with these combinations of σL and σd. It can be observed that a smaller σL results in a larger
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Figure 4.5: Residual (left) and L2 error (right) vs sample using sequential sampling (red dotted
line) and full sampling (blue solid line) at time T = 0.02. Reprinted with permission from “Dy-
namic Data-driven Bayesian GMsFEM” by Siu Wun Cheung and Nilabja Guha, 2019. Journal of
Computational and Applied Mathematics, Volume 353, Pages 72–85, Copyright [2019] by Else-
vier.

number of additional basis functions selected and a significant improvements in the L2 error of the

numerical solution. On the other hand, a smaller σd does not significantly increase the number of

additional basis functions selected, but improves the quality of our solution by greatly reducing

the mismatch with observational data. This shows our method is useful when the accuracy of the

observational data is important.

σd
σL 1× 10−6 1× 10−3 1× 100

5× 10−4 74.49% 72.22% 73.46%
1× 10−3 48.15% 47.94% 48.15%
2× 10−3 32.10% 31.07% 32.30%

Table 4.1: Percentage of additional basis selected in the selected subdomains with various σL
and σd. Reprinted with permission from “Dynamic Data-driven Bayesian GMsFEM” by Siu Wun
Cheung and Nilabja Guha, 2019. Journal of Computational and Applied Mathematics, Volume
353, Pages 72–85, Copyright [2019] by Elsevier.
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σd
σL 1× 10−6 1× 10−3 1× 100

5× 10−4 0.39% 0.51% 0.63%
1× 10−3 1.35% 1.35% 1.07%
2× 10−3 1.54% 1.52% 1.29%

Table 4.2: L2 error in the solution with various σL and σd. Reprinted with permission from “Dy-
namic Data-driven Bayesian GMsFEM” by Siu Wun Cheung and Nilabja Guha, 2019. Journal of
Computational and Applied Mathematics, Volume 353, Pages 72–85, Copyright [2019] by Else-
vier.

σd
σL 1× 10−6 1× 10−3 1× 100

5× 10−4 2.59× 10−12 1.33× 10−5 2.98× 10−2

1× 10−3 1.79× 10−11 1.98× 10−5 1.33× 10−2

2× 10−3 9.72× 10−12 1.07× 10−5 5.61× 10−2

Table 4.3: Maximum observational error with various σL and σd. Reprinted with permission from
“Dynamic Data-driven Bayesian GMsFEM” by Siu Wun Cheung and Nilabja Guha, 2019. Jour-
nal of Computational and Applied Mathematics, Volume 353, Pages 72–85, Copyright [2019] by
Elsevier.

4.3.2 Experiment 2

As a second example, we employ our method to simulate an inflow-outflow problem. The

source function is taken as f = χK1 +χK2−χK3−χK4 . The source term f is shown in Figure 4.6.

The dynamic observational data is the average value on the coarse grid regions K3 and K4, i.e.

Dn
1 =

∫
K3
un

|K3|
, Dn

2 =

∫
K4
un

|K4|
.

In real situations, K3 and K4 are the locations of the production wells, while K1 and K2 are the

locations of the injection wells. In practice, the accuracy of the average value at the production

wells are essential.

We compute 2 permanent basis functions and 18 additional basis functions per coarse neighbor-

hood. The permanent basis functions are used to compute “fixed” solution and use our Bayesian
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Figure 4.6: Source function f in the inflow-outflow problem. Reprinted with permission from
“Dynamic Data-driven Bayesian GMsFEM” by Siu Wun Cheung and Nilabja Guha, 2019. Jour-
nal of Computational and Applied Mathematics, Volume 353, Pages 72–85, Copyright [2019] by
Elsevier.

framework to seek additional basis functions by solving small global problems and making use of

given observational data. On average we select 27 of local regions at which multiscale basis func-

tions are added. In these coarse blocks, we apply both sequential sampling and full sampling and

generate 100 samples. The thresholds are set as σL = 9×10−6 and σd = 1×10−7. We also compare

our proposed method when there is no available observation data and only a residual-minimizing

likelihood is used.

In the numerical simulation, 49.79% of the additional basis functions are selected in the se-

lected subdomains using our proposed method, compared with 49.18% in the absence of obser-

vation data. Figure 4.7 shows the reference solution and the sample mean at T = 0.02. The L2

error for the mean at T = 0.02 is 2.71% and 2.61% respectively. Moreover, the maximum error in

observational data in our proposed method is 1.72 × 10−12, much lower than 3.54 × 10−4 in the

absence of observation data.

These results demonstrate that our proposed Bayesian approach is able to select important basis

functions to model the missing subgrid information, both in minimizing the residual of the problem

and reducing the error in the targeted observational data.
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Figure 4.7: Plots of the reference solution (left), sequential sample mean (middle) and full sam-
ple mean (right) of numerical solution at T = 0.02. Reprinted with permission from “Dynamic
Data-driven Bayesian GMsFEM” by Siu Wun Cheung and Nilabja Guha, 2019. Journal of Com-
putational and Applied Mathematics, Volume 353, Pages 72–85, Copyright [2019] by Elsevier.
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5. DEEP GLOBAL MODEL REDUCTION LEARNING IN POROUS MEDIA FLOW

SIMULATION ∗

In this chapter, we use deep learning concepts combined with Proper Orthogonal Decompo-

sition (POD) model reduction methodologies constrained at observation locations to predict flow

dynamics. We consider a neural network-based approximation of nonlinear flow dynamics. Flow

dynamics is regarded as a multi-layer network, where the solution at the current time step depends

on the solution at the previous time instant and associated input parameters, such as well rates and

permeability fields. This allows us to treat the solution via multi-layer network structures, where

each layer is a nonlinear forward map and to design novel multi-layer neural network architectures

for simulations using our reduced-order model concepts. The resulting forward model takes into

account available data at locations and can be used to reduce the computational cost associated

with forward solves in nonlinear problems.

We will rely on rigorous model reduction concepts to define unknowns and connections for

each layer. Reduced-order models are important in constructing robust learning algorithms since

they can identify the regions of influence and the appropriate number of variables, thus allow us-

ing small-dimensional maps. In this work, modified proper orthogonal basis functions will be

constructed such that the degrees of freedom have physical meanings (e.g., represent the solution

values at selected locations). Since the constructed basis functions have limited support, it will al-

low localizing the forward dynamics by writing the forward map for the solution values at selected

locations with pre-computed neighborhood structure. We use a proper orthogonal decomposition

model with these specifically designed basis functions that are constrained at locations. A principal

component subspace is constructed by spanning these basis functions and numerical solutions are

sought in this subspace. As a result, the neural network is inexpensive to construct.

Our approach combines the available data and physical models, which constitutes a data-driven

∗ Reprinted with permission from “Deep Global Model Reduction Learning in Porous Media Flow Simulation”
by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Eduardo Gildin, Yating Wang and Jingyan Zhang, 2020.
Computational Geosciences, Volume 24, Pages 261–274, Copyright [2020] by Springer.

81



modification of the original reduced-order model. To be specific, in the network, our reduced-order

models will provide a forward map, and will also be modified (âĂIJtrainedâĂİ) using available

observation data. Due to the lack of available observation data, we will use computational data

to supplement as needed. The interpolation between data-rich and data-deficient models will also

be studied. We will also use deep learning algorithms to train the elements of the reduced model

discrete system. In this case, deep learning architectures will be employed to approximate the

elements of the discrete system and reduced-order model basis functions.

We will present numerical results using deep learning architectures to predict the solution and

reduced-order model variables. In the reduced-order model, designated basis functions allow in-

terpolating the solution between observation points. A multi-layer neural network based is then

built to approximate the evolution of the coefficients and, therefore, the flow dynamics. We exam-

ine how the network architecture, which includes the number of layers, and neurons, affects the

approximation. Our numerical results show that with a fewer number of layers, the flow dynamics

can be approximated. Our numerical results also indicate that the data-driven approach improves

the quality of approximation.

The chapter is organized as follows. In Section 5.1, we present a general model and some

basic concepts of POD. Section 5.2 is devoted to our model learning. In Section 5.3, we present

numerical results. We conclude in the last section.

5.1 Preliminaries

In this section, we introduce a general problem setting and review the concept of POD based

global model reduction, which is a technique of dimensionality reduction of large-scale system of

ordinary differential equations (ODE) and its application to nonlinear partial differential equations

(PDE). Consider a time-dependent PDE in the general form

∂

∂t
u = L(u) + g in Ω× (0, T ), (5.1)
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where Ω is the spatial domain, (0, T ) is the temporal domain, L is a spatio-differential operator on

the unknown u and g is a given source function. The flow dynamic is prescribed to some given

initial condition and boundary condition. We consider spatial discretization procedure by finite

element method on a Eulerian mesh Th for the spatial domain Ω. Let Vh be a finite element space

spanned by the nodal basis {φj}nj=1 on Th. We seek numerical solution of (5.1) by an expansion

u(x, t) =
n∑
j=1

yj(t)φj(x), (5.2)

which yields a system of ODE in the form

d

dt
y(t) = By(t) + f(y(t)), (5.3)

where y(t) ∈ Rn is the state vector, B ∈ Rn×n is a constant matrix, and f : Rn → Rn is a nonlinear

function. In our applications, the dimension n corresponds to the number of physical grid points

in the mesh. In general, the dimension n is huge and model reduction techniques provide efficient

reduced-order models and bring computational savings.

5.1.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition is a popular mode decomposition method, which aims at

reducing the order of the model by extracting important relevant feature representation with a

low dimensional space. In this section, we briefly discuss the POD method. For a more detailed

discussion of the use of POD on dynamic systems, the reader is referred to [71, 72]. In POD, a low-

dimensional set of modes, i.e., important degrees of freedom, are identified based on processing

information from a sequence of snapshots, i.e., instantaneous solutions from the dynamic process,

and extracting the most energetic structures in terms of the largest singular values. In the statistical

point of view, the extracted modes are uncorrelated and form an optimal reduced order model, in

the sense that the variance is maximized and the mean squared distance between the snapshots and

the POD subspace is minimized.
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Proper orthogonal decomposition starts with a collection of N � n instantaneous snapshots

{yj}Nj=1 ⊂ Rn, where the snapshot times in the above sequence is assumed to be equidistant. The

snapshots span a snapshot space of dimension r and are arranged in a matrix form known as the

snapshot matrix

Y = [y1 y2 · · · yN ] ∈ Rn×N . (5.4)

The idea of POD is to seek the subspace of a certain dimension which best approximates the linear

space spanned by the snapshots. Among all subsets of m < r orthonormal vectors in Rn, we seek

the POD basis {vj}mj=1 by solving a minimization problem

argmin
{vj}mj=1⊂Rn

〈vi,vj〉=δij

N∑
i=1

∥∥∥∥∥yi −
m∑
j=1

〈yi,vj〉vj

∥∥∥∥∥
2

2

, (5.5)

The minimzation problem is processed by performing a singular value decomposition on the snap-

shot matrix Y

Y = VΛWT , (5.6)

where V = [v1,v2, · · · ,vr] ∈ Rn×r and W = [w1,w2, · · · ,wr] ∈ RN×r consist of the left-

singular vectors and right-singular vectors of Y respectively, and Λ = diag(σ1, σ2, · · · , σr) ∈

Rr×r is the diagonal matrix consisting of the singular values of Y. Constructively, we denote

the correlation matrix from the snapshot sequence by C = YTY, and compute the eigenvalue

decomposition on C

Cqj = λjqj, (5.7)

and obtain the singular values {σj}rj=1 and singular vectors {vj}rj=1 by

σj =
√
λj and vj =

1

σj
Yqj. (5.8)

Here the singular values are arranged in descending energy ranking, i.e., σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

which correspond to the energy content of a mode. The energy ranking provides a measure of
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the importance of the mode in capturing the relevant dynamic process. The POD basis, i.e. the

solution of the minimization problem (5.5), is then given by selecting the first m singular vectors

{vj}mj=1. In this case, we have

N∑
i=1

∥∥∥∥∥yi −
m∑
j=1

〈yi,vj〉vj

∥∥∥∥∥
2

2

=
r∑

j=m+1

σ2
j . (5.9)

The size m of the POD basis has to be sufficiently large to include the first few largest singular

values and ensure a good approximation to the snapshot matrix. The number of basis can be pre-

defined or determined by means of fractional energy, i.e. fixing a threshold E0, pick the smallest

integer m such that

E =

∑m
j=1 σ

2
j∑r

j=1 σ
2
j

> E0, (5.10)

In general, a few basis is needed if the singular values decay quickly. The rate of decay depends

on the intrinsic dynamics of the system and the selection of the snapshots.

5.1.2 Fully discrete reduced-order model

Using the aforementioned POD basis {vj}mj=1, we can express the solution as

y(t) ≈
m∑
j=1

c̃j(t)vj = Vc̃(t), (5.11)

where c̃(t) = (c̃1(t), c̃2(t), . . . , c̃m(t))T ∈ Rm is the coordinates of y(t) with respect to the POD

basis. We therefore derive a reduced-order ODE system

d

dt
c̃(t) = VTBVc̃(t) + VT f(Vc̃(t)), (5.12)

and further reduce it to an algebraic system. We consider a partition 0 = t0 < t1 < . . . <

ts = T for the temporal domain (0, T ). Using, for example, implicit Euler method for temporal
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discretization, we obtain a recurrence relation

c̃n+1 = c̃n + (tn+1 − tn)
(
VTBVc̃n+1 + VT f(Vc̃n+1)

)
, (5.13)

where c̃n denotes the numerical solution of c̃(t) at the time instant t = tn. The nonlinear term f can

be handled with different techniques, such as direct linearization method, fixed point iterations and

Discrete Empirical Interpolation Method (DEIM), depending on situations and need for accuracy

in particular applications.

5.1.3 Construction of nodal basis functions

Next, we present the construction of basis functions in the POD subspace. The basis functions

are designed such that the degrees of freedom have physical meanings (e.g., represent the solution

values at selected locations). Since the constructed basis functions have limited support, it will al-

low localizing the forward dynamics by writing the forward map for the solution values at selected

locations with pre-computed neighborhood structure.

Given a set of nodes {xk}mk=1 in the mesh Th, which correspond to particular physical points

in the spatial domain Ω, we construct nodal basis functions by linear combinations of POD modes

{vj}mj=1. More precisely, we seek coefficients αij such that

m∑
j=1

αijVkj = δik. (5.14)

We remark that Vkj is the nodal evaluation of the interpolant of vj in the finite element space Vh

at the node xk. The nodal basis ψk at the node xk is then defined by

ψk =
m∑
j=1

αkjvj. (5.15)

The set of nodal basis spans exactly the POD subspace. A reduced-order state vector y(t) in the
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POD subspace can then be written in the expansion

y(t) =
m∑
k=1

ck(t)ψk, (5.16)

where the coefficients ck(t) represent the nodal evaluation of the finite element approximation of

u(x, t) at the node xk. Furthermore, the coefficients c̃n of the original POD basis functions and cn

of the POD nodal basis functions are related by

cn = Vmc̃
n, (5.17)

where Vm ∈ Rm×m is the submatrix obtained from V by taking the rows corresponding to the

nodes {xk}mk=1.

5.2 Deep Global Model Reduction and Learning

5.2.1 Main idea

We will make use of the reduced-order model described in Section 5.1 to model the flow dy-

namics, and a deep neural network to approximate the flow profile. In many cases, the flow profile

is dependent on data. The idea of this work is to make use of deep learning to combine the reduced-

order model and available data and provide an efficient numerical model for modelling the flow

profile.

First, we note that the solution at the time instant n + 1 depends on the solution at the time

instant n and input parameters In+1, such as permeability field and source terms. Here, we would

like to use a neural network to describe the relationship of the solutions between two consecutive

time instants. Suppose we have a totalm sample realization in the training set. For each realization,

given a set of input parameters, we solve the aforementioned reduced-order model and obtain the

coefficients at particular points

{c0, · · · , ck} (5.18)

at all time steps. Our goal is to use deep learning techniques to train the trajectories and find a
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network N to describe the pushforward map between cn and cn+1 for any training sample.

cn+1 ∼ N (cn, In+1), (5.19)

where In+1 is an input parameter which could vary over time, and N is a multi-layer network to

be trained. The network N will approximate the discrete flow dynamics.

In our neural network, cn and In+1 are the inputs, cn+1 is the output. One can take the coeffi-

cients from time 0 to time k − 1 as input, and from time 1 to k as output in the training process.

In this case, a universal neural net N is obtained. The solution at time 0 can then be forwarded all

the way to time k by repeatedly applying the universal network k times, that is,

ck ∼ N (N · · ·N (c0, I1) · · · , Ik−1), Ik). (5.20)

After a network is trained, it can be used for predicting the trajectory given a new set of input

parameters In+1 and realization of coefficients at initial time c0
new by

cknew ∼ N (N · · ·N (c0
new, I

1) · · · , Ik−1), Ik). (5.21)

Alternatively, one can also train each forward map for any two consecutive time instants as needed.

That is, we will have cn+1 ∼ Nn+1(cn, In+1), for n = 0, 1, . . . , k − 1. In this case, to predict the

final time solution cknew given the initial time solution cnew
0, we use k different networksN1, · · · ,Nk

cknew ∼ Nk(Nk−1 · · · N1(c0
new, I

1) · · · , Ik−1), Ik). (5.22)

We remark that, besides the solution un at the previous time instant, the other input parameters

In+1 such as permeability or source terms can be different when entering the network at different

time steps.

In this work, we would like to incorporate available observed data in the neural network. The
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observation data will help to supplement the computational data which are obtained from the un-

derlying reduced order model, and improve the performance of the neural network model such

that it will take into account real data effects. From now on, we use {c0
s, · · · , cks} to denote the

simulation data, and {c0
o, · · · , cko} to denote the observation data.

One can get the observation data from real field experiment. However in this work, we generate

the observation data by running a new simulation on the “true permeability field” using standard

finite element method, and using the results as observed data. For the computational data, we

will perturb the “true permeability field”, and use the reduced-order model, i.e., POD model for

simulation. In the training process, we are interested in investigating the effects of observation data

in the output. One can compare the performance of deep neural networks when using different

combinations of computation and observation data.

For the comparison, we will consider the following three networks

• Network A: Use all observation data as output,

co
n+1 ∼ No(csn, In+1) (5.23)

• Network B: Use a mixture of observation data and simulation data as output,

cm
n+1 ∼ Nm(cs

n, In+1) (5.24)

• Network C: Use all simulation data (no observation data) as output,

cs
n+1 ∼ Ns(csn, In+1) (5.25)

where cm is a mixture of simulation data and observed data.

The first network (Network A) corresponds to the case when the observation data is sufficient.

One can merely utilize the observation data in the training process. That is, the observation data at
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time n + 1 can be learnt as a function of the observation data at time n. This map will fit the real

data very well given enough training data; however, it will not be able to approximate the reduced-

order model. Moreover, in the real application, the observation data are hard to obtain, and in order

to make the training effective, deep learning requires a huge amount of data. Thus Network A is

not applicable in real case, and we will use the results from Network A as a reference.

The third network (Network C), on the other hand, will simply take all simulation data in

the training process. In this case, one will get a network describes the simulation model (in our

example, the POD reduced-order model) as best as it can but ignore the observational data effects.

This network can serve as an emulator to do a fast simulation. We will also utilize Network C

results as a reference.

We are interested in investigating the performance of Network B, where we take a combina-

tion of computational data and observational data to train. It will not only take in to account the

underlying physics but also use the real data to modify the reduced-order model, thus resulting in

a data-driven model.

5.2.2 Network structures

Mathematically, a neural network N of L layers with input x and output y is a function in the

form

N (x; θ) = σ(WLσ(· · ·σ(W2σ(W1x + b1) + b2) · · · ) + bL),

where θ := (W1, · · · ,WL, b1, · · · , bL) is a set of network parameters, W ’s are the weight matrices

and b’s are the bias vectors. The activation function σ acts as entry-wise evaluation. A neural

network describes the connection of a collection of nodes (neurons) sit in successive layers. The

output neurons in each layer is simultaneously the input neurons in the next layer. The data prop-

agate from the input layer to the output layer through hidden layers. The neurons can be switched

on or off as the input is propagated forward through the network. The weight matrices W ’s control

the connectivity of the neurons. The number of layers L describes the depth of the neural network.

Figure 5.1 depicts a deep neural network in out setting, in which each circular node represents a
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neuron and each line represents a connection from one neuron to another. The input layer of the

neural network consists of the coefficients cn and the input parameters In.

Figure 5.1: An illustration of deep neural network. Reprinted with permission from “Deep Global
Model Reduction Learning in Porous Media Flow Simulation” by Siu Wun Cheung, Eric T. Chung,
Yalchin Efendiev, Eduardo Gildin, Yating Wang and Jingyan Zhang, 2020. Computational Geo-
sciences, Volume 24, Pages 261–274, Copyright [2020] by Springer.

Given a set of data (xj,yj), the deep neural network aims to find the parameters θ∗ by solving

an optimization problem

θ∗ = argmin
θ

1

N

N∑
j=1

||yj −N (xj; θ)||22,

where N is the number of the samples. Here, the function L(θ) = 1
N

∑N
j=1 ||yj − N (xj; θ)||22 is

known as the loss function. One needs to select suitable number of layers, number of neurons in

each layer, the activation function, the loss function and the optimizers for the network.

As discussed in the previous section, we consider three different networks, namelyNo,Nm and

Ns. For each of these networks, we take the vector x = (cs
n, In+1) containing the numerical solu-

tion vectors and the data at a particular time step as the input. In our setting, the input parameter

In+1, if present, could be the static permeability field or the source function. Based on the avail-
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ability of the observational data in the sample pairs, we will select an appropriate network among

(5.23), (5.24) and (5.25) accordingly. The output y = cα
n+1 is taken as the numerical solution at

the next time instant, where α = o,m, s corresponds to the network.

Here, we briefly summarize the architecture of the network Nα, where α = o,m, s for three

networks we defined in (5.23), (5.24) and (5.25) respectively.

As for the input of the network, we use x = (cs
n, In+1), which are the vectors containing the

numerical solution vectors and the input parameters in a particular time step. The corresponding

output data are y = cα
n+1, which contains the numerical solution in the next time step. In between

the input and output layer, we test on 3–10 hidden layers with 20-400 neurons in each hidden layer.

In the training, there are N = mk sample pairs of (xj,yj) collected, where m is the number of

realizations of flow dynamics and k is the number of time steps.

In between layers, we need the activation function. The ReLU function (rectified linear unit

activation function) is a popular choice for activation function in training deep neural network

architectures [73]. However, in optimizing a neural network with ReLU as activation function,

weights on neurons which do not activate initially will not be adjusted, resulting in slow con-

vergence. Alternatively, leaky ReLU can be employed to avoid such scenarios [74]. We choose

leaky ReLU in our network structure. As for the training optimizer, we use AdaMax [75], which

is a stochastic gradient descent (SGD) type algorithm well-suited for high-dimensional parameter

space, in minimizing the loss function.

5.3 Numerical examples

In this section, we present numerical examples. We apply our method to predict the evolution

of the pressure in a nonlinear single-phase flow problem. Using POD global model reduction

technique, we obtain coefficients of numerical solutions in the reduced-order model and use as

training samples to construct neural network approximations of the corresponding nonlinear flow

dynamics. All the network training are performed using the Python deep learning API Keras [76].

As a first example, we consider a simple nonlinear single-phase flow in the spatial domain
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Ω = [0, 1]× [0, 1]:
∂u

∂t
− div(κ(x, u)∇u) = g in Ω, (5.26)

subject to homogeneous Dirichlet boundary condition u|∂Ω = 0. This equation describes unsatu-

rated flow in heterogeneous media, which are widely used [77, 78, 79, 80, 81]. In our simulations,

we will use an exponential model κ(x, u) = κ(x) exp(αu). Here, u is the pressure of flow, g is a

time-dependent source term and α is a nonlinearity parameter. The function κ(x) is a stationary

heterogeneous permeability field of high contrast, i.e., with large variations within the domain Ω.

In this example, we focus on permeability fields that contain wavelet-like channels as shown in

Figure 5.2. In each realization of the permeability field, there are two non-overlapping channels

with high conductivity values in the domain Ω, while the conductivity value in the background is

1. Channelized permeability fields are challenging for model reduction and prediction and, thus,

we focus on flows corresponding to these permeability fields. The numerical tests for Gaussian

permeability fields ([82, 83]) show a good accuracy because of the smoothness of the solution with

respect to the parameters.
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Figure 5.2: Samples of static permeability field used in single-phase flow. Reprinted with per-
mission from “Deep Global Model Reduction Learning in Porous Media Flow Simulation” by Siu
Wun Cheung, Eric T. Chung, Yalchin Efendiev, Eduardo Gildin, Yating Wang and Jingyan Zhang,
2020. Computational Geosciences, Volume 24, Pages 261–274, Copyright [2020] by Springer.

Next, we present the details of numerical discretization of the problem. Suppose the spatial

domain Ω is partitioned into a rectangular mesh Th, and a set of piecewise bilinear conforming
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finite element basis functions {vj} is constructed on the mesh. We denote the finite element space

by Vh = Q1(Th). Using direct linearization for the nonlinear term, implicit Euler method for tem-

poral discretization and a Galerkin finite element method for spatial discretization, the numerical

solution un+1
h at the time instant n+1 is obtained by solving the following variational formulation:

find un+1
h ∈ Vh such that

∫
Ω

un+1
h − unh

∆t
v +

∫
Ω

κ exp(αunh)∇un+1
h · ∇v =

∫
Ω

gn+1v for all v ∈ Vh. (5.27)

Here ∆t is the time step and h is the mesh size. With a slight abuse of notation, we again denote the

coefficients of the numerical solution with the piecewise bilinear basis functions by un+1
h . Then,

the variational formulation can be written in the matrix form

un+1
h = (M + ∆tA(unh))−1(Munh + ∆tbn+1), (5.28)

whereM , A(unh) and bn+1 are the mass matrix, the stiffness matrix and the load vector with respect

to the bilinear basis functions vj , i.e.,

Mij =

∫
Ω

vivj,

[A(unh)]ij =

∫
Ω

κ exp(αunh)∇vi · ∇vj,

bn+1
i =

∫
Ω

gn+1vi.

(5.29)

In our simulation, the flow is simulated from an initial time t = 0 to a final time t = 0.01

in 10 time steps. Realizations of flow dynamics are computed using independent and uniformly

distributed initial conditions. We use POD to extract dominant modes from snapshot solutions and

construct POD nodal basis functions. Examples of POD nodal basis functions are shown in Fig-

ure 5.3. Simulation data of the dynamic process under the reduced-order model are then obtained

and used in the training set. Different forms of inputs, depending on situations, are investigated.

Using these data as samples, universal multi-layer networks are trained to approximate the flow
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dynamics. We use the trained networks to predict the output with some new unseen inputs, and

reconstruct the numerical solution using the predicted coefficients. We examine the quality of our

networks by computing the L2 error between our predicted solution unpred and the reference solution

unref, i.e.,

‖unref − unpred‖L2(Ω) =

(∫
Ω

|unref − unpred|2 dx
) 1

2

,

‖unref − unpred‖H1(Ω) =

(∫
Ω

|∇(unref − unpred)|2 dx
) 1

2

,

(5.30)
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Figure 5.3: Illustration of nodal basis functions. Reprinted with permission from “Deep Global
Model Reduction Learning in Porous Media Flow Simulation” by Siu Wun Cheung, Eric T. Chung,
Yalchin Efendiev, Eduardo Gildin, Yating Wang and Jingyan Zhang, 2020. Computational Geo-
sciences, Volume 24, Pages 261–274, Copyright [2020] by Springer.

5.3.1 Experiment 1

In this experiment, we consider flow in a fixed static channelized field κ and a time-independent

source g fixed among all the samples. The nonlinearity constant is chosen as α = 20. We use
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POD to extract 10 dominant modes from 1000 snapshot solutions and construct POD nodal basis

functions. In the neural network, we simply take the input and output as

x = cs
n and y = cs

n+1. (5.31)

In the generation of samples, we consider independent and uniformly distributed initial conditions

cs
0. We generate 100 realizations of initial conditions cs0, and evolve the reduced-order dynamic

process to obtain csn for n = 1, 2, . . . , 10 . We remark that these simulation data provide a total of

1000 samples of the pushforward map.

We use the 900 samples given by 90 realizations as training set and the 100 samples given by 10

remaining realizations as testing samples. Using the training data and a given network architecture,

we find a set of optimized parameter θ∗ which minimizes the loss function, and obtain optimized

network parameters θ∗. The network N is then used to predict the 1-step dynamic, i.e.,

cs
n+1 ≈ N (cs

n; θ∗). (5.32)

We also use the composition of the network N to predict the final-time solution, i.e.,

cs
10 ≈ N (N (· · · N (cs

0; θ∗) · · · ; θ∗); θ∗). (5.33)

We use the same set of training data and testing data and compare the performance of different

network architectures. We examine the performance of the networks by the mean of L2 percentage

error of the 1-step prediction and the final-time prediction in the testing samples. The error is

computed by comparing to the solution formed by the simulation data csn.

The results are summarized in Table 5.1. It can be observed that if thee network architecture is

too simple, i.e. contains too few layers or neurons, the neural network built may become useless

in prediction.
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Layer Neuron 1-step Final-time

3
20 0.1776 3.4501e+09

100 0.0798 6.3276
400 0.0613 4.9855

5
20 0.1499 6.5970e+06

100 0.0753 6.3101
400 0.0602 4.8137

10
20 0.1024 5.4183

100 0.0750 4.3271
400 0.0609 1.8834

Table 5.1: Mean of L2 percentage error with different network architectures in Experiment 1.
Reprinted with permission from “Deep Global Model Reduction Learning in Porous Media Flow
Simulation” by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Eduardo Gildin, Yating Wang
and Jingyan Zhang, 2020. Computational Geosciences, Volume 24, Pages 261–274, Copyright
[2020] by Springer.

5.3.2 Experiment 2

In the second experiment, we consider flow in static channelized fields κ and a time-independent

source g fixed among all the samples. The nonlinearity constant is chosen as α = 10. The coeffi-

cient fields κ differ in the conductivity value in channels. The high conductivity values in the two

channels are parametrized by

κ1 = 10000eη1 ,

κ2 = 5000eη2 ,

(5.34)

where η = (η1, η2) is taken from a uniform distribution in [−0.5, 0.5]2. We use POD to extract 5

dominant modes from 1000 snapshot solutions and construct POD nodal basis functions. In the

neural network, we simply take the input and output as

x = (cs
n, η) and y = cs

n+1. (5.35)

97



We generate 100 realizations of initial conditions cs0 and parameters η, and evolve the reduced-

order dynamic process to obtain csn for n = 1, 2, . . . , 10. We remark that these simulation data

provide a total of 1000 samples of the pushforward map. We use the 900 samples given by 90 real-

izations as training set and the 100 samples given by 10 remaining realizations as testing samples.

Using the training data and a given network architecture, we find a set of optimized parameter θ∗

which minimizes the loss function, and obtain optimized network parameters θ∗. The network N

is then used to predict the 1-step dynamic, i.e.,

cs
n+1 ≈ N (cs

n, η; θ∗). (5.36)

We also use the composition of the network N to predict the final-time solution, i.e.,

cs
10 ≈ N (N (· · · N (cs

0, η; θ∗) · · · , η; θ∗), η; θ∗). (5.37)

In this example, we investigate the advantage of our approach of combining deep learning

with POD nodal basis functions. Instead of using the coefficients of the solution with respect to

POD nodal basis functions {ψk}mk=1 for representing the flow dynamics, one can also use other

discretizations, for example, the standard bilinear elements nodal functions or the POD basis func-

tions {vj}mj=1 Using the same idea as in Section 5.2, we can learn from the respective data and

construct corresponding neural networks for approximations. In this experiment, we compare the

training cost and the performance of the neural networks using different underlying discretizations,

by using the same set of training data and testing data. All networks consist of 3 hidden layers of 20

neurons and are trained in 500 epochs. We examine the performance of the networks by comparing

the 1-step prediction and the final-time prediction to the corresponding numerical method.

A comparison of discretizations is presented in Table 5.2, which suggest that the model re-

duction technique brings several advantages to neural network approximation of flow dynamics.

First, the use of POD reduces the number of trainable parameters in the network and thus short-
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ening the elapsed time for network training. In our simple experiment, as shown in Table 5.2, the

elapsed time for training the networks in POD reduced-order models is around 1/10 of elapsed

time for training the networks in the standard nodal coordinates. Second, instead of extracting

features solely in the learning process, the reduced order model predefines some features which

are important in representing the flow and facilitates the learning process. This allows the infor-

mation propagates more easily through the multi-layer networks and provides a smaller prediction

error. Lastly, learning the evolution in the standard nodal coordinates becomes infeasible in large-

scale computation. Both elapsed runtime for sample generation and memory required for sample

storage grow dramatically with increased number of degree of freedom. The reduced-order model

provides a cheap alternative for learning the flow dynamics in this scenario. As shown in Table 5.2,

the CPU time for one forward run in the full model is 0.4499 seconds, which is short due to the

simplicity of the linearization scheme in the simple experiment. However, with the reduced order

model, the CPU time for a single forward run is reduced to 0.0003 seconds. We remark that the

use of reduced-order models will be even more advantageous in complicated problems. For exam-

ple, for repeatedly modelling highly nonlinear flows in highly heterogeneous flows, the nonlinear

solver in the high-fidelity space will be computationally expensive. Moreover, the prediction error

using POD nodal basis functions {ψk}mk=1 is smaller than using the original POD basis functions

{vj}mj=1. This suggests that nodal values provide a more stable and well-conditioned coordinate

system.

Remark 5.3.1. The wide neural network using standard nodal coordinates can be viewed as a

generalization of dynamic mode decomposition (DMD) [84]. DMD is a dimensionality reduction

technique which extracting dynamical features from flow data. Given a sequence of snapshots

{u0
h, u

1
h, . . . , u

K
h }, DMD seeks a linear mapping A which fits the snapshots by un+1

h = Aunh, which

can be seen as the simplest neural network with linear activation function and without bias and

hidden layers that maps unh to un+1
h . Optimal mode decomposition (OMD) [85], a variant of DMD,

seeks a linear mapping A with a user-defined rank k, which is equivalent to seek a wide neural
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Coordinates Standard nodal POD POD nodal
Dimension 9801 5 5

Forward runtime (seconds) 0.4499 0.0003 0.0003
# trainable parameters 403161 1525 1525

Training time (seconds) 587.14 62.60 57.56
L2 error for 1-step 0.9529% 0.5751% 0.3957%
H1 error for 1-step 2.9588% 0.6020% 0.4395%
L2 error for final time 4.8563% 3.4943% 3.0266%
H1 error for final time 5.9270% 3.7307% 3.3762%

Table 5.2: History of training cost and prediction error with different discretization in Experiment
2. Reprinted with permission from “Deep Global Model Reduction Learning in Porous Media Flow
Simulation” by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Eduardo Gildin, Yating Wang
and Jingyan Zhang, 2020. Computational Geosciences, Volume 24, Pages 261–274, Copyright
[2020] by Springer.

network in the form

un+1
h = W2W1u

n
h, (5.38)

i.e. a 2-layer network with linear activation and no bias, and with k neurons in the immediate

hidden layer. In this sense, we can build more general neural networks than DMD or OMD, which

provides higher interpretability for more complex and nonlinear flow dynamics.
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6. SUMMARY AND CONCLUSIONS

Lastly, we conclude this dissertation with a brief summary. Flow problems in porous heteroge-

neous media give rise to high-dimensional fine scale systems. In order to reduce the computational

expense, we make use of rigorous mathematical tools to develop model reduction, statistical and

machine learning approaches for efficient numerical solvers.

In Chapter 2, we present CEM-GMsDGM, a local multiscale model reduction approach in the

discontinuous Galerkin framework. The multiscale basis functions are defined in coarse oversam-

pled regions by a constraint energy minimization problem, which are in general discontinuous on

the coarse grid, and coupled by the IPDG formulation. Thanks to the definition of local spec-

tral problems, the dimension of auxiliary space is minimal for sufficiently representing the high

conductivity regions, and provides the most locally compressed multiscale space. In our analysis

for the Darcy flow problem, we show that the method provides optimal convergence in the coarse

mesh size, which is independent of the contrast, provided that the oversampling size is appropri-

ately chosen. The convergence of the method for solving Darcy flow is theoretically analyzed and

numerically verified.

In Chapter 3, we present the CEM-GMsFEM for a dual continuum model. Auxiliary basis

functions, obtained from local coupled spectral problems, are used to identify high contrast chan-

nels and fracture networks. Then, we solve an energy minimization with some constraints related

to the auxiliary functions. We show that the basis functions are localized and that the resulting

method has a mesh dependent convergence. Numerical results are presented to confirm the theory.

In Chapter 4, we propose a dynamic data-driven Bayesian approach for basis selection in mul-

tiscale problems, in the Generalized multiscale finite element method framework. The method is

used to solve time-dependent problems in heterogeneous media with available dynamic observa-

tional data on the solution. Our method selects important degrees of freedom probabilistically.

Using the construction of offline basis functions in GMsFEM, we choose the first few eigenfunc-

tions with smallest eigenvalues as permanent basis functions and compute the fixed solution. The
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fixed solution is used to compute the residual information, and impose a prior probability distri-

bution on the rest of basis functions. The likelihood involves a residual and observational error

minimization. The resultant posterior distribution allows us to compute multiple realizations of

the solution, providing a probabilistic description for the un-resolved scales as well as regularizing

the solution by the dynamic observational data. In our numerical experiments, we see that our

sampling process quickly stabilizes at a steady state. We also see that the design of our likelihood

and posterior is useful in reducing the error in observational data.

In Chapter 5, we combine some POD techniques with deep learning concepts in the simulations

for flows in porous media. The observation data is given at some locations. We construct POD

modes such that the degrees of freedom represent the values of the solution at certain locations.

Furthermore, we write the solution at the current time as a multi-layer network that depends on the

solution at the initial time and input parameters, such as well rates and permeability fields. This

provides a natural framework for applying deep learning techniques for flows in channelized media.

We provide the details of our method and present numerical results. In all numerical results, we

study nonlinear flow equation in channelized media and consider various channel configurations.

Our results show that multi-layer network provides an accurate approximation of the forward map

and can incorporate the observed data. Moreover, by incorporating some observed data (from true

model) and some computational data, we modify the reduced-order model. This way, one can use

the observed data to modify reduced-order models which honor the observed data.
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[54] B. C. CsÃąji, “Approximation with artificial neural networks,” Faculty of Sciences, Etvs

Lornd University, vol. 24, no. 48, 2001.

[55] M. Telgrasky, “Benefits of depth in neural nets,” JMLR: Workshop and Conference Proceed-

ings, vol. 49, no. 123, 2016.

[56] H. M. Q. Liao and T. Poggio., “Learning functions: when is deep better than shallow,”

arXiv:1603.00988v4, 2016.

[57] B. Hanin, “Universal function approximation by deep neural nets with bounded width and

relu activations,” arXiv:1708.02691, 2017.

[58] Y. Khoo, J. Lu, and L. Ying, “Solving parametric pde problems with artificial neural net-

works,” arXiv:1707.03351, 2017.

108



[59] E. Weinan and B. Yu, “The deep Ritz method: A deep learning-based numerical algorithm for

solving variational problems,” Communications in Mathematics and Statistics, vol. 6, no. 1,

pp. 1–12, 2018.

[60] Z. Li and Z. Shi, “Deep residual learning and pdes on manifold,” arXiv:1708.05115., 2017.

[61] K. Wang and W. Sun, “A multiscale multi-permeability poroplasticity model linked by re-

cursive homogenizations and deep learning,” Computer Methods in Applied Mechanics and

Engineering, vol. 334, pp. 337–380, 2018.

[62] Y. Wang and G. Lin, “Efficient deep learning techniques for multiphase flow simulation in

heterogeneous porous media,” arXiv:1907.09571, 2019.

[63] S. W. Cheung, E. T. Chung, Y. Efendiev, E. Gildin, Y. Wang, and J. Zhang, “Deep global

model reduction learning in porous media flow simulation,” Computational Geosciences,

2019.

[64] Y. Wang, S. W. Cheung, E. T. Chung, Y. Efendiev, and M. Wang, “Deep multiscale model

learning,” Journal of Computational Physics, vol. 406, no. 109071, 2020.

[65] M. Wang, S. W. Cheung, W. T. Leung, E. T. Chung, Y. Efendiev, and M. Wheeler, “Reduced-

order deep learning for flow dynamics. the interplay between deep learning and model reduc-

tion,” Journal of Computational Physics, vol. 401, no. 108939, 2020.

[66] M. Wang, S. W. Cheung, W. T. Leung, E. T. Chung, Y. Efendiev, and Y. Wang, “Prediction

of discretization of gmsfem using deep learning,” Mathematics, vol. 7, no. 5, 2019.

[67] J. Zhang, S. W. Cheung, Y. Efendiev, E. Gildin, and E. T. Chung, “Deep model reduction-

model learning for reservoir simulation.,” SPE-193912-MS.

[68] L. Kuo and B. Mallick, “Variable selection for regression models.,” Sankhya: The Indian

Journal of Statistics, Series B, pp. 65–81, 1998.

[69] E. I. George and R. McCulloch, “Variable selection via gibbs sampling.,” Journal of the

American Statistical Association, vol. 88, no. 423, pp. 881–889, 1993.

109



[70] J. G. Scott and J. Berger, “Bayes and empirical-bayes multiplicity adjustment in the variable-

selection problem.,” The Annals of Statistics, vol. 38, no. 5, pp. 2587–2619, 2010.

[71] M. Hinze and S. Volkwein, “Proper orthogonal decomposition surrogate models for nonlin-

ear dynamical systems: error estimates and suboptimal control,” in Dimension Reduction of

Large-Scale Systems (P. Benner, V. Mehrmann, and D. Sorensen, eds.), vol. 45 of Lecture

Notes in Computational Science and Engineering, pp. 261–306, Springer Berlin Heidelberg,

2005.

[72] G. Kerschen, J.-c. Golinval, A. F. Vakakis, and L. A. Bergman, “The method of proper or-

thogonal decomposition for dynamical characterization and order reduction of mechanical

systems: An overview,” Nonlinear Dynamics, vol. 41, no. 1, pp. 147–169, 2005.

[73] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings

of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–

323, PMLR, 2011.

[74] A. Maas, A. Hannun, and A. Ng, “Rectifier nonlinearities improve neural network acoustic

models,” Proc. icml, vol. 30, no. 1, 2013.

[75] D. P. Kingma and J. Ba., “Adam: A method for stochastic optimization.,” arXiv preprint

arXiv:1412.6980, 2014.

[76] F. Chollet et al., “Keras.” https://keras.io, 2015.

[77] L. A. Richards, “Capillary conduction of liquids through porous mediums,” physics, vol. 1,

no. 5, pp. 318–333, 1931.

[78] W. Gardner, “Some steady-state solutions of the unsaturated moisture flow equation with

application to evaporation from a water table,” Soil science, vol. 85, no. 4, pp. 228–232,

1958.

[79] M. T. Van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of

unsaturated soils 1,” Soil science society of America journal, vol. 44, no. 5, pp. 892–898,

1980.

110

https://keras.io


[80] P. Dostert, Y. Efendiev, and B. Mohanty, “Efficient uncertainty quantification techniques in
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