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ABSTRACT 

 

There will be a large increase in the world’s population over the coming decades, which 

will require a significant increase in global food production. However, a large gap exists between 

the cultivars we plant today and those required to feed the world of tomorrow. We currently lack 

the ability to rapidly phenotype for those improved cultivars, causing a bottleneck in the 

breeding process. One tool which might speed up the phenotyping process is LIDAR, or light 

detection and ranging. This technology has proven useful in the phenotyping of many 

characteristics across a number of crops; however, it has not been demonstrated on cassava. 

Cassava is of global importance as both a source of starch as well as a foodstuff for cattle and, to 

a lesser extent, as a leafy vegetable. We demonstrate the applicability of using terrestrial LIDAR 

for the determination of cassava height, as well as total aboveground biomass and total leaf 

biomass, all within a field setting. In addition, we showcase the development of a novel, low-cost 

3D phenotyping platform designed around Microsoft Kinect V2 sensors. The platform was 

designed to combat the high acquisition costs generally associated with, and limiting of, the 

study of 3D high-throughput phenotyping. 
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NOMENCLATURE 

 

ALS aerial laser scanning 

CC CloudCompare 

CIAT International Center for Tropical Agriculture 

CT X-ray computed tomography 

EB early bulking 

G X E gene by environment 

GUI graphical user interface 

IR infrared 

IITA International Institute of Tropical Agriculture 

LAD leaf area density 

LAI leaf area index 

LICF laser-induced chlorophyll florescence 

LIDAR light detection and ranging 

MRI magnetic resonance imaging 

PAD plant area density 

PMF Progressive Morphological Filter 

SBC single board computer 

SDK software development kit 

SOR Statistical Outlier Filter 

TLS terrestrial laser scanner 

TxDOT Texas Department of Transportation 
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CHAPTER II  

INTRODUCTION 

 

By 2050 the world’s population is expected to increase by more than two billion people, 

driving a significant rise in global food demand (Graham-Rowe 2011). The majority of this 

growth is forecasted to occur in developing countries (Nations 2015) where the demand for 

energy is also expected to increase significantly over the coming decades (Wolfram et al., 2012). 

Biofuels are expected to play a major role in filling this energy gap, but they currently rely 

heavily on edible portions of staple crops and will undoubtedly compete with food production for 

arable land (Cheng & Timilsina 2011). With the increasing demand for food and bioenergy and 

finite resources available to meet those demands, there is a great need to increase the efficiency 

of crop production, especially in the developing world. 

As the food shortage deepens, so will the need to maximize yield while simultaneously 

increasing efficiency. Data suggests the yield increases currently being achieved will not keep 

pace with the projected food demands within the near future (Tester & Langridge 2012). 

Furthermore, these yield increases are derived in part from the use of artificial inputs, mainly 

nitrogen fertilizer and irrigation, whose use needs to be reduced in order to combat global 

climate change. In the coming decades demand for resources will rise along with the expanding 

population, driving up their price. As a result, we should expect rising food costs and further 

economic uncertainty (Godfray et al., 2010). 

There is a need to increase yield while reducing inputs; however, a large gap exists 

between the tools of today and the tools required to develop the elite cultivars of tomorrow 

(Araus & Cairns 2014). Specifically, a bottleneck exists within the field-based screening process, 
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which severely slows the development of these needed cultivars (Furbank et al., 2009; Furbank 

& Tester 2011). One way to remove this bottleneck is through the use of high-throughput 

phenotyping; a future consisting of high-throughput and early detection of desired phenotypic 

traits will exist only if the technological investments are made. The research proposed here will 

set the foundation for a generation-long pursuit towards the development of high-throughput 

phenotyping platforms in the struggle for worldwide food security. 

Objectives 

1) Predicting Cassava Height Using a Terrestrial Laser Scanner Under Field Conditions: 

Height is an important trait in many crops and is often one of the first traits to be explored in 

a high-throughput phenotyping context. In cassava, height is often used as a predictor of pest 

susceptibility and environmental stress. The terrestrial laser scanner has been used in other 

crops to predict height with great success, but has seen no use in the phenotyping of cassava. 

As a first step in this direction we used a Trimble TX5 terrestrial laser scanner in an attempt 

to predict height in three different cassava genotypes under field conditions. 

2) Prediction of Aboveground Biomass of Three Cassava Genotypes Using a Terrestrial Laser 

Scanner: 

There is considerable need to develop a rapid and non-destructive method to predict cassava 

plant biomass under field conditions. Terrestrial laser scanners have shown to correlate well 

to biomass in some crop species, though the technology has not been tested in cassava. 

Terrestrial laser scanner data was collected under field conditions on three structurally 

contrasting genotypes of cassava. We hypothesized that the data captured with the terrestrial 

laser scanner would correlate well to the total aboveground biomass, as well as the total leaf 

biomass in cassava.  
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3) A Low Cost 3D Phenotyping Platform Using Microsoft Kinect V2 Sensors: 

There is a need for 3D high-throughput phenotyping tools within the field of agriculture. 

While commercially available airborne and terrestrial laser scanners have proven viable for 

phenotyping across many crops, their high purchase cost is a major barrier to their wider 

application. We attempted to eliminate this cost barrier through the utilization of consumer-

grade Microsoft Kinect depth cameras as a 3D phenotyping sensor. We developed a field-

worthy phenotyping platform with off-the-shelf hardware, run by custom-made software, 

and demonstrate its applicability through a preliminary field campaign. 
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CHAPTER III  

BACKGROUND 

 

Cassava 

Cassava (Manihot esculenta) is the sixth major staple crop in the world (Mann 1997). It is 

grown across the tropical and subtropical regions, where it provides food for over half a billion 

people worldwide (Prochnik et al., 2012). Within sub-Saharan Africa in 2008, 117 million tons 

of cassava was produced, placing it above maize in total production (Sayre et al., 2011). Within 

Latin America and the Caribbean, cassava plays a dual role in food security and as a feedstock, 

while in Asia it has become an important industrial crop.  

Every part of the cassava plant has value, though the starch-rich roots are the most 

important economic component. The species is included in the top four starch sources worldwide 

along with maize (Zea mays), potato (Solanum tuberosum), and wheat (Triticum aestivum) (Ellis 

et al., 1998; Davis et al., 2003). Low levels of fat and protein in the root make the starch of 

excellent quality and eases extraction (Ceballos et al., 2010). Both the root and the leaf can be 

used as a feedstock, though the nutritional value is roughly 70% of maize, which is reflected in 

its lower cost. The low input requirements of cassava, along with its ability to grow under 

drought and nutrient-limited conditions, make the crop an attractive candidate for biofuel 

production (Jansson 2010). This has led China to list cassava as one of the key crops to meet 

their 2020 bioenergy goals (Chang et al., 2012).  While these uses play an important role, the 

vast majority of cassava is utilized for food security by smallholder farmers where the root, and 

less so the foliage, is consumed (Ceballos et al., 2004). 
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Considering the worldwide importance of cassava, especially within developing 

countries, it is assumed that yield improvements would strengthen economic growth within these 

areas through the transition of cassava from a subsistence to a cash crop (Nassar & Ortiz 2007). 

Late bulking has been described as the single cause for rejection of genotypes in sub-Saharan 

Africa (Nweke et al., 2002). This has led many to attempt to improve yield and promote early 

bulking (EB) within the roots (Okogbenin & Fregene 2002; Ceballos et al., 2004). There 

currently is a transition to EB genotypes within sub-Saharan Africa where, in countries such as 

Nigeria and Ghana, the introduction of these genotypes have led to 40% higher yields without 

fertilizer (Nweke et al., 2002). A relationship was found between earliness in root yield and EB 

(Wholey & Cock 1974) with root yield being directly related to the duration and intensity of 

bulking (Lian & Cock 1979). It has been suggested breeding for EB genotypes would have two 

significant advantages; a shortening of crop duration and increased yield (Okogbenin & Fregene 

2002). The main roadblock to the development of EB genotypes is the lack of visual cues to 

suggest the level of starch accumulation within the root. This inhibits breeding for EB as 

selection can only be accomplished through costly destructive methods. Taking this into 

consideration, there is a need for a non-destructive method to quantify cassava root development. 

Cassava has many uses other than those provided by the roots. The leaves of the plant are 

high in crude protein (~ 25 %), and thus are often a valuable by-product for local farmers. After 

the transformation of the plant matter to silage to reduce the hydrocyanic acid to acceptable 

levels, it can be used to feed livestock (Nguyen et al., 2012). A recent study assessed the use of 

cassava silage as a feedstock for sheep in Indonesia (Sudarman et al., 2016). They found that 

feeding 20 % silage had a positive impact, similar to that of feeding the standard concentrate. It 

has been suggested that the formation of “cassava hay” through sun drying can produce a cattle 
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forage which, when supplemented, can potentially lead to improved yield and composition of the 

milk (Wanapat 2002). While the leaves are not the primary edible portion of the cassava plant, 

they are consumed as a food source. It is suggested that in the Congo the primary vegetable is the 

cassava leaf (Nweke et al., 2002). It is clear that increasing the amount of foliage produced 

would be desirable to local farmers and industries. To accomplish this, the selection of cassava 

genotypes which produce large quantities of high quality aboveground biomass is critical. 

Phenotyping in cassava is generally done by hand, which is a laborious and time 

consuming task considering the size and long production cycle of the crop. The use of high-

throughput phenotyping techniques could speed this process and reduce costs; however, little if 

any literature exists on the use of these type of techniques on cassava. Many phenotypic traits are 

of significance in the development of improved cassava genotypes. Cassava LAI and leaf 

retention have been suggested as important traits in the selection of drought tolerant genotypes 

(Okogbenin et al., 2003). Okogbenin et al. suggest that the ability of cassava to maintain leaf 

area under drought stress is linked to root yield potential. They also found that shoot biomass 

production was related to drought resistance, with the most resistant genotypes having little 

change across the drought regime. The study also suggested a correlation between root and shoot 

biomass might exist, but cautioned further study was required.  

A group at the International Institute of Tropical Agriculture (IITA) produced a cassava 

descriptor list to help standardize the collection of important cassava traits (Fukuda et al., 2010). 

Within this document they propose the collection of height to first branching, branching habit, 

angle of branching and the overall characterization of the shape of the plant as important 

phenotypic measures. Other traits measured to assess cassava adaptation to drought stress 

include the number of primary stems, number of branching levels and the length of the primary 
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and secondary stems (Okogbenin et al., 2013). The authors noted the desirability of high shoot 

biomass in dry regions where the leaves are often used as a forage crop. They state the need for 

fast phenotyping protocols in the genetic selection of drought resistant cassava genotypes. Many 

of these desired traits might be measured using methods of high-throughput phenotyping 

described in other crop species 

Phenomics 

Phenomics is a discipline in the field of biology which is focused on the acquisition of 

phenotypic data on an organism-wide scale (Houle et al., 2010). The plant phenotype is the 

structural, physiological and performance-related expression of the plant as influenced by a gene, 

or more often a set of genes, in relation to the environment - also known as the gene by 

environment interaction (G x E) (Dhondt et al., 2013). Currently, our ability to understand the 

phenotypic state of a plant lags far behind our ability to describe its associated genotype. While 

many economically important crops have been genetically sequenced and annotated, the vast 

majority of these annotations lack the associated phenotypic functions (Furbank 2009). This fact 

has led many to describe phenotyping as one of the major bottlenecks to the future of crop 

development (Cabrera-Bosquet et al., 2012; Fiorani & Schurr 2013; Araus & Cairns 2014).  

The main objective of plant phenotyping is to capture quantitative measures of  a plant’s 

response to the dynamic environment (Fiorani & Schurr 2013). The goal is to associate these 

data to the genotypic blueprint in order to develop a correlation between gene function, plant 

performance and environmental effects (Furbank 2009). However, many of the current methods 

of plant phenotyping are either costly, time-consuming, lack objectivity or are destructive 

(Montes et al., 2007; Busemeyer et al., 2013). Furthermore, the implementation of the current 

technologies has primarily been within a lab setting and thus lack the robustness needed for field 
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applications, especially in a high-throughput field phenotyping environment. This has led to the 

suggestion that the future of plant phenotyping should be a non-destructive and objective process 

(Fiorani & Schurr 2013). The need to develop methods which move past these issues has created 

a new push in the area of high-throughput phenotyping. 

Current methods of plant phenotyping generally include the use of 2D image-based 

technologies such as broadband RGB and NIR, hyperspectral, fluorescence or thermal analysis. 

These techniques have been adapted from traditional satellite and aerial applications for field, 

greenhouse or laboratory use. In many cases these data are used to determine structural 

characteristics such as biomass, leaf area index (LAI), plant height or yield (Li et al., 2014).  

They can also be used to monitor biochemical features such as nitrogen status (Cabrera-Bosquet 

et al., 2011), plant water capacity (Elsayed et al., 2011) or plant stress (Lichtenthaler 1997) often 

with good results. In some cases, these 2D images have been extended to model the captured 

plant responses in 3D (Santos & Ueda 2013; Pound et al., 2014). 

3D Phenotyping 

The analysis of plants in 3D could allow a better understanding of morphological traits 

which have seen little investigation due to the historic need for extremely laborious manual 

acquisition (Dhondt et al., 2013). As a whole, the use of 3D data for phenotypic analysis is a 

relatively new venture; however, significant progress has been made since the turn of the 

century. The capture of 3D plant phenotypic data has been accomplished using several 

technologies. X-ray computed tomography (CT) and magnetic resonance imagers (MRI) have 

been used a to create 3D phenotypic plant data in specialized laboratories (Yang et al., 2011), 

while sonic digitizers have been used to capture high-resolution 3D data on plants within a 

laboratory (Watanabe et al., 2005) and in the field (Mack & Pyke 1979). However, this type of 
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technology is not often utilized for plant phenotyping because plant contact is required (Santos & 

De Oliveira 2012). As mentioned above, plants have been modeled through techniques such as 

stereoscopy, which use multiple 2D images and triangulation to produce 3D data. Stereo cameras 

tend to be low cost and offer high frame rates at the full spatial extent of the scene, which make 

them suitable for rapid temporal assessments. Depth cameras have also been used to capture 3D 

plant data (Klose et al., 2009; Chéné et al., 2012; Nguyen et al., 2015). They generally work 

either by using the time-of-flight principle or one based on structured light (Henry et al., 2014). 

These active sensors can be advantageous when the scenes have complex lighting and/or low 

texture (Du et al., 2011).  

A large portion of 3D plant imaging is completed using laser ranging systems or what is 

often known as light detection and ranging (LIDAR) technology. In general terms, laser light is 

projected toward a target of interest and the time taken for the light to travel to the object and 

return is recorded. This information is used in conjunction with the sensor position to determine 

the object’s location in 3D space. The field of Forestry has utilized airplane or helicopter-

mounted LIDAR sensors to measure tree characteristics such as height and canopy diameter for 

several decades (Nelson et al., 1988; Popescu et al., 2003; Popescu 2007). This type of LIDAR is 

broadly known as aerial laser scanning (ALS), and has more recently been applied in agriculture 

(Anthony et al., 2014), though the mode of transportation for the platforms have shifted away 

from manned aircraft towards unmanned aerial vehicles (UAVs). Ground based laser ranging 

systems, known generally as terrestrial laser scanners (TLS), have been used extensively to 

measure plant characteristics. TLS have been used widely to quantify the aboveground structure 

of forest (Litkey et al., 2008; Hackenberg et al., 2015) and agronomic species (Eitel et al., 2014; 

Tilly et al., 2014). 
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Terrestrial Laser Scanning 

Terrestrial laser scanners have the ability to record fine details of an object in 3D. Many 

scanners are able to record reflective properties of the object’s surface, which relates to the 

wavelength of the laser and the distance and incidence angle to the object. Some scanners 

include built-in RGB cameras, which can be used to colorize the pointcloud. Laser scanners 

work by pulsing laser light, often at a single wavelength, at an object and use the time-of-flight 

and speed-of-light to determine the distance. This distance measure, along with the horizontal 

(azimuth) and vertical (zenith) angles between the instrument and the object, are recorded for 

each laser pulse. This information is used to perform simple trigonometric calculations to create 

a 3D pointcloud of the object. The pointclouds from multiple scans captured around the object 

can be registered together and information related to the reflectance and color images can be 

applied to form a data-dense 3D representation.  

Terrestrial laser scanners have been used to further many fields of study. While the 

majority of commercial units are sold to conduct architecture and engineering surveys, many 

have been used to conduct studies in other fields such as geology (Buckley et al., 2008), forestry 

(Watt & Donoghue 2005) and archaeology (Lerma et al., 2010). Within the field of agriculture, 

TLS has been used to characterize several important phenotypic and environmental traits. 

Aboveground biomass determination has been conducted in many species including oilseed rape 

(Brassica napus), winter rye (Secale cereale), winter wheat (Triticum aestivum), grassland 

(Ehlert et al., 2008; Ehlert et al., 2009; Ehlert et al., 2010) and vineyard (Keightley & Bawden 

2010) studies with significant results. 

Terrestrial laser scanners have been used to look at crop growth across time, detect the 

location of individual plants and assess the field environment. Temporal measures of crop 
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growth variability across a field have been conducted with both sugar beet and barley 

(Hoffmeister et al., 2016). Short duration growth-related changes in canopy height in several 

species was discernable, with maize growth detectable within a few hours (Friedli et al., 2016). 

Individual early stage plant detection in maize was possible using a full-waveform TLS and 

radiometric correction (Höfle 2013). Hydrology is a key component of the within field variability 

in crop growth, and is driven in part by the topography. The micro-topography of agricultural 

watersheds has been assessed using a combination of TLS and UAV-based photogrammetry 

(Ouédraogo et al., 2014). Additionally, soil roughness in a crop field was characterized with a 

TLS in hopes of being used as ancillary data for soil moisture analysis via synthetic aperture 

radar (Perez-Gutierrez et al., 2007). 

Terrestrial laser scanners have been used to estimate the leaf area of several crop species. 

A tractor-mounted laser scanner was used to estimate leaf area of grapevines in a vineyard (Arnó 

et al., 2013). A modified laser scanner was used to create polygons to represent the individual 

leaves of a tomato plant (Hosoi et al., 2011). A similar result was found in wheat, where leaf area 

density (LAD) and plant area density (PAD) were estimated across different growth stages 

(Hosoi & Omasa 2009). TLS have been used to assess nitrogen and chlorophyll content in 

several species of agricultural crops. Measurement of laser-induced chlorophyll florescence 

(LICF) was conducted on winter oilseed rape (Brassica napus L.) using a ratio of two 

wavelengths, 690 and 730 nm (Thoren & Schmidhalter 2009). In a field study of spring wheat 

(Triticum aestivum L.) a TLS was used to assess foliar nitrogen status during stem elongation 

(Eitel et al., 2011). In another paper on spring wheat, a laser scanner was used to assess nitrogen 

status across 2 different seasons at both tillering and jointing (Eitel et al., 2014). 
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To the author’s knowledge, no literature exists on the use of terrestrial laser scanners, or 

LIDAR in general, on cassava. However, some remote sensing studies have been published 

which use satellite imagery to assess the crop. Data from the NOAA-14 satellite was combined 

with topography and land use data to map the cassava plantation area in the northeast region of 

Thailand (Eiumnoh & Shrestha 1999). Images from the Advanced Land Observation Satellite 

(ALOS) were used to develop a method to characterize the spatial-temporal distributions of 

cassava fields in northeastern Thailand (Yoshida & Nagasawa 2010). Images from two different 

satellites were used to determine the plantation area of cassava in the Siracha district, Chonburi 

province of Thailand (Kruasilp & Rungsipanich 2010). They used fuzzy logic and object-

oriented classification to overcome some limitations of the previous pixel-based techniques. 

Depth Sensors 

In recent years, depth sensors have seen significant advancement due in large part to 

robotics and computer vision applications. These types of sensors are used in a broad array of 

fields for things such as robotic navigation, object reconstruction, human computer interaction 

(Zhu et al., 2008) and even surgical applications (Tanner 2000). There are several types of 

sensors which fall into the depth sensor category, including passive sensors (that use stereo-

vision) and active sensors (which project light into the scene to determine depth). 

Active depth sensors work on two basic principles: structured light or time-of-flight. 

Structured light sensors work by projecting a structured light pattern onto the scene and 

capturing the reflected light through the use of a separate camera. The deformation of the light 

pattern is used to calculate the spatial position of each of the pixels captured by the camera. In 

general, this yields a 3D pointcloud which is often further colorized by information from the 

camera (Rocchini et al., 2001).  Time-of-flight sensors function by measuring the time-of-flight 
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of a signal sent from the sensor to the object and back to the sensor. The signal source would 

generally be light, though sound or radar are also used (Gokturk et al., 2004a). The time-of-flight 

sensor uses a modulated light, such as a laser, along with a sensor for detecting the light once it 

has been reflected (Gokturk et al., 2004b). Two principles are generally used to determine the 

time estimation: pulsed or continuous wave modulation. In pulsed modulation, the time taken for 

the light to leave the laser, reflect of an object and return is used along with the speed of the light 

to determine distance. In continuous wave modulation, the phase shift between the emitted light 

and an internal control are used to determine distance (Horaud et al., 2016). 

Depth sensors have been utilized in a broad array of fields. For example, they have been 

used in human biometrics, where these sensors can determine hand gestures (Kurakin et al., 

2012) and other human actions (Chen et al., 2015). Depth sensors have even been used for 

biometric determination in other species, such as in detecting pig aggression (Lee et al., 2016). 

Aside from biometric studies, depth sensors are utilized for such tasks as navigation of 

autonomous vehicles (Eric and Jang 2017) as well as to assist the visually impaired (Kanwal et 

al., 2015).  

Depth sensors have been studied for applicability as a phenotyping tool in an agricultural 

context. The comparison of several active time-of-flight sensors against a passive stereo-based 

3D imaging platform was performed to test both indoor and outdoor leaf phenotyping 

performance (Kazmi et al., 2014). A robotic arm was guided by a time-of-flight sensor to 

perform leaf segmentation and extract disc samples for further analysis (Alenyà et al., 2013). 

Maize plants were reconstructed using a time-of-flight sensor mounted to an autonomous robot 

developed at the University of Hohenheim (Vázquez-Arellano et al., 2018). Depth sensors were 
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even combined with other sensors to produce a multi-sensor phenotyping platform designed for 

small grain cereals, which was tested on triticale (Triticosecale Wittmack L.). 

However, depth sensors do have limitations. Stereo cameras, while they operate well 

under varying light conditions, are often limited in range and perform poorly when the scene has 

low texture (Gutierrez and Marroquin 2004). Structured light sensors are limited by motion blur 

when used in dynamic scenes, an issue derived from the inherent lower framerates. In addition, 

optical interference is a problem for structured light sensors and therefore they are best suited for 

indoor environments (Li 2014). Time-of-flight sensors are not without their limitations. Most 

commercially available sensors perform poorly in bright sunlight, an issue related to the energy 

output from the diode being washed out. In addition, time-of-flight sensors are susceptible to 

“flying pixels,” which are caused by depth measures which occur on the edge of object and 

return two distance values. Subsequently, these two values are averaged and thus a depth 

measure somewhere between the two surfaces is returned (Butkiewicz 2014). 

Microsoft Kinect 

The Microsoft Kinect V1 sensor was introduced in 2010 for use with the Xbox 360 

gaming console. In 2011, a software development kit (SDK) was released, allowing it to be used 

by researchers as a low-cost 3D sensor (Anderson et al., 2012). The Kinect V2 sensor released in 

2014, was the second depth sensor released by Microsoft for use with its Xbox One console. The 

Kinect V2 sensor is cited often in recent literature due its wide availability, low-cost and good 

performance. Unlike the V1 sensor, which uses the structured light modality, the V2 sensor 

utilizes the time-of-flight principle, and in general is a step ahead of the original version. The 

Kinect V2 utilizes the continuous wave modulation method of depth estimation. It has a depth 

resolution of 512 X 424 pixels and a RGB color resolution of 1920 X 1080. The sensor operates 
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at a maximum of 30 fps, which is adjusted to 15 fps in low light. The depth image is operable 

from ~ 0.5 to 4.5 m (Corti et al., 2016). 

The Microsoft Kinect V2 has been used for a wide range of applications including: 3D 

modeling (Lachat et al., 2015a), head motion tracking (Noonan & Hallett 2015), kinematic gate 

assessments (Geerse et al., 2015) and coastal mapping (Butkiewicz 2014). In addition, the Kinect 

V2 sensor has been used in several studies related to the field of agriculture. For instance, the 

sensor was used to predict cotton plant height in both a lab and field setting (Jiang & Paterson 

2016). The Kinect V2 was mounted to an autonomous robot to allow 3D reconstruction of maize 

plant rows in a greenhouse (Vázquez-Arellano et al., 2018). The identification of weeds within a 

maize field was conducted with the sensor with great success (Andújar et al., 2016). The sensors 

have even been mounted to robots within a growth chamber, to allow complete real-time 

segmentation of plants (Shah et al., 2016).
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CHAPTER IV  

PREDICTING CASSAVA HEIGHT USING A TERRESTRIAL LASER SCANNER UNDER 

FIELD CONDITIONS 

 

Introduction 

Cassava (Manihot esculenta) is the sixth major staple crop in the world (Mann 1997). It is 

grown across the tropical and subtropical regions where it provides food for 800 million people 

worldwide (Prochnik et al., 2012). Within sub-Saharan Africa in 2008, over one hundred million 

tons of cassava was produced, placing it above maize in total production (Sayre et al., 2011). 

Within Latin America and the Caribbean cassava plays a dual role in food security and as a 

feedstock, while in Asia it has become an important industrial crop. Considering the worldwide 

importance of cassava, especially within developing countries, it is assumed that yield 

improvements would strengthen economic growth within these areas through the transition of 

cassava from a subsistence to a cash crop (Nassar & Ortiz 2007). 

A group at the International Institute of Tropical Agriculture (IITA) produced a cassava 

descriptor list to help standardize the collection of important cassava traits (Fukuda et al., 2010). 

Within this document they propose collecting height to first branching, branching habit, angle of 

branching and the overall characterization of the shape of the plant as important phenotypic 

measures. Many of these desired traits might be measured using methods of high-throughput 

phenotyping described on other crop species. Phenotyping in cassava is generally done by hand, 

which is a laborious and time consuming task considering the size and long production cycle of 

the crop. The use of high-throughput phenotyping techniques could speed this process and 
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reduce costs, however little, if any, literature exists on the use of these types of techniques on 

cassava.  

Height is an important predictive trait in many agricultural crops (Freeman et al., 2007; 

Pask et al., 2012), and is often one of the first to be explored in a high-throughput phenotyping 

context (Zhang & Grift 2012; Holman et al., 2016). In cassava, height is considered a major 

architectural trait (Okogbenin et al., 2003) and is often used as a descriptor for pest susceptibility 

(Byrne et al., 1982), as well as an indicator of environmental stress (Connor & Cock 1981).     

The terrestrial laser scanner is one tool which has been used to predict plant height in 

several crops. TLS have the ability to record fine details of an object in 3D. Many scanners are 

able to record reflective properties of the objects surface which relates to the wavelength of the 

laser and the distance and incidence angle to the object. Some scanners include built-in RGB 

cameras which can be used to colorize the pointcloud. Laser scanners work by pulsing laser 

light, often at a single wavelength, at an object and use the time-of-flight and speed-of-light to 

determine the distance. This distance measure, along with the horizontal (azimuth) and vertical 

(zenith) angles between the instrument and the object, are recorded for each laser pulse. The 

collected information is used to perform simple trigonometric calculations to create a 3D 

pointcloud of the object. Pointclouds from multiple scans captured around the object can be 

registered together, and information related to the reflectance and color images can be applied to 

form a data dense 3D representation.  

Terrestrial laser scanners have been used to further many fields of study. While the 

majority of commercial units are sold to conduct architectural and engineering surveys, many 

have been used to conduct studies in other fields such as geology (Buckley et al., 2008), forestry 

(Watt & Donoghue 2005) and archaeology (Lerma et al., 2010). Within the field of agriculture, 
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TLS has been used to characterize several important phenotypic and environmental traits with 

significant results (Perez-Gutierrez et al., 2007; Ehlert et al., 2008; Ehlert et al., 2009; Ehlert et 

al., 2010; Keightley & Bawden 2010). Specifically, plant height has been characterized across 

several species using a TLS. Field-level growth of sugar beets (Beta vulgaris) and winter barley 

(Hordeum vulgare) was captured over time using a TLS-derived canopy height model 

(Hoffmeister et al., 2016). Growth over time in maize (Zea mays) soybean (Glycine max) and 

wheat (Triticum aestivum) were all predicted using height analysis with a TLS (Hoffmeister et 

al., 2010). Plant height has also been predicted in paddy rice (Oryza sativa) using this technology 

(Tilly et al., 2013).     

As a first step towards the development of a high-throughput phenotyping tool for 

cassava, we attempted to predict the height of three genotypes of cassava in a field setting using 

the Trimble® TX5 (Trimble Inc. Sunnyvale California) terrestrial laser scanner. 

Methods 

Location and Study Design 

The field site was located at the International Center for Tropical Agriculture (CIAT) 

near Cali Colombia (Figure 1). Cassava cuttings of three different genotypes, which contrasted in 

their growth pattern, were planted on raised rows in early January of 2018. Genotype 1 

(GM3893-65) is considered an asparagus genotype as it is tall and slender, Genotype 2 (CM523-

7) is an erect type with most of its vegetation near the canopy with little branching, while 

Genotype 3 (MPER-183) is a shrub type with much branching and vegetation near the ground as 

well as in the canopy. Four plots of each genotype were planted in a block, with each plot 

containing 5 rows and 9 plants per row (Figure 1). A blank space of 2 meters was created 

between each 5th row to separate the plots, while a buffer of 2 plants was grown to separate the 3 
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blocks. A buffer of 2 plants was also grown at the beginning and end of each row, and a single 

row buffer was planted as the first and last rows of the trial. This resulted in each row containing 

35 total plants with a total of 21 rows. All of the plants received the same treatment of fertilizer, 

with select individual plants receiving treatments of insecticide, to promote proper growth. 

Field Measurements 

In mid-April of 2018, height for each plant was determined manually using a measuring 

stick. The estimation was determined from the top of the hill plot to the highest point on each 

plant. A conservative estimation of the error in these measurements is predicted to be ± 3.0 cm. 

This error is mainly derived from the placement of the measuring stick on the varying 

topography of the hill plots. 

TLS Scans  

The following morning, TLS scans were captured of the entire study using a Trimble 

TX5 3D terrestrial laser scanner. The sensor has a range of 0.6 to 120 m with a ranging error of ± 

2 mm at 10 m & 25 m and operates at 905 nm. During the scanning period winds were light and 

variable, causing some movement in the leaves of the cassava plants. The scan locations and 

sensor parameters were chosen to maximize coverage of the field while minimizing the time 

required to capture the data. A total of 8 scans were captured (Figure 1). Four scans were 

captured from the 4 outside corners of the experiment. Two scans were taken along the east and 

west perimeters of the field adjacent to the blank area which separated the middle two plots. The 

last 2 scans were captured from the interior of the study from within the blanks which separated 

the 1st and 2nd, and 3rd and 4th, plots. These two scans were offset in an east-to-west fashion to 

provide better coverage. 
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Figure 1. Field location, 8 scan locations and plot map. A circle represents the location of the 

International Center for Tropical Agriculture. The X’s represent the scan locations. Stars 

represent the individual plants in a plot. 

 

Eight 360° scans were captured using the maximum scan area of the scanner (vertical 

from -60° to 90° and horizontal from 0° to 360°). The scanner was set to capture at a point 

spacing of 7.67 mm at 10 m from the scanner. The scan parameters were set to a “resolution” of 

1/5 and a “quality” of 3X. Color photos were also captured by the scanner at the end of each scan 

cycle in order to aid in manual registration and identification of artifacts in the pointcloud. This 

resulted in a time of approximately 6 ½ minutes per scan location. The scanner was mounted on 

a professional survey tripod and was set to a height of approximately 1.5 m for each scan. 
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Pointcloud Processing 

The first step in the data analysis process was to open each scan in the Trimble’s SCENE 

software and export each as a .txt file. No manipulation of the data was conducted before 

exporting from SCENE. We used LAStools (LAStools 2014) and the “txt2las” tool to convert 

each scan from the .txt to .las format. At the time of this publication the SCENE software did not 

offer export in this format. 

We used CloudCompare (CC), an open-source 3D data analysis and visualization 

software, to complete the registration process (CloudCompare 2016). Each of the scans were 

registered together using “targets” or known common points between the scans, which were 

available in the field. Registration accuracy was determined visually, assuring known objects 

were in alignment between the scans. Wooden stakes, which marked plot rows, were used along 

with other stationary markers for this task. Scan registration order was such that those which 

were closest together where done first. In order to eliminate duplicate points in the registered 

pointcloud, the “remove duplicate points” tool in CC was used with a minimum distance 

between points set to 2 mm. This distance was chosen as this is the minimum resolution of the 

Trimble TX5. The removal of these points cut down on the data storage and processing 

requirements with little to no degradation in the pointcloud accuracy.  

Normalization of the data was conducted to standardize the height of the scan points 

based on the ground points below. The field area, with a small buffer to allow accurate kriging, 

was segmented out of the registered pointcloud using the “segment” tool in CC. For the rest of 

the normalization process we used the “lidR” package in R (R core team 2013). The “lasground” 

tool was used to classify the ground points across the field. The tool uses a loose implementation 

of the Progressive Morphological Filter (PMF) credited to Zhang et al. (2003). The maximum 
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window size was set to 1.0 m and the height threshold was set to 0.2 m. We determined these 

values by trial-and-error and visual assessment of the results. The “grid_terrain” tool was used to 

create a digital terrain model using the classified ground points. The interpolation was completed 

using the “kriging” method which in this case uses universal kriging. The number of nearest 

neighbors was set to 10. Finally, the “lasnormalize” tool was used calculate the height 

aboveground for each point where the ground below was set to a height of 0. 

Each plot was visually segmented out of the field level pointcloud using the “segment” 

tool in CC and saved as a unique file. Care was taken to not include the buffer plants in any of 

the plots. From this point all processing was done on a plot-by-plot basis. The “SOR filter” 

(Statistical Outlier Removal) in CC was used to clean-up much of the noise. The settings were 

determined by trial-and-error and visual assessment of the resulting pointcloud. The settings used 

were 6 for the number of nearest neighbors and 1.00 for the standard deviation multiplier.  Each 

plot was visually assessed for remaining noise points and any obvious ones were manually 

removed using the “segment” tool in CC. These were mainly random points above the canopy 

layer and between the rows of plants. Additionally, any wooden markers were manually 

removed.   

Semi-automated identification of individual plants and determination of their height was 

the main goal. To accomplish this, a combination of the R package “lidR” and CC were used. 

The first step was to remove the ground points which were previously classified. To accomplish 

this, each plot file was opened in CC and the “filter points by value” tool was used. In order to 

classify individual plants within the plot, the “lastrees_li2” function within the “lidR” package 

was used. This function performs an individual tree segmentation using the algorithm described 

in Li et al. (2012) and assigns unique tree ID values to each point in the dataset. The function 
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works on the pointcloud level, which is ideal for this application. The algorithm in “lidR” has the 

addition of a parameter “hmin” which sets the minimum height of a detected tree. This was 

added to stop over-segmentation of objects which are too low. The arguments for the 

“lastrees_li2” function were set based on a trial-and-error approach for each genotype of cassava 

being assessed (Table 1). The two values “dt1” and “dt2” are the two threshold distances used. 

The recommended value for dt1 is that of the crown diameter. The threshold value of dt1 is used 

unless the elevation of the point is above the value assigned by “Zu,” in which case the value of 

dt2 is used. The principle here is to use an adaptive threshold, as trees which are taller should 

have a greater crown diameter than those of shorter trees. The value “R” assigns the search 

radius for the local maxima. If a value of 0 is assigned, all values are considered. The last value 

is “speed-up” which affects the processing speed. The authors of the function suggest any value 

that is greater than the crown diameter will not affect the result, but the smaller the value, the 

quicker the processing. 
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Table 1. lastrees_li2 arguments. 

 

 Assigned Value (in units of pointcloud) 

Argument Genotype 1 Genotype 2 Genotype 3 

dt1 .3 .5 .5 

dt2 .4 .7 .7 

R 0 0 0 

Zu .5 1.0 1.0 

hmin .2 .2 .2 

Speed_up 2 2 2 

  

 

Once the segmentation of individual trees was complete, the “metrics” function within 

“lidR” was used to determine the maximum height of each tree identified in the segmentation 

process. These data were output as a .txt file, which included the unique tree ID and associated 

tree heights.  

The assignment of unique tree ID values during the classification process was based on 

the processing order and cannot be assigned to match the field map. Thus, each classified 

pointcloud was opened in CC to complete this cross-reference manually. The “point picking” 

tool was used to display each unique tree ID value and this value was matched to the field map 

based on its position in the field. These cross-referenced values were added to the original field 

data along with the LIDAR derived height data using Microsoft Excel.  

Many of the plants were not visible or were poorly represented (only a few sporadic 

points existed where the plant should have been) in the scans, which can be attributed to three 
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main factors: 1) The height of the scanner was at or below many of the larger cassava plants 

which blocked them from view. 2) The large distance from the scan positions to some of the 

plants meant that several rows of plants were often between them and the scanner. 3) The scans 

were captured when winds were moving some of the cassava leaves, which may have increased 

the shadowing effect. Because of this, any plants which were not visible or poorly represented in 

the scans were removed from the primary dataset. 

Some of the plants, especially for Genotype 3, were not classified correctly, which led to 

the creation of a corrected dataset. The main cause of this was a combination of the poor 

representation of some of the plants, along with the overlapping canopies of a few of the large 

cassava plants. To combat this, the manual removal of points between the plants with 

overlapping canopies was conducted using the “segment” tool in CC. The classification 

algorithm was again run on these new data to produce the corrected dataset. During the cross-

reference step those plants which were not visible in the scans were also removed from these 

data. 

Analysis 

A series of regression analyses to test the ability of the LIDAR-derived height to predict 

the field measured height were conducted in R. These were conducted on a genotype-by-

genotype and entire-field basis, both using the primary and corrected datasets. A field-level 

assessment was conducted with both the primary and corrected datasets, while only the corrected 

dataset was used in the by-genotype analysis. 
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Results 

The primary dataset, which included all of the plants except those which were not visible 

or poorly represented in the scans, was regressed against the hand-collected field height data 

(Figure 2). The result was an R2 of 0.65 with a P-value of 2.2e-16. 

 

 

 

Figure 2. Field-level analysis of the primary dataset (n = 288). 

 

 

For the corrected dataset, both field-level and by-genotype regression analyses were 

conducted. The corrected dataset included further manual manipulation of the pointclouds, as 

well as the removal of plants which were not visible in the scans. For the field-level assessment 

the R2 was 0.81 with a P-value of 2.2e-16 (Figure 3). On a by-genotype basis, the LIDAR 

derived height data correlated best with the field height measures for Genotype 2 (Figure 4). The 
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R2 value was 0.9 with a P-value of 2.2e-16. Genotype 1 had an R2 value of 0.88 and a P-value of 

2.2e-16, while the worst performer was Genotype 3 with an R2 of 0.51 and a P-value of 1.06e-14. 

 

 

 

Figure 3. Field-level regression of the corrected dataset (n = 260). 
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Figure 4. By-genotype analysis of the corrected data; all three genotypes shown (Genotype 1 n = 

95; Genotype 2 n = 80; Genotype 3 n = 83). 
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Figure 4. Continued. 

 

 

Discussion and Conclusions 

In this study, a well-known tree classification algorithm by Li et al. (2012) was used in an 

attempt to automate the classification of individual cassava plants in a field for height 

determination. The results of the regression analysis which stemmed from this classification 

were merely satisfactory (R2 = 0.65; P-value = 2.2e-16) when the scan data included overlapping 

canopies. Many plants, especially in Genotype 3, had an overlapping canopy structure. This 

caused them to be wrongly classified, leading to substantial errors in height estimation. When 

manual removal of the overlap within those canopies was conducted, the ability of the TLS to 

predict cassava height increased (R2 = 0.81; P-value = 2.2e-16). However, this manual removal 

process is somewhat subjective and rather time consuming. The methodology presented here was 

more successful at predicting cassava height when separation between the canopies existed 
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(Genotype 1 R2 = 0.88; P-value = 2.2e-16 & Genotype 2 R2 = 0.9; P-value = 2.2e-16). The lack 

of canopy overlap with these two genotypes, along with the reduction in shadowing (especially 

with the asparagus type), resulted in better individual plant representation and classification. 

Depending on the level of predictability required, the use of minimal field-level scans 

during relatively calm weather, combined with the semi-automated analysis process described 

here, could allow rapid height determination of the asparagus or erect-type cassava genotypes. 

Improved results of height prediction might be achieved, especially for shrub-type genotype, 

through the implementation of a few changes to the scanning methodology. First, raising the 

height of the scanner above the maximum canopy height and capturing more scans per plot 

should reduce the shadowing effect at thus improve individual plant scan quality. In addition, 

capturing the scans during a period with as little wind as possible would also improve scan 

quality. However, these techniques might not have a powerful effect on the segmentation of 

plants with overlapping canopies. 

The automated segmentation of individual plants is a complicated task, especially when 

overlap exists between them. In the case of individual plant height estimation, this might be 

overcome through the use of referenced plant locations. The methodology used here could be 

applied on juvenile plants prior to the overlapping of canopies, thus allowing the proper 

classification and identification of the plants. Their position information could then be applied to 

future scans as the canopies closed, avoiding any classification issues. Another approach might 

be the classification of individual plants based on the identification of their primary stalks. This 

might be possible with the higher resolution scans discussed earlier.  

The last major issue with this methodology is the assignment of Tree ID values by the 

classification tool. The “lidR” methodology seems to assign Tree ID values based on the 
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processing order from largest to smallest Z value, which does not match the typical row-by-row 

plant identification scheme of agricultural fields. A raster-based solution, which associates the 

field ID’s to those derived from the classification tool, might automate this process. 

There is a strong need for high-throughput phenotypic analysis in cassava, however, little 

work has been done to date. TLS has proven to be a strong candidate as a predictor of plant 

height in many agricultural crops, though to the author’s knowledge no one has demonstrated 

this on cassava in a field setting. Our results suggest that the TLS can be used to predict the 

height of individual cassava plants in a field environment using just a few scans and a semi-

automated analysis process. However, as the canopies start to overlap, whether due to planting 

density, age, or varietal growth characteristics, the accuracy of individual plant classification, 

and thus the predictive power, will decrease. There is a strong need for further research into the 

ability of TLS and other methods of 3D modeling to predict structural characteristics of interest 

in cassava, including height to first branching, branching angle and overall characterization of 

plant shape. 
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CHAPTER V  

PREDICTION OF ABOVEGROUND BIOMASS OF THREE CASSAVA GENOTYPES 

USING A TERRESTRIAL LASER SCANNER 

 

Introduction 

Cassava (Manihot esculenta) originated in South America and was first cultivated 

between 4,000 and 2,000 B.C. However, it has only recently become a global crop (Fauquet & 

Fargette 1990). It is estimated that over 13 million hectares of cassava are cultivated annually, 

and its yield is used primarily as a source of carbohydrates and secondarily as animal feed. The 

crop is grown in such quantities due to its ability to thrive in marginally fertile soils and under 

various rainfall conditions (El-Sharkawy 2003). In addition to its hardy nature, cassava also 

tends to out preform many other tropical staple crops on a per-hectare energy yield basis, leading 

to its widespread use across much of the tropics (Montagnac et al., 2009).  

Considering the worldwide importance of cassava, especially within developing 

countries, its assumed that yield improvements would strengthen economic growth within these 

areas through the transition of cassava from a subsistence to a cash crop (Nassar & Ortiz 2007). 

Late bulking has been described as the single cause for rejection of genotypes in sub-Saharan 

Africa (Nweke et al., 2002). This has led many to attempt to improve yield and promote early 

bulking (EB) within the roots (Okogbenin & Fregene 2002; Ceballos et al., 2004). It has been 

suggested that breeding for EB genotypes would have two significant advantages: a shortening 

of crop duration and increased yield (Okogbenin & Fregene 2002). The main roadblock to the 

development of EB genotypes is the lack of visual cues to suggest the level of starch 

accumulation within the root. This inhibits breeding for EB, as selection can only be 
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accomplished through costly destructive methods. Taking this into consideration, there is a need 

for a non-destructive method to quantify cassava root development. 

Cassava has many other uses other than those provided by the roots. The leaves of the 

cassava plant are high in crude protein (~ 25 %), and thus are often a valuable by-product for 

local farmers. After the transformation of the plant matter to silage, to reduce the hydrocyanic 

acid to acceptable levels, it can be used to feed livestock (Nguyen et al., 2012). A recent study 

assessed the use of cassava silage as a feedstock for sheep in Indonesia (Sudarman et al., 2016). 

It found that feeding 20 % silage had a positive impact similar to that of feeding the standard 

concentrate. It has been suggested that the formation of “cassava hay” through sun drying can 

produce a cattle forage which, when supplemented, can potentially lead to improved yield and 

composition of the milk (Wanapat 2002). While the leaves are not the primary edible portion of 

the cassava plant, they are consumed as a food source. It has been said that in the Congo the 

primary vegetable is the cassava leaf (Nweke et al., 2002). It is clear that increasing the amount 

of foliage produced would be desirable to local farmers and industries. To accomplish this, the 

selection of cassava genotypes which produce large quantities of high-quality aboveground 

biomass is critical. 

Phenotyping in cassava is generally done by hand, which is a laborious and time-

consuming task considering the size and long production cycle of the crop. The use of high-

throughput phenotyping could speed up this process and reduce costs; however, little if any 

literature exists on the use of these type of technique on cassava. Many phenotypic traits are of 

significant importance in the development of improved cassava genotypes. Cassava leaf area 

index (LAI) and leaf retention have been suggested as important traits in the selection of 

drought-tolerant genotypes (Okogbenin et al., 2003). Okogbenin et al. suggest the ability of 
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cassava to maintain leaf area under drought stress is linked to root yield potential. They also 

found that shoot biomass production was related to drought resistance, with the most resistant 

genotypes having little change in leaf retention across the drought regime. The study also 

suggested a correlation between root and shoot biomass might exist, but cautioned further study 

was required. 

Terrestrial laser scanners have the ability to record fine details of an object in 3D, and 

often capture additional data such as intensity or RGB images. Many scanners record intensity, 

or the reflective property of the object’s surface, which relates to the laser wavelength as well as 

the distance and incidence angle to the object. In addition, some scanners include built-in RGB 

cameras which can colorize the pointcloud.  

Laser scanners work by pulsing laser light, often at a single wavelength, at an object and 

use the time-of-flight and speed-of-light to determine the distance. This distance measure along 

with the horizontal (azimuth) and vertical (zenith) angles between the instrument and the object 

are recorded for each laser pulse. This information is used to perform simple trigonometric 

calculations to create a single point in 3D space, which when combined with other points forms a 

pointcloud. The pointclouds from multiple scans captured around the object can be registered 

together and information related to the reflectance and color images can be applied to form a 

data-dense 3D representation. 

To the author’s knowledge, no literature exists on the use of TLS, or LIDAR in general, 

on cassava. However, they have been used to assess phenotypic characteristics of many other 

crops. TLS can be used to conduct temporal measures of crop growth (Hoffmeister et al., 2016), 

allow for early stage plant detection ( Höfle 2013) and predict plant area (Hosoi & Omasa 2009). 

Aboveground biomass determination has been conducted in many species including oilseed rape 
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(Brassica napus), winter rye (Secale cereale), winter wheat (Triticum aestivum) and grasslands 

(Ehlert et al., 2008; Ehlert et al., 2009; Ehlert et al., 2010). Vineyard studies have also been 

conducted with significant results (Keightley & Bawden 2010). 

As a preliminary step toward the use of high-throughput phenotyping in cassava 

breeding, we attempted to use a Faro Focus 120 TLS (Faro Technologies Inc., Laker Mary, 

USA) to predict several categories of aboveground biomass in 3 genotypes of cassava which 

differed in their aboveground structure. Our goal was to use TLS data to predict biomass of the 

entire plant, as well as the biomass within specific height bins. The bins chosen were 20 cm in 

height, and were initiated from the base (where the primary stalk meets the soil) and extended to 

the top (the upper most leaf) of each plant. Two weight categories per height bin were created: 1) 

the dry weight of the leaves and 2) the combined stalk(s) & stems weights. In addition to the 

binned height assessment, we summed the weight categories for each plant to obtain a total leaf 

dry weight, a total stalk & stem dry weight as well as a total plant dry weight. Analysis was done 

across the 3 genotypes, as well as between them, in order to assess any limitations of the LIDAR 

data with specific plant structures. Specifically, we tested several LIDAR data processing 

approaches, to identify the best practices for using LIDAR data as a predictor of several 

measures of biomass for 3 contrasting genotypes of cassava. One of these approaches included 

testing the feasibility of using single scans versus two registered scans of each plant to correlate 

to the various biomass measures. 

Methods 

The experiment was initiated in the winter of 2016 at the International Center for 

Tropical Agriculture (CIAT) (Figure 5). Three genotypes of cassava were chosen based on their 

contrast in aboveground structure (Figure 6). Genotype 1 (CM523-7) is a typical erect shrub type 
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cassava with few erect branches initiating above the ground surface. Genotype 2 (GM3893-65) is 

known as an asparagus type with its characteristic lack of branches and its leaves which grow 

directly from the main stalk. The genotype allows a higher planting density due to its very erect 

growth structure. Genotype 3 (HMC-1) is another shrub type, but it has a lower branching 

structure with braches often running near to the ground surface. While both shrub types, 

Genotype 3 has a much lower growth pattern than that of Genotype 1. 

Planting began in December of 2016, with subsequent plantings taking place 

approximately each month through August of 2017. The planting was done in a staggered 

fashion to allow data on all 9 age groups to be collected at one time (Figure 7). This resulted in 9 

age groups, from 3 to 11 months of age, during the data collection period in November of 2017. 

The age groups were created to produce variability in the biomass of each genotype. For each 

planting, 15 plants of each genotype were planted from cuttings into a 3 plant by 5 plant plot. 

The spacing between plants, as well as between rows, was 1 m. This exaggerated spacing was 

used to reduce the overlap between the plants, as well as to facilitate an unrelated phenotyping 

study which will not be discussed here. A double border was planted around the entire 

experiment, but no border was used between plots. The experiment received irrigation, fertilizer 

and any necessary pest treatments required to maintain normal growth. 
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Figure 5. Location of the International Center for Tropical Agriculture. Approx. 16 km East, 

North East of Cali Colombia. Location of the research center is represented by a star. 
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Figure 6. Examples of the 3 cassava genotypes used in the study. 1) Erect shrub type (523-7), 2) 

asparagus type (Esparrago), & 3) low branching type (HMC-1). 

 

 

 



 

39 

 

 

Figure 7. Planting map. With 9 age groups, 3 genotypes (27 plots) and 15 plants per plot. Stars 

represent the planting location within a given plot. 

 

 

Data was captured on a subset of the plants in each plot. Within each plot, 3 to 5 plants 

were randomly selected, while the remaining were cut down and removed. This thinning was 

done to minimize the overlap between canopies in order to create space to get the Faro scanner in 

position. It should be noted that the original planting design was used for several other 

experiments, which required the entire set of plants. In addition, during the data capture process 

for those other experiments, several of the randomly selected plants sustained damage and had to 

be removed post LIDAR data collection. The damage included broken branches caused from a 

wheeled cart being pushed down the rows which changed the biomass and structure of the plant 

after LIDAR scanning.     
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Terrestrial laser scanning took place in mid-January 2017. The study used a Faro Focus 

3D 120 terrestrial laser scanner. The Focus has a range of 0.6 to 120 m, with a ranging error of ± 

2 mm at 10 & 25 m and operates at 905 nm. The scanning was conducted at night to minimize 

the effect of wind on the pointcloud quality as even a slight breeze can move the foliage, causing 

noise in the data. The scanning was conducted over a 3-night period and the winds during each 

night were recorded as negligible, and caused only momentary movement of individual leaves. 

The scanning took several nights due to the large number of scans and the other data collection 

which took place in conjunction with this study. The Faro scanner settings were set to a 

Resolution of 1/5 and a Quality of 3x, with a scanning window of -60° to 90° vertical and 0° to 

180° horizontal. This resulted in a scan duration of approximately 2m 39s and a Point Distance 

of 7.67 mm at 10 m. These settings were chosen as a tradeoff between scan quality and time 

required to capture data across the entire study. The scanner was mounted on an industrial tripod 

and was set to a height of approximately 1.25 m. The height varied between scans due to the 

exact placement of the legs in relation to the local topography. For each plant 2 scans were taken, 

one from the north and the other from the south side of the plant. The tripod-mounted scanner 

was placed in the adjacent row (approximately 1.5 m from the center of the target plant) and was 

aligned so the plant would fall roughly in the middle of the scanning window. In a few cases 

either an entire plant or some foliage from an adjacent plant was blocking the location for the 

scanner; in such cases, scans were captured at an angle off of the cardinal direction. No targets 

were placed in the scene to register the scans; instead the stumps of the removed plants were 

used along with other objects in the scene. As the scans were completed at night, no color 

pictures were taken with the scanner. Only the points derived from the laser were used in the 

analysis. 
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Field data was harvested starting the day after the first scan. These data included binned 

biomass data which was binned in 20 cm increments from the soil surface to the top of the plant. 

The binned data included two separate categories, one for the stalk and stem weights, and a 

second for the weight of the leaves. The bins were physically marked on each plant, using a large 

ruler and a number of small pieces of flagging tape to create a set of horizontal planes separating 

the bins. Prior to harvest, a large tarp was placed around the base of the plant to capture any 

dropped pieces. Harvesting was done manually by a team of CIAT employees. The harvest was 

done by first removing all the leaves from a plant and placing them in labelled paper bags for 

drying. Once all the leaves were removed, the stalks and stems were cut into manageable pieces 

and again placed in marked bags. The entire harvest took approximately 1 week to complete and 

another 3 weeks to dry all the samples. To limit molding, a large walk-in cold storage was used 

to store the samples prior to their time in the dryer. All bags were dried in commercial drying 

ovens at 70°C and were weighed to capture dry weight. 

Data Processing 

For the analysis, 54 plants were used. Prior to selecting these plants, the field data was 

sorted and any plants with missing data were removed from the selection pool. Those plants used 

for the analysis were randomly selected from the pool by genotype, which resulted in 18 plants 

per genotype for a grand total of 54 total across the 3 genotypes. 

The first step in the analysis was to open each scan file in the Faro SCENE software. This 

software is required to open the files which are in Faro’s proprietary format. For each plant the 

two scans were registered together in SCENE using common points available in the environment 

(Figure 8). The target points used were mainly the stalks of the previously removed plants along 

with some field markers and other objects in the scene. The accuracy of the registration was 
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assessed through observation of the alignment of objects in the registered pointcloud. Once 

registration was complete, each plants’ pointcloud was roughly clipped to remove unnecessary 

background points and was then exported as a .xyz file. The .xyz format was chosen to facilitate 

analysis in other open-source software. 

In addition, the unregistered scans (2 per plant) were also roughly clipped and exported 

as .xyz files to allow single scan analysis. The single scans were used to assess the potential to 

correlate to the field biomass measures without the need for the registration step. While targets 

can be used to automate the registration process, this is not always feasible, nor reliable and 

therefore manual adjustments may still be needed. Thus manual registration, through point 

picking of common points via various software packages, is often the method used. Our group 

wanted to assess the potential of bypassing the registration step and using a single scan per plant 

for the analysis. 
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Figure 8. LIDAR data processing and analysis protocol. 

 

 

The Following processing steps were applied to the registered as well as the single scans. 

Each pointcloud was opened in Cloud Compare (CC) where it was further clipped to remove all 

points which were not plant points or ground points which fell below the plant. All the ground 

points below the plant were kept in order to facilitate the segmentation of ground from plant 
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points (discussed below). In addition, the Statistical Outlier Filter (SOR Filter) was run to help 

remove outliers in each pointcloud. The mean distance estimation within the SOR filter was set 

to 6 points, while the standard deviation multiplier threshold was set to 1.00. These values were 

determined through trial and error using visual assessment. Each file was then saved in the .las 

format to allow analysis in R software. 

Ground Classification  

In R, the lidR package was used to run lasground_pmf (Progressive Morphological Filter) 

in order to segment the ground points for each pointcloud. The two variables for the filter are: 1) 

the sequence of window size(s) to be used in filtering the ground returns and 2) the sequence of 

threshold height(s) above the ground surface to be considered as a ground return (Zhang et al., 

2003). For this analysis, trial and error was used to determine the window size of 0.2 m and the 

threshold height of 0.05 m.  

Binning 

The next step was to bin the pointcloud data by height to match the field data. The first 

step was to manually clip the majority of the ground points except for those directly below the 

main stalk of each plant using CC. These pointclouds were then loaded back into R and the 

average height of the few remaining ground points was determined. The pointcloud data was 

binned using the average ground height as a reference and then simply segmenting the data by 

height to match the field data. 

Subsampling 

We tested the effect of pointcloud density on the ability of the point count to predict total 

plant dry weight. To do this the additional preprocessing step of subsampling the pointcloud 

using the subsampling tool in CC was completed. The minimum space between points was set to 
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0.002 m (2 mm). This value was chosen as it closely resembles the theoretical maximum ranging 

accuracy of the Faro Focus 120 (± 0.02 mm @ 10 m) and would not degrade the data.  

Data Analysis 

All regressions were completed in R using the base lm and all outputs were generated 

using the package ggplot2. In addition, all bootstrap analyses were conducted using the boot 

package in R. Bootstrapping is a resampling technique which allows estimation of the population 

response and associated uncertainty to a variable through sampling with replacement. For details 

on bootstrapping see Efron & Tibshirani 1994. We used the bias-corrected and accelerated 

bootstrap (BCa) method as it has the ability to correct for bias and skewness in the distribution of 

the output estimates. The number of iterations used was 5,000 and the confidence level was set to 

0.95. All bootstrap analyses used in this study were conducted using the same method.         

To test the ability of the Faro to predict cassava biomass within different height bins we 

regressed the binned pointcloud data against the binned field data for all 54 plants. The number 

of points in each pointcloud height bin was regressed against the total dry plant weight (stalk & 

stem + leaf wts.) and the leaf-only dry weight. A bootstrap analysis was also conducted for both.  

Our group examined the relationship between the LIDAR data and the entire plant dry 

weight. This was done for the registered-only, the registered and subsampled as well as the 

single scan subsampled LIDAR datasets. For the single scan analysis, the selection of which scan 

(north or south) to use was done through random selection on a plant-by-plant basis. For each of 

the three analyses, the point count of each plant’s entire pointcloud was regressed against the 

total plant dry weight. In addition, a bootstrap analysis was also conducted.  

Our group also tested the relationship between the LIDAR data and the leaf-only dry 

weight. This was done for the registered and subsampled as well as the single scan subset 
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LIDAR datasets. For each of these analyses, the point count of each plant’s entire pointcloud was 

regressed against the total plants leaf dry weight. It should be noted that a few (< 5 %) of the 

points in each pointcloud were those which hit a stalk or a stem. This value is a liberal estimation 

of the ratio of stalk & stem to leaf points across the study and is meant to establish the limited 

effect the stalk & stem points have of the total point count of a given plant. These stalk & stem 

points were not removed for this analysis as their removal could only be conducted manually, 

which could potentially cause bias. A bootstrap analysis was conducted for each. A by-genotype 

analysis using the leaf dry weight was conducted for both the registered and subsampled and the 

single scan subsampled datasets. This was done by subsetting the dataset by genotype, and then 

running the same analysis as mentioned above. 

The average ratio of leaf to stalk and stem weight for each genotype was determined. 

This was done by taking the leaf weight for each plant and dividing it by the stalk and stem 

weight. These ratio values for each plant were then averaged across the genotype. In addition, a 

shape analysis was conducted to assess the variation in the squareness of the horizontal growth in 

the X and Y direction for Genotypes 1 and 3. This analysis was done by using the dimensions of 

the bounding box for each plant in CC. These two dimensions were captured for each plant in the 

two genotypes and were then turned into a ratio by dividing the two dimensions. The closer the 

value was to 1.00, the squarer the plant’s horizontal growth. A test of equal variance was 

conducted in R, which found the variances were not equal. A t-test using unequal variances was 

conducted in R to test if the squareness ratios derived from Genotypes 1 and 3 were equal. 
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Results 

Binned Height 

We correlated the binned aboveground biomass data to the binned LIDAR data. Both the 

total plant dry weight and the leaf-only dry weights were tested. Using the total plant dry weight, 

we achieved an R2 of 0.01 with a P-value of 0.02 (data not shown). A slight improvement was 

seen using only the leaf dry weights, where we found an R2 of 0.19 at a P-value of 6.62e-9 

(Figure 9). The bootstrap analysis suggested an R2 of 0.19, with a bias of 4.03e-3 and a STDEV 

of 0.06. The 95 % R2 confidence intervals for the bootstrap analysis were 0.08 to 0.31. 

 

 

     

Figure 9. Binned (20 cm) registered and subsampled pointcloud data regressed against the leaf 

dry weight for all genotypes. Regression (left), bootstrap (right) (n = 349). 
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All Genotypes Combined 

For the registered pointclouds, the total LIDAR point count for each plant was regressed 

against the entire plant dry weight. The linear regression resulted in an R2 value of 0.45 and a P-

value of 1.73e-08 (data not shown). The bootstrapping resulted in a mean R2 value of 0.46, a bias 

of 0.02 and standard error of 0.13. The 95% confidence ranged from 0.21 to 0.7. 

To improve the correlation, we took the additional step to subsample each registered 

pointcloud in an attempt to standardize its spatial density. The subsampling improved the 

correlation, with an R2 value of 0.73 and a P2 of 1.26e-16 (Figure 10). The bootstrap analysis 

resulted in a mean R2 of 0.74, a bias of 5.79e-4 and a standard error of 0.07 with a 95% 

confidence between 0.55 and 0.84. 

A major limitation to the use of TLS data, and LIDAR data in general, is the time 

consuming process of registration. We tested the potential of the point count from a single scan, 

which was subsampled, to correlate to the entire plant dry weight. The correlation was similar to 

that obtained via the registered and subsampled clouds. The R2 value of the regression was 0.73 

with a P-value of 2.2e-16 (Figure 11). The bootstrap analysis had a mean R2 of 0.74, a bias of -

8.23e-4 and a STDEV of 0.07. The 95% confidence interval was 0.57 to 0.84. 
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Figure 10. Registered and subsampled pointcloud data regressed against the entire plant dry 

weight for all genotypes. Regression (left), bootstrap (right) (n = 54). 

 

 

     

Figure 11. Single scan subsampled pointcloud data regressed against the entire plant dry weight 

for all genotypes. Regression (left), bootstrap (right) (n = 54). 
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By Genotype 

The study included 3 different genotypes of cassava, which contrasted in their 

aboveground structure. We tested the ability of the TLS technology to predict plant biomass 

between the various structural types of cassava. When we assessed the registered and 

subsampled data on a genotype basis, we found variation in the predictive power of the LIDAR 

technology (Figure 12). The reader should note that the bootstrap density scale was adjusted to 

allow full representation of the trend line. Genotype 1 had an R2 of 0.64 and a P-value of 4.32e-5. 

Genotype 2 performed well with an R2 of 0.95 with a P-value of 1.12e-12. Genotype 3 fell in the 

middle with a R2 of 0.71 and a P-value of 6.45e-6. The bootstrap results suggest a large amount 

of variation in the predictive power for both genotypes 1 and 3 (Table 2). 

 

 

     

Figure 12. Registered and subsampled pointcloud data regressed against the entire plant dry 

weight, by genotype. Regression (left), bootstrap (right) (n = 18).      
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Figure 12. Continued. 
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Table 2. Registered and subsampled pointcloud data regressed against the entire plant dry 

weight, by genotype. Bootstrap output (n = 18). 

 

 

 

 

The same by-genotype analysis was conducted for the single scan with subsampling 

dataset. Genotypes 1 and 2 performed similar to the registered and subsampled dataset with 

specifics in Table 3 in the discussion. However, for Genotype 3, the outcome was not as good. 

For the 3rd genotype the use of a single scan with subsampling resulted in an R2 of 0.52 with a P-

value of 4.38e-4 (Figure 13). The bootstrap analysis told a similar story, with a notable increase 

in the range of the 95% confidence interval for Genotype 3 (0.15 - 0.79). 

 

 

 

Genotype Mean R2 Bias STDEV 95% Confidence Interval 

1 0.66 4.84e-3 0.1 0.36 - 0.81 

2 0.96 1.37e-3 0.01 0.92 – 0.98 

3 0.73 -7.65e-3 0.12 0.4 – 0.88 
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Figure 13. Single scan subsampled pointcloud data regressed against the entire plant dry weight, 

genotype 3. Regression (left), bootstrap (right) (n = 18). 

 

 

Leaf Dry Weight 

Our group questioned if variations in the stem weights were causing the change in 

predictive power of the technology between genotypes. In order to test this, we regressed against 

only the leaf dry weights for both the registered and subsampled and the single scan subsampled 

datasets.  

The first analysis looked at the effect across all genotypes. The registered and 

subsampled dataset resulted in the best R2 value of 0.8 with a P-value of 2e-16 (Figure 14). The 

bootstrap results suggested a 95% confidence interval for the R2 between 0.63 and 0.88, which 

again were the best across the study. The single scan subsampled dataset did not perform quite as 

well with a R2 of 0.78 (Table 3).  
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Figure 14. Registered and subsampled pointcloud data regressed against the leaf dry weight for 

all genotypes. Regression (left), bootstrap (right) (n = 54). 

 

 

Using the leaf dry weight on a by-genotype basis for the registered and subsampled 

dataset, resulted in a similar response for Genotypes 1 and 2, as with using the entire plant dry 

weight (Table 3). However, Genotype 3 had an improved R2 of 0.83 with a P-value of 1.13e-7 

(Figure 15).  

We analyzed the single scan subsampled dataset against the leaf dry weights on a by-

genotype basis. Interestingly, we found a similar pattern as with the same dataset regressed 

against the entire plant dry weight. Genotypes 1 & 2 performed about the same (Table 3), while 

Genotype 3 again performed poorly, albeit with a slight improvement over the entire plant dry 

weight analysis, with a R2 of 0.64 and a P-value of 4.31e-5 (Figure 16).   
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Figure 15. Registered and subsampled pointcloud data regressed against the leaf dry weight, 

genotype 3. Regression (left), bootstrap (right) (n = 18). 

 

 

     

Figure 16. Single scan subsampled pointcloud data regressed against the leaf dry weight, 

genotype 3. Regression (left), bootstrap (right) (n = 18). 
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Plant Shape 

We compared the ratio of the leaf to stem weights for all three genotypes and found a 

similar ratio, suggesting variations in the stalk and stem weights may not be a factor in the 

variation in response between the single scan subsampled methodology and the three genotypes 

(data not shown). However, when we compared the dimensions of the bounding boxes in CC for 

each of the plants in Genotype 1 and 3, we found a significant difference (T = -1.77, P-value 

0.09) in the ratio of the X to Y axis length (Figure 17). This suggests there is a statistical 

difference in the shape of the two genotypes. 

 

 

 

Figure 17. Ratio of the X to Y dimension length by plant for genotypes 1 & 3 (n = 18 per 

Genotype). 
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Discussion and Conclusions 

The height binned biomass analysis did not work well (R2 0.01). Using the leaf weight 

did improve the correlation, though an R2 of 0.19 is not sufficient to suggest LIDAR as a 

phenotyping tool for binned height biomass determination. However, several factors could be the 

cause, and might be addressed in the future. First, the bins may not have overlapped well in 

respect to the start and end position in the LIDAR data versus the field data. Second, errors 

related to the placement of the bin start and end locations may have caused noise in the field 

data. One solution might be to mark the bins on the plant prior to scanning. This would allow 

more precise overlap to occur between the LIDAR and field data, which might improve the 

correlation. In addition, this would overcome some of the noise in the field data caused by the 

imprecise bin locations, further improving the result. 

Depending on the processing workflow chosen for the LIDAR data, the strength of the 

correlation to the entire plant biomass changed. Two key differences existed between the 

processing workflows: 1) The use of a single scan per plant versus both scans registered together, 

and 2) and if registered scans were used, whether or not the pointcloud was further subsampled. 

It should be noted that all single scan analyses included the further subsampling step. The use of 

the registered only processing methodology resulted in marginal predictability of the entire plant 

biomass. However, when the same registered dataset was subsampled to produce a uniform point 

density, the correlation improved (R2 0.45 to 0.73). Skipping the time consuming and labor 

intensive step of registration, yet still applying the subsampling, resulted in the same R2 of 0.73. 

This result alone suggests there is no need to capture two scans of each cassava plant in order to 

correlate to the entire plant’s biomass, and the registration step can be skipped. This is a major 

finding, as much of the processing time is spent in the manual registration of scans. 
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The three genotypes used varied in their aboveground structure. Depending on the 

processing workflow used (registered and subsampled vs. single scan subsampled) we found the 

strength of the correlation to the entire plant weight changed, both between genotypes and 

within. For Genotypes 1 and 2, the use of the single scan subsampled methodology is the best 

option. However, for Genotype 3 the use of the registered and subsampled method achieved 

superior results over the single scan subsampled method. 

The variation in the response of Genotype 3 between the two analysis methods mentioned 

previously sparked a comparison between the field derived leaf weight and the LIDAR data. 

Initial speculation was that structural differences between the genotypes might cause variation in 

the amount of stalk and stem weight. The stalks, and especially the stems, are hard to capture in 

the LIDAR data as these parts of the plant are often occluded from view by the leaves. By 

removing the weight of the stalks and stems, we thought we might improve the overall 

correlation, as well as improve the response of Genotype 3 to the single scan subsampled 

analysis method. For Genotypes 1 and 3, using the leaf weight improved the correlation, as 

compared to regressing against the entire plant weight when the same processing methodology 

was considered (Table 3). For Genotype 2, the results were good irrespective of the method used, 

as can be seen in the minimal variation in the statistics between the entire plant and leaf analysis, 

as well as between the processing methods. However, using the leaf weight with the single scan 

subsampled method resulted in an improved correlation for Genotype 1, but a lowered one for 

Genotype 3. 
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Table 3. Regression and bootstrap results by analysis method using both the dry plant weight and leaf weight for all genotypes (n = 

54) and by genotype (n = 18). R = registered; R & S = registered & subsampled; SS & S = single scan subsampled. Grey color denotes 

R2 below 0.7. 

 

Analysis Method 

Comparing All Genotypes 

Plant 
Weight 

Leaf 
Weight 

Regression Bootstrap 

R2 P-value 95% CI 

R X  0.45 1.73E-08 0.21 - 0.7 

R & S X  0.73 1.26E-16 0.55 - 0.84 

SS & S X  0.73 2.20E-16 0.57 - 0.84 

R & S  X 0.8 2.00E-16 0.63 - 0.88 

SS & S  X 0.78 2.00E-16 0.64 - 0.86 

    

 

Analysis 

Method 

Comparing Genotype 1 Genotype 2 Genotype 3 

Plant 

Weight 

Leaf 

Weight 

Regression Bootstrap Regression Bootstrap Regression Bootstrap 

    R2 P-value    95% CI      R2 P-value      95% CI      R2 P-value   95% CI 

R & S X  0.64 4.32E-05 0.36 - 0.81 0.95 1.12E-12 0.92 - 0.98 0.71 6.45E-06 0.4 - 0.88 

SS & S X  0.73 3.55E-06 0.45 - 0.88 0.96 9.29E-13 0.92 - 0.98 0.52 4.38E-04 0.15 - 0.79 

R & S  X 0.7 8.66E-06 0.33 - 0.88 0.95 3.35E-12 0.91 - 0.98 0.83 1.13E-07 0.58 - 0.94 

SS & S  X 0.76 1.64E-06 0.45 - 0.91 0.94 3.82E-11 0.89 - 0.97 0.64 4.31E-05 0.3 - 0.86 
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It is unclear why using the single scan subsampled analysis workflow resulted in a 

similar, or even superior, correlation in all cases except that of Genotype 3. To try and 

understand this, we looked at the differences in the horizontal growth shape between Genotypes 

1 and 3. We found that Genotype 1 had a more squared growth pattern with less variation 

between the plants, while Genotype 3 had a more rectangular growth pattern with more variation 

between plants. An example of this variation can be seen in Figure 18, where an example plant 

from Genotype 1 has a nearly square bounding box, while the example plant from Genotype 3 

has a more rectangular box. The combination of the more rectangular growth pattern along with 

the greater variation in shape within Genotype 3 may be one cause of the poor performance of 

the single scan subsampled analysis method for the genotype. 

 

 

 

Figure 18. Top down view exported from CloudCompare showing the variation in the shape 

between Genotype 1 and Genotype 3. Bounding box in yellow. 
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In our future work, binned field data will be collected using a marker system to allow the 

alignment of the field bins to those generated in the LIDAR data. Experiments using other crops 

and cassava genotypes, as well as those using other sensors where a pointcloud is formed, will 

re-test the use of the single scan subsampled processing workflow and provide a better 

assessment of the full potential of bypassing the registration step for biomass estimation and 

phenotyping in general. In addition, there is a significant need to determine what set of factors 

led to the poor performance of the single scan subsampled processing methodology for Genotype 

3. In conclusion, our findings, while positive, suggest there is not a single LIDAR processing 

workflow which can be applied to all cassava genotypes for the prediction of aboveground 

biomass. Therefore, we recommend preliminary testing before committing to a processing 

methodology. 
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CHAPTER V 

A LOW COST 3D PHENOTYPING PLATFORM USING KINECT V2 SENSORS 

 

Introduction 

There has been substantial effort to develop high-throughput phenotyping tools within the 

fields of plant breeding and agriculture (Fiorani & Schurr 2013). Many of these traditional 

phenotyping tools utilize 2D images captured from satellites or planes, while more recently the 

benefits of 3D analysis techniques have become apparent. Three-dimensional analysis tools 

allow the characterization of factors such as plant architecture to play a major role in the remote 

phenotyping process. However, high precision 3D phenotyping tools, such as airborne and 

terrestrial laser scanners and flash LIDAR, are often not practical as their purchase costs are 

often in excess of a $100,000 USD. Despite their prohibitive cost, a large body of research exists 

on the use of 3D imaging tools within the biological sciences (Popescu 2007; Eitel et al., 2014; 

Ma et al., 2016). Phenotyping with 3D data has proven successful, with many studies showing 

significant correlation to biomass (Ehlert et al., 2010), plant height (Tilly et al., 2014), and other 

phenotypic traits (Hosoi et al., 2011). However, two broad issues still limit the widespread use of 

many 3D plant phenotyping platforms: 1) The complexity of the data analysis process and 2) the 

substantial platform acquisition costs. Here we make an attempt to eliminate the cost barrier 

through the utilization of consumer-grade depth cameras, off the shelf parts, and custom software 

which will be provided open-source. 

While commercial laser scanners have seen quality improvements with reduced costs, 

they are still far out of reach for all but the largest organizations. However, demand for 3D data 

in the development of autonomous vehicles and interactive gaming (Naranjo-Hernández et al., 
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2017) has led to the production of low-cost sensors known broadly as “depth sensors.” These 

sensors generally utilize one of three principles to create this depth data: stereo vision, structured 

light, or time-of-flight (Islam et al., 2017). But with their low cost comes limitations, such as a 

reduction in accuracy and precision as well as a lack of stability across operating environments. 

In particular, depth sensors which utilize active sensors are often affected by strong light, and 

thus are not well suited for outdoor daytime use. While this is generally not an issue for stereo 

vision sensors, they often perform poorly when used in complex environments, such as 

agriculture fields, which lack the pronounced features required for depth estimation (Rosell-polo 

et al., 2017). Despite these limitations, depth sensors have been explored as tools to produce 3D 

data within agriculture and related fields. In particular, the two RGB-D sensors (an RGB camera 

and depth sensor combined) produced by Microsoft for use with their gaming consoles have been 

used extensively by the research community. The Kinect Version 1 (released 2010) and Version 

2 (released 2014) both proved to be unpopular within the video game industry (Wilson 2017), 

but nevertheless have found life as a low cost, lightweight alternative to terrestrial laser scanners 

in the fields of computer vision (Han et al., 2013), medicine (Galna et al., 2014) and ecology 

(Azzari et al., 2013). 

The Kinect V2 sensor was released in July 2014 and included several improvements over 

its predecessor. Arguably, the most significant change was the use of an infrared (IR) time-of-

flight sensor over the structured light sensor found in V1. This change resulted in a reduction of 

noise, improved depth accuracy, and a higher framerate (Zennaro et al., 2015). Additionally, the 

RGB camera used in the Kinect V2 is of a higher quality than that found in the older version. 

However, as a low cost sensor the Kinect V2 has some limitations related to depth image 

accuracy, noise from ambient light (Lachat et al., 2015b),  and sensor-to-sensor interference 
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(Kunz & Brogli 2016). Extensive research has been conducted on the performance and 

limitations of both versions of the Kinect sensor (Otte et al., 2016). The low cost lens used on the 

V2 sensor has inherent flaws, which cause errors in the depth measurements that worsen radially 

from the center of the depth image. These errors can be several centimeters at the extreme 

corners of the depth image when captured at distances over 3 m (maximum range is 4.5 m). 

However, a distance error no greater than ± 5 mm throughout the effective range of the sensor 

can be expected as long as the data in the far corners of the image are not considered. While not 

as susceptible as the Kinect V1, direct sunlight, especially when cast on the sensor itself, will 

cause distortions ranging from noise to total loss of data. However, this can be largely overcome 

under field conditions by collecting data during periods of low light or at night. Since every 

Kinect V2 sensor uses the same IR light source, interference between multiple sensors is 

possible. This could be avoided if the modulation frequency could be adjusted, but this is not an 

option available to the user. Therefore, the field of view of multiple sensors should be such as to 

minimize interference during the random periods when the IR diodes are in sink (Kowalski et al., 

2015). Another option to overcome this is to trigger the sensors manually in sequence; however, 

this solution might not be valid if the object of interest is in motion. 

Methods 

In an attempt to combat the high cost of entry into the fields of 3D phenotyping and crop 

analysis, we combined low cost and readily available parts to produce a field-ready 3D imaging 

tool (Figure 19). Our current version of the platform is named “Scorpion” based on the shape of 

the frame, which holds the depth sensors. Our platform consists of: Microsoft Kinect V2 sensors, 

LattePandaTM brand single board computers (SBC), a router, smartphone, and a battery with a 

power inverter. The only parts of the platform which are not consumer products are 1) the 
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software, which activates the sensors and stores the data, 2) the frames, which grasp each sensor 

under compression, and 3) the structure, which holds all of the sensors in place. A detailed parts 

list with associated costs can be seen in Table 4. 

 

 

 

 Figure 19. A low cost 3D imaging platform named Scorpion. 
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Table 4. Detailed Scorpion parts list with itemized costs. *Item count is in parenthesis if greater 

than 1. **Cost is an estimate of manufacture by a custom fabrication shop. 

 

Part Cost (USD) 

Microsoft Kinect V2 (3)* $450 

Microsoft Kinect V2 Windows PC wiring adapter (3) $150 

LattePanda 4g/64g single board computer (3) $450 

Wagan Elite 400 w Pure Sine Wave inverter $140 

Smart Battery 12 V 50 Ah Lithium Ion battery $700 

Surge protector $20 

USB power brick $20 

Basic home router $30 

Custom Aluminum case for LattePanda boards* $100 

68 L plastic storage tote $20 

50mm USB fans (5) $30 

Custom Aluminum frame for Kinects (3)* ** $200 

Square tube structure to hold sensors**  $250 

Total $2,560 

 

 

The platform uses three Microsoft Kinect V2 sensors, although future platforms could be 

built to hold any number of sensors. The sensors were purchased for $150 USD and the 

proprietary wiring required to connect the sensor to a computer was an additional $50 USD. The 

manufacturer’s specifications for the sensor are listed in Table 5. 
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Table 5. Listed specifications of the Microsoft Kinect V2. 

 

Feature Value 

Color Camera 1920 x 1080 @ 30fps 

Depth Camera 512 x 424 @ 16 bits 

Min Depth Distance 50 cm 

Max Depth Distance 450 cm 

Horizontal FOV 70 degrees 

Vertical FOV 60 degrees 

USB 3.0 

Supported Operating System Win 8 or newer 

 

 

Each Kinect sensor utilizes nearly the entire bandwidth of a USB 3.0 bus; therefore, a 

dedicated bus is required for each sensor. Additionally, the Kinect SDK 2.0 used to operate the 

sensor requires Windows 8.0 or higher. Our solution to meet these conditions was to use a 

Windows-enabled SBC with USB 3.0 capability. We chose the 4g/64g model of the Windows 10 

enabled SBC from the manufacturer LattePanda. For details see Figure 20 & Table 6. 
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Figure 20. Features of the LattePanda 4g/64g single board computer. Image curtesy of 

lattepanda.com, 2019. 
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Table 6. Specifications of the LattePanda 4g/64g model. 

 

Feature Value 

Processor Intel Cherry Trail Z8300 Quad Core 1.8GHz 

Operating System Windows 10 

Ram 4 GB DDR3L 

Storage 64 GB 

GPU Intel HD Graphics, 12 EUs @ 200-500 Mhz, single-

channel memory 

USB ports 1-USB 3.0 & 2-USB 2.0 

Wireless Communication WiFi & Bluetooth 4.0 

Arduino ATmega32u4 

Video out HDMI & MIPI-DSI 

Power 5V/2A 

Dimensions 88 x 70 mm 

 

 

For our setup, one SBC was required for each Kinect V2 sensor (Figure 21). This is 

because each SBC only has one USB 3.0 bus. Each SBC was set to boot upon receiving power. 

An aluminum case was constructed to hold the three SBCs, which included two 50 cm USB-

powered fans with filters to minimize dust and cool the computers. Each Kinect sensor and SBC 

was plugged into a 6-slot surge protector for power. The surge protector was subsequently 

plugged into a 400 W pure sine wave inverter by Wagan Tech ™. The inverter received its 

power from a 12 V 50 Ah Lithium Ion battery from Smart Battery ®.  While expensive, this 
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battery was lightweight and allows for a total discharge, unlike lead acid or AGM types. An 

additional USB power strip was plugged into the inverter’s USB power port to power all the 

fans. The last outlet plug on the inverter was used to power a wireless router, which allowed 

communication between the SBCs and the smartphone.  All of these parts were placed inside of a 

roughly 68 L plastic storage tote for hand transport through the field. In order to keep the parts 

cool, three holes were drilled and fitted with additional 50 mm fans and filters, which circulated 

air through the box. A final 2.54cm hole was drilled to allow the cords of each Kinect sensor to 

pass though.  

 

 

 

Figure 21. Kinect platform hardware. 

 

 

Three Kinect sensors were used in this version of the platform. While more sensors could 

be used, the weight of the larger structure and additional sensors would limit its portability. The 

structure was made out of 3 cm steel square tubing with a 1.98 mm wall thickness. The structure 
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consisted of 2 parts: a base and top. The base is an H design so that the structure is stable on 

uneven terrain. The top portion was designed to position the sensors at slightly different 

viewpoints while minimizing the overall footprint and maintaining balance. The base was 

attached to the top portion via a single bolt verses a welded joint to minimize any tension in the 

structure and allow height adjustment. Each Kinect V2 sensor was attached to the structure by a 

custom-made frame. The frame was made out of aluminum to reduce weight and used a 

combination of compression and friction to hold the sensor. Rubber strips were glued on the top 

inside of the frame and bolts with aluminum backed 2.54 cm diameter rubber disks were used to 

sandwich the sensor in place. While this system is not the most robust, it fared well and required 

no modification to the Kinect sensor. The frame was bolted onto the structure and tightened to 

hold the sensor at the desired angle. Blue Loctite (Henkel AG & Company, KGaA), a thread 

locking chemical, was used to insure the connections did not come loose. 

To operate the platform a custom-made open source application was created. The 

Scorpion app is a web application that utilizes the communication layer of the Microsoft 

RoomAlive toolkit (Jones et al., 2014) to allow the Kinect sensors, LattePanda boards and the 

user to carry out acquisition of 3D data (unpublished). The application was built in C# using the 

Kinect SDK 2.0, while the graphical user interface (GUI) was developed entirely in ReactJS. 

With this app the user is able to remotely control the entire platform by utilizing interface 

features to turn on the system, capture an image (create the pointcloud), visualize and store the 

data and restart or power off the system (Figure 22). The Scorpion app allows an unlimited 

number of sensors to be networked together, provided that they, along with the user access 

device (cell phone, tablet, etc.), are connected to the same Wi-Fi SSID. 
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Figure 22. Scorpion app communication. 
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The user is able to access the Scorpion app from any device that is connected to the same Wi-

Fi network as the SBC’s. Each SBC will run Windows 10, along with these three applications: 

1) Scorpion Web Application. 

2) Web API Gateway: An API REST built in C# which processes the requests that the user 

makes from the interface. The API is responsible for sending the order to the corresponding 

sensor via a socket. 

3) KinectServer.exe: This application was built using WCF (Windows Communication 

Foundation). The 2.0 version of the Kinect SDK works as an Interface (endpoint) between 

each sensor connected to the scorpion and the Web API gateway. 

Figure 23 outlines the components of the scorpion web controller application separated into the 

presentation and business tiers. 
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Figure 23. Accessing the Scorpion web controller app. 

 

 

Field Operations 

Prior to any data collection campaign, the desired camera poses and distance from the 

object to the structure should be determined based on the sample. Consideration should be given 

to the fact that the further from the object the structure is placed, the sparser the dataset will be 

for any one area of interest. Additionally, some overlap of the field of view of each sensor is 

needed to allow manual target-based registration. Once each sensor position is set, the pose of 
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each needs to be determined so that the three depth images can be registered to form a single 

pointcloud. This can be done by capturing a set of depth images of a static scene which has 

recognizable items for point-to-point registration. When performing the registration, select the 

camera which captures the middle of the scene as the reference and register the other two 

cameras to it. The two transformation matrices, one for each camera that were transposed, should 

be copied. Each matrix is then applied to each image captured from the same camera in order to 

rapidly register the rest of the depth images. If multiple data capture positions will be used 

around a single object, then static targets will need to be placed or occur naturally in the data to 

allow registration.  

Due to the issue of sensor-to-sensor interference, each Kinect will be triggered in 

sequence. Therefore, any motion of the object(s) in the scene will be captured, possibly resulting 

in poor performance. If this platform is used in an agriculture field setting, we recommend 

collection of data when there is as little wind as possible. To combat the issue of light sensitivity, 

we recommend that data be captured at night. This will also help with the problem of motion, as 

generally the early hours of the morning are the most calm.  

Two people are required to operate the Scorpion: One person to position the structure and 

another to move the tote. Any smartphone or tablet on the local Wi-Fi network can be used to 

access the web application in order to trigger the data collection sequence. Along with data 

collection, the web application can be used to view the files, delete existing files, and assign the 

naming convention. The 50 Ah battery under normal field conditions will last in excess of 4 

hours. With Windows 10 home edition and the Scorpion software installed, approximately 20 

GB of space is available for data storage on each SBC. This should allow at least 2000 samples 

to be captured, though an external drive could be added to the system to expand capacity. The 
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time required to align the structure with the object of interest and capture data using the three 

sensors was approximately 15 seconds. Once the campaign is complete, an external drive can be 

connected to the main LattePanda or a local area connection can be made to extract the data. 

Preliminary Campaign 

Throughout the development of the Scorpion, tests were conducted to help insure a viable 

platform would emerge. We conducted a laboratory comparison of the data produced from a 

Kinect V2 and that from a Faro Focus 120 (unpublished). We also conducted tests to better 

understand the effect that varying sunlight intensity had on the Kinect data quality (unpublished). 

However, without traditional field tests, uncertainty would exist as to the performance of the 

platform for 3D plant phenotyping. This structure of the Scorpion was designed to sample 

cassava (Manihot esculenta) at the International Center for Tropical Agriculture (CIAT) in Cali, 

Colombia, though we had no access to the cassava for our preliminary tests. Ragweed (Ambrosia 

psilostachya) is common in the area around Texas A&M University and has a similar leaf 

architecture to cassava. Therefore, we decided to use ragweed as a proxy to test the Scorpion. 

Four bunches of ragweed with similar biomass were sampled. The bunches were marked 

out in the daylight to insure general uniformity and ease of access. Prior to going to the field, 

several depth images were captured indoors to provide the transformation matrix. Each bunch 

was sampled one time from a distance of approximately 1.5 m from the southern side. The next 

morning, each bunch was harvested and then dried in a dryer for approximately one week until 

each bag’s weight held constant for a 24-hour period. 

The data collected with the Scorpion was copied onto a Dell workstation laptop for 

analysis which was conducted with the open source software CloudCompare. The first step was 

to register the indoor depth images to determine the transformation matrices. The camera 
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positioned in the middle of the scene was used as the reference and the other two cameras were 

registered to it. This created two transformation matrices, one for each of the two remaining 

cameras. These same matrices were then applied to each depth image derived from the assigned 

camera. For specific instruction on how to register scans and capture the transformation matrix, 

see the CC help files.  

Once the depth images from each of the three sensors were registered into a single 

pointcloud, further processing was conducted in CloudCompare. All the points around each 

bunch were manually clipped to leave only the data which represented the ragweed. Next, the 

Statistical Outlier Filter (SOR) tool was used to remove the majority of the noise from each of 

the pointclouds. The settings used for the SOR were chosen based on a visual assessment of the 

quality of the resultant pointcloud. The last step taken was to thin each dataset to help normalize 

the point density. This was done with the subsampling tool, where a space-based thinning 

approach was used. Finally, the point count of each pointcloud was recorded and a regression 

analysis was conducted against the ragweed dry weights, where an R2 of 0.89 with a P-value of 

0.04 was found (Figure 24). 
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Figure 24. Regression analysis of point count versus dry ragweed biomass. 

 

 

Discussion and Conclusions 

While the results of the preliminary analysis were welcomed, caution must be used as the 

sample size (n = 4) was very low. However, the low sample size was thought sufficient for this 

preliminary analysis, as the main goal was to test platform functionality related to field 

performance and software stability. In this regard the platform performed well. The structure, 

while heavy, was stable even on top of dense grass. The software is generally stable, though the 

software has a function to restart the Kinect server script, if any malfunctions occur. 

The next step is to capture data on cassava with both the Scorpion platform and a high-

end terrestrial laser scanner, the Trimble TX5. A comparison between the quality of the 

pointclouds captured, along with the regressions produced against the dried biomass, with these 

two 3D imaging platforms will be made. Our long-term objective is to automate the collection of 

data with the Kinect sensors by mounting them on an autonomous vehicle, which can sample 
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during ideal periods of low wind and light. This vehicle will use RTK-corrected GPS locations to 

navigate through the field and capture data in the correct positions. It will also gather wind and 

light data, which will be used to trigger data capture only under ideal conditions. 



 

80 

 

CHAPTER VI 

CONCLUSIONS 

 

There is a major phenotyping bottleneck limiting the development of the elite cultivars 

required to provide food security in the coming decades. The work here is a small, but significant 

step towards overcoming this bottleneck. Cassava is a global crop utilized mainly by subsistence 

farmers for its starch-rich roots, ample aboveground forage and ability to thrive on marginal 

soils. Considering the global importance of cassava, it has seen only marginal breed 

improvements and little investment in high-throughput phenotyping techniques.  

We took a first step towards this investment by testing the terrestrial laser scanner as a 

tool for rapid estimation of cassava height under field conditions. We studied 3 different 

genotypes, which varied in their aboveground structure, and were able to predict their combined 

height with a high degree of accuracy (R2 = 0.81). However, manual corrections of the individual 

plant segmentations produced by the tree classification algorithm used were required. Overlap in 

the canopy, especially for genotype 3, caused error in the classification, leading to poor height 

estimation. This was made clear when the genotypes were assessed independently, as Genotypes 

1 and 2 had improved correlations from the combined analysis with a R2 of 0.88 and 0.9, 

respectively. Placement of the scanner in an elevated position and increasing the number of scan 

positions, especially when assessing genotypes with overlapping canopies, might help to increase 

the predictive power of the technology. In addition, other segmentation algorithms might work 

better with overlapping canopies and should be investigated. 

Aboveground biomass is another common phenotypic trait used for development of 

improved cultivars and is an important trait in the breeding of cassava. Since the terrestrial laser 
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scanner proved well suited for the prediction of cassava height, we took the next step of using the 

technology to estimate biomass. We again used 3 genotypes, which contrasted in their 

aboveground structure, to test the ability of the technology to predict the aboveground total plant 

biomass as well as the leaf biomass in cassava. We found that the scanning methodology and the 

processing workflow both had a major impact on the predictive power. Our study concluded that 

the use of a single scan per plant was generally adequate, thus saving time both in the field and 

through the removal of the registration step during the analysis. However, depending on the 

genotype being assessed and the level of accuracy required, our results suggest the use of 2 scans 

can add marginal improvement to the predictive power. In addition, we found that subsampling 

of the pointcloud greatly improved the correlations across all genotypes, which is possibly an 

artifact of the smoothing of the point density from the front to the back of the scan. We suspect 

the varying strength of the correlations between genotypes is related to the overall plant structure 

and its effect on the laser lights’ ability to penetrate the canopy and produce a representative 

model. Further work needs to be completed to determine the cause of this variable response. 

The cost of data acquisition using the terrestrial laser scanners mentioned in this study 

were high. Much of these costs came from the scanner rental, which were several thousand 

dollars (USD) per week. The cost of most LIDAR units, especially when mounted to an airborne 

platform, is a significant barrier to the advancement of the technology for use in high-throughput 

phenotyping. Nonetheless, other technologies can be used to capture 3D data, for a much more 

attractive purchase price. However, none of these alternative technologies are an exact 

replacement for LIDAR, and thus have some significant limitations, generally related to limited 

range and environmental pitfalls. As an attempt to overcome the cost barrier and increase the 

interest in 3D phenotyping, we developed a low-cost and field-worthy 3D high-throughput 
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phenotyping platform. We used off the shelf parts along with custom-made software to produce a 

phenotyping platform designed around the Microsoft Kinect V2 sensor. We demonstrated that 

for around $2,500 (USD), and working around a few limitations related to direct sunlight and 

sensor-to-sensor interference, a field-worthy platform can be built. Our future work will compare 

the accuracy of a traditional terrestrial laser scanner to that of our Kinect-based platform, both in 

a laboratory and under field conditions. 
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