
 

SURFACE-WATER CONNECTIVITY WITHIN A COASTAL LOWLAND 

RIVERINE LANDSCAPE 

A Dissertation 

by 

CESAR R. CASTILLO 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Chair of Committee,  İnci Güneralp 

Committee Members, Burak Güneralp 

Anthony Filippi 

Huilin Gao 

Head of Department, David Cairns 

May 2020 

Major Subject: Geography 

Copyright 2020 Cesar R. Castillo



 

ii 

 

ABSTRACT 

 

Lowland riverine landscapes regularly flood and create complex spatial patterns 

of inundation that create surface-water connections between landscape patches that 

allow energy, matter, biota, and information to be exchanged. While the importance of 

surface-water connections has been recognized in the literature, there is no formal 

framework for quantifying these connections. The research presented here is guided by 

one main objective that aims to build towards the development of a framework for 

quantifying surface-water induced landscape connectivity within lowland riverine 

landscapes. Three specific objectives (SOs) were pursued in order to address this main 

objective. SO1 involves analyzing potential surface-water connections using a terrain-

based approach and developing a methodology that relies on object-based analysis and 

graph/network theory to quantify connectivity. Results indicate that surface-water 

connectivity has a nonlinear relationship with river-stage and the connectivity is largely 

controlled by a hub-like structure. This is important because these hubs are ultimately 

what maintains river-floodplain process and fluvial habitat health. SO2 involves 

simulating surface-water inundation across the range of historical flows using a 

hydrodynamic model and analyzing the hub-like surface-water connectivity structure. 

Results indicate that the dynamic network created by surface-water connections between 

landscape patches has a roughly scale-free structure for several of the flow conditions 

considered. This is important because scale-free networks are known to have universal 

structure and function that can potentially be used to better understand interactions 



 

iii 

 

between elements of riverine landscape during flood events. SO3 involves developing 

sets of Stream Temperature, Intermittence, and Conductivity loggers (STICLs) that can 

monitor surface-water connectivity when deployed in the field. Results indicate that 

STICLs performed well at identifying intermittent inundation when they are deployed 

within portions of the riverine landscape that experience periodic inundation. Also, 

comparing STICL records with those from historical water quality samples allows the 

flooding mechanism for the inundating waters to be identified. This is important because 

STICLs provide a means for quantitatively monitoring surface-water connectivity in the 

field. These SOs collectively progress the development of a framework for quantifying 

surface-water connectivity of lowland riverine landscapes that ultimately allows for 

better management of these landscapes. 
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CHAPTER I  

INTRODUCTION  

Introduction 

Rivers and their floodplains are highly productive and diverse ecosystems that 

provide valuable ecosystem services such as flood risk reduction, water quality 

enhancement, and the maintenance of riverine and marine habitats/fisheries (Costanza et 

al., 1997, Opperman et al., 2010). While only encompassing a small proportion of the 

global land area (<2%), riverine floodplains contribute >25% of all land-based 

ecosystem services (Opperman et al., 2010, Tockner and Stanford, 2002); yet, they are 

some of the most threatened ecosystems around the world. Therefore, understanding the 

hydrologic, geomorphic, and ecological functioning of riverine floodplains is vital to 

successful resource management (Tockner and Stanford, 2002). 

River-floodplain connectivity is a major driver of water, sediment, and nutrient 

recycling within river-floodplain systems and it ultimately creates the heterogeneous 

pattern of habitats and landforms commonly found within these environments (Junk et 

al., 1989, Meitzen et al., 2013). Flood inundation typically enables the largest and most 

abrupt material and energy exchanges between the river and its floodplain (Junk et al., 

1989, Poff et al., 1997). The flood pulse concept (Junk et al., 1989, Tockner et al., 2000) 

and hyporheic corridor concept (Stanford and Ward, 1993) are two widely accepted 

paradigms for predicting the pattern and mechanism of surface water inundation within 

floodplains and the associated biotic response. While the primary source of flood waters 

differs between the two paradigms (surface water for the flood pulse concept and 
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hyporheic/groundwater for the hyporheic corridor concept), both emphasize the 

significance of interactions along the lateral and vertical dimensions of the riverine 

landscape (Poole, 2002). The most representative paradigm for a given river-floodplain 

system will depend on the hydroclimatological regime, floodplain geomorphology and 

land cover characteristics, and the degree of human modification within the 

river/floodplain reach. Moreover, the antecedent moisture conditions within a floodplain 

can also affect the dynamic exchange between the river and its floodplain by allowing 

widespread floodplain inundation without overbank flows from the river (Mertes, 2002). 

This type of interplay of water and associated constituents from regional (river) and local 

(floodplain) sources further complicates the classification of river-floodplain systems 

with regard to the mechanics of flooding. Regardless of the source of water that leads to 

river-floodplain connectivity induced by surface water, formally quantifying this 

connectivity continues to be a problem in hydrologic, geomorphic, and ecological 

studies (Kupfer et al., 2014, Meitzen et al., 2013). 

Recent studies of river-floodplain systems have often employed the hydrologic 

connectivity approach that has become fundamental in understanding river-floodplain 

processes and concepts associated with environmental flow policies (Hudson et al., 

2013). Pringle (2001) defines hydrologic connectivity as “water-mediated transfer of 

matter, energy, or organisms within or between the elements of the hydrologic cycle” (p. 

981). Overbank flows typically cause the greatest variation in hydrologic connectivity 

from surface waters (surface-water connectivity, hereafter). However, widespread 

surface-water connectivity throughout a floodplain can occur below bankfull flow 
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conditions (Kupfer et al., 2014, Meitzen et al., 2013, Czuba et al., 2019). This variation 

in river-floodplain connectivity and its influence on sediment and nutrient recycling 

create the heterogeneous nature of floodplain environments (Poff et al., 1997, Sparks, 

1992). Losses in river-floodplain connectivity due to human impacts (e.g., flow/flood 

control structures (Poff et al., 1997), channel modification (Tockner and Stanford, 2002), 

and land-use change (Allan, 2004)) across the globe have been well documented in the 

literature. However, a formal framework for determining the change in landscape 

connectivity in river-floodplain landscapes under a variety of flow and human influence 

regimes has so far been lacking. 

Research Objectives 

The overall objective of this research is to build towards the development of a 

framework for quantifying landscape connectivity induced by surface-water connections 

within river-floodplain (or lowland) riverine landscapes. We address this main objective 

through three specific objectives that involve employing some underutilized methods 

and tools that can be used to quantify surface-water connectivity dynamics. These 

specific objectives include: 

1. Generate estimates of surface-water inundation and the associated connectivity 

for a lowland riverine landscape using a terrain-based approach. Moreover, use 

these estimates to develop an approach for quantifying surface-water 

connectivity dynamics that utilizes some of the methods employed by the 

landscape ecology literature that includes object-based analysis and 

graph/network theory. 
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2. Analyze the patterns of surface-water connectivity in a lowland riverine 

landscape generated using a hydrodynamic model and compare them to other 

connectivity patterns reported in the literature. Moreover, determine other 

properties of the landscape system that can be inferred from the observed 

patterns of connectivity. 

3. Determine the efficacy with which field-based data loggers can be used to 

monitor surface-water connectivity in a lowland riverine landscape. Moreover, 

use low-cost data loggers proposed in the literature that can record common 

water quality indicators and used the logged values from the data loggers to infer 

the mechanisms that yielded the surface-water inundation. 
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CHAPTER II  

TERRAIN-BASED ANALYSIS OF SURFACE-WATER CONNECTIVITY WITHIN 

A COASTAL RIVER-FLOODPLAIN SYSTEM 

 

Introduction 

Riverine landscapes are composed of a heterogeneous mosaic of landforms and 

habitat patches that have co-evolved over time (Harvey and Gooseff, 2015, National 

Research Council, 2002). This heterogeneity is largely controlled by the periodic 

connection between the active channel and floodplain/riparian portions of riverine 

landscape (Poff, 2014, Poff et al., 1997, Poff et al., 2006). The emphasis on connectivity 

has prompted many studies of river-floodplain systems to employ the hydrologic 

connectivity approach (Hudson et al., 2013). Hydrologic connectivity has been defined 

as the water-mediated exchange of energy, matter, and biota between elements of the 

riverine landscape (Wohl, 2017, Amoros and Roux, 1988, Wohl et al., 2018). Overbank 

flows typically cause the greatest variation in hydrologic connectivity from surface 

waters (surface-water connectivity, hereafter). However, widespread surface-water 

connectivity throughout a floodplain can occur below bankfull flow conditions (Kupfer 

et al., 2014, Meitzen et al., 2013). Tockner et al. (2000) termed these lower magnitude 

and higher frequency sub-bankfull flows as “expansion processes”. This variation in 

river-floodplain connectivity and its influence on sediment and nutrient recycling create 

the heterogeneous nature of floodplain environments (Poff et al., 1997, Sparks, 1992). 

Losses in river-floodplain connectivity due to human impacts (e.g., flow/flood control 
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structures (Poff et al., 1997), channel modification (Tockner and Stanford, 2002), and 

land-use change (Allan, 2004)) across the globe have been well documented in the 

literature. However, a formal framework for determining the change in landscape 

connectivity in river-floodplain environments under a variety of flow and human 

influence regimes has so far been lacking. 

In this study, we examine how surface-water connectivity varies spatially with 

changes in river-stage within the floodplain of a coastal river in Texas. Specifically, we 

address the question: What type of relationship does floodplain-level surface-water 

connectivity have with river stage? Our approach first involves disaggregating the 

floodplain into hydrologic objects/facets (facets hereafter) in order to characterize the 

floodplain geomorphology. We then determine the river stage needed for these facets to 

become connected to the river by using a morphometric approach that mimics a rising 

water surface level as predicted by the flood pulse concept. We quantify surface-water 

connectivity within the floodplain as a function of river stage using graph theory. 

Hydrologic connectivity between a river and specific floodplain features (e.g., oxbow 

lakes (Bishop-Taylor et al., 2015), vegetation patches (Kupfer et al., 2014), species 

habitats (Ishiyama et al., 2014)) has been analyzed using graph theory, but little attention 

has been given to overall floodplain surface-water connectivity. Finally, we discuss how 

an understanding of the relationship between river-stage and floodplain surface-water 

connectivity can advance the knowledge-base of river-floodplain interactions and inform 

management of river-floodplain systems. 
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Study Area 

Our study area is a 16 km stretch of the largely forested Mission River floodplain 

downstream of the Town of Refugio on the Coastal Bend of Texas (Figure II-1). 

Numerous floodplain landforms including secondary channels, backswamps, oxbow 

lakes, cutoffs, abandoned channels, meander scars, natural levees, and bluffs are littered 

throughout the study area. Elevation generally ranges from 0 to 19 m above sea level 

with the steepest slopes found along channel banks and edges of the floodplain (Figure 

II-1c). The study site has a mean slope of 3.1% with a range from 0 to 66% and a main 

channel slope of 0.1 mm/m. Clay, clay-loam, and sandy-loam are the dominant soils 

with the finer-grain soils generally found below the steep slopes along the floodplain 

edge (SSURGO). Floodplain forest/wetlands are the dominant land cover in areas near 

perennial and secondary channels, while scrub/shrub and pasture/grassland are the 

dominant land cover types in the uplands (Homer et al., 2015). 
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Figure II-1. a) Regional location map of the Mission River Floodplain (red polygon) on the Coastal 

Bend of Texas (Note M-A NERR = Mission Aransas National Estuarine Research Reserve). B) 

Rating curve generated using flow records for the years 1995-2014 from U.S. Geological Survey 

(USGS) gaging station 08189500 (Figure II-1c) on Mission River (Note: Obs indicates observed 

values and Fit is a fitted logistic equation). c) Location map of the Mission River floodplain (red 

polygon; horizontal coordinates are in UTM zone-14N). A gridded digital terrain model generated 

using Federal Emergency Management Agency/Texas Water Development Board point clouds from 

2006, streams (blue lines), the USGS gaging station on MR (08189500), and boundary for the Town 

of Refugio are also included. 

The study area has a subhumid-to-semiarid subtropical climate with extreme 

variability in precipitation (Davis and Smith, 2013, Fulbright et al., 1990, Norwine and 

John, 2007). Mean daily discharge at the U.S. Geological Survey gaging station below 

Refugio (Gage ID: 08189500) ranged from 0 to 1903 m3/s with a mean of 3.4 m3/s  

(USGS, 2016). The distribution for annual peak discharge is extremely skewed 

(Schoenbaechler and Guthrie, 2011), with a range of 1 to 2237 m3/s. Similarly, the 
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distribution of stage is also skewed with range of 0.8 to 10.2 m and 1 to 12 m for mean 

daily and annual peak stage, respectively (USGS, 2016). Published estimates of bankfull 

conditions occur at the 08189500 gage with a discharge of 107 m3/s and stage of 6.1 m, 

but the floodplain widens and the river becomes more sinuous in the downstream 

direction. This results in high variation of hydraulic and geomorphic conditions that can 

complicate the application of point-sampled streamflow measurements to other portions 

of the floodplain (Hudson et al., 2013, Tockner et al., 2000). Moreover, the lower half of 

the main channel within the study area is influenced by tidal processes (Davis and Smith, 

2013, Nelson and Tolan, 2008), that further complicates hydraulic and geomorphic 

conditions. 

Methods 

Generation of Stage-Relative Digital Elevation Model 

We develop a digital relative elevation model (DREM) to determine the height 

above or below the river water surface for all portions of the study area. The DREM is 

essentially a digital terrain model (DTM) without a longitudinal trend from the river. We 

generate the DREM using a DTM and the methodology from Poole et al. (2002) and 

Jones et al. (2008). We first generate a DTM of the study area with a 5-m spatial 

resolution by utilizing topographic LiDAR point clouds, inferred from near infrared light 

pulses (see Appendix A for the methodology used for the generation of the DTM). 

To generate our DREM, we determine the water surface elevation along the main 

channel by generating transects spaced 5 m apart (i.e., at the resolution of the DTM) 

along that channel and restrict each transect to the channel banks. Although water 
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generally absorbs near infrared light, water with movement and turbidity returns a near 

infrared signal—and LiDAR point elevation. Given that, the minimum elevation value 

along each transect is assumed to correspond to the water surface elevation and it is 

assigned to all pixels intersecting a particular transect. We also manually adjust water 

surface elevation values at each transect to maintain “hydrological correctness.” From 

water surface elevation values throughout the transects, we generate a height with 

respect to river stage (at time of LiDAR data acquisition) for every location in the study 

area by generating a raster surface using inverse distance weighted interpolation with 

parameter values of 4 and 400 for the decay parameter and sample size for each pixel, 

respectively. This methodology allows areas near transects to have a more localized 

height-value, while areas far from transects have a more regional value. Finally, we 

subtract the assigned river-stage value for each pixel from our DTM in order to remove 

the longitudinal trend in the floodplain surface and generate our DREM (Figure II-2). 
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Figure II-2. a) Map of relative elevation above river-stage for the entire study area and hydrologic 

impedance between hydrologic facets (facets). Each colored square (yellow, orange, cyan, and 

magenta) depicts the location of the zoomed-in views of the floodplain in b-e. b) Area depicted by 

yellow square in  (a) with facet classes of main channel (MC), secondary channels (SC), tributaries 

(TB), channel banks (CK), slopes (SP), and other (OT). C) Area depicted by orange square in (a) 

with the facet classes of MC, SC, SP, point bars (PB), cut banks (CB), cutoff (CO), and bluffs (BF). 

D) Area depicted by cyan square in (a) with facet classes of MC, SC, CO, TB, WL, CK, and SP. E) 

Area depicted by magenta square in (a) with facet classes of MC, SC, TB, OB, PB, CK, and oxbow 

(OB). 

Delineation of Hydrologic Facets and Floodplain Boundary 

Characterizing flow patterns in a spatial context often relies on digital elevation 

models with raster cells typically being the basic spatial unit (Heckmann et al., 2015). 

However, the hydrogeomorphological significance of raster cells has been questioned 

and has ultimately called for object-based approaches (Gascuel-Odoux et al., 2011, 

Guzzetti et al., 1999, Heckmann et al., 2015). We use a modified approach from Jones et 
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al. (2008) and our DREM in order to delineate hydrologic facets (facets hereafter) that 

are used to divide the study area into patches formed by common hydrogeomorphic 

properties. Facets are similar to floodplain level catchments in that they represent areas 

that drain towards a common point/outlet. We are interested in the connectivity between 

facets caused by a hydrologic connection amongst adjacent facets. A raster-cell based 

approach would only allow a maximum of eight immediate neighbors with all having the 

same geometric properties. Our object-based approach allows an individual facet to 

theoretically have an unlimited number of immediate neighbors with varying geometric 

properties. 

We employ algorithms from the TauDEM Toolbox for ArcGIS (Tarboton and 

Mohammed, 2013) to generate facets within the study area. First, all depressions (real 

and artificial) within the DREM that signified internal drainage are “filled” using the 

standard Fill operation. Second, flow directions and upslope contributing areas are 

determined with the D8 flow direction algorithm (O'Callaghan and Mark, 1984). We 

chose the D8 approach because of its reliability and the large degree of functionality that 

D8 data allows within TauDEM. Third, the drainage network is extracted using the 

Peucker-Douglas Stream Definition algorithm. This algorithm utilizes a method put forth 

by Peucker and Douglas (1975) to identify “upwardly curved” pixels that helps depict 

the location of channels (Tarboton and Ames, 2001). In addition, Peucker-Douglas 

Stream Definition can incorporate Drop Analysis to objectively define a threshold for 

upstream contributing area (200 m2 in this case) that is appropriate for an area while 

upholding “Horton’s laws of drainage network composition” (Tarboton and Ames, 
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2001). Fourth, the drainage network is used to identify all areas that drain towards the 

lowest point of a particular channel reach and delineate facets. 

We consider only the facets that intersect the Mission River floodplain. To select 

the appropriate facets, we use a simple thresholding of the DREM to find all areas that 

have a relative elevation ≤ 7 m (bankfull conditions occur at 6.1 m stage for the 

08189500 gage). Areas at and near the Mission River main channel create a large patch 

that would be inundated with a uniform 7 m rise in the water surface elevation and we 

select all facets that intersect this patch. Due to a lack of flow records, we do not 

explicitly considered flows from three tributaries in the floodplain in our inundation 

estimates, but these tributaries allow the floodplain to extend in the upstream direction 

for each tributary. Not all facets are inundated using the ≤ 7 m criterion, but we also 

included non-inundated facets in our floodplain if they are completely surrounded by 

inundated facets. We also include non-inundated facets that intersect the floodplain edge 

that was inferred by manually identifying linear features beyond the main channel banks 

with steep slopes dipping perpendicularly to the general direction of flow. 

Determination of Hydrologic Impedance 

Here we assume that areas within a facet are always connected and that surface-

water connectivity induced by river flooding follows the flood pulse concept (Junk et al., 

1989, Tockner et al., 2000) in that water from lower areas (i.e. the river) moves to higher 

areas throughout the floodplain when a flood pulse occurs. Surface-water connectivity 

between two adjacent facets occurs when rising surface water levels within the 

topographically lower facet rises to the point where water can breach the boundary 
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between the two respective facets. Hydrologic impedance (HI) is used here as a term to 

describe the factor(s) controlling connectivity between a set of facets. Low HI promotes 

higher surface-water connectivity between facets, while high HI inhibits surface-water 

connectivity (Jones et al., 2008, Kondolf et al., 2006, Pringle, 2003). We quantify HI 

using Eq. II-1 from Jones et al. (2008) (also Eq. II-1 below) —which is a measure of the 

minimum water elevation it would take for the divide between two adjacent facets to be 

breached by a rising water level. 

 HI = Delvmin – Min(Facetelv,a, Facetelv,b) (Eq. II-1) 

 Delvmin is the minimum elevation along the facet divide and Min(Facetelv,a, 

Facetelv,b) is the minimum elevation value within facets a and b, respectively. 

Min(Facetelv,a, Facetelv,b) will be the outlet of the topographically lower facet and Delvmin 

will be at the higher facet’s outlet. The drainage network that forms a conduit of flow in 

the downstream direction also becomes the conduit for backwater flooding and allows 

flood waters to extend outward into the floodplain without the necessity of overbank 

flows. 

Classification of Hydrologic Surface Connectivity with Stage 

We classify a facet as connected by surface water (or connected) when rising 

surface waters breach the facet divide. The facet containing the main channel is 

considered to always be connected and the number of facets classified as connected will 

increase as river stage rises. By mapping HI within the floodplain (Figure II-2) and 

systematically thresholding the DREM, we determine the river stage needed for the 

divide between adjacent facets to be breached as follows. When a connected facet shares 
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a boundary with multiple facets that are not connected by surface water (or not-

connected), the facet with the lowest HI with respect to the connected facet will be the 

first to be connected if river stage continues to rise. For example, the facets with the 

lowest HI with respect to the main channel facet are the first to be breached by the initial 

rise in river stage when a flood pulse occurs.  

We use daily streamflow records for the 08189500 gage from Jul-1939 through 

Dec-2016 to characterize the flow regime. These historical flows inform our 

determination of the river stage that would cause facets to become connected to the main 

channel. Our design simulates an incremental increase in river stage at 10 cm intervals 

from 1.4 to 9.4 m, numbering 80 realizations, with flood water spreading into the 

floodplain using a backwater and flood pulse mechanism. The long-term mean river 

stage is 1.2 m, but we initiate our DREM thresholding at 1.4 m, which is the mean river 

stage during acquisition of the LiDAR data used to generate the DREM. In addition, we 

determine the return period for the flows that initiate connectivity between a respective 

facet and the main channel using river-stage values, a fitted rating-curve (Figure II-1b), 

and a Generalized Extreme Value distribution (see Appendix A for the methodology 

used in the determination of return periods). 

Graph Conceptualization 

We employ graph/network theory to quantify connectivity. Detailed descriptions 

of the theory can be found in Harary (1969), Chartrand (1977), and Chartrand and 

Lesniak (1986). For our graph formulation, vertices represent facets and the existence of 

an edge between any two vertices depicts a connection between the respective facets. To 
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maintain the geospatial context of the floodplain within our graphs, we conduct the 

determination of vertices and connections/edges within a GIS environment (ArcGIS 

10.2). Specifically, two facets (vertices) need to share a boundary/divide and contain the 

same classification (connected or not-connected) in order for there to be an edge/link 

between the two vertices (facets) within the graph. Our analysis is mostly concerned 

with how connectivity varies within the floodplain as a result of rising surface water, but 

we are also interested in how the connections between not-connected facets changes 

with a rising river stage; thus we develop graphs determining connections between both 

classifications, connected and not-connected, of facets for each of our simulated river 

stage values. 

The facet classification scheme utilized in our simulation of a rising river stage 

implicitly imposes a directed nature to our graph analysis (from connected to not-

connected). This is because a rising river stage will transport water (and other materials 

such as sediment, nutrients, and biota) from topographically lower areas to higher areas. 

Thus, in our connectivity analysis, we use directed graphs (or digraphs). We determine 

the directionality by finding the minimum relative elevation within each facet and 

directing the connection from these points to neighboring facets that have a higher 

relative elevation. 

We also incorporate HI into our graph conceptualization by using the HI of a 

particular facet with all adjacent facets in order to apply edge weights to our digraphs. 

Our edge weighting (wi) varies between 0 and 100; and is determined as 
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i

i n
i

i=1

0, if n=0

100, if n=1

HI
1-w =

HI
x 100, otherwise

n-1




 
 
 
 
  
 


   (Eq. II-2) 

where n is the number of adjacent facets with the same classification as the facet from 

which the directed edge will originate, HIi is the hydrologic impedance between the two 

facets that will be connected with the directed edge, and ∑ 𝐻𝐼𝑖
𝑛
𝑖=1  is the summation of 

hydrologic impedance values for the set of adjacent facets with the same classification. 

The facet that has the lowest HI with respect to the facet from which the directed edge 

will originate will have the highest wi. These weights ultimately allow the magnitude of 

individual connections amongst facets to be incorporated into the quantification of 

overall connectivity. 

Quantification of Graph Connectivity 

We calculate six graph-theoretical metrics (Table II-1) and examine their 

variations as a function of river stage. As we are concerned with surface-water 

connectivity within the floodplain as a whole, we compute all of our connectivity 

metrics at the graph level. Graph-level connectivity is typically analyzed using simple 

metrics that rely on topological properties and Table II-1 shows the ones we use here. 
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Table II-1. Graph theoretical metrics of connectivity and associated attributes. 

Metric Definition 
Application 

Domain 
Type of Information Source 

Graph Order 

(N) 

Number of 

vertices (i.e., 

facets) in a 

graph. 

Ecological 

Indicator on the number 

or dominance of 

particular habitat 

patches (or facets) 

within an area. 

Fagan (2002); Jordán et al. 

(2003); Marcot and Chinn 

(1982); Rayfield et al. 

(2011);  and Treml et al. 

(2008) 

Mean Node 

Degree d  

d
d

N
=  

d is vertex 

degree; 

N is number 

of vertices 

Ecological 
Indicator of mean 

habitat accessibility. Cantwell and Forman 

(1993); Ferrari et al. (2006); 

Forman (1995); Jordán et al. 

(2003); Kupfer et al. (2014); 

Marcot and Chinn (1982); 

and Rayfield et al. (2011) 

Geomorphic 

Indicator on the 

accessibility to the main 

conduits of material 

flow (main, tributary, 

and secondary 

channels). 

Graph 

Diameter (D) 

Maximum 

geodesic 

distance in a 

graph 

Ecological 

Indicator of the 

compactness of a graph 

based on maximum 

distance between any 

two patches (or facets). 

Forman (1995); Jordán 

(2001); Jordán et al. (2003); 

Rayfield et al. (2011); 

Phillips et al. (2015); and 

Ricotta et al. (2000) 

S-metric 

(S(g)) 

See Li et al. 

(2005) for 

description 

on how to 

compute. 

Geomorphic 

Measure of “hub-like” 

connectivity that is an 

indicator of scale-

properties in graphs 

Heckmann et al. (2015); Li 

et al. (2005); and Phillips et 

al. (2015) 

Spectral 

Radius (λ1) 

Largest 

eigenvalue of 

the adjacency 

matrix of the 

graph (see 

Biggs (1993) 

for 

description of 

algebraic 

graph 

theory). 

Geomorphic 

Indicator of complexity 

in system response to 

external perturbations 

and the threshold for 

coherent/incoherent 

behavior amongst 

system elements. 

Heckmann et al. (2015); 

Logofet (2013); Phillips 

(2011); Phillips et al. 

(2015); Restrepo et al. 

(2006); Restrepo et al. 

(2007); Schreiber and 

Hastings (1995); Tinkler 

(1972); and Yuan et al. 

(2008) 

Algebraic 

Connectivity 

(λ(A)N-1) 

The second-

smallest 

eigenvalue of 

the Laplacian 

matrix for the 

graph. 

Geomorphic 

Indicator of the 

synchronizability of the 

system being modeled 

(i.e., synchronized 

transitions from one 

connection class to 

another). 

Biggs (1993); Duan et al. 

(2009); Heckmann et al. 

(2015); Phillips (2011); 

Phillips (2012); Phillips 

(2014); and Phillips et al. 

(2015) 
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Geometric Influence on Connectivity 

Our graph analysis relies on spatially explicit graphs to model the connection 

between adjacent facets. Geometric and spatial relationships between facets can 

influence the values of our indicators described in Quantification of Graph Connectivity; 

thus we compute six different geometric variables for each facet (Table II-2) and 

determine how they influence connectivity for each of our simulated river stages. We 

plot the mean vertex degree (𝑑̅) for both the connected and not-connected facets as a 

function of river stage. We chose mean vertex degree, which is one the most widely used 

measures of graph connectivity, due to its conceptual and operational simplicity 

(Rayfield et al., 2011). The distribution of values for each geometric variable is used to 

divide the facets into four distinct groups using quantiles (see Table II-3 of Supplemental 

Material for variable value ranges and sample size within each quantile). The geometric 

variables and how we use them is outlined in Table II-2. 

Table II-2. Geometric variables used in the geometric and spatial assessment of floodplain facets. 

Geometric Variable Description 

Facet area (AF) 
Determines how facet size influences floodplain 

connectivity. 

Elongatedness, ratio between the minor and major 

axes for the minimum bounding ellipse (Axismin 

/Axismaj) 

Determines how facet shape influences floodplain 

connectivity (values closer to 0 indicate more 

elongation and values close to 1 indicate more 

circular or compact). 

Mean distance from the geometric centroid of a 

facet to all geometric centroids of facets within 

3000 m ( Fdist ) 

Determines how spatial clustering influences 

floodplain connectivity (smaller values indicate 

more clustering). 

Mean slope for terrain within facet ( Fslp ) 

Indicator of the types of landforms that can be 

found within and near groups of facets (banks and 

levees have steeper slopes, while backswamps and 

bluffs are flatter). 

Length of delineated channel (Lch) 
Indicator of how much influence the internal 

drainage network has a facet’s connectivity. 

Minimum distance to main channel ( mcdist ) 
Determines how straight-line distance to main 

channel can influence floodplain connectivity. 
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Results 

Generation of Stage Relative Digital Elevation Model 

Relative elevation ranges from -0.9 to 16.7 m with a mean of 8.4 m for our 

DREM (Figure II-2a). The variability in DREM values increases in the downstream 

direction. DREM patterns are similar to the source DTM and it still allows the numerous 

floodplain features (e.g., main channel, tributaries, secondary channel, and oxbows) to 

be visually recognized. Facets containing some of these floodplain features are shown in 

Figures II-2b – II-2e. We classify each facet by the dominant landform it contains and 

present descriptive statistics on the distribution of relative elevation for the major 

landforms (Figure II-3). Bluffs, other, and slopes have the highest median relative 

elevation while oxbows and wetlands have the lowest mean relative elevation. In terms 

of variability in relative elevation, the main channel and tributaries have the highest 

while bluffs and oxbows have the lowest variability. 

 

 



Figure II-3. Box-and-whiskers plots of relative elevation for the dominant floodplain landform 

within hydrological facets. (Note: MC = main channel; TB = tributary; SC = secondary channel; CB 

= cut bank; PB = point bar; CK = channel banks (include channel banks that are not a cut bank or 

point bar); CO = cutoff; OB = oxbow; SP = slope (facets that slope downhill but doesn’t contain an 

obvious channel such ass floodplain edges and bluff flanks); WL = wetland (includes backswamps, 

marshes, forested, and other types of floodplain/riparian wetland); BF = bluff; other = OT (features 

that could not be classified as a landform; possibly due to human modification)). 

Delineation of Hydrologic Facets and Floodplain 

          We delineate an initial set of 2241 facets for the entire study area using the DREM. 

These initial facets range in areal coverage from 0.02 to 17.55 hectares (hec) with a 

mean area of 1.88 hec, but HI between many of these initial facets is < 1mm. Applying a 

threshold to our DREM of 1 mm aggregates many of our initial facets and yields a final 

set of 939 facets. This new set of facets ranges in size from 0.02 to 341.97 hec with a 

mean area of 2.91 hec (Figure II-4a). Statistically significant (p < 0.01) spatial clusters of 

facets with low relief are found in more central portions of the floodplain (Figures II-2c 

– II2e, II-3). Moreover, clusters (p < 0.01) of high relief facets are found in upper 

portions of the study area (Figures II-2b, II-4). However, a large very flat patch of 

wetland area east of the natural levee (eastern bank of main channel in south-central 
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portions) creates ambiguous flow directions from the D8 algorithm and some facets in 

this area have spurious linear boundaries (Figure II-4a). 

Figure II-4. a) Area occupied by each of the total of 939 hydrologic facets (facets) delineated within 

the Mission River floodplain. Facets are delineated using the digital relative elevation model 

(DREM). B) River stage needed for each facet to be connected to the main channel. C) Return 

period for the river stage needed for connection between a particular facet and the main channel. 

Return period determined using the fitted rating curve function (Figure 1b) and a Generalized 

Extreme Value distribution that is fitted to the peak flow statistics for the USGS Gage 08189500. 

Determination of Hydrologic Impedance 

HI ranged from ~0 to 12.9 m with a mean of 1.9 m (Figure 2a). Facets with low-

lying floodplain features (i.e., secondary channels, oxbow lakes, meander scars, and 

back swamps) have lower HI values with their neighbors, while facets with upland 

features (i.e., natural levees, bluffs, and the floodplain edge) have higher HI values. The 
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HI relationship that the main channel facet has with its immediate neighbors highlights 

the significance of low spots along the main channel banks (Figures 2b-e) that ultimately 

allow high streamflows to leave the main channel and spread into the floodplain. 

Moreover, the spatial relations in HI present the importance of low-lying features to 

floodplain connectivity (especially secondary channels, oxbow lakes, and tributaries) 

because these features are the first to become connected to the river when surface water 

levels begin to rise. 

Classification of Connectivity with Stage 

Topographic features ultimately control similarities in river-stage values needed 

for facets to become connected to the main channel (Figure II-4b). The streamflows 

needed for the majority of facets to become connected have a return period of < 1.5 

years (Figure II-4c). Facets on the edge of the floodplain or those associated with high-

standing bluffs are the only ones that require streamflows with return periods > 2.0 years 

(Figure II-4c). 

The number and proportion of connected facets increases nonlinearly as river 

stage rises (Figures II-4a – II-4b). Surface-water connectivity within the floodplain 

increases abruptly as river stage rises from 1.4 to 2.9 m (Figures II-5a – 11-5f); than the 

rate of increase in connectivity becomes more modest as river stage rises from 2.9 to 6.0 

m (Figures II-5a – II-5b, II-5g - II-5h). The rate of change for surface-water connectivity 

becomes virtually zero for river-stage values from 6.0 to 9.4 m because there are only a 

handful of facets still classified as not-connected at that point (Figures II-5a - II-5b, II-



 

25 

 

4h).  Most of the floodplain is classified as not-connected for river-stage values of < 2.0 

m; and connected facets dominate at higher river-stage values (Figure II-5). 

 

Figure II-5. Counts (a) of facets and percentage (b) of total study area classified as connected (C) or 

not-connected (NC) to the main channel for river-stage values from 0.81-11.61 m. Vertical lines in 

(a) and (b) indicate the river-stage values (0.81, 2.61, 4.21, 4.91, 5.81, and 8.21 m) depicted in (c), (d), 

I, (f), (g), and (h), respectively. The maroon vertical lines in (a) and (b) provide examples of 

streamflows where not-connected conditions dominate the floodplain (c, d, and e), while the light 

blue vertical lines highlight some streamflows where connected is dominant (f, g, and h). 

In a spatial context, the classification of connected facets generally moves 

outwards/laterally from the main channel facet as river stage rises in a fashion similar to 

a flood pulse (Figures 5c-5h). Facets that contain low-lying features such as oxbow lakes 

and meander cutoffs are the first to become classified as connected. Facets that contain 

tributaries and secondary channels generally are the next ones to become connected and 

these features will ultimately be the conveyances of flood-waters throughout the 

floodplain using a backwater flooding mechanism. The influence from tributaries and 
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secondary channels also creates patterns that allow several “islands” to develop 

containing a number of facets. These island-facets are mostly associated with bluffs and 

natural levees and they provide locations within the floodplain that only become 

connected when flood-waters are significantly high and have the potential to create 

“refugia” for biota that are less flood-tolerant. 

Quantification of Graph Connectivity 

Graph order (N), mean vertex degree (𝑑̅), and the gamma index (γ) show that 

connectivity among the facets for the connected class increase dramatically when river 

stage rises from 1.4 to 2.9 m (Figure 6). N exhibits a steady but modest increase until 

~6.0 m and the latter two connectivity measures (𝑑̅ and γ) for the connected class remain 

fairly constant for higher river-stage values (Figure 6). 

 S(g) increases dramatically for the connected class at river-stage values from 1.4 

to 2.9 m (Figure 6) and continues to increase from 2.9 to 6.1 m, but at a more modest 

rate. A small and sudden drop in S(g) values occurs at 6.2 m and then it remains constant 

for greater values. λ1 is similar to the aforementioned measures with a dramatic increase 

river-stage values of 1.4 to 2.9 m and consistent values for higher values of river stage, 

but the values show more of an oscillatory behavior throughout the simulated stage 

values. λ(A)N-1 exhibits the most different values amongst all the measures in that it 

initially increases dramatically, but then it drops quickly in an oscillatory fashion until it 

retains a constant value for river-stage values > 2.3 m (Figure 6). 
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Figure II-6. Graph/network connectivity metrics for the connected (C) and not-connected (NC) 

digraphs plotted as a function of river-stage. N is the number of hydrologic facets (facets)/vertices 

within each network, 𝒅̅ is the mean vertex degree for each of the networks, γ is the gamma-index for 

each network and it is similar to 𝒅̅, S(g) is the S-metric that is used to describe hub-like connectivity 

within each network, λ1 is the spectral radius of each network that is used to describe network level 

complexity, and λ(A)N-1 is the algebraic connectivity of each network that is used to describe 

synchronization in the network. 

 As for the facets within the not-connected class, the six measures could only be 

computed for river-stage values from 1.4 to 5.9 m because the only remaining facets 

within the not-connected class are disconnected at greater river stages. This negates the 
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possibility of computing our chosen measures. Most of the trends roughly mirror the 

values from the facets within the connected class. For example, N, d , and γ experience 

rapid declines in their values for river stages from 1.4 to 2.9 m. N continues the mirrored 

trend with a gradual decline until a river-stage of 5.9 m. d  and γ exhibit more of an 

oscillatory behavior that tends to hover around the same value. Similar to N, the S(g) 

curve also follows a mirrored trend. λ1 also oscillates, but values are greater for river 

stages from 2.0 to 2.5 m than the initial values. The peak in λ1 is followed by a sharp 

decline with some small oscillations that asymptotically approach zero. Once again, 

λ(A)N-1 exhibits unique behavior because values are constant until a river-stage of 3.6 m 

where large oscillations occur that ultimately result in the values ending at zero. 

Geometric Influence on Connectivity 

We plot the mean vertex degree d  for facets as a function of river stage with six 

geometric properties for the connected and not-connected classes (Figure 7). Larger 

areas tend to have higher connectivity scores than smaller areas for all of the simulated 

river-stage values regardless of the connectivity class (Figure 7a). This is to be expected 

because the more area that a facet occupies, the greater the opportunity for it to have 

neighbors for it to be connected with. Connectivity scores are similar amongst all 

quantile groupings and classes for Axismin /Axismaj for river-stage values of < 2.0 m 

(Figure 7b). Facets that are very elongated in shape, as opposed to more circular or 

compact, exhibit higher connectivity for the connected class at river stages of > 2.0 m. 

Although this is probably due to the fact that the main channel facet, which has by far 

the highest vertex degree (d) value, is part of the most elongated grouping. Thus 



 

29 

 

elongation in facet shape may not have a very strong influence on connectivity because 

the scores for the other groupings are similar and there are no obvious spatial patterns in 

the distribution of quantile groups. 

 

Figure II-7. Mean vertex degree for hydrologic facets (facets) plotted as a function of river stage 

with six geometric properties within and between facets for the connected (C) and not-connected 

(NC) classes. facets are divided into quantiles. The geometric properties include: a) facet area; b) 

ratio between minor and major axes (Axismin /Axismaj) for the minimum bounding ellipse for each 

respective facet; c) mean distance from one facet to all others within a 3000 m buffer; d) mean facet 

slope; e) delineated channel length within each respective facet; f) minimum distance to the main 

channel facet. 

Connectivity scores are similar amongst all groupings and classes for the mean 

distance between facet centroids for river-stage values of < 2.0 m (Figure II-7c). The 
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scores for the connected class are lowest for the quantile grouping with the greatest 

mean distance between facet centroids for river-stage values > 2.0 m. In a related 

fashion, this grouping maintains the highest connectivity scores for the not-connected 

class because these facets are generally found on the edges of the floodplain. The 

grouping with the second largest mean distances between facet centroids has the highest 

connectivity scores and this is because it includes the main channel facet and facets with 

other floodplain features that promote connectivity (tributaries, secondary channels, and 

oxbow lakes). The two other groupings (Q2 and Q3) have similar connectivity scores 

because they are found in the same portions of the floodplain and they contain a number 

of connectivity promoting floodplain features themselves. 

Connectivity scores do not differ amongst the facet slope groupings within each 

class for river-stage values of < 2.5 m (Figure II-7d). The scores are similar for all river-

stage values amongst the slope groupings for the not-connected class. For river-stage 

values > 2.5 m, facet groupings with the higher mean slope have higher connectivity 

scores in the connected class because the higher mean slopes indicate that the facets 

have floodplain features that promote connectivity. An example is the grouping with the 

highest mean slope because it contains the main channel and tributary facets. 

Connectivity scores amongst the groupings within each class (connected and not-

connected) for the delineated length of channel within each facet (Figure II-7e) are very 

similar to the scores from facet area (Figure II-7a). At river-stage values < 2.0 m, 

connectivity scores are similar amongst the distance to the main channel facet groupings 

for the connected class (Figure II-7f); while the connected class have higher connectivity 
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scores for groupings with greater distances to the main channel facet. d  is similar 

amongst main channel distance groupings for not-connected at river-stage values > 2.0 

m; while groupings of connected with shorter distances to the main channel facet having 

higher d  values. This last portion is expected because water from a rising river stage 

will move from the river outward along the preferential flow path. 

The dramatic initial increase in connectivity is mostly driven by the large size, 

positioning, and elongated shape of the main channel facet (longitudinally spans entire 

study area and centrally placed). These geometrical properties allow the main channel 

facet to have a much larger number of neighbors than any other facet and thus increase 

overall connectivity and complexity. Moreover, a positive relationship is found between    

and facet area, mean slope within facets, delineated channel length, and elongation 

(inverse of Axismin /Axismaj) (Figure II-7). This indicates that large facets that contain 

major components of the floodplain drainage system are significant with regard to 

connectivity within the floodplain. On the other hand, a negative relationship between   

and distance to the main channel facet is also found and indicates that the river is the 

dominant control of connectivity within the floodplain. 

Discussion 

Mapping of HI allows us to determine the spatial patterns of connectivity by 

systematically thresholding the DREM and comparing it to HI between facets. 

Thresholding algorithms that operate on DEMs and similar types of data provide an 

efficient means for characterizing inundation from flood events (Wang et al., 2002). 

Bankfull conditions for the 08189500 gaging station have been specified at a river-stage 
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of ~6 m, but the majority of the floodplain becomes connected to the river at river-stage 

values below 3 m. Notwithstanding issues concerning the application of gaging station 

data to other portions of a channel reach (Hudson et al. (2013); Tockner et al. (2000)), 

our results agree with previous work in that widespread floodplain inundation and 

connectivity occur below bankfull conditions for lowland riverine environments due to 

low spots along the channel banks, abandoned channels, and confluences with 

tributaries/secondary channels (Hudson et al., 2013, Kupfer et al., 2014, Meitzen et al., 

2013, Tockner et al., 2000). These sub-bankfull flows have been termed “expansion 

processes” and they are critical components of river-floodplain systems (Tockner et al., 

2000). Flows that initiate expansion processes occur more frequently than bankfull flows 

and this ultimately increases river-floodplain exchange opportunities. 

The periodic connection between a river and floodplain features (e.g., oxbow 

lakes, backswamps, meander scars) is a major driver in nutrient dynamics (Schramm et 

al., 2009), riparian vegetation patterns (Bornette and Puijalon, 2011, Davis and Smith, 

2013), fish food-web dynamics (Robertson et al., 2008), and inter-habitat mobility of 

fish and aquatic insects (Ishiyama et al., 2014). Importantly, habitat connectivity has 

been shown to be a key factor in ecosystem health (Urban et al., 2009). Connectivity 

amongst components of the system being studied is a core research theme that the fields 

of geomorphology and ecology hold in common (Wohl et al., 2014). Our results indicate 

that connectivity and complexity increase nonlinearly at the graph/landscape level 

(Figure 6). Similar results of nonlinear increases in surface-water connectivity with 

increasing streamflows have been reported in other lowland floodplain/wetland systems 
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(e.g., Bishop-Taylor et al. (2015); Ishiyama et al. (2014); Kupfer et al. (2014)). 

Therefore, surface-water connectivity can serve as a useful proxy for species richness 

within floodplain/wetland environments (Ishiyama et al., 2014). 

Our graph representation of the river-floodplain system exhibits some of the 

characteristics of a scale-free graph/network. Among the properties of scale-free graphs, 

two can be related to our graphs: (1) a scale-free graph can be created or modified by 

any process, but preferential attachment to relatively high degree vertices is the 

dominant process; and (2) scale-free networks contain highly-connected vertices (i.e., 

hubs) that maintain graph-level connectivity, and this connectivity is resilient to most 

random disconnections amongst vertices, but also highly sensitive to disconnections of 

hub-like vertices (Li et al., 2005). The first property indicates that vertices (facets in our 

case) are more likely to become connected to vertices that are already connected to many 

other vertices. Under our framework, a large proportion of the increases in connectivity 

are due to an increasing number of connections with the facets containing the river and 

other low-lying floodplain features because of their high neighbor count. Thus these 

types of facets will ultimately be the drivers of increases in spatial connectivity. The 

second scale-free graph property indicates that overall system connectivity is robust 

because the majority of vertices are sparsely connected. This indicates that the odds of 

most of the graph becoming disconnected when a vertex is removed at random are low 

because there are relatively few hubs. However, graph-level connectivity is also 

vulnerable to disconnections of one or more hub-like vertices. For example, the 

construction of levees within the floodplain can disconnect the river from the remainder 
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of the floodplain and dramatically diminish the overall connectivity of the river-

floodplain system. A rich and diverse theoretical basis for understanding interactions 

within natural and man-made systems through the use of scale-free graphs has been 

developed in recent decades (Li et al., 2005); and this knowledge-base can help further 

the basic understanding and management of lowland riverine environments. Therefore, 

we propose that more research is needed to determine to what extent the drainage 

patterns of lowland riverine floodplains can be described using a scale-free graph 

perspective. 

Our measure of complexity (λ1) experiences a dramatic initial increase for the 

connected class at river-stage values below 3 m and more “stable/plateaued” complexity 

at higher river stages. This is important because the level of sensitivity to external 

forcings is directly related to the river flows and the associated floodplain connectivity. 

For example, if a pollutant is introduced somewhere within the floodplain, its 

propagation will depend on the river stage that determines the surface-water connection 

and the hydrogeomorphic relationship of the point of introduction with other parts of the 

floodplain. λ1 has also been shown to have a relationship with the onset of macro-level 

synchronization (Restrepo et al., 2006); which is a graph-level state that occurs when the 

components of a complex system are operating in unison (Mosekilde et al., 2002). When 

the vertices of a system are allowed to freely oscillate between states (connected and 

not-connected in our case), incoherent behavior occurs when numerous nodes are 

experiencing a phase transition that causes a lack of synchronization (Restrepo et al., 

2006). Within our conceptualization, incoherent behavior will cause our measure of 
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synchronization (λ(A)N-1) to oscillate; and this occurs for the connected class at river-

stage values < 2.5 m (Figure 5). λ(A)N-1 for the connected class does not oscillate at 

river-stage values of > 2.5 m and this is the point where λ1 begins to level-off. Thus, we 

can assume that the connected components are in a coupled/coherent state. An 

understanding of when synchronization occurs can be useful in the control/management 

of complex systems (Kapitaniak, 1996, Restrepo et al., 2006). For example, there have 

been growing interests in deliberate reservoir releases that are designed to mimic flood 

pulses that establish ecologically significant river-floodplain connectivity (Galat and 

Lipkin, 2000, Poff, 2014, Richter and Thomas, 2007). Implications associated with 

hazards and water supplies can make these types of river management strategies 

contentious, but analyses of complexity and synchronization can help identify the 

minimum flow needed in order for the downstream river-floodplain system to reach the 

desired macro-level state of coherence. These types of analyses ultimately serve to 

maximize the benefits from these reservoir releases while also minimizing the costs 

(such as those due to flood damage and loss of water supplies). 

Other types of management strategies and/or restoration for river-floodplain 

systems can be informed from analyses similar to ours. In fact, the establishment of 

protected areas that include river reaches is an important strategy for the conservation of 

freshwater biodiversity and resources (Dudgeon et al., 2006, Pringle, 2001, Saunders et 

al., 2002). Protecting the most critical locations with regard to the river-floodplain 

ecosystem from human-induced surface-water disconnection will be an important 

management objective for riverine management moving into the future (Tockner and 
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Stanford, 2002). On the other hand, a common restoration practice is reconnecting the 

main channel of a river with its floodplain by constructing side/secondary channels 

(Buijse et al., 2002, Tockner et al., 2010). An approach similar to the one we present 

here can help inform the locations already suited for the establishment of new channels 

that will promote the desired level of river-floodplain connectivity. For example, 

establishing a river connection with portions of the floodplain that were not previously 

connected essentially involves merging two drainage networks. A graph theoretical 

approach can be useful in finding optimum locations within an existing network that will 

promote the most efficient exchange of information (or energy, matter, and biota in this 

example) between the two networks in question (Taylor and Restrepo, 2011).  

Our approach also highlights a number of local and regional implications for the 

Mission River. The composition of vegetation within the Mission River floodplain was 

investigated by Davis and Smith (2013). They found that mid- to late-successional 

species are the most dominant vegetation type within the floodplain community. This 

indicates that Mission River is characterized by an infrequent or low-magnitude flood 

regime and our results agree with their findings. Our approach is useful in finding the 

specific streamflows that control the composition and structure of the vegetation 

community. Moreover, it can guide predictions of how changes in the riparian vegetation 

community can affect water deliveries to the coast. This is significant because Mission 

River has a skewed streamflow distribution with > 66% of flows passing the 08189500 

gage (the most downstream gage) being from direct runoff and flood pulses/events 

(baseflow separation conducted using the Web-based Hydrologic Assessment Tool from 
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Lim et al. (2005) and Lim et al. (2010)). Recommendations for freshwater deliveries to 

the coast from Mission River have been established (Chen, 2010), but the contribution 

and influence from flood pulses/events is not explicitly considered. We find this 

troubling because our analysis has shown that significant river-floodplain interaction is 

occurring at river-stage values > 3 m and this can affect the timing, quantity, and quality 

of water delivered to the coast. Mission River flows can be broken into three 

components: (1) flows unlikely to interact with the floodplain (stage < 3 m); (2) flows 

likely interacting with the floodplain (3 m < stage < 6 m); and (3) flows that are very 

likely interacting with the floodplain (stage > 6 m; i.e., above bankfull conditions). 

Analyzing mean daily stage and discharge records from the 08189500 gage for the time-

period from 2006 through 2015, the components of total discharge are 40, 45, 15%, for 

the aforementioned components of streamflow, respectfully. The large quantities of 

water that are likely or very likely interacting with the floodplain will undoubtedly 

impact the timing, quantity, and quality of freshwater delivered to the Mission-Aransas 

estuary downstream. 

There are a few limitations with our analysis that merit further discussion. First, 

we are unable to determine the exact collection date for the LiDAR data that we use to 

generate a DTM of the floodplain. River stage varied by 2.2 m during the known 

acquisition time-period and our use of a mean value (1.4 m) introduced uncertainty in 

the river-stage values that we used in our analysis. Second, the accuracy of our DREM is 

not analyzed, and it further adds uncertainty to our analysis. Third, our conceptualization 

of inundation within the floodplain does not consider hydrodynamics or influences from 
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groundwater. The inclusion of these factors would likely have yielded different 

inundation and connectivity patterns. Subsequent work that we have performed (Chapter 

III) has indicated that our morphometric approach used here tends to overestimate 

surface-water inundation. This is likely related to our aforementioned first and third 

limitations. In future work we will pursue using water-surface elevations from published 

Flood Insurance Studies in our generation of the DREM to determine if this yields better 

estimates of inundation. Forth, we only simulate a rising river stage. The de-watering of 

the floodplain represents other significant processes (e.g., ponding, infiltration, 

evapotranspiration, etc.) that also influence the structure and function of river-floodplain 

systems. Finally, our graph conceptualization of the river-floodplain drainage system 

indicates a hub-like structure that resembles scale-free graphs. However, our use of Drop 

analysis within TauDEM ensured that the delineated floodplain flow network followed 

“Horton’s laws of drainage network composition”. The Horton-Strahler drainage 

network classification scheme divides the network into a set of orders (or scales) that 

theoretically follow scale-free principles (Li et al., 2005). This begs the question of how 

much of the pattern we observe can be attributed to mathematical remnants of the 

delineation algorithm.  Nonetheless, this work is a step towards better understanding 

river-floodplain interactions and implications associated with variations in the level of 

interaction. In our future work, we will compare the results from this study to those 

obtained from other methods for determining floodplain inundation and flow patterns. 

Furthermore, applications of our framework to other river-floodplain systems are needed 
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to determine to how broadly the relationships that we identified in this study between 

river stage and connectivity hold in these types of environments. 

Conclusions 

River-floodplain connectivity is a major factor in the health of riverine and 

riparian habitats, and understanding the processes involved is of critical importance 

(National Research Council, 2010). In this work, we use data on floodplain topography 

and streamflow in graph theoretical framework to characterize the differing levels of 

connectivity within a floodplain that are induced by variations in river stage (i.e., 

surface-water connectivity). We found that connectivity induced by surface water has a 

nonlinear relationship with river stage supporting earlier findings that widespread 

connectivity can occur below published bankfull conditions. We also found that 

connectivity is maintained by a hub-like structure. The physical locations of these hubs 

are critical components of the river-floodplain system and they should be preserved if 

river-floodplain connectivity is the management objective. Our analysis can be used to 

determine when the river-floodplain system is in a synchronized state of surface-water 

connectivity. This type of information can inform management and restoration strategies 

for riparian species that prefer specific levels of river-floodplain connectivity. 

In this study, we adopted a simple morphometric approach for simulating flood 

inundation as predicted by the flood pulse concept; however, our proposed framework 

which relies on object-based and graph analysis also lends itself well to other river-

floodplain connectivity analyses that use flood estimates from mechanistic inundation 

models. While more testing of our proposed framework is needed, we believe that our 
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approach is a step towards developing a robust methodology for quantifying the 

variability of surface-water connectivity within river-floodplain environments. 
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CHAPTER III  

SCALE-FREE STRUCTURE OF SURFACE-WATER CONNECTIVITY IN A 

LOWLAND RIVER-FLOODPLAIN LANDSCAPE 

 

Introduction 

Connectivity between a river and its floodplain is a major driver of water, 

sediment, nutrient, and biotic exchanges within river-floodplain systems in lowland 

environments and it ultimately creates the heterogeneous pattern of habitats and 

landforms commonly found within these landscapes (Junk et al., 1989, Meitzen et al., 

2013, Poff et al., 1997). Surface-water inundation from overbank river flows enable the 

largest and most abrupt exchanges between patches of the lowland river-floodplain 

landscape (Junk et al., 1989, Poff et al., 1997). However, widespread surface-water 

inundation throughout a lowland river-floodplain landscape can occur with river flows 

below published bankfull flow conditions (Czuba et al., 2019, Kupfer et al., 2014, 

Meitzen et al., 2013). The hydrologic connectivity concept – where water is considered 

the conduit through which matter, energy, biota, and information is transferred between 

elements of the Earth surface system (Pringle, 2001) – has been widely used to analyze 

river-floodplain processes that depend on surface-water inundation (Hudson et al., 

2013). The connections between landscape patches induced by surface-water inundation 

within the lowland river-floodplain landscape creates a dynamic network whose size and 

configuration will depend on river flows. This type of conceptualization to a hydro-

geomorphic system lends itself well to ideas and methods from graph and network 
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theory that relies on the structure of interaction between system elements to infer system 

behavior (Heckmann et al., 2015). 

Complex networks theory has been widely applied to understand interactions in 

social, information, technological, biological, and Earth systems (Newman, 2003, Wang 

and Chen, 2003, Phillips et al., 2015, Heckmann et al., 2015, Broido and Clauset, 2019). 

Numerous universal network structures have been identified and the scale-free structure 

is one that has drawn considerable attention (Newman, 2003, Wang and Chen, 2003). 

However, there are debates in the literature over the universality of scale-free networks 

(Broido and Clauset, 2019, Holme, 2019). Nonetheless, scale-free networks have been 

found to exhibit some interesting properties – some examples include growth by 

preferential attachment (Barabási and Albert, 1999), efficiency in the transfer of 

information and materials (Crucitti et al., 2003, Pastor-Satorras and Vespignani, 2001), 

error tolerance (Albert et al., 2000), attack vulnerability (Holme et al., 2002), and 

emergent synchronization (Restrepo et al., 2006). These properties have found utility in 

disciplines that readily use network concepts and it merits investigating if they also 

apply to connectivity patterns in lowland river-floodplain landscapes. Here we present 

the first documented example of a (roughly) scale-free network structure that is induced 

by surface-water connections within a river-floodplain landscape. Surface-water 

connection can originate from surface- and ground-water processes (Junk et al., 1989, 

Tockner et al., 2000, Stanford and Ward, 1993, Poole, 2002), but here we investigate the 

topological pattern of connection from a strictly surface-water perspective. 
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Study Area and Approach 

Our study area (As) is 46.3 km2 of lowland floodplain and coastal plain that 

surrounds a 16 km reach of Mission River on the Coastal Bend of Texas (Figure III-1a, 

III-1b, and III-1c). We use a gridded lidar-based digital terrain model (DTM) to 

represent the topography (Figure III-1c) and two ecological land classifications – soil-

based land classification (soil-patches, herein after) and vegetation-based land 

classification (vegetation-patches, herein after) – to represent landscape patches within 

the study area (see Methods and Tables B-1 and B-2 for descriptions of land 

classifications and how each dataset was developed). Both land classifications exhibit 

high variability in terms of their area (coefficient of variation is 3.07 and 4.23 for soil- 

and vegetation-patches, respectively). Tight sandy loam (TSL) and blackland prairie (B) 

are the soil-patches with the greatest proportion of As (26.7 and 17.1%, respectively), but 

loamy bottomland (LB) and clayey bottomland (CB) have the greatest proportion within 

the floodplain (13.9 and 13.7% of As, respectively; Figure III-1d; Table B-1). Upland 

prairie/grassland (UPG) and upland mesquite woodland/shrubland (UMW) are the 

vegetation-patches with the greatest proportion of As (25.7 and 16.8%, respectively), 

while floodplain/riparian hardwood forest (FHW) and floodplain/riparian grassland (FG) 

have the greatest proportions within the floodplain (13.6 and 5.5% of As, respectively; 

Figure III-1e; Table B-2). 
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Figure III-1. Maps showing the location of the study area and the static spatial datasets used in the 

analysis. (a) Map showing where the study area lies on the Coastal Bend of Texas. (b) Regional map 

showing the study area and hydrodynamic model domain between the cities of Victoria and Corpus 

Christi. (c) Digital terrain model for the study area that includes parts of the Town of Refugio. The 

location of the 08189500 USGS gaging station is also shown. (d) Map of soil-patches used to establish 

the soil-network. Soil-patches have a mean area of 0.11 km2 and coefficient of variation of 3.07. (e) 

Map of vegetation-patches used to establish the vegetation-network. Vegetation-patches have a 

mean area of 0.02 km2 and coefficient of variation of 4.23. (Note: description of patch datasets can 

be found in Tables B-1 and B-2.) 

Inundation from riverine surface water creates a continuous surface that connects 

inundated landscape patches and generates a dynamic network whose size, 

configuration, and function is dependent on river flow. Here we conduct two analyzes of 

the connections between inundated landscape patches – (1) soil-patches and (2) 

vegetation-patches – by simulating an ensemble of flood scenarios that span the 

historical flow record for Mission River (See Methods for description of flood model and 

Figure B-1 for historical flow records). Connectivity is quantified by conceptualizing 

two networks - (1) soil-network and (2) vegetation-network - where the vertices are 
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inundated portions of each patch and edges between vertices are established when the 

boundary between adjacent patches is breached by surface water (Figure III-2). We then 

analyze the topology and algebraic representation of both networks at each simulated 

flow to characterize the dynamic properties of surface-water connectivity within the 

landscape. 

 

Figure III-2. Visual representation of the conceptualization used here to develop the state of a 

landscape network for each of the 23 simulated flows. A patch is considered connected when it 

becomes inundated in one of our simulations. As examples, zoomed-in views of the vegetation-

network for the simulations with stage of (a) 2.00 m, (b) 6.00 m, and (c) 9.00 m are shown. 

Methods 

Data 

We use daily streamflow records for the U.S. Geological Survey gaging station at 

Refugio, TX (Site Number: 08189500) from Jul-1939 through Dec-2018 to characterize 

the flow regime. Time-series plots of stage (h) and discharge (Q) for this time-period are 



 

53 

 

shown in Figures B-1a and B-1b. These flow records and the most recent version of the 

rating curve (stage and discharge relationship) for this station inform the development of 

our model and the flow scenarios (Figure B-1c) that we used in our analysis of surface-

water connectivity. Streamflow records indicate that stage (h) has a mean of 0.9 m and 

range of 0.0 to 11.3 m. Discharge (Q) has a mean of 3.5 m3/s and a range of 0.0 to 

1902.9 m3/s. 

We represent the terrain with a gridded bare-earth digital terrain model (gDTM) 

at 1-m spatial resolution that was developed using two lidar-based gDTMs. Our primary 

gDTM dataset entirely contains our study area and it was developed by the National 

Center for Airborne Laser Mapping (NCALM) using lidar point clouds collected in Mar-

2018 with a point-density of 10-20 points/m2. This NCALM-gDTM was originally at a 

spatial resolution of 0.5-m, but we resampled it to a spatial resolution of 1-m using 

bilinear interpolation. The submerged topography for portions of the main channel were 

synthetically generated using channel bed elevations from a detailed Flood Insurance 

Study (FIS) conducted by FEMA (FEMA, 2014) and methods from Legleiter and 

Kyriakidis (2008). The accuracy of the submerged topography was assessed using 

bathymetric estimates from eight channel cross-sections determined using a Sontek M9 

acoustic doppler current profiler (ADCP). Root mean squared deviations (RMSD) and 

mean absolute deviations (MAD) between the synthetic channel topographies and ADCP 

cross-sections is 76 and 62 cm, respectively, which outperforms the raw NCALM-DTM 

that has an RMSD and MAD of 250 and 220 cm. Portions of the landscape surface still 

included within the model domain but not captured by the NCALM-DTM are 
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represented by a gDTM that was collected by Sanborn Mapping under the auspices of 

the Federal Emergency Management Agency (FEMA) and the Texas Water 

Development Board (TWDB). This FEMA-TWDB-DTM was downloaded from the 

Texas Natural Resource Information System website (TNRIS.org) at a spatial resolution 

of 1.4-m and we resampled it to a spatial resolution of 1-m using bilinear interpolation. 

Both gDTMs were mosaicked/merged with a 0.5 km overlap. Elevation values for areas 

where both gDTMs overlapped where determined using a weighted average where 

locations closer to the geographic core of a respective gDTM received a higher 

weighting for that particular gDTM. The final gDTM has a mean elevation of 13.1 m 

and a range of -3.9 to 31.0 m. 

We use two types of landscape patch – (1) soil- and (2) vegetation-patches – in 

our connectivity analysis that are based on combinations of digitized geomorphic 

features and composite land classifications from the Ecological Mapping Systems of 

Texas (EMST) dataset (Elliott et al., 2014). Our gDTM and aerial imagery from 2016 

and 2018 were used to digitize/manually-delineate geomorphic features created by 

fluvial processes within the model domain. The features we digitized appear in both 

patch datasets and they include the main channel (MC), tributaries to MC (T), sloughs or 

slow channels (S), cutoffs and oxbow lakes (CO), gullies and hillslope drainages (G), 

and small tributaries that have confluences with T (ST). Areas that are not captured by 

the geomorphic delineation are assigned the composite EMST classifications. The 

EMST can be divided into a variety of categories and we use the soil- and vegetation-

based ecological classifications. Some of the vegetation-based classes were similar and 
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these were combined to create composite classes. The final datasets of soil- and 

vegetation-patches have 16 and 20 classes and descriptions are shown in Tables B-1 and 

B-2. The soil-patches within the study area has 231 individual patches with a mean area 

of 0.11 km2 and a coefficient of variation of 3.1. The vegetation-patches within the study 

area has 1860 individual patches with a mean area of 0.02 km2 and coefficient of 

variation of 4.2. 

Flood Model 

We employ the two-dimensional (2D) flood modeling capabilities of the 

Hydrologic Engineering Center’s - River Analysis System (HEC-RAS) (Brunner, 2016). 

We chose HEC-RAS for our flood modeling environment because it utilizes a finite 

volume numerical solver that allows sub-cell inundation that is informed by the 

underlying terrain (our gDTM) and creates within cell flow-paths. Our HEC-RAS model 

has a domain of 119 km2 and a regularly spaced computational mesh with 527,505 

computational cells that have a mean cell size of 15 by 15 m. We also have spatially 

varying Manning’s roughness coefficient (nMann) values with a mean of 0.27 and range 

of 0.01 to 0.49. A Flow Hydrograph (time-series of Q) external boundary condition at 

the upstream-end of the main channel/floodplain for Mission River brings water into the 

model domain and Normal Depth (approximation of Manning’s flow equation) external 

boundary conditions at the downstream-end of the main channel/floodplain and 

upstream-ends of tributaries remove water from the domain. Our model is calibrated to 

longitudinal water surface elevation (WSE) profiles from a recent detailed FEMA flood 

insurance study (FIS) for Refugio County (FEMA, 2014). These FIS-WSE profiles are 
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for four flow scenarios with varying chances of occurring in a given year (10% chance 

or 10-year return period, 2% chance or 50-year return period, 1% chance or 100-year 

return period, and 0.2% chance or 500-year return period). Our model has root mean 

squared deviation (RMSD), mean absolute deviation, and percent bias of 0.20 m, 0.16 m, 

and 0.30%, respectively, with the FIS values. A plot comparing our WSE values with 

those from the FIS is shown in Figure B-6. 

We use our calibrated HEC-RAS model to simulate 23 steady flow scenarios (22 

with stages (h) of 1.0-11.5 m that sequentially increased by 0.5 m and the flood of record 

that had an h of 11.63 m). 2D simulations within HEC-RAS are part of the unsteady 

simulations module that necessitates synthetic data that incrementally increases flow 

coming into the model domain until the flow of interest is attained. We use the most 

recent rating curve from the U.S. Geological Survey for the 08189500 gage to construct 

synthetic time-series’ on a 15-minute interval. The time-series of flow data for each 

scenario is constructed in three general steps. First, the lowest non-zero value in the 

rating curve is repeated 192 times to create two-days of data within the time-series. 

Second, we append new values to the time-series that incrementally increase the flow by 

sampling the rating curve in ascending order with each data point in the curve being 

repeated four times (1-hour within the time-series) until the flow of interest is met. 

Third, 672 new values are appended to the time-series by repeating the flow value of 

interest to create one-week of data. The number of data points in the 23 steady flow 

scenarios ranges from 1010 to 4498 for the smallest and largest simulations, 

respectively. With the exception of the flow time-series coming into the model domain, 
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we identically simulate all flow scenarios using wave diffusion hydraulic equations and 

a 5-minute computational time-step. 

The HEC-RAS outputs that we use in our connectivity analysis are spatially 

explicit raster datasets of inundation depth that are post-processed before they are used. 

The post-processing involves clipping the raster datasets to the study area boundary and 

we filter out any spurious inundation that is not part of the continuous water surface that 

corresponds to the main channel of the river. We also filter out inundated areas with a 

depth ≤0.2 m because our model has a RMSD of 0.2 m with the FIS scenarios to which 

our model is calibrated. 

Network Conceptualization 

Inundation from riverine surface water creates a continuous surface that connects 

inundated landscape patches and generates a dynamic network. Here we conceptualize 

two networks - (1) soil-network and (2) vegetation-network – because we use two 

landscape patch datasets with differing spatial properties (See Figures III-1d, III-1e, and 

Tables B-1 and B-2). Inundated portions of each patch become the vertices of the 

network and edges between vertices are established when the boundary between adjacent 

patches is breached by surface water. Each network is dynamic because the number of 

vertices and edges will depend on river flow conditions. Moreover, a single landscape 

patch can produce more than one vertex in the corresponding network when there are 

multiple inundated portions for a given river flow. These multiple vertices can merge to 

a single vertex when these portions become inundated for a different flow. These 

dynamics make for unique networks and we compare the soil- and vegetation-networks 
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to each other to determine if there are differences in the major differences in network 

properties and dynamics. 

Analysis of Scale-Free Network Properties 

We analyze the properties of the soil- and vegetation-networks to determine if 

they can be considered as scale-free using methods from Broido and Clauset (2019). The 

primary criterion of a scale-free network is a degree (k) distribution that follows a 

power-law with specific properties (size of network and power-law parameters). Broido 

and Clauset (2019) also put forth a classification scheme that categorized the degree to 

which a network can be considered scale-free. These categories include super-weak (no 

alternative-distribution fit outperforms the power-law fit for ≥50% of the network 

instances), weakest (the p-value ≥ 0.10 for the goodness-of-fit statistic of the power-law 

for ≥50% of network instances), weak (the requirements from weakest and the tail-end of 

the k distribution (ntail) over which the power-law is fit has ≥50 vertices), strong 

(requirements of weak, super-weak, and the scaling index (exponent) from the power-

law fit (α) has values of 2 ≤ α ≤ 3 for ≥50% of network instances), strongest 

(requirements of strong for ≥90% of network instances and requirements of super-weak 

for ≥95% of network instances), and not scale-free (network cannot be categorized as 

super-weak or weak). 

We use codes provided by Broido and Clauset (2019) to analyze the state of the 

soil- and vegetation-network at each of the 23 simulations in order to determine their 

scale-free classification. The first aspect of the analysis is to fit a power-law to the k 

distribution and compare this fit to four other fits using tail-heavy distributions that 
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include exponential, log-normal, power-law with exponential cutoff (plwc), and Weibull. 

Sets of likelihood ratio tests (R) are used to compare the power-law fit to each of the 

other tail-heavy distribution fits. There can be three types of results using the 

parameterization used here; (1) a positive value for R indicates that the power-law fit 

outperforms the alternative-distribution fit; (2) a negative value for R indicates that the 

alternative-distribution fit is preferred over the power-law fit; and (3) a zero value for R 

indicates that the test is inconclusive and there is no clear favorite between the power-

law fit and the alternative-distribution fit. R is subject to statistical uncertainty and a 

standard p-value is used to determine the reliability of R with a p-value ≤ 0.10 indicating 

that the value of R is reliable. The second aspect of the analysis is to determine the 

goodness-of-fit of the power-law to the k distribution. A test statistic with a standard p-

value are generated that determines the plausibility of a power-law for the data and a p-

value ≤ 0.10 indicates that a power-law is plausible for the k distribution. The third 

aspect of the analysis involves analyzing the properties of the fitted power-law. Scale-

free networks tend to be relatively large and it is only appropriate to fit a power-law to 

the tail-end of the k distribution (Broido and Clauset, 2019, Clauset et al., 2009); thus, a 

ntail ≥ 50 is also needed. Moreover, scale-free distributions have an infinite second 

moment, but a finite first moment and an 2 ≤ α ≤ 3 for the power-law fit is also needed to 

meet this criterion. 

Other Topological and Algebraic Network Metrics 

Scale-free networks have some other properties not analyzed by Broido and 

Clauset (2019) and we compute nine sets of indicators for some these properties here. 
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The first three indicators are (or are similar to) simple, but standard metrics used to 

describe any graph or network. Indicators four, five, and six are standard metrics of the 

topological arrangement of the network. The last three metrics are commonly used for 

inferring some of the behavior/dynamics of complex networks. 

Our first indicator is the number of vertices in a network (n) that can have values 

0 < n ≤ ∞ is an important measure of network size. Moreover, how n varies with the 

processes that created the network can help determine changes to its structure and 

function. Our second indicator is the normalized edge count for the network (mnorm = (m 

- mmin) / (mmax - mmin); m is the edge count; mmin and mmax are the theoretical minimum 

and maximum for a given n using methods from Phillips (2012)) can have values of 0 ≤ 

mnorm ≤ 1 with values closer to the endmembers indicating that the network is close to 

the theoretical bounds for a given n. mnorm provides a means to determine if the 

connectivity within the network is driven by a large value of m or if it is more 

concentrated to connections that are associated to a small number of key vertices. The 

third indicator is the mean vertex degree (𝑘̅) that can have values of 0 < 𝑘̅ ≤ ∞. 𝑘̅ is an 

important measure of the overall connectivity in a network and it has also been used as 

an indicator of the mean accessibility of vertices (or patches in this case) in the network 

(Rayfield et al., 2011). 

Our fourth indicator is the mean geodesic (shortest) distance (l) between any two 

vertices in the network and it can have values of 1≤ l < m. The geodesic distance 

between any two vertices is the number of edges needed in order to traverse from one to 

the other. l is the mean for all vertex pairs in the network and it is commonly used as a 
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measure of the small-world effect (most vertex pairs are connected through a small 

number of popular paths) in the connectivity of a network (Newman, 2003). Our fifth 

indicator is the clustering coefficient (C) for the network that can have values of 0 ≤ C ≤ 

1 with values closer to 1 indicating more clustering. C is a measure of the fraction of 

connected triples of vertices with a third edge in order to complete a triangle (connected 

triples are sets of three vertices that are connected by at least two edges); and it has been 

used to infer the small-world and hub-like effects in a network (Newman, 2003). Our 

sixth indicator is the normalized network-level betweenness centrality (Cbtw; also known 

as the centralization index) that can have values of 0 ≤ Cbtw ≤ 1 with values closer to one 

indicating that the network is closer to the theoretical maximum centralization for a 

given n. Values closer to the one indicate that the network has a small number of highly 

central vertices that are important to the overall connectivity of the network. This not 

because these vertices have a high degree (although they can), but it is because they lie 

between major clusters of vertices or they are positioned within “bottlenecks” of the 

network. Cbtw can be used to conduct analyzes of “betweenness” that has commonly 

been used to understand the resilience of network connectivity (Holme et al., 2002, 

Newman, 2003). 

Our seventh indicator is the largest eigenvalue of the network adjacency matrix 

(λ1; also known as the spectral radius) that has been used to infer network complexity 

and the critical coupling strength needed for the onset of network synchronization 

(Phillips, 2012, Phillips et al., 2015). Here we compare λ1 to the theoretical maximum 

for a given n (λmax) and the theoretical upper bound for a given n and m (λupper) by 
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dividing λ1 with these theoretical values (See Phillips (2012) for methods to calculate 

λmax and λupper). The λ1/λmax and λ1/λupper ratios determine how much the structure of the 

network has reduced the overall λ1. To further decompose the aspects of the network 

structure that are reducing λ1, we also calculated our eighth set of indicators that are the 

relative contributions (ξ) to λ1 from the number of connections/edges in the network 

(ξconn) and the pattern/wiring of these connections/edges between vertices (ξwir; See 

Phillips (2012) for methods to calculate ξconn and ξwir). Our ninth indicator is the second 

smallest eigenvalue of the network Laplacian matrix (𝜆(𝐴)𝑁−1; also known as the 

algebraic connectivity) that is commonly used to measure network synchronization that 

occurs when the elements of the system are operating in unison or in a predictable 

sequence. Here we normalize 𝜆(𝐴)𝑁−1 using the theoretical values for a given n that 

include the maximum (κ(A); known as the vertex connectivity) and minimum (4/nD; 

where D is the network diameter) that gives it a range of 0 ≤ 𝜆(𝐴)𝑁−1,𝑛𝑜𝑟𝑚 ≤ 1. The use 

of these ratios (λ1/λmax and λ1/λupper), relative contributions (ξconn and ξwir), and 

normalized values (𝜆(𝐴)𝑁−1,𝑛𝑜𝑟𝑚) allow us to compare our behavioral metrics between 

our soil- and vegetation-metrics; as well as other complex networks reported in the 

literature. 

Results 

Flooding Patterns and Patch Inundation 

We generated 23 steady simulations of river flow (22 with stages (h) of 1.0-11.5 

m that sequentially increased by 0.5 m and the flood of record that had an h of 11.63 m). 

Inundated area (AI) increases nonlinearly and here we describe flood dynamics using 
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three general phases of the river-floodplain inundation process. The first phase (channel-

inundation) is for simulations with h ≤ 2.5 m where the spatial extent of inundation is 

mostly limited to the main channel (MC) and tributary (T) patches for both land 

classifications (Figures III-2a, III-2b and Figure B-1). AI increases from 0.7 to 1.4% of 

As with MC and T collectively composing >98% of the inundation for all channel-

inundation simulations (MC decreases from 99.5 to 89.4% of AI). 

The second phase (some-floodplain-inundation) is for simulations with 3.0 ≤ h ≤ 

8.0 m and this corresponds to when there is some inundation within the floodplain, but it 

is not necessarily from overbank flows (Figures III-2a, III-2b, and Figure B-1). There is 

a relatively large range of flows in this phase because the floodplain morphology differs 

between upstream and downstream portions of the study area (upstream parts are an 

incised terrace system and downstream parts are a meandering alluvial system). The 

downstream parts experience some flooding within the floodplain starting at the 

simulation with h = 3.0 m and most of the inundation occurs in cutoff/oxbow (CO) 

patches and other patches that surround these areas. For simulations with 3.0 ≤ h ≤ 5.0 

m, AI increases from 1.8 to 7.8% of As (MC ranges from 73.1 to 22.2% in its contribution 

to AI for both networks). Starting at h = 5.0 m, patches that are not floodplain 

channels/landforms become the largest contributors to AI with clayey bottomland (CB) 

being the dominant type of soil-patch (3.4% of AI) and floodplain/riparian hardwood 

forest (FHF) being the dominant type of vegetation-patch (2.1% of AI). Considerable 

inundation within upstream parts of the floodplain starts occurring at the simulation with 

h = 5.5 m and this is largely driven by inundation in slough (S) and tributary (T) 
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channels (Figure B-2). For simulations with 5.5 ≤ h ≤ 8.0 m, AI increases from 13.1 to 

26.3% of As. CB and FHF continue being the largest contributors to AI for their 

respective land classifications as they compose 11.1 and 9.6% of AI for the simulation 

with h = 8.0 m. 

The third phase (overbank-inundation) of the inundation process represents 

overbank flows because these flows are at or above the break in the rating curve (Figure 

B-1c). Here this represents simulations with 8.5 ≤ h ≤ 11.63 m where AI increase from 

29.7 to 48.9% of As. The patch types from the land classifications with largest 

contribution to AI are CB (decreases from 40.4 to 28% of AI) and FHF (decreases from 

36.1 to 27.7% of AI). For simulations with h ≥ 10.5 m, flood inundation becomes a 

continuous water surface within the floodplain and water begins to spill onto upland 

parts of the coastal plain (Figure B-2). All land classifications shown in Figures III-2a 

and III-2b experience inundation for the largest flow simulation (h = 11.63 m). The 

upland patches with the greatest contribution to AI for the largest flow simulation tight 

sandy loam (TSL; 10.9% of AI) for the soil-patches and upland prairie/grassland (UPG; 

11.1% of AI). 
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Figure III-3. The contribution to inundated area (AI) by the (a) soil- and (b) vegetation-patches for 

each of the 23 hydrodynamic simulations (the h of the flow for each simulation is the x-axis). The 

inundated portions of patches become vertices in the landscape network and contribution to the 

number of vertices (n) for the (c) soil- and (d) vegetation-network for each simulated flow is also 

shown. The number of other vertices that each vertex is connected to (degree (k)) for the (e) soil- and 

(f) vegetation-network for each of the simulated flows is also shown. (Note: color of data points in 

the scatter plot is the same as the colors used in the bar charts) See Tables B-1 and B-2 for a 

description of land classifications. 
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Analysis of Scale-Free Network Properties 

The configuration of the two inundation-induced landscape networks for each of 

the 23 flow simulations are shown in Figures B-3 (soil-network) and B-4 (vegetation-

network). Network size (number of vertices (n) and edges (m)) increases with the size of 

the flow being simulated. The number of vertices (n) ranges from 3 to 480 for the soil-

network and 3 to 1478 for the vegetation-network (Figures III-3c and III-3d). This 

difference is because the soil-network is based on a land classification that has a mean 

patch area that is 4.3 times larger than the vegetation land classification (Tables B-1 and 

B-2). There are three vertices (one that pertains to the single MC patch and two that 

pertain to two of the six T patches) appear in every network state and these vertices are 

among the most important drivers of connectivity for all network states. This is because 

these patches and other floodplain channel/landform patches have lower relative 

elevations and elongated shapes that allow them to connect to a large number of 

neighbors and thus have large vertex degree (k; Figures III-2e and III-2f). 

With regard to the phases of the river-floodplain inundation process, the T patch 

type is the greatest contributor of vertices to n for both networks in the channel-

inundation phase (n from T decreases from 66.7 to 24.0% with increasing h; Figures III-

2c and III-2d). In terms of k, the sole vertex that pertains to the MC patch for both 

networks dominates with values that are as much as 7 times greater than the next highest 

k for all vertices in the same network state (Figures III-2e and III-2f). In the some-

floodplain-inundation phase, the soil-patches with the greatest contribution to the n for 

each network state are CB and LB with ranges of 23.3 to 44.7% and 17.9 to 33.3%, 
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respectively. For the vegetation-network, the greatest contribution to n is from FHF 

patches with a range of 22.8 to 39.5% of the n for the network. The sole MC vertex 

continues to have the highest k in both networks, but the difference with the next highest 

k for a given network generally declines with increasing h (k for vertex that pertains to 

MC is 2.8 and 1.5 times greater than the next highest k for the networks at h = 8.0 m). In 

the overbank-inundation phase, CB is the patch type that has the greatest contribution to 

n of the soil-network for simulations where inundation is mostly restricted to the 

floodplain (8.5 ≤ h ≤ 10.0 m) and it has a range of 18.5 to 22.0%. FHF contributes the 

most vertices to n for the vegetation-network during these same flows with a range of 

17.4 to 21.8%. Upland patch types are the greatest contributors to n for their respective 

networks for simulations with h ≥ 10.5 m with TSL and upland deciduous woods 

(UDW) providing 16.7 and 15.5% of the vertices in n for the simulation with h = 11.63 

m. The pattern of k is similar to what is exhibited in the some-floodplain-inundation 

phase with the MC vertex being the largest contributor and it has a value that is 1.3 and 

1.1 times greater than the vertex with the next highest k for the simulation with h = 11.63 

m. 

We analyzed the distribution of k for both networks at each simulation using 

empirical methods from Broido and Clauset (2019) to determine if the network can be 

considered to be scale-free. A k distribution that follows a power-law is the primary 

criteria and we fit power-laws to both networks at every state and compared them to fits 

using four other tail-heavy distributions that include exponential, log-normal, power-law 

with exponential cutoff (plwc), and Weibull. Likelihood ratio tests (R) that directly 
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compare the power-law fit to one of the other fits indicate that the power-law fit 

outperforms the other distributions for ≥41% of the network states with the plwc and 

log-normal fits being the most serious competitors to the power-law (Figures III-4a and 

III-4f). There is a stochastic nature to R and a p-value is computed to determine the 

reliability of these tests. R comparing the power-law fits to exponential and Weibull fits 

are reliable for ≥77% of both network states (Figures III-4b and III-4g), but none of the 

tests are reliable for the plwc comparisons and ≤23% of the tests for log-normal are 

considered reliable. A goodness-of-fit test with an associated p-value that determines the 

plausibility of a power-law for the k distribution is also used and the plausibility of a 

power-law for k cannot be rejected for ≥73% of all network states (Figures III-4c and III-

4h). The secondary part of the Broido and Clauset (2019) analysis involves analyzing the 

properties of the power-law fit. Scale-free networks tend to be relatively large and the 

number of vertices on the tail-end of the k distribution (ntail) over which the power-law is 

fit needs to be ≥50 and this occurs for 82% of the network states (Figures III-4d and III-

4i). An exponent parameter (α) between 2 and 3 for the power-law fit is also needed for 

the network to be considered scale-free and this occurs for ≥50% of all network states. 

The results from this analysis and a classification scheme proposed by Broido and 

Clauset (2019) indicate that the dynamic soil- and vegetation-networks can be 

considered as weakly to strongly scale-free. The lack of reliability in R for the log-

normal and plwc comparisons is the reason for the range in the scale-free classification. 
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Figure III-4. Empirical analysis determining if the soil- (a-e) and vegetation-networks (f-j) can be 

considered scale-free using methods from Broido and Clauset (2019). Indicators are calculated for 

both networks at each that is associated with the 23 flow simulations. a,f) Likelihood ratio test (R) 

between the fitted power-law distribution and four other tail-heavy distribution (exponential (exp; 

green diamonds); lognormal (ln; light blue triangles); power-law with exponential cutoff (plwc; 

magenta squares with x’s); and Weibull (wb; purple stars). b,g) P-values for the likelihood ratio 

tests in (a) and (f). c,h) P-values for goodness-of-fit tests determining the plausibility whether the 

degree distribution for each of the 23 simulations can come from a power-law distribution. d,i) The 

number of network vertices in the tail-end/power-law portion of the degree distribution (ntail). ≥ 50 is 

needed for the network to be considered to come from a scale-free network. e,j) The alpha 

parameter (α) for the fitted power-law to the network. 2 ≤ α ≤ 3 is needed for the network to be 

considered scale-free. (Note: Percentage values in the legend indicate the fraction of the 23 network 

states that meet the criteria proposed by Broido and Clauset (2019) in order to be considered scale-

free.) 

Discussion 

Lowland rivers can cause surface-water inundation within their floodplains for a 

wide range of river flows without most of the main channel banks being overtopped 

(Tockner et al., 2000, Czuba et al., 2019, Meitzen et al., 2013, Hudson et al., 2013, 

Phillips, 2013). Mission River is no different and here we describe surface-water 

inundation in three phases – (1) channel-inundation, (2) some-floodplain-inundation, and 
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(3) overbank-inundation – with the greatest increases in inundated area (AI) occurring 

during the latter half of the some-floodplain-inundation phase (See Figure III-2a). The 

spatial pattern of surface-water inundation for river flows with stage (h) ≤ 4.0 m 

facilitates these increases in AI during the some-floodplain-inundation phase because it is 

driven by surface water backing into the floodplain through tributaries, oxbows/cutoffs, 

small connector channels, and scroll bars (See Figure B-2). 

The pattern of surface-water connections between landscape patches induced by 

river flows also creates a dynamic network whose growth is largely driven by 

preferential attachment where newly connected patches tend to become connected to 

patches that are already connected to a relatively large number of other patches. Growth 

and generation by preferential attachment is one of the fundamental properties of scale-

free graphs/networks (Li et al., 2005, Barabási and Albert, 1999), and in total we found 

that the our landscape networks exhibit five of the six fundamental properties of scale-

free networks described by Li et al. (2005). The second scale-free property we found is 

that both of our landscape networks exhibit a power-law degree (k) distribution and the 

fitted power-laws meet some of the more stringent criteria outlined by Broido and 

Clauset (2019) in order for the networks to be labeled as weakly-to-strongly scale-free 

with regard to the distribution of k. Third, our landscape networks also contain patches 

that pertain to the active (main channel and tributaries), semi-active (slow and connector 

channels), and abandoned channels (cutoffs and oxbows) that act as highly-connected 

hubs that maintain network-level connectivity. This connectivity is resilient to most 

random disconnections amongst patches (most patches are not hubs), but also highly 



 

71 

 

sensitive to disconnections of hub-like patches (disconnecting these patches would also 

disconnect patches within the floodplain that surround these hubs). Forth, the topological 

structure of our networks is driven by the distribution of k for the connected patches and 

not the particular pattern depicting which patches connect to which. This is shown in 

Figure B-5h where the contribution to the spectral radius (λ1; the largest eigenvalue of 

the network adjacency/connectivity matrix) from the distribution of k (ξconn) is much 

greater (≥80%) than the contribution from the pattern/wiring of connections (ξwir) for 

river flows with h ≥ 3.0 m. Fifth, our networks of surface-water connections are self-

similar in that the topological structure of the networks for patches surrounding channels 

and other low-lying features is similar with a highly-connected hub driving most of the 

connectivity (See Figures B-3 and B-4). Moreover, while both the soil- and vegetation-

networks are related in their geography and the processes that created them, both 

networks are distinct (See Figures B-3c - B3f). Nonetheless, both networks exhibited 

power-law distributions for k and the dynamics of the network properties shown in 

Figure B-5 are similar. 

The sixth fundamental property of scale-free graphs/networks described by Li et 

al. (2005) is universality in that scale-free networks of surface-water connections should 

also exist in other lowland river-floodplain landscapes. We cannot make that claim here 

because our analysis only focused on the lowland river-floodplain landscape of Mission 

River. On the other hand, similar patterns of riverine surface-water inundation have been 

documented on the lower Sabine River (Texas/Louisiana border) (Phillips, 2013), lower 

Brazos River in Texas (Phillips, 2015), and the Guadalupe River in Texas (Hudson et al., 
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2012). We propose that more research is needed to determine if scale-free networks of 

surface-water connections can be found within these types of landscapes. 

Some of the most celebrated properties of scale-free networks include growth by 

preferential attachment (Barabási and Albert, 1999), efficiency in the transfer of 

information and materials (Crucitti et al., 2003, Pastor-Satorras and Vespignani, 2001), 

error tolerance (Albert et al., 2000), attack vulnerability (Holme et al., 2002), and 

emergent synchronization (Restrepo et al., 2006); and four examples below outline how 

they can be useful in understanding and managing lowland river-floodplain landscapes. 

First, the type of detailed terrain and hydrodynamic models that we use here are not 

available for all lowland rivers but knowledge that these types of landscapes can have 

surface-water connections with scale-free structure can help determine which areas are 

more susceptible to flooding. This is because some information regarding the surface-

water connections for a given river flow will help determine which patches are most 

likely to become connected for a higher river flow by applying the concept of 

preferential attachment that dictates newly connected patches are most likely to connect 

to patches that are already have a relatively large number of connections. Second, 

ecosystems within river-floodplain landscapes are some of the most threatened on Earth 

with the rapid invasion and spread of non-native species being one of the dominant 

factors (Tockner et al., 2010). This has not been aided by the efficiency of transfer noted 

for scale-free networks, but this type of spreading within scale-free networks has been 

well-studied (e.g., Pastor-Satorras and Vespignani (2001)) and this knowledge-base can 

help manage the spread of problematic species. Third, losses in hydrologic connectivity 
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between a river and its floodplain due to the construction of flow/flood control structures 

such as levees has been widely documented for these landscapes around the world (e.g., 

(Poff et al., 1997, Tockner et al., 2000, Tockner et al., 2010)). This has negatively 

affected the health of river-floodplain ecosystems and it highlights the error tolerance, 

but targeted attack vulnerability of the scale-free nature of surface-water connections 

within these landscapes. Landscape-level connectivity from surface-water connections is 

robust to most random disconnections of patches, but is highly vulnerable to 

disconnections of one of the hub-like landscape patches (e.g., main and semi-active 

channels). Forth, the concept of bankfull discharge has traditionally been used 

differentiate between strictly in-channel and floodplain processes. Bankfull concepts 

have been questioned recently because hydraulic and geomorphic conditions can vary 

longitudinally that complicates that application of more localized flow properties to 

other portion of the floodplain (Hudson et al., 2013, Tockner et al., 2000). Scale-free 

networks have been found to exhibit emergent synchronization where the elements of a 

system are operating in unison (Restrepo et al., 2006). The networks from surface-water 

connections discussed here operate in unison when the landscape can be considered in a 

state of surface-water connection and this occurs for Mission River at stages ≥4.0 m. The 

concept of synchronization in surface-water connection within a lowland river-

floodplain landscape can be used in-place of the bankfull concept because it more of a 

landscape/reach level estimate and not a locale estimate applied to a river 

reach/landscape. 
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Power/scaling-laws have been widely used within the fields of hydrology and 

fluvial geomorphology to understand in-channel hydraulic geometry (Leopold and 

Maddock, 1953), hydrologic responses at the watershed-level to intense rainfall events 

(Gupta et al., 2010, Mantilla et al., 2006, Furey and Gupta, 2007), patterns of dendritic 

drainage networks (Rodriguez‐Iturbe et al., 1992, Rinaldo et al., 2006, Rinaldo et al., 

1992, Rodríguez‐Iturbe et al., 1992), and the pattern of topologic depressions within 

floodplains and wetlands (Le and Kumar, 2014, Bertassello et al., 2018). These 

power/scaling relationships describe pattern and process in fluvial landscapes and here 

we contribute to this list of scaling relationships by proposing that the interaction of 

surface-water with the landscape patches of lowland river-floodplain landscapes can also 

be described using scaling relationships. 
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CHAPTER IV  

MONITORING SURFACE-WATER CONNECTIVITY DYNAMICS IN A COASTAL 

LOWLAND RIVER USING FIELD-BASED DATA LOGGERS 

 

Introduction 

Hydrologic and geomorphic interactions between a river and the landscape 

through which it flows will vary with the hydrologic regime (climate, groundwater 

exchange, antecedent moisture conditions, anthropogenic water-use), the regional 

morphology (geological template, base-level, flow control structures), the localized 

morphology (planform and cross-section profile of the channel-floodplain system, soil 

properties, land cover), and other place-specific factors that can influence flow 

conditions (e.g., tides and storm-surge for coastal rivers). These interactions are often 

analyzed using the hydrologic connectivity concept – the water mediated transfer of 

energy, matter, biota, and information between the riverine landscape (Amoros and 

Roux, 1988, Wohl, 2017) – that is generally applied over one or more of the dimensions 

generally used in river science that include time and the spatial dimensions of 

longitudinal (upstream-downstream), lateral (orthogonal to the trend of the thalweg or 

valley), and vertical (height above and/or below the channel bed). While these concepts 

have been used across the spectrum of river-types (Wohl, 2017, Wohl et al., 2018), 

hydrologic connectivity has particularly been an important contribution to the 

understanding of hydrologic, geomorphic, and ecological processes within lowland 

rivers (Hudson et al., 2013). This is why hydrologic connectivity between a lowland 
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river and the surrounding landscape has commonly been used as an indicator of habitat 

health (Ishiyama et al., 2014) and is often a consideration in environmental flow policies 

and management schemes (Hudson et al., 2013, Meitzen et al., 2013, Wohl, 2017). 

Connectivity within the context of river science has been determined within the 

literature using measurements (direct and remote) and inferences that are established 

using a variety of methods (Wohl, 2017). Among field-based methods, inferences of the 

presence/absence (or intermittence) of water that rely on records from field-deployed 

data loggers that measure ambient environmental variables have been gaining interest 

within the literature (Chapin et al., 2014). Data loggers that record in-situ measurements 

of ambient temperature and/or electrical resistance within riverine and wetland 

environments being the most widely used (Chapin et al., 2014). Water temperature and 

electrical conductivity (inverse of electrical resistance) are widely used ecological 

indicators (Chapin et al., 2014, Poole, 2002); and they can be useful in determining the 

source of the inundating surface-waters (e.g., groundwater, glacial/snow melt, or rainfall 

were found to be the stream water sources in Paillex et al. (2019)), the duration of 

inundation (e.g., the duration of inundation for various peatlands was determined by 

Goulsbra et al. (2009)), the suitability of channel reaches as habitat for specific species 

(e.g., Jaeger and Olden (2012) determined the prevalence of refuge habitats within a set 

of ephemeral channels) and how the inferred flow intermittency affects aquatic food 

webs (Siebers et al. (2019) analyzed how changing flow intermittency in alpine streams 

has affected aquatic trophic levels and biodiversity). 
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Analyses of flow intermittence and how it relates to changes in hydrologic 

connectivity over time with field-based data loggers have been conducted in a variety of 

physiographic environments. Point-based studies have used field-based data loggers to 

quantify hydrologic connectivity at a point within ephemeral channels in montane 

regions of the southwestern U.S. with arid (Blasch et al., 2002) and semi-arid (Chapin et 

al., 2014) climates; as well as in the Canadian High Arctic (Gillman et al., 2017). 

Vertical hydrologic connectivity at a point within the hyporheic zone of a channel stream 

bed has also been quantified in an ephemeral stream of southern Arizona using field-

based data loggers (Blasch et al., 2004). While estimates at a single point in space have 

been useful in better understanding process in ephemeral stream channels, the true power 

in using field-based data loggers is when several data loggers that are deployed at 

multiple locations are used in conjunction to analyze a channel reach or set of reaches. 

Longitudinal analyses with data loggers deployed upstream and downstream of each 

other are what appear most often within the literature where they have been applied 

within ephemeral channels in the southwestern U.S. in arid-to-semiarid environments of 

New Mexico and Nevada (Constantz et al., 2001), Arizona (Jaeger and Olden, 2012); 

environments with temperate climate in the U.S. Appalachians (Jensen et al., 2019) and 

Europe that include a montane catchment in Luxenberg (Kaplan et al., 2019) and a 

peatland catchment in the United Kingdom (Goulsbra et al., 2009); and in gullies and 

ephemeral channels within the relatively flat agricultural regions of southwestern 

Ontario (Bhamjee and Lindsay, 2011). Researchers have found utility in the use of field-

based data loggers, but there are numerous research gaps in their use that are yet to be 
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explored. In particular, flow intermittency using low-cost data loggers in lowland and 

coastal streams has not been pursued in the literature. Furthermore, the use of data 

loggers along the vertical and lateral dimensions has not been fully explored. Along the 

vertical dimension, some studies have been performed that analyze hydrologic 

connections between the channel bed surface and hyporheic water that is below the 

stream bed, but no studies have been performed that analyze connectivity for portions of 

a channel above the bed surface that experience inundation more intermittently than the 

bed. For the lateral dimension, no studies have explicitly used data loggers to analyze 

how flow widths vary along one or more portions of a channel reach. 

In this work, we develop multiple Stream Temperature, Intermittency, and 

Conductivity loggers (STICLs) proposed by Chapin et al. (2014) and deploy them in the 

field to analyze temporal changes to hydrologic connectivity induced by surface water 

(surface-water connectivity, hereafter) in the longitudinal, lateral, and vertical 

dimensions for the channel and floodplain surrounding the lowland Mission River on the 

Coastal Bend of Texas. We have two main objectives and they include (1) determining 

the efficacy with which STICLs can be used to monitor surface-water connectivity in 

portions of a channel and floodplain that experience intermittent inundation for a coastal 

lowland river; and (2) determine how differences in the hydrologic regime and 

morphology affect the variations in surface-water connectivity for these areas that 

experience intermittent inundation. We address these objectives by developing and 

deploying sets of STICLs in the field and analyzing flow intermittence within five 

distinct time-periods (TPs). 
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Study Area 

Our study focuses on a 15 km stretch of the Mission River and its lowland 

floodplain near the Town of Refugio (Refugio, hereafter) on the Coastal Bend of Texas 

(Figure IV-1). The lowland floodplain lies within the flat coastal plain with the most 

downstream portions of the study area being ~22 river-km upstream from the outlet at 

Mission Bay. Two perennial tributaries (Dry and La Rosa creeks) have their confluence 

with the main channel along our study reach. Floodplain hardwood forest, floodplain 

Live Oak forest, and floodplain scrub/shrubs are the dominant vegetation communities 

adjacent to the active channels with sandy loam and clayey loam being the dominant soil 

types (Elliott et al., 2014). Elevation within the study area ranges from -3 to 17 m (North 

American Vertical Datum of 1988, NAVD88) with the lowest elevations found within 

active channels and the highest elevations found in bluffs around Refugio (Figure IV-

1d). The main channel of Mission River has a meandering planform with increasing 

sinuosity in the downstream direction and a longitudinal bed slope of 0.23 mm/m for the 

entire study reach. Although, the river flows through two distinct geologic units with 

upstream portions of the floodplain being Pleistocene fluviatile terraces and downstream 

portions being Holocene alluvium (USGS-TWSC, 2014). The differing geologic controls 

make for markedly different longitudinal bed slopes with the fluviatile terrace and 

alluvium portions having bed slopes of 0.39 and 0.16 mm/m, respectively. 

 The region containing the study reach has a subhumid-to-semiarid subtropical 

climate with extreme variability in precipitation (Davis and Smith, 2013, Fulbright et al., 

1990, Norwine and John, 2007). Mean annual precipitation is 1016 mm with most 
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precipitation generally occurring in the early-Fall and late-Spring that are caused by 

large thunderstorm cells. Although, the region is occasionally affected by tropical 

cyclones that produce large amounts of rainfall with the most recent of which being 

Hurricane Harvey. With regard to streamflows, mean daily discharge (Q) at the U.S. 

Geological Survey (USGS) gaging station at Refugio (Gage ID: 08189500; see Figure 

IV-1) ranged from 0 to 1903 m3/s with a mean of 3.4 m3/s (USGS, 2016). The 

distribution for annual peak Q is also extremely skewed (Schoenbaechler and Guthrie, 

2011), with a range of 1 to 2237 m3/s. Similarly, the distribution of stage (h) is skewed 

with a range of 0.8 to 10.2 m and 1 to 12 m for mean daily and annual peak h, 

respectively (USGS, 2016). Portions of the floodplain begin to experience flood 

inundation at a Q of 30 m3/s due to backwater flooding into tributaries, sloughs, and 

swales within meander scroll-bars (Castillo et al., In-Preperation). Most of the main 

channel banks and natural levees get overtopped at a Q  ≥ 285 m3/s with the entire 

floodplain becoming a continuous water-surface at a Q ≥ 1169 m3/s (Castillo et al., In-

Preperation). Moreover, the lower half of the study reach is influenced by tidal processes 

and storm surge (Davis and Smith, 2013, Nelson and Tolan, 2008, FEMA, 2014), that 

can also experience significant inundation during tropical storms/cyclones with 

Hurricane Harvey being no exception. 
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Figure IV-1. a) Map showing where the study area lies within the State of Texas. b) Regional map 

showing where the study area lies within the Coastal Bend Region of Texas. c) Map showing the 

study reach of Mission River and its floodplain. The eight locations where Stream Temperature, 

Intermittency, and Conductivity loggers (STICLs) were installed are shown (colored +) along with 

the location of the 08189500 U.S. Geological Survey gaging station (blue bulls-eye) and the three 

Parameter-elevation Regressions on independent Slopes Model (PRISM) grid cells (colored 

borders). Aerial imagery is a mosaic of StratMap imagery collected in late-March of 2016 (SARA, 

2016). d) Map showing the lidar-derived digital terrain model at 1-m spatial resolution of the study 

area/reach and the geologic units within the floodplain. Geologic units were extracted from the 

Geologic Database of Texas (USGS-TWSC, 2014). (Note: FTLCP = fluviatile terraces-Lions City 

Park; FTDC = fluviatile terraces-Dry Creek; FTSJ = fluviatile terraces-Saint John; ANL = 

alluvium-natural levee; A1B = alluvium-first bend; A3B = alluvium-third bend; A5B = alluvium-

fifth bend; A6B = alluvium-sixth bend; NW = Northwest PRISM grid cell; SW = Southwest PRISM 

grid cell; and SE = Southeast PRISM grid cell) 

 The STICLs we use in our analysis are installed in eight different locations along 

the eastern banks of Mission River and lower portions of Dry Creek where we were 

provided access by local landowners (Figures IV-1 and IV-2). Our three most upstream 

locations lie within the Pleistocene fluviatile terraces portion of the floodplain and they 

are fluviatile terraces-Lions City Park (FTLCP), fluviatile terraces-Dry Creek (FTDC), 

and fluviatile terraces-Saint John’s (FTSJ). FTLCP is within a floodplain hardwood 
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forest portion of Lions City Park of Refugio on a steep portion of the eastern bank of the 

main channel (Figure IV-2b). Soils are a loamy sand and this portion of the main 

channel reach has an alternating bar morphology with a low sinuosity planform. FTDC 

is two locations within the Fennessey Ranch portion of the Mission Aransas National 

Estuarine Research Reserve on the eastern banks of Dry Creek just upstream of its 

confluence with Mission River (Figures IV-2c and IV-2d). These portions of the 

floodplain regularly experience backwater flooding from Mission River (Castillo et al., 

In-Preperation, FEMA, 2014). The most upstream FTDC location is ~500 m upstream of 

the Mission River-Dry Creek confluence near the valley wall with the vertical profile 

containing a relatively shallow channel and bench within a mixed floodplain hardwood-

Live Oak forest land cover. The downstream FTDC location is on a small point-bar that 

is ~100 m upstream of the Mission River-Dry Creek confluence in a location farther 

from the valley wall with a floodplain Live Oak forest land cover. Soils for both FTDC 

locations are clayey loam and the planforms for both Dry Creek and Mission River are 

confined meanders due to the proximity with the valley wall. FTSJ is two locations 

within and just south of the Saint John’s gas pipeline river crossing in Fennessey Ranch 

(Figure IV-2e). The most upstream FTSJ location is within the linear clearing of the 

pipeline crossing in a steep portion of the eastern bank of Mission River with a 

floodplain grassland landcover. The other FTSJ location is ~50 m downstream on the 

floodplain of the main channel with a mixed landcover that contains both floodplain 

shrub/scrub and hardwood forest. Soils at both FTSJ locations are sandy loam with a low 
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sinuosity planform for the main channel and a morphology that has been modified by the 

pipeline crossing and cattle grazing that occurs at both locations. 

 

Figure IV-2. Terrain for the locations at which the STICLs were deployed. Terrain data was 

collected as part of a RAPID-NSF project and prepared as part of the analysis performed in Castillo 

et al. (In-Preperation). a) Map showing the terrain and floodplain geology for our eight locations at 

which STICLs were installed (labeling for each location has distinct colors). b) Terrain where the 

four STICLs were deployed at the fluviatile terrace-Lions City Park (FTLCP) location. c) Terrain 

where the two STICLs were deployed at the upstream fluviatile terrace-Dry Creek (FTDC) location. 

d) Terrain where the two STICLs were deployed at the downstream FTDC location. e) Terrain 

where the four STICLs deployed at the fluviatile terrace-Saint John’s (FTSJ) location. f) Terrain 

where the STICL deployed at the upstream alluvium-natural levee (ANL) location. g) Terrain where 

the two STICLs were deployed at the downstream ANL location. h) Terrain where the two STICLs 

were deployed at the upstream alluvium-first bend (A1B) location. i) Terrain where the three 

STICLs were deployed at the downstream A1B location. j) Terrain where the two STICLs were 

deployed at the alluvium-third bend (A3B) location. k) Terrain where the four STICLs were 

deployed at the alluvium-fifth bend (A5B) location. k) Terrain where the two STICLs were deployed 

at the alluvium-sixth bend (A6B) location. (Note: the ID for each logger is followed by the elevation 

at which each STICL was installed using NAVD88). 

Our five downstream locations lie within Fennessey Ranch in the Holocene 

alluvium portion of the floodplain (Figures IV-1 and IV-2) and they are alluvium-natural 

levee (ANL), alluvium-first bend (A1B), alluvium-third bend (A3B), alluvium-fifth bend 
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(A5B), and alluvium-sixth bend (A6B). ANL is a prominent natural levee within 

Fennessey Ranch with a floodplain hardwood forest landcover. We have two ANL 

locations with the most upstream location being a portion where the natural levee has an 

undulating vertical profile (i.e., multiple ridges) with our STICL positioned on a 

relatively flat portion of the levee just east of the active channel (Figure IV-2f). Our 

second ANL location is ~600 m downstream on a steeper portion of the natural levee 

where the vertical profile only has a single ridge (Figure IV-2g). Soils at both ANL 

locations are a sandy loam with the main channel planform exhibiting a low sinuosity 

bend. A1B is a cut bank with a floodplain hardwood forest and floodplain grassland 

landcover on the first of a set of bends in the downstream portions of our study area. We 

have two A1B locations with the most upstream location being upstream of the bend 

apex on the linear clearing of a gas pipeline crossing where the profile of the cut bank is 

steep but not completely vertical (Figure IV-2h). Our second A1B location is ~300 m 

downstream of the other A1B location on a portion of the cut bank with a cliff-like 

vertical profile that lies downstream of the bend apex (Figure IV-2i). This portion of the 

cut bank is adjacent to an unpaved road. Soils at both A1B locations are sandy loam and 

the planform for the main channel exhibits an intermediate sinuosity. A3B is on the third 

of a set of bends in downstream portions of the study area (Figure IV-2j). The A3B 

location is near the apex of the bend with an almost cliff-like vertical profile and a 

floodplain hardwood forest landcover. Soils are a sandy loam and the main channel has a 

planform with symmetrical bend sinuosity. A5B is a location just upstream of the cut 

bank for the fifth (and smallest) of a set of bends in downstream portions of the study 
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area (Figure IV-2k). The A5B location has a vertical profile with a moderate slope and 

the landcover is floodplain hardwood forest. Soils are sandy loam and the planform of 

the main channel is a symmetrical bend sinuosity. A6B is on the downstream end of the 

point-bar of the sixth bend in the aforementioned set of bends. A6B is also the most 

downstream location within our study area (Figure IV-2l) and it has a floodplain 

hardwood forest landcover. Loggers were installed on a relatively flat portion of the 

floodplain adjacent to the channel. Soils are sandy loam and the planform of the main 

channel has a skewed sinuosity due to the west bank at the A6B location being along the 

valley wall. 

Data and Methods 

Data 

Our primary dataset is a set of time-series with readings offloaded from our 28 

STICLs deployed in the field at the eight locations described in Study Area and Figure 

IV-2. The number of operational STICLs deployed at each location differs by time-

period (TP). The STICLs and locations included in each TP is shown in Table IV-1. Our 

STICLs were set to record readings on a 15-minute interval that allows them to be 

compared to instantaneous streamflow data. Data on ambient temperature and calibrated 

electrical conductivity (EC; See Logger Calibration) are recorded by each logger, but we 

only use the EC here. 
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Table IV-1. Descriptions of the five time-periods (TP) included in our analysis. The locations and 

maximum number of data points (nlog,max) a STICL can provide during this TP are also shown; as 

well as the precipitation (PPT) stations that pertain to each location and STICL preparations phase 

area also shown. (Note: FTLCP = fluviatile terraces-Lions City Park; FTDC = fluviatile terraces-

Dry Creek; FTSJ = fluviatile terraces-Saint John; ANL = alluvium-natural levee; A1B = alluvium-

first bend; A3B = alluvium-third bend; A5B = alluvium-fifth bend; A6B = alluvium-sixth bend). 

TP Dates nlog,max Location 
PPT 

Station 

STICL 

Prep 

Phase 

Data Logger IDs 

TP1 

2016-05-25 

to  

2016-08-23 

8,736 

FTLCP NW 1 S06, S12, and S13 

FTSJ SE 1 S08 and S03 

A1B SW 1 S14, S10, and S04 

A5B SW 1 S02 

TP2 

2016-08-25 

to 

2017-03-17 

19,688 

FTLCP NW 1 S06, S12, and S13 

FTSJ SE 1 S08 and S03 

A1B SW 1 S04 

TP3 

2017-03-19 

to 

2017-07-13 

11,232 

FTLCP NW 1 S06 and S13 

FTSJ SE 1 S08 and S03 

A1B SW 1 S04 

TP4 

2017-07-14 

to 

2018-02-20 

21,324 

FTLCP NW 1 and 2 S06, L13, and S13 

FTDC SE 2 L27, L16, L28, and L08 

FTSJ SE 2 L24, L14, S08, and S03 

ANL SE 2 L22, L09, and L17 

A1B NW 2 L23 and L11 

A3B NW 2 L18 and S15 

A5B NW 2 L26, L01, and L06 

A6B NW 2 L15 and L05 

TP5 

2018-02-21 

to 

2018-12-31 

30,048 

FTDC SE 2 L08 

FTSJ SE 1 and 2 S08, L14, and S03 

A1B SW 1 S04 

A6B SW 2 L15 and L05 

 

We use daily precipitation (PPT) accumulations from the Parameter-elevation 

Regressions on independent Slopes Model (PRISM) dataset (PRISM Climate Group) to 

represent the hydrometeorological regime in our analysis. The PRISM data is in gridded 

format with grid cells having a spatial resolution of ~4 km and three grid cells overly the 

locations at which our sets of STICLs were deployed (Figure IV-1). We treat each of 

these three grid cells as a PPT station and label them as the northwest (NW), southeast 
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(SE), and southwest (SW) stations. We generated a time-series of PPT for each station 

by creating an image stack for all dates considered here. We divide the three daily PPT 

time-series into five datasets (Table IV-2) that coincide with the five sets of data 

recorded by our STICLs. TP1 received the least amount of PPT with most occurring in 

June and August (Figure IV-3). TP2 received the second most amount of PPT with one 

storm in early-December being the largest PPT event (Figure IV-4). TP3 received the 

second least amount of PPT with most PPT occurring in June (Figure IV-5). TP4 is the 

third wettest period being considered with the vast majority of PPT occurring during 

Hurricane Harvey that passed through the study area in late-August (Figure IV-6). TP5 

is the wettest period being considered with more than two times the total PPT than TP2 

with most PPT occurring during a very large event in June and a string of events that 

occurred in the Fall months (Figure IV-7). 

 We use instantaneous streamflow records (15-minute sampling interval) for the 

08189500 USGS gaging station at Refugio, TX from May-2016 through Dec-2018 to 

represent the streamflow regime in our analysis. Following the approach used for the 

time-series from our STICLs and precipitation, we divide the streamflows from this 

time-period into five datasets (Table IV-3) that coincide with the five sets of data 

recorded by our STICLs. These TPs vary with regard to their length and hydrologic 

conditions (Table IV-3). TP1 is the period with the third lowest variance for the set of 

streamflows with one relatively large streamflow in early-June where discharge (Q) 

peaked at 69 m3/s (Figure IV-3). TP2 is the period with the second lowest variance for 

the set of streamflows with two modest flow pulses and the larger one in late-February 
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reaching a peak Q of 29 m3/s (Figure IV-4). TP3 is the period with the lowest variance 

for the set of streamflows with only one small flow pulse with a peak Q of 7.7 m3/s 

(Figure IV-5). TP4 is the period with the second highest variance for the set of 

streamflows with one large streamflow event that resulted from Hurricane Harvey in 

late-August with a peak Q of 130 m3/s (Figure IV-6). TP5 is the period with the highest 

variance for the set of streamflows with one very large streamflow event with a peak Q 

of 295 m3/s in late-June and four other notable streamflow events in the Fall months 

(Figure IV-7). 

Table IV-2. Descriptive statistics of daily PRISM precipitation (PPT) accumulations for the five 

time-periods (TP) organized by the three precipitation stations (northwest grid cell (NW), southeast 

grid cell (SE), southwest grid cell (SW)). The statistics are for PPT days which are for days within 

the TP where precipitation is greater than zero. (Note: n = sample size or number of days in TP; nppt 

= count of days in TP with precipitation; Minppt = is the minimum amount of precipitation for days 

that had precipitation; Maxppt = is the maximum amount of precipitation for days that had 

precipitation; μppt = is the mean precipitation for days estimated to have precipitation; σppt = is the 

standard deviation of precipitation for days estimated to have precipitation; and Total = is the total 

amount of precipitation within the grid cell for the TP). 

TP Dates n Station 
PPT Days (accumulations in mm) 

nppt Minppt Maxppt μppt σppt Total 

TP1 

2016-05-25 

to  

2016-08-23 

91 

NW 32 0.01 37.21 10.04 11.48 301.27 

SE 34 0.00 30.92 6.98 7.99 237.36 

SW 32 0.00 35.61 8.36 9.80 267.63 

TP2 

2016-08-25 

to 

2017-03-17 

205 

NW 71 0.01 65.15 7.03 11.13 492.22 

SE 74 0.01 62.19 7.00 11.10 518.36 

SW 71 0.00 65.89 7.18 11.47 510.00 

TP3 

2017-03-19 

to 

2017-07-13 

117 

NW 30 0.01 32.16 9.25 10.51 277.44 

SE 28 0.01 32.16 9.52 10.09 266.47 

SW 30 0.00 30.34 9.24 9.87 277.18 

TP4 

2017-07-14 

222 

NW 75 0.00 156.89 6.45 18.99 483.81 

to SE 76 0.00 159.49 6.69 18.95 508.36 

2018-02-20 SW 75 0.00 149.19 6.38 17.91 478.54 

TP5 

2018-02-21 

to 

2018-12-31 

314 

NW 110 0.00 193.43 11.28 24.34 1263.85 

SE 112 0.01 98.41 9.81 17.85 1099.00 

SW 110 0.01 151.00 11.01 21.95 1210.74 
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Table IV-3. Descriptive statistics of the instantaneous stage (h) and discharge (Q) at the 08189500 

USGS gaging station that represent the streamflows included in each time-period (TP). (Note: n = 

sample size streamflows for the TP; Min = minimum value in the sample; Q1 = first quantile for the 

sample; Q2 = second quantile for the sample; Q3 = third quantile for the sample; Max = maximum 

value for the sample; μ = mean value for the sample, σ = standard deviation for the sample) 

TP Dates n Variable Min Q1 Q2 Q3 Max μ σ 

TP1 

2016-05-25 

to  

2016-08-23 

8,736 
h [m] 0.63 0.67 0.70 0.80 4.92 0.88 0.58 

Q [m3/s] 0.03 0.13 0.25 0.75 69.09 2.47 8.42 

TP2 

2016-08-25 

to 

2017-03-17 

19,688 
h [m] 0.61 0.64 0.67 0.71 2.94 0.72 0.24 

Q [m3/s] 0.02 0.07 0.15 0.29 29.45 0.68 2.74 

TP3 

2017-03-19 

to 

2017-07-13 

11,232 
h [m] 0.55 0.61 0.64 0.66 1.46 0.64 0.08 

Q [m3/s] 0.00 0.03 0.07 0.15 7.56 0.17 0.52 

TP4 

2017-07-14 

to 

2018-02-20 

21,324 
h [m] 0.52 0.70 0.71 0.77 7.75 0.90 0.94 

Q [m3/s] 0.00 0.13 0.16 0.58 129.7 2.87 13.59 

TP5 

2018-02-21 

to 

2018-12-31 

30,048 
h [m] 0.59 0.68 0.77 1.02 8.55 1.26 1.35 

Q [m3/s] 0.00 0.14 0.45 2.45 294.5 8.08 27.59 

 

 

Figure IV-3. Time-series of precipitation (PPT), discharge (Q), and electrical conductivity (EC) for 

time-period 1 (TP1) that includes the dates 2016-05-25 to 2016-08-23. The colors of the lines and 

points being plotted coordinate with the colors being used in Figures IV-1 and IV-2 for the PPT 

stations and STICL locations. (Note: dashed grey lines define the bounds for the EC values expected 

for rainfall and riverine inundation; the ID for each STICL is followed by the elevation at which 

each STICL was installed using NAVD88; CT = Central Time). 
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Figure IV-4. Time-series of precipitation (PPT), discharge (Q), and electrical conductivity (EC) for 

time-period 2 (TP2) that includes the dates 2016-08-25 to 2017-03-17. The colors of the lines and 

points being plotted coordinate with the colors being used in Figures IV-1 and IV-2 for the PPT 

stations and STICL locations. (Note: dashed grey lines define the bounds for the EC values expected 

for rainfall and riverine inundation; the ID for each STICL is followed by the elevation at which 

each STICL was installed using NAVD88; CT = Central Time). 

 

Figure IV-5. Time-series of precipitation (PPT), discharge (Q), and electrical conductivity (EC) for 

time-period 3 (TP3) that includes the dates 2017-03-19 to 2017-07-13. The colors of the lines and 

points being plotted coordinate with the colors being used in Figures IV-1 and IV-2 for the PPT 

stations and STICL locations. (Note: dashed grey lines define the bounds for the EC values expected 

for rainfall and riverine inundation; the ID for each STICL is followed by the elevation at which 

each STICL was installed using NAVD88; CT = Central Time). 
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Figure IV-6. Time-series' of precipitation (PPT), discharge (Q), and electrical conductivity (EC) for 

time-period 4 (TP4) that includes the dates 2017-07-14 to 2018-02-20. The colors of the lines and 

points being plotted coordinate with the colors being used in Figures IV-1 and IV-2 for the PPT 

stations and STICL locations. (Note: dashed grey lines define the bounds for the EC values expected 

for rainfall and riverine inundation; the ID for each STICL is followed by the elevation at which 

each STICL was installed using NAVD88; times are in Central Time). 

 

Figure IV-7. Time-series' of precipitation (PPT), discharge (Q), and electrical conductivity (EC) for 

time-period 5 (TP5) that includes the dates 2018-02-21 to 2018-12-30. The colors of the lines and 

points being plotted coordinate with the colors being used in Figures IV-1 and IV-2 for the PPT 

stations and STICL locations. (Note: dashed grey lines define the bounds for the EC values expected 

for rainfall and riverine inundation; the ID for each STICL is followed by the elevation at which 

each STICL was installed using NAVD88; times are in Central Time). 
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We represent the terrain with a gridded bare-earth digital terrain model (DTM) at 

1-m spatial resolution that was developed using two lidar-based DTMs as part of the 

analysis used in (Castillo et al., In-Preperation). The locations where our data loggers 

were deployed fall within the portion of our DTM that was developed by the National 

Center for Airborne Laser Mapping (NCALM) using lidar point clouds collected in Mar-

2018. The DTM was originally at a spatial resolution of 0.5-m, but we resampled it to a 

spatial resolution of 1-m using bilinear interpolation. The non-submerged portions of the 

terrain have a vertical error of 0.031 m. The submerged topography for portions of the 

main channel were synthetically generated using channel bed elevations from a detailed 

Flood Insurance Study (FIS) conducted by FEMA (FEMA, 2014) and methods from 

Legleiter and Kyriakidis (2008). The submerged portions of the terrain have an error of 

0.76 m. 

Outputs of flood inundation depth from steady two-dimensional hydrodynamic 

model simulations from Castillo et al. (In-Preperation) are used to estimate the 

streamflow conditions needed for inundation to occur at the location at which each 

STICL is installed. These simulated inundation depths are in gridded format with a 

spatial resolution of 1-m and each grid cell estimates the depth of flood inundation for 

the underlying area under the Q for Mission River being simulated. Our hydrodynamic 

model was assessed against FIS estimates of the longitudinal water-surface profile of 

four idealized flow conditions (streamflows with 10-year, 50-year, 100-year, and 500-

year return periods) and we determined that our model deviates from these estimates by 
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0.2 m (Castillo et al., In-Preperation). A total of 23 simulations that span the historical 

streamflow record of the 08189500 USGS gaging station are considered here. 

Field-based measurements of specific conductance (electrical conductivity at 25° 

C) for Mission River at the site of the 08189500 gaging station are used to determine the 

range of electrical conductivity values that a supposedly non-tidal portion of the river 

has experienced. These data (Reach ID: 2002; Station ID: 12944; Parameter Code: 

00094) were collected by the Nueces River Authority (NRA) two or more times a year 

from 1972 through 2018 with 222 total measurements (Nueces River Authority, 2019). 

Specific conductance at this site has a range of 10 to 17500 μS/cm with a mean of 2157 

μS/cm. 

STICL Modifications 

We use modified Onset HOBO Pendant waterproof temperature and light data 

loggers in our analysis that were modified using materials and methods described in 

Chapin et al. (2014) and Gillman et al. (2017); with the exception of the epoxy because 

we used Loctite ProLine Marine Adhesive Sealant. These methods involve removing the 

photodiode leads that estimates light intensity from the logger circuit chip and replacing 

them with a pair of electrodes that protrude externally from the water-proof housing caps 

(see Figure IV-1 of Gillman et al. (2017) for diagram of modifications). The 

modifications allow the EC of the medium that completes the circuit between the 

external electrodes to be estimated that are recorded as digital numbers at a 10-bit 

resolution and converted to light intensity units of lux (Lumens/m2) or Lumens/ft2 using 

algorithms in the HOBOware software (Version 3.7.17). Air is a very poor conductor of 
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electricity and the EC across the electrodes when exposed to only air should be zero. 

Water, on the other hand, can conduct electricity when it has some solutes and the EC 

increases with increasing solute concentrations. The modifications for estimating EC do 

not affect the temperature components of the STICL or how the recorded data is 

offloaded thus no additional modifications are needed to the STICL or the HOBOware 

software (Chapin et al., 2014, Gillman et al., 2017). 

Our STICLs were acquired and modified in two phases. Our first set/phase of 

STICLs that were acquired and modified in early-Spring of 2016 included 14 STICLs, 

but only 10 remained operational through at least one TP and we only report the findings 

from these 10 STICLs. Our second set/phase of STICLs were acquired in early-summer 

of 2017 and it included 28 STICLs, but only 18 STICLs remained operable through at 

least one TP and we only report the findings from these 18 STICLs. 

STICL Calibrations 

We calibrate our STICL readings for EC in the lab using sets of calibration 

standards that allow the STICL readings to be used to estimate the EC of the inundating 

waters. We use a wide range of EC values in the calibration process because our study 

site can experience flood inundation from a variety of sources that include streamflows, 

intense rainfall-downpours, and surge from tropical storms/cyclones. Our first phase of 

STICLs was calibrated using standards with five EC values that include 0 (distilled 

water), 84, 1413, 2070, and 8974 μS/cm. Each STICL in the first phase of preparations 

was submerged in each standard for one hour on a one-second logging interval for a total 

of 3600 data points per calibration-trial (submersion of STICL in the calibration 
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standard). Our second phase of STICLs was calibrated using six EC standards with 

values that include 23, 84, 447, 1413, 2764, and 8974 μS/cm. Each STICL of the second 

phase of preparations was submerged in each standard for one hour on a three-second 

logging interval for a total of 1200 data points per calibration-trial. 

The readings from each calibration-trial was offloaded from each STICL using 

the Optic USB base station and the HOBOware software. The STICL readings on the 

light intensity channel are then converted to the lux unit that has a range from 0 to 

330,000. The sensitivity in the electrical conductance that each modified STICL can 

detect varies on a case-by-case basis, but we limited our calibrations to the range of 0-

8974 μS/cm. Although, there is one STICL (S15) that was only calibrated using an EC 

range of 0-2764 μS/cm. The range of standards that was used for each STICL is shown 

in Tables C-1 and C-2 for the first and second phase of STICL preparations. Linear 

spline regressions were fitted to the set of calibration-trials for each STICL where the 

regressions took the generalized form of Eq. IV-1. 

𝑅𝑙𝑠(𝑥) =  

{
 
 

 
 

𝑝0(𝑥0) = 0,                                     𝑥 = 𝑥0 = 0,

𝑝1(𝑥) =  𝑝0(𝑥0) + 𝛽1𝑥,               𝑥 ∈ [𝑥0, 𝑥1),

𝑝2(𝑥) =  𝑝1(𝑥1) + 𝛽2𝑥,               𝑥 ∈ [𝑥1, 𝑥2),
⋮

𝑝𝑛(𝑥) =  𝑝𝑛−1(𝑥𝑛−1) + 𝛽𝑛𝑥,          𝑥 ∈ [𝑥𝑛−1, 𝑥𝑛],

 (Eq. IV-1) 

where Rls(x) is the fitted linear spline regression for a set of calibration-trials, pn(x) is the 

fitted piece-wise linear function (linear spline with degree of 1) that corresponds to a 

given x-value (“light intensity” from a data logger in this case), xn is the x-value that 

corresponds with the knots in the fitted linear spline, and βn is the slope of the line that 

connects the knots of the linear spline. The regression is forced to start at the origin with 
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linear fits representing the regression between the knots of the spline. The mean “light 

intensity” values for each calibration-trial are used as the knots in the fitted linear spline 

models. There are some cases where STICLs and their associated linear spline 

regressions are able to achieve values >8974 μS/cm, but we limit all EC values to a 

range of 0-8974 μS/cm. 

STICL Deployments 

Our 28 STICLs were deployed at the eight locations shown in Figure 2, but their 

operational deployments only coincided with the descriptions shown in Table IV-1. 

STICLs were deployed on days where streamflows were at baseflow values and placed 

within un-submerged portions of the banks of the active channel or on the adjacent 

floodplain. Moreover, STICLs were also positioned in a manner where each STICL 

within a location had a distinct elevation that allowed them to capture the vertical and 

lateral surface-water connectivity for a variety of streamflows. The spatial positioning of 

our STICLs is determined using a Trimble R8-2 Global Navigation Satellite System 

(GNSS) unit with a range in the horizontal spatial error of 0.73 to 2.22 m for all STICL 

positions. We use our DTM to determine the elevation (in NAVD88) at which each 

STICL is deployed. 

 Records from our deployed STICLs are offloaded using the HOBO base-station 

and the Hoboware software. We then use the fitted linear spline model for each data 

logger from the calibration to estimate the EC experienced by the STICLs in the field 

during the five TPs considered here. STICL inundation can occur from a variety of 

individual or combined sources that include intense rainfall, riverine flooding, and 
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marine processes (tides and storm-surge). EC readings from our STICLs need a value of 

≥2 μS/cm to be considered inundated from rainfall (melted snow typically ranges from 2 

to 42 μS/cm (CSWRCB, 2004) and we assume that rainfall has similar EC values). We 

use the specific conductance range (10-17500 μS/cm) from the NRA field-measurements 

to define the bounds for the EC values that will be considered riverine as the source of 

inundation. Our STICLs are limited to a value of 8974 μS/cm that falls within the 

riverine range; thus we generally do not classify any of our loggers readings as 

inundated by marine water, but there is an event in TP4 where we feel it is more 

appropriate to label some of the EC readings as inundation caused by marine processes 

(See Time-Series Comparisons in Results section). 

Estimates of Streamflow Needed for STICL Inundation 

We use the spatial (horizontal and vertical) positioning of each STICL to 

estimate the values of Q for Mission River that would result in a STICL being inundated 

by streamflows. A Geographic Information Systems (GIS) overlay operation with the 

STICL positions and the 23 gridded inundation depth estimates are used to identify the 

minimum simulated Q that would result in a data logger being inundated. There is 

uncertainty in the spatial positioning of each STICL and the water-surface elevation of 

our model estimates. We incorporate these uncertainties into our estimates of the 

minimum Q (Qmin) needed for a STICL needed to be considered inundated in four (4) 

steps. First (1), the horizontal spatial error of each STICL position is accounted for by 

generating circular buffers around each STICL position with a radius that is equal to the 

horizontal error recorded at each STICL position by the GNSS. We use these buffers in 



 

102 

 

the overlay GIS operation with the set of simulated inundation depths to identify the 

minimum of the simulated Qs that intersect a given buffer. Second (2), the vertical 

spatial error in the DTM (error is 0.031 m in un-submerged portions of the terrain) is 

identified and recorded. Third (3), the vertical uncertainty in our hydrodynamic model is 

identified (error in water-surface elevation is 0.20 m) and accounted for by adding it to 

the DTM error identified in (2). Fourth (4), the most recent rating curve for the 

08189500 USGS gaging station is used to determine a range of streamflows that could 

result in a given STICL becoming inundated by using the relationship that h has with Q 

in the rating curve. The corresponding Q identified in (1) has an associated h within the 

rating curve. We add and subtract the total vertical error calculated in (3) to calculate a 

range of possible h values and extract the Q values associated with this range. Here we 

assume that the Qmin identified in (4) for each data logger position is the streamflow 

needed for the respective STICL to be inundated (Figure IV-8). 
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Figure IV-8. Estimates of the discharge (Q) and stage (h) needed for our STICLs to be inundated. 

STICLs are labeled in accordance with their respective deployment location described in Table 1 

and Figure 2. The size of the circle that represents each STICL is proportional to the horizontal 

spatial uncertainty of a STICL position with larger circles indicating more horizontal uncertainty. 

Error bars are used to illustrate the range of streamflows that are estimated to cause a STICL to be 

inundated. The minimum Q (Qmin) identified for each STICL (left-edge of error bars) is used here 

to identify the streamflow records in the period of interest that potentially cause the STICLs to be 

inundated. The rating curve for the 08189500 USGS gaging station and the instantaneous 

streamflows (15-minute sampling interval) for the five time-periods considered (See Table 1) here 

are also shown. 

Time-Series Comparisons 

The three types of data that we consider here (PPT, Q, and EC) are recorded in 

time-series format. We plot the time-series of these variables for each of our time-

periods of interest and compare the trends. In particular, we examine the oscillations in 

EC to determine if the peaks and plateaus in the signal coincide with PPT and increased-
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Q events. We also analyze if our estimates of the streamflows that result in the STICLs 

being inundated coincide with the STICL records. Moreover, a variety of flood-water 

sources can inundate our STICLs (e.g., riverine, meteorological, marine, and 

groundwater) and we use the EC values to decipher the flood-water sources for the 

signals recorded in our STICLs. 

Results 

STICL Calibrations 

Linear spline regressions were fit to the data from the laboratory calibrations for 

EC. The first phase of the STICL preparations included 10 STICLs that were subjected 

to five calibration trials (0, 84, 1413, 2070, and 8974 μS/cm; Table C-1). All fitted linear 

spline models and their coefficients (slopes in the linear splines) from the first phase of 

STICL preparations are statistically significant at the α = 0.05 level. The standard error 

for the fitted models (SEmod) ranges from 16 to 422 μS/cm with a mean SEmod of 200 

μS/cm. The fit for S10 is worst for the data loggers in the first phase of data logger 

preparations but all fits are considered suitable with a SEmod that is ≤5% of the 

calibration range. 

The second phase of the STICL preparations included 18 STICLs that were 

subjected to six calibration-trials (23, 84, 447, 1413, 2764, and 8974 μS/cm; Table C-2). 

All fitted linear spline models and their coefficients from the second phase of STICL 

preparations are statistically significant at the α = 0.05 level. The standard error for the 

fitted models (SEmod) ranged from 7 to 1162 μS/cm with a mean SEmod of 421 μS/cm. 

The fit for L15 is the worst for the STICL in the second phase of STICL preparations 
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and it skews the distribution of SEmod for this phase, but the fits for the remaining models 

are considered reasonable. Eight of the 19 fitted models for the second phase of STICL 

preparations have SEmod values ≥5% of the calibration range, but nonetheless, all models 

are considered reasonable for our purposes. 

STICL Deployments 

TP1 is the TP from 2016-05-25 to 2016-08-23 that spans 91 days and the STICLs 

that were deployed and operational throughout TP1 were able to record 8,736 data points 

(Table C-1). Nine STICLs deployed at four locations were recording data on a 15-

minute interval. With the exception of S10 and S02 that have temporal coverages of 91 

and 45%, respectively; all other STICLs in Figure 3 have 100% temporal coverage 

during TP1. In terms of logged readings, all STICLs readings remain at zero until early 

June when two STICLs at FTLCP (S12 and S06) and S14 at A1B increase to an EC >84 

μS/cm (S06 and S14 reach EC values of 422 and 949 μS/cm, respectively) then decline 

after a few days. S14 and S06 in particular have two peaks in their response at either end 

of this event. Amongst the three STICLs that responded during this early-June event, the 

STICLs placed at a lower elevation retained these increased values longer indicating that 

the STICLs at lower elevations were inundated for a longer duration of time. Moreover, 

there is a small lag in terms of the signal response at the downstream A1B location 

compared to the upstream FTLCP location. There are only very minor events throughout 

the remaining TP1. Moreover, the readings from S02 at A5B stop in early-July. In terms 

of the source of the inundation that is the causing the larger STICL responses, four of the 

STICLs (S06, S12, S14, and S10) exhibited EC values that can be classified as being 
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inundated by riverine water. The duration of inundation for these STICLs has a range 

from 0.5 to 1.8% of TP1 (Table IV-4). For STICLs deployed within the same location, 

the STICLs with a lower elevation are inundated for a higher duration. 

TP2 is the TP from 2016-08-25 to 2017-03-17 that spans 205 days and the 

STICLs that were deployed and operational throughout TP2 were able to record 19,688 

data points (Table IV-1). Six STICLs deployed at three locations were recording data on 

a 15-minute interval. All STICLs deployed during TP2 have 100% temporal coverage 

(Figure IV-4). In terms of logged readings, all STICLs exhibit EC values <2 μS/cm with 

all six STICLs responding collectively to five groups of events. S08 and S06 tend to 

have the largest responses for their respective locations for each of these events, but 

there is no obvious trend for the STICL responses amongst the event groups. None of the 

STICLs that exhibited responses to the PPT and Q events had EC values high enough to 

be classified as being inundated by any of the water sources considered here and thus the 

duration of inundated was not determined (Table IV-4). 

TP3 is the TP from 2017-03-19 to 2017-07-13 that spans 117 days and the 

STICLs that were deployed and operational through TP3 were able to record 11,232 data 

points (Table IV-1). Five STICLs deployed at three locations were recording data on a 

15-minute interval. All five STICLs deployed during TP3 had 100% temporal coverage 

(Figure IV-5). In terms of logged readings, there are nine groups of events with the most 

obvious events occurring from late-May through mid-July. S06 at the FTLCP location 

had the responses with the greatest magnitude for each of the nine events with a 

maximum EC value of 1.8 μS/cm. The other STICLs also respond during the nine 
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events, but not to same degree as S06. None of the STICLs that exhibited responses to 

the PPT and Q events had EC values high enough to be classified as being inundated by 

any of the water sources considered here and thus the duration of inundated was not 

determined (Table IV-4). 

TP4 is the TP from 2017-07-14 to 2018-02-20 that spans 222 days and the 

STICLs that were deployed and operational through TP4 were able to record 21,324 data 

points (Table IV-1). Twenty-three STICLs deployed at eight locations were recording 

data on a 15-minute interval. All 23 STICLs deployed during TP4 had 100% temporal 

coverage (Figure IV-6). In terms of logged readings, with the exception of S03 that had a 

negligible response, all other STICLs recorded a large event at the end of August around 

the time Hurricane Harvey progressed through the study area. The max readings for all 

STICLs that responded to Hurricane Harvey reached EC values ≥157 μS/cm, but 17 of 

the STICLs logged EC values >500 μS/cm. Moreover, eight of the STICLs had readings 

>1500 μS/cm that exceeds the typical EC values found within freshwater systems. With 

the exception of L26 at A5B that exhibits another event after Hurricane Harvey with 

several EC values >100 μS/cm, no other STICLs exhibit obvious event responses 

through the rest of TP4. In terms of the source of the inundation that is the causing the 

larger STICL responses, 22 of the STICLs exhibited EC values that can be classified as 

being inundated by riverine water. The duration of inundation for these STICLs has a 

range from 0.2 to 7.8% of TP4 (Table IV-4). STICLs with a relatively low elevation 

compared to other STICLs deployed at the same location tend to be inundated for a 
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longer duration, but this is not always the case and STICLs at FTDC are a prime 

example. 

TP5 is the TP from 2018-02-21 to 2019-12-31 that spans 314 days and the 

STICLs that were deployed and operational through TP5 were able to record 30,048 data 

points (Table IV-1). Seven STICLs deployed at four locations were recording data on a 

15-minute interval. With the exception of L05 that has a temporal coverage of 79%, all 

other STICL have a temporal coverage of ≥94% for TP5 (Figure IV-7). In terms of 

logged readings, two prominent events are exhibited in June and September where L08 

at FTDC, L14 at FTSJ, and both STICLs at A6B (L05 and L15) all logged EC values 

>300 μS/cm. Similar to what was exhibited in TP1, peaks in STICL readings occur at 

either side of the two prominent events. There are three other minor events in the Fall 

months (one per month in October, November, and December) where the four 

aforementioned STICLs also logged readings with EC > 100 μS/cm. In terms of the 

source of the inundation that is causing the larger STICL responses, five of the STICLs 

(L08, S08, L14, L15, and L05) exhibited EC values that can be classified as being 

inundated by riverine water. The duration of inundation for these STICLs has a range 

from 1.0 to 5.5% of TP5 (Table IV-4). STICLs with a lower elevation than other STICLs 

deployed at the same location tend to be inundated for a longer duration, but this is not 

always the case as S08 and L14 have the same duration of inundation. 

Estimates of Streamflow Needed for STICL Inundation 

We estimated the minimum Q (Qmin) needed for each STICL to be inundated by 

streamflows and used these estimates to predict how often a STICL should be inundated 
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for a given TP (Table IV-4). The STICLs of FTLCP are in close proximity to each other 

and the range of elevations at which they were deployed ranges from 4.2 to 8.2 m. The 

STICLs at FTLCP lie within the Mission River main channel and there is a percent 

difference of 1023% for the Qmin between the STICLs at the lowest and highest 

elevations (S06 and S13, respectively). There is no TP where all four of the STICLs 

deployed at FTLCP are collectively operational, but there are combinations of three 

STICLs operating for the first four TPs (TP1-TP4). STICLs at lower elevations are 

always predicted to be inundated for a longer duration in each TP. The four STICLs at 

FTLCP are estimated to be inundated an average of 2.78 (S06), 2.28 (L13), 0.48 (S12), 

and 0.03 (S13) percent of the time during the first four TPs with a percent difference in 

the average duration of inundation of 9176% between STICLs S06 and S13. 

FTDC STICLs are deployed in two locations along Dry Creek with differing 

channel and floodplain dimensions in areas that are influenced by backwater flooding 

from Mission River. STICLs at both locations are deployed with one being deployed 

within the channel while the other is deployed on the adjacent floodplain. The ranges in 

the deployment elevations for the STICLs at both FTDC locations is 2.4 to 3.1 m and 2.2 

to 3.9 m (Table IV-4), respectively, while the percent difference in Qmin between STICLs 

at both locations are 29% and 67%. All STICLs at FTDC were only collectively 

operational during TP4 (L08 was also operational during TP5). Between the in-channel 

STICLs (L27 and L16), L27 is predicted to be inundated for 6.6% more of TP4 because 

it has a lower elevation and it is closer to the Dry Creek-Mission River confluence. This 

differs for L28 and L08 that are deployed on the floodplain at different elevations and 
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longitudinal positions, but both are predicted to be inundated for the same amount of 

time for TP4. This prediction is likely due to L08 lying more downstream (Figure IV-2) 

where it more readily experiences backwater flooding from Mission River. 

FTSJ STICLs are deployed in two locations with one location being within the 

main channel of Mission River in a gas pipeline clearing and the other being on a 

forested portion of the floodplain adjacent to the pipeline clearing. The ranges in 

deployment elevations for the STICLs at both FTSJ locations is 3.9 (L24) to 4.5 m (S08) 

and 4.8 (L14) to 5.5 m (S03), respectively (Table IV-4), while the percent difference in 

Qmin between the STICLs at both locations is 38 and 72%. The elevation difference 

between both FTSJ locations is almost equal, but the Qmin difference for the floodplain 

STICLs is almost twice that of the in-channel STICLs because flood waters spread over 

a much larger area when they are in the floodplain and this requires a larger Q in order to 

increase the water-surface elevation an equal amount. All STICLs at FTSJ are only 

collectively operational during TP4 where STICLs deployed at lower elevations are 

always predicted to be inundated for a longer duration (S03 was predicted to not 

experience inundation). For TP4, L24 is predicted to be inundated 103% more often than 

S08 that is in-channel and 209% more often than L14 that lies on the forested floodplain. 
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Table IV-4. The elevation (in NAVD88) and the estimate of the minimum discharge (Qmin) that 

results in each STICL being inundated by streamflows. The percentage of each time-period (TP) 

that each STICL is predicted to be inundated (left of the “/”) and the percentage of the time that it is 

predicted to be inundated in accordance to the estimated electrical conductivity (EC) values (right of 

the “/”) are also shown. The number of Q data points sampled on a 15-minute interval are below 

each TP label (Note: STICL = Stream Temperature, Intermittence, and Conductivity logger; na = 

the STICL was not deployed or operational during this TP; see Study Area and Figure IV-2 for 

descriptions of where STICLs were deployed; see Table IV-1 for descriptions of each TP). 

Location STICL 

Elevation Qmin Estimated Percentage of TP Inundated [%] 

[m] [m3/s] 
TP1 

(8,736) 

TP2 

(19,688) 

TP3 

(11,232) 

TP4 

(21,324) 

TP5 

(30,048) 

FTLCP 

S06 4.2 11.4 5.7/1.5 1.7/0.0 0.0/0.0 3.8/3.7 na 

L13 5.8 35.4 na na na 2.3/1.5 na 

S12 6.5 44.9 1.4/0.5 0.0/0.0 0.0/0.0 na na 

S13 8.2 128.1 0.0/0.0 0.0/0.0 0.0/0.0 0.1/0.2 na 

FTDC 

L27 2.2 26.6 na na na 2.4/2.8 na 

L16 2.4 35.4 na na na 2.3/2.9 na 

L28 3.1 44.9 na na na 2.1/1.7 na 

L08 3.9 44.9 na na na 2.1/2.0 5.8/3.4 

FTSJ 

L24 3.9 65.9 na na na 1.8/2.2 na 

S08 4.5 91.0 0.0/0.0 0.0/0.0 0.0/0.0 0.9/1.7 2.6/1.0 

L14 4.8 108.1 na na na 0.6/1.3 1.9/1.0 

S03 5.5 186.9 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.6/0.0 

ANL 

L22 3.6 55.1 na na na 2.0/2.0 na 

L09 4.0 77.2 na na na 1.4/1.3 na 

L17 5.0 108.1 na na na 0.6/0.8 na 

A1B 

L23 2.4 26.6 na na na 2.4/2.4 na 

S14 3.4 55.1 1.1/1.8 na na na na 

L11 3.7 44.9 na na na 2.1/1.3 na 

S10 4.0 77.2 0.0/0.8 0.0/0.0 na na na 

S04 5.0 342.5 0.0/0.0 0.0/0.0 0.0/0.0 na 0.0/0.0 

A3B 
L18 2.4 11.4 na na na 3.8/2.1 na 

S15 3.3 55.1 na na na 2.0/1.9 na 

A5B 

L26 1.2 26.6 na na na 2.4/7.8 na 

L01 1.8 35.4 na na na 2.3/2.5 na 

L06 3.0 55.1 na na na 2.0/1.6 na 

S02 3.2 55.1 1.1/0.0 na na na na 

A6B 
L15 2.1 35.4 na na na 2.3/2.5 6.4/5.5 

L05 2.8 55.1 na na na 2.0/2.4 5.1/4.1 
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ANL STICLs are deployed in two locations along the channel-face of a natural 

levee with one lying on a shallower part of the natural levee while the other two are on a 

steeper part. The ranges in deployment elevations for data loggers at ANL are 3.6 to 5.0 

m (Table IV-4), while the percent difference in Qmin between L17 and the other two 

STICLs (L09 and L22) is 40 and 96%, respectively. This difference in Qmin is partially 

due to the elevation differences, but is also due to L22 being in a less steep portion of the 

natural levee that allows the main channel of Mission River to be wider. All STICLs at 

ANL were only operational during TP4 where the percent difference in the duration of 

inundation between the L17 and the other STICLs (L09 and L22) is 43 and 240%, 

respectively. Again, the STICLs at a lower elevation are predicted to be inundated for a 

much longer duration due to the differences in Qmin. 

A1B STICLs are deployed at two locations along the cut bank of the first 

meander bend in the downstream portions of the study reach. Both STICLs at the 

upstream A1B location (L23 and S14) are placed within the main channel with the 

lowest elevations for A1B of 2.4 and 3.4 m, respectively (Table IV-4). The predicted 

Qmin for S14 is 107% greater than the Qmin for L23. Two of the three STICLs at the 

downstream A1B location lie within the main channel with elevations of 3.7 (L11) and 

4.0 m (S10); and the third (S04) is deployed on the adjacent floodplain with an elevation 

of 5.0 m. Despite the modest elevation difference between the in-channel STICLs at the 

downstream A1B location, the Qmin for S10 is 72% greater than for L11 and this is 

because both data loggers are placed near the top of the channel banks. S04 is deployed 

on the floodplain with an elevation that is 1 m higher than S10, but S04 has a Qmin that is 
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344% greater than the Qmin for S10. The five STICLs are operational sporadically 

throughout the five TPs, but the data loggers deployed at a lower elevation are predicted 

to be inundated for a longer duration than those at a lower elevation. For example, L23 

and L11 are both operational during TP4 and L23 is predicted to be inundated for 14% 

more of the time than L11 that is at a higher elevation. 

A3B STICLs are deployed on the cut bank near the apex of the third meander 

bend of the Mission River main channel in downstream portions of the study reach. Both 

A3B STICLs are deployed within the main channel at elevations of 2.4 (L18) and 3.3 m 

(S15; Table IV-4). Despite an elevation difference of >1 m, the Qmin for S15 is 383% 

greater than that for L18. Both STICLs are only operational during TP4 where L18 is 

predicted to be inundated for a duration that is 91% greater than the duration predicted 

for S15. 

A5B STICLs are deployed just upstream of the cut bank on the fifth bend of the 

main channel for Mission River. The four STICLs are deployed on a low-spot that slopes 

upwards as the lateral distance from the channel increases. Elevations of the four A5B 

STICLs are 1.2 (L26), 1.8 (L01), 3.0 (L06), and 3.2 m (S02) with a Qmin that increases 

with elevation with the exception of L06 and S02 that have an equal Qmin (Table IV-4). 

The percent difference in Qmin between the lowest and highest STICLs is 106%. STICLs 

at A5B are only operational during TP1 and TP4 with TP4 being the TP with the most 

operational STICLs. The duration of inundation for L26 is 23% greater than that of L06 

during TP4 and this difference is mostly due to the elevation differences. 
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A6B STICLs are deployed on the floodplain of the downstream end of the sixth 

meander bend in the most downstream portion of our study reach. The two STICLs are 

deployed on a relatively flat floodplain with L15 being close to the channel edge and at a 

lower elevation. L15 is at an elevation of 2.1m and L05 is at 2.8 m with L05 having a 

Qmin that is 56% greater than that of L15. Both STICLs are operational during TP4 and 

TP5 with a predicted average inundation duration of 4.35 and 2.78% for both TPs. The 

average duration for L15 is 56% greater and this is mostly due to the proximity to the 

main channel and the elevation differences. 

Time-Series Comparisons 

We compare our three types of time-series (PPT, Q, and EC) in order to 

determine if the trend of EC values that we observe for each TP coincide with the 

respective trends in PPT and Q. For TP1, there is one prominent event for EC in early-

June (Figure IV-3). S06, S12, and S14 all have a large multimodal rise in their EC values 

that rise to values that fall within the range of 50-2000 μS/cm that is typical for rivers in 

the United States (U.S. Environmental Protection Agency, 2012, CSWRCB, 2004). 

These increases in EC coincide with a multimodal rise in Q and several peaks in PPT. 

Four STICLs (S06, S12, S14, and S02) are predicted to be inundated at about the same 

time as when the events in EC occur, but the EC of S02 does not respond as predicted 

and the duration of inundation is generally overpredicted for the other three STICLs. The 

rough agreement with the predictions of riverine inundation duration, the relatively high 

EC values reported by the STICLs that had events of increased EC, and the roughly 



 

115 

 

equal magnitude between all PPT peaks in TP1 (ones that coincide with EC events and 

those that don’t) all suggest that the EC events were spurred by riverine inundation. 

The time-series from our six operational STICLs in TP2 (S06, S12, S13, S08, 

S03, and S04) are all noisy with some clusters of relatively higher EC values that 

coincide with some of the PPT peaks (Figure IV-4). S06 is predicted to experience some 

brief riverine inundation during two peaks in Q that occurred in December and February, 

but S06 only exhibits low EC values with no trend that resembles these peaks in Q. The 

disagreement with the predictions of riverine inundation duration, the low EC values 

reported by all the data loggers, and the noisy trends in the EC trends that tend to have 

their highest values for TP2 when there are PPT events all suggest that the EC patterns 

exhibited were spurred by wetting from rainfall. 

For TP3, the time-series of EC from our five operational STICLs (S06, S13, S08, 

S03, and S04) is somewhat noisy, but there are some prominent events with increases in 

EC that coincide with PPT events littered throughout TP3 (Figure IV-5). Q is very low 

throughout TP3 and none of the STICLs are predicted to experience inundation, but 

some of the STICLs (S06, S03, and S04) do exhibit relative increases in EC values 

where Q peaks that also coincide with PPT events. The EC values are too low to be 

resemble what would be expected from streamflows and the duration of the events 

exhibited by all STICLs align well with the duration of the PPT events. The lack of 

predictions from riverine inundation, the low EC values reported by all the STICLs, and 

the trends in the EC values that tend to have their highest values for TP3 when there are 
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PPT events all suggest that the EC patterns exhibited were spurred by wetting from 

rainfall events. 

With the exception of the time-series for S03, the time-series of EC from our 22 

other STICLs that were operational during TP4 exhibit large increases in late-August to 

early-September that coincide with Hurricane Harvey progressing over the study reach 

(Figure IV-6). In particular, there are two distinct peaks in the EC time-series with some 

STICLs having a large peak when the hurricane was over the study reach and the other 

shortly after the hurricane moved on. L26 also had another considerable event in early-

October. Q has one prominent event that peaks shortly after Hurricane Harvey 

progressed through the area and another minor event in late-September – early-October. 

In terms of our predictions for when a STICL would be inundated from streamflows, 21 

are predicted to experience inundation during the rise in Q from Hurricane Harvey and 

two STICLs are predicted to be inundated for the minor event in early-October. Data 

loggers with relatively lower elevations are predicted to experience inundation for longer 

durations in general. PPT has one prominent event that occurs during Hurricane Harvey 

and several much smaller events that occur throughout the TP. We attribute the first 

large peak in EC from some of our low-lying STICLs to coastal storm surge that traveled 

up the Mission River main channel because the EC values are too high to be from 

rainfall and Q is not high enough for these STICLs to be inundated from streamflow. 

The second set of high EC events occurs during the peak in Q that occurred during and 

shortly after Hurricane Harvey progressed through the study area. With the exception of 

some anomalously high EC values exhibited by L15 and L26, all other elevated EC 
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values are within the range that can be expected of streamflows during a storm event and 

we attribute these responses to the elevated streamflows. S06 and L18 are predicted to be 

inundated during the minor event for Q in early-October, but there is no response from 

these STICLs during this event. However, L26 is not predicted to respond during this 

event, but it has an anomalously high response for such a small Q event. Nonetheless, 

the duration of the EC event for L26 aligns well with the Q event and we attribute the 

L26 response to streamflows. 

Five of the seven STICLs (L08, S08, L14, L15, and L05) that were operational 

during TP5 exhibit two large responses and one smaller response in their EC values from 

our set of data loggers in late-June, mid-September, and early-December (Figure IV-7). 

L15 also exhibits two smaller responses in late-October and early-November. Q has one 

very large event in late-June and five other large events in late-September through early-

December. In terms of our predictions for when data loggers will be inundated, five 

STICLs (L08, L14, S03, L15, and L05) are predicted to be inundated and all except for 

S03 exhibit EC values indicative of riverine inundation. Five STICLs are predicted to be 

inundated for the late-September Q event, but only four (L08, S08, L15, and L05) 

exhibit EC values indicative of inundation. Three STICLs are predicted to experience 

inundation for the two events in mid-October, but L15 is the only STICL with a minor 

response in its EC values. Two STICLs are predicted to experience inundation during 

the early-November event, but again L15 is the only one to exhibit a small response. 

Four STICLs are predicted to experience inundation for the early-December event, but 

only three (L08, S08, and L15) exhibit EC values indicative of inundation. In terms of 
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PPT, TP5 exhibited numerous considerable events in the summer and fall months. An 

increase in Q tends to correspond with the larger PPT events, but all seven STICLs 

exhibit modest responses from PPT events even when they are not inundated from 

streamflow events. We attribute the relatively large increases in the EC values that we 

see in Figure 7 to inundation from streamflows with the larger values corresponding to 

larger Q events that can transport more sediment and dissolved solids that increase the 

EC of the inundating waters. 

Discussion 

We modified and calibrated sets of data loggers that can record temperature and 

EC in the field (i.e., STICLs) using similar methods to those employed by Chapin et al. 

(2014) and Gillman et al. (2017). Although, our methods differ in two ways with the first 

being the range in EC values that we use in the calibration of our STICLs have a 

maximum EC of 8974 μS/cm while the maximum reported in the literature is 2746 

μS/cm that was used by Chapin et al. (2014) and Jensen et al. (2019). We use a 

maximum EC calibration value that is 227% greater because the reach of Mission River 

where we deployed our STICLs can be impacted by tidal processes and storm surge that 

have electrical conductivity values that can be well above the range of 50-2000 μS/cm 

that is typical for freshwater streams in the U.S. (CSWRCB, 2004, U.S. Environmental 

Protection Agency, 2012). Second, we fit linear splines to the calibration data instead of 

polynomial curves that were employed by Chapin et al. (2014) and Gillman et al. (2017). 

This is because the linear splines allow us to customize the function for each calibration 

trial (spline knot) if needed and avoid overfitting problems that can occur when using 
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polynomials. That being said, the standard error in our fits ranges from 7 to 1162 μS/cm 

with most of the error typically being in the region that includes the two highest knots of 

the spline (the STICL “light intensity” values for EC values of 2746 and 8974 μS/cm; 

see Supplementary Tables 1 and 2). While the uncertainty in the EC readings for some 

of our STICLs is greater than what is typically reported in the literature, there is far less 

uncertainty at the lower range of the EC predictions and this allows us to more reliably 

decipher between rainfall and streamflow as the source of inundation for lower, but non-

zero, data logger readings of EC. Hence, we use our fitted linear splines for each STICL 

to estimate the occurrence, duration, and source of inundation that a data logger 

experienced during each TP for the location at which they are deployed in the field. 

With regard to the inundation experienced by our STICLs, we consider three 

potential sources of flood inundation and they include precipitation, riverine, and 

marine; but we are particularly interested in the inundation and associated surface-water 

connectivity produced by riverine sources. We use the STICL positions in the field and 

steady hydrodynamic simulations to estimate the Qmin that would result in a data logger 

becoming inundated. Qmin ranges from 11 to 343 m3/s for all STICLs and these values 

were used to estimate the duration of inundation for the set of river flows that occurred 

during each TP. These durations are readily comparable with those generated using the 

field-based records from our STICLs and we compare both sets of durations (Table 4). 

For TP1, the Qmin estimates an average of 230% greater than the STICL-based estimates 

of inundation duration for the fluviatile terrace portion of the reach, while the Qmin 

estimates are an average of 69% less than those from the STICL-based estimates for the 



 

120 

 

alluvium portions of the reach. Only one STICL (S06) has a Qmin estimate of inundation 

duration of 1.7% of TP2, but there is no STICL-based inundation estimate for S06 (or 

any of the other active STICLs in TP2). No Qmin or STICL-based estimates of inundation 

are predicted for any of the active STICLs during TP3. For TP4, predictions of STICL 

inundation using the Qmin method were determined with ten STICLs within the fluviatile 

terrace locations and they have an average duration that is 12% lower than the average 

inundation durations from the STICL-based estimates. The inundation durations from 

the Qmin estimates for ten STICLs in the alluvium locations are predicted to occur an 

average of 5% greater than those determined using the EC values from these STICLs. 

Three active STICLs in the fluviatile terrace locations have Qmin inundation duration 

estimates that are an average of 107% greater than the respective STICL-based estimates 

for TP5. On the other hand, Qmin estimates of STICL inundation duration are an average 

of 20% greater than the STICL-based estimates for the two STICLs that had predictions 

within the alluvium locations. 

The differences between our Qmin and STICL-based estimates of the duration of 

riverine inundation can vary somewhat dramatically and there are two reasons that we 

attribute for these differences. First, the EC values that we use to determine if a STICL 

was inundated were estimated using the raw “light intensity” values alone. The electrical 

conductivity of water will vary by ~2%/°C with higher temperatures having a higher 

electrical conductance (Chapin et al., 2014, Gillman et al., 2017). We strictly apply a 

rule-based classification where EC values need to fall within the specific conductance 

range of 10-17500 μS/cm that is reported by NRA records in order for them to be 
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considered as riverine inundation. Our approach could be improved by using both the 

“light intensity” and temperature data from the STICLs to convert our calibration and 

field-based EC data to specific conductance. This will allow for a more direct 

comparison between our STICL records and those from the NRA and it is something 

that we will consider in the future. Second, the Qmin estimates were established using the 

STICL positions and steady hydrodynamic simulations. There is some uncertainty in the 

spatial position of the STICLs and while we use some aspects of the uncertainty to 

determine candidate values that should be associated with Qmin, there is more that we can 

do to stochastically determine the most appropriate STICL positions. This will allow our 

comparisons with the hydrodynamic simulations to be more informed by the STICL 

positions so that the most appropriate Qmin value for each respective STICL is 

determined. Although, our simulations assume steady flow conditions, but the flow 

records that we apply them towards are hydrologic events that rarely have the same 

inundation amount of inundation as a steady simulation. This is an issue that is difficult 

to address in our analysis, but it is another layer of uncertainty that we will try to account 

for in the future. 

The literature has shown that data loggers that are installed on a channel bed and 

record ambient temperature and/or electrical conductivity can be valuable tools in 

analyses of ephemeral streams that focus on surface-water connectivity along the 

longitudinal dimensions of a channel reach (e.g., Bhamjee and Lindsay (2011)) or 

drainage network (e.g., Arismendi et al. (2017)). While we are also interested in surface-

water connectivity, our analysis differs in that we analyze a perennial lowland river with 
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a focus on portions of the channel and floodplain that experience inundation 

intermittently. Our first objective was to determine the efficacy with which our STICLs 

can be employed to analyze surface-water connectivity in not only the longitudinal 

dimension, but also along the lateral and vertical dimensions. Comparisons between the 

data logger records and those of Q and PPT reveal that the STICLs respond well to 

hydrologic events that they experience in the field. We think that our STICLs perform 

adequately in allowing us to infer surface-water connectivity across the three fluvial 

dimensions, but our predictions could be improved if we better account for the 

uncertainty in the STICL predictions so that they can be included in our determinations 

of the durations of inundation and the associated temporal variations to surface-water 

connectivity. Our second objective was to determine the hydrologic and morphological 

factors that influence the observed differences in surface-water connectivity. 

Hydrologically, the most obvious difference across the five TPs is the amount of rainfall 

the area received and the associated rise in Q. While PPT needs to occur in bunches so Q 

rises enough to inundate the elevated portions of the channel where our data loggers are 

installed, the duration of the surface-water connectivity in higher portions of the channel 

and within the floodplain will be greater if the PPT does not occur in a brief/flashy 

event. Moreover, the duration of inundation for TP4 was greater because of the storm-

surge that coincided with the progression of Hurricane Harvey and this highlights the 

need of considering these types of processes when studying surface-water connectivity 

in coastal environments. Morphologically, our study reach of Mission River flows 

through two distinct geologic units with upstream portions being Pleistocene fluviatile 
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terrace and the downstream portions being Holocene alluvium. There are several 

STICLs with the same estimate of Qmin, but lie within different geologic units and they 

provide a means for analyzing if the geologic template plays a role in the duration of 

inundation reported by our STICLs. TP4 is where most of our STICLs are active and we 

use readings from this TP as the basis for the comparisons between STICLs with the 

same Qmin but that lie within different geologic units. For STICLs with a Qmin that has 

inundation largely contained within the main channel (Qmin ≤ 35.4 m3/s), the mean 

inundation duration for alluvium STICLs 27% greater than that for the fluviatile terrace 

STICLs. The same cannot be said for STICLs with a Qmin that is associated with some 

floodplain inundation but not overbank inundation for the reach (44.9 ≤ Qmin 108.1 

m3/s). STICLs within the fluviatile terrace portion of the reach have an average 

inundation duration that is 59% greater than that of the alluvium STICLs with the same 

Qmin. There is no consistent pattern that can be used to infer if differences in the geologic 

units has an affect on the duration of surface-water connectivity and this is further 

highlighted by four STICLs within the alluvium portion that each have a Qmin of 55.1 

m3/s but they all have somewhat different inundation durations. We propose that more 

research is needed to determine if morphological differences result in temporal 

differences to surface-water connectivity for locations in a channel-floodplain system 

that are inundated with streamflows of the same magnitude. 

Low-cost data loggers that can record ambient temperature and EC have found 

utility within the literature when the intermittence of stream or wetland water at a point 

or channel reach is the interest. The STICL designs provided by Chapin et al. (2014) are 
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well suited for these types of analyses in that they are relatively affordable and easy to 

develop; they can record measurements at a high radiometric resolution and allow the 

use of a wide variety of temporal resolutions; and they have a high storage potential with 

the ability to store ~300 days of readings at a 15-minute logging interval. While they 

have been readily used in montane environments with semi-arid (e.g., Chapin et al. 

(2014)) and temperate (e.g., Kaplan et al. (2019) and Paillex et al. (2019)) climates; as 

well as in the arctic (e.g., Gillman et al. (2017)), we present the first case-study of their 

use within a coastal lowland riverine environment with very turbid flows that can be 

affected by coastal processes, a climate with very high humidity and temperatures in the 

summer months, and an extreme variability in precipitation that can produce large 

floods. Between both phases of data loggers that we deployed, we are only able to report 

findings from 2/3 of our data loggers because the other 1/3 of our data loggers were 

washed away during high flow events or damaged due to failure of electronic 

components or vandalism from people and/or animals. With these issues in mind, below 

we provide some “lessons learned” with regard to using these types of STICLs in 

lowland coastal environments. 

1. Exploit existing water quality records for your study site to determine the appropriate 

calibration range of electrical conductivity values for your data loggers. The U.S. 

Geological Survey, U.S. Environmental Protection Agency, state 

environmental/resource agencies, local/regional water resource managers, and the 

grey literature are good places to search for these types of data. 
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2. The types of data loggers that we use here require modifications that involve making 

holes in the water-proofing cap. When deploying in lowland coastal environments, 

the choice of epoxy that is used to re-seal the cap after adding the protruding probes 

should be rated for fresh and marine water. The epoxy should also be capable of 

withstanding high heat and humidity that can occur during the summer months. 

Moreover, the high humidity and clay content in the soils allows flood waters to sit 

on the landscape for an extended amount of time and the epoxy seal should also be 

rated for continuous inundation. 

3. The precipitation patterns and morphology allow lowland coastal rivers to 

experience large floods with a high degree of stream power. Moreover, the channel 

bed and banks are generally composed of unconsolidated sediments that are 

constantly being reworked during high flow events. This creates a high potential for 

data loggers to be washed away if they are not secured properly. Data loggers should 

be secured properly with stakes that are at least 46 cm (18 in) long and a tether with 

sufficient strength to hold the STICL and housing. The materials that the stake and 

tether are made of should also be able to sustain the wear of extended inundation and 

exposure to constant sunlight, humidity, and soils with high clay and organic content. 

4. Vandalism of data loggers by people and animals can be problematic. While properly 

labeling data logger housings can help prevent some vandalism, deploying STICLs 

in locations that are not frequented by people is a good practice. Moreover, large 

livestock such as cattle and horses can damage STICLs and/or their housing by 
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trampling; thus STICLs should also be deployed in locations that are also not 

frequented by large animals if possible. 

Conclusions 

Analyses that utilize concepts of surface-water connectivity have been important 

in advancing the understanding of physical, chemical, and biological process of lowland 

rivers (Hudson et al., 2013). Field-based data loggers that can be used to infer flow 

intermittency and the associated surface-water connectivity have found utility in studies 

of ephemeral channels (Chapin et al., 2014), but no previous studies have been 

performed that utilize data loggers to analyze data loggers in portions of perennial 

channels and floodplains that experience inundation intermittently and that is what we 

have performed here. To accomplish this task we developed and calibrated STICLs as 

proposed by Chapin et al. (2014) and deployed them along a reach of the coastal lowland 

Mission River. This allowed us to determine if they can be used to monitor surface-water 

connectivity in portions of the main channel and floodplain that experience inundation 

and streamflow intermittently. Our results show that the EC records from our STICLs 

can capture flood inundation dynamics and how it affects surface-water connectivity. 

Although, our estimates of surface-water connectivity dynamics can be improved if we 

better account for how EC can vary with temperature and by handling the uncertainty in 

our STICLs readings in a more explicit manner. This is something that we will pursue in 

the future and it will allow us to more confidently determine if hydrologic and 

morphologic factors can influence the dynamics of surface-water connectivity. 
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We found STICLs as a useful tool in monitoring surface-water connectivity 

along our study reach and it will provide a means for better understanding the duration 

of time that the perennial main channel interacts with other portions of the riverine 

landscape. Moreover, STICLs and other data logger designs that are aimed at monitoring 

the intermittency of water can be useful in validating hydrodynamic models and datasets 

of flood inundation. Also, our STICLs also responded well to precipitation events and 

they can potentially be used to validate precipitation datasets over an area. Further, 

environmental flow policies and management schemes often call for increasing 

hydrologic connectivity between the main channel of a river and the surrounding 

landscape (at least temporarily). A common practice for achieving this type of goal is 

prescribed releases from surface-water reservoirs that are aimed at connecting the river 

with floodplain/riparian habitats (Galat and Lipkin, 2000, Poff, 2014, Richter and 

Thomas, 2007). Deploying a network of field-based data loggers along the riverine 

landscape of interest can be used to monitor if the magnitude and duration of the 

reservoir releases achieve the connectivity goals and allow for these schemes to be 

modified if needed. The STICLs we used in our analysis are an exciting tool that will 

allow riverine processes to be studied in more detail and we propose that more analysis 

of the type performed here are needed so that formal approaches and frameworks for 

deploying these types of data loggers within lowland landscapes can become developed. 
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CHAPTER V  

CONCLUSIONS 

 

Summary 

Terrain-Based Analysis of Surface-Water Connectivity 

We use a gridded lidar-based digital terrain model (DTM) and historical 

streamflow records to develop a gridded digital relative elevation model (DREM) where 

each grid-cell depicts the relative height difference between the land-surface at the grid-

cell location and the river water-surface at the time of lidar data acquisition. We then use 

this DREM to delineate hydrologic facets that divide the landscape into sets of patches 

and represent the drainage structure within the riverine landscape. By thresholding the 

DREM, we also simulate surface-water inundation within the riverine landscape for 80 

different streamflow conditions and analyze the associated surface-water connectivity 

between the facets using methods from graph theory. 

Our results indicate that Mission River and the surrounding landscape experience 

wide-spread inundation for streamflow conditions below published bankfull estimates. 

This is due to backwater flooding into tributaries, secondary channels, and other low-

lying areas within the floodplain. With regards to surface-water connectivity, we use six 

graph theoretical metrics to describe connectivity and associated system attributes. All 

six of our metrics have a nonlinear relationship with river-stage. Moreover, the 

connectivity is largely maintained by facets that behave like hubs. These hub-like facets 

contain the main channel and the aforementioned floodplain features that allow 
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backwater flooding to spread throughout the riverine landscape and these locations 

should be considered as prime candidates for preservation if river-floodplain 

connectivity is a concern. 

Surface-Water Connectivity Patterns 

We developed a hydrodynamic model informed by a detailed DTM to simulate 

surface-water inundation within Mission River and the surrounding landscape. Informed 

by historical flow records and a detailed Flood Insurance Study for Mission River we 

then simulated 23 steady streamflow scenarios that span the historical range of flow 

records. We then analyze the surface-water connections between the river and two sets 

of ecological habitat patches by constructing spatially explicit networks for each 

streamflow scenario and analyzing them with empirical methods from complex network 

theory. 

Our results indicate that the configuration of the landscape network created by 

surface-water connections for several of the simulated streamflow conditions can be 

considered scale-free. Networks with scale-free configuration have been widely studied 

across many disciplines because of their universal structure and function. This is the first 

documented example of a (roughly) scale-free network structure that is induced by 

surface-water connections within a river-floodplain landscape. Riverine landscapes are 

composed of multiple subsystems across space and the findings we present here 

highlight how these subsystems interact during inundation events. This is important 

because a better understanding of the particular pattern associated with these interactions 
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can provide more insight into the feedbacks between the individual processes that 

developed the heterogeneity in riverine landscapes that allowed the pattern to arise. 

Monitoring Surface-Water Connectivity with Data Loggers 

We constructed and calibrated a set of low-cost data loggers that are intended to 

be deployed in the field for the purposes of monitoring surface-water inundation and the 

associated connectivity that it creates within a riverine landscape. Specifically, we 

deployed our data loggers in portions of the Mission River main channel and floodplain 

that experience intermittent surface-water inundation to monitor the frequency and 

duration with which surface-water connects them with the perennial portions of the main 

channel. Given this need, we employed Stream Temperature, Intermittence, and 

Conductivity loggers (STICLs) because they were designed to be used in a somewhat 

similar fashion within channels of ephemeral streams. We had STICLs deployed within 

the Mission River landscape during five time-periods (TPs) within the window of 25-

May-2016 to 31-Dec-2018. While the number of deployed STICLs varied by TP (one 

TP had five and another had twenty-three), STICLs were deployed at eight general 

locations within the riverine landscape with some being in a Pleistocene fluviatile terrace 

portion and others being within a Holocene alluvium portion. This allowed us to 

compare the time-series produced by our STICLs with surface-water inundation maps 

and time-series of precipitation and river discharge to determine if the predicted 

presence/absence of water from our STICLs can be considered accurate. 

Our results indicate that the records produced by our STICLs are well suited for 

identifying the time and duration of hydrologic events that resulted in the wetting and/or 
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inundation of the location at which the respective STICLs were installed. With regards 

to the frequency and duration of inundation, STICLs deployed at relatively lower 

elevations within the vertical profile of the landscape were generally inundated more 

often and for longer durations that STICLs at relatively higher elevations. Moreover, the 

electrical conductivity (EC) of the inundating waters that our STICLs record allow us to 

compare them with historical water quality records in order to estimate the source of the 

inundating waters. Riverine flooding was the primary source of inundation for our 

STICLs, but intense rainfall and coastal storm-surge were found to also cause some 

inundation for some of the hydrologic events that our STICLs experienced. These results 

indicate that STICLs are a useful tool when monitoring surface-water connectivity in a 

quantifiable fashion is the interest. 

Main Conclusions 

The research presented in this Dissertation operated under the main objective of 

building towards the development of a framework for quantifying landscape 

connectivity induced by surface-water connections within lowland riverine landscapes. 

We employed some underutilized methods and tools to address this objective and our 

findings have allowed us to make the following main conclusions: 

1. Theory and methods used in graph and network analysis provide a powerful set 

of tools that are well-suited for quantifying dynamic connectivity over a 

landscape. We propose that graph/network analysis should be adopted by more 

river scientists because it has been widely used by other disciplines and this will 

allow better communication amongst scientists and resource managers. 
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2. Lowland riverine landscapes are characterized as having dynamic surface-water 

connections that create an expanding and contracting network that conceptually 

meets many of the criteria of scale-free graphs/networks. The structure and 

function of scale-free networks within numerous application domains has been 

widely studied in the literature and this knowledge-base can help increase our 

basic understanding of how energy, matter, biota, and information is exchanged 

between components of the riverine landscape system. We propose that more 

empirical research is needed from other lowland riverine landscapes to determine 

if this is a common pattern found within these types of environments. 

3. Stream Temperature, Intermittence, and Conductivity loggers (STICLs) are 

another set of tools that will provide a means for quantifying surface-water 

connectivity within riverine landscapes. In particular, they can be used to monitor 

the frequency and duration of connectivity between the river and floodplain. 

Moreover, STICL records and other environmental data can be used to infer the 

hydrologic mechanisms creating the surface-water inundation and associated 

connectivity. 

We believe that the research presented in this Dissertation has allowed us to address 

the main objective well. Connectivity is a popular term and concept within the natural 

sciences and the methods and tools presented here provide a means for quantifying 

connectivity within lowland riverine environments. 
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APPENDIX A 

 SUPPORTING INFORMATION FOR CHAPTER II 

 

Introduction 

This Appendix is provided to further describe some datasets and methods that 

were utilized in our analysis. In particular, this document describes four components of 

the research. DTM Data and Generation describes the generation of a digital terrain 

model (DTM) that was vital to all portions of this research. Rating Curve Fitting 

describes the fitting and performance of a rating curve that is used to predict stage as a 

function of discharge. This is followed by Return Period for Streamflows that describes 

fitting a probabilistic distribution to peak flow statistics from streamflow records 

collected within the study area. Finally, Quantile Divisions Used in Determining 

Geometric Influence on Connectivity shows how our set of nodes/HFs were divided into 

quantiles to determine the influence that geometric properties have on hydrologic surface 

connectivity within the floodplain. 

DTM Data and Generation 

DTM Data 

LiDAR point clouds using a near-infrared channel were collected using an aerial 

platform with an LH Systems ALS50 LiDAR system on June 1-15, 2006 by Sanborn 

Mapping Company, Inc. under the auspices of the Texas Water Development Board 

(TWDB) and the U.S. Federal Emergency Management Agency (FEMA). These point 

clouds have a mean point density of 1.4 m with a horizontal accuracy that meets FEMA 
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standards (root mean square error (RMSE) ≈ 3.4 m) and vertical accuracy of ~18.5 cm. 

A DTM of the study area with a 5-m spatial resolution was generated using these LiDAR 

point clouds. Mean daily river stage for Mission River during LiDAR acquisition was 

1.06 m (~1.4 m above sea level). The mean daily flows are skewed by a storm event that 

occurred in the first week of LiDAR acquisition (stage ranged from 0.7 to 2.9 m during 

acquisition period). We made inquiries to TWDB and Sanborn to further pinpoint the 

time-period associated with LiDAR acquisition in order to not rely on a mean value for 

the two-week window, but dates for the acquisition time-period were not available at a 

higher temporal resolution. The LiDAR data we use are freely available and they were 

downloaded in LAS format with NAD83 zone-14N and NAVD88 as the horizontal and 

vertical datums, respectively, from the National Oceanic and Atmospheric 

Administrations (NOAA)’s Digital Coast website 

(http://coast.noaa.gov/digitalcoast/data/coastallidar). Point clouds were classified and 

reviewed by the NOAA Office of Coastal Management in order to filter ground (or bare-

earth) classified points from the rest of the point cloud. 

DTM Generation 

Bare-earth point clouds in LAS format were converted to a multipoint shapefile 

(with 22,701,500 points or spot heights) using ArcGIS 10.2 (ESRI, 2014) to generate a 

raster-based digital terrain model (DTM). For this purpose, we performed inverse 

distance weighted (IDW) interpolation utilizing the Geostatistical Wizard from ArcGIS 

in order to determine the parameter specifications for the operation. We used an oval 

kernel with a 2:1 ratio in major and minor semi-axies in the interpolation with the major 
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axis oriented in the north-south direction (floodplain has general north-south 

orientation). Optimization of the decay parameter (p) yielded a value of 3.5 for 60 

sample points (n). The kernel was divided into quadrants with divides that were 

perpendicular to the major and minor oval axes with each quadrat containing 15 sample 

points. With respect to LiDAR the spot heights, the surface (i.e., DTM) has a vertical 

RMSE of 8.4 cm. The Geostatistical Analyst layer was then converted to GeoTIFF raster 

format with 5-m spatial resolution. 

The near-infrared wavelength utilized by the airborne LiDAR scanner resulted in 

voids within point-clouds over areas with water due to signal absorption. Voids yielded 

interpolation errors and a lack of “hydrological correctness” due to “digital dams” within 

active channels of the floodplain. A “Fill” operation, from within the ArcGIS Spatial 

Analyst toolbox, was used to fill any artificial or real depressions in the original DTM. 

The filled-DTM was also inverted so that the Fill procedure could be used to remove 

“peaks” within the dataset. This analysis is only interested in strictly establishing 

hydrological correctness within the main and other active channels; thus the channel 

banks were manually delineated using high resolution aerial photography and these 

boundaries were used to extract the channels. Synthetic LiDAR sample points were 

established within the delineated channel boundaries. Elevation values from the filled-

DTM were assigned to synthetic and original LiDAR sample points that fell within the 

channel boundaries. An IDW interpolation was conducted with original spot height 

values outside of the active channels and assigned/synthetic spot height values within the 

channel boundaries. The IDW interpolation utilized an oval kernel with a 2:1 ratio in 
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major and minor semi-axies was used in the interpolation with a decay parameter (p) of 

4 and 60 sample points (n). Moreover, the kernel was divided into quadrants with 

divides that were perpendicular to the major and minor oval axes each containing 15 

sample points. With respect to original and synthetic spot heights, the newly generated 

surface has a vertical RMSE of 8.2 cm. 

The newly-interpolated DTM still contained numerous digital dams within the 

channel. A Python script was developed that removes digital dams by employing a 

moving window that travels along stream centerlines for each channel. This moving 

window identifies the upstream and downstream elevations within the window and 

assigns elevation values to pixels within the window using linear interpolation in order 

to ensure downstream routing for pixels. Moreover, a stream burning algorithm was also 

implemented that imposes a 0.1mm gradient between an upstream and downstream pixel 

within the main channel. 

A DTM with 5-m spatial resolution was delineated using IDW interpolation 

(Figure II-1c). Within the geographic extent of the study area, elevation ranges from 0 to 

19 m above sea level with a mean elevation of 8.2 m. The greatest variation in elevation 

occurs within the geomorphological floodplain that has a general north-south trend and 

gradually widens and deepens in the downstream direction. The relatively high spatial 

resolution of our DTM (5-m) allows for floodplain features such as secondary channels, 

natural levees, and bluffs that are littered throughout the study area to be identified 

visually. Influences to DTM interpolation error from man-made structures within 

developed areas and along active channels are present throughout DTM. No effort is 
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made to rectify the remaining interpolation errors because most developed areas are not 

included within the floodplain and it was ensured that the DTM was hydrologically 

correct. 

The original LiDAR data has a horizontal and vertical accuracy of 3.4 m and 

18.5 cm (based on root mean square error (RMSE)), respectively, for Refugio and 

Aransas counties. We are mostly concerned with the vertical accuracy of our DTM and 

when our delineated surface is compared to 9 U.S. National Geodetic Survey (NGS) that 

fall within the geographic extent of our study area, our DTM has a vertical RMSE of 74 

cm and mean absolute error (MAE) of 56 cm. The relatively large degree of error in our 

DTM is potentially skewed by elevation values within the Town of Refugio where man-

made structures can complicate LiDAR derived elevation measurements. Three of the 

NGS benchmarks fall within Refugio and our RMSE and MAE decline to 35 and 25 cm, 

respectively, if the Refugio benchmarks are not included in the calculation. Our analysis 

is only concerned with elevation within the floodplain, but unfortunately there are no 

NGS benchmarks within our delineated floodplain. Although the limited number of 

man-made structures within the floodplain leads us to assume that our DTM error is not 

significantly different from our estimates using all benchmarks (RMSE = 74 cm and 

MAE = 56 cm) within the study area. 

Rating Curve Fitting 

Our analysis of hydrologic impedance allowed the determination of the stage that 

is needed for a respective hydrologic facet to become hydrologically connected to the 

main channel. Combing this information with a fitted rating curve (curve parameters and 
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goodness-of-fit shown in Table A-1) for stage and discharge at the U.S. Geological 

Survey gaging station on Mission River below Refugio, TX (Gage ID: 08189500). 

Table A-1. Equation and parameterization used in the four-parameter logistic function that predicts 

the river-stage associated with a particular discharge value. The parameters of the logistic function 

(a, b, c, d) are the minimum asymptote, hill slope, inflection point, and maximum asymptote, 

respectively. The goodness-of-fit was also evaluated using the coefficient of determination (R2), slope 

(m) of the observed and predicted slope line, p-value for the confidence level of the estimated slope 

value, and the root mean squared error (RMSE) and mean absolute error (MAE) between the 

observed and predicted river stage values. 

Equation 
Parameter Values 

a b c d 

 𝑓(𝑥) = 𝑑 + 
𝑎−𝑑

1+ (
𝑥

𝑐
)
𝑏 0.60 0.82 97.76 11.62 

Goodness-of-Fit Indicators     

R2 m p-value RMSE MAE 

0.98 0.98 < 0.01 0.11 0.05 

 

Return Period for Streamflows 

In our determination of the river-stage values that would result in a hydrologic 

connection for each respective HF, we also used peak-flow statistics to determine the 

associated return period for the respective streamflows. The mapping of return period 

helps describe the spatial variations in hydrologic connectivity. Normal, Log-Normal, 

Gamma, Log-Gamma, Pearson Type III, Log-Pearson Type III, and Generalized 

Extreme Value (GEV) distributions were all fit to peak river-stage values. We found the 

GEV distribution to fit the peak-flow data best (Table A-2). Moreover, tests for 

exponentiality (e.g., Kolmogorov-Smirnov test for the distribution’s parameter; 

Lilliefors’ test for exponentiality from Lilliefors (1969)) indicated that peak-flows could 

follow a type of exponential distribution (Table A-3). 
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Table A-2. Goodness-of-fit indicators scores between the observed peak discharge and fitted 

frequency distributions. Observed values are from the 0189500 gage on Mission River (see Figure 

II-1c). 

Distribution R2 m NSE d PBIAS RSR MSR 

Normal 0.63 0.76 0.61 0.89 0.00 11649.8 155.3 

Log-Normal 0.97 1.40 0.77 0.96 -15.35 6786.8 90.5 

Gamma 0.95 0.86 0.94 0.98 4.78 1640.2 21.9 

Log-Gamma 0.89 2.12 -0.89 0.82 -36.32 55851.7 744.7 

Pearson Type III 0.96 0.86 0.95 0.99 4.90 1528.8 20.4 

Log-Pearson Type III 0.93 0.74 0.89 0.96 5.43 3172.5 42.3 

Generalized Extreme Value 0.97 1.02 0.97 0.99 -0.14 911.6 12.2 

The two best scores for each goodness-of-fit indicator are shown in bold. R2: 

coefficient of determination for linear regression (ranges between 0 and 1 with 

higher values indicating a better fit); m: slope of the linear regression (range 

between -∞ and ∞ with values closer to 1 indicating a better fit); NSE: Nash-

Sutcliffe model efficiency (ranges between -1 and 1 with values closer to 1 

indicating a better fit); d: index of agreement (ranges between 0 and 1 with 

values closer to 1 indicating a better fit); PBIAS: percent bias (ranges between -∞ 

and ∞ with values closer to 0 indicating a better fit); RSR: root mean squared 

error (RMSE) divided by the observed standard deviation (ranges between 0 and 

∞ with values closer to 0 indicating a better fit); MSR: mean absolute error 

divided be the observed standard deviation (ranges between 0 and ∞ with values 

closer to 0 indicating a better fit). 

 

Table A-3. Statistical tests for exponentiality of peak discharge from the 0189500 gage on Mission 

River (see Figure II-1c). 

Statistical Test D p-value 

Kolmogorov-Smirnov 0.110 0.341 

Lilliefors 0.109 0.135 

The Kolmogorov-Smirnov test was applied to the rate parameter of the 

exponential distribution where D is the maximum discrepancy between the fitted 

and theoretical distribution. Similarly, Lilliefors test for exponentiality also 

determines the maximum discrepancy between the fitted and theoretical 

distribution. A p-value is also provided for both tests with a null hypothesis of no 

exponentiality in the observed distribution. The p-value > 0.05 for both tests, thus 

the possibility of the peak flow data following an exponential distribution cannot 

be rejected. 
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Quantile Divisions Used in Determining Geometric Influence on Connectivity 

The six variables used to describe geometric properties of our facets include (1) 

facet area; (2) the ratio between the minor and major axes (axismin and axismaj, 

respectively) for the minimum bounding ellipse for each facet; (3) the mean distance 

from the geometric centroid of a facet to the geometric centroid of all other facets within 

a 3000 m buffer; (4) mean slope for the terrain within an facet; (5) length of delineated 

channel for each facet; and (6) the minimum distance to the main channel facet. To 

assess how these geometric properties influence the quantification of connectivity; we 

divided the facets into quantiles using the six aforementioned geometric variables. Table 

A-4 summarizes the value range and samples associated with each geometric variable. 

By design, the range in sample size for each quantile grouping is similar (range: 

234 – 236). However, the similarity in the range of values is not always the case when it 

comes to the values for the geometric variables. For example, some geometric variables 

have a fairly similar range (Axismin /Axismaj and mean distance between HF centroids), 

while the other variables tend to have more skewed distributions. 
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Table A-4. The six geometric variables used in the assessment of how geometric properties amongst 

and between hydrologic facets influences the overall assessment of connectivity. The value for each 

variable is computed for every facet than they are subdivided into groups using quantiles (Q1, Q2, 

Q3, and Q4). The value ranges for each variable and sample size of HFs included in each quantile 

group are also provided. 

Geometric Variable 

Range in Values 

(sample size) 

Q1 Q2 Q3 Q4 

Facet area (1000 m2) 
0.20 - 9.20   

(235) 

9.23 - 17.82 

(234) 

17.85 - 

31.85 (235) 

31.90 – 3,420 

(235) 

Axismin /Axismaj for minimum 

bounding ellipse (ratio) 

0.07 - 0.38   

(233) 

0.38 - 0.50   

(235) 

0.50 - 0.63   

(235) 

0.63 - 0.98   

(236) 

Mean distance between facets 

that are within 3000 m 

1.58 - 1.72   

(235) 

1.72 - 1.77   

(234) 

1.77 - 1.86   

(235) 

1.86 - 2.18   

(235) 

Mean slope of facet terrain (%) 
0.15 - 1.29   

(235) 

1.30 - 2.08   

(234) 

2.08 - 3.21   

(235) 

3.21 - 14.46 

(235) 

Delineated channel length 

within facet (m) 

0.00 - 

62.07 (235) 

62.43 - 

136.60 (234) 

137.4 - 

262.6 (235) 

263.1 – 

30,570 (235) 

Distance to main channel facet 

(m) 

0.00 - 

32.02 (234) 

35.35 - 

245.00 (235) 

245.1 - 

552.5 (235) 

554.70 – 

1,702 (235) 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER III 

 

Introduction 

This Appendix is provided to further describe some of the datasets and methods 

that were utilized in our analysis. In particular, this document describes four components 

of the research. Hydrological Regime for Mission River provides a quantitative 

description of the historical flow regime for Mission River using data from a gaging 

station. Calibration of Hydrodynamic Model shows how our hydrodynamic model 

outputs compare to published estimates of the water surface elevation from Flood 

Insurance Studies. Description of Land Classification describes the two landscape patch 

datasets used in our analysis. This is followed by Spatial Datasets Developed Using 

Hydrodynamic Simulations describes the depth of inundation datasets developed using 

hydrodynamic model simulations and the overlay analysis that is conducted between 

these datasets and the land classifications. Finally, Other Topological and Algebraic 

Network Metrics that describes the other network connectivity measures used in our 

analysis. 

Hydrological Regime for Mission River 

The study area has a subhumid-to-semiarid subtropical climate with extreme 

variability in precipitation (Davis and Smith, 2013, Fulbright et al., 1990, Norwine and 

John, 2007). Streamflows at the U.S. Geological Survey gaging station below Refugio 

(Station Number: 08189500) are also highly variable. Mean daily discharge (Q) ranges 
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from 0 to 1903 m3/s with a mean of 3.5 m3/s (Figure B-1b; mean daily Q records for 

time period of 01-Jul-1939 to 31-Dec-2018). Similarly, the distribution of mean daily 

stage (h) is also highly variable with a range of 0 to 11.3 m with a mean of 0.9 m (Figure 

B-1a). Using the rating-curve (h plotted against Q; Figure B-1c), bankfull conditions 

occur at the 08189500 gage with a discharge (Q) of 211 m3/s and h of 8.0 m and this is 

determined by using the break in the relationship between h and Q. This break indicates 

that h will not rise with Q at the previous rate because riverine water has spread out onto 

the floodplain. While there are good historical records for Mission River flows at the 

08189500 gage, the main channel and floodplain widen downstream as the main channel 

becomes more sinuous. This results in high variation of hydraulic and geomorphic 

conditions that can complicate the application of point-samples streamflow 

measurements to other portions of the river reach (Hudson et al., 2013, Tockner et al., 

2000). Moreover, the lower half of the main channel within the study area is influenced 

by tidal processes (Davis and Smith, 2013, Nelson and Tolan, 2008), that further 

complicates hydraulic and geomorphic conditions. 
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Figure B-1. Time-series’ of mean daily (a) stage and (b) discharge for Mission River at the USGS 

stream gage at Refugio, TX (Gage ID: 08189500) from 1-Jul-1939 to 31-Dec-2018. (c) Rating-curve 

for the location at the 08189500 gage created using the mean daily data in (a) and (b). The flow 

scenarios used in the network analysis and model calibration are also plotted. The characteristics of 

the three phases of the inundation process ((1) channel-inundation, (2) some-floodplain-inundation, 

and (3) overbank-inundation) are also shown on the plot. (Note: Hydrodynamic model is calibrated 

to flood profiles from a FEMA detailed Flood Insurance Study for Refugio County (FEMA, 2014).) 

Calibration of Hydrodynamic Model  

We calibrate our hydrodynamic model to longitudinal water surface elevation (WSE) 

profiles from a recent Federal Emergency Management Agency (FEMA) flood insurance 

study (FIS) (FEMA, 2014). The downstream limit of the FIS is roughly at the same limit 

as our study area and a comparison of the WSE profiles is shown in Figure B-6. 
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Figure B-2. Comparison of longitudinal water surface elevation (WSE) profiles between the FEMA 

flood insurance study (FIS) and our HEC-RAS simulations. Goodness-of-fit indicators (root mean 

squared deviation (RMSD), mean absolute deviation (MAD), and percent bias (PBias)) between our 

simulations and those from the FIS are also shown. (Note: FIS corresponds to profiles from the 

FEMA-FIS; RAS corresponds to profiles from our simulations; Bed corresponds to the elevation of 

the stream bed; 10, 2, 1, and 0.2% correspond to the chance of occurring within a given year for the 

flow scenario.) 

Description of Land Classification 

Two types of landscape patch – (1) soil-patches and (2) vegetation-patches – 

were used in the flood and network analysis. Descriptive statistics of the soil-patches are 

provided in Table B-1 and similar information regarding the vegetation-patches is 

provided in Table B-2. See Chapter III: Methods for a description of how the datasets 

were developed. 
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Table B-1. Descriptions and geometric statistics of the 16 soil-based patch types developed by 

manually delineating channels and other geomorphic features and combing them with an edited 

version of the Ecological Mapping Systems of Texas (EMST). (Note: values in parentheses pertain to 

patches that do not become hydrologically connected in any of the 23 flow simulations; na = not 

applicable; N = patch count; Min = minimum value; Max = maximum value; μ = mean value; σ = 

standard deviation; and ∑ = sum or total.) 

Patch 

Abbr. 
Patch    Desc. 

Data 

Source 
N 

Stage for Conn. (hc) Area (A) Perimeter (P) 

Min Max μ σ μ σ ∑ μ σ ∑ 

[m] [km2] [km] 

MC Main Channel Digitized 
1 

1.00 1.00 1.00 0.00 
1.09 0.00 1.09 34.89 0.00 34.89 

(na) (na) (na) (na) (na) (na) (na) 

T Tributary Digitized 
6 

1.00 2.50 1.58 0.58 
0.08 0.05 0.50 9.75 5.54 58.50 

(na) (na) (na) (na) (na) (na) (na) 

S Slough Digitized 
7 

2.00 5.50 3.50 1.61 
0.03 0.04 0.20 2.67 2.01 18.69 

(na) (na) (na) (na) (na) (na) (na) 

CO Cutoff/ Oxbow Digitized 
3 

3.00 4.50 3.50 0.87 
0.11 0.10 0.34 3.90 3.08 11.71 

(na) (na) (na) (na) (na) (na) (na) 

G Gully Digitized 
79 

1.50 11.50 6.63 2.92 
0.00 0.00 0.07 0.29 0.23 23.16 

(9) (0.00) (0.00) (0.00) (0.13) (0.10) (1.14) 

ST Small Tributary Digitized 
19 

3.00 11.00 8.05 2.63 
0.00 0.00 0.08 1.33 0.78 25.24 

(1) (0.00) (0.00) (0.00) (0.38) (0.00) (0.38) 

LB 
Loamy 

Bottomland 
EMST 

42 
2.00 10.00 5.68 2.22 

0.15 0.29 6.46 2.06 2.80 86.64 

(22) (0.00) (0.01) (0.00) (0.08) (0.24) (0.62) 

CB 
Clayey 

Bottomland 
EMST 

65 
2.00 9.50 5.16 1.55 

0.10 0.23 6.34 1.92 2.97 124.98 

(9) (0.00) (0.00) (0.00) (0.03) (0.02) (0.28) 

TSL 
Tight Sandy 

Loam 
EMST 

26 
4.00 11.50 8.54 2.57 

0.47 0.92 12.13 4.42 6.89 114.80 

(11) (0.02) (0.04) (0.24) (0.56) (0.81) (6.20) 

B 
Blackland 

Prairie 
EMST 

15 
4.50 11.63 8.94 2.80 

0.53 0.67 7.92 4.25 3.84 63.73 

(15) (0.00) (0.00) (0.02) (0.12) (0.18) (1.86) 

LS Loamy Sand EMST 
22 

2.00 11.50 8.20 2.89 
0.20 0.25 4.48 2.78 2.70 61.05 

(8) (0.03) (0.06) (0.23) (0.47) (0.80) (0.28) 

C Claypan Prairie EMST 
17 

9.50 11.63 10.68 0.57 
0.08 0.09 1.39 1.86 1.82 31.54 

(11) (0.22) (0.25) (2.37) (2.54) (2.09) (27.90) 

RB 
Rolling 

Blackland 
EMST 

29 
4.00 11.50 7.34 2.56 

0.05 0.12 1.58 1.34 1.63 38.93 

(9) (0.00) (0.00) (0.00) (0.03) (0.03) (0.28) 

SH Sand Hills EMST 
2 

5.50 6.50 6.00 0.71 
0.38 0.42 0.75 2.24 1.42 4.48 

(na) (na) (na) (na) (na) (na) (na) 

SL Sandy Loam EMST 
1 

11.00 11.00 11.00 0.00 
0.04 0.00 0.04 1.14 0.00 1.14 

(na) (na) (na) (na) (na) (na) (na) 

L Lakebed EMST 
na 

na na na na 
na na na na na na 

(1) (0.07) (0.00) (0.07) (1.22) (0.00) (1.22) 

TOT Total All 
334 

1.00 11.63 6.39 1.09 
0.13 0.37 43.38 2.09 3.76 699.5 

(96) (0.03) (0.11) (2.94) (0.45) (1.08) (43.61) 
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Table B-2. Descriptions and geometric statistics of the 20 vegetation-based patch types developed by 

manually delineating features and combing them with an edited version of the Ecological Mapping 

Systems of Texas (EMST). (Note: values in parentheses pertain to patches that do not become 

hydrologically connected in any of the 23 flow simulations; na = not applicable; FP = floodplain; UL 

= upland; Herb = herbaceous; HW = hardwood; Mes. = mesquite; EG = evergreen; Dec. = 

deciduous; Anth. = anthropogenic; comp. = composite; N = patch count; Min = minimum value; 

Max = maximum value; μ = mean value; σ = standard deviation; and ∑ = sum or total.) 

Patch 

Abbr. 
Patch    Desc. 

Data 

Source 
N 

Stage for Conn. (hc) Area (A) Perimeter (P) 

Min Max μ σ μ σ ∑ μ σ ∑ 

[m] [km2] [km] 

MC Main Channel Digitized 
1 

1.00 1.00 1.00 0.00 
1.09 0.00 1.09 34.89 0.00 34.89 

(na) (na) (na) (na) (na) (na) (na) 

T Tributary Digitized 
6 

1.00 2.50 1.58 0.58 
0.08 0.05 0.50 9.75 5.54 58.50 

(na) (na) (na) (na) (na) (na) (na) 

S Slough Digitized 
7 

2.00 5.50 3.50 1.61 
0.03 0.04 0.20 2.67 2.01 18.69 

(na) (na) (na) (na) (na) (na) (na) 

CO Cutoff/ Oxbow Digitized 
3 

3.00 4.50 3.50 0.87 
0.11 0.10 0.34 3.90 3.08 11.71 

(na) (na) (na) (na) (na) (na) (na) 

G Gully Digitized 
79 

1.50 11.50 6.63 2.92 
0.00 0.00 0.07 0.29 0.23 23.16 

(9) (0.00) (0.00) (0.00) (0.13) (0.10) (1.14) 

ST Small Tributary Digitized 
19 

3.00 11.00 8.05 2.63 
0.00 0.00 0.08 1.33 0.78 25.24 

(1) (0.00) (0.00) (0.00) (0.38) (0.00) (0.38) 

OW Open Water EMST 
2 

5.50 8.00 6.75 1.77 
0.04 0.05 0.07 1.40 1.67 2.81 

(1) (0.00) (0.00) (0.00) (0.03) (0.00) (0.03) 

CW Coastal Wetland 
EMST 

Comp. 

4 
4.50 7.00 5.50 1.22 

0.01 0.02 0.04 0.59 0.76 2.35 

(5) (0.00) (0.00) (0.00) (0.04) (0.02) (0.18) 

FHW 
FP Herb 

Wetland 

EMST 

Comp. 

17 
4.50 9.00 6.53 1.33 

0.01 0.02 0.17 0.53 0.46 9.05 

(2) (0.00) (0.00) (0.00) (0.02) (0.00) (0.04) 

FHF FP HW Forest 
EMST 

Comp. 

212 
2.00 11.63 6.16 2.36 

0.03 0.08 6.32 0.97 1.73 205.34 

(64) (0.00) (0.00) (0.01) (0.04) (0.06) (2.30) 

FG FP Grassland 
EMST 

Comp. 

47 
3.50 10.00 5.95 1.91 

0.05 0.16 2.53 1.39 2.01 65.15 

(14) (0.00) (0.00) (0.01) (0.13) (0.25) (1.88) 

FMF FP Mixed Forest 
EMST 

Comp. 

131 
3.50 11.50 6.44 2.07 

0.01 0.02 1.63 0.71 0.75 92.65 

(42) (0.00) (0.00) (0.01) (0.04) (0.09) (1.86) 

FOF 
FP Live Oak 

Forest 

EMST 

Comp. 

147 
2.00 11.50 6.43 2.27 

0.01 0.02 1.26 0.55 0.62 81.36 

(38) (0.00) (0.00) (0.00) (0.03) (0.03) (1.15) 

FDS FP Dec. Shrubs 
EMST 

Comp. 

81 
3.50 11.00 6.30 1.80 

0.01 0.02 0.83 0.64 0.68 52.03 

(28) (0.00) (0.00) (0.00) (0.04) (0.09) (1.16) 

FES FP EG Shrubs 
EMST 

Comp. 

23 
4.50 11.00 6.80 2.11 

0.00 0.00 0.09 0.37 0.28 8.48 

(7) (0.00) (0.00) (0.01) (0.13) (0.25) (0.92) 
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Table B-2 (continued). Descriptions and geometric statistics of the 20 vegetation-based patch types 

developed by manually delineating features and combing them with an edited version of the 

Ecological Mapping Systems of Texas (EMST). (Note: values in parentheses pertain to patches that 

do not become hydrologically connected in any of the 23 flow simulations; na = not applicable; FP = 

floodplain; UL = upland; Herb = herbaceous; HW = hardwood; Mes. = mesquite; EG = evergreen; 

Dec. = deciduous; Anth. = anthropogenic; comp. = composite; N = patch count; Min = minimum 

value; Max = maximum value; μ = mean value; σ = standard deviation; and ∑ = sum or total.) 

Patch 

Abbr. 
Patch    Desc. 

Data 

Source 
N 

Stage for Conn. 

(hc) Area (A) Perimeter (P) 

Min Max μ σ μ σ ∑ μ σ ∑ 

[m] [km2] [km] 

UPG 
UL Praire/ 

Grassland 

EMST 

Comp. 

71 
4.50 11.63 8.61 2.30 

0.14 0.31 9.96 2.49 4.22 176.66 

(67) (0.03) (0.09) (1.95) (1.01) (2.38) (67.63) 

UMW 
UL Mes. 

Woods 

EMST 

Comp. 

160 
4.00 11.63 9.02 2.12 

0.04 0.12 6.51 1.34 2.34 214.63 

(111) (0.01) (0.03) (1.28) (0.59) (0.82) (65.70) 

UDW UL Dec. Woods 
EMST 

Comp. 

183 
2.00 11.63 8.81 2.33 

0.03 0.06 4.75 1.05 1.31 192.32 

(142) (0.01) (0.04) (1.55) (0.51) (0.92) (72.06) 

UEW UL EG Woods 
EMST 

Comp. 

20 
7.00 11.50 10.63 1.12 

0.02 0.03 0.34 0.71 0.67 14.30 

(35) (0.01) (0.04) (0.52) (0.61) (0.67) (21.40) 

A Anth. 
EMST 

Comp. 

53 
4.00 11.50 8.25 2.19 

0.08 0.31 4.13 1.42 3.06 75.31 

(28) (0.00) (0.00) (0.12) (0.43) (0.37) (12.01) 

TOT Total All 
777 

1.00 11.63 5.41 0.79 
0.03 0.12 40.91 2.09 3.76 699.5 

(594) (0.01) (0.04) (5.46) (0.42) (1.04) (249.86) 

 

Spatial Datasets Developed Using Hydrodynamic Simulations 

The 23 hydrodynamic simulations were used to develop maps of inundation 

within the study area and this is shown in Figure B-2. An overlay analysis between these 

inundation maps and the land classifications is used to determine the state of the 

landscape network for each simulation. Figure B-3 and B-4 show the 23 states of the 

soil- and vegetation-network, respectfully. 
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Figure B-3. Maps of the depth of inundation within the study area for the 23 hydrodynamic flow 

simulations. These are considered steady and they were generated using a two-dimensional HEC-

RAS model. The stage (h) associated with each flow is also shown on the lower-left part of each of 

the maps within the figure. 
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Figure B-4. Maps of the soil-patches that become hydrologically connected with each of the 23 flow 

simulations. The soil-network that is created by the surface-water connections is also shown 

(position of a network vertex on its corresponding patch is chosen arbitrarily). The stage (h) 

associated with each flow is also shown on the lower-left part of each map. (Note: See Table B-1 for 

patch-type descriptions) 
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Figure B-5. Maps of the vegetation-patches that become hydrologically connected with each of the 

23 flow simulations. The network that is created by the surface-water connections is also shown (the 

location of a network vertex on its corresponding patch is chosen arbitrarily). The stage (h) 

associated with each flow is also shown on the lower-left part of each map. (Note: See Table B-2 for 

patch-type descriptions) 
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Other Topological and Algebraic Network Metrics 

Network-level metrics for the topological and algebraic properties of each 

network state were computed and plotted as a function of the stage (h) associated with 

each flow simulation (Figure B-5). See Chapter III: Methods for descriptions of the 

metrics and what they represent. 

In the channel-inundation phase (simulations with 1.0 ≤ h ≤ 2.5 m) where most 

of the between-patch connections occur in the vicinity of active channels. The number of 

vertices in each network state (n) increases linearly from 3 to 25 for both networks as 

patches of floodplain channel and geomorphic features become hydrologically 

connected. The number of edges (m) normalized by the theoretical minimum and 

maximum values for a given n (or normalized m; mnorm) reaches its highest values (0.01 

and 0.02 for the soil- and vegetation-networks, respectively), but the values remain near 

the theoretical minimum. This is because patches are only allowed to connect to patches 

with whom they share a border in our network conceptualization. The mean vertex 

degree (𝑘̅; degree is the number of other vertices a given vertex is connected with) for 

the soil- and vegetation-networks increase linearly by 74.4 and 68.4%, respectively, with 

general 𝑘̅ values that are >2. Similarly, the mean geodesic distance (l) for these networks 

increases linearly by 63.2 and 69.2%. This is mostly because of the development of 

small chains of connected patches along the periphery of the MC and T patches. The 

formation of these chains also results in the increases of the clustering coefficient (C; 

also known as transitivity) from the theoretical minimum of zero to ~0.07. The central 

betweenness (Cbtw, also known as centralization index) decreases by ~6% from the 
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theoretical maximum of 1.0 and this is because of the outward spread of surface water 

from the MC patch. There are also decreases for the ratios between the spectral radius 

(λ1) and the theoretical upper bound (λ1/λupper; decreases by ~27.0% for both networks) 

and theoretical maximum (λ1/λmaz; decreases by ~73.0% for both networks); the relative 

contribution of the network wiring to λ1 (ξwir; decreases by 62.1% for both networks); 

and the algebraic connectivity (𝜆(𝐴)𝑁−1) normalized by the theoretical minimum and 

maximum (𝜆(𝐴)𝑁−1,𝑛𝑜𝑟𝑚; decreases by ~79.5% for both networks). These decreases are 

because of the of the overall growth of the network with increased flow. In particular, 

the increases in the relative contribution of the network wiring to λ1 (ξconn; increases by 

36.5% for both networks) indicates that the increase in the number of edges (m) is the 

main cause for the decline of the value for these metrics. 

In the some-floodplain-inundation phase (simulations with 3.0 ≤ h ≤ 8.0 m) 

where patches in and around geomorphic features within the floodplain become 

inundated. There is a dramatic increase in the amount of inundated area during this phase 

(Figure 2a and 2b) and this results in n increasing exponentially from 39 to 365 for the 

soil-network and 41 to 1007 for the vegetation-based network. mnorm initially declines 

towards the theoretical minimum then it generally remains near these values for the latter 

half of the phase. A vertex that is associated with a particular patch is only allowed to 

connect to vertices associated with patches that border the host patch. This is why mnorm 

approaches the theoretical minimum and stays in that vicinity as the network continues 

to grow. 𝑘̅ experiences a slight decline early in the some-floodplain-inundation phase, 

but then it increases on a roughly logarithmic trajectory (𝑘̅ increases by 55.7 and 84.3% 
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for the soil- and vegetation-networks, respectively). The increased number of vertices 

that become connected to the MC, T, CO, and S patches due to the inundation in and 

around these features cause the relatively steady increase in 𝑘̅ for both networks. l 

sharply increases in both networks (l increases by 66.7 and 92.0% for the soil- and 

vegetation-networks, respectively) for simulations with 3.0 ≤ h ≤ 5.5 m. This dramatic 

increase is due to the large number of patches that become newly inundated during this 

portion of the inundation phase. There is relatively modest general decline in l 

(decreases by 13.2 and 22.9% for the soil- and vegetation-networks, respectively) for the 

remaining simulations in the some-floodplain-inundation phase and this is because of the 

inundation of patches that connect previously inundated portions of the landscape and 

provide shortcuts in the path. C for both networks experiences a general increase on a 

roughly logarithmic trajectory (C increases by 57.1 and 150% for the soil- and 

vegetation-networks, respectively). This increase is related to the shortcuts mentioned 

above that connect previously inundated patches. Cbtw continues the decreasing trend 

from the channel-inundation phase for most of the simulations (3.0 ≤ h ≤ 6.5 m) in the 

some-floodplain-inundation phase (Cbtw decreases by 8.7 and 7.7% for the soil- and 

vegetation-network). For simulations with 7.0 ≤ h ≤ 8.0 m, Cbtw initially increases 

slightly (~5%) than it oscillates with no overall change for both networks. This behavior 

of a general decline is associated with the overall expansion of flood waters onto 

floodplain that decreases the centralization of the network. λ1/λupper, λ1/λmaz, ξwir, and 

𝜆(𝐴)𝑁−1,𝑛𝑜𝑟𝑚 all exhibit declines with a similar trend for simulations with 3.0 ≤ h ≤ 5.0 

m. These declines are associated with how m stays close to the theoretical minimum with 
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network connectivity (ξconn) that is largely driven by patches that become inundated with 

simulations that have a relatively low h. 

The overbank-inundation phase (h ≥ 8.5 m) is associated with simulations where 

large portions of the floodplain become inundated with multiple upstream-downstream 

flow-paths within the floodplain. With the exception of n, 𝑘̅, and Cbtw that experience 

some dynamic behavior with increasing h (n and 𝑘̅ increase while Cbtw decreases), all 

other network metrics experience little-to-no change in the overbank-inundation phase 

(Figure B-5). The dynamics in n, 𝑘̅, and Cbtw are most apparent for simulation with h ≥ 

10.5 m because flood water spill onto upland parts of the coastal plain allowing new 

flow-paths with high patch connectivity to develop. 
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Figure B-6. Algebraic metrics for the network created by each of the 23 flow simulations plotted 

against stage (h). These metrics include: a) the number of vertices (n); b) the number of edges (m) 

normalized by the theoretical minimum and maximum m; c) the mean vertex degree (𝐤̿); d) the 

mean shortest between vertex pairs (l); e) normalized clustering/transmissivity coefficient (C); f) the 

betweenness centrality (Cbtw); g) ratios between the spectral radius and theoretical upper bounds 

(λ1/λupper) and maximums (λ1/λmax); h) relative contributions to the spectral radius from connectivity 

(ξconn) and wiring (ξwir); and the algebraic connectivity normalized by the theoretical minimum and 

maximum algebraic connectivity (𝛌(𝐀)𝐍−𝟏𝐧𝐨𝐫𝐦) for each network. 
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APPENDIX C 

SUPPORTING INFORMATION FOR CHAPTER IV 

 

Introduction 

This Appendix is provided to further describe the linear-spline models that were 

fitted to the calibration data from Stream Temperature, Intermittency, and Conductivity 

loggers (STICLs). We used calibration-trials that involved submerging our STICLs in 

calibration standards so that the “light intensity” values that the data loggers were 

originally intended to record can be used to predict electrical conductivity (EC) of 

inundating waters. We fit linear-splines to the calibration data for the two phases of 

STICL development that was undertaken. The coefficients and some of the diagnostics 

of these fits are shown in Tables C-1 and C-2. 
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Fitted Linear-Spline Models 

Table C-1. Description of the linear spline model fits to the ten STICLs that were part of the phase 1 

deployment. The electrical conductivity (EC) for the trials are 0 (distilled water), 84, 1413, 2070, 

8974, 15000, and 80000 μS/cm. The range of EC values included in the model for each STICL 

(ECrange), the x-values for the linear spline knots (xn), the slopes (βn) of the lines between knots, the 

standard error (SE) for the slope estimates (SEβn), and the SE for the model fit (SEmod) are also 

shown. All fitted linear spline models area statistically significant at the α = 0.05 level and an * next 

to βn indicates that the estimate is statistically significant at the α = 0.05 level. 

Logger ID 
ECrange 

[μS/cm] 
xn βn SEβn 

SEmod 

[μS/cm] 

S02 0 – 8,974 

x1 = 3,619 

x2 = 34,445 

x3 = 198,897 

x4 = 242,491 

β1 = 2.41E-03* 

β2 = 8.08E-03* 

β3 = 1.57E-02* 

β4 = 8.44E-02* 

SEβ1 = 9.67E-05 

SEβ2 = 2.90E-05 

SEβ3 = 1.10E-04 

SEβ4 = 5.81E-05 

201.06 

S03 0 – 8,974 

x1 = 2,004 

x2 = 39,956 

x3 = 200,777 

x4 = 238,654 

β1 = 2.10E-03* 

β2 = 8.36E-03* 

β3 = 1.25E-02* 

β4 = 8.33E-02* 

SEβ1 = 8.88E-05 

SEβ2 = 3.23E-05 

SEβ3 = 1.50E-04 

SEβ4 = 6.32E-05 

213.17 

S04 0 – 8,974 

x1 = 4,376 

x2 = 49,600 

x3 = 219,013 

x4 = 253,513 

β1 = 1.69E-03* 

β2 = 7.76E-03* 

β3 = 1.95E-02* 

β4 = 8.95E-02* 

SEβ1 = 5.27E-06 

SEβ2 = 2.24E-06 

SEβ3 = 1.12E-05 

SEβ4 = 4.81E-06 

15.74 

S06 0 – 8,974 

x1 = 4,430 

x2 = 40,063 

x3 = 172,667 

x4 = 198,701 

β1 = 2.06E-03* 

β2 = 9.90E-03* 

β3 = 2.73E-02* 

β4 = 8.15E-02* 

SEβ1 = 1.16E-04 

SEβ2 = 5.12E-05 

SEβ3 = 2.68E-04 

SEβ4 = 7.87E-05 

278.92 

S08 0 – 8,974 

x1 = 2,982 

x2 = 39,447 

x3 = 189,798 

x4 = 222,063 

β1 = 1.99E-03* 

β2 = 8.81E-03* 

β3 = 2.03E-02* 

β4 = 8.28E-02* 

SEβ1 = 1.50E-04 

SEβ2 = 5.75E-05 

SEβ3 = 2.81E-04 

SEβ4 = 1.02E-04 

346.39 

S10 0 – 8,974 

x1 = 4,133 

x2 = 16,533 

x3 = 121,245 

x4 = 154,312 

β1 = 4.62E-03* 

β2 = 1.39E-02* 

β3 = 5.00E-03* 

β4 = 1.37E-01* 

SEβ1 = 4.10E-04 

SEβ2 = 9.64E-05 

SEβ3 = 3.82E-04 

SEβ4 = 2.24E-04 

422.45 

S12 0 – 8,974 

x1 = 3,160 

x2 = 44,089 

x3 = 238,360 

x4 = 286,580 

β1 = 1.91E-03* 

β2 = 6.75E-03* 

β3 = 1.39E-02* 

β4 = 1.57E-01* 

SEβ1 = 8.57E-06 

SEβ2 = 2.88E-06 

SEβ3 = 1.18E-05 

SEβ4 = 1.21E-05 

22.73 

S13 0 – 8,974 

x1 = 3,949 

x2 = 42,711 

x3 = 202,875 

x4 = 240,718 

β1 = 1.96E-03* 

β2 = 8.41E-03* 

β3 = 1.19E-02* 

β4 = 7.87E-02* 

SEβ1 = 6.22E-05 

SEβ2 = 2.48E-05 

SEβ3 = 1.16E-04 

SEβ4 = 4.48E-05 

160.09 

S14 0 – 8,974 

x1 = 2,125 

x2 = 37,240 

x3 = 209,179 

x4 = 244,490 

β1 = 2.25E-03* 

β2 = 7.76E-03* 

β3 = 1.56E-02* 

β4 = 8.12E-02* 

SEβ1 = 5.90E-05 

SEβ2 = 1.82E-05 

SEβ3 = 9.40E-05 

SEβ4 = 3.77E-05 

131.89 



 

164 

 

Table C-2. Description of the linear spline models fits to the 18 STICLs that were part of the phase 2 

deployment. The electrical conductivity (EC) for the trials are 23, 84, 447, 1413, 2764, 8974, and 

15000 μS/cm. The range of EC values included in the model for each STICL (ECrange), the x-values 

for the linear spline knots (xn), the slopes (βn) of the lines between knots, the standard error (SE) for 

the slope estimates (SEβn), and the SE for the model fit (SEmod) are also shown. All fitted linear spline 

models area statistically significant at the α = 0.05 level and an * next to βn indicates that the estimate 

is statistically significant at the α = 0.05 level. 

Logger ID 
ECrange 

[μS/cm] 
xn βn SEβn 

SEmod 

[μS/cm] 

L01 23 – 8,974 

x1 = 18,025 

x2 = 57,867 

x3 = 154,312 

x4 = 220,354 

x5 = 234,830 

Β1 = 1.44E-03* 

Β2 = 3.78E-03* 

Β3 = 1.57E-02* 

Β4 = 7.45E-02* 

Β5 = 2.01E-01* 

SEβ1 = 2.17E-04 

SEβ2 = 1.89E-04 

SEβ3 = 2.85E-04 

SEβ4 = 1.63E-03 

SEβ5 = 7.13E-04 

456.42 

L05 23 – 8,974 

x1 = 44,089 

x2 = 55,112 

x3 = 159,823 

x4 = 220,446 

x5 = 267,033 

β1 = 1.13E-03* 

β2 = 3.67E-03* 

β3 = 1.61E-02* 

β4 = 2.55E-02* 

β5 = 3.19E-01* 

SEβ1 = 2.71E-04 

SEβ2 = 2.32E-04 

SEβ3 = 4.47E-04 

SEβ4 = 6.34E-04 

SEβ5 = 1.55E-03 

663.63 

L06 23 – 8,974 

x1 = 35,177 

x2 = 45,901 

x3 = 141,080 

x4 = 198,401 

x5 = 225,268 

β1 = 1.37E-03* 

β2 = 3.84E-03* 

β3 = 1.78E-02* 

β4 = 4.45E-02* 

β5 = 2.84E-01* 

SEβ1 = 3.88E-04 

SEβ2 = 3.08E-04 

SEβ3 = 5.63E-04 

SEβ4 = 1.38E-03 

SEβ5 = 1.75E-03 

767.96 

L08 23 – 8,974 

x1 = 41,334 

x2 = 50,312 

x3 = 154,312 

x4 = 220,446 

x5 = 259,437 

β1 = 1.20E-03* 

β2 = 3.72E-03* 

β3 = 1.53E-02* 

β4 = 2.11E-02* 

β5 = 2.50E-01* 

SEβ1 = 2.00E-04 

SEβ2 = 1.58E-04 

SEβ3 = 2.76E-04 

SEβ4 = 5.36E-04 

SEβ5 = 8.01E-04 

447.02 

L09 23 – 8,974 

x1 = 37,200 

x2 = 44,089 

x3 = 130,623 

x4 = 204,868 

x5 = 224,671 

β1 = 1.37E-03* 

β2 = 4.39E-03* 

β3 = 1.29E-02* 

β4 = 5.59E-02* 

β5 = 1.60E-01* 

SEβ1 = 1.95E-04 

SEβ2 = 1.68E-04 

SEβ3 = 2.50E-04 

SEβ4 = 1.14E-03 

SEβ5 = 4.68E-04 

389.39 

L11 23 – 8,974 

x1 = 37,200 

x2 = 44,089 

x3 = 127,969 

x4 = 188,986 

x5 = 209,424 

β1 = 1.37E-03* 

β2 = 4.51E-03* 

β3 = 1.53E-02* 

β4 = 7.31E-02* 

β5 = 1.47E-01* 

SEβ1 = 2.03E-04 

SEβ2 = 1.80E-04 

SEβ3 = 2.93E-04 

SEβ4 = 8.51E-04 

SEβ5 = 3.97E-04 

405.92 

L13 23 – 8,974 

x1 = 46,845 

x2 = 60,377 

x3 = 165,334 

x4 = 264,535 

x5 = 292,265 

β1 = 1.05E-03* 

β2 = 3.66E-03* 

β3 = 1.03E-02* 

β4 = 3.20E-02* 

β5 = 1.71E-01* 

SEβ1 = 8.57E-05 

SEβ2 = 7.94E-05 

SEβ3 = 9.28E-05 

SEβ4 = 3.86E-04 

SEβ5 = 2.77E-04 

226.05 
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Table C-3 (continued). Description of the linear spline models fits to the 18 STICLs that were part of 

the phase 2 deployment. The electrical conductivity (EC) for the trials are 23, 84, 447, 1413, 2764, 

8974, and 15000 μS/cm. The range of EC values included in the model for each STICL (ECrange), the 

x-values for the linear spline knots (xn), the slopes (βn) of the lines between knots, the standard error 

(SE) for the slope estimates (SEβn), and the SE for the model fit (SEmod) are also shown. All fitted 

linear spline models area statistically significant at the α = 0.05 level and an * next to βn indicates 

that the estimate is statistically significant at the α = 0.05 level. 

Logger ID 
ECrange 

[μS/cm] 
xn βn SEβn 

SEmod 

[μS/cm] 

L14 23 – 8,974 

x1 = 39,879 

x2 = 55,112 

x3 = 137,779 

x4 = 249,425 

x5 = 275,805 

β1 = 1.20E-03* 

β2 = 4.66E-03* 

β3 = 7.37E-03* 

β4 = 6.37E-02*
 

β5 = 1.89E-01* 

SEβ1 = 2.09E-04 

SEβ2 = 2.21E-04 

SEβ3 = 1.96E-04 

SEβ4 = 8.57E-04 

SEβ5 = 6.41E-04 

492.66 

L15 23 – 8,974 

x1 = 40,888 

x2 = 52,698 

x3 = 121,245 

x4 = 210,618 

x5 = 222,127 

β1 = 1.19E-03* 

β2 = 5.61E-03* 

β3 = 1.10E-02* 

β4 = 1.64E-01*
 

β5 = 5.11E-01*
 

SEβ1 = 5.06E-04 

SEβ2 = 6.26E-04 

SEβ3 = 5.59E-04 

SEβ4 = 4.99E-03 

SEβ5 = 5.41E-03 

1161.96 

L16 23 – 8,974 

x1 = 34,611 

x2 = 46,845 

x3 = 123,698 

x4 = 210,774 

x5 = 250,849 

β1 = 1.40E-03* 

β2 = 4.84E-03* 

β3 = 1.15E-02* 

β4 = 2.12E-02* 

β5 = 2.64E-01* 

SEβ1 = 1.30E-04 

SEβ2 = 1.30E-04 

SEβ3 = 1.30E-04 

SEβ4 = 3.04E-04 

SEβ5 = 4.77E-04 

263.05 

L17 23 – 8,974 

x1 = 39,116 

x2 = 55,112 

x3 = 135,046 

x4 = 223,220 

x5 = 264,976 

β1 = 1.21E-03* 

β2 = 4.67E-03* 

β3 = 1.07E-02* 

β4 = 3.17E-02*
 

β5 = 2.88E-01*
 

SEβ1 = 1.08E-04 

SEβ2 = 1.21E-04 

SEβ3 = 1.26E-04 

SEβ4 = 2.66E-04 

SEβ5 = 4.84E-04 

252.37 

L18 23 – 8,974 

x1 = 35,034 

x2 = 46,845 

x3 = 111,316 

x4 = 191,071 

x5 = 215,109 

β1 = 1.39E-03* 

β2 = 5.86E-03* 

β3 = 1.24E-02* 

β4 = 4.97E-02* 

β5 = 1.09E-01* 

SEβ1 = 2.15E-04 

SEβ2 = 2.55E-04 

SEβ3 = 2.48E-04 

SEβ4 = 9.47E-04 

SEβ5 = 3.45E-04 

435.61 

L22 23 – 8,974 

x1 = 34,712 

x2 = 55,112 

x3 = 137,779 

x4 = 187,379 

x5 = 246,330 

β1 = 1.28E-03* 

β2 = 4.55E-03* 

β3 = 1.96E-02* 

β4 = 2.25E-02* 

β5 = 1.71E-01* 

SEβ1 = 2.85E-04 

SEβ2 = 2.94E-04 

SEβ3 = 5.30E-04 

SEβ4 = 4.82E-04 

SEβ5 = 8.06E-04 

643.50 

L23 23 – 8,974 

x1 = 21,846 

x2 = 37,200 

x3 = 110,223 

x4 = 153,072 

x5 = 202,737 

β1 = 1.95E-03* 

β2 = 5.15E-03* 

β3 = 2.28E-02* 

β4 = 2.37E-02* 

β5 = 1.61E-01* 

SEβ1 = 3.43E-04 

SEβ2 = 2.67E-04 

SEβ3 = 5.04E-04 

SEβ4 = 4.78E-04 

SEβ5 = 5.94E-04 

511.89 
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Table C-4 (continued). Description of the linear spline models fits to the 18 STICLs that were part of 

the phase 2 deployment. The electrical conductivity (EC) for the trials are 23, 84, 447, 1413, 2764, 

8974, and 15000 μS/cm. The range of EC values included in the model for each STICL (ECrange), the 

x-values for the linear spline knots (xn), the slopes (βn) of the lines between)n knots, the standard 

error (SE) for the slope estimates (SEβn), and the SE for the model fit (SEmod) are also shown. All 

fitted linear spline models area statistically significant at the α = 0.05 level and an * next to βn 

indicates that the estimate is statistically significant at the α = 0.05 level.  

Logger ID 
ECrange 

[μS/cm] 
xn βn SEβn 

SEmod 

[μS/cm] 

L24 23 – 8,974 

x1 = 25,881 

x2 = 50,372 

x3 = 137,779 

x4 = 198,401 

x5 = 231,468 

β1 = 1.48E-03* 

β2 = 4.26E-03* 

β3 = 1.59E-02* 

β4 = 4.09E-02* 

β5 = 6.26E-02* 

SEβ1 = 3.75E-06 

SEβ2 = 3.24E-06 

SEβ3 = 4.89E-06 

SEβ4 = 8.96E-06 

SEβ5 = 2.99E-06 

7.26 

L26 23 – 8,974 

x1 = 20,340 

x2 = 44,089 

x3 = 119,863 

x4 = 176,357 

x5 = 212,032 

β1 = 1.78E-03* 

β2 = 4.69E-03* 

β3 = 1.75E-02* 

β4 = 3.59E-02*
 

β5 = 7.16E-02* 

SEβ1 = 1.02E-04 

SEβ2 = 9.05E-05 

SEβ3 = 1.27E-04 

SEβ4 = 2.11E-04 

SEβ5 = 8.49E-05 

171.71 

L27 23 – 8,974 

x1 = 25,227 

x2 = 55,112 

x3 = 126,756 

x4 = 209,424 

x5 = 231,468 

β1 = 1.42E-03* 

β2 = 5.15E-03* 

β3 = 1.17E-02* 

β4 = 6.46E-02* 

β5 = 1.01E-01* 

SEβ1 = 1.30E-04 

SEβ2 = 1.49E-04 

SEβ3 = 1.35E-04 

SEβ4 = 5.04E-04 

SEβ5 = 1.84E-04 

273.20 

L28 23 – 8,974 

x1 = 23,479 

x2 = 49,600 

x3 = 121,268 

x4 = 199,797 

x5 = 232,947 

β1 = 1.56E-03* 

β2 = 5.16E-03* 

β3 = 1.20E-02* 

β4 = 4.11E-02*
 

β5 = 1.33E-01* 

SEβ1 = 1.93E-04 

SEβ2 = 1.99E-04 

SEβ3 = 1.97E-04 

SEβ4 = 4.92E-04 

SEβ5 = 3.36E-04 

366.06 

S15 23 – 2,764 

x1 = 13,949 

x2 = 44,565 

x3 = 127,652 

x4 = 173,027 

β1 = 1.85E-03* 

β2 = 4.28E-03* 

β3 = 2.07E-02* 

β4 = 5.37E-02* 

SEβ1 = 3.95E-05 

SEβ2 = 3.11E-05 

SEβ3 = 6.14E-05 

SEβ4 = 1.07E-04 

63.13 

 

 

 




