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ABSTRACT 

The success of  unconventional shale applications in the oil and gas industry often 

require the understanding of pore pressure and stress/strain changes due to both injection 

and production.  In order to evaluate the complex phenomena associated with both pore 

pressure and stress change, coupled fluid flow and geomechanical models are necessary, 

especially in unconventional applications that involved fluid extraction and injection. In 

this dissertation, we utilize coupled fluid flow and geomechanical simulation to reveal the 

mechanisms of induced seismicity and to understand the characteristics of hydraulic 

fractures under different completion designs.  

First, we perform a site specific study of the mechanics of induced seismicity in 

the Azle area, North Texas, using a coupled 3-D fluid flow and poroelastic simulation 

model. The results show no fluid movement or pressure increase in the crystalline 

basement, although there is plastic strain accumulation for the weaker elements along the 

fault in the basement. The accumulation of plastic strain change appears to be caused by 

the unbalanced loading on different sides of the fault due to the differential in fluid 

injection and production. Even though the low-permeability faults in the basement are not 

in pressure communication with the Ellenburger formation, the poroelastic stresses 

transmitted to the basement can trigger seismicity without elevated pore pressure. 

Second, we extend the first part of the dissertation to include a detailed 

discontinuous fault to model the natural behavior of fault slips. We develop the workflow 

to couple the finite difference and finite element simulations to explicitly model fault slips 
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and dissipated energy in the Azle site. The results suggest that the slips can occur at the 

location where there is no pressure change. The radiated energy from observed seismic 

events is about 20% of the dissipated energy calculated from the simulation results. 

 Third, we investigate the impact of cluster spacing on hydraulic fracture design 

using the Eagle Ford field data. We first identify the fracture geometry by history matching 

the field injection treatment pressure. Then, we history match the well production data 

using the rapid Fast Marching Method based flow simulation. The results suggest that 

most fractures are planar in Eagle Ford because of the high stress anisotropy. The well 

with tighter cluster spacing tends to develop shorter fractures. The well with tighter cluster 

spacing has better SRV permeability in the Eagle Ford, leading to better drainage volume 

and production performance. The tighter cluster spacing completion is more favorable in 

the Eagle Ford formation because there is minimal fracture interference.   
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1. INTRODUCTION

1.1. Introduction 

The success of  unconventional shale development in the oil and gas industry often 

require the understanding of pore pressure and stress/strain changes due to both injection 

and production.  In order to evaluate the complex phenomena associated with both pore 

pressure and stress change, coupled fluid flow and geomechanical models are necessary, 

especially in unconventional applications that involved fluid extraction and injection. 

Common geomechanics related issues include hydraulic fracture propagation, fracture 

closure, subsidence, reservoir compaction drive, casing failure, wellbore stability, sand 

production, fault activation, and pore collapse failure. These issues may be difficult to be 

explained and analyzed using traditional reservoir fluid flow simulation packages. Many 

of the issues can be better examined with the help of the coupled fluid flow and 

geomechanical modeling. This dissertation utilizes the coupled fluid flow and 

geomechanical modeling to address two important challenges in unconventional 

development: the risks of induced seismicity due to excessive fluid extraction and 

injection in unconventional plays and the impact of cluster spacing on unconventional well 

fracture propagation and production performance.  

1.2. Induced Seismicity 

Induced seismicity typically refers to low magnitude earthquakes as a result of 

human activity that alters the pore pressure and stress/strain response in the subsurface. 

Human activities may include: waste water disposal, carbon capture and storage (carbon 
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dioxide CO2 sequestration), geothermal energy development, hydraulic fracturing, mining, 

and hydrocarbon extraction and storage. Different human activities can exist at different 

phase of the unconventional development. Prior to production, multistage hydraulic 

fracturing is required to stimulate these low permeability reservoirs. During production, 

large amount of hydrocarbon is extracted from the reservoir. Meanwhile, significant 

amount of water is produced along with the hydrocarbon and much of it is injected back 

to the subsurface using salt water disposal wells.  

Ellsworth (2013) mentioned that induced seismicity can be driven by either direct 

increase of pore pressure along the faults or indirect change in stresses on fault. Figure 1-1 

below illustrates different mechanisms of inducing earthquakes. On the left portion of the 

figure, fluid injection near a fault in a high permeability region increases the pore pressure 

and lowers the effective stress, leading to fault activation. On the right portion of the figure, 

an indirect loading due to fluid injection and extraction above the fault causes near fault 

stress change. The stress alteration could lead to the fault slip without direct hydrologic 

connection.  

The nature of human induced seismicity often involves pore pressure and 

stress/strain variations in a reservoir system with underlying faults, undergoing fluid 

injection and extraction. A coupled fluid flow and geomechanical simulation is necessary 

to fully capture the pressure and stress/strain response and to evaluate the risks of 

seismicity. This dissertation focuses on evaluating the driving mechanisms of seismicity 

in the Azle area, north Texas. The previous study by Hornbach et al. (2015) used pore 

pressure simulation to model the pressure change after production and injection activities 
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in the Azle area. They conclude that the pore pressure increase from wastewater disposal 

can be the likely cause for a series of earthquakes along a fault system near Azle, Texas. 

However, the coupled flow and poroelastic effects as well as the seismic moment 

magnitude were not included in the study and the majority of seismicity events were 

recorded in the basement underneath the simulation zone. To evaluate the driving 

mechanism of seismicity in the Azle area, we build a coupled fluid flow and poroelastic 

techniques model to study the pressure and stress/strain variations for the overburden, 

injection and production zone, and the basement. The models are calibrated using injection 

pressure and seismicity events and the calibrated models are used to evaluate the causal 

factors of Azle seismicity.  

Figure 1-1. Schematic diagram of induced seismicity mechanisms reprinted from 
Ellsworth (2013). 
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1.3. Impact of Cluster Spacing 

Multi-stage hydraulic fracturing is an integral part of unconventional shale 

reservoir development. A major outstanding challenge in designing a multi-stage 

hydraulic fracturing job is to determine the optimal cluster spacing. The current trend of 

optimal fracturing design has been reducing cluster spacing while increasing fluid and 

proppant usage (Evans et al., 2018; Pioneer Natural Resources Company, 2018). Many 

simulation results also suggest an improved well performance using a tighter cluster 

spacing design (Cipolla et al., 2009; Lolon et al., 2009; Zhu et al., 2017). However, 

researchers also found that if the cluster spacing is below some threshold values, the well 

productivity may decrease (Miller et al., 2011). Therefore, it is crucial to understand the 

characteristics of fracture networks under different cluster spacing designs and their 

impacts on production performance. 

The traditional reservoir fluid flow simulation packages oftentimes have to assume 

that the fracture geometry is known. In most cases, in the absence of explicit fracture 

propagation modeling, the fractures are assumed to be planar. Meanwhile, the completion 

pressure and rate data are not included in the calibration process. To better understand the 

characteristic of hydraulic fractures, it is important to include coupled flow and 

geomechanical modeling to simulate complex hydraulic fracture network propagation 

with multiple propagation branches.  

In this dissertation, we utilize Unconventional Fracture Model (UFM) to model the 

impact of cluster spacing on multi-fractured horizontal well performance using a unique 

set of Eagle Ford well data. We explicitly model hydraulic fracture propagation and 
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production for wells using different cluster spacing designs and calibrate the models with 

both completion and production data. The calibrated models are used to evaluate the 

characteristics of fracture geometry and production performance under different cluster 

spacing designs.  
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2. NEW INSIGHTS INTO THE MECHANISMS OF SEISMICITY IN THE AZLE

AREA, NORTH TEXAS* 

2.1. Overview 

We have performed a site specific study of the mechanics of induced seismicity in 

the Azle area, North Texas, using a coupled 3-D fluid flow and poroelastic simulation 

model, extending from the overburden into the crystalline basement. The distinguishing 

feature of this study is that we account for the combined impact of water disposal injection 

and gas and water production on the pore pressure and stress distribution in this area. The 

model is calibrated using observed injection well head pressures and the location, timing, 

and magnitude of seismic events. We utilized a stochastic multi-objective optimization 

approach to obtain estimated ranges of fluid flow and poroelastic parameters, calibrated 

to the pressure, rate and seismic event data. Mechanisms for induced seismicity were 

examined using these calibrated models. The calibrated models show no fluid movement 

or pressure increase in the crystalline basement, although there is plastic strain 

accumulation for the weaker elements along the fault in the basement. The accumulation 

of strain change appears to be caused by the unbalanced loading on different sides of the 

fault due to the differential in fluid injection and production. Previous studies ignored the 

produced gas volume, which is almost an order of magnitude larger than the produced 

water volume under reservoir conditions, and which significantly impacts the pore 

pressure in the sedimentary formations and the stress distribution in the basement. A 

* Part of this section is reprinted with permission from “New insights into the mechanisms of seismicity in
the Azle area, North Texas” by Chen, R., X. Xue, J. Park, A. Datta-Gupta, and M. J. King,. (2020), paper
published in Geophysics, 85, EN1-EN15. Copyright [2020] Society of Exploration Geophysicists.
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quantitative analysis shows that the poroelastic stress changes dominate in the basement 

with no noticeable change in pore pressure. Even though the low-permeability faults in 

the basement are not in pressure communication with the Ellenburger formation, the 

poroelastic stresses transmitted to the basement can trigger seismicity without elevated 

pore pressure. 

2.2. Introduction 

The number of seismic events in the Fort Worth Basin has been increasing since 

2007. Near the Azle area, a cluster of seismic events were recorded from late 2013 to early 

2014, including two widely felt Mw3.6 events. No significant earthquake had been felt 

prior to 2007 based on more than 40 years of seismic monitoring (Frohlich et al., 2011; 

Frohlich et al., 2016). There have been several studies to investigate the cause of the more 

recent seismic events and many of them conclude that the injection of wastewater into the 

subsurface near faults and reactivation of the faults are the primary contributing factors 

(Frohlich et al., 2011; Gono et al., 2015; Hornbach et al., 2015; Frohlich et al., 2016; 

Schwab et al., 2017). Gono et al. (2015) investigated the relationship between disposal 

water injection and seismic events in the Fort Worth Basin. Using single phase fluid flow 

simulation and historical earthquake data, they found that there is a spatial and temporal 

correlation between pore pressure increase and seismic events. Hornbach et al. (2015) 

considered several factors that could lead to seismic events near Azle such as lake-level 

variations, natural tectonic stress and stress changes associated with oil and gas production 

activities. Hornbach et al. (2015) constructed single phase flow models for the Ellenburger 
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formation, a shallowly dipping dolomitic limestone that overlies the crystalline basement 

and has been used for disposal of large volumes of saline oilfield wastewater (Sullivan et 

al., 2006; Pollastro et al., 2007b). They observed that with different parameter 

combinations excess pore pressure at the fault could range from 0.01MPa to 0.14MPa. 

The predicted pore pressure increases at the fault were found to be sufficient to trigger 

earthquakes when faults are critically stressed (Reasenberg and Simpson, 1992; Stein, 

1999).  

Previous studies at Azle did not solve the coupled fluid flow and geomechanical 

(poroelastic stress) equations to explicitly model the plastic deformation and the resulting 

implications for fault activation and induced seismicity, though there have been previous 

efforts to include geomechanical effects to analyze the potential linkage between fluid 

injection and seismic events. Fan et al. (2016) investigated a Mw4.8 earthquake near 

Timpson, east Texas, relating the event to geomechanical response of the adjacent fault 

after nearby wastewater injection. They conducted coupled fluid flow and poroelastic 

simulations to compute stress and pore pressure along the fault associated with the 

wastewater injection. Based on the Mohr-Coulomb failure criteria, they assessed fault slip 

with the estimated in-situ stress magnitude and direction, fault strike and dip, and 

permeability of the layer where fluid was injected. Chang and Yoon (2018) performed 3-

D fully coupled poroelastic modeling of induced seismicity along multiple faults to predict 

magnitude, rate, and location of potential seismic events. They concluded that the use of 

3-D coupled poroelastic modeling helps reduce the uncertainty in the seismic hazard

prediction by considering hydraulic and mechanical interaction between faults and 
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bounding formations. Zhai and Shirzaei (2018) used a basin-wide fluid flow and 

geomechanical model to investigate seismic hazards in the Barnett shale, Texas. They 

related the Coulomb failure stress change with seismicity rate and used it as a 

representation of seismic hazard. They concluded that the contribution of poroelastic 

stresses to Coulomb failure stress change is around 10% of that of pore pressure. However, 

the model was not calibrated with historical pressure data and the stress change from gas 

production was not considered.  The physical mechanisms behind induced seismicity on 

faults have also been investigated and discussed in several previous studies (Segall, 1989; 

Segall et al., 1994; Ellsworth, 2013; Segall and Lu, 2015; Chang and Segall, 2016a; Chang 

and Segall, 2016b).  

In this study, we focus on the seismicity in the Azle area in North Texas, which 

experienced a series of seismic events from November 2013 through April 2014. We 

utilize coupled fluid flow and geomechanical simulation to numerically solve for the 3-D 

stress/strain field and the pore pressure distribution. In our study, for the first time we 

account for the reservoir withdrawal created by the gas production. We also calibrate the 

simulation model to observed injection well pressure data as well as the magnitude and 

timing of the seismic events, to constrain the range of uncertain fluid flow and poroelastic 

parameters. We utilize a stochastic multi-objective model calibration which yields an 

ensemble of models that are consistent with the historical data. All of these models seem 

to indicate that unbalanced loading on different sides of the critically stressed fault in the 

crystalline basement resulted in accumulation of plastic strain change, leading to stress 

changes capable of causing the observed earthquakes in the area.  
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2.3. Methodology 

2.3.1. Overall Workflow 

In this study, we focus on the seismicity in the Azle area in North Texas. The 

events occurred along two NE-striking, steeply dipping conjugate faults. To assess 

potential linkage between the seismic events and the nearby oil and gas field operations, 

we built a 3-D coupled fluid flow and geomechanical model consisting of the overburden, 

the Marble Falls, the Barnett, the Ellenburger and the crystalline basement. In the 

simulation model, we include two injection wells in the Ellenburger and 70 production 

wells in the Barnett, a shale gas producing formation. A stochastic multi-objective 

optimization is used to generate an ensemble of models calibrated with injection well 

pressure data and seismic events (see Appendix A for details). The calibrated models are 

then used to analyze the mechanisms of induced seismicity at the Azle site. The overall 

workflow is illustrated in Figure 2-1. 
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Figure 2-1. Workflow for Azle seismicity study using coupled flow and 
geomechanical modeling. 

2.3.2. Model Data Sources 

In order to understand the mechanism of seismicity in the Azle area, our study 

integrates a wide range of data to build and calibrate the 3-D coupled fluid flow and 

geomechanical model. The geologic model is built following the previous studies 

(Hornbach et al., 2015; Hennings et al., 2016). The faults were constructed using fault 

interpretations of Hornbach et al. (2015) and the public records from the Railroad 

Commission of Texas (Railroad Commission of Texas, 2015a, b). The dynamic injection 

data of rate and pressure of the two SWD disposal wells is available through the H-10 
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form in the Railroad Commission of Texas website (Railroad Commission of Texas, 

2018a). As in the previous study of Hornbach et al. (2015), our study includes only two 

SWD disposal wells. This is justified because an estimate of the average pressure change 

in the Azle area due to the two local injectors is found to be almost an order of magnitude 

higher than the basin scale average pressure change from all the injectors based on a 

flowing material balance calculation (Dake, 1983; Hornbach et al., 2016).  

The dynamic production data consists of gas and water production from 70 

producing wells. The gas production data is available in the Railroad Commission of 

Texas website (Railroad Commission of Texas, 2018b). The water production data is 

obtained from the “DrillingInfo” data base (Drillinginfo, 2018). Seismic event data 

including the event time, magnitude, hypocenter location, as well as the location 

uncertainty are obtained from SMU catalogs (Hornbach et al., 2015; DeShon et al., 2018). 

2.3.3. Geologic Model: Background 

The Azle geologic and fault model used in this study follows the previous study 

by Hornbach et al. (2015) with additional details from the Texas Bureau of Economic 

Geology (Hennings et al., 2016). We have extended the geologic model to include the 

overburden and the crystalline basement where most of the earthquakes have occurred. 

The structural model consists of two steeply dipping conjugate faults around which most 

of the earthquakes were recorded.  

Faults in the region were constrained by an integrating analysis of stratigraphic 

mapping, structural interpretation, earthquake hypocenters (Hornbach et al., 2015), and 
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review of public records from the Railroad Commission of Texas (Railroad Commission 

of Texas 2015). Our model includes two NE-striking normal faults in the model: Azle and 

Azle Antithetic. These faults are part of the Llano Fault System in the Fort Worth Basin 

as described by Ewing (1991). The lateral extent, strike, and general dip of the faults was 

constrained by 3-D interpretation and earthquake hypocenter location. 

The Newark East Gas Field (NEGF) is the major gas-producing field in the Fort 

Worth Basin. Hydraulic fracturing is routinely applied to produce gas from the low 

permeability Barnett shale. Some hydraulically fractured wells can unintentionally 

produce significant volumes of water from the underlying high permeability Ellenburger 

formation (Hornbach et al., 2016). Produced water is reinjected through disposal wells 

completed in the Ellenburger formation. Low permeability Precambrian granite basement 

underlies the Ellenburger and the majority of the Azle earthquake events have occurred in 

this unit. The seismic events (Mw≥2) are shown in Figure 2-2. Out of 32 seismic events, 

25 events are adjacent to the faults, lying within the hypocenter uncertainty range provided 

by the SMU seismic catalog (Hornbach et al., 2015; DeShon et al., 2018). Additional 

seismic stations deployed by SMU were intended to reduce the location uncertainty after 

the early 27 earthquakes near the Azle were reported by the United States Geological 

Survey (USGS). A schematic of the 3-D geologic model is shown in Figure 2-2. In this 

layer-cake Azle model, fluid flow and poroelastic properties are considered uniform 

within each zone except at the fault cells.  
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Figure 2-2. (a) Azle area fault location and the locations of the earthquake events 
(Mw≥2). (b) A schematic of the Azle geologic model. 

Table 2.1 shows the fluid flow and poroelastic properties for each zone used in the 

base case model along with their corresponding sources. Figure 2-3 is the Mohr circle 

showing the stress state (Lund Snee and Zoback, 2016) and the Mohr-Coulomb failure 

envelope of the fault for the base case at a depth of 3048 m, which is the top of the 

basement. As noted by Lund Snee and Zoback (2016) and Quinones et al. (2018), the fault 

is nearly critically stressed.  
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Table 2.1. Fluid flow and poroelastic properties for the Azle base case model. 
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Figure 2-3. Initial stress state and the Mohr-Coulomb failure envelope for the base 
case Azle model. 

2.3.4. Forward Simulation 

A coupled fluid flow and geomechnical simulation model is used to compute the 

evolution of the 3D pressure and stress/strain fields in the Azle area during the period of 

fluid injection and production. The Azle simulation model consists of uniform grid cells 

(160m x 160m) areally, and varying cell dimensions vertically, with higher resolution in 

the Barnett and Ellenburger formations. The model has one layer for the overburden and 

one layer for the Marble Falls to provide geomechanical loading to the reservoir, five 

layers for the Barnett, which is the producing zone, five layers for the Ellenburger, which 

is the injection zone, and ten layers for the crystalline basement where the majority of the 

earthquake events occurred. The overburden has the lowest vertical resolution of 2000m 

and the Barnett has the highest vertical resolution of 23m. There are two tilted faults 

intersecting just below the Ellenburger and the major fault extends down to the bottom of 

the basement Figure 2-2. The fault cells have distinct fluid flow and poroelastic properties 
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from the adjacent formations Table 2.1. The base case simulation model consists of 70 

producers completed in the Barnett and two SWD disposal wells completed in the 

Ellenburger (Figure 2-4) with a total simulation study period of 12 years. Hydraulic 

fractures create high permeability regions near the producers, so the permeability near the 

producers is enhanced to honor the historical production rates at the wells. The injected 

wastewater volume and gas production are available in the Railroad Commission of Texas 

website (Railroad Commission of Texas, 2018b). The water production data is from the 

“DrillingInfo” data base (Drillinginfo, 2018). The water production data were cross-

checked with the data provided by the operator (XTO) for selected wells to ensure 

accuracy. 
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Figure 2-4. Injection/production well locations and seismic event locations with 
respect to the Azle faults.  

Our forward model utilizes coupled fluid flow and poroelastic simulation to 

numerically solve the continuity and the momentum balance equations in a sequential 

manner. The continuity equation solves for the formation pore pressure and is given by: 

   1 p Df v f f f
f

d k
g Q

dt
   


 

           
, (2.1) 
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where   is the porosity, f  is the density of fluid, v  is the volumetric strain, k is the 

permeability, f is the fluid viscosity, g is the gravitational constant, D  is the depth from 

a reference pressure datum and fQ  is the mass source term.  

The momentum balance equation solves for formation displacement and can be 

expressed as: 

    1
: p

2

T          
C u u I B , (2.2) 

where C is the tangential stiffness tensor, u is the displacement,  is the Boit’s number,

p is pressure, I is the identity matrix, and B is the body force.  

The momentum balance equation is solved using a finite-element scheme while 

the continuity equation is solved using a finite-difference scheme. The two solutions are 

sequentially coupled (Computer Modeling Group, 2016). We obtain the 3-D stress/strain 

and pressure distribution for the entire simulation domain at each simulation time step.  

The forward simulation model is calibrated to match the observed wellhead 

pressure data and the magnitude and timing of the seismic events to reduce the range of 

the uncertain parameters. The simulated well bottom hole pressure (BHP) can be directly 

obtained from flow simulation and compared with the calculated BHP obtained from the 

measured wellhead pressure. This requires converting the well head pressure data to the 

bottom hole conditions, a routine calculations in petroleum reservoir engineering (Govier 

and Aziz, 1972; Beggs and Brill, 1973; Chen, 1979; Taitel et al., 1982; Bradley, 1987; 

Ansari et al., 1990; Economides et al., 2013). The details of this calculation are in 

Appendix B. 
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The poroelastic simulation calculation checks the failure status for each cell in the 

3-D model at every time step and accumulates the plastic strain after the rock failure. The

plastic strain/deformation is the strain after a cell reaches Mohr-Coulomb failure and is 

calculated using the generalized plasticity model based on Mohr-Coulomb yield surface 

(Vermeer and De Borst, 1984; Computer Modeling Group, 2016). All of the accumulated 

plastic strains are then used to calculate the seismic moment magnitude (Sanz et al., 2015; 

Castiñeira et al., 2016; Lele et al., 2016; Park et al., 2016). The computed seismic moment 

magnitude is compared with the observed seismic event magnitudes during model 

calibration. The seismic moment tensor is used to model the seismicity induced by fault 

activation. The seismic moment tensor is represented by the following equation (Aki and 

Richards, 2002) 

pq pqrs rsV
M c e dV  , (2.3) 

where the repeated indices indicate summation. Here, pqrsc  is the stiffness tensor or the 

elastic modulus tensor consisting of Young’s modulus and Poisson’s ratio. Note that 

during model calibration, we adjust the Young’s modulus and Poisson’s ratio. Thus, the 

elastic tensor dynamically evolves. rse  is the change of plastic strain by deformation,

which is accumulated after a cell reaches the Mohr-Coulomb failure criteria. The L2 norm 

of the seismic moment tensor is used to obtain the intensity of the seismic moment, M0 

(Dahm and Krüger, 2014) 

2
0 pq L

M M . (2.4) 

The seismic moment magnitude is calculated as follows (Kanamori, 1977) 
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The observed wellhead pressure and seismic data are matched by adjusting fluid flow and 

poroelastic properties using a multi-objective stochastic optimization method. The details 

of the model calibration are discussed in the next section and also in Appendix A.  

A distinctive feature in the current model compared to previous studies is the 

inclusion of gas production. Previous studies incorporated the pressure reduction due to 

brine production from the Ellenburger formation. However, hydrocarbon gas production 

can contribute to greater reservoir depletion compared to the brine production. The brine 

is produced from the Ellenburger formation because the hydraulic fractures propagate 

through the Barnett into the Ellenburger formation (Hornbach et al., 2015). Especially in 

regions where the Viola shale is absent below the Barnett shale, as in the Azle area, 

(Pollastro et al., 2007b; Loucks et al., 2009), the producers in the Barnett are in direct 

pressure communication with the Ellenburger formation. Our results show that ignoring 

the gas production leads to significant under-estimation of the reservoir fluid withdrawal 

and reservoir pressure depletion. We convert the surface gas production to bottom hole 

conditions and use the equivalent reservoir fluid withdrawal rates. The details are 

presented in Appendix C. Because the pore pressure is primarily impacted by the total 

reservoir fluid withdrawal of all phases, the equivalent reservoir fluid withdrawal rates 

help ensure that the material balance is preserved in reservoir conditions for both single-

phase and multi-phase flow simulations. Figure 2-5 shows the water production, gas 

production and the total fluid withdrawal under reservoir conditions. Note that the 
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reservoir volume of the produced gas is almost one order of magnitude larger than the 

produced water volume. 

It is worth pointing out that the coupled simulation model used here only requires 

specification of the total fluid withdrawal rate while the individual layer allocations are 

computed based on the layer productivity indices (Computer Modeling Group, 2016). 

Figure 2-5. Produced fluid volumes used in this study (at reservoir conditions). 

2.3.5. Model Calibration and Multi-objective Optimization 

In this study, we minimize two objective functions for model calibration: injector 

bottom hole pressure (BHP) misfit and seismic moment magnitude misfit at their 

respective locations and times.  

The injector BHP misfit is calculated using the following equation: 

2
, ,1 1

log( ( ) )
Nwell Ntime obs cal

BHP i j i jj i
obj BHP BHP

 
   , (2.6) 

where Nwell is the total number of history matching wells, Ntime is the total number of 

data points for each well, superscript obs indicates observed data, and superscript cal 

indicates calculated value from the simulation.  
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The seismic moment magnitude misfit calculation is the difference between 

seismic moment magnitude based on the plastic strain after rock failure, and the observed 

seismic event magnitude at the time and location of the observed seismic event. It is given 

by: 

2

1
( )

Nevent obs cal
magnitude i ii

obj Mw Mw


  , (2.7) 

where Nevent is the total number of seismic events being matched, Mwi
obs is the observed 

seismic moment magnitude of event i, and Mwi
cal is the calculated seismic moment 

magnitude from the simulation within a search radius of seismic event i. Here the search 

radius is given by the average earthquake epicenter uncertainty in the SMU catalog 

(Hornbach et al., 2015; DeShon et al., 2018). For the events reported in the SMU catalog, 

the mean epicenter major axes length is 570±362 m, minor axes length is 310±228 m and 

the depth uncertainty is 346±171m. At each simulation time step, we check every grid cell 

within the search radius of each observed seismic event to determine whether it meets the 

Mohr-Coulomb failure criteria. Once a cell fails, plastic strain accumulation starts for this 

cell. The cell with the minimum misfit within the search radius of each observed seismic 

event is used for the objective function calculation. We assume that all the plastic strain 

within the cell may release seismically as one single event which may not always be the 

case (Bourouis and Bernard, 2007; Guglielmi et al., 2015; McGarr and Barbour, 2017). 

We use this approach as there is no specific data available for the Azle area to distinguish 

between seismic and aseismic deformation. 

To calibrate the forward model using available injector pressure and seismic 

moment data, we use a Pareto-based stochastic multi-objective history matching algorithm. 



24 

Instead of aggregating different misfit functions, the Pareto-based approach ranks the 

models based on the concept of dominance (see Appendix A). For a minimization problem 

involving n objectives defined by objective functions fn, solution a dominates solution b 

if all objectives represented by a are not greater than those of b, and at least one objective 

of a is strictly smaller than the corresponding objective of b. The genetic algorithm 

(Goldberg, 1989) is used for updating the uncertain parameters during the calibration. The 

genetic algorithm (GA) is one of the evolutionary methods for solving optimization 

problems. It imitates biological principles of evolution: natural selection and survival of 

the fittest. The evolution starts from a population of randomly generated models with 

uncertain parameters sampled from a pre-specified uniform distribution defined by their 

respective minimum and maximum values. In each generation, the fitness of every model 

(the model rank in our study) in the population is evaluated. Multiple models are 

stochastically selected from the current population (based on their fitness), and modified 

(recombined and possibly randomly mutated) to form a new population. The new 

population is then used in the next iteration of the algorithm. Commonly, the algorithm 

terminates when either the maximum number of generations is reached or a satisfactory 

fitness level is attained (Yin et al. 2011). Thus, multiple plausible parameter combinations 

are generated with low rank populations that match the historical data within a specified 

tolerance. 
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2.4. Results: Parameter Sensitivity Analysis and History Matching 

2.4.1. Parameter Sensitivity Analysis 

The sensitivity analysis involves forward simulations by changing one parameter 

at a time to identify the key parameters affecting the objective functions for bottom hole 

pressure and seismic moment magnitude (Yin et al., 2011). The parameters with strong 

influence on the objective functions are kept for model calibration and the less sensitive 

parameters are discarded.  

Figure 2-6 shows a “tornado plot” illustrating the sensitivity of injector BHP misfit 

to various parameters. As expected, reservoir fluid flow parameters such as permeability 

and permeability anisotropy (vertical/horizontal) are the most influential parameters on 

the list. BHP misfit is also impacted by the Ellenburger poroelastic properties such as the 

Young’s modulus and Poisson’s ratio because of their effects on the Ellenburger formation 

compressibility. The importance of the vertical permeability indicates the impact of 

pressure communication between the disposal and production intervals. The 

permeabilities of the Barnett shale and the crystalline basement are very low for the base 

case. Thus, the injector BHP is not significantly impacted by their permeability, porosity 

and poroelastic properties. From this sensitivity analysis, permeability anisotropy, 

Ellenburger permeability, Young’s modulus, and Poisson’s ratio are identified as the 

primary tuning parameters for BHP calibration.  

Figure 2-7 shows a “tornado plot” illustrating the sensitivity of the misfit between 

the simulated seismic moment magnitude and the observed earthquake magnitude. 

Minimum effective horizontal stress and fault cohesion are the most sensitive parameters 
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here because these determine how close the faults are to a critically stressed state based 

on the Mohr-Coulomb criteria. The fault Poisson’s ratio is important because it is used to 

construct the stiffness matrix for the moment tensor calculations. The basement 

permeability is in the nano-Darcy range and there is very little pressure communication 

from above. Hence, the seismic moment magnitude misfit is mostly affected by its 

poroelastic parameters. Both the pressure and seismic moment magnitude misfits show 

very little sensitivity to the fault permeability.  

Figure 2-6. Sensitivity of injector bottom hole pressure misfit to various fluid flow 
and poroelastic parameters and their ranges (in parenthesis).  
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Figure 2-7. Sensitivity of the seismic moment magnitude misfit to various fluid flow 
and poroelastic parameters and their ranges (in parenthesis). 

2.4.2. Multi-objective History Matching and Parameter Uncertainty  

Table 2.2 shows the poroelastic and fluid flow parameters with strong influence 

on objective functions based on the sensitivity analysis and their corresponding ranges. 

These parameters will be calibrated to match the observed injector bottom hole pressure 

and the seismic moment magnitude. Most poroelastic properties have relatively high 

uncertainty ranges because of limited data or prior knowledge. This makes the model 

calibration imperative for reducing the parameter ranges. Figure 2-8a shows the results of 

the multi-objective history matching using the genetic algorithm. As expected, the 

generation 1 population members are scattered to explore the parameter space while the 
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generation 5 population members move towards the bottom left indicating misfit reduction 

for both BHP and seismic moment magnitude. We also see the formation of a ‘Pareto front’ 

between BHP and seismic magnitude misfits with multiple generations displaying the 

trade-off between the misfit functions. Figure 2-8b shows the quality of seismic moment 

magnitude match; the rank 1 matches are moving toward the unit slope line although with 

some degree of scatter. However, several of the rank 1 matches show lower calculated 

seismic moment magnitude compared to the observed seismic magnitude especially for 

the (Mw≥3) seismic events. This is consistent with the previous findings that the faults are 

initially in a critically stressed state and already in a state of plasticity (Zoback et al., 2012; 

Hornbach et al., 2015; Lund Snee and Zoback, 2016; Quinones et al., 2018; Zhai and 

Shirzaei, 2018). We did not account for any initial strain accumulation in the faults and 

this might introduce biases in the model calibration. However, the methodology of multi-

objective optimization allows us to explore what information may be discerned from the 

data, despite these short-comings. Further, the use of coupled fluid flow and 

geomechanical calculation, including Mohr-Coulomb failure, allows us to explore these 

coupled mechanisms. Figure 2-8c and 2.9d show the BHP history matching result for 

Injector 1 and Injector 2, respectively. All the rank 1 models show good agreement with 

historical pressure data and a decreasing pressure trend over the injection period. The 

intent of the model calibration is to be as quantitative as possible and the ensemble based 

approach provides error bounds in the parameter estimates. However, the goal here is not 

to match the observed pressure data exactly given the uncertainty in the field data. Instead, 
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the calibration results in an ensemble of models that match both the seismic and pressure 

data adequately.  

Table 2.2. History matching parameters and ranges. 
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Figure 2-8. Multi-objective history matching results. (a) Trade-off between seismic 
moment magnitude and BHP misfit. (b) Seismic moment magnitude match: initial 
versus generation 5 rank 1. (c) Injector 1 bottom hole pressure match: initial versus 
generation 5 rank 1. (d) Injector 2 bottom hole pressure match: initial versus 
generation 5 rank 1. 
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Figure 2-9. History match parameter ranges (a) prior distribution (b) posterior 
distribution. PVE: Ellenburger pore volume multiplier, PERME: Ellenburger 
permeability, COHEF: fault cohesion, YOUNGE: Ellenburger Young’s modulus, 
YOUNGB: basement Young’s modulus, YOUNGF: fault Young’s modulus, POISSE: 
Ellenburger Poisson’s ratio, POISSF: fault Poisson’s ratio, Shmin: minimum 
effective horizontal stress gradient, Kv/Kh: vertical permeability over horizontal 
permeability anisotropy ratio. 

Figure 2-9 shows the parameter ranges before and after history matching. The 

Ellenburger permeability (#2 PERME), fault cohesion (#3 COHEF), and fault Poisson’s 

ratio (#8 POISSF) show significant reduction in range after history matching. We also 

observe a reduction in uncertainty range for several other poroelastic parameters. It is 

important to note that both fault cohesion (#3 COHEF) and minimum horizontal stress (#9 

Shmin) move towards lower values, again suggesting that the fault is initially in a critically 

stressed state (Zoback et al., 2012; Hornbach et al., 2015; Lund Snee and Zoback, 2016; 

Quinones et al., 2018; Zhai and Shirzaei, 2018). A critically stressed fault can also explain 

why the matches in Figure 2-8b show lower simulated seismic moment magnitude 
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compared to the observed seismic event magnitude. If sufficient quantitative data were 

available to account for the initial plasticity of the fault elements, the matches to the 

observed seismic events most likely would have improved in Figure 2-8b.  

Classification tree analysis is used to evaluate the relative parameter importance 

(Mishra and Datta-Gupta, 2017). The matched models are split into four groups or clusters 

based on the misfit function quartiles. Cluster 1 has the lowest misfit and cluster 4 has the 

highest misfit value. This means that solutions falling into cluster 1 most closely reproduce 

the observed history, whereas solutions falling into cluster 4 significantly deviate from 

history.  

Figure 2-10 shows the binary classification tree for the seismic moment magnitude 

misfit and the injector BHP misfit. The binary classification tree is generated by 

recursively finding the variable splits that best separate the output into groups where a 

single category dominates (Breiman et al., 1984). The algorithm searches through the 

variables one by one to find the optimal split within each variable and the splits are 

compared among all variables to find the best split for that fork. The process is repeated 

until all groups contain a single category. Thus, the more dominant variables are generally 

the splits closer to the tree root. In this study, the minimum horizontal stress (Shmin) and 

fault Poisson’s ratio (POISSF) dominate the seismic moment magnitude misfit. BHP 

misfit is most heavily impacted by the Ellenburger permeability (PERME).  

It is important to note that if the effective minimum horizontal stress is higher than 

a threshold value (4.53 kPa/m), all simulation results will significantly deviate from the 

seismic event history because of insufficient accumulation of seismic moment magnitude. 
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The minimum horizontal stress gradient is readily obtained from minifrac tests and plays 

a critical role in evaluating the potential for induced seismicity.  

Figure 2-10. Parameter importance analysis using classification tree. (a) Seismic 
moment magnitude misfit and (b) injector pressure misfit. Shmin: minimum 
effective horizontal stress gradient, POISSF: fault Poisson’s ratio, PERME: 
Ellenburger permeability, YOUNGB: basement Young’s modulus, COHEF: fault 
cohesion, Kv/Kh: vertical permeability over horizontal permeability anisotropy ratio. 
Cluster 1 refers to the best model and cluster 4 refers to the worst model based on 
the data misfit. For example, the important parameter ranges for the best fit models 
can be understood by following the trail of cluster 1.  
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2.5. Results and Discussion 

Wastewater disposal has been associated with induced seismicity and much of the 

literature has focused on reservoir pore pressure increase after injection as the primary 

mechanism for the seismicity (Zhang et al., 2013; Gono et al., 2015; Hornbach et al., 2015; 

Fan et al., 2016; Zhai and Shirzaei, 2018). However, our results indicate that pore pressure 

increase is not present in the Azle basement fault, and may not be the primary reason for 

the seismic events at Azle. Previous studies have suggested that the Barnett and 

Ellenburger formations are not isolated, and so will experience pressure communication 

between injection and production intervals (Pollastro et al., 2007b; Loucks et al., 2009; 

Hornbach et al., 2015). Our well head pressure calibration study reinforces this conclusion. 

However, when we account for both fluid injection and extraction, including the reservoir 

withdrawal from gas production, we see differential pressure increase and decrease within 

the Ellenburger on opposite sides of the Azle fault. However, we see no increase in pore 

pressure in the Azle fault within the basement. 

To further examine the impact of gas production on the reservoir pressure, we 

performed coupled simulation including only water production. Figure 2-11 compares the 

injector BHP using the total fluid extraction rate (gas and water) as in this study versus 

water production rate only as in the previous study (Hornbach et al., 2015). Using only 

the water production rate, the simulated BHP deviates significantly from the observed 

pressure history.  

The visualization of streamlines (fluid flow paths) from one of the calibrated 

models is shown in Figure 2-12a. Clearly, fluid flow occurs mostly in the Barnett and 
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Ellenburger formations and there is no fluid movement into the basement. Thus, there is 

no pore pressure change within the basement. However, even with the lack of fluid 

movement in the basement, Figure 2-12c and 2.13d show that there is noticeable plastic 

strain accumulation for the weaker elements along the fault. For this specific case shown 

in Figure 2-12, the fault Young’s modulus and Poisson’s ratio are 6.86e7 kPa and 0.16, 

respectively. 

Figure 2-11. Comparison of injector BHP for the equivalent bottom hole total fluid 
rate (gas+water) vs water rate only for (a) Injector 1 and (b) Injector 2.  
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Figure 2-12. (a) Streamline flow visualization showing no fluid flow within the 
crystalline basement; (b) Seismic event locations; (c) The matched case plastic strain 
change JJ component and (d) The matched case plastic strain change JK component 
on January 1, 2014. The blue surface shows the top of the crystalline basement and 
the grey surface shows the primary Azle fault. 

Plastic strain change accumulation is caused by the unbalanced loading on 

different sides of the fault as shown in Figure 2-13. On the northwest side of the main 

fault, there are two injectors and 20 producers active at various times during the simulation 

study. The overall net reservoir volume (cumulative injection volume minus cumulative 

production volume) at the end of the simulation history is approximately 3.5x106 m3
. On 

the other side of the fault, there are 50 active producers at various times during the 

simulation study, but no injectors. The overall net reservoir volume is approximately -

8.1x106 m3. Even though the reservoir is not completely compartmentalized by the fault 
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(Hornbach et al., 2015), the difference of net reservoir volume change on different sides 

of the fault creates an unbalanced loading on the basement. The unbalanced loading is 

evident from the pressure contours displayed on the streamlines in Figure 2-13c. As 

suggested in previous studies (McGarr et al., 2002; Ellsworth, 2013; National Research 

Council, 2013), change in loading conditions on faults due to fluid extraction and/or 

injection and associated stress changes can result in earthquakes, even with no direct 

hydrologic connection. This unbalanced loading can accumulate sufficient plastic strain 

on the weaker elements of the basement, resulting in stress fields capable of causing the 

observed earthquakes in the area. The mechanism of unbalanced loading is sensitive to the 

local imbalance of pressure within the Ellenburger across the Azle fault. The pressure 

imbalance is controlled by the local injection and production.  

Figure 2-13. A schematic diagram for the unbalanced loading on different sides of 
the Azle fault; (b) The difference of net cumulative volume (injection volume – 
production volume) at different sides of the fault; (c) Streamline flow visualization 
showing pressure imbalance at different sides of the fault. 

To further validate our observations, we perform a quantitative analysis to examine 

the relative contributions of pore pressure change and poroelastic stress change on the 

Coulomb failure stress change, Δ  (Chang and Segall, 2016a) 
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   Δ Δ Δp Δ Δp Δ Δs s             , (2.8) 

where Δ s  is the change in the shear stress, Δ  is the change in normal stress calculated 

on the fault, Δp is the change in pore pressure and   is the friction coefficient. 

Figure 2-14 shows the change in pore pressure versus the change in poroelastic 

stress towards the top of the crystalline basement (3.3 km depth). The poroelastic stress 

changes clearly dominate in the basement with no noticeable change in pore pressure. 

Even though the low-permeability faults in the basement are not in pressure 

communication with the Ellenburger formation, the poroelastic stresses transmitted to the 

basement can trigger seismicity without elevated pore pressure in the basement fault.  

Figure 2-14. Pore pressure change and poroelastic stress change over time at the top 
of the crystalline basement (at 3.3 km depth). Please note the difference in scales in 
figure. 
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2.6. Conclusions 

Geomechanical poroelastic interactions have significant impact on the seismicity 

observed in the Azle area, North Texas. Unbalanced loading on different sides of the main 

Azle fault appear to generate an accumulation of plastic strain change in the basement, 

most likely leading to stresses capable of causing the observed earthquakes in the area. 

Unlike previous studies, our results indicate that the pore pressure does not increase within 

the basement fault, and that pore pressure increase may not be sufficient to explain the 

seismicity near the Azle area. 

An integrated evaluation of the gas and water production due to hydrocarbon 

recovery shows that the cumulative gas production is almost an order of magnitude larger 

than the water production, when corrected to reservoir volumes. The equivalent bottom 

hole fluid rate (combining reservoir withdrawal from both water and gas) used in this 

study suggests a reduction in Ellenburger pore pressure that is consistent with the observed 

well head pressure trends. We do not see fluid movement or a pressure increase in the 

crystalline basement, although there is plastic strain accumulation for the weaker elements 

along the fault in the basement. The accumulation of strain change is caused by the 

unbalanced loading on different sides of the fault. To the northwest of the main fault, there 

are two injectors and 20 producers, leading to an overall increase of net reservoir volume 

of approximately 3.5x106 m3. To the southeast of the fault, there are 50 producers and an 

overall net decrease of approximately 8.1x106 m3. Although the reservoir is not completely 

compartmentalized by the fault, this difference of net reservoir volume change on different 

sides of the fault creates an unbalanced loading to the basement. 
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A quantitative analysis shows that the poroelastic stress changes dominate in the 

basement with no noticeable change in pore pressure. Even though the low-permeability 

faults in the basement are not in pressure communication with the Ellenburger formation, 

the poroelastic stresses transmitted to the basement can trigger seismicity without elevated 

pore pressure. 



3. DETAILED FAULT MODELING AND IMPLICATIONS ON SEISMICITY

3.1. Overview 

To model the mechanisms, location and magnitude of seismic fault slips in 

response to fluid production and injection in the Azle area, we built a workflow to couple 

3-D finite difference and finite element simulations to evaluate the fault slips of the

critically stressed faults. The finite difference simulation is calibrated with the historical 

rate and pressure data of the nearby wells and the calibrated results are used to update the 

pressure field for the finite element simulation. The finite element simulation calculates 

the stress field and the fault displacement based on the imported pressure field from the 

finite difference simulation. One distinguishing feature of this study is the detailed fault 

modeling. The faults geometry is constrained by the regional high resolution seismic picks 

provided by the operator and the faults are modeled as discontinuous surfaces. Thus, the 

fault slips can be explicitly computed. Furthermore, we can evaluate the magnitude and 

location of the fault displacement and assess the fault dissipated energy. The simulation 

results suggest that the fault displacement can occur in the basement formation where there 

is no direct pressure communication with injection or production wells. The indirect 

poroelastic stress transfer seems to be the dominant cause for the fault activation in the 

basement. Performing pore pressure simulation by itself may not be sufficient to infer the 

fault slips and evaluate induced seismicity risks. The radiated energy from the observed 

seismic events is only 20% of the dissipated energy from the simulation, showing that not 

all energy is released seismically. This coupled workflow allows us to perform a 

     41



42 

systematic parameter sensitivity analysis on the location, timing, and magnitude of the 

fault slips and the evolvement of the dissipated energy for future use. 

3.2. Introduction 

Earthquakes in unusual locations have received considerable attention in the US 

due to the concern that human activities could cause damaging earthquakes. It has been 

understood that earthquakes can be induced by human activities which alter the pore 

pressure and stress/strain response in the subsurface. These activities include but not 

limited to impoundment of reservoirs, mining, hydrocarbon extraction, and injection of 

fluids into underground formations. In particular, the potential association between waste 

water disposal wells and earthquakes has become an important topic of discussion due to 

the relation of this activity with the development of tight shale reservoir by hydraulic 

fracturing.  

Induced and triggered earthquakes are controlled by how fluid pressure alters the 

in situ stress on faults in the subsurface. These stresses can be resolved using two different 

approaches: (1) a fluid-solid decoupled process where the normal stress on the fault is 

impacted by the changes in the fault zone pore pressure (e.g., Terzaghi effective stress law) 

or (2) a fluid-solid coupled process (e.g., Biot’s theory of linear poroelasticity). Pore 

pressure modeling studies show that the presence of critically stressed faults within the 

target injection formation or the basement is likely to be activated by injection related pore 

pressure increase (Zhang et al., 2013; Keranen et al., 2014; Gono et al., 2015; Hornbach 

et al., 2015). Many of the models neglect poroelastic stress changes associated with 
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injection and/or production, assuming that direct pore pressure changes are the 

determining factor for fault activation. However, indirect poroelastic stress/strain change 

may perturb faults without direct pore pressure change in the faults. Fluid injection or 

extraction can induce seismicity by altering the stress/strain field of adjacent formations 

due to poroelastic coupling (Segall, 1989; Segall and Lu, 2015; Chen et al., 2018; Chen et 

al., 2020). Specifically, Chen et al. (2020) suggests that the unbalanced loading due to the 

differential in fluid extraction and injection on different sides of the critically stressed fault 

appears to be the cause of observed seismicity in the Azle area. They models the faults as 

a set of fault cells with distinct flow and geomechanical properties and the seismic moment 

is calculated based on the deformation of the fault cells. One potential improvement is to 

include a more detailed fault modeling to incorporate the natural behavior of fault slips. 

In this study, we generate the fault model using the seismic picks provided by the operator. 

After that, we use the fault model to build the finite difference and finite element 

simulation models. The faults are described as discontinuous surfaces in the finite element 

simulation.  We develop the workflow to couple the two simulation models. The calibrated 

pressure field from the finite difference model is imported to the finite element model to 

explicitly simulate the fault displacement and the corresponding energy released.  

 

3.3. Methodology 

We develop a coupled fluid flow and geomechanical simulation workflow to 

model the pressure and stress/strain field near the critically stressed fault in the Azle area. 

The coupling workflow is under quasi-static assumption. Thus, inertial effects will not be 
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considered and dynamic fault modeling is out of the scope of this study. In this workflow, 

fluid flow and geomechanical equations are solved numerically using the finite difference 

(FD) and the finite element (FE) schemes, respectively and they interact with each other 

through a sequential coupling. Pore pressure obtained by the FD model (CMG) will be 

passed into the FE model (ABAQUS®). The FE model will provide detailed 

geomechanical output including 3D stress/strain field as well as the fault slips. After 

establishing the workflow, we can analyze the Azle fault slip behavior and the 

corresponding energy released and compare it with the observed seismicity events.  

Faults are modeled as discontinuous surfaces with interface elements. One of the 

advantages of describing faults as discontinuous surfaces is that displacement along the 

fault surfaces can be explicitly computed. Then, the seismic moment, 0M , can be 

calculated as:  

0 M GuS , (3.1) 

where G  is shear modulus, u  is average slip distance and S is the rupture area. 

3.4. Detailed Fault and Geologic Modeling 

To evaluate the fault slip behavior and its corresponding seismicity risks, the 

detailed fault simulation model is required. In this study, high resolution seismic fault 

picks are provided by the operator to build the detailed fault model. The raw seismic fault 

picks are shown in Figure 3-1. The seismic fault picks agree well with the seismic 

hypocenter locations interpreted by the Southern Methodist University seismic catalogs 

(Hornbach et al., 2015; DeShon et al., 2018).  
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Figure 3-1. (a) Raw seismic fault picks provided by the operator (blue for antithetic 
fault and green for main fault) and (b) raw seismic fault picks overlap with seismic 
event hypocenter locations. Blue dots are the antithetic fault and green dots are the 
main fault. Colored dots are the seismic hypocenters.  
 

 

To build simulation fault models, we first convert the seismic fault picks to the 

fault surfaces in Petrel. The initial fault surfaces can be very unsmooth with large curvature 

changes as they try to honor every single point from the seismic picks shown in Figure 

3-2a. This unsmooth surface can cause serious meshing and convergence issues, especially 

when the faults are modeled as discontinuous surfaces in the FE simulation.  Thus, we 

perform a series of surface smoothing and trimming to generate the smooth fault surfaces 

in Figure 3-2b. This smooth fault surfaces are used as the base geometry for the FD and 

the FE simulation faults.  
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Figure 3-2. (a) Raw seismic fault picks provided by the operator and (b) raw seismic 
fault picks overlap with seismic event hypocenter locations. Blue surface is the 
antithetic fault and green surface is the main fault.  
 

For the FD (CMG) model, we use the structural grid with zig-zag fault. For the 

ABAQUS model, we build the fault based on the real fault geometry. Thus, fault surface 

curvature change (strike and dip change) can be captured and modeled in the FE 

simulation. The difference in fault strike and dip represent the difference of initial stress 

state at different location of the fault surfaces. The fault strike and dip histograms are 

shown in Figure 3-3. The initial stress state and the slip tendency for the main fault are 

shown in Figure 3-4. The slip tendency is defined as the effective shear stress divided by 

the effective normal stress. Note that there is no cohesion for this FE simulation approach. 

In this study, the fault friction coefficient is 0.7 (Hennings et al., 2019). Thus, the fault 

region with the slip tendency closer to 0.7 is in a more critically stressed state than the 

region with the smaller slip tendency.  
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Figure 3-3. The strike (dip azimuth) and dip histogram for the main fault and the 
antithetic fault.  

 

 

Figure 3-4. (a) The initial stress state and the slip tendency for the main fault.  
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Figure 3-5 shows the main simulation fault in each simulation model. Note that we 

cannot directly generate mesh in ABAQUS using Petrel exported fault surfaces. An 

intermediate step from Petrel to SolidWorks is required to generate the mesh and the 

simulation fault model in ABAQUS.  

 
Figure 3-5. Simulation fault models in (a) the FD (CMG) simulation and in (b) the 
FE (ABAQUS) simulation.  

 

The seismic horizon picks are also provided by the operator as shown in Figure 

3-6a. The seismic horizon picks do not cover the entire simulation area and therefore 

extrapolation is required to get the horizons for the entire simulation region. The maximum 

depth difference of the seismic horizon picks is around 100 meter.  Thus, flat horizons 

using the average depth of the seismic horizon picks are used to build both CMG and 

ABAQUS models. Using flat horizons can significantly simplify and accelerate the mesh 

generation step in ABAQUS without sacrificing much accuracy. The geologic model is 
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shown in Figure 3-6b. The top of Marble Falls is at 1702m depth, the top of Barnett is at 

1801m depth, the top of Ellenburger is at 1890m depth, and the top of basement is at 

3007m depth. The bottom of the basement is at 8500m depth. This depth is almost 1000m 

deeper than the deepest recorded seismic event to avoid any boundary effect.  

 

Figure 3-6. (a) Top view of the seismic Ellenburger horizon picks (pick) and the 
simulation model boundary and (b) geologic model using flat horizons.  
 

3.5. CMG Simulation Model and Calibration 

The CMG model includes 70 producers and 2 injectors. The top view of the well 

and fault locations are shown in Figure 3-7. 28 out of the 70 producers are operated by 

XTO, where high resolution rate (gas and water) and well head pressure (THP) data are 

available for this study. The gas and water rate data for the rest of the producers are 

available in the Drillinginfo database (Drillinginfo, 2018). Injection rate and well head 

pressure data are both available through Railroad Commission of Texas (2018a). The field 

production history is shown in Figure 3-8.  
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Figure 3-7. Top view of the well and fault locations.  
 

 

Figure 3-8. Field production and injection history.  
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For the CMG simulation, all the wells are under the bottom-hole fluid rate 

constraints. The history matching misfit objective function is the sum of 3 individual 

objective functions: the injector BHP, XTO producers’ THP, and the cumulative gas 

production for each producer. The misfit function is given by:  

BHP BHP THP THP CumGas CumGasobj obj obj obj     , (3.2) 

where ω is the weight for each objective function.  

Since the injectors here inject only water, the injector BHP can be easily computed 

from THP. The injector BHP misfit is given by: 

2
, ,1 1

log( ( ) )
Nwell Ntime obs cal

BHP i j i jj i
obj BHP BHP

 
   , (3.3) 

where Nwell is the total number of injection wells, Ntime is the total number of data points 

for each well, superscript obs indicates observed data, and superscript cal indicates 

calculated value from the simulation.  

Because multi-phase (gas and water) flow occurs in the pipe. We use the 

commercial software Prosper® to build the wellbore model and import the wellbore model 

to CMG. Thus, the simulated THP is calculated during the simulation run. The XTO 

producer THP misfit is given by: 

2
, ,1 1

log( ( ) )
Nwell Ntime obs cal

THP i j i jj i
obj THP THP

 
   , (3.4) 

where Nwell is the total number of XTO production wells, Ntime is the total number of 

data points for each well.  

The producer cumulative gas production misfit is given by: 
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2
, ,1 1

log( ( ) )
Nwell Ntime obs cal

CumGas i j i jj i
obj CumGas CumGas

 
   , (3.5) 

where Nwell is the total number of production wells, Ntime is the total number of data 

points for each well. Note that we take log-transformation of all objective functions to 

prevent the overall objective function being dominated by any particular objective 

function with significantly higher misfit values.  

Before performing the history matching, we first run sensitivity analysis to identify 

the “heavy hitters” for the history matching objective function. The sensitivity tornado 

plot is shown in Figure 3-9. Fracture permeability has the largest impact on the history 

matching function because it influence the producer BHP and therefore producer THP. 

KvKh influences the amount of water production from the underlying Ellenburger 

formation. Barnett initial water saturation influences the production gas water ratio. 

Ellenburger permeability impacts the injector BHP. These parameters will be tuned during 

the history matching process to reduce the model misfit.  
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Figure 3-9. Sensitivity of history match misfit objective function to various reservoir 
parameters.  
 

 After identifying the parameters with high influence on the objective function, we 

perform history matching using CMG CMOST. CMG Designed Exploration and 

Controlled Evolution (DECE) optimizer is used to reduce history match objective function. 

It is an iterative optimization algorithm that include a designed exploration stage and then 

a controlled evolution stage. In the exploration stage, it explores the entire search space in 

a designed random manner. In the evolution stage, it improves solution quality using 

statistical analyses to reduce the possibility of poor solutions being picked again. 

Meanwhile, it checks rejected candidates from time to time to avoid the possibility of 

being trapped in local minimum.  

 The history result is shown in Figure 3-10. The base case history matching error is 

about 33%. The history matching error quickly decreases over the first 150 simulations 
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and stabilizes at around 23% for the rest of the simulation runs. We then check individual 

well response to make sure the simulated results match well with the observed data. Figure 

3-11 shows the simulated and observed BHP responses for two of the injectors. The 

optimal solution matches well with the historical data. It shows a higher simulated BHP 

than that of the base case. Figure 3-12 shows the simulated and observed cumulative gas 

production for four of the production wells. Again, the optimal solution matches well with 

the observed data, showing a lower simulated cumulative gas production than the base 

case estimate. Figure 3-13 shows the simulated and observed THP for two of the XTO 

wells. The THP misfit is reduced for the optimal model compared to the base case. 

However, we do not achieve the same quality of the match as the injector BHP and the 

cumulative gas production. One reason is the error introduced by the wellbore model. The 

multi-phase gas-water pipe flow is a highly complex process. Model calibration may be 

required at the wellbore level but it is not in the scope of this study. Thus, a lower weight 

is assigned to the THP misfit so it has less impact on the history match objective function. 

Overall, the optimal solution achieves reasonable matches with the observed data.  
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Figure 3-10. History matching error over simulation evolution.   
 

 

Figure 3-11. Simulated vs. observed BHP for (a) injector 1 and (b) injector 2.  
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Figure 3-12. Simulated vs. observed cumulative gas production for example 
production wells.  
 

 

Figure 3-13. Simulated vs. observed THP for example XTO producers.  
 

We further analyze the parameter uncertainty range before and after the history 

matching using histogram in Figure 3-14. All the parameter uncertainty ranges are reduced 

after the history matching. Barnett initial water saturation is calibrated to higher values to 

allow more water entering the wellbore to match the cumulative gas production and XTO 

well THP. Ellenburger permeability is calibrated to lower values to increase the injector 



 

57 

 

BHP to match the observed BHP. KvKh is calibrated to higher values to allow more 

vertical pressure communication. 

  

Figure 3-14. Simulated vs. observed THP for example XTO producers.  
 

After history matching, we look at the pressure distribution (Figure 3-15) at the 

middle of the Ellenburger (2500 m). This is the formation that experiences the most 

pressure change. In 2010, within a year after injection started, we observe pressure 

difference between the two sides of the fault. In 2014, we see the maximum pressure 

imbalance about 1,000 kPa on different sides of the fault. This is the time when most of 

the Azle seismic events were recorded. From 2014 to 2018, the pressure imbalance stays 

at about the same level and no more seismic event was recorded in this region. These 

pressure distribution results are used as input for the ABAQUS simulation to model the 

fault slips and the corresponding energy released.  

Prior Posterior
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Figure 3-15. Calibrated model pressure distribution over time at the middle of the 
Ellenburger formation (2500 m).  
 

3.6. ABAQUS Model and Geomechanical Response  

Unlike the zig-zag Azle faults used in the CMG model, the ABAQUS simulation 

models the Azle faults as discontinuous surfaces (Figure 3-16). We first build the model 

skeleton using the horizon tops and the fault planes (Figure 3-16a). We then create the 

mesh (Figure 3-16b). This model consists of 104,848 nodes and 98,010 cells. Figure 3-16c 

is the Northwest side of the model cut by the antithetic fault plane. Figure 3-16d is the 

Southeast side of the model cut by the main fault plane. The total vertical stress gradient 

is 26.01 MPa/km, the total maximum horizontal stress is 26.01 MPa/km, the total 

minimum horizontal stress is 14.20 MPa/km, and the pore pressure gradient is 10.65 

MPa/km (Hennings et al., 2019).  
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Figure 3-16. (a) Skeleton of the ABAQUS model. (b) ABAQUS model meshing. (c) 
Northwest side of the model cut by the antithetic fault plane. (d) Southeast side of the 
model cut by the main Azle fault plane.  
 

After calibrating the model using rate and pressure data, the matched model 

pressure is processed and imported to the FE ABAQUS model. We then calculate the 

stress distribution and the fault slips based on the pressure input. Figure 3-17 shows the 

plastic fault slips at different times. In 2006, when there is no injection, most of the plastic 

slips occur in the Ellenburger and the magnitude is relatively small. In 2010, within a year 

after injection, the modeled slips propagate downward to the basement. After that, the 

modeled slips then continue to propagate downward. In 2014, when most of the 

earthquakes were observed, we see the deepest plastic slips in the model is at roughly 

7000m.  
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Figure 3-17. Calibrated model plastic slips of the main fault over time: (a) in the 
vertical direction and (b) in the horizontal direction.  

 

We also examine the slip and pressure behavior versus depth along the middle of 

the fault. Figure 3-18a and Figure 3-18b show the pressure change and the slip behavior 

along the path shown in the red arrow in Figure 3-18c. We see no pressure change along 

the fault path in the basement formation throughout the simulation period. Figure 3-18b 

shows that most of the slips occur in the Ellenburger formation prior to 2010. In 2010, 

shortly after injection starts, the slips propagate downward to the basement formation. 

Slips continue to propagate downward and the slips reach the peak in 2014. This is the 

time when most of the seismic events were recorded. There is not much slip from 2014 to 

2018. Since most of the slips in the basement occur without noticeable pressure change, 

the indirect poroelastic stress transfer is the driving mechanism for the recorded 

earthquake in the Azle area.  
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Figure 3-18. (a) Pressure change along the middle of the main fault. (b) Slip along 
the middle of the main fault. (c) The fault path for (a) and (b).  
 

Besides the fault slips, we also calculate the dissipated energy from the plastic fault 

slips and compare it with the radiated energy from seismic events in the region. The 

radiated energy is calculated as: 

2
log( ) 3.2

3w sM E  , (3.6) 

where Es is the radiated energy and Mw is the seismic moment magnitude. The radiated 

energy from the observed Azle seismic event magnitude and the dissipated energy from 

the ABAQUS model is shown in Figure 3-19. The total radiated energy is roughly 20% of 

the calculated dissipated energy. This may occur because not all the dissipated energy is 

released seismically. The dissipated energy evolves more smoothly compared the abrupt 

release of the radiated energy in a short period of time. Matching the timing and the slope 

of the radiated energy release is not included in this study. Further analysis may be 

required to perform sensitivity analysis and history match the timing and slope of the 

dissipated energy. 
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Figure 3-19. Cumulative radiated energy from the observed Azle seismic events and 
dissipated energy from ABAQUS simulation model.  
 

3.7. Conclusions 

We have successfully constructed the detailed geometric Azle fault models using 

XTO seismic fault picks in Petrel. The geometric fault models are converted to the 

simulation fault models used in both the finite difference CMG simulation and the finite 

element ABAQUS simulation.  

We have built the simulation models in the finite difference fluid flow simulation 

in CMG and the finite element geomechanical simulation in ABAQUS using the 

corresponding detailed fault simulation models. We have developed the workflow to 

couple the flow and geomechanical simulation.  

The CMG model has been calibrated using injector BHP, cumulative gas 

production, and XTO producer THP. The calibrated pressure is imported to the ABAQUS 

model to explicitly model the Azle fault slips and the dissipated energy associated with 

the slips.  
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The ABAQUS model shows that the Azle fault slips can occur at the location 

where there is no pressure change. The observed radiated energy from the Azle seismic 

events is about 20% of the dissipated energy calculated from the plastic slips. Further 

investigation is undergoing to reconcile the differences between the dissipated and 

radiated energy of the Azle site.  
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4. THE IMPACT OF CLUSTERING SPACING ON MULTI-FRACTURED WELL 

PERFORMANCE* 

 

4.1. Overview 

A major outstanding challenge in developing unconventional wells is determining 

the optimal cluster spacing. The spacing between perforation clusters influences hydraulic 

fracture geometry, drainage volume, production rates, and the estimated ultimate recovery 

(EUR) of a well. This paper systematically examines the impact of cluster spacing in the 

Eagle Ford shale wells by calibrating fracture geometry and fracture/reservoir properties 

using field injection and production data and evaluating the optimal cluster spacing under 

different reservoir conditions.  

We explore a sequential technique to evaluate and optimize cluster spacing using 

a controlled field test at the Eagle Ford field. This study first identifies the fracture 

geometry by history matching the field injection treatment pressure. Using the rapid Fast 

Marching Method based flow simulation and Pareto-based multi-objective history 

matching, we match the well drainage volume and the cumulative production to calibrate 

the fracture and SRV properties. The impact of cluster spacing on the EUR are examined 

using the calibrated models. We run injection and production forecasts for various cluster 

spacing to investigate optimal completion under different reservoir conditions.   

                                                 
* Part of this section is reprinted with permission from “The Impact of Cluster Spacing on Multi-Fractured 
Well Performance” by Chen, R., X. Xue, A. Datta-Gupta, H. Yu, and N. Kalyanaraman,. (2019), paper SPE-
197103-MS presented at the SPE Liquids-Rich Basins Conference - North America, 7-8 November, Odessa, 
Texas, USA. Copyright [2019] Society of Petroleum Engineers. 
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The unique set of injection and production data used for this study includes two 

horizontal wells completed side by side. The well with tighter cluster spacing has larger 

drainage volume and better production performance. This is because of the increased 

fracture complexity in spite of the impact of stress shadow effects leading to shorter 

fractures. The calibrated models suggest that most of the fractures are planar in the Eagle 

Ford shale. The well with wider cluster spacing tends to develop longer fractures but the 

well with tighter cluster spacing has better stimulated reservoir volume with enhanced 

permeability, thus resulting in better drainage volume and production performance. From 

the optimization runs under different reservoir conditions, our results seem to indicate that 

when natural fractures are present or when stress anisotropy is high with no natural 

fractures, the wells with tighter cluster spacing tend to outperform the wells with wider 

cluster spacing. However, severe stress shadow effect is observed when stress anisotropy 

is low with no natural fractures, likely making tighter cluster spacing wells less favorable.  

The calibrated fracture geometries and properties with a unique set of Eagle Ford 

field data explain the performance variation for completions using different cluster 

spacing within the reservoir and provides insight into optimal cluster spacing under 

different reservoir conditions (low vs high stress anisotropy and with/without natural 

fractures).  

4.2. Introduction 

 Multi-stage hydraulic fracturing is an integral part of unconventional shale 

reservoir development. A major outstanding challenge in designing a multi-stage 

hydraulic fracturing job is to determine the optimal cluster spacing. The current trend of 
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optimal fracturing design has been reducing cluster spacing while increasing fluid and 

proppant usage (Evans et al., 2018; Pioneer Natural Resources Company, 2018). Many 

simulation works also suggest an improved well performance using a tighter cluster 

spacing design (Cipolla et al., 2009; Lolon et al., 2009; Zhu et al., 2017). However, 

researchers also found that if the cluster spacing is below some threshold values, the well 

productivity may decrease (Miller et al., 2011). Therefore, it is crucial to understand the 

characteristics of fracture networks under different cluster spacing designs and their 

impacts on production performance. 

 There have been many efforts to characterize fracture networks and understand the 

impact of cluster spacing. Weng et al. (2011) developed Unconventional Fracture Model 

(UFM) that can simulate complex hydraulic fracture network propagation in formation 

with pre-existing closed natural fractures, and explicitly model hydraulic injection into a 

fracture network with multiple propagation branches. Park and Kim (2016) employed a 

semi-analytical approach to solve flow equation numerically and geomechanics 

analytically to model hydraulic fracture propagation. Zhu et al. (2018) and Zhang and Zhu 

(2019a) interpreted the distributed temperature data of horizontal wells to characterize the 

complex fracture networks and understand the impact of cluster spacing on the fracture 

geometry. Zhou et al. (2016) investigated the optimal cluster spacing under the impact of 

the induced stress from other hydraulic fractures. Roussel et al. (2012) developed a 

mechanical stress perturbation model to identify the optimum spacing for fractures to 

remain transverse under stress shadow effects. Simpson et al. (2016) integrated field 

treatment pressure data from hydraulic fracturing and well production data to investigate 
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stress shadow effects and generate fracture geometry. Wu et al. (2017) developed fracture 

propagation model to study the uneven fracture growth introduced by fracture stress 

shadowing. These studies focus on modeling the poroelastic stress field altered by the 

hydraulic fracture treatment and the hydraulic fracture geometry resulting from the altered 

stress field. However, its impact on well production performance is not well understood. 

There have been previous efforts to integrate production forecast with fracture propagation 

to build a more comprehensive workflow. Park et al. (2019) altered the rock dilation and 

compaction table to characterize the reservoir and the hydraulic fractures using both the 

injection and the production data. However, all the fractures are assumed to be planar. 

Suarez and Pichon (2016) modeled explicitly the hydraulic fracture geometry and 

coupling it directly to a production simulator to optimize well completion design. Xiong 

et al. (2018) used an integrated completion and production simulation workflow to history 

match the existing well with wider cluster spacing and to forecast well performance with 

reduced cluster spacing completion. These studies provide valuable insights about how 

fracture geometry and properties can affect well production. However, it may be an 

untenable assumption that the calibrated parameters from production history matching in 

one fracture geometry can be directly applied to another fracture geometry. Thus, the 

impact of tighter cluster spacing may not be well analyzed.  

 In this study, we explore the impact of cluster spacing on multi-fractured 

horizontal well performance using a unique set of Eagle Ford well data. The data set 

consists of two horizontal wells that were completed side by side at the same depth. Thus, 

the impact of geologic variation is minimized. The well spacing is 1200 ft, so there is 
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minimum impact of well interference on fracture propagation and production performance. 

Therefore, we can focus on studying the impact of different cluster spacing designs. One 

well was completed using a wider cluster spacing of 50 ft with less fluid and proppant 

while the other well was completed using a tighter cluster spacing of 20 ft with more fluid 

and proppant. Both injection and production data are provided by the operator and the 

objective is to understand the impact of tighter cluster spacing on fracture geometry and 

production performance. To achieve the goal, we first conduct history matching of the 

field injection treatment pressure to characterize fracture geometry using a commercial 

model, Mangrove®. Second, we history match well production response to characterize 

fracture and stimulated reservoir volume (SRV) properties. Finally, we analyze the 

features in the calibrated fracture geometry and properties of the two wells to examine the 

impact of cluster spacing on fracture propagation and production. The calibrated models 

suggest that the well with tighter cluster spacing tends outperform the well with wider 

cluster spacing because of increased fracture complexity leading to better stimulated 

reservoir volume quality, despite having shorter and less permeable fractures.  

4.3. Geologic and Well Data 

 The Eagle Ford geologic model used in this study was provided by the operator. It 

contains 4 different formation: Austin Chalk, Upper Eagle Ford, Lower Eagle Ford, and 

Buda as shown in Figure 4-1. The average thickness is about 450 ft. The pay zones are 

Upper and Lower Eagle Ford and the average pay thickness is around 270 ft. Austin Chalk 

and Buda are included to serve as the geomechanical boundaries and provide additional 

zones that hydraulic fractures can propagate into. The flow and geomechanical properties 



 

69 

 

are also included in the model as shown in Figure 4-2. The summary of property ranges is 

shown in Table 4.1. The permeability is homogeneous by zone, while the porosity, 

Young’s Modulus, and Poisson’s Ratio are spatially heterogeneous.   

 

Figure 4-1. Schematic diagram of the reservoir geologic model and the corresponding 
well location. 
 

 

Figure 4-2. Flow and goemechanical properties of the model: (a) Permeability (b) 
Young’s Modulus (c) Porosity (d) Poisson’s Ratio. 
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Table 4.1. Summary of property ranges in different formations. 
Property Austin Chalk Upper Eagle Ford Lower Eagle Ford Buda 

Permeability (nd) 
0.5 230 30 0.001 

Porosity 
0.01-0.05 0.01-0.09 0.01-0.11 0.01-0.16 

Young’s Modulus 

(Mpsi) 
6.58-7.03 5.99-6.87 6.09-6.91 5.75-7.13 

Poisson’s Ratio 
0.27-0.34 0.21-0.34 0.21-0.31 0.12-0.38 

Average Thickness 

(ft) 
110 130 140 70 

 

 Two horizontal wells are completed side by side in the upper Eagle Ford formation. 

The well spacing is 1200 ft and it is sufficiently large to prevent well interference. The 

summary of the two well completion information provided by the operator is shown in 

Table 2.1. Both wells use the same total number of perforations per stage. Well 2 has a 

much tighter cluster spacing compared to well 1 and well 2 also uses more fluid and more 

proppants. Both wells use the same type of fracturing fluid and proppant to reduce the 

impact of the fluid and proppant selection. This is a unique field pilot test to investigate 

the influence of tighter cluster spacing on the fracture propagation and production 

performance in the Eagle Ford field.  
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Table 4.2. Summary of the completion data for the two wells. 
Well Name Well 1 Well 2 

Cluster Spacing (ft) 50 20 

Cluster Count per Stage 5 10 

Number of Stages 26 31 

Number of Perforations 

per Cluster 
6 3 

Mass of Proppant (lb) 10,000,000 13,000,000 

Type of Proppant 100 Mesh, 40/70 White 100 Mesh, 40/70 White 

Volume of Fluid (bbl) 150,000 350,000 

Type of Fracturing Fluid 
Slickwater, HCL 7.5, 

8# vis-link 

Slickwater, HCL 7.5, 

8# vis-link 

 

4.4. Fracture Geometry Calibration Using Injection Treatment Pressure 

 We first need to calibrate the fracture geometry using the injection treatment 

pressure. The operator provided the wellhead treatment pressure of a typical stage. As 

suggested in the previous literature, there is typically no fracture interference between 

stages in the Eagle Ford formation (Simpson et al., 2016). Thus, the calibrated parameters 

from the single stage history matching can be used to propagate fractures for all other 

stages. Mangrove® is used as the forward fracture propagation simulator. It uses 

Unconventional Fracture Model (UFM) to model hydraulic fracture geometry under the 

impact of reservoir structure, geomechanical containment, local natural fracture network, 

and stress shadow (Kresse et al., 2011; Weng et al., 2011; Suarez and Pichon, 2016).  
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 To calibrate the fracture geometry, we need to minimize the misfit of injection 

treatment pressure as follows:  

2 2
, ,1 1

log( ( ) )
Ntime obs cal

i j i jj i
obj ITP ITP

 
  

 

(4.1) 

where Ntime is the total number of pressure data observation times, ITP is the injection 

treatment pressure, the superscript obs indicates the observed data, and the superscript cal 

indicates the calculated value from Mangrove®.  

 

Table 4.3. Base case properties for fracture propagation. 
Parameter Value 

Minimum Horizontal Stress 0.85 psi/ft 

Stress Anisotropy (S
Hmax

/S
Hmin

) 1.4 

Leak-off Coefficient 7.5e-4 ft/min^1/2 

Fracture Height Hf 450 ft 

Young’s Modulus Spatially Heterogeneous 

Poisson’s Ratio Spatially Heterogeneous 

 

 Before history matching, we first run sensitivity analysis to determine the 

parameters that have the highest impact on the misfit function in Eq. (4.1). These 

parameters will be altered in the calibration step to match the observed injection treatment 

pressure. Figure 4-3 shows the sensitivity of the injection treatment pressure misfit to 

different parameters. The most sensitive parameters are the fracture height and the leak 

off coefficient multiplier, followed by the minimum horizontal stress gradient. For the 

manual injection pressure history matching, the fracture height and the leak off coefficient 

multiplier are altered because they are the heavy hitters with high uncertainty in the field. 
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The minimum horizontal stress gradient has much lower uncertainty because it can be 

measured using mini-frac test in the field. Thus, it is not included in the history matching.  

 

Figure 4-3. Injection treatment pressure misfit sensitivity.  
 
 
 

 

Figure 4-4. Manual history matching matrix. 
 
 
 

Figure 4-4 provides the manual history matching matrix for the injection treatment 

pressure misfit. Using the matrix, we can explore the plausible solution space and identify 

an initial estimate on what parameter combination can achieve relative low misfit values. 
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If we focus on the dark green low misfit region, we can see that the fracture height should 

be around 100 ft and the leak off coefficient multiplier should be between 2 and 3. After 

obtaining this initial estimate, we conduct a fine-tuning of the two parameters near the 

dark green region to further reduce the misfit. Figure 4-5 shows the initial results of the 

injection treatment pressure for well 1 and 2 where there is a large discrepancy between 

observed data and simulation results. Figure 4-6 shows the final matched results of the 

two wells. After the injection treatment pressure history matching, we generate 3 fracture 

models with fracture heights of 80, 100 and 120ft with different leak-off coefficient 

multipliers. The three models are used as the starting point of the production data history 

matching. The three different fracture models are shown in Figure 4-7. All three fracture 

models suggest that the hydraulic fractures are mostly planar and well 1 with wide cluster 

spacing tends to develop longer fractures. The fracture geometry is fixed for the following 

production history matching. 

 

Figure 4-5. Initial results of the injection treatment pressure (a) Well 1 (b) Well 2. 



 

75 

 

 

Figure 4-6. Matched results of the injection treatment pressure (a) Well 1 Hf=120ft 
Leak-off Multiplier=2 (b) Well 2 Hf=120ft Leak-off Multiplier=2 (c) Well 1 Hf=100ft 
Leak-off Multiplier=2.6 (d) Well 2 Hf=100ft Leak-off Multiplier=2.6 (e) Well 1 
Hf=80ft Leak-off Multiplier=3 (f) Well 2 Hf=80ft Leak-off Multiplier=3. 
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Figure 4-7. Fracture models after fracture geometry calibration (a) Hf=120ft (b) 
Hf=100ft (c) Hf=80ft. 
 

4.5. Fracture and Reservoir Property Calibration Using Production Response  

We use the Fast Marching Method (FMM) based flow simulation as the forward 

simulation tool for the production history matching (Zhang et al., 2016). It transforms the 

3-D flow equation into equivalent 1-D flow equation along the diffusive time of flight 

(DTOF) coordinate and the flow equation can be efficiently solved on the 1-D DTOF 

coordinate (King et al., 2016; Zhang et al., 2016; Iino et al., 2017). It has been shown in 

previous studies that the computation speed-up and accuracy of the FMM-based flow 

simulation are particularly well-suited for field scale history matching and optimization 

problems (Cui et al., 2016; Iino et al., 2017; Iino and Datta-Gupta, 2018; Xue et al., 2019; 

Zhang and Zhu, 2019b).  In this study, the three-phase production and the bottomhole 

pressure data for both wells are available for 1 year as shown in Figure 4-8. Although the 

operator used a more aggressive pressure depletion strategy for well 1, well 2 has a better 
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production performance. Both wells have high water production at the early time from the 

flow back fluids.  

 

Figure 4-8. Two wells production data (a) Bottomhole pressure (b) Oil production 
rate (c) Gas production rate (d) Water production rate. 

 

With the production response, we can calculate the well drainage volume based on 

the concept of the rate normalized pressure (RNP) (Song and Ehlig-Economides, 2011). 

The RNP approximation represents the production behavior that would be observed if the 

well were produced at a constant reference rate. The well drainage volume can be 

calculated using the following equation (Xue et al., 2018) 

( )1
( )

( ) ( )
wf e

t
d e e w e

p td
c

V t dt q t




 
(4.2) 
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where Vd is the drainage volume, Pwf is the bottomhole flowing pressure, qw is the well 

flow rate, and te is the material balance time defined as  

( )

( )e
w

Q t
t

q t


 
(4.3) 

where Q  is the cumulative production.  

 The well drainage volume comparison of the two wells is shown in Figure 4-9. 

Well 2 not only has better production performance, it also has a higher drainage volume.  

 

Figure 4-9. Drainage volume comparison of the two wells. 
 

 The initial models for production history matching are based on three fracture 

(permeability/porosity) models generated by the calibration of the injection phase 

modeling as discussed before. Since the hydraulic fractures do not penetrate into Austin 

Chalk and Buda for all three fracture models, only the upper and lower Eagle Ford 

formations are included in the production simulation. Figure 4-10 (a) shows the 3D view 

of the simulation model. The simulation model has approximately 1 million grid cells. It 



 

79 

 

is a gas condensate reservoir and the fluid PVT is provided by the operator. Figure 4-10 

(b) gives the top view for the fracture model of 100-ft fracture height. The black boxes are 

the stimulated reservoir volume (SRV) regions created around each well. The SRV regions 

are used to model the complex fracture networks beyond the explicit hydraulic fractures 

(Mayerhofer et al., 2010). The SRV properties can be tuned during the calibration process 

to history match the production response (Iino et al., 2017; Park and Janova, 2019). The 

maximum fracture conductivity per fracture stage is shown in Figure 4-11. The colors tell 

what SRV regions each fracture stage belongs to.  

 

Figure 4-10. Base case simulation model of Hf=100ft (a) 3D view (b) top view 

hydraulic fracture. 
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Figure 4-11. Maximum hydraulic fracture conductivity per stage for both wells.  

 

 For the production history matching, we minimize two misfit functions: 

cumulative production misfit and drainage volume misfit. The cumulative production 

misfit can be defined as  

1 ln Cum_oil ln Cum_water ln Cum_gasobj      
 

(4.4) 

where Δ represents the differences between simulation and observe data at each time step: 

2sim obs

1

1 tN

i i
it

y y y
N 

  
 

(4.5) 

where Nt represents the total number of time steps and yi represents cumulative oil, water 

and gas production of a given time.   

The drainage volume misfit is given as:  
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2 lnobj DV 
 

(4.6) 

For the drainage volume misfit, the observed drainage volume is calculated using Eq. (4.2) 

as shown in Figure 4-9. The advantage of including drainage volume as an objective 

function is that often time there are a lot of noises in the raw production data. The drainage 

volume is smoother and it contains more information about reservoir heterogeneity. The 

simulated drainage volume can be obtained using the FMM-based black oil simulation as 

shown in Figure 4-12 (Iino et al., 2017). First, we calculate the multi-phase diffusivity on 

each grid block. Second, using the multi-phase diffusivity as an input parameter, we run 

the FMM to calculate the DTOF on each grid block. Third, we accumulate pore volume 

using DTOF as a spatial coordinate. Then, we convert the DTOF (τ) to physical time using 

the relation 
2

4
t


 (Xie et al., 2015).  

 
Figure 4-12. Drainage volume calculation using the FMM-based simulation 
reprinted from Iino et al. (2017). 
 

 Before we run the production response history matching, we first perform 

sensitivity study of the two misfit functions to identify the heavy hitters. The parameter 

range for production history matching is shown in Table 4.4. The results of sensitivity 

analyses are shown in Figure 4-13. For the cumulative production sensitivity, the fracture 
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related properties have a substantial impact. Also, the SRV permeability and water 

saturation are shown to be very important. For the drainage volume sensitivity, the heavy 

hitters are the fracture permeability SRV permeability, SRV porosity, and water saturation 

and the fracture model. Summarizing the sensitivity analyses, the hydraulic fracture 

permeability, hydraulic fracture compaction, SRV permeability, SRV porosity, water 

saturation, and the permeability/porosity model from injection calibration are heavy hitters 

and they will be altered during the production history matching.   

Table 4.4. Production history matching parameter. 
Regions Uncertain parameters Low Base High 

Reservoir 
Permeability/porosity model 

number 
1 2 3 

Hydraulic 
Fracture 

Porosity multiplier 0.5 1 2 
Permeability multiplier 0.01 1 100 

S
wi

 0.2 0.4 1.0 
Compaction table 1 4 7 

SRV 
Porosity multiplier 0.5 1 2 

Permeability multiplier 0.01 1 100 
S

wi
 0.2 0.4 1 

Matrix 
Porosity multiplier 0.8 1 1.2 

Permeability multiplier 0.01 1 100 
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Figure 4-13. Sensitivity analyses for (a) cumulative production misfit and (b) 
drainage volume misfit. HF: hydraulic fracture, numeric number: well number, φ: 
porosity, perm: permeability, SRV: stimulated reservoir volume, Sw: water 
saturation, perm model: permeability models generated from Mangrove®.  
 

In this history matching, we use the population size of 120 and run for 50 

generations. Figure 4-14 shows the drainage volume misfit and production misfit before 

and after the history matching. For generation 1, the solutions are scattered as GA is 

exploring the entire solution space. For generation 50, the solutions move towards the 

bottom left, indicating misfit reduction of both misfit functions. In generation 50, we can 

clearly see a Pareto front, indicating the trade-off between the two objective functions. 
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Figure 4-14. Drainage volume misfit and production misfit for (a) Generation 1 and 
(b) Generation 50. 

 

Figure 4-15 and Figure 4-16 compare the observed data and simulation results for 

well 1 and well 2. As expected, the results from generation 1 are scattered. After the history 

matching, the selected solutions show good match for both the observed drainage volume 

and cumulative production with some variations in both history matching period and the 

validation period. Since GA is a stochastic optimization algorithm, multiple models are 

obtained after history matching instead of a single best model.  
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Figure 4-15. Comparison of observed data (color line) and simulated results (grey 
line) for well 1 (a) Generation 1 (b) Selected results using threshold from Generation 
50. 
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Figure 4-16. Comparison of observed data and simulated results for well 2 (a) 
Generation 1 (b) Selected results using threshold from Generation 50. 
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Figure 4-17. Permeability uncertainty ranges before and after the history matching 
50 (a) Well 1 (b) Well 2 
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Figure 4-18. Parameters ranges before and after the history matching for Well 1. 
 

 

Figure 4-19. Parameters ranges before and after the history matching for Well 2. 
 

We further analyze the parameter uncertainty ranges for well 1 and well 2 using 

boxplots before and after the history matching. Figure 4-17 focus on the permeability of 
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the fracture and the SRV region. Well 2 with tighter cluster spacing has lower fracture 

permeability but higher SRV permeability as compared to well 1. The tighter cluster 

spacing completion is more likely to introduce a more severe stress shadowing effect, 

resulting in the low fracture permeability. However, the tighter cluster spacing design 

creates more complex fracture networks near the hydraulic fractures. This enhanced 

permeability networks are captured as better SRV permeability by the history matching. 

Thus, despite having shorter and less permeability fractures, well 2 has better SRV 

permeability, leading to larger drainage volume and better production performance.  

Figure 4-18 and Figure 4-19 show the other parameters uncertainty range before and after 

the history matching for well 1 and well 2. For most of the parameters, the uncertainty 

ranges are reduced significantly after the history matching. 

4.6. Flow Diagnostic Plot 

 In our previous study by Xue et al. (2018), we developed several novel diagnostic 

plots to characterize the reservoir and fracture systems. In this study, we follow our 

previous method to understand the flow regimes of the two Eagle Ford wells. We generate 

the pressure contour maps of a set of fractures planes for Well 2 in Figure 4-20 and the 

flow diagnostic plots (Figure 4-21). In the diagnostic plots, the drainage volume Vd can 

be calculated using Eq. (4.2) and the w(τ) function is the first derivative of drainage 

volume over τ, which indicates how fast the drainage volume increases. This w(τ) function 

can give us the information such as fracture surface area and flow regimes. The drainage 

volume and w(τ) function can be linked using Eq. (4.7)  (Xue et al., 2018). After 

calculating the drainage volume Vd, we invert for the w(τ) function using a piecewise 
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constant representation. The detailed methodology to invert the w(τ) function from the 

drainage volume can be found in our previous study (Xue et al., 2018). 

2

4

0

( ) ( ) t
dV t d w e



 



 

 
(4.7) 

The w(τ) diagnostic plot agrees with the observations from the pressure contours. 

At early time, the w(τ) function increases at a higher rate, indicating the fracture flow as 

shown in Figure 4-20 (a). At intermediate time, the w(τ) function increases at a slower 

rate, indicating the combination of the formation linear flow and the partial completion 

flow as shown in Figure 4-20 (b). At late time, the w(τ) function decreases indicating 

fracture interference as shown in Figure 4-20 (c). We also compare the w(τ) plots for both 

wells in Figure 4-22. Well 2 has a higher w(τ) function compared well 1, indicating a 

larger fracture surface area. Since well 2 uses a tighter cluster spacing design, it tends to 

develop a more complex fracture network, leading to a larger fracture surface area.  

 

Figure 4-20. Pressure contours from the side view of the fracture plane for well 2 (a) 
at early time fracture flow (b) immediate time partial completion (c) late time 
fracture interference. 
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Figure 4-21. Flow diagnostic plots for well 2. 

 

Figure 4-22. w(τ) flow diagnostic plots for (a) well 1 and (b) well 2. 
 

4.7. Conclusions 

We utilize a commercial fracture propagation model Mangrove® and the Fast 

Marching Method (FMM) based black oil simulation as the forward simulators to conduct 

a field injection-to-production history matching. The field data used in this history 

matching study is designed to understand the impact of tighter cluster spacing on the 

fracture and well performance. We analyze the history matching results to examine the 

impact of tighter cluster spacing on the fractures and well performance. Some key 

conclusions are summarized as follows: 
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 We demonstrate the feasibility of the history matching workflow using 

Mangrove® and the FMM-based black oil simulation in Eagle Ford field case 

study.  

 The injection phase history matching shows that most fractures are planar in Eagle 

Ford because of the high stress anisotropy. The well with tighter cluster spacing 

tends to develop shorter fractures. 

 The production phase history matching shows that the well with tighter cluster 

spacing has smaller fracture permeability but better SRV permeability in Eagle 

Ford. The better SRV quality results in better drainage volume and production 

performance.   

 The tighter cluster spacing completion is more favorable in the Eagle Ford 

formation because there is minimal fracture interference.  
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5. CONCLUSIONS 

 Coupled fluid flow and geomechanical simulation have wide applications on 

evaluating the complex phenomena associated with pressure and stress/strain throughout 

the life cycle of the unconventional shale development. In this dissertation, we apply 

coupled fluid flow and geomechanical simulation to reveal the mechanisms of induced 

seismicity, to predict the seismicity risks, and to understand the characteristics of hydraulic 

fractures under different completion designs.  

 First, we use 3-D fluid flow and poroelastic simulation models to review the 

driving mechanism of the induced seismicity in the Azle area. The results suggest no fluid 

movement or pressure increase in the crystalline basement, although there is plastic strain 

accumulation for the weaker elements along the fault in the basement. The accumulation 

of plastic strain change appears to be caused by the unbalanced loading on different sides 

of the fault due to the differential in fluid injection and production. Even though the low-

permeability faults in the basement are not in pressure communication with the 

Ellenburger formation, the poroelastic stresses transmitted to the basement can trigger 

seismicity without elevated pore pressure. 

 Second, we build a detailed Azle fault model using the high resolution seismic 

picks provided by the operator. A finite difference flow simulation model (CMG) and a 

finite element geomechanical model (ABAQUS) are built using the detailed fault model. 

We develop the workflow to couple the two simulations to explicitly model fault slips and 

dissipated energy in the Azle site. The results suggest that the slips can occur at the 
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location where there is no pressure change. The radiated energy from observed seismic 

events is about 20% of the dissipated energy calculated from the simulation results.  

 Third, we use the coupled simulation to investigate the impact of cluster spacing 

on hydraulic fracture design using the Eagle Ford field data. The results suggest that most 

fractures are planar in Eagle Ford because of the high stress anisotropy. The well with 

tighter cluster spacing tends to develop shorter fractures. The well with tighter cluster 

spacing has better SRV permeability in the Eagle Ford, leading to better drainage volume 

and production performance. The tighter cluster spacing completion is more favorable in 

the Eagle Ford formation because there is minimal fracture interference.   
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APPENDIX A 

PARETO OPTIMIZATION AND GENETIC ALGORITHM BACKGROUND 

Dominance relationships among different solutions form the basis of Pareto 

optimization. For a minimization problem involving n objectives defined by objective 

functions fn, solution a dominates over solution b if all objectives functions evaluated at 

solution a are not greater than those of b, and at least one objective function of a is strictly 

smaller than the corresponding objective function evaluated at solution b (Park et al., 

2015).  

 

Figure A-1. Dominance concept demonstrated using solution O.  

 

The dominance concept can be graphically demonstrated in Figure A-1. For a two-

objective optimization problem, we have solution O shown in the red circle. We draw 

vertical and horizontal lines crossing solution O to divide the entire solution space into 

four regions. In region A, both obj1 and obj2 of all three solutions are smaller than those 

of solution O. Thus, solutions in region A are better solutions and dominate solution O. 

Both obj1 and obj2 of solutions in region C are larger than those of solution O, so solutions 
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in region C are dominated by solution O. In regions B and D, solutions have one objective 

smaller but the other objective larger than that of solution O. Thus, there is no dominance 

relationship between region B and D solutions and solution O.  

Similar exercise can be performed on every solution to obtain the overall ranking 

of the solution. In Figure A-2, a set of solutions which are not dominated by any other 

solutions are classified as rank 1 solutions. When rank 1 solutions are excluded from the 

solution space, the same exercise is performed in the new solution space to obtain rank 2 

solutions. Then, both rank 1 and rank 2 solutions are excluded to obtain the next rank level 

of non-dominated solutions. The process is continued until all solutions are assigned a 

rank level (Park et al., 2015).  

.  

Figure A-2. Solution ranking demonstration.  

 

The solution ranking exhibits the following features: (1) solutions on the same rank 

or same Pareto front are equally optimal, (2) the lower rank solutions are more competitive 

than the higher rank ones for a minimization problem, and (3) trade-offs of the front reveal 

potential conflict between objectives.  
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The genetic algorithm (GA) is one of the evolutionary methods for solving 

optimization problems (Goldberg, 1989). It imitates biological principles of evolution – 

natural selection and survival of the fittest. It has been extensively applied to history 

matching problems (Bittencourt and Horne, 1997; Romero and Carter, 2001; Yin et al., 

2011; Iino et al., 2017; Park et al., 2019). 

In the genetic algorithm, a population of candidate solutions to an optimization 

problem evolves toward better solutions. Each candidate solution has a set of properties 

which can be mutated and altered. At the initialization step, the population is generated 

randomly, providing the range of possible solutions (the search space). During each 

successive generation, a portion of the existing population is selected to breed a new 

generation. Individual solutions are selected through a fitness-based process, where fitter 

solutions (as measured by a fitness function) are more likely to be selected. Certain 

selection methods rate the fitness of each solution and preferentially select the best 

solutions. The next step is to generate a second generation population of solutions from 

those selected through a combination of genetic operators: crossover (also called 

recombination), and mutation. For each new solution to be produced, a pair of "parent" 

solutions is selected for breeding from the pool selected previously. By producing a 

"child" solution using the above methods of crossover and mutation, a new solution is 

created which typically shares many of the characteristics of its "parents". New parents 

are selected for each new child, and the process continues until a new population of 

solutions of appropriate size is generated. These processes ultimately result in the next 

generation population that is different from the initial generation. Generally the average 
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fitness will have increased by this procedure for the population, since only the best 

organisms from the first generation are selected for breeding, along with a small 

proportion of less fit solutions. These less fit solutions ensure genetic diversity within the 

genetic pool of the parents and therefore ensure the genetic diversity of the subsequent 

generation of children. 
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APPENDIX B 

TUBING HEAD PRESSURE (THP) TO BOTTOM HOLE PRESSURE (BHP) 

 

The THP to BHP calculation is routine in the petroleum engineering literature 

(Govier and Aziz, 1972; Beggs and Brill, 1973; Chen, 1979; Taitel et al., 1982; Bradley, 

1987; Ansari et al., 1990; Economides et al., 2013). The calculation below follows 

Economides et al. (2013). Since both Azle injection wells are wastewater disposal wells, 

a single-phase incompressible flow model will be used. The Reynolds number needs to be 

calculated to determine if the flow is laminar or turbulent 

 
 re

Du
N




 , (B-1) 

where D is the wellbore diameter, u is the average velocity,   is the fluid density, and 

  is the fluid viscosity. If Nre is larger than 2100 (Economides et al., 2013), it is turbulent 

flow. Otherwise, it is laminar flow. 

The overall pressure drop between the well head and the bottom hole consists of 

three parts: potential energy, kinetic energy, and frictional pressure drop 

PE KE Fp p p p    . (B-2) 

Since there is no change in the inner diameter of the disposal well and thus no change in 

the velocity of the fluid 0KEp  . PEp  accounts for the pressure change due to the 

weight of the column of fluid. Since the injected fluid is water, the potential energy change 

is low and it can be calculated as: 

PE
c

g
p Z

g
   , (B-3) 
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where ΔZ is the difference in elevation. The frictional pressure drop Fp  can be obtained 

from the Fanning equation (Fanning, 1896): 

 
22 f

F
c

f u L
p

g D


  , (B-4) 

where u is the velocity and ff  is the Fanning friction factor: 
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APPENDIX C 

GAS PRODUCTION CALCULATION 

In this paper, we convert gas production at the surface condition to the reservoir 

condition, a routine calculation in reservoir engineering (Dake, 1983; McCain, 1990; Lee 

and Wattenbarger, 1996; Economides et al., 2013; Ahmed, 2018). The surface gas rate for 

70 wells can be obtained from Railroad Commission of Texas (2018b). The total 

cumulative production in both surface and reservoir conditions are shown in Figure C-1. 

A sample calculation for reservoir gas withdrawal rates is provided below. 

 

Figure C-1. Cumulative gas production for 70 wells at surface and reservoir 
conditions. 

 

The gas formation volume factor, 𝐵௚, defined as the ratio of the volume of gas at 

the reservoir temperature and pressure to the volume at the standard temperature and 

pressure, can be calculated by rearranging the real gas equation (Dake, 1983): 

 
 p

p
res sc

g
sc sc sc res

V zT
B

V Z T
  . (C-1) 

The standard condition pressure and temperature are: 

 p  101  (14.7  )sc kPa psi  (C-2) 
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    15.7  (520 )scT C R    (C-3) 

We use a pressure gradient of 10.2kPa/m (0.45psi/ft) and a geothermal gradient of 

0.0219°C/m (12°F/1000ft) (Syms, 2011). The average depth for Barnett is 2100m (6888ft). 

We can then calculate reservoir pressure and temperature. 

 p  21374  (3100 )res kPa psi  (C-4) 

   62   (603 )resT C R    (C-5) 

The only unknown is the gas compressibility factor, Z, which requires the gas composition. 

The gas composition is shown in Table C-1 (Pollastro et al., 2007a). 

Table C-1. Gas composition and critical pressure and temperature calculation. 

 C1 C2 C3 CO2 N2 Mixture 
Gas Composition 93.7 2.6 0 2.7 1  

Critical Temperature (oR) 343.30 549.90 666.10 547.80 227.40  
Critical Pressure (psi) 666.00 708.00 616.00 1071.60 493.10  

yiTc 321.67 14.30 0 14.79 2.27 353.0 
yiPc 624.04 18.41 0 28.93 4.93 676.3 

 

Knowing the gas compressibility, we estimate the Z-factor to be 0.82 (McCain, 1990). 

Substituting back into equation. C-1,  

 
3

3
0.00451g

rm
B

sm
 , (C-6) 

where rm3 is cubic meter in reservoir conditions and sm3 is cubic meter in standard 

conditions. 

In our simulation, Bg is a dynamic parameter based on the calculated BHP and Figure C-

2.  
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Figure C-2. Gas formation volume factor generated from commercial PVT simulator. 

 

 

 




