
DEEP FEATURE FUSION FOR VIDEO-BASED ACTION RECOGNITION

A Thesis

by

CHENG CHENG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Xiaoning Qian
Co-Chair of Committee, Xia Hu
Committee Members, Nicholas G. Duffield
 Weiping Shi
Head of Department, Miroslav M. Begovic

May 2020

Major Subject: Computer Engineering

Copyright 2020 Cheng Cheng

ABSTRACT

3-Dimensional Convolutional Neural Networks (3D ConvNets) have been adopted for video-

based action recognition task recently. Many 3D ConvNets, such as C3D, I3D, and Res3D, have

been proposed and achieved great success. The model ensemble techniques have been very suc-

cessful in achieving better performance over a single model. But model ensemble could not be

adopted in this case given that the single 3D ConvNets model as a base learner is unrealistic. It

remains an open question about how to achieve better performance by leveraging multiple 3D

ConvNets models. To solve the problem, we present a two-stage framework to combine multiple

3D ConvNets models at the feature level. In the first stage, we treat each pretrained 3D ConvNets

model as a feature extractor to extract features from raw videos. We fuse the extracted features

of different 3D ConvNets models to form the new video representation and then train a classifier

based on the new video representation in the second stage. We explore several widely-used feature

fusion methods for deep features learned from different models, to learn more robust action rep-

resentations from raw videos. We show that our framework outperforms any single 3D ConvNets

model by a large margin and exhibits comparable performance to the state-of-the-art model on two

video action recognition benchmarks.

ii

ACKNOWLEDGMENTS

I would like to express my deep gratitude to Professor Hu and Professor Qian, my research

supervisors, for their patient guidance, enthusiastic encouragement and useful critiques of this

work. I would also like to thank Professor Shi and Professor Duffield for their advice and being

the committee members. My grateful thanks are also extended to the AutoML group of DATA lab

directed by Dr. Hu for their insightful suggestions.

I would also like to extend my thanks to all the staff of ECEN department for their help in

offering me the resources and advice throughout my master program.

Finally, I wish to thank my parents for their support and encouragement throughout my study.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis (or) dissertation committee consisting of Professor Qian

and Professor Shi and Professor Duffield of the Department of Electrical & Computer Engineering

and Professor Hu of the Department of Computer Science & Engineering.

Some pre-trained models were provided by Kensho Hara on Github.

All other work conducted for the thesis (or) dissertation was completed by the student indepen-

dently.

Funding Sources

Graduate study was supported by a fellowship from Texas A&M University and a dissertation

research fellowship from Texas A&M Engineering Experiment Station (TEES).

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES. viii

1. INTRODUCTION. 1

2. RELATED WORK . 3

2.1 Convolutional Neural Networks for Video-based Action Recognition 3
2.1.1 Models Based on 2D ConvNets . 3
2.1.2 Models Based on 3D ConvNets. 4

2.2 Feature Fusion . 4
2.2.1 Feature Fusion for Other Tasks . 4
2.2.2 Feature Fusion for Action Recogntion . 5

3. METHODOLOGY . 6

3.1 Exploring Layer Activation . 6
3.2 Exploring Feature Fusion . 7
3.3 Exploring Classifier . 7

4. EXPERIMENTS . 8

4.1 Datasets . 8
4.1.1 UCF-101 . 8
4.1.2 HMDB-51. 8
4.1.3 Kinetics . 8

4.2 What Architectures. 9
4.2.1 Architectures Detail . 9

4.2.1.1 C3D . 9
4.2.1.2 Res3D . 9
4.2.1.3 I3D . 10

v

4.2.2 Fine-tuned Accuracies on UCF-101 and HMBD-51. 10
4.3 Which Layer . 11
4.4 Feature Fusion . 13

4.4.1 Feature Concatenation. 13
4.4.2 Feature Element-wise Addition . 14
4.4.3 BOVW .. 15
4.4.4 VLAD . 16
4.4.5 FV . 17

4.5 Classifier . 17
4.5.1 Linear SVM.. 17
4.5.2 Logistic Regression (LR) . 18
4.5.3 Multilayer Perceptron (MLP) . 18

4.6 Comparison . 19
4.6.1 Model Ensemble . 19
4.6.2 State-of-the-art . 20

4.7 Discussion . 20

5. CONCLUSION. 23

REFERENCES . 24

vi

LIST OF FIGURES

FIGURE Page

3.1 Overview of the Proposed Framework . 6

3.2 Shape of Layer Activations of Different 3D ConvNets Models . 7

4.1 I3D Architecture1 . 11

4.2 Feature Concatenation . 13

4.3 Feature Addition . 15

4.4 BOVW .. 16

4.5 Feature Embedding of Models: (a). C3D (b). I3D (c). ResNet-18 (d). ResNext-101 . 21

4.6 Feature Embedding of ResNets: (a). ResNext-101 (b). ResNext-101f64 (c). Fea-
ture Addition of ResNext-101 and ResNext-101f64 (d). Feature Addition of Fine-
tuned ResNext-101 and ResNext-101f64 . 22

vii

LIST OF TABLES

TABLE Page

4.1 C3D Architecture . 9

4.2 Res3D Architecture . 10

4.3 Fine-tuned Top-1 Accuracies on UCF-101 and HMDB-51 . 11

4.4 Linear SVM Accuracies of C3D on UCF-101 and HMDB-51 . 12

4.5 Linear SVM Accuracies of ResNet-18 on UCF-101 and HMDB-51 12

4.6 Linear SVM Accuracies of ResNext-101 on UCF-101 and HMDB-51 12

4.7 Accuracies of Single Model on UCF-101 and HMDB-51 . 14

4.8 Feature Concatenation Accuracies of Two Models on UCF-101 and HMDB-51 14

4.9 Feature Concatenation Accuracies of Multiple Models on UCF-101 and HMDB-51 . 15

4.10 Feature Addition Accuracies on UCF-101 and HMDB-51 . 15

4.11 BOVW Accuracies on UCF-101 and HMDB-51 . 16

4.12 VLAD Accuracies on UCF-101 and HMDB-51. 17

4.13 FV Accuracies on UCF-101 and HMDB-51 . 17

4.14 Accuracies of Different Linear SVM Parameter Setting on UCF-101 and HMDB-51 18

4.15 Accuracies of LR and Linear SVM on UCF-101 . 18

4.16 MLP Architecture Details for UCF-101 . 19

4.17 Accuracies of MLP and Linear SVM on UCF-101. 19

4.18 Accuracies Comparison with Model Ensemble on UCF-101 and HMDB-51. 20

4.19 Top-1 Accuracies on UCF-101 and HMDB-51 Compared with the State-of-the-art
Methods. 20

viii

1. INTRODUCTION

Video-based action recognition has been widely studied by researchers in the computer vision

community, due to wide applications in many areas such as intelligent human-computer interac-

tion, video surveillance and video anomaly detection. The goal of action recognition is to identify

the actions from raw videos. Conventionally, descriptors, which are based on some efficient hand-

crafted features, are proposed to catch the action information, such as HOG3D (Histogram of

Oriented Gradient) [1] , SIFT3D (Scale-invariant Feature Transform) [2] and extended SURF [3].

These hand-crafted features are representative enough and could achieve good results. However,

these hand-crafted features are very hard and time-consuming to design. Nowadays, Convolutional

Neural Networks (ConvNets) [4] has become the standard for video action recognition. Different

from classifying images of scenes and objects, video-based action recognition need to capture both

spatial appearance and temporal motion. Conventional 2-Dimensional Convolutional Neural Net-

works (2D Convnets) has achieved great success for spatial appearance modeling, but it can’t be

directly used for temporal structure modeling. To mitigate the temporal modeling problem, Tran

et al. [5, 6] propose to use the 3D ConvNet model as a feature extractor that model appearance

and motion simultaneously. Carreira et al. [7] propose a new Two-Stream Inflated 3D ConvNet

(I3D) that is based on 2D ConvNet inflation and achieve the state-of-the-art accuracy. Hara et al.

[8] examine the architectures of various 3D ConvNets on a large-scale video datasets and conclude

that using 3D ConvNets together with large-scale datasets will retrace the successful history of 2D

ConvNets and ImageNet. Interestingly, the deep features learned by these models with a simple

linear classifier, e.g. Support Vector Machine (SVM), can yield good performance on other video

analysis tasks, such as video object detection and dynamic scene recognition. Since these models

could learn efficient and compact spatio-temporal features for videos, can we do better if we fuse

these deep features?

In this work, we explore several widely-used feature fusion methods for deep features learned from

different models, to learn more robust action representations from raw videos. More specifically,

1

we firstly train several state-of-the-art models on large labeled video datasets such as Kinetics, and

we treat these trained models as video feature extractors. Then we explore different widely-used

feature fusion methods for the deep features extracted from trained models, to find the best feature

fusion method of deep features for the action recognition task. Also, we compare the feature fusion

method with some popular model ensemble methods, which prove the effectiveness of our method.

Our method also achieves comparable accuracy to the state-of-the-art models.

To summarize, our contributions in this work are three-fold. First, we design and conduct system-

atic and thorough experiments to investigate the best feature fusion techniques to generate video

representation based on deep features learned by 3D ConvNets for the action recognition task.

Second, we empirically find the best Convnets layer activations combination as a feature extractor.

Finally, we show the effectiveness of our work by comparing the result with some common model

ensemble methods on some benchmarks, e.g. UCF-101 and HMDB-51.

2

2. RELATED WORK

Video-based action recognition has been studied by researchers for decades. Previous works

related to ours can be classified a s t wo c ategories: (1) c onvolutional n etworks f or video-based

action recognition. (2) feature fusion.

2.1 Convolutional Neural Networks for Video-based Action Recognition

Inspired by the 2D Convnets breakthroughs in image tasks such as image classification and

image object detection, conventional 2D Convnets are directly adopted for video feature learn-

ing, which can not achieve a significant advantage over t raditional hand-crafted features for the

action recognition task. Then 3D Convnets, the extension of 2D ConvNets, are proposed to learn

spatio-temporal feature from raw videos, and achieve great success and become the de facto stan-

dard for video recognition tasks. So we will review ConvNets related work in the following two

subsections: (1) 2D ConvNets. (2) 3D ConvNets.

2.1.1 Models Based on 2D ConvNets

Inspired by the successful application of 2D ConvNets in image tasks, using the 2D ConvNets

is a straightforward way for the video-based action recognition task. For example, Simonyan et al.

[9] design two-stream ConvNets, RGB ConvNet and optical flow ConvNet, to model appearance

and motion separately and fuse two streams together at last. They demonstrate that the two-stream

ConvNets architecture can achieve very good performance despite limited training data. Temporal

Segment Networks (TSN) [10] propose a sparse temporal sampling strategy based on two-stream

ConvNets architecture. Karpathy et al. [11] trained deep ConvNets on a large weakly labeled

dataset and achieve moderate success using the network as a feature extractor for other video

classification t asks. More r ecently, Lin et a l. [12] propose a novel Temporal Shift Module that

facilitates information exchanged among neighboring frames, which get better performance than

3D ConvNets but maintain 2D ConvNets’ complexity.

3

2.1.2 Models Based on 3D ConvNets

3D ConvNets can jointly learn spatial and temporal features simultaneously. 3D ConvNets is

first proposed for action recognition by Ji et al. [13]. Tran et al. [5] conduct a systematic study for

3D ConvNets and train 3D Convnets (C3D) on large-scale datasets, which can model appearance

and motion information simultaneously. In another study, inception based 3D Convnets (I3D)

is proposed by Carreira et al. [7], which achieves state-of-the-art performance. Hara et al. [8]

systematically examine the architectures of various resnet based 3D ConvNets on Kinetics datasets,

and get a state-of-the-art result even trained from scratch.

2.2 Feature Fusion

Feature fusion, also known as feature encoding and descriptor/feature aggregation, has also

been studied by many researchers for decades. We review related work in two directions: (1) fea-

ture fusion for other tasks. (2) feature fusion for action recognition.

2.2.1 Feature Fusion for Other Tasks

Feature fusion is widely used for image classification and retrieval tasks. Before the onset of

deep learning, handcrafted features such as SIFT [14], combined with aggregation method such as

Bag-of-Words (BoW) [15], Fisher Vectors (FV) [16] and Vector of Locally Aggregated Descrip-

tors (VLAD) [17], are the most common methods for image classification and retrieval. Nowadays,

Convnets are used to replace the previously hand-tuned feature extraction stage, where intermedi-

ate or higher layer activations of pre-trained Convnets models are used as features. For instance,

Feng et al. [18] use Convnets as feature extractor so that it can learn more discriminative visual

vocabularies from the geotagging images. Their resultant method achieves better performance

than BoVW for geographical image classification. Gong et al. [19] extract Convnets activations at

multiple scale levels, then perform orderless VLAD pooling of these activations at each level sep-

arately and concatenate them as new image representation. The resultant representation is more

robust for image classification and retrieval. Ng et al. [20] propose an approach for extracting

4

Convnets features from different layers of the networks, and encode features into a single vector

for each image using VLAD encoding. Their work also demonstrates that intermediate layers with

finer scales produce better results for image retrieval than the last layer. Mohedano et al. [21] pro-

pose a simple image instance retrieval approach based on encoding the convolutional features of

Convnets using the BOW encoding. Cao et al. [22] build an effective BoW model using ConvNets

features.

2.2.2 Feature Fusion for Action Recogntion

As for video-based action recognition, early works focus on high-dimensional encodings of

hand-crafted local spatio-temporal features. For example, Laptev et al. [23] propose an algorithm

to detect sparse spatio-temporal interest points, which are then described using Histogram of Ori-

ented Gradients (HOG) [24] and Histogram of Optical Flow (HOF). Finally, the features are then

pooled over several spatio-temporal grids to encode into the BOW representation and combined

with an SVM classifier. Nowadays, those hand-crafted local spatio-temporal features are replaced

by deep convolutional features. Diba et al. [25] propose a bilinear model, which pools the ac-

tivations of the last convolutional layers of pre-trained networks. Qiu et al. [26] propose a new

quantization method and achieve a comparable result to the state-of-the-art model. Girdhar et al.

propose a learnable spatio-temporal feature aggregation layer to learn a new video representation

in an end-to-end way, where the feature aggregation layer is the variation of VLAD. Lan et al.

[27] propose to train the deep convolutional networks on local inputs and treat the trained model

as a local feature extractor, then aggregate the local deep features as video-level representation to

classify videos in a second stage.

5

3. METHODOLOGY

Different from end-to-end models, our framework consists of two stages. We show an overview

of the framework in Figure 3.1. In the first stage, different Convnets models, e.g. C3D [5], Res3D

[8, 6], are trained on large labeled video datasets, Kinetics. These trained models are used as

feature extractors to produce features for unseen datasets such as UCF-101 and HMDB-51. Then

the features extracted from different models are aggregated together to produce more robust video

representation. In the second stage, we learn a linear classifier that maps the video representation

to the label.

 As shown in Figure 3.1, there are several design choices for our framework: (1) Which layer of

Figure 3.1: Overview of the Proposed Framework

the ConvNets should the features be extracted from? (2) What is the best feature fusion method?

(3) What classifier to use in the second stage? The answers to these questions are crucial to our

framework. Also, we could empirically find the answers by running control experiments. So in the

following subsections, we describe the methodologies from the experimental perspective.

3.1 Exploring Layer Activation

There are two principles of extracting the layer activations. First, the dimension of the layer

activation should not be too large. Because the layer activation will be used to train the classifier

6

later, it is very difficult to train a classifier if the feature dimension of the sample is too large.

Second, previous work has proved that the feature learned by the low layer is local. We are more

interested in global features, so we test with middle or high layer activation in our experiments.

We list the shape of layer activations of different 3D ConvNets models in Figure 3.2. Given the

speed-accuracy tradeoff, we test with layers after the last convolutional layer for C3D, and layers

after the third convolutional layer for ResNet-18 and ResNext-101.

Figure 3.2: Shape of Layer Activations of Different 3D ConvNets Models

3.2 Exploring Feature Fusion

These are some straightforward feature fusion methods: element-wise addition and concatena-

tion. Also, some more complex feature fusion methods are widely used in image classification and

retrievals, such as Bag of words (BoW), Vector of Locally Aggregated Descriptors (VLAD) and

Fisher Vectors (FV). So we test all of them to find the best one.

3.3 Exploring Classifier

Since the video representation is acquired through the aggregation of deep features, we assume

that some non-deep classifier is enough in the second stage. So we only examine some non-deep

classifiers, such as SVM, logistic regression (LR) and multinomial logistic regression (MLR), etc.

7

4. EXPERIMENTS

In Chapter 3, we describe several design choices of our framework, we empirically find the

answers by running control experiments in this section.

4.1 Datasets

We evaluate our framework on three trimmed video classification benchmarks: Kinetics [28],

UCF-101 [29] and HMDB-51 [30]. The large-scale Kinetics dataset is mainly used to train 3D

ConvNets. The middle-size UCF-101 and HMDB-51 datasets are used to conduct the control

experiments after the 3D ConvNets are trained. For a fair comparison, we follow the common

evaluation scheme, that is, we run the experiments on three training/testing splits and report average

accuracy over the three splits.

4.1.1 UCF-101

The UCF-101 [29] dataset consists of realistic action videos, collected from YouTube. It con-

tains 101 action classes and 13320 video clips.

4.1.2 HMDB-51

The HMDB-51 [30] dataset is collected from various sources, mostly from movies. The dataset

contains 6849 clips divided into 51 action categories, each containing a minimum of 101 clips.

4.1.3 Kinetics

Kinetics [28] dataset is a huge scope, top-notch dataset of URL connects to roughly 650,000

video cuts that spread 400 human activity classes, including human-object interactions such as

playing instruments, as well as human-human interactions such as shaking hands and embracing.

Every video is transiently cut and keeps going around 10 seconds. The quantity of training, vali-

dation, and testing sets are around 240000, 20000, 40000, separately.

8

4.2 What Architectures

In our framework, we only consider 3D ConvNets. To the best of our knowledge, C3D [5],

Res3D [6, 8] and I3D [7] are the three most common reported 3D ConvNets for action recogntion

task. For fair comparison, we also run experiments based on the three architectures.

4.2.1 Architectures Detail

4.2.1.1 C3D

C3D [5] is the 3D version of VggNet [31]. Table 4.1 lists the architecture details of C3D. We

train the model on Kinetics dataset following the guidance of [5].

Table 4.1: C3D Architecture

layer name output size C3D
conv_1 16× 112× 112 3× 3× 3, 64, stride 1× 1× 1
maxpool 16× 56× 56 1× 2× 2 stride 1× 2× 2
conv2_x 16× 56× 56 3× 3× 3, 128
maxpool 8× 28× 28 2× 2× 2 stride 2× 2× 2

conv3_x 8× 28× 28

[
3× 3× 3, 256
3× 3× 3, 256

]
maxpool 4× 14× 14 2× 2× 2 stride 2× 2× 2

conv4_x 4× 14× 14

[
3× 3× 3, 512
3× 3× 3, 512

]
maxpool 2× 7× 7 2× 2× 2 stride 2× 2× 2

conv5_x 2× 7× 7

[
3× 3× 3, 512
3× 3× 3, 512

]
maxpool 1× 4× 4 2× 2× 2 stride 2× 2× 2

4.2.1.2 Res3D

Res3D [6, 8] is the 3D version of ResNet/ResNext [32, 33]. Table 4.2 lists the architecture

details of Res3D. In our experiments, we use two variations of ResNet: ResNet-18 and ResNext-

101. We train the model on Kinetics dataset following the guidance of [33], but the accuracies is

9

slightly inferior to that reported in the paper.

Table 4.2: Res3D Architecture

layer name output size ResNet-18 ResNext-101
conv_1 16× 56× 56 7× 7× 7, 64, stride 1× 2× 2
maxpool 8× 28× 28 3× 3× 3 stride 2× 2× 2

conv2_x 8× 28× 28

[
3× 3× 3, 64
3× 3× 3, 64

]
× 2

[
3× 3× 3, 128
3× 3× 3, 128

]
× 3

conv3_x 4× 14× 14

[
3× 3× 3, 128
3× 3× 3, 128

]
× 2

[
3× 3× 3, 256
3× 3× 3, 256

]
× 4

conv4_x 2× 7× 7

[
3× 3× 3, 256
3× 3× 3, 256

]
× 2

[
3× 3× 3, 512
3× 3× 3, 512

]
× 23

conv5_x 1× 4× 4

[
3× 3× 3, 512
3× 3× 3, 512

]
× 2

[
3× 3× 3, 1024
3× 3× 3, 1024

]
× 3

- 1× 1× 1 average pool, 101-d fc, softmax

4.2.1.3 I3D

I3D [7] is the 3D version of GoogleNet [34]. Figure 4.1 shows the architecture details of I3D.

We train the model on Kinetics dataset following the guidance of [7], but the accuracies is inferior

to that reported in the paper.

4.2.2 Fine-tuned Accuracies on UCF-101 and HMBD-51

3D ConvNets trained on small datasets, such as UCF-101 and HMDB-51, proved to do not

achieve high accuracy in previous work [8, 7], whereas those trained on big datasets, such as

Kinetics, work well. So in our experiments, all the 3D ConvNets are trained on Kinetics 2, and

then fine-tuned on UCF-101 and HMDB-51 as a baseline. Table 4.3 lists the top-1 accuracies of

the fine-tuned models on UCF-101 and HMDB-51.
1reprinted from [7]
2some pre-trained model are provided by authors of the papers

10

Figure 4.1: I3D Architecture1

Table 4.3: Fine-tuned Top-1 Accuracies on UCF-101 and HMDB-51

Model UCF-101 HMDB-51
C3D 76.74 49.74
I3D 86.53 68.30

ResNet-18 84.06 54.12
ResNext-101-16f 90.14 64.05

ResNext-101-64f 3 94.00 68.18

4.3 Which Layer

After training, the layer activations of 3D ConvNets could be used as generic video fea-

tures/descriptors. Previous works [5, 6] utilized high convolution layer or fully-connected layer

activation. In our experiment, we examine the effects of different layers activation of C3D, ResNet-

18, and ResNext-101 on the UCF-101 dataset. More specifically, a video is split into several con-

secutive 16 frame long clips, and these clips are passed to 3D Convnets to extract layer activations.

These clip layer activation of the same video are averaged to form the fixed-length video feature.

Finally, the video feature is treated as input to linear SVM to classify the video. We list the accura-

cies of different layer activation as video descriptor in Table 4.4, Table 4.5 and Table 4.6. Here, we

can see that the high convolutional/pool layer activations are better than low convolutional layer

11

activations in terms of accuracy. Also, the higher layer activations generally have smaller feature

dimensions, which make it make suitable for real applications. So considering the speed-accuracy

tradeoff, we use the last pool layer activations as features in later experiments.

Table 4.4: Linear SVM Accuracies of C3D on UCF-101 and HMDB-51

Layer activation UCF-101 HMDB-51 Length
pool_5 78.98 48.89 8192
fc_6 77.50 48.82 4096
fc_7 74.07 46.14 4096

Table 4.5: Linear SVM Accuracies of ResNet-18 on UCF-101 and HMDB-51

Layer activation UCF-101 HMDB-51 Length
conv4_x 80.31 49.80 25088
conv5_x 84.91 57.39 8192
avg_pool 83.98 56.99 512

Table 4.6: Linear SVM Accuracies of ResNext-101 on UCF-101 and HMDB-51

Layer activation UCF-101 HMDB-51 Length
conv4_x 88.55 60.46 100352
conv5_x 88.92 61.18 32768
avg_pool 88.16 61.37 2048

avg_pool(f64) 91.12 64.70 2048

12

4.4 Feature Fusion

In this section, we explore various feature fusion/encoding methods for the deep features

learned by ConvNets. Specifically, we use the Kinetics trained models to produce features for

the unseen videos of the UCF-101 and HMDB-51 datasets and produce the new fused feature us-

ing the feature fusion methods. We finally utilize the new fused feature to train a multi-class Linear

SVM classifier for the classes of UCF-101 and HMDB-51 (using their training data) and evaluate

on their test sets.

4.4.1 Feature Concatenation

Figure 4.2: Feature Concatenation

Feature concatenation is one of the most straightforward feature fusion methods. In our ex-

periments, as shown in Figure 4.2, we firstly extract the video feature of every single model, then

concatenate the video features of different models to form the new video representation. Finally,

we input the new video representation to a multi-class linear SVM for training models. For a

fair comparison, we first list accuracies of the single model without feature fusion on UCF-101

and HMDB-51 datasets in Table 4.7. Table 4.8 lists the feature concatenation accuracies of two

different models on UCF-101 and HMDB-51 datasets. Table 4.9 lists the feature concatenation ac-

curacies of three or more different models on UCF-101 and HMDB-51 datasets. As shown in the

table, C3D gets the lowest accuracy (77.50/48.82). But it (92.68/67.19) is superior to all other two

models concatenation when combined with ResNet-101f64, which shows the features learned by

13

different 3D ConvNets are complementary to each other. Notably, the four models concatenation

achieves the best accuracy, which surpasses any single model by a large margin.

Table 4.7: Accuracies of Single Model on UCF-101 and HMDB-51

Models UCF-101 HMDB-51 Length
C3D 77.50 48.82 4096
I3D 81.21 55.03 4096

ResNet-18 83.98 56.99 512
ResNext-101 88.16 61.37 2048

ResNext-101f64 91.12 64.70 2048

Table 4.8: Feature Concatenation Accuracies of Two Models on UCF-101 and HMDB-51

models UCF-101 HMDB-51 Length
models trained on 16-frame clips

C3D+ResNet-18 87.58 59.67 4096+512
C3D+ResNext-101 90.88 62.16 4096+2048

ResNet-18+ResNext-101 89.14 61.50 512+2048
models trained on 64-frame clip

I3D+ResNext-101f64 92.15 55.23 4096+2048
models trained on 16-frame or 64-frame clips

C3D+I3D 84.51 58.69 4096+4096
C3D+ResNext-101f64 92.68 67.19 4096+2048

ResNext-101+I3D 90.56 63.53 4096+2048
ResNext-101+ResNext-101f64 92.10 66.60 2048+2048

ResNet-18+I3D 86.84 63.59 512+4096
ResNet-18+ResNext-101f64 91.59 66.73 512+2048

4.4.2 Feature Element-wise Addition

Feature element-wise addition, similar to feature concatenation, is one of the most common

feature fusion methods. But different from feature concatenation, feature addition requires that the

14

Table 4.9: Feature Concatenation Accuracies of Multiple Models on UCF-101 and HMDB-51

Models UCF-101 HMDB-51 Length
C3D+ResNet-18+ResNext-101 90.88 63.40 4096+512+2048

C3D+ResNext-101+ResNext-101f64 93.28 67.71 4096+2048+2048
C3D+I3D+ResNext-101+ResNext-101f64 95.27 67.91 4096+7168+2048+204

Figure 4.3: Feature Addition

Table 4.10: Feature Addition Accuracies on UCF-101 and HMDB-51

Models UCF-101 HMDB-51 Length
C3D 77.50 48.82 4096
I3D 81.21 55.03 4096

C3D+I3D 84.27 58.24 4096
ResNext-101 88.16 61.37 2048

ResNext-101f64 91.12 64.70 2048
ResNext-101+ResNext-101f64 92.10 66.27 2048

feature to be added must have the same dimension as shown in Figure 4.3. Table 4.10 lists the

feature element-wise addition accuracies on UCF-101 and HMDB-51 dataset.

4.4.3 BOVW

Bag of Visual Words (BOVW) is commonly used in the image classification task. Its concept

is adapted from bag of words (BOW) of information retrieval and natural language processing. In

our experiments, as shown in Figure 4.4, we use the clip feature of videos to construct vocabularies

and represent each video as a frequency histogram of features that are in the video. Different 3D

15

ConvNets are treated as different clip feature extractors. Table 4.11 lists the BOVW accuracies on

UCF-101 and HMDB-51 datasets. Here, we can see that the BOVW of two models achieves the

best accuracy.

Figure 4.4: BOVW

Table 4.11: BOVW Accuracies on UCF-101 and HMDB-51

Models UCF-101 HMDB-51
ResNext-101 82.81 51.50

ResNext-101f64 83.58 55.49
ResNext-101+ResNext-101f64 85.38 55.82

4.4.4 VLAD

Vector of Locally Aggregated Descriptors (VLAD) [35] is an extension of BOVW. Different

from BOVW which counts the number of local features associated with each feature cluster in a

codebook, VLAD accumulates the residual of these local features corresponding to its assigned

cluster. Table 4.12 lists the VLAD accuracies on UCF-101 and HMDB-51 datasets. As shown in

the table, the VLAD of two models achieves the best accuracy.

16

Table 4.12: VLAD Accuracies on UCF-101 and HMDB-51

Models UCF-101 HMDB-51
ResNext-101 88.42 59.02

ResNext-101f64 90.91 61.96
ResNext-101+ResNext-101f64 90.99 65.95

4.4.5 FV

Fisher Vector (FV) [36, 16] is also an extension of BOVW. Different from BOVW, FV learns

vocabulary with a Gaussian Mixture Model (GMM). More specifically, FV uses the likelihood a

feature belongs to certain gaussian to measure the expectation of the distance between features

and each Gaussian distribution, which is formalized as a feature vector. Then it concatenates the

resulting vector for each Gaussian distribution into one large feature vector. Table 4.13 lists the FV

accuracies on UCF-101 and HMDB-51 datasets. The FV of two models achieves the best accuracy.

Table 4.13: FV Accuracies on UCF-101 and HMDB-51

Models UCF-101 HMDB-51
ResNext-101 85.28 59.02

ResNext-101f64 90.38 62.68
ResNext-101+ResNext-101f64 91.67 64.12

4.5 Classifier

4.5.1 Linear SVM

All results reported in previous sections use multi-class linear SVM as a classifier. Regard

to linear SVM implementation, we use the SVM module of the scikit-learn library. For a fair

comparison, we use all default parameter settings in all experiments. We also tried to tune the

17

parameter to find better parameter settings and report the results of ResNext-101 (64f) in Tabel

4.14.

Table 4.14: Accuracies of Different Linear SVM Parameter Setting on UCF-101 and HMDB-51

C (Regularization) UCF-101 HMDB-51
0.1 88.42 63.07
1 91.12 64.71

10 90.83 61.31
100 90.11 59.87

4.5.2 Logistic Regression (LR)

LR is a statistical model that uses a logistic function to represent a binary dependent variable. In

our experiments, we use the multi-class version implemented by the scikit-learn library. We report

the accuracies of logistic regression in Table 4.15. As shown in the table, linear SVM consistently

performs better than LR.

Table 4.15: Accuracies of LR and Linear SVM on UCF-101

Model Linear SVM LR Length
C3D+ResNet-18 87.58 86.52 4096+512

C3D+ResNext-101 90.88 89.80 4096+2048
ResNet-18+ResNext-101 89.14 87.97 512+2048

I3D+ResNext-101f64 92.15 92.97 4096+2048

4.5.3 Multilayer Perceptron (MLP)

Multilayer Perception (MLP) is another common classifier. In our experiments, we also tried

replacing linear SVM with MLP and reported the accuracies in Table 4.17. As shown in the table,

18

linear SVM consistently performs better than MLP. Table 4.16 lists the architecture details of MLP.

We use categorical cross-entropy loss function and RMSprop optimizer to train the MLP model.

Table 4.16: MLP Architecture Details for UCF-101

Layer type Output shape Param
Dense (None, 1024) 6292480

Dropout (None, 1024) 0
Dense (None, 101) 103525

Table 4.17: Accuracies of MLP and Linear SVM on UCF-101

Model Linear SVM MLP Length
C3D+ResNet-18 87.58 78.44 4096+512

C3D+ResNext-101 90.88 84.33 4096+2048
ResNet-18+ResNext-101 89.14 86.72 512+2048

I3D+ResNext-101f64 92.15 91.39 4096+2048

4.6 Comparison

4.6.1 Model Ensemble

To prove the effectiveness of our framework, we report the accuracies comparison with the

model ensemble on UCF-101 and HMDB-51 in Table 4.18. Voting is a widely-used ensemble

method. So the accuracies report in the table uses the voting ensemble methods. More specifically,

every single model predicts each test video and the final output prediction is the one that receives

more than half of the votes (Majority Voting). As shown in the table, our method consistently

performs much better than the model ensemble method.

19

Table 4.18: Accuracies Comparison with Model Ensemble on UCF-101 and HMDB-51

Models Ours Model ensemble
C3D+ResNet-18+ResNext-101 90.88/63.40 80.49/55.62

C3D+ResNext-101+ResNext-101f64 93.28/67.71 90.90/64.90
C3D+I3D+ResNext-101+ResNext-101f64 95.27/67.91 90.61/65.29

4.6.2 State-of-the-art

We show the comparison of our results with state-of-the-art methods in Table 4.19. As shown

in the table, our method achieve higher accuracies than TDD [37], TSN [10] and P3D [38]. The

two-stream I3D [7] achieve the best accuracies, which utilizes computationally expensive two-

stream I3D architectures pre-trained on Kinetics. Our method achieves comparable accuracies to

two-stream I3D on UCF-101 without using optical flow information.

Table 4.19: Top-1 Accuracies on UCF-101 and HMDB-51 Compared with the State-of-the-art
Methods

Method UCF-101 HMDB-51
Two-stream CNN [9] 88.0 59.4

TDD [37] 90.3 63.2
TSN [10] 94.2 69.4
P3D [38] 88.6 –

Two-stream I3D [7] 98.0 80.7
Ours 95.3 67.9

4.7 Discussion

We have presented the results of different feature fusion/encoding methods above. To verify

why some feature fusion methods are better, we visualize the new fused feature using t-SNE [39].

More specifically, we extract and fuse features for each video, and those features are then projected

to 2-dimensional space using t-SNE. We visualize the feature embedding of different models on

20

UCF-101 dataset below: C3D (77.50), I3D (81.21), ResNet-18 (83.98), ResNext-101 (88.16).

As we can see from Figure 4.5, the better model has more separated feature embedding, which

proves the model has learned more discriminative features. We also visualize the new fused feature

embedding of ResNext-101s in Figure 4.6. The new fused feature embedding (c) is more separated

than the raw feature (a and b). Notably, the new fused feature embedding of fine-tuned models (d)

is incredibly separated.

Figure 4.5: Feature Embedding of Models: (a). C3D (b). I3D (c). ResNet-18 (d). ResNext-101

21

Figure 4.6: Feature Embedding of ResNets: (a). ResNext-101 (b). ResNext-101f64 (c). Feature
Addition of ResNext-101 and ResNext-101f64 (d). Feature Addition of Fine-tuned ResNext-101
and ResNext-101f64

22

5. CONCLUSION

In this study, we explore various feature fusion/encoding of deep features learned by 3D Con-

vNets, such as C3D, I3D, and Res3D (ResNet and ResNext), for the video-based action recognition

task. We empirically make good design choices for our framework by running lots of control ex-

periments: (1). High layer activations are better than low layer activation. We mostly use the

last convolutional layer or pooling layer activations as features. (2) Most feature fusion/encoding

methods could boost the robustness and discrimination of features. Simple feature fusion methods,

such as concatenation and addition, are better than complicated ones for deep features learned by

3D ConvNets. (3). Linear SVM is a better classifier than Logistic Regression and MLP in our case.

By visualizing the feature embedding, we demonstrate that the new fused feature is more discrim-

inative and robust. Finally, we compare our method with the model ensemble method (Majority

Voting) to prove the effectiveness of our new framework. The new fused features with a linear

classifier can outperform or approach current best methods on different video action recognition

benchmarks. The improvement of recognition accuracy also proves that the new fused features are

better spatio-temporal features for the video-based action recognition task.

23

REFERENCES

[1] A. Klaser, M. Marszałek, and C. Schmid, “A spatio-temporal descriptor based on 3d-

gradients,” 2008.

[2] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor and its application to

action recognition,” in Proceedings of the 15th ACM international conference on Multimedia,

pp. 357–360, ACM, 2007.

[3] G. Willems, T. Tuytelaars, and L. Van Gool, “An efficient dense and scale-invariant spatio-

temporal interest point detector,” in European conference on computer vision, pp. 650–663,

Springer, 2008.

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and

T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings of

the 22nd ACM international conference on Multimedia, pp. 675–678, ACM, 2014.

[5] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal fea-

tures with 3d convolutional networks,” in Proceedings of the IEEE international conference

on computer vision, pp. 4489–4497, 2015.

[6] D. Tran, J. Ray, Z. Shou, S.-F. Chang, and M. Paluri, “Convnet architecture search for spa-

tiotemporal feature learning,” arXiv preprint arXiv:1708.05038, 2017.

[7] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the kinetics

dataset,” in proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 6299–6308, 2017.

[8] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace the history of 2d

cnns and imagenet?,” in Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, pp. 6546–6555, 2018.

24

[9] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action recognition

in videos,” in Advances in neural information processing systems, pp. 568–576, 2014.

[10] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, “Temporal segment

networks: Towards good practices for deep action recognition,” in European conference on

computer vision, pp. 20–36, Springer, 2016.

[11] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-scale

video classification with convolutional neural networks,” in Proceedings of the IEEE confer-

ence on Computer Vision and Pattern Recognition, pp. 1725–1732, 2014.

[12] J. Lin, C. Gan, and S. Han, “Tsm: Temporal shift module for efficient video understanding,”

in Proceedings of the IEEE International Conference on Computer Vision, pp. 7083–7093,

2019.

[13] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action

recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 1,

pp. 221–231, 2012.

[14] D. G. Lowe et al., “Object recognition from local scale-invariant features.,” in iccv, vol. 99,

pp. 1150–1157, 1999.

[15] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to object matching in

videos,” in null, p. 1470, IEEE, 2003.

[16] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for image categorization,”

in 2007 IEEE conference on computer vision and pattern recognition, pp. 1–8, IEEE, 2007.

[17] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a compact

image representation,” in CVPR 2010-23rd IEEE Conference on Computer Vision & Pattern

Recognition, pp. 3304–3311, IEEE Computer Society, 2010.

[18] J. Feng, Y. Liu, and L. Wu, “Bag of visual words model with deep spatial features for ge-

ographical scene classification,” Computational intelligence and neuroscience, vol. 2017,

2017.

25

[19] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale orderless pooling of deep con-

volutional activation features,” in European conference on computer vision, pp. 392–407,

Springer, 2014.

[20] J. Yue-Hei Ng, F. Yang, and L. S. Davis, “Exploiting local features from deep networks

for image retrieval,” in Proceedings of the IEEE conference on computer vision and pattern

recognition workshops, pp. 53–61, 2015.

[21] E. Mohedano, K. McGuinness, N. E. O’Connor, A. Salvador, F. Marques, and X. Giro-i

Nieto, “Bags of local convolutional features for scalable instance search,” in Proceedings of

the 2016 ACM on International Conference on Multimedia Retrieval, pp. 327–331, ACM,

2016.

[22] J. Cao, Z. Huang, and H. T. Shen, “Local deep descriptors in bag-of-words for image re-

trieval,” in Proceedings of the on Thematic Workshops of ACM Multimedia 2017, pp. 52–58,

ACM, 2017.

[23] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld, “Learning realistic human actions

from movies,” 2008.

[24] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” 2005.

[25] A. Diba, V. Sharma, and L. Van Gool, “Deep temporal linear encoding networks,” in Proceed-

ings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 2329–2338,

2017.

[26] Z. Qiu, T. Yao, and T. Mei, “Deep quantization: Encoding convolutional activations with

deep generative model,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 6759–6768, 2017.

[27] Z. Lan, Y. Zhu, A. G. Hauptmann, and S. Newsam, “Deep local video feature for action recog-

nition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pp. 1–7, 2017.

26

[28] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola,

T. Green, T. Back, P. Natsev, et al., “The kinetics human action video dataset,” arXiv preprint

arXiv:1705.06950, 2017.

[29] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions classes

from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[30] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a large video database for

human motion recognition,” in 2011 International Conference on Computer Vision, pp. 2556–

2563, IEEE, 2011.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

[33] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for

deep neural networks,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 1492–1500, 2017.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 1–9, 2015.

[35] R. Arandjelovic and A. Zisserman, “All about vlad,” in Proceedings of the IEEE conference

on Computer Vision and Pattern Recognition, pp. 1578–1585, 2013.

[36] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classification with the fisher

vector: Theory and practice,” International journal of computer vision, vol. 105, no. 3,

pp. 222–245, 2013.

27

[37] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-pooled deep-

convolutional descriptors,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 4305–4314, 2015.

[38] Z. Qiu, T. Yao, and T. Mei, “Learning spatio-temporal representation with pseudo-3d resid-

ual networks,” in proceedings of the IEEE International Conference on Computer Vision,

pp. 5533–5541, 2017.

[39] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning

research, vol. 9, no. Nov, pp. 2579–2605, 2008.

28

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Related Work
	Convolutional Neural Networks for Video-based Action Recognition
	Models Based on 2D ConvNets
	Models Based on 3D ConvNets

	Feature Fusion
	Feature Fusion for Other Tasks
	Feature Fusion for Action Recogntion

	Methodology
	Exploring Layer Activation
	Exploring Feature Fusion
	Exploring Classifier

	Experiments
	Datasets
	UCF-101
	HMDB-51
	Kinetics

	What Architectures
	Architectures Detail
	C3D
	Res3D
	I3D

	Fine-tuned Accuracies on UCF-101 and HMBD-51

	Which Layer
	Feature Fusion
	Feature Concatenation
	Feature Element-wise Addition
	BOVW
	VLAD
	FV

	Classifier
	Linear SVM
	Logistic Regression (LR)
	Multilayer Perceptron (MLP)

	Comparison
	Model Ensemble
	State-of-the-art

	Discussion

	Conclusion
	REFERENCES

