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ABSTRACT

Autonomous navigation capabilities for spacecraft are useful for decreasing op-

erational costs, increasing the scope of missions, and increasing the robustness of

spacecraft. This dissertation aims to present and fully explain multiple autonomous

navigation methods that may be used by spacecraft orbiting Earth or on interplan-

etary (and potentially interstellar) missions. A brief history of each navigational

technique will be given, with a summary of state-of-the-art developments, as well as

results from implementing the navigational technique in hardware or software sim-

ulations. The results of a simulated Orion mission traversing cis-lunar space while

implementing optical navigation techniques will be shown along with a detailed ex-

planation of the simulation architecture. An analysis of how existing navigational

techniques can be improved or superseded by pulsar-based navigation methods will

also be presented. Finally, conclusions and recommendations for future work will be

made.
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I dedicate this dissertation to all autonomous navigators

who wander in search of truth.

Keep searching.
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NOMENCLATURE

To facilitate understanding the development behind X-ray Pulsar-Based Nav-

igation, in particular the ambiguity resolution algorithm presented in Chapter VI,

the following variables and terms are introduced:

Nomenclature

c Speed of light

p0 Initial estimated observer position

τ0 Initial estimated observer time

δτ Clock drift / time uncertainty

δr Scalar position uncertainty

σt Timing noise associated with TOA

N Total number of observed pulsars

n Pulsar counter, n ∈ [1, N ]

Mn Number of pulse waves in search space associated with Pn

i Pulse wave counter, i ∈ [1,Mn]

Pn Pulsar ID

Tn Pulsar period

φn Pulsar phase

n̂n Pulse direction

Pn,i Pulse wave ID

xvii



Nomenclature Cont.

TOAref,n,i Time of arrival at reference point for pulse wave Pn,i

TOAobs,n,i Time of arrival at observer for pulse wave Pn,i

∆TOAobs,1,b Difference in TOAobs between pulse waves P1,i and Pb,i, for b 6= 1

∆φ1,b Difference in phase between pulsars P1 and Pb, for b 6= 1

tw Working time, tw = TOAobs,1,i

λa,b Minimal lattice distance for pulsars Pa and Pb

λmax Largest minimal lattice distance, λmax = λ1,2

A Overlapping solution area between multiple pulse waves

(P1, P2) Pulsar pair with Largest minimal lattice distance, T1 > T2

Ik Candidate solution set, set of wave IDs that simultaneously overlap

Sk Candidate solution: Sk = (x, y, t)k

Imin Minimal solution interval pair

[T,D] Solution interval

[Tmin, Dmin] Minimal solution interval
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Definitions and Terms

Solution Interval: Gap in time or distance between two possible so-

lutions:

Solution Area: Area created by overlapping pulse waves of finite

width 2cσt

Intersection: Exact intersection between two pulse waves at any

time or three pulse waves at a unique intersection

time

Conjunction: Intersection or close approach between three or

more pulse waves

Overlapping Solution Area: The point or convex polygon created when waves

of finite width 2cσt intersect
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CHAPTER I

INTRODUCTION AND MOTIVATION BEHIND WORK IN

AUTONOMOUS SPACECRAFT NAVIGATION

We begin with brief introduction to the field of study called Navigation and

present justification for the work being done in this field. The reader should get a

sense of why the topic of autonomous spacecraft navigation is important and why

research in this field is valuable.

Introduction to the Field of Study: Navigation

The problem of precise and accurate navigation is a rich field that has been of

interest to explorers, engineers, merchants, and lost travelers for thousands of years.

It has its applications in nearly any industry that involves moving material, payloads,

people, and goods from one place to another. For the purposes of this document, we

are particularly interested in the navigation of spacecraft. First, it pays to understand

what is meant by the term navigation. Here are several dictionary definitions:

• From Merriam-Webster

navigation (noun)

1. : The act or practice of navigating

2. : The science of getting ships, aircraft, or spacecraft from pace to place.

Especially : the method of determining position, course, and distance

traveled

1



• From the Oxford English Dictionary

navigation (noun)

1. : The process or activity of accurately ascertaining one’s position and

planning and following a route.

2. : The passage of ships

3. : Computing : The action of moving around a website, the Internet, etc.

These are fine definitions, but for the sake of clarity, let us refine the definition

and specify what is not meant. In some fields, the term navigation might be more

closely associated with the disciplines of path planning, obstacle avoidance, and map-

ping. However, that is not how the term will be used in this document. Instead, we

take navigation to indicate methods used to better understand one’s physical place

in the universe:

In this document the term navigation will be used to mean localization

and estimation of the pose of a spacecraft at a specific moment in time.

Where pose is the position and attitude, or orientation, of a body with respect to

some reference frame. Thus, navigation implies the time-knowledge of both, orien-

tation and position. Though the focus of this document will be the development

and implementation of position estimation algorithms, position estimation is tightly

linked with attitude estimation, and therefore some discussion will also be dedicated

to the latter. Attitude estimation is a process which is well understood and has been

implemented on spacecraft for decades using devices known as star trackers which

use the fixed stars as orientation markers. The complexity of position estimation has

2



made it a more elusive target, one which cannot be obtained by just looking at the

stars, and one which warrants further exploration and development.

What is Autonomous Navigation?

The term autonomous means more than just automated. Yes, autonomous nav-

igation can imply the use of computers and algorithms to perform navigational es-

timates. More importantly, however, the problem of autonomous navigation deals

with a craft, with crew or without, or machine navigating itself and learning its own

position, sometimes with, and sometimes without, external aids. To successfully

navigate, a craft must be able to estimate its state with respect to some external

reference. More specifically, it must be able to navigate with respect to a reference

frame. For the purposes of this document a reference frame is a set of spatial di-

rections (which can evolve over time) that are generally defined about some origin

(which can also move over time). A craft selects a frame and then uses the directions

provided by that frame to describe its position. The position may be reported with

respect to the origin of that frame or with respect to some other object or reference

point in space. To do this, a spacecraft needs two things: 1) a world it can measure

and observe and 2) instruments that will perform the measurements and observa-

tions. A world rich with information and navigational markers is no good to a craft

which is blind, while conversely even a spacecraft with the most expensive state-of-

the-art suite of instruments is lost if there is nothing in its surrounding environment

for it to sense and observe.
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Motivation Behind Work and The General Concern

That’s a sufficient introduction to the topic of navigation. The next question

is: Why is the topic of autonomous navigation relevant in the context of spacecraft?

There are several factors which inform and drive the development of autonomous

spacecraft navigation. Briefly, these include:

• A concern for astronaut safety

• A need for more robust navigational systems that can tolerate a loss of com-

munications with Earth-based ground stations

• An expansion of the operational envelope for rendezvous and proximity oper-

ations far from Earth

• A reduction in the workload for ground-based satellite operators and systems

which must control spacecraft maneuvers from Earth

• Greater efficiency of spacecraft operations that comes from being able to act

without waiting for input from a ground-station operator

Taken together, these factors would dramatically increase the operational enve-

lope of spacecraft, allow for more efficient operations, increase robustness of on-board

systems, and eventually support a significantly larger presence of humans and their

machines in space. A fully capable suite of autonomous navigation systems would

form part of the foundation that is needed for a far-flung interplanetary human pres-

ence in space and eventually, a space-based economy. So, the long-term incentives

driving the development of autonomous spacecraft navigational systems is strong. A
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subset of these incentives however presents a pressing need for immediate improve-

ment of spacecraft navigational capabilities. Those two incentives are the need for

backup navigation in the case of loss of communications with Earth and the con-

cern for astronaut safety. To understand the significance of these reasons, one must

first understand the current methods employed on existing spacecraft navigational

systems.

Existing Methods in Spacecraft Navigation

Currently, the majority of spacecraft rely heavily on communication with Earth

for navigational purposes. This means that most spacecraft don’t actually know

their own position or velocity in space, both of which are key pieces of information

when doing maneuvers. This information is collected and monitored from Earth via

radar and ground stations and sent to spacecraft as periodic navigational updates.

The spacecraft might be able to propagate this position and velocity information

forward in time for a small duration, but unless there is some way to get an up-

dated navigational fix, the spacecraft will become lost. The exceptions to this rule

are spacecraft which are specifically designed to implement and test autonomous

navigation capabilities and spacecraft which perform relative navigation during ren-

dezvous operations. These spacecraft have means of updating their position and

velocity estimates without relying on communication with Earth. However, even in

these cases, having the additional navigational information sent from Earth can act

as a sanity check and help increase the confidence of executing certain maneuvers. If

a spacecraft does not know its position and velocity correctly, then it may perform
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an orbital maneuver at the wrong time or incorrectly apply a thrust, both of which

could jeopardize the survival of a mission and lead to loss of the spacecraft or at

least degradation in performance and loss of capabilities.

Impact of Loss of Communications with Earth on Spacecraft Navigation

Capabilities

Clearly, communications with Earth play a significant role in spacecraft nav-

igation. Thus, a spacecraft’s loss of communications with Earth, either due to a

technical fault or occultation by another body, can pose a significant risk to the

safety of a mission. In order to mitigate this risk autonomous navigational capa-

bilities can be implemented on-board which allow a spacecraft to either return to

a position where it can reestablish communication with Earth or at the very least

be able to maneuver correctly and thus keep itself alive long enough for engineers

on Earth or crew on board to attempt to fix the problem. If a spacecraft can buy

itself enough time, it may be possible to salvage the mission. Some scenarios where

communication loss might occur include:

• Mechanical fault due to vibrational shock after maneuver, structural reconfig-

uration, deployment of a system, or stage separation

• Damage from debris impact or other mechanical malfunction

• Loss of power

• Software glitch or single event upset (SEU) due to cosmic radiation

• Regularly occurring interruptions in communication as a spacecraft orbiting
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another celestial body is in opposition with respect to the Earth and the celes-

tial body is occulting communication signals.

While it is prudent to invest effort in reducing the chance of some of these

occurrences, one can never guarantee they will never occur, and in fact might be

a part of nominal mission operations, such as orbiters around other planets. For

a system at risk of communications loss autonomous navigational system adds a

degree of fault tolerance which reduces risk to the mission. Even for spacecraft which

routinely experience periodic interruption of communications with Earth, having an

autonomous navigation system on board expands the operational capabilities of the

spacecraft allowing it to perform maneuvers even while in the “shadow” of a celestial

body and direct communication is not possible.

NASA’s Concern with Astronaut Safety

With the presence of crew on board a spacecraft the need for more robust navi-

gational capabilities is even greater than for uncrewed missions. Having autonomous

navigational capabilities frees up load on the crew and provide them more time for

other mission critical work. It can also expand the operational scope of the mission

as the crew can act autonously with no need for feedback from Earth. However,

most importantly, having an autonomous navigation capability on board a crewed

spacecraft will give an additional margin of safety to the crew on-board. Like in

the days of the Apollo program, and specifically Apollo 13, astronauts on NASA’s

newly developed Orion spacecraft will have the ability to manually take angle mea-

surements with devices such as sextants, and this can be used for estimating position
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and direction of travel. However, in the case of communication loss, or an accident

which may incapacitate crew members, there is need for a system which can intervene

and guide the spacecraft safely for as long as possible. This is a major driver for the

development of autonomous navigation and is one of the main motivations that has

spurred the development and testing of the algorithms described in this document.

Overall Scope of Work and Concern

The position estimation algorithms described in this document are meant to

augment the navigational capabilities of spacecraft which are operating either in

deep space or medium to high orbit around an ellipsoidal celestial body. For the

purposes of this document, “deep space” means an operational environment for a

spacecraft where all celestial bodies excluding the primary star of a system appear

as point sources of light, i.e. as bright stars. “Medium” and “high orbit” are used as

relative terms to mean distances between a spacecraft and a primary celestial body

at which the primary appears as an extended body, specifically an ellipsoid, that can

be seen in its entirety within the field of view of an optical camera on board the

spacecraft.

Deep space missions include interplanetary missions from the Earth to Mars

where a spacecraft would be far enough from both the Earth and Mars at a given

moment that each would appear as just a point source of light. In this sort of

operating regime, no information pertaining to the geometry of a celestial body can

be used.

Medium and high orbit space include the space between the Earth and Moon,

8



or cis-lunar space, which includes the geosynchronous belt as well. This operational

regime is relevant to any missions to the Moon and back. However, it is not manda-

tory to only be considering orbital space around Earth. The space around any moon

or planet may be considered.

Limitations of Scope

The work in this document does not consider the navigational problems and

challenges associated with rendezvous between spacecraft, proximity operations, low

orbit navigation where the field of view of a camera is insufficient to capture the

entirety of the primary body, and orbits around irregular bodies which significantly

deviate from an ellipsoidal shape, such as asteroids. While the techniques described

in this document could be used in these scenarios, they are not well suited for these

operational modes, and there are other methods which better suit the needs of space-

craft operating in these conditions.
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Optical Navigation as a Method of Autonomous Navigations

In this section of the introduction the general technique of OpNav will be de-

scribed along with the motivation behind its development. OpNav is an abbreviation

which stands for Optical Navigation. It implies the use of cameras to take either pic-

tures or video, in any spectrum of interest, of markers or bodies which can aid in

navigation, or more precisely, aid in the estimation of a spacecraft’s position, orien-

tation, velocity, and time. The general term for such data collection using cameras

is imaging. An example of such imaging can be seen in Figure I.1 with the captured

image defined in the camera coordinate frame. OpNav is not the only means of

autonomous navigation, however it is the means that was chosen for development in

addressing NASA’s concern for astronaut safety for future crew on board the Orion

spacecraft on return from a mission that takes them to or around the Moon.

Figure I.1: Imaging of ellipsoidal body by spacecraft. Image is defined using camera

coordinate frame.
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Specific Concern and Motivation behind Cis-Lunar Autonomous Navi-

gation for Orion

With the retirement of the Space Shuttle, NASA is looking for new and alterna-

tive means for transporting astronauts to orbit and beyond. An integral part of this

effort has been the development of the Orion Space Capsule. The capsule, developed

as a joint effort between NASA and Lockheed Martin, will be responsible for bringing

crew members up to the ISS and other orbiting platforms of the future and eventu-

ally bringing astronauts to the Moon and Mars. One of the first milestones which

Orion must march past is to repeat what the Apollo program did over fifty years ago

– fly around the Moon and return to Earth safely. Demonstrating this capability is

one of the goals of the Artemis 1 mission (formerly Exploration Mission-1, or EM-1),

currently slated to launch no earlier than November 2021. While the mission will be

uncrewed, it will test a lot of the same systems which will be needed for a crewed

flight and will include a life support system and seats with mannequins strapped in

that will have sensors on them that measure radiation exposure. Orion is planned

to spend several days in retrograde orbit around the Moon before maneuvering and

starting its return trajectory back towards Earth. While navigation in space always

carries risk with it, the return to Earth is particularly dangerous in part due to the

fact that there is limited fuel remaining for maneuvering and adjusting the trajec-

tory. Orion must enter a relatively narrow trajectory, called a return path corridor,

in order to ensure that it can safely return to Earth at the correct entry angle. If

the return path corridor is not targeted correctly, for example, the angle of Orion’s

trajectory is too steep with respect to the Earth’s surface, Orion will burn up in the
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atmosphere, killing everyone on board. If the angle to too shallow, there is a risk

that Orion might bounce off the Earth’s atmosphere, much like a stone bouncing off

the surface of a pond, and be sent back into outer space, where it might not have

enough fuel to properly maneuver back and thus, again, resulting in loss of crew. So,

getting Orion on that return path corridor is very important!

In order to hit that return path corridor, Orion’s maneuvering thruster must

be fired at the correct time, in the correct direction, at the correct point along its

orbit around the Moon. Additional corrective maneuvers can be done to fix the

trajectory but that can only be relied on only up to a certain point, after which

there is nothing that can be done to effectively redirect Orion. In order to perform

these maneuvers well, Orion must know its position in space so that it knows when

to initiate thruster firing. Generally, a spacecraft knows its position in space by

communicating with ground stations on Earth which monitor its progress as it moves

across the heavens and report back to it navigational information. This means that a

spacecraft’s navigational system is highly dependent on the communications system.

If there happens to be a loss of communications for any reason, such as a computer

glitch, or power fluctuation, a spacecraft can temporary, or permanently, get lost. If

this were to happen to Orion while around the Moon, Orion could be in very big

trouble and unable to properly maneuver its way back home. This is one of the

main incentives which drives the development of an autonomous navigation system.

If something were to happen with Orion’s communications while around the Moon

or in cis-lunar space, then Orion could potentially still get home safely using its

autonomous navigation system.
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To meet these navigational needs, NASA engineers decided that an optical nav-

igation system using a camera that takes pictures in the visible light spectrum is

appropriate for the needs of Orion. Such a system would work by taking pictures of

either the Moon or the Earth and attempt to locate the spacecraft relative to one

of the observed bodies. These types of systems have flight heritage, and are well

suited for cases where planets and moons (and the Sun) appear as extended objects,

as shown in Figure I.2 for a hypothetical interplanetary mission from Earth to Mars.

OpNav is particularly well suited for cis-lunar space, since both the Earth and Moon

appear as extended object ellipsoids allowing for relatively accurate distance estima-

tion. In this environment other planetary bodies, such as Mars, Venus, and Jupiter

appear as point sources of light (unless using magnification) and thus make relative

distance estimation inaccurate at best and completely impossible at worst.

The General Problem of OpNav

The general problem of OpNav can be summarized as the task of imaging an

extended object celestial body and estimating its apparent center and distance to

the observer. Combined with orientation, or attitude, information, this is enough to

form a position estimate with respect to the observed body. If the observed body

has a known position with respect to some other reference, such as the Earth, for

example, then the observer can translate their position estimate with respect to that

reference. Thus, in OpNav accurate position estimation requires accurate centroiding

and size estimation. There are multiple challenges associated with this task, such as

sources of error coming from the hardware, i.e. imaging optics and attitude sensors,
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Figure I.2: Different modes of OpNav for spacecraft traveling from Earth to Mars.

As a spacecraft leaves one celestial body an travels towards the other, the appearance

of the bodies will vary: from taking up nearly half of their field of view and with

multiple surface features visible, to appearing as point sources of light.

as well as algorithmic biases that must be accounted for in order to perform OpNav

well. These challenges will be discussed in detail in the following chapters along with

methods for resolving them.
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X-Ray Pulsar-Based Navigation as a Method of Autonomous Navigations

X-ray pulsar-based navigation is a promising new technology in its nascent stages

of development that could potentially solve a lot of the needs associated with au-

tonomous navigation. Like OpNav, X-Ray pulsar-based navigation, X-Nav for short,

is an autonomous navigation solution which is suitable for spacecraft in mid to high

orbits. As a simplistic analogy, X-Nav can be thought of as a galactic-scale version

of Earth based Global Navigation Satellite Systems (GNSS) used for navigation.

Pulsars are neutron stars with powerful magnetic fields which produce radiative jets

which shoot out of the stars’ magnetic poles. These magnetic poles are inclined with

respect to the stars’ rotational axis, and thus the star behaves like a strobe light, or

lighthouse. This is the origin of the “pulsing” effect which gives pulsars their name.

This is visualized as an artist rendering in Figure I.3.

Astronomers first discovered pulsars in the ‘60’s and have been cataloging them

ever since. Pulsar-based navigation can only work with these previously observed

and cataloged pulsars. To date there are several thousand pulsars in the Milky

Way that have had their locations, periods, phases, pulse profiles, and various other

parameters cataloged. While there are slight variations between these pulsars, it

is generally true that a pulsar’s spin is incredibly stable, which means its signal is

very steady and predictable. The stability of the signal coming from some pulsars

rivals that of atomic clocks and this is where the utility of pulsars as navigational

aids comes into play. Just as satellite navigation systems, such as GPS, which most

modern phones can use to synchronize their own clock and estimate their position,

theoretically, so too can pulsars be used in the same fashion by spacecraft.
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Figure I.3: Pulsar radiating energy outward (yellow) along its magnetic poles as it

spins. The white center is the neutron star with magnetic field lines shown in blue.

Credit: B. Saxton, NRAO/AUI/NSF

Since pulsar signals are so regular, it is known to within a very tight precision

exactly when their pulses are supposed to arrive at a given location in space. Gen-

erally, a single period from a pulsar signal looks like the signal shown in Figure I.4.

Pulsar signal often have a single primary peak and a secondary dimmer peak. This

is due to how the magnetic poles of the star are aligned with respect to the observer.

The magnetic poles are generally neither in line with the rotational axis, nor are they

orthogonal to the rotational axis. Thus, if one pole perfectly aligns with the observer

and produces a bright pulse, once the star completes a half-rotation, the opposing
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pole will be pointing roughly in the direction of the observer, but not directly at

them. This is what produces the secondary dimmer pulse.

Figure I.4: An approximation of what a single period from a pulse chain looks like.

Note that the phase is generally aligned with the peak of the signal.

To use the pulse signal, an observer must be able to assign an arrival time for the

peak. If the signal is resolved and an observer knows their position, they can correct

any drift in their clock. Conversely, if an observer trusts their clock, but is uncertain

of their position in space, based off of the difference in the time of arrival between

an expected and observed pulse, an observer can update their position estimate. If

one is certain of their clock, then it is theoretically possible to determine position

using pulsar signals coming from three distinct direction. If an observer is uncertain

of their clock and their position, then it is possible to estimate both position and

clock drift by observing four pulsars. This can be done anywhere in space. Since

pulsars are stars which are distributed throughout the galaxy, there is no restriction

to where this method can be used, though it is best suited for use when far away

from a large celestial body, so that the body does not interfere with the relatively
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dim signal coming from the pulsar.

Specific Concern and Motivation Behind the Development of X-Nav

X-Nav is potentially a useful tool to develop since it offers an additional method

of navigation for spacecraft. Generally, the more navigational methods available to

a craft, the more robust the overall navigational system is. Faults can be detected

and results can be corroborated by multiple independent methods and systems. It

also serves as another additional backup in the case of failure of communications

or failure of other navigational systems, thus relieving some of NASA’s concerns

regarding safety of crew and spacecraft. However, these are not the main drivers

behind the development of X-Nav.

The largest drivers behind the development of X-Nav are, first, the universal

availability of pulsars as navigational beacons and second, the extreme stability of

their signals. If the technical challenges of development can be overcome, then X-

Nav could become a universal navigational system which is capable of not only

providing positions estimates for spacecraft, but also correct clock drift, and even

estimate spacecraft velocity. Plus, in a deep space scenario, where perhaps no other

celestial bodies are readily visible for navigation, pulsars will always be available

for observation. Thus X-Nav could potentially be a universally available, maximally

accurate navigational and timing system. Before X-Nav fulfills that promise however,

there are significant technical challenges which must be overcome.
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The General Problem of X-Nav

One of the largest technical hurdles standing in the way of implementing X-

Nav is the development of the capability to resolve signals from known pulsars when

observing them from a space-borne platform. Resolving and processing the signals

coming in from multiple pulsars can be broken down into roughly three separate

steps:

1. Recognizing which pulsars are being observed: The first step in using

a pulsar for navigational purposes is to know which pulsar is being observed. Each

pulsar’s signal can act as unique fingerprint, so if the signal can be resolved, it would

be possible to use it to identify the pulsar. However, resolving the signal requires

observing the pulsar for an extended time and using a priori knowledge of the pulsars

period. Another way to identify a pulsar would be to use its location in the night

sky. Pulsars are stars, and thus their angular position in the night sky does not

change as an observer moves around the solar system. If an observer can estimate

the attitude of the camera observing the pulsars, then it is possible to know which

pulsar is being observed. Once a signal can be associated with a cataloged pulsar

then all of the important signal characteristic for that pulsar can be pulled up such

as period, phase, brightness, location, and so on. This information is key for X-Nav.

2. Collecting sufficient light to resolve pulses: Resolving a pulse is the

process of collecting enough light from in incoming pulsar in order to be able to

re-create the pulse waveform and estimate the arrival time of the signal peak. There

are several challenges to this process.

Pulse signals are incredibly dim. The radiation beams of different pulsars emit in
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different frequency bands. Some pulsars have peak power emission in the radio band,

while others might have peak power in higher frequencies including visible, X-ray, and

gamma. Some have narrow-band emissions while others, such as the pulsar at the

center of the Crab Nebula, emit broadband. Pulsars that emit large amount of energy

in the radio band are relatively easy to observe on Earth, as long as one is equipped

with a sufficiently large radio telescope. However, such measurement systems are

not practical for space-borne application, and thus astronomers and engineers have

turned to pulsars which emit more of the their energy in higher frequency bands,

particularly X-rays, when looking for pulsars from space. Receivers for such signals

can have a smaller form factor, and thus are more practical for observations from

space. X-ray pulsars tend to also be millisecond pulsar, which, due to a mass-

accretion process, have spun up their rotational rates to the point of having periods

on the order of one to tens of milliseconds. These X-ray millisecond pulsars are the

prime candidates for a pulsar based navigational system, hence the name X-Nav.

However, using X-ray pulsars comes with the added challenge that the X-ray bands

generally have a lower power density than other lower frequencies, making the signals

even harder to detect. The signals are dim enough that they are strongly affected

by shot noise and have to be modeled as a chain of individual photons which arrive

according to a non-homogeneous Poisson process. A signal must be observed for

long enough that sufficient statistical data is collected to be able to reproduce the

waveform and estimate the arrival time of the peak. Franzen et al. [1] demonstrate

how the waveform of the Crab Pulsar, PSR B0531+21, the pulsar at the center of

the Crab Nebula, can be reconstructed with a sufficient amount of light collected
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from observations.

To gain enough statistics to reconstruct one period of the signal, an observer

may have to collect hours or days worth of data — thousands of periods — just to be

able to estimate the time of the first peak to arrive after data collection began. This

is possible since the periods of the pulsars are already known, so a signal processing

technique known as epoch folding can be used to overlay data from consecutive

periods onto a single period so that enough data can be aggregated to resolve the

waveform and estimate a peak arrival time.

One additional complication which must be addressed is the signal dispersion

which happens as the pulse travels through interstellar space. The interstellar

medium acts as a refractor of light, thus light at different frequencies that might

have left a pulsar at the same time will arrive at an observer at different times. Even

when a narrow band of frequencies is being considered for observation, not all the

light is at exactly the same frequency, so that band is discretized into channels. Over

its long journey through interstellar space, the light across the various channels is

dispersed, so that the peaks of each channel are no longer coherent and arrive at

different times. Thus, in order to reconstruct a signal which is sufficiently bright,

there must be a correction for the dispersion applied to the channels so that the

peaks in each channel can all be aligned and sufficient data can be collected to stand

out from the background noise.

These challenges of signal processing are not the main focus of this dissertation,

however they are useful to mention since they illustrate the difficulty of precisely

timing the arrival of an incoming signal. The mechanisms explained here are the

21



reason behind the timing noise which is present when collecting pulsar observations.

The estimation and knowledge of this timing noise is critical for the implementation

of a pulsar-based position estimation algorithm.

3. Differentiating between pulses and eliminating ambiguous solu-

tions: The final component, and the focus of the developments in X-Nav discussed

in this dissertation, is the method of distinguishing incoming pulses coming from

the same pulsar. Pulsar signals are not modulated over multiple periods, meaning

that all pulses look identical. The goal of X-Nav is to use the timing of an arriving

pulse to help estimate the position of an observer by comparing when it was seen by

the observer to when it was expected to arrive at some reference location. However,

since all pulses from a single source look the same, it may be impossible to determine

which pulse in a sequence was observed, and thus associating a correct arrival time to

a position estimate may not be possible. Collecting observations from multiple dif-

ferent pulsars helps reduce, but not eliminate, this ambiguity. This problem, known

as the ambiguity problem, will be explained in full detail and algorithms for handling

it will be the focus of the X-Nav chapters of this dissertation.
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CHAPTER II

OPTICAL NAVIGATION USING THE MOON AND EARTH -

BACKGROUND, LITERATURE REVIEW, AND DEVELOPMENT

FRAMEWORK

During the development of Orion, NASA Johnson Space Center (JSC) came to

the conclusion that the necessity for a backup navigation solution for Orion war-

ranted the development of an Optical Navigation (OpNav) system which would help

astronauts get home safely in the event of an anomalous loss of communications

during mission. The following section details the story of algorithm development

and provides the necessary background to understand OpNav algorithm as well as

context for their development.

The Story of Algorithm Development

Once it was established that an OpNav solution is desired as a backup au-

tonomous navigation solution on board Orion, engineers at NASA JSC reached out

to Dr. Daniele Mortari and his research group at Texas A&M University. Dr. Mortari

already had existing connections with engineers at JSC and was well respected in the

field of astrometry from his previous development of star tracking algorithms [2], [3],

which are used for attitude estimation on board many spacecraft. Dr. Mortari had

also previously worked on the development of a Moon-Sun sensor [4]; a system which

was designed to seek out the direction towards the Sun based on the observed illumi-

nation of the Moon. Such a system would potentially be of use to a spacecraft trying
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to estimate its attitude. Unfortunately, the Moon-Sun Attitude sensor never saw the

light of day and was not fully implemented due to insufficient precision. However,

as often happens in scientific pursuits, old ideas get recycled and it was reborn as

the initial foundation of what would eventually become the OpNav algorithms which

were developed for Orion. At the core of the Moon-Sun sensor lied algorithms dedi-

cated to identifying which pixels in an image belong the the limb, the outer circular

arc, of the Moon.

A beautiful marriage of concepts occurred here. Dr. Mortari’s work on star

tracking algorithms involved heavy use of least square fitting of functions to the light

profile coming from distant stars. The images which star trackers capture of stars

are intentionally defocused so that the light from a star is blurred, creating a bright

spot a few pixels across [5]. Least squares fitting helps provide an estimate of the

apparent centroid of the light coming from a star to sub-pixel precision, something

which could not be achieved as well with a star which is perfectly in focus. Thus,

Dr. Mortari had a method for selecting pixels belonging to the limb of the Moon

and a method of using least squares to estimate the center and size of illuminated

spherical bodies. These two ideas came together to form the first version of the

OpNav algorithms for Orion.

It wasn’t as simple as just reusing the existing methods. Additional methods

had to be added in order to improve the selection of limb pixels. Box filters, random

sampling consensus (RANSAC), and SVD methods were all tried at various points

to remove outlier pixel selection and improve the initial fitting of an ellipsoid to the

apparent limb of the Moon. Once this initial limb fitting was completed, the sec-
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ondary least squares fitting would begin based off of limb pixels which were selected

after the initial fitting was completed. Since the geometry of the Moon could be

approximated well by a sphere, the idea was that all limb pixels could be described,

in a least-squares sense, by a single function which would describe the drop off in

brightness which one sees when transitioning across the lunar limb. Starting from

the interior illuminated Moon pixels and moving outward toward the limb, one would

first see a relatively constant greytone level. Then, at the transition to the blackness

of space at the limb, there would be a sharp drop in observed greytone after which it

would be constant again. Such a transition is well described by a sigmoid function, or

at least, that was believed at the time. The hope was that a single sigmoid function

with a constant offset from zero, which would represent the radial distance from the

estimated Moon center, would do a good job at describing the transition across the

limb. Once this function was estimated using least squares, then an observer would

have a precise idea of the center of the Moon as well as its apparent size, and thus

use it for navigation purposes.

As testing went on, it became apparent that this method had some problems

with it. It turns out that the lunar topography is not so smooth, and the various

“seas” and highland areas that can be seen on its surface produce different greytone

levels which prevent the accurate fitting of a single sigmoid function to the limb.

What this means for least squares fitting is poor convergence with high residuals in

the estimate for the apparent centroid and radius. However, a solution was proposed.

If one views the gradient of an image of the Moon, instead of the original picture,

the variations of the lunar surface are less apparent and the lunar surface appears
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dark, not too different from the space surrounding the Moon. What does stand

out, however, is the limb itself which now appears as a bright arc of pixels. The

transition in brightness across this arc is described by a Gaussian function, which is

the derivative of a sigmoid function. When least squares fitting was performed on

this gradient of the image using a Gaussian fit, residuals were significantly reduced

and estimates of apparent size and center more accurate.

Another innovation which was introduced to simplify the algorithms was to

embed the position estimate of the observer directly into the cost function which is

minimized by the least squares process. Thus, once least squares fitting was complete,

what was returned was not just an estimate of the apparent size and center of the

Moon, but a direct estimate of the observer’s position with respect to the Moon.

This was possible to do only with the assumption that the inertial attitude of the

camera-body frame was already known.

About a year or so into the development of the project however, a curve ball

was thrown at Dr. Mortari’s team, which by this time included the author of this

dissertation. The algorithms were performing well, possibly even better than had

been thought possible, however they weren’t quite meeting the accuracy requirements

which had been given by JSC. At this point JSC revealed to Dr. Mortari’s team that

there was another competing approach to OpNav which they were considering. JSC

had contracted out work to two parties in order to be able to trade off the solutions

they received. Dr. John Christian, of West Virginia University, had developed his

own methods for estimating the apparent size and center of the Moon [6], and they

were quite accurate and very efficient. A competition between the two teams ensued
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where each tried to improve their algorithms and squeeze out every last drop of

performance, making them as robust and accurate as possible. Luckily for both

teams, no effort was wasted, as the final decision from JSC was to implement both

algorithms together. The algorithms developed by Dr. Christian served to provide

a fast and precise initial fit of the lunar limb after which the least square algorithms

developed by Dr. Mortari’s team would tweak and refine the fit to try and estimate

the position of the observer with the most accuracy possible.

What has been left out of the story thus far, is how the algorithms were tested,

which as it turned out, was not a trivial matter. To test the accuracy of any method,

there needs to be a “truth” to compare to. For the purposes of OpNav algorithm

development, “truth” meant clear images of the Moon which were taken from space

and with additional meta-data available that recorded where and when the image

was taken. Without this extra information regarding the time and location of an

observation, it would still be possible to run image processing algorithms on images

of the Moon, but it would be impossible to know how accurate the resultant centroid

and position estimates were. Thus, a significant effort had to be made to acquire or

create truth images for testing and developing the OpNav algorithms. Though a few

existing images of the Moon were available from some missions, the team ended up

relying heavily on simulation work. A virtual simulation environment using NASA’s

EDGE rendering software and ephemeris data for the Moon was created and set up

in JSC’s Electro-Optics Lab. Though the simulation environment allowed precise

control of observer position and observation time, it was not enough to just simulate

how the Moon would appear to a perfect pin-hole camera observer. In order to

27



produce synthetic images which were representative of what an actual camera would

see in space, a camera was mounted in the lab which captured images projected on a

high resolution 4K display. Thus any lens distortion, aberration, and thermal camera

noise which one would expect to have from a real camera could be included in the

synthetic images. This work was done largely during the summer of 2014.

The following summer, Steve Lockheart, a technical lead and optics expert that

had been working with Dr. Mortari and Dr. Christian was able to patch a special

request through to Colonel Terry Virts. It was difficult to get it through, but well

worth it, because at that time Terry Virts was an active astronaut on board the ISS.

The request was for a series of images to be taken of the Moon from the various

viewing ports on board the ISS. Initially, the zenith facing window was used, but

due to the protective micrometeorite shielding on the viewing ports, this produced

images with poor optical quality. Terry knew these images would not serve the needs

of OpNav development. Steve was awoken by an unexpected phone call in the middle

of the night; Terry was on the other line, calling from the ISS! Terry wanted to use

the nadir facing Cupola for imaging instead, due it’s superior clarity. With Steve’s

blessing, and armed with a hand-held Nikon camera and a laptop, Terry began taking

images from the ISS. However, using the Cupola introduced a new set of issues. Terry

had very little time to capture the images, since he had to use the side windows of

the Cupola to take pictures of the Moon, and he only had minutes available for

viewing before the Moon was hidden from view by the Earth. Nevertheless, Terry

captured the images of the Moon that were needed for verification of the algorithms.

Along with a timestamp and active tracking of the ISS available through Two Line
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Elements (TLEs) the exact time and position from which the images were taken was

known. The team had its truth data and testing using real images from space could

commence.

Testing was a success. Using real images of the Moon, taken from space, it

was verified that the position with respect to the Moon could be estimated with

the desired precision for providing a safe, autonomous, backup, navigation solution

for crew members of Orion returning from the Moon. The algorithms, having been

verified in the high-level MATLAB code in which they were written, then had to

be converted to C and tested on NASA’s Core Flight System (cFS) platform which

simulates avionics and controls systems of spacecraft. This work has been ongoing

as of the writing of this document. In August of 2019 NASA awarded the Orion

Optical Navigation Team the Group Achievement Award “For sustained superior

performance in developing a new technology to support the safety critical navigation

backup system for the Orion EM-1 mission.” That is the story behind the develop-

ment of the OpNav algorithms for Orion in a nutshell. What follows is a complete

detailed technical breakdown of the story just told.
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Background on the OpNav Position Estimation Problem

First and foremost, OpNav requires an observer to be able to capture an image

of a target body and then identify its location and distance with respect to the

observer. The image processing techniques covered in this dissertation are tailored

to interplanetary navigation scenarios. These include missions between planets and

missions between moons and planets, where the distances from observer to target

body are at least several thousand kilometers and any surface features are ignored.

Most large natural celestial bodies have sufficient gravitation to pull their mass into

an approximately ellipsoidal volume with a readily defined geometric center. When

imaging a body, one can compare what is observed to a priori knowledge of the

body geometry to estimate their distance from its geometric center. This is the basic

principal behind OpNav when implementing it as an interplanetary navigation aid.

Relative and Absolute Position Estimate

For navigation purposes, it is useful to know the position of a spacecraft relative

to the center of the Earth. However, in the case of Moon-based Op-Nav, before an

observer can estimate their position with respect to the Earth, it is first necessary to

know their position relative to the Moon. The Moon, being a celestial object which

has been observed and tracked for thousands of years, has it’s position over time with

respect to the Earth, cataloged with high precision. Therefore, if a spacecraft can

accurately estimate it’s position with respect to the Moon, it is a relatively simple

question of translating that position estimate to be with respect to the Earth. As

long as the date and time of the observations used in forming the position estimate
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are well known, then the distance and direction from the center of the Moon to the

center of the Earth is known. As shown in Figure II.1, vector addition is all that’s

needed after that in order to determine the position of a spacecraft with respect the

Earth and get and absolute position estimate in an inertial frame.

Figure II.1: Observer position relative to Moon can be translated to position relative

to Earth.

A relative position estimate with respect to the Moon, or any other target body,

requires knowledge of the distance to the target as well as the orientation, or attitude,

of the spacecraft with respect to some reference frame. What reference frame is used

for expressing the spacecraft’s attitude depends entirely on what sort of position and

attitude estimate is useful to engineers and mission operators.

Though attitude estimation is not the focus of this dissertation, it is a necessary

component of position estimation, and therefore at least a brief overview is necessary.

One of the most accurate and universally available methods of attitude estimation

is the use of star catalogs and star identification. Objects which are observed by a

camera in a scene can initially only be localized, i.e. have their position expressed,
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using the coordinate frame of the camera. If the attitude of the camera is known,

then a rotation matrix C (or other mathematical tool) can be used to express the

orientation of the camera with respect to some other, usually inertial, frame, as show

in Figure II.2. This allows localization of objects in the scene using inertial frame,

which is needed in order to be able to express the observer’s position relative to the

object in this inertial frame.

Figure II.2: Objects observed in a camera reference frame can be expressed in an

inertial reference frame using a rotation matrix when the attitude of the camera is

known.

Stars have been tracked and cataloged for thousands of years, and and tens if

not hundreds of thousands are bright enough to be useful for attitude estimation for

spacecraft. The reason why they are so useful for attitude estimation is that if you

have a non-rotating frame, the apparent directions towards stars doesn’t change as

you move around because they are so far away. A spacecraft would need to move out

to over 100 AU, past the orbit of Jupiter, for there to be any significantly noticeable

parallax, or change in direction, towards stars. And even then, it’s only the closest

stars that will exhibit any change. The stars themselves are also moving, however
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again, the vast interstellar distances makes this movement barely apparent. The

movement is also known and predictable, so catalogs can be updated as necessary.

What all of this means is that, if an observer can look up at the night sky and identify

what set of stars or constellation they are looking at, then they known their attitude

in a non-rotating frame. Non-rotating frames include the Earth-Centered-Inertial

(ECI) and the International Celestial Reference Frame (ICRF). Star catalogs, such

as the Hipparcos star catalog, which is currently the most up to date and accurate

catalog, use the ICRF frame to describe the directions towards the stars. So, when

an observers identifies stars using Hipparcos, they known their orientation, or at

least the orientation of their camera, in the ICRF. In reality, there are other factors

and sources of error which impact the observed direction towards the stars. These

include starlight aberration due to a fast-moving observer, gravitational lensing and

distortion due to the presence of massive bodies near the observer of a star’s light

path to the observer, and a plethora of other hardware-related sources of error. Most

of these fall outside the scope of this work and will not be discussed further.

One of the first challenges faced by the Orion OpNav system, was that of attitude

estimation. Not because the algorithms, hardware, and methods needed for it aren’t

known, but because of difficulties in simultaneously observing the Moon and stars

in a single image. The Moon is very bright compared to the surrounding stars, and

previously the cameras used by spacecraft did not have the dynamic range to be

able to observe dim stars and the Moon in a single frame without significant pixel

saturation and blinding of the camera. There are several ways to work around this

problem, one is to attempt to use high dynamic range (HDR) photography, another
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is to have a separate dedicated camera for observing the stars which is facing in a

different direction than the Moon camera. The latter solution works, as long as the

relative angle between both cameras is known, something which can be achieved if

both cameras are mounted to a single rigid frame or block of material, as is done

with sensing and navigational equipment in the GNC (Guidance, Navigation, and

Control) Bay of a spacecraft. It was assumed that this latter solution would be

implemented on Orion, and so the question of attitude determination was removed

from the development scope of the position estimation algorithms. This means that,

in order to perform Moon-based Op-Nav, it would only be necessary to develop

algorithms which accurately estimate the distance to the Moon, based on how large

it appears, and accurately determine the direction towards the Moon in a camera

reference frame. Phrased another way, it was only necessary to develop accurate

ways of estimating apparent size of the Moon and accurate methods of centroiding.

Thus, the basic process of estimating absolute position of Orion using Moon-

based OpNav can be summarized as

1. Identify the lunar limb pixels

2. Estimate apparent size and centroid location in captured image

3. Use size estimate and centroid location to calculate Orion’s position relative to

the Moon expressed in the OpNav camera reference frame

4. Using attitude knowledge from the stars and a separate camera system express

Orion’s position relative to the Moon in an inertial frame, either ICRF or ECI.

5. Using the time and date of the observation and Moon ephemeris data, translate
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Orion’s position estimate from being relative to the Moon to being relative to

the Earth

The main thrust of research which will be discussed in the chapter is dedicated

to the first two items, namely estimating the apparent size and centroid of the Moon

and using that to calculate a Moon-relative position estimate in the camera frame.

The next two sections detail the development of the methods which do this.

Assumptions Behind OpNav in this Dissertation

There are several assumptions which must be clarified regarding the scope and

context of the OpNav problem.

Observed Bodies Are Known A Priori : All observed target bodies have

been previously observed by astronomers and engineers and have known size and

shape. For asymmetric bodies, their orientation is known as a function of time. All

observed bodies can accurately be modeled as an ellipsoid.

Optics Calibrated and FoV is Appropriate for Distance: It is assumed

that the optics have been calibrated and that issues due to lens distortion or projec-

tion can be resolved. Also, distance between the observing spacecraft and the target

body is such that the body appears as an extended ellipsoid. Bodies which appear

too small or too large and extend past the camera field of view require a different

kind of processing in order to use optical navigation. Camera pointing is sufficiently

accurate to capture the target body in the field of view, though clipping can occur.

The optics are also appropriate for the task in that the selected focal length for the
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optics and pixel pitch (size) of the sensor allow for the observation of an extended

body. As an example, an illustration of how large the Moon appears as a function

of pixel pitch and focal length when imaged from the Earth is shown in Figure II.3.

All Necessary Frames ar Known: All coordinate frames relevant to the

problem of navigation are known. This includes frames attached to the target body,

as well as inertial frames, such as the ICRF and ECI frames. Rotational and trans-

lational transformations and matrices are known at all times.

Figure II.3: Apparent radius of Moon in pixels as it appears from Earth fo different

combinations of pixel pitch and focal length. Common pixel pitch values of com-

mercial sensors are also shown. The area highlighted in red indicates configurations

where the Moon appears too small to effectively use the proposed OpNav methods.
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Background on Transition Across Object Edges in Digital Images

The nature of digital imaging is such that hard edges of objects, even those

in focus, are described by a transition which covers a finite number of pixel on

an imaging sensor. Instead of trying to define an infinitely thin line or curve which

describes an edge, it is assumed that the edge is described by a transition in graytone

(or color for RGB/CMYK images). This transition can be seen in images of the Moon

like in Figure II.4.

Figure II.4: Gradual transition in graytone across limb edge discretized by pixels.

If looking at a bright object against a dark background in a graytone image,

such as the Moon against the background of space, the transition across the edge

of the object can be described as a transition from a relatively high graytone to a

relatively low one and there is some threshold value at which the exact edge can be

defined. Below that threshold value, the pixel represent empty space, and above that

value, the pixels belong to the object. However, the exact value of that threshold

can be difficult to define. As seen in Figure II.5, even if the threshold is defined, the

discrete pixel graytone will likely never take on the threshold value exactly.

If a continuous function is be used to describe the edge transition, then the exact
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Figure II.5: Location of edge is ambiguous in digital images since no pixel values

take on the transition threshold value. Blue lines in each column indicate graytone

value.

point where the transition threshold is crossed can be located, allowing for more

accurate edge locating. This increase in accuracy is the main innovation which was

developed for Orion’s OpNav system. However, there are two potential counterpoints

to using such a scheme, both of which will be addressed. The first issue is that it is

not clear how the exact level of the edge transition threshold should be decided. It’s

not clear if it should be the same for every edge, and there might be a dependence

on scene lighting, the geometry, the material properties of object being observed,

the optical properties of the camera. The second potential issue is that the choice of

fitting function and the choice of how heavily to weigh graytone values during fitting

can vary and it’s not clear that there is one unique function which optimally models
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the transition across a body’s edge in all situations.

The first concern is addressed by the fact that the goal of using such a function

is to produce a consistent and precise fit for all the pixels which belong to an edge.

That fit may not be accurate, but if the inaccuracy is the same for all edge pixels,

and the entire edge is shifted consistently, then a simple calibration process using

truth data can be used to correct such bias. The second concern is addressed by the

fact that the scope of application of such a fitting function within this research is

limited. It is being used only on the limbs of the Moon and the Earth. While the

Earth and Moon do have different limbs - the Earth’s limb has a softer transition due

to the presence of an atmosphere - the lighting conditions at the brightly illuminated

edge of the limb are consistent. The distance to the light source, the Sun, does not

drastically change, both the Earth and Moon have rotational symmetry so lighting

doesn’t change as the bodies rotate, and the color and intensity of the light coming

from the Sun also doesn’t change. These constants lead to very consistent conditions

for observation, thus it is appropriate to model the entirety of the body edge using

a single function.
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Setting the Stage – State of the Art, Literature Review, and Available

Frameworks

This section is dedicated to providing the background and justification behind

the methods initially implemented when the OpNav work for Orion began. At the

time when the question of developing an autonomous backup navigation system for

Orion was posed there were several theoretical frameworks that could be tapped for

building the necessary navigation algorithms. State of the art navigational methods

at the time had yet to take advantage of the onset of cheap high quality imaging

sensors that had entered the market over the past several years. This left the door

open for a wide array of different approaches of performing optical navigation.

State of the Art and Current Developments in OpNav

The motivation behind the development of OpNav for Orion really came from

new requirements defined by NASA. Since the retirement of the Shuttle Program,

NASA had stipulated that any new crewed missions must have an autonomous

backup navigation solution for safety. The need for accurate position estimation

was especially keen for Orion’s missions around the Moon, where accurate position

estimation is paramount when operating near the Moon and when heading back to-

wards Earth. Entering the correct flight path corridor requires very accurate position

estimation, which is difficult to do on-board. Following this incentive, the devel-

opment work for Orion OpNav began in 2012. At the time, autonomous attitude

estimation methods existed and had flight heritage, however systems for autonomous

position estimation were lacking. There were some existing methods that relied on
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the imaging of distant planets to get a rough position fix, however these were not

sufficiently accurate. These positioning techniques relied on estimating position rela-

tive to planets in our solar system which even under the best case scenario, would be

at least 50 million kilometers away from any observer, which introduced large uncer-

tainty into position estimates. This was unacceptable for Orion’s navigational needs.

Thus, a new technique was needed and so JSC started looking for new methods for

performing position estimation in cis-Lunar space.

Dr. Mortari already had an existing relationship with some of the engineers at

JSC which were part of the Orion development effort and they knew of his extensive

work with star tracker algorithms as well as his existing work with the Moon-Sun

sensor. The Moon-Sun sensor was originally proposed by Dr. Mortari in 1996. The

goal of the project had been to use illumination of the Moon to estimate a direction

towards the Sun in order to help get an attitude fix. The method had not been

very accurate for producing attitude estimates however, much effort was dedicated

to analyzing the illumination of the Moon, which would be necessary and come in

useful when trying to use the Moon for position estimation.

Even though digital imaging systems have become a ubiquitous part of every-

day life, first through dedicated digital cameras, and then through smartphones,

they have not seen application in crewed space navigation beyond Low Earth Orbit.

Digital cameras based on Charged Coupled Device (CCD) technology and Comple-

mentary metal-oxide-semiconductor (CMOS) sensors have become the standard for

imaging needs. These technologies have been developed and miniaturized throughout

the 1990s and 2000s and provide a readily available selection of commercial-off-the-
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shelf (COTS) sensors which can be used for navigation needs of spacecraft.

When considered the total scope of all flown missions to space the application of

optical navigation methods has been fairly limited, however, recent flagship missions

such as NASA’s Mars Reconnaissance Orbiter (MRO) and New Horizons as well

as JAXA’s Hayabusa have successfully implemented OpNav. Although OpNav was

not mission critical for MRO, its optical navigation camera was successfully tested

by imaging Mars’ moons Phobos and Deimos [7]. New Horizon used techniques

from Optical Navigation to refine estimates of the orbital parameters of some of the

Jovian Moons [8] as it flew past them and then later again implemented OpNav near

Pluto [9] . Finally, Hayabusa relied heavily on optical imaging for navigation as it

neared the target asteroid, Itokawa [10].

Literature Review

An in depth review of existing optical navigation methods is provided by Owen

[11]. This review makes it possible to see how the optical navigation methods being

tested on Orion compare to existing navigation methods. At a minimum, optical nav-

igation systems for spacecraft require knowledge of inertial position of some observed

target as well as relative bearing and distance to the observer.

Light Time Effects: For the most general case, one must consider the effects

of light time and stellar aberration. Standard formulations for how to take these ef-

fects into account are provided by the Explanatory Supplement to the Astronomical

Almanac [12] These effects need only be included when considering a very distant

target, therefore they are not used in the current version of the Orion opnav algo-
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rithms. The true position compensating for light time correction may be estimated

from an iterative equation:

T(t) = R(t)− S(t− τ)

Where τ is the light time, T is the true position, R is the current position

estimate and S is the position of the target. To correct for the stellar aberration, we

use the following equation:

A(t) = T(t) + |T(t)|[Ṙ(t)/c]

Where A is the apparent position and Ṙ is the observer velocity in an inertial

frame. This is a Newtonian formulation. If one is imaging stars and utilizing star

catalogs, light time corrections for an observer located at the Solar System Barycenter

(SSB) are already included in the coordinates of the star, thus simplifying position

estimates.

Image Processing: Orion software follows a well established method of defin-

ing the camera frame. The same construction is offered by Owen. The camera

attitude may routinely be described by a series of Euler rotation. Code to correct for

cubic radial distortion due to the Gnomonic projection is available, however is not

implemented on Orion. Standard transformations are used to convert from camera

coordinates to imager coordinates.

Raw images may be corrected to remove pattern noise, pixel-to-pixel variations

and dark current noise. A series of master bias images are taken that have zero

second exposure times. A flat image is then taken and combined with the bias
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image. If the camera has thermal noise, additional dark images are combined to

get a master dark image. Background can be removed using filtering that expects

a certain type of image to be captured by the camera. For the purposes of the

optical navigation, most images will contain mostly dark sky. Also, multiple images

may be averaged together to remove hot pixels. Several different methods exist for

performing centerfiding, or centroiding of observed targets. The method depends on

the apparent size and nature of the target.

Centerfinding by correlation: Another method used in OpNav is centerfind-

ing by correlation. This method works by defining a predicted brightness pattern

as an array P and searching for that pattern within an observed array D. P may

represent a point spread function (PSF) of a star, or a patch of terrain, or be detailed

image data of an illuminated celestial body. The location of the P array is varied,

and the location which produces the best correlation is the nominal image location.

Subpixel accuracy can be achieved by using interpolation. This technique is called

spatial correlation, while another method is frequency correlation.

Centerfinding by analytic function fitting: The centerfinding process can

be done by performing a least squares fit of an analytic function on the image. The

fitting function is nonlinear, therefore the process is iterative. A two dimensional

guassian may be used. It has a defined peak location and standard diviation. The

Lorentzian function is another frequently used point-spread function.

Limb Scanning: Used for targets that span more than a few pixels. The limb

of a body is defined by the points which form the boundary of the body in the
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image. The vector connecting the observer to points on the limb will be tangent to

the surface of the body. By selecting two points on the limb one can solve the vector

equations of the triaxial ellipsoid and estimate the observer position.

Autonomy and software of NASA’s Deep Space One: Bernard et al.

offers a summary of the development and implementation of autonomous navigation

on the Deep Space One (DS1) Spacecraft [13]. DS1, launched in 1998 served as a

testbed for a multitude of new hardware and software systems. It was the one of

the first implementation of a fully autonomous navigation system which, in addition,

had code generated from MATLAB’s stateflow toolbox and used autocoding to gen-

erate flight code. Also, verified with the help of module testing software based on

automata theory that explored all scenarios that the code might fall in, including

ones which developers had missed in testing. Behavior auditors were also used in

the development. Anomaly detection that uses neural networks was also used. The

image processing was anticipated to have a precision of 0.1 pixels although this was

not initially achieved due to light scatter and problems with on-board instruments.

Raymon et. al summarize the capabilities and mission plan of DS1 [14]. DS1

used an on board ephemerids catalog of beacon asteroid, planets, and 250,000 stars

from the Tycho catalog. Position estimation was provided by asteroid imaging which

was used to compute a Heliocentric trajectory. Initial error was < 1000 km and 0.4

m/s. After image clean-up the 1σ error was 3 km. The imager used was the multi

purpose Miniature Integrated Camera Spectrometer (MICAS) system which was

used for scientific imaging as well as navigation. It collected light in a wide range of

bandwidth, however was blinded in the ultraviolet due to noise from light reflecting
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off of MLI on the spacecraft. MICAS was tuned in flight and some parts of the code

we even developed after launch due to tight scheduling.

Raymon et. al reviews the successful results from the DS1 mission. [15]. Despite

multiple setbacks, and loss of the Stellar Reference Unit (SRU), autonomous optical

navigation was adapted and allowed for the successful completion of all of the mission

targets. The loss in the SRU did however mean that image processing on approach

to Borelley had to be done on the ground, so on-board optical navigation was not

performed. MICAS was used to replace the SRU for star imaging and target body

tracking. It relied in stars appearing in the field of view when imaging the comet

Borrelly. Initially imaging of the comet required co-addition of the images, though

later on the comet became detectable in single images. Optical navigation ephemeris

differed by 1500 km from the ephemeris computed at ground stations. Error in

ephemeris was corrected when the brightest pixel was used to estimate the comet’s

position, instead of a Gaussian fit to the coma. The navigation team also faced

difficulty getting a lock on the “Earthstar” used for navigation purposes. Prior to

encounter, multiple sequences of photos were taking spanning a range of different

integration times, since it was not known ahead of time what photometric properties

of the comet were. The spacecraft did not have the capability to autonomously vary

the integration time. At the encounter with the comet the autotracking system had

difficulties keeping the nucleus in the FOV. This was due to a lag in ACS whenever

the target exhibited significant angular acceleration. Tracking software found the

nucleus in all except for 1 of the approach images. MICAS also had an infrared

channel it used when imaging the comet. Lessons learned from the development of
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autonav for DS1 were applied to the Deep Impact mission.

Theoretical and Conceptual Frameworks

A large theoretical framework in optical navigation methods exists from which

a number of solution approaches could be pulled for the purposes of Orion OpNav.

A brief review of some image processing techniques, function fitting methods, and

edge detection methods follows.

Image Based Position Estimation: Pose estimation using images of known

markers is a classical technique. The problem is well known and understood and can

be presented as follows: “Given a set of observed markers or features with known

geometry and position, what is my (the observer) position and orientation with

respect to the features?” When imaging geometries that can be described by a finite

series of points represented in 3d space, the problem is known as the Perspective-

n-Point (PnP) problem [16]. The question of being able to identify the individual

points in the geometry is a whole other matter, and feature recognition is an entire

field in of itself, but the crux of the PnP problem is 1) having enough points to be

able to accurately estimate observer pose and 2) resolving some of the ambiguities

which arise from projecting a set of points located in 3-D space onto a 2-D image.

This is an active field of research and innovations in algorithms which solve the PnP

problems are a present subject of investigation.

If the points, markers, or features which are observed and identified belong to a

single rigid body of known size and geometry, then it is possible to estimate the pose

of the observer with respect to that body at the time the observation was made. If
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the orientation, size, and position of that body is known with respect to the origin

of some specified frame, then it is possible to estimate the pose of the observer with

respect that origin. At long distances it may be difficult to resolve the orientation

of an observed body, in which case the best an observer can do is to estimate their

distance to the observed body based on how large (or small) it appears.

OpNav relies on this concept in order to estimate the position of Orion with

respect to an Earth-centered frame. When operating near the Moon, Orion would

be taking images of the Moon, and so OpNav techniques would provide the pose of

the observer with respect to the Moon. However, the Moon is a familiar celestial

object which has been tracked for millennia, and there is precise ephemeris data

which tracks the exact position and orientation of the Moon with respect to Earth.

So, if an observer can accurately estimate their position with respect to the Moon,

they can also accurately estimate their position with respect to the Earth, which is

helpful when crew are going around the Moon on their way toward Earth.

Numerical Methods and Least Squares Fitting for Attitude Estima-

tion: Both linear and iterative non-linear least squares have applications in image

processing and attitude estimation [17]. Almost all modern imagers use digital sen-

sors, as opposed to celluloid film or other analog imaging methods, and thus edges

of objects within a picture frame are described by a discretized transition of color or

graytone. This discretization introduces error. By fitting a function to features on

the image, objects in the frame can be described with greater precision.

One concrete example comes from star imaging and centroiding techniques. If

a space-based optical system is well calibrated and focused to infinity when imaging
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stars, dim stars will only light up a single pixel. Thus, the center of that pixel could

be defined as being the location of the star on the screen. This approach is inaccurate,

however since discretization error due to having a digital sensor is introduced. To

circumvent this issue, images are intentionally defocused so that light coming from

stars is blurred and falls on multiple pixels. Afterwards, a Gaussian (or other desired

function) can be used to describe the light intensity in the pixels as one moves away

from the apparent star center. Once the peak of the Gaussian is located by using

least squares, then the location of the star can be established to sub-pixel precision.

Edge and Shape Centroiding and Detection Algorithms: Many algo-

rithms exist which are designed to look for certain features within a frame. Classical

techniques focus on edge detection, corner detection, and the identification of simple

geometries. Examples of such filters include the Canny Edge detector [18], [19], the

Harris Corner Detector [20], [21], and Circular (or linear) Hough Transforms [22], [23].

There are extensive libraries and toolkits, such as OpenCV [24], with many other

image processing tools dedicated to segmentation, centroiding, feature matching, and

outlier rejection.

In recent times modern image classification techniques built from Convolutional

Neural Networks (CNN), Deep Neural Networks (DNN), and Recursive Neural Net-

works (RNN) have exploded in popularity and application and are quite good at

classifying contents of images. However, these methods are not suitable for highly

precise, pixel-by-pixel level analysis of images and, perhaps even more importantly,

lack the heritage and reliability of classical techniques to be used in high-risk space-

craft operations environments. Therefore, they were omitted when considering can-
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didate algorithms for Orion OpNav.

Optics, Camera Frames, and techniques from Photography and Photo

Editing: Fundamental concepts regarding camera optics, transformation of frames,

the mathematics of projections, and photographic editing techniques are needed in

order to be able to effectively make use of images for OpNav purposes.

Image editing techniques ranging from simple cropping, gradient filtering, and

gamma correction to more complex noise reduction and dead pixel filters have ap-

plication in this problem. Image preprocessing is an important step of preparing

images for processing by reducing noise, resizing, rescaling of pixel levels, merging of

channels, and perhaps even the removal or countering of filters which may have been

performed automatically by camera software to make images appear more pleasing

to the human eye but hamper image processing efforts.

Camera calibration and characterization is necessary in order to perform accu-

rate analysis of images captured for OpNav. Pixel size, focal length, and field of view

must all be known precisely. Also, any distortion due to the optical system must

be characterized and understood through camera calibration procedures. Deviations

from the optimal pinhole model camera, shown in Figure II.6, can be corrected for

once proper camera calibration is complete.

Frame manipulation and projection describes the lossless transformation of im-

age information from one frame to another as it passes through an optical system. In

order to be able to accurately interpret a scene, it must be understood how light is

transformed and projected from a 3-D scene onto a 2-D plane. Gnomonic projection

effects [25], such as vignetting, may need to be corrected for. Clear definition of
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Figure II.6: Pinhole camera model used behind image processing algorithms.

the axes of the various image, sensor, camera, and body frames must be provided in

order to correctly map real-world objects represented in a 3 dimensional coordinate

frame into a 2 dimensional image frame discretized into pixel rows and columns.

Different ways of representing frame orientation, such as directional cosine matrices,

quaternions, and Euler axis and angle are useful as well.

Attitude Representation and Estimation: Methods for representing atti-

tude are necessary for expressing vectors in the appropriate frame. Attitude repre-

sentations include Euler axis and angle, directional cosine matrix, Rodrigues param-

eters, and quaternions [26], [27]. Attitude estimation methods such as ESOQ-2 [28],

and q -method [29] are useful in determining camera attitude given observations of

reference objects, such as stars.
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CHAPTER III

OPTICAL NAVIGATION USING THE MOON AND EARTH -

DESIGN OF POSITION ESTIMATION ALGORITHMS AND

FORMULATION OF FITTING FUNCTIONS

This chapter opens with a brief introduction of how the Orion OpNav algorithms

are used to produce a position estimate. This is followed by a detailed description

of each of the algorithmic components of the Orion OpNav system. Emphasis is

placed on the implementation of the functions used to describe the Moon and Earth

edge transition as well as the iterative non-least squares algorithms used to precisely

fit those function onto the digitized edges of the Moon and Earth. Much of the

foundational work behind these algorithms was performed by Mortari [30], [31] and

Borissov [32], [33]. This work is expanded upon, elaborating further on certain

aspects of image preprocessing as well as refining and simplifying aspects of the limb

fitting models.

The overall image processing architecture is captured in a flowchart in Figure

III.1 with a breakdown of each of the steps presented in the following sections. The

first 5 steps of the image processing algorithm represent the initial processing and

limb fitting. They are followed by the final pixel selection and the iterative nonlinear

least squares.
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Figure III.1: Overview of OpNav Image Processing. Steps 1 - 5 correspond to gen-

erating the initial limb fit. Steps 6 and 7 are required for the final refined limb fit

and position estimate.

Overview of Algorithm Steps 1 - 5 – Initial Pixel Selection and Limb

Fitting

The Moon is well approximated by a sphere. It is more spherical than the Earth,

which is not considered a sphere but an oblate spheroid with a flattening of about

0.34 percent. It can be shown that both of these bodies when projected onto a flat

image plane through the gnomonic projection of a pinhole camera produce ellipses.

Therefore, the centroiding and sizing techniques used had to estimate both an

apparent body center as well as semi minor and semi major axis in order to have

maximal accuracy. In particular, for the Moon the necessity of measuring both semi

minor and semi major axis is a function of how far the Moon appears off of the optical
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axis. If the Moon is centered on the optical axis of an image, then it appears as a circle

and thus has a single radius measure. As it moves off axis, however, the projected

ellipse becomes more oblate. This effect is particularly noticeable for cameras with a

wide field of view with distortion becoming more and more pronounced as the Moon

appears near the edges of the frame.

The image processing responsible for estimating apparent size and centroid were

divided into two stages. The initial phase dealt with image cleanup, pixel selection,

and initial fitting, while the second phase applied an iterative nonlinear least squares

refinement to the first. Much of what is stated here can be found in the work by

de Dilectis [34] in Chapter Two, however to be comprehensive and convenient it is

covered in the following sections.

Assumptions Regarding the Scene

Before diving into the details of image processing algorithms, it is necessary to

understand the assumptions made regarding the scene that would be processed.

Moon Alone in Scene with Dark Background: The Moon is the only

bright extended object in the scene. This means that any other light sources in the

image are point sources (stars), noise, or optical aberrations, such as lens flair. This

assumption holds true for most scenarios of a spacecraft navigating cis-lunar space.

There are cases where the camera might see other pieces of the spacecraft in the

field of view. In fact, as is described in later sections, images of the Moon captured

from the ISS were used during algorithm testing, and in these images portions of the

space station are visible. Though it was not an explicitly stated requirement to be
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able to handle this sort of imagery, the algorithms did manage to pick out the Moon

from the image, even though there were round pieces of the station that were visible

that could have potentially confused the algorithms. The other possible scenario for

seeing other bright objects other than the Moon would be when returning from the

Moon and looking towards Earth. In this case it would be possible to see both the

Earth and Moon, so a way to discriminate each would be necessary, especially in

cases where one may be partially occluding the other. These cases, however were

not tested, and are a subject of future work.

Grayscale Processing: All processing can be done in gray scale. RGB data is

not necessary for image processing, however it is possible that additional information

could be collected if each color channel is analyzed separately. For example, it’s

possible that light aberration of the optical system could be mapped out by seeing

how different color channels are affected differently. This, however, has not been

tested. All algorithm descriptions and formulations are presented assuming grayscale

images. However, there is no reason why the methods could not be extended to color

images as well.

Camera Attitude and Time Known: Camera attitude and accurate time is

known. This is provided by star trackers on board the spacecraft or through other

external means. If a star tracker is providing the attitude for the camera, then it is

assumed that it is mounted in a rigid way so that the orientation of the star tracker

with respect to the OpNav camera is known and fixed. Accurate Moon, Sun, and

planet ephemeris is available and up to date.
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Surface Features Ignored: The surface features of the Moon are not of in-

terest. It is sufficient to identify the limb in order to perform position estimation.

Surface features could be used, however, in cases where the observer is very close to

the Moon, or when camera attitude is not known and thus surface features, if cor-

rectly identified, could be used to help estimate observer orientation. This is outside

the scope of this work.

Image Preprocessing – Dead Pixel Cleanup and Camera Calibration

After capturing an image of the Moon, the first step of image processing is

to perform preprocessing which removes optical distortion and cleans up dead or

saturated pixels. Dead and saturated pixels are pixels which inaccurately report

the brightness of the incoming light. Dead pixel either report a zero value gray

tone, or a constant low value while saturated pixels always report a maximal or

constant bright gray tone value. These pixel usually stand out in sharp contrast to

their neighboring pixels, however it may take a sequence of multiple images stacked

together to make the these pixel more apparent. Once the faulty pixel have been

identified local interpolation using Chebyshev polynomials is applied in order to

“smooth” them over by using information from adjacent pixels [35]. An example of

this interpolation used on dead pixels can be seen in Figure III.2

All image processing after this step assumes a pinhole camera model, so the

image must represent a pinhole camera image as closely as possible. The optical

distortion is handled first by calibrating the camera used to capture Moon images

using calibration techniques such as those described by Zhang [36]. There are a
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Figure III.2: Interpolation of 3 dead pixels. Original values before removal: 8.8448,

-52.7071, -23.8660. Values after interpolation: 8.4053, -52.6215, -24.5352

multitude of available tutorials and code for various proprietary and open source

languages available online for performing this calibration. The calibration processes

produces a camera calibration matrix which can be applied to the image to correct

radial distortion including barrel and pincushion distortion as well as tangential

distortion due to misalignment in the optics. The correction is performed by shifting

and counter-distorting the pixel values in the image in order to produce and image

which approximates an image that was captured by a pinhole camera. Note that

such an image will still exhibit distortion due to gnomonic projection.

Image Gradient and Limb Pixel Selection

Following this preprocessing comes edge detection and selection of pixels be-

longing to the limb of the Moon. The goal of this process is to use these pixels to

approximate a circle or ellipse. The size of the apparent circle or ellipse will be used

for a distance estimate and can also seed a secondary, more refined, pixel selection
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process. This is done by first taking the gradient of the image, as shown in Figure

III.3. There are many tools available for performing image gradients [37]. The chosen

method was to take a 4 point central difference method using a 4x4 pixel kernel ma-

trix and a single application of Richardson Extrapolation which approximates what

the numerical image derivative would be if a smaller step sizes were used. This is a

computational acceleration technique which provides a hi-fidelity image gradient at

a relatively low computational cost.

Figure III.3: Gradient filter applied to image of Moon.

As can be seen in Figure III.3, the brightest pixels on the image gradient tend to

belong to the limb of the Moon. This may not always be the case, however, especially

in cases where the Moon is only partially illuminated (most cases). Due to variations

in surface topography there will be many high contrast pixels located around the

terminator on the Moon where craters, peaks, and valleys will create areas of bright

illumination adjacent to sharp dark shadows. Empirical tests are done to figure out
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the selection cutoff threshold for the brightness of the gradient pixels. However,

simple thresholding is not enough to ensure that only limb pixels are selected. One

approach to limiting the number of chosen pixels is to use an a-priori estimate of the

expected size of the Moon in order to determine how many pixels should be selected.

The number of selected pixels should be roughly half the circumference of the Moon,

measured in pixels, since except for the case of a full moon, there is is normally

only about a half-circle worth of limb visible. This prevents too many pixels from

being selected, but doesn’t help in the case where surface topography exhibits higher

contrast than the limb. This problem is exacerbated when the same methods are

used on Earth, as can be seen in Figure III.4. Clouds and continents create sharp

boundaries all along the surface of the Earth while the atmosphere actually softens

the limb edge, making thresholding more difficult and preventing limb pixels from

being selected for processing. Additional filters are necessary in order to compensate

for these issues.

Box Filter for Eliminating Outlier Candidate Pixels

A box filter is applied individually to every single selected candidate limb pixel

in order to eliminate pixels which do not belong to the limb. This filter relies on a

few assumptions regarding the pixels surrounding a potential limb pixel:

1. Limb pixels should not exist in isolation. There should be adjacent bright

pixels in the image gradient which are part of the limb as well.

2. Assuming the candidate pixel is centered in the box, then there should be two

opposing corners of the box which are both dark in the image gradient.
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Figure III.4: High contrast pixels selected for image of Earth taken by DSCOVR.

Note that none of the selected pixels in blue belong to the limb

3. The same two corners which were both dark in the image gradient should

actually differ significantly in gray tone in the original image, as one should be

in space while the other should belong to the illuminated portion of the body.

With these assumptions in mind a box ranging from 4x4 pixels up to 9x9 pixels

is defined around a candidate pixel. The inertia tensor of the greytone values inside

the box is computed and from that the principals axes are derived. One principal

axis should be in line with the limb and where it intersects the box boundaries there

should be bright gradient pixels. Once this first check is passed assumptions 2 and

3 are also tested by checking the corners farthest from the axis associated with the

limb. If all three checks are passed, then the candidate pixel is kept, otherwise it is

discarded. Figure III.5 shows a 7x7 box filter applied to a candidate pixel.
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Figure III.5: 7x7 Box filter applied to a candidate pixel. Green pixels denote limb

pixels while red pixels denote pixels farthest from the limb.

RANSAC for Eliminating Outlier Candidate Pixels

RANSAC, an abbreviation of “RANdom SAmple Consensus”, is used next

to eliminate candidate limb pixels that don’t belong to a circle (or ellipse) [38].

RANSAC is an iterative fitting method which can be applied when trying fit noisy

data that contains outliers to various mathematical models. RANSAC works by ran-

domly sub-sampling groups of data from the available population and attempting to

fit a mathematical model to that subset. If RANSAC detects a poorly fitting subset

of the data, that data is labeled as an outlier and removed from the population and

has no influence on the final fit. Once the RANSAC routine is ran on the candidate

pixels, any pixels which don’t fit the mathematical model of a circle or ellipse (ac-

cording to a distance threshold) are removed. In order to accelerate RANSAC and

produce more robust results, it’s useful to initialize it with knowledge of focal length

and an order-of-magnitude approximation of distance to the Moon which allows an

observer to roughly guess how large the Moon should appear in the image. The final
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candidate pixels which survive the RANSAC filtering process are used for the Taubin

best fitting which is initialized with estimates of centroid and radius of the apparent

moon from the results of RANSAC.

Initial Taubin Least Squares Fit

Once the pixel selection is complete, and outliers not belonging to the lunar

limb have been removed, an initial algebraic circle fit using the Taubin method is

done. For initial fitting purposes, it is admissible to assume that the projection of

the full Moon into the image plane is a circle. This would technically only be true

if the Moon is centered in the field of view, however for the relatively narrow field

of view of the images being processed and for the accuracy required of the initial fit,

this simplification is appropriate.

The Taubin method uses a fast non-iterative algebraic least squares fitting in

order to estimate the parameters a, b, c, d in the implicit equation of a circle: Eq.

3.1. It is robust in the sense that it works well even when only a small portion of

the lunar limb is visible. Knowing the parameters of this equation also reveals the

estimated centroid and radius of the observed Moon.

a(x2 + y2) + bx+ cy + d = x2 + y2 + αx+ βy + γ = 0 (3.1)

Users have the option to exit with this initial fit result if it is sufficiently accu-

rate/precise for their position estimation needs. If more precision is required, these

results can be fed into other algorithms which refine the centroid and apparent size

estimate further.
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Step 6 – Estimating Sun Direction and Preparation for Nonlinear Least

Squares

With the Taubin result in hand, the next step is to select a band of pixels

for performing a refined fit of the lunar limb that should provide a more accurate

estimate of the centroid and apparent size using iterative nonlinear least squares.

These pixels capture the transition in graytone across the most strongly illuminated

portion of limb to which we seek to fit a function.

The pixel selection process requires knowing or estimating the direction of solar

illumination so that only the most strongly illuminated portion of the limb is con-

sidered for processing. This can be achieved in two different ways. First, it may

be known a priori. If the attitude of the camera is known in an inertial frame and

there is ephemeris for the Earth, Moon, and Sun, the it is easy to represent the

vector connecting the center of the target body (Earth or Moon) to the center of the

Sun in the camera body frame. Then that vector can be projected into the image

plane. The second method of estimating the direction of illumination relies only on

the existing results from image processing. The direction towards the Sun can be

approximated by drawing a line which passes through two points, the first being the

estimated target body centroid which was already estimated using the initial Taubin

fit, and the second point being the centroid of the illuminated limb pixels which were

used for creating that initial fit. This estimate may be off by several degrees from the

true Sun direction, however it only needs to be accurate to within about 10 degrees

for the purposes of establishing the selection band for nonlinear least squares. This

is illustrated in Figure III.6.
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Figure III.6: Estimating Sun direction and selecting final pixel band. Left: Esti-

mating the direction towards the Sun when ephemeris or attitude not available using

estimated body centroid and initial limb pixel centroid Right: Defining a selection

angle θ and radius range [r0, r1] for final pixel selection band

A selection bounding angle of θ < 70◦ on either side of the sun direction vector

is used to limit the size of the band to prevent selection of pixels belonging to lunar

surface near the terminator which may be poorly illuminated. The width of the band

is determined by an internal and external radius, [r0, r1]. This is measured by how

many pixels on either side of the limb are desired given the initial radius estimate

r. Generally, the closer and larger the target body appears, the wider the band of

pixels necessary. For up close images with high resolution, this may be up to 10 or 11

pixels on either side of the initially estimated limb radius. For target bodies which

appear small this may be limited to 3 or 4 pixels on either side of the initial radius

estimate.
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Figure III.7: Pixel selection on real image for nonlinear least squares. Left: Direction

of solar illumination and selected limb pixels shown on image gradient. Right: Close

up showing the selection band

Figure III.7 shows the same selection process described above but applied to a

real Moon Image. The exact relationship between observer to target distance and

the size of the selection band is empirically determined and would also depend on

whether or not the target body has an atmosphere. For example, Earth’s atmosphere

makes the edge transition appear more gradual and thus a wider band of pixels is

needed. Also, if one is imaging a particularly oblate body, or there is significant

distortion due to gnomonic projection, the width of the band needs to be sufficient

to account for the fact that the limb doesn’t follow a circular arc. The band needs

to be wide enough so that the limb does not get too close to the edge of the selection

band. Once the limb pixels have been selected for nonlinear least squares, there are

two different frameworks that can be implemented in using these limb pixels. The

two frameworks are the 2D Image Plane Approach to Position estimation, the other

is the 3D Triaxial Body Approach.
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2D Sigmoid Nonlinear Least Squares for Position Estimation

The 2D Sigmoid approach fits a function to the flattened image of the observed

body in order to produce a position estimate in the camera reference frame. This

approach is suitable for bodies that are relatively smooth surfaces and not too oblate.

The Moon is a suitable candidate, since for all intents and purposes it appears as a

sphere at distances greater than 20,000 km. Its surface is not very smooth, however,

and this will create some issues that will be discussed in a later section.

Mathematical Formulation of Limb Fitting and Graytone Transition

Across 2D Scene

The formulations in this section have been described by Mortari [31]. These are

re-derived and explained here and their shortcoming are addressed in the subsequent

sections. Figure III.8 gives an idea of what the lunar limb looks when imaged with

a narrow field of view lens from Earth. The image is relatively well in-focus so the

transition across the edge take place over about two to three pixels. It is on images

similar to this one that the nonlinear least squares would be applied.

To understand how nonlinear least squares can be used in the 2D image plane it

is helpful to recall the equation for a sigmoid curve, specifically the logistic function,

though there are many different sigmoid curves which all exhibit a similar “S” curve

shape. The equation for the logistic function defined linearly along the x -axis is:

S(x) =
1

1 + e−x

This function describes a transition across the origin from one asymptotic level
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Figure III.8: Depiction of Sigmoid variation in pixel brightness as one transitions

across the lunar limb into space.

to another (-1,1) or vice versa, (1,-1) depending on the sign in front of the x in

the exponent. The function is easily scaled and shifted along the x -axis and y-axis

so the function can describe a transition from any level to any other level at any

x -coordinate over any length of transition section. This more generic formulation

looks like:

S(x) =
α

1 + e−k(x−x0)
+ β

where α, β, k, and x0 are all real numbers. The form shown above readily can be

used to describe the transition in graytone across a vertical edge in a picture, where

the normal of the edge is along the x -axis of the image frame. However, a modified

formulation is necessary for any edges which aren’t vertically aligned, such as the

edge of a disk as shown Figure III.9

In a perfect disk, for any point on that disk, the direction towards the center
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Figure III.9: Graytone transition along edge of a circle. r and c indicates pixel rows

and columns. rc and cc indicate the circle center.

along which distance from the center is measured is also normal to a circle passing

through that point. Put another way, the spokes of a wheel are all normal to the

wheel. Now, assume there is a disk which exhibits a uniform graytone transition all

around its circumference, meaning that the disk is uniform in color and brightness,

the background is uniform as well, and the disk’s edge has uniform sharpness. The

distance from the center of the disk to the midpoint of the sigmoid transition will

be the same around the circumference. For such a disk a circular formulation of

the sigmoid function can be used, where the single x coordinate of the original

formulation is replace by a coordinate pair [ri, ci]

S(ri, ci) = gb +
gs − gb

1 + ek(re−
√

(rc−ri)2+(cc−ci)2)
(3.2)

where
√

(rc − ri)2 + (cc − ci)2 is the distance of a chosen pixel with coordinates

[ri, ci] from the center of the circle, re is the expected radius of the disk, gb is the
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graytone of the background and gs is the graytone of the surface of the disk. The

formulation in Equation 3.2 describes a sigmoid transition with a midpoint located

on the expected radius, re of the disk.

However, it is common when imaging planets to observe an ellipse. This can

occur either when an ellipsoidal object is observed anywhere in the field of view, or

when a spherical object appears somewhere far away from the optical center. The

edge of the ellipse is a variable distance from the center, so a single function can not

be used to describe the transition for all edge pixels if it only uses the distance to

center as parameter. The distance to center must be transformed according to where

along the perimeter a pixel lies. The previous form, Equation 3.2 can still be used if

a linear transformation is applied to the edge coordinates to squish the ellipse into a

sphere. The general equation for an ellipse with center [rec, cec] and semi axis length

a, b is

(ri − rec)2

a2
+

(ci − cec)2

b2
= 1

where b can be rewritten in the form

b = ρa

which allows the equation of the ellipse to be rewritten in the form

(ri − rec)2 +
(ci − cec)2

ρ2
= (ri − rec)2 + (wi − wec)2 = a2 (3.3)

where w = c/ρ. We will call this the transformed ellipse as this equation changes

the equation of the ellipse to look like that of a circle, allowing the use of Equation
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3.2 but with transformed coordinates w instead of c and semi major axis length a

instead of radius re.

Figure III.10: Graytone transition along edge of an ellipse. “Radial Spokes” coming

from the center aren’t normal to the ellipse at all points.

This transformation is still insufficient however to accurately describe the tran-

sition on either side of the edge of the ellipse. As can be seen in Figure III.10, the

“radial spoke” coming from the center and intersecting an edge pixel is only normal

to the ellipse at the semi major and semi minor nodes. Everywhere else, it impinges

at an oblique angle, and thus using the distance from center to describe the transition

will not produce the same steepness of transition for all edge pixels. Spokes near

the semi minor and semi major nodes would have relatively fast transitions. While

spokes far away from the semi major and minor nodes will have longer, more gradual

transitions. Thus, distance from the edge must be calculated along a local normal,

which must be calculated separately for every pixel as well. This will be forthcoming

referred to as the ellipse normal problem. This problem will only have noticeable
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impact for highly eccentric ellipses.

The final difficulty added when trying to analyze the edge transition of an ap-

parent ellipse is that the ellipse is generally not centered in the field of view, and is

inclined with respect to the image axes, as shown in Figure III.11.

Figure III.11: Imaging an ellipse which appears rotated and off-center with respect

to the image plane. A translation and rotation is necessary in order to describe a

pixel location in semi axis coordinates. The ellipse center xc, yc is now defined in

image plane coordinates instead of row-column coordinates

Thus there needs to be rotation θ in order to take a pixel described in image

coordinates [ri, ci] and describe it in the semi axis frame. For an Nc ×Nr resolution

image, this transformation is captured by the following equation

xai
yai

 =

sin θ − cos θ

cos θ sin θ


ci − (Nc + 1)/2

(Nr + 1)/2− ri
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Where the transformation contained inside the right-hand vector is necessary to

convert row-column pixel coordinate representation to x, y imager coordinates which

have their origin in the optical center of the image, as shown in Figure III.11. Once

this transformation is applied, Equations 3.2 and 3.3 can be used to describe the

transition along the edge. Equation 3.3, however needs a minor adjustment before

it is applied. We will define wai = yai/ρ instead of the original w = c/ρ formulation.

Also, since we are now dealing with the transformed ellipse, a will appear in the

exponential, instead of the previous re. With these fixes applied we have the elliptic

sigmoid function:

S(xai, wai) = Si = gb +
gs − gb

1 + ek(a−
√

(xai−xc)2+(wai−wc)2)
(3.4)

This equations should be able to accurately describe the graytone transition over

the edge of observed spherical body, while keeping in mind the aforementioned ellipse

normal problem which would be an issue for bodies which appear highly ellipsoidal.

Cost Function Minimization and Iterative Update

We now prepare the sigmoid formulation for use with nonlinear least squares.

Using Equation 3.4, and replacing k with κ to reduce future confusion with iteration

counters, we can formulate a residual:

Li = Si − gi =

(
gb +

gs − gb
1 + eκ(a−

√
(xai−xc)2+(wai−wc)2)

)
− gi (3.5)

Peeking into Equation 3.5 it can be seen that minimization of Li requires ac-

curate estimation of the seven unknown parameters u = [gb, gs, κ, a, ρ, xc, wc] which
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means there are seven partial derivatives which must be calculated to populate the

Jacobian for each selected edge pixel. An initial guess must also be provided for each

parameter:

• gb0: This represents the graytone of the surrounding background behind the

body. It can be initialized as the average graytone of the pixels on the outer

edge of the selection band.

• gs0: This represents the graytone of the surface of the observed body. It can

be initialized as the average graytone of all the pixels on the inner edge of the

selection band.

• κ0: This is the steepness of the transition across the edge of the body. For

bodies that appear large in the field of view this transition may occur over

several pixels, possibly up to ten, while bodies that appear small might only

need about three pixels to describe the transition. If we assume, that on average

roughly five pixels are sufficient to describe the transition, then an initial value

of 1 is appropriate for κ. This can be empirically tuned.

• a0: Is the estimate of the semi major axis of the observed ellipse and can be

set equal to initial radius estimate produced by the Taubin fit.

• ρ0: Most observed ellipses will not exhibit significant eccentricity, therefore it

is sufficient to assume that ρ is initially 1.

• xc0: This is initialized as the x -coordinate of the centroid estimate produced

by Taubin in the initial fitting.
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• wc0: This is initialized as the y-coordinate of the centroid estimate produced

by Taubin in the initial fitting. Since we are assuming an initial ρ of 1, there

is no need to scale this coordinate.

Li is a nonlinear function of the parameters u. Li is linearized and an iterative

framework is set up using the initial values defined above.

Li = Li(u) with u = [gb, gs, κ, a, ρ, xc, wc]
T

Linearizing Li with respect to parameters u produces:

Li,k+1 =Li,k +
∂Li
∂gb

∆gb,k+1 +
∂Li
∂gs

∆gs,k+1 +
∂Li
∂κ

∆κk+1

+
∂Li
∂a

∆ak+1 +
∂Li
∂ρ

∆ρk+1 +
∂Li
∂xc

∆xc,k+1 +
∂Li
∂wc

∆wc,k+1

The linearized equation which must be solved in order to calculate update ∆u

is thus

0 = Lk + Jk∆uk+1 (3.6)

Where J is the Jacobian:

J =


...

∂Li
∂u
...

 =


...

...
...

...
...

∂Li
∂gb

∂Li
∂gs

∂Li
∂κ

∂Li
∂a

∂Li
∂ρ

∂Li
∂xc

∂Li
∂wc

...
...

...
...

...
...

...



and the least squares update equation is:

uk+1 = uk + ∆uk+1 where ∆uk+1 = − (J T

k Jk)
−1 J T

k Lk (3.7)

74



The nonlinear least squares iteration is repeated until the stopping criteria

||∆uk+1||2 < ε

is reached, or a maximum number of iterations is reached. The value of ε must

be empirically determined depending on user needs.

Position Estimate

From this refined estimate of the parameters u the ones that are relevant to

position estimation are a, ρ, xc, wc where ρ is only necessary so that wc can be

converted to yc. [xc, yc] are the coordinates of the refined centroid estimate that are

used to define a direction towards the observed body and a serves the same purpose of

a radius estimate when observing a spherical body, though a more complex treatment

is necessary if the body underwent significant gnomonic distortion. By comparing

a, measured in pixels, and applying a pinhole camera model ... equation .... the

distance to the observed object can be estimated (assuming its radius is known).

Thus the position with respect to the body can be expressed in the camera frame.

If the attitude of the camera is known, this position can be expressed in an inertial

frame.

Limitations and Potential Modifications to the Method

This method faces several limitations. The immediate limitation is that it is

not well suited for oblate or ellipsoidal bodies. Both spherical bodies and triaxial

ellipsoids produce ellipses when projected into a 2-Dimensional surface [39]. However,

unlike spherical bodies, the center of the projected ellipse one sees when imaging an
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oblate body is not necessarily in-line with the center of the body. Figure III.12

illustrates this concept.

Figure III.12: Offset angle α between the apparent body center and true body center

when imaging an ellipsoid.

If one is estimating their position with respect to the apparent center of an

observed ellipsoid, vs the true center, then their position estimate will incur and

error. The magnitude of that error is a function of distance to the body, latitude,

and how oblate the body is. Attempts to find an analytic solution for offset angle

α led to investigations in the geometric definition of triaxial ellipsoids in the hopes

of reconciling the 2D sigmoid approach with oblate spheroids. Some possible correc-

tions based on empirical results were proposed, however these corrections were never

implemented.

Another closely related issue to the offset angle is the ellipse normal problem

previously defined. Measuring distance from the center of the ellipse does not pro-

duce a path which is normal to the ellipse’ perimeter and thus produces a skewed
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description of the edge transition. It is possible that this issue may be resolved using

transformed ellipse coordinates, however this has not been verified.

Finally, for bodies which appear far from the optical center of the camera, it

is inaccurate to only use a as an estimate for the apparent radius of the observed

object. Instead, amust be scaled down appropriately to compensate for the gnomonic

distortion which stretches out objects radially, and to a lesser degree tangentially. It

may also be necessary to separately consider the semi major and semi-minor axes of

the observed ellipse and might not be possible to accurately come up with a single

parameter a which represents the size of the observed body.

Multiple investigations went into addressing some of these issues, however this

method was instead wholly superseded by a more generic 3D formulation, presented

in the next section, which can handle more oblate bodies and does not suffer from

the difficulties introduced by gnomonic projection.
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3D Sigmoid Nonlinear Least Squares for Position Estimation

The previous section developed a description of the transition across the edge

of an ellipse using a two dimensional derivation, where all calculations are done one

the projected image of an observed celestial body. That process was well suited to

spherical bodies, however encountered difficulty when dealing with triaxial ellipsoids

and also suffered losses in accuracy due to gnomonic projection. This section presents

an entirely different formulation based on a three dimensional triaxial ellipsoidal body

which also does not suffer from these issues. Unlike the two dimensional approach,

the three dimensional approach produces a position estimate defined in the principal

axes of the observed target body, not in the camera frame. This means that in order

to use this method, the ellipsoid of the body must be known. The method would

not work for a body with unknown semi-axis lengths. Also, if the goal is to provide

a position estimate defined in some other frame, then the orientation of the axes of

the observed body must also be known with respect to an inertial frame.

Geometric Derivation

This 3 dimensional formulation stemmed from attempts to address the limi-

tations of the 2 dimensional approach, and eventually entirely superseded it. We

begin with the definition of an observer position p defined with respect to a triaxial

ellipsoid as shown in Figure III.13.

The equation for a triaxial ellipsoid is as follows:

x

a2
+
y

b2
+
z

c2
= 1

Where a, b, c are the semi-axes of the ellipsoid. This equations can be rewritten
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Figure III.13: Observer located at point p with respect to origin of triaxial ellipsoid.

Vector x emanates from the center of the body and goes to a point on the surface.

Vector v̂ point from the observer towards a point on the surface of the body.

in vector form

xTJx = 1 (3.8)

Where x = [x, y, z]T and J = diag(a−2, b−2, c−2). The two formulations are

equivalent in that they represent the same scalar equation, however the second for-

mulation will be more useful moving forward.

When observing a triaxial ellipsoid, if one connects all the points along the

observed limb to the observer, this will describe an elliptic cone. An observer picks

one of these points along the limb and defines a vector pointing towards it as v̂. x

can be defined with respect to p and v̂:

x = p + vv̂ = p + v (3.9)

The exact length v of v is not important just has to satisfy the constraint that

v is tangential to the surface, meaning that it intersects the body of the ellipsoid
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only at one single point on the surface. In order to find the values of v that satisfy

this constraint, one can solve Equation 3.8. The equation is quadratic in v and in

order to satisfy the constraints, the two roots v1 and v2 must be equal. Substituting

Equation 3.9 into Equation 3.8 and enforcing that the roots v1 and v2 are equal, one

can arrive at Equation 3.10

vTMv = v̂TMv̂ = 0 where M = JppTJ− (pTJp− 1)J (3.10)

This result is verified through eigenanalysis and is proven by Mortari [31]. Just

like Equation 3.8, Equation 3.10 is a scalar equation. It is satisfied by any v̂ vector

which represents a line-of-sight vector emanating from an observer towards the ob-

served limb of a triaxial ellipsoid. If we relax that constraint and allow v̂ to point in

towards the body or away towards space then we have the following Equation 3.11:

ξ = v̂TMv̂ (3.11)

Equation 3.11 gives a useful method for measuring how far “off-limb” a certain

vector v̂ may be. From an observer’s point of view when v̂ points exactly towards

the visible limb, Equation 3.11 is zero. When it points inward towards the body

of an observed triaxial ellipsoid it becomes positive. When it points away from the

body, ξ becomes negative.

The pixel selection process — Step 6 of the full OpNav algorithm — creates

a band of pixels along the limb of an observed body. The center of each of these

pixels, [ri, ci] can be transformed into a corresponding v̂i vector which emanates from

the focal point of the camera frame and points to the center of the pixel and this

for every selected pixel pi there is a corresponding graytone gi and a corresponding
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ξi. This sets us up to define a new functional description of the graytone transition

across the edge.

Mathematical Formulation of Limb Fitting and Graytone Transition

Across a 3D Scene

Previous discussions of graytone transition over an edge were based on the as-

sumption that the transition occurs over a distance measured in pixel coordinates.

We are moving away from this formulation and shifting towards looking at angular

distance from an edge, as opposed to linear pixel distance. The same sigmoid func-

tion which describes a transition in graytone over a flat surface works just as well

for a graytone transition over an angular sweep, and in fact, for small angles the two

approaches are almost numerically identical. Deviation between the two approaches

starts to arise when an object is significantly distorted due to gnomonic projection.

The current formulation completely sidesteps this issue however. The only concern

that might arise due to gnomonic projection is the the question of whether or not

the band of pixels which sweeps along the limb is wide enough to capture a limb

which might be stretched out due to gnomonic distortion. See Figure III.14 for more

information.

When comparing two bands of equal pixel width, one at the optical center,

the other far away from it, the two bands have the same width on the imager but

subtend different angles. Even though the distant band might contain pixels which

have been stretched out, this effect is reversed when the graytones are mapped onto

angular displacement. Thus the distant band subtends a smaller angle and thus the
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Figure III.14: Gnomonic distortion stretches out an edge transition which is far from

the optical center. However, even though the transition spans more pixels, those

pixels still subtend the same angular distance as a transition at the optical center of

the image.

transition which has been stretched in the 2d image plane is now compressed back to

its original width when transforming into angle-space. An analogous case would be

that of a curved spherical imager. If pixels were placed on a spherical imager, instead

of a flat one, then all edges of the same body would subtend the same number of

pixels regardless of their location in the image. This is the effect being created by

performing the analysis in three dimensions as opposed to two and this is the reason

why it is worth formulating an angle-based sigmoid fit the the graytone transition

across a limb.
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Angle Based Sigmoid Formulation

The motivation behind the 3D formulation developed in this section was to bet-

ter handle oblate bodies and deal with gnomonic projection, however let us assume

momentarily that a spherical body is being imaged. This body already has an es-

timated location of its centroid in the field of view as well as an estimated angle of

subtention. The subtended half-angle associated with the radius of this body is θr.

Measuring from the apparent center of this body, any angle smaller than θr will be

inside the visible body while any angle greater would be outside the body. Suppose

there some pixels near the limb of the observed body, each subtending some angle θi

with the center of the body. We can formulate the sigmoid function

S(θi) = gb +
gs − gb

1 + ek(θi−θr)
(3.12)

For pixels lying exactly on the limb, θi and θr coincide, and the sigmoid is at

its midpoint, halfway through the graytone transition. Referencing Equation 3.12

it is clear that a graytone transition across the limb of an observed body can be

described as a function of angular deviation away from the limb. However, this does

not quite align with the mathematical framework which has been established as will

be discussed in the next section.

A Comparison of ξ vs θ

In our triaxial ellipsoid framework, deviation from the limb is measured by pa-

rameter ξ, not by some angular deviation θ. The exact analytic relationship between

ξ and θ has not been investigated, however numerical analysis has been performed.
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If a relationship between the two values could be found then Equation 3.12 can be

rewritten as Equation 3.13

S(ξi) = gb +
gs − gb

1 + ekf(ξi)
(3.13)

where f(ξi) maps ξi into an angular deviation. If such a formulation could be written,

then the ξ values associated with every limb pixel from the selection band could easily

be translated into an associated expected graytone value.

Before any investigation is done into the relationship between ξ and θ, it is

already known that when the angular deviation of a vector from a limb is zero, i.e.

when θ = 0, ξ is also zero. This is the condition where Equation 3.10 is satisfied.

This holds true for an observer at any position and an ellipsoidal body with any

degree of oblateness.

One of the first investigations comparing ξ and θ involved placing an observer

relatively close to a spherical body and defining a surface tangent vector which, from

the observer’s point of view’ points towards what would be the observed limb. This

vector is pitched through a range of angles. The angular range is set to go inward

towards the center of the body by one quarter of the observed body radius and

outward by the same amount. The width of this sweep corresponds roughly to the

angle that would be subtended by the band of selected pixels which was prepared

before nonlinear least squares. This scenario is shown in Figure III.15

At each step ξ is computed and the relationship between ξ and θ can be seen

in Figure III.16. Though not mandatory, the angular range is intentionally defined

so that a negative rotation points the vector away from the body, so that θ and ξ

share the same sign. Note that while the sign of θ can be arbitrarily chosen — an
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Figure III.15: An observer looking towards the limb of a spherical planetary body

or moon. That observation is rotated through a range of angles towards and away

from the body.

inward rotation towards the body can be defined as positive or negative and the

same hold true for an outward rotation from the limb — this is not true for ξ. From

numerical tests such as the one shown in III.16, it is evident that ξ is positive when

angular deviation is inward towards the body, and negative when angular deviation

is outward away from the body.

The somewhat uneventful results of Figure III.16 are encouraging, since they

demonstrate that for the angular range under consideration, ξ is nearly linear with

respect to θ. This is important, since the formulations for graytone transition across

an edge which we have is based on angular measure. If the relationship between ξ and

θ is linear, then only a simple scaling factor needs to be introduced when adapting a

formula for describing the graytone transition to work in the ξ domain. These results
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Figure III.16: Relationship between ξ and θ for an angular sweep across the limb of

about 16 degrees. Note the relationship is nearly linear.

encouraged attempts to use a linear approximation to describe the relationship of ξ

with respect to θ. Using a 3 point central finite difference method, the scaling factor

between θ an ξ was determined to be about 101, when θ is described in radians. The

approximation was tested at varying observer-to-body distances while bounding the

range of θ to be one quarter of the half-angle subtended by the observed body. The

results of one of these tests can be seen in Figure III.17.

At closest approach, the observer was placed to be 1.5 body radii away from

the surface tangent point, roughly 1.8 body radii away from the center of the target

body. At the farthest distances, the observer was 200 body radii away from the target

body, so that the target body subtended only about 0.29 degrees. This corresponds

to what the Moon would look like if the distance between the Earth and Moon were

roughly doubled, since currently the Moon is about 100 Moon radii away from Earth.

It was noted that, for close distances of a few body radii, the linear approximation

was fairly good and slowly became worse as the observer moved away from the body.
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Figure III.17: ξ vs θ for an observer 100 body radii away from target body. Top:

Linear approximation of ξ vs θ. Middle: Percent error of linear approximation.

Discontinuity present at middle when both ξ and θ are zero. Bottom: Numerical

derivative dξ/dθ

After about 4 to 6 body radii however the quality of the linear approximation stops

changing. Whether an observer is 6 body radii or 100 body radii away from a target

body the relationship between θ and ξ seems to remain fixed. Figure III.17 was

generated at 100 body radii distance, however if that distance were changed, as long

as it is greater than 6 body radii, the only thing that would change about the plots,

is the angular range of θ. From the figure, it can be seen that the percent error of

the linear approximation goes above 10% near the extrema of the angular range of
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θ which indicates that a using ξ with just a constant scale factor may be insufficient

for modeling the graytone transition across the limb. From the figure it is also clear

that the derivative dξ/dθ varies linearly over the angular range, indicating that a

quadratic model would likely describe the relationship between ξ and θ well.

There was an additional concern that perhaps the simple rotation which pitches

the observation vector towards or away from the center would not span all potential

observation scenarios. To address this concern, a second orthogoanl rotation was

added. This however, would be no different than choosing a different limb point,

directly under the new tip of the observation vector, and simply pitching away from

the center until the new tip location is reached. The same effect can be reached

by also pitching the observation vector away from a target body and then simply

rotating that body. What this thinking leads us to conclude is that the pattern seen

in Figure III.17 should hold true for any point on the surface and that ξ should

decrease uniformly in every direction as an observation vector is pointed away from

the limb. This is supported by Figure III.18.

The final investigation into the relationship between ξ and θ looks into the

effects of the oblateness of the observed body. Multiple tests were performed with

bodies with varying oblateness, varying the semi-axes of J according to the sampling

a, b, c ∼ U(0.5, 2). No variation in the relationship between ξ and θ is discernible,

especially once the observer is more than a few body radii away from the target

body. Figure III.19 shows the results from three different runs with bodies of different

oblateness with the observer placed at 50 body radii away from the target.

There is no apparent variation in the error of the linear approximation of ξ
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Figure III.18: Contours of ξ near the limb of an observed body. Angles are measured

as fraction of the angle subtended by the body radius. ξ values on the outside of the

limb are negative and all values inside are positive.

as a function of θ across the three different cases. While a full Monte Carlo test

may be warranted, it is likely that a single mapping from ξ to θ would be sufficient

for all observation cases. The remaining development of the nonlinear least squares

formulation assumes this single mapping for all cases.
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Figure III.19: Results from three ξ vs θ relationship tests with three ellipsoids of

varying oblateness. All are imaged from the same direction from an observer located

50 body radii away from the target. Not the invariance of error for the linear ap-

proximation of ξ for the three different cases. Some axis labels have been omitted

for clarity.
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Final Conversion from ξ to θ, Cost Function Construction, and Iterative

Update

Following the results of the analysis of the relationship between ξ and θ from

the previous section, we adopt the following linear approximation of θ as a function

of ξ

θ(ξ) rad = a rad × ξ ≈ 101ξ (3.14)

where a is a scalar constant determined to be about a = 101 using a 3 point finite

central differencing technique. Combining Equation 3.14 and Equation 3.13 yields

S(ξi) = gb +
gs − gb

1 + ekaξi
= gb +

gs − gb
1 + eκξi

(3.15)

where the a can either be expressed as 101 or incorporated into κ. The associated

cost function is

Li = Si − gi =

(
gb +

gs − gb
1 + eκξi

)
− gi (3.16)

Just like in the two dimensional case, gb, gs, and κ are relevant parameters which

need to be estimated, however instead of a centroid and radius estimate there is

instead ξi = ξi(x, y, z) which has the ellipsoid body geometry J and the observer

position [x, y, z] built into it. The list of final parameters which must be estimated is

u = [gb, gs, κ, x, y, z]. Each of these parameters must be given an initial guess value

• gb0: This represents the graytone of the surrounding background behind the

body. It can be initialized as the average graytone of the pixels on the outer

edge of the selection band.

• gs0: This represents the graytone of the surface of the observed body. It can
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be initialized as the average graytone of all the pixels on the inner edge of the

selection band.

• κ0: For the two dimensional case, κ0 was set to 1, here since the a factor is

built into it, κ0 can be set to 101.

• x0, y0, and z0: The individual component of the initial position estimate given

in the principal target body reference frame. From initial processing, a position

estimate with respect to the observed body is provided in the camera reference

frame. This position estimate is then expressed in an inertial frame using the

known attitude of the observing spacecraft camera. This must now be expressed

in the reference frame aligned with the principal axes of the observed target

body. Knowledge of the orientation of this frame requires having ephemeris

and a trusted clock available. With all of these elements combined, the initial

position estimate is:

[x0, y0, z0]T = p0,B = CBICICp0,C

where p0,C is the initial position estimate with respect to the target body

defined in the camera frame, CIC is the camera-to-inertial direction cosine

matrix (DCM) which rotates the camera frame into the inertial frame, and

CBI is the inertial-to-body DCM.

As before, we define

Li = Li(u) with u = [gb, gs, κ, x, y, z]
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Linearizing Li with respect to parameters u produces:

Li,k+1 =Li,k +
∂Li
∂gb

∆gb,k+1 +
∂Li
∂gs

∆gs,k+1 +
∂Li
∂κ

∆κk+1

+
∂Li
∂x

∆xk+1 +
∂Li
∂y

∆yk+1 +
∂Li
∂z

∆zk+1

The partials for this equation with respect to x, y, z are listed in Appendix A. The

linearized equation which must be solved in order to calculate update ∆u is thus

0 = Lk + Jk∆uk+1 (3.17)

Where J is the Jacobian:

J =


...

∂Li
∂u
...

 =


...

...
...

...
...

∂Li
∂gb

∂Li
∂gs

∂Li
∂κ

∂Li
∂x

∂Li
∂y

∂Li
∂z

...
...

...
...

...
...


and the least squares update equation is:

uk+1 = uk + ∆uk+1 where ∆uk+1 = − (J T

k Jk)
−1 J T

k Lk (3.18)

The nonlinear least squares iteration is repeated until the stopping criteria

||∆uk+1||2 < ε

is satisfied, or a maximum number of iterations is reached. The value of ε must be

empirically determined depending on user needs.

To get the partials needed for populating the Jacobian J there are several

intermediate partials which are needed, namely
∂L

∂ξ
,
∂ξ

∂x
,
∂ξ

∂y
, and

∂ξ

∂z
. Recall that

ξ = vTMv and that M = JppTJ− (pTJp−1)J, so these partials of ξ in turn require
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the matrix partials
∂M

∂x
,
∂M

∂y
,
∂M

∂z
. All of these partial derivatives can be found in

the Appendix A, starting with Equation A.2, defined for generic ellipsoids, as well

as special cases of ellipsoids with symmetries.

Position Estimate

One of the benefits to using this 3D approach over the 2D approach is that

a position estimate in Cartesian coordinates is directly produced by the nonlinear

least squares. If it is sufficient to define the position of the observer in the principal

axis frame of the observed body, the values of x,y,z produced by the nonlinear least

squares can serve as a final position estimate. If it is necessary to define it in an iner-

tial or other frame, then the result can be expressed in whatever frame is necessary

assuming the ephemeris for the body is provided. If the position of the observer is

needed with respect to some other reference, then it is only necessary to know the

position of the observed ellipsoid with respect to that reference, and the position

estimate can be translated.

Method Limitations

During one of the tag up meetings with the Orion team at JSC a plot of the least

squares residuals associated with the sigmoid fit of each Moon limb pixel was pre-

sented and It was noted that the residuals seemed to exhibit multi-modal behavior.

There were at least two distinct groupings visible in the magnitude of residuals. This

hurt the accuracy of the radius and centroid estimate so it was worth investigating

what could be causing this bi-modal behavior.
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After a brief discussion it was hypothesized that variations in lunar terrain were

creating the observed behavior. The transition across the limb of the Moon into space

is one of light to dark and the exact nature of that transition changes depending on

how bright the lunar side is. The Moon is covered in highlands as well as seas,

or maria in Latin, which are large basaltic plains that appear significantly darker.

Referencing back to Figure III.8 one notices that the maria come up close against

the lunar limb and are prominent when viewing the lunar nearside from Earth. They

give the Moon it’s distinct features which we recognize as the “Man in the Moon”.

It was believed that the lower graytone values associated with the maria led to a

shift in the location for the sigmoid fits near them as shown in Figure III.20, leading

to different beliefs about the location of the limb.

Figure III.20: Difference in apparent location of limb due to variation in brightness

of surface of observed object.

The fact that a brighter object can have edges which appear to expand outward
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into the image scene shows that a sigmoid description of limb transition is not ex-

act. In theory, a brighter object would simply have a larger sigmoid level step and a

steeper transition, without shifting the location of the transition midpoint. However,

in practice with digital optical systems, this is not the case. Brighter objects tend to

have edges which glow, or expand out, into the scene. This is a complex phenomenon

related to not only how light behaves in an optical system, but also to discretization

of graytone values when mapped onto a digital imager. The effect is particularly

noticeable for images which contains high contrast scenes where pixels become sat-

urated. Once a body appears saturated in an image, the pixels associated with that

body cannot become any brighter, so if the exposure is increased, the object will

start appearing bigger, an effect known as “bleeding”. The appearance of the lunar

highlands producing a slightly larger looking Moon is a less extreme expression of

the same effect.

It turned out that variations in lunar terrain where creating different distance

estimates. The maria were indeed shifting the estimated location of the limb. This

problem could potentially be addressed if there was a way to “flatten” the surface of

the Moon so that variations in topography and lighting do not have an impact on the

image processing algorithms. The approach to resolving this problem is presented in

the next section.
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3D Gaussian Nonlinear Least Squares for Position Estimation

To resolve the issue presented in the previous section regarding the variations in

lunar surface brightness leading to inconsistent distance estimates it was proposed

to perform the limb fitting using a Gaussian fit on the image gradient, as opposed to

a sigmoid fit on the original image. This approach worked well and was adopted as

the final form for the nonlinear least squares position estimation algorithm. It has

been described by Borissov [40], where the three dimensional Gaussian approach for

limb fitting is presented, however is missing a functional relationship between ξ and

θ which was developed in the previous section and used here.

Working on the Image Gradient

The gradient of the Moon images was already calculated at an earlier stage

when performing the high-contrast pixel selection during the initial limb fitting.

Referencing Figure III.21 one can look closely at the gradient of the limb and see the

transition across it can be modeled by a Gaussian curve.

One can also note than, even though there is some noise on the inside of the

lunar body, over the graytone of the body is relatively uniform. The variations in

brightness associated with the varying lunar terrain do not exhibit high contrast

and thus appear only faintly in the image gradient. Thus, the surface of the Moon

appears more uniform in the image Gradient than in the original image.
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Figure III.21: Gaussian approximation of transition across gradient of limb.

Mathematical Formulation of Limb Fitting and Graytone Transition

Across a Gradient 3D Scene

It stands to reason that since we are working with the image gradient, that

our fitting function would be the derivative of a sigmoid, and indeed a Gaussian is

the derivative of a sigmoid. When the gaussian function is used to model a normal

probability distribution it appears as

g(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
In probability distributions, the peak hight of the Gaussian is normalized so that the

area under the curve is 1. For the purposes of limb fitting, this constraint can be

relaxed so that the peak hight of the Gaussian instead corresponds to the graytone

of the brightest gradient limb pixels. Also, instead of defining the Gaussian as a

function of distance from a mean, i.e. x − µ, we can instead define it as a function

of angular deviation θi − θr or, like in the last section, as a function of ξi. Thus, the
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form of the Gaussian function which will be fitted to the limb gradient is captured

in Equation 3.19.

g(ξi) = g′maxe
−ξ2i /(2σ2) (3.19)

where g′max is the peak graytone of the limb gradient and σ determines the spread of

the Gaussian. If the linear approximation for ξ(θ) is used, then the scaling constant

between θ and ξ can be embedded into σ.

Cost Function Minimization and Iterative Update

The cost function associated with the Gaussian fit is

Li = g′maxe
−ξ2i /(2σ2) − g′i

where g′i is the graytone of the gradient pixels from the selection band as can be seen

in Figure III.22.

Figure III.22: A summary of critical equations and concepts regarding Gaussian

fitting on the limb gradient.
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Looking to Equation III it is evident that Li is a function of the unknown

parameters g′max, σ and ξ. As before ξ is a function of the position estimate x, y, z,

so the final list of parameters which must be estimated through least squares is

u=[g′max, σ, x, y, z]. Initial values for u are:

• g′max,0: The limb of the Moon is a relatively high contrast edge, thus the gradient

of edge pixels will be very bright. If the maximal possible graytone that an

image pixel can take on is normalized to 1, then a good initial guess for g′max

is a value between 0.7 and 0.9. One can also collect the highest gradient pixels

that were used during the initial limb fitting and use their average graytone

value as an initial guess.

• σ0: Taking a cue from statistical analysis, we can assume that the majority of

the transition is described within the 3-σ bounds of the Gaussian. For many

images, it takes about three pixels on either side of the limb for the gradient

of the edge transition to fade to black. Thus, a reasonable initial guess for

σ is one pixel. However, our cost function is not defined in the domain of

pixels, but instead on the domain of ξ, thus pixel units must be converted to

ξ. This conversion is done assuming pixels near the optical axis. Pixels far

from the optical axis subtend a smaller angle than those near it, however for

the purposes of getting an initial estimate for σ this is not relevant. A pixel

near the optical axis subtends an angle θ = arctan(d/f) where d is the size of

the pixel and f is the focal length of the lens. For the nominal Aptina imager

proposed for Orion, the pixel pitch is d = 0.0022mm and the nominal focal

length is f = 16mm. Thus, θ = arctan(0.0022/16) = 1.38e − 4. Multiplying
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this by the scale factor 101 produces an estimate for σ scaled to the ξ domain:

σ0 = 0.014

• x0, y0, and z0: The initial position estimate is the same as that for the sigmoid

approach. It is reiterated here for ease of reference. The individual component

of the initial position estimate given in the principal target body reference

frame. From initial processing, a position estimate with respect to the ob-

served body is provided in the camera reference frame. This position estimate

is then expressed in an inertial frame using the known attitude of the observing

spacecraft camera. This must now be expressed in the reference frame aligned

with the principal axes of the observed target body. Knowledge of the orien-

tation of this frame requires having ephemeris and a trusted clock available.

With all of these elements combined, the initial position estimate is:

[x0, y0, z0]T = p0,B = CBICICp0,C

where p0,c is the initial position estimate with respect to the target body de-

fined in the camera frame, CIC is the camera-to-inertial direction cosine matrix

(DCM) which rotates the camera frame into the inertial frame, and CBI is the

inertial-to-body DCM.

As with the sigmoid formulation, we linearize Li with respect to the unknown

parameters

Li,k+1 =Li,k +
∂Li
∂g′max

∆g′max,k+1 +
∂Li
∂σ

∆σk+1

+
∂Li
∂x

∆xk+1 +
∂Li
∂y

∆yk+1 +
∂Li
∂z

∆zk+1
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The partials for this equation with respect to x, y, z are listed in Appendix A. The

linearized equation which must be solved in order to calculate update ∆u is thus

0 = Lk + Jk∆uk+1 (3.20)

Where J is the Jacobian:

J =


...

∂Li
∂u
...

 =


...

...
...

...
...

∂Li
∂g′max

∂Li
∂σ

∂Li
∂x

∂Li
∂y

∂Li
∂z

...
...

...
...

...


and the update equation is:

uk+1 = uk + ∆uk+1 where ∆uk+1 = − (J T

k Jk)
−1 J T

k Lk (3.21)

The nonlinear least squares iteration is repeated until the stopping criteria

||∆uk+1||2 < ε

is satisfied, or a maximum number of iterations is reached. The value of ε must be

empirically determined depending on user needs.

As was the case for the sigmoid derivation, to get the partials needed for populat-

ing the Jacobian J there are several intermediate partials which are needed, namely

∂L

∂ξ
,
∂ξ

∂x
,
∂ξ

∂y
, and

∂ξ

∂z
. Recall that ξ = vTMv and that M = JppTJ− (pTJp− 1)J,

so these partials of ξ in turn require the matrix partials
∂M

∂x
,
∂M

∂y
,
∂M

∂z
. All of these

partial derivatives can be found in the Appendix A, starting with Equation A.2,

defined for generic ellipsoids, as well as special cases of ellipsoids with symmetries.
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Brief Overview of Application and Results

The Gaussian fitting algorithms were tested on multiple synthetic and real image

sets of both the Earth and Moon. The results of the majority of that testing are

covered in the next chapter along with analysis on the accuracy of the method. For

the purposes of this section only a brief summary of some results is offered in order

to paint a picture of how the algorithms actually works. Referencing Figure III.23

it can be seen how the quality of the fit changes after the nonlinear least squares

iteration is complete.

Figure III.23: Gaussian fitting applied on image of Earth taken from the DSCOVR

Mission. Graytone values for all pixels selected for nonlinear least squares is shown

as a function of ξ before and after nonlinear least squares. Note that even though

the original image of the Earth is being shown, least square fitting was performed

on the gradient.
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Though the original image of the Earth is shown, nonlinear least squares was

performed on the gradient. The bi-modal distribution in graytone that that can

be seen in the initial guess is due to slight error in the initial centroid estimate for

the Earth. Once this error was corrected through the nonlinear least squares, the

majority of selected pixels align well with the Gaussian fit. It is not entirely clear why

the band of pixels is as wide as it is. This could possibly be due to the high number

of pixels which are being used. Since the original image was hi-resolution over a

thousand pixels were selected for nonlinear least squares. Variations in atmospheric

conditions which may also manifest itself as noise in the image which affects the

graytone values of pixels near the limb. The initial guess of σ0 = 0.014 wasn’t too

far off, as it appears the final converged value is somewhere close to 0.005 — about

one third the starting value.

Method Limitations and Potential Future Work

A Gaussian fit using a 3D formulation for the nonlinear least squares offered im-

provements in performance and capabilities over the sigmoid formulation, however

it does face some limitations, especially when applied to celestial objects with atmo-

spheres. The atmosphere of planets or moons creates a softer limb edge than would

be seen for terrestrial bodies. This “atmospheric glow” makes a planet or moon

appear slightly bigger than it truly is which fools position estimation algorithms into

thinking the observer is closer to the object than they really are. This effect was

noticed when processing images of Earth. If the effect introduced a constant bias

in distance estimation, then calibration could easily resolve the issue by estimating
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and subtracting out the bias. Unfortunately the bias introduced by this atmospheric

glow is not constant. When one is close, this effect is more more pronounced and

as an observer moves farther and farther away from an observed body with an at-

mosphere, the limb of the planet becomes more crisply defined and the atmosphere

plays a smaller role. This variable bias introduces problems which require modeling

a relationship between how the atmosphere appears as a function of observer to body

distance.

Another potential limitation is the use of a linear approximation for θ(ξ). Switch-

ing to a more complex model, for example an inverse-quadratic model defining θ

function of the square root of ξ would provide a better fit. However it is unclear

if the added complexity of such a model is warranted. The error of the linear fit is

less than five percent in the range −0.05 < ξ < 0.05 and looking at Figure III.23,

they graytone values of the limb pixels drop down to near zero far before ξ reaches

±0.05. It looks like most graytone values drop near zero at about ξ = ±0.01, where

the linear approximation only incurs about one percent error. Thus, any potential

gain in performance would likely be insignificant.

Under its current formulation, there is no measure of confidence or covariance

which is associated with the position estimate provided by the nonlinear least squares.

This makes it difficult to embed into a navigational filter as it is unclear how well

the results are to be trusted with respect to other measurements and propagated

position estimates. One potential source of uncertainty which affects the quality of

the least squares fit and which can be characterized an modeled, is the consistency

of the response of the pixel array. An imager would undergo a calibration process
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in which multiple images are captured of a fiducial marker under controlled but

variable lighting conditions. With enough statistics gathered, the consistency with

which each pixel responds could be modeled as a standard deviation in graytone as

a function of the graytone. Thus, a confidence measure can be associated with every

pixel for every graytone value. This uncertainty could then be propagated through

the nonlinear least squares framework to give the uncertainty associated with the

position estimate. Other potential sources of uncertainty which could be included

could be inaccurate knowledge of the observed body geometry.
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CHAPTER IV

OPTICAL NAVIGATION USING THE MOON AND EARTH -

ALGORITHM TESTING, VERIFICATION, AND PERFORMANCE

ASSESSMENT

One of the major challenges of developing the algorithms for Orion OpNav was

figuring out a way of testing if the results were correct or not. Any developed

algorithms would never be put on board a spacecraft, even just for testing purposes,

without initial verification on the ground first. The difficult part about verifying

position estimation algorithms for spacecraft navigation is the finding truth data. It

is not sufficient to simply have pictures of the Moon taken from someone’s backyard

and feed them to the algorithm to see if it works. Such pictures were indeed used

in the very nascent stages of algorithm development, however in order to verify that

an OpNav position estimation algorithm works, it needs to be given pictures with

location labels or tags. It’s not enough to know where the picture was taken from

with respect to some local reference, instead it must be possible to calculate the true

position of the observer with respect to the Moon before image processing is done.

Finding such images was challenging, and so algorithm verification had to be

broken down into phases. Method verification started with simple analytic tests of

algorithm sensitivity, then moves on to testing with synthetic images, and eventually

real images captured from space. In the first phase the goal was to demonstrate

the sensitivity of core mathematical methods to error. The second phase tested

the accuracy with which image processing algorithms could analyze images. The
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third phase tested algorithm susceptibility to noise and imperfections in the captured

images.

Once the algorithms passed the series of tests they had to be-repackaged to

run in core Flight Systems (cFS), a code architecture developed at Goddard Space

Flight Center which simulates the flight systems of a spacecraft. The challenges

of verifying that the developed methods work and preparing them for integration

testing at Johnson Space Center are described in the following sections.

Initial Testing and Development in MATLAB

The first tests of the algorithms included sensitivity studies and Monte Carlo

simulations using relatively simple synthetic images generated and analyzed in MAT-

LAB. The results had to be compared against the accuracy requirements that had

been provided by the Orion OpNav team.

Centroiding Accuracy Requirements

The Orion team at Johnson Space Center had one very specific requirement

regarding the accuracy and precision of the image processing algorithms. It was

stipulated that the standard deviation of the centroiding error had to be less than

0.1 Aptina Imager pixels. Centroid error was defined as the distance between the

true and estimated centroid in the image plane. This means that if it were assumed

that centroiding incurred no bias and error was distributed according to a nominal

half normal distribution, after running centroiding tests on many images it would be

required that roughly 60 percent of the error values are less than 0.1 Aptina pixels
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and that roughly 99 percent of error values are under 0.3 Aptina pixels.

This requirement stated in Aptina Pixels presented some unexpected challenges.

While, from an operations perspective it might have made sense to define require-

ments in such a fashion it led to some difficulties later on when measuring algorithm

performance. It is likely that at some point in the Orion team’s design process it

had been decided that a certain Aptina image sensor with a particular pixel size and

particular lens stack with a particular focal length was selected for the project and

this led to requirements being stipulated as such. This is however, conjecture and

while it would have been preferable to have requirements provided in terms of angu-

lar pointing accuracy or position estimation accuracy, the Aptina Pixel requirement

stayed and was something that had to be worked around. Unfortunately this meant

that if a different sensor or different focal length was used in simulation or in testing

the centroiding error results would have to be converted into Aptina pixels. Later

version of the algorithms actually did not report estimated centroid and apparent

Moon size, but directly provided a position estimate, which again had to be converted

into Aptina pixels. However, the inherent shortcoming in defining requirements in

terms of centroiding accuracy is that the same centroiding accuracy produces differ-

ent position estimation accuracy at different distances from the Moon. This added

another layer of difficulty when attempting to verify algorithm performance.

Sensitivity to Noise

One of the first set of tests that was run on the least squares centroiding al-

gorithms was to analyze its sensitivity to shot and thermal noise. Random spikes
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corresponding to shot noise and dead pixels as well as random Gaussian noise was

added to images of the Moon that had been captured from ground based telescopes.

Sigmoid least squares fitting was then applied to these modified image sets as part

of a Monte Carlo analysis to see whether the least squares fitting was robust to such

noise and how much drift due to noise could be incurred performing the centroid

estimate. Figure IV.1 shows the results of one Monte Carlo batch in which Gaussian

noise with a standard deviation of 10 gray tone levels (on a scale of 0 to 255) was

added to each image. The effect of this noise led to a centroiding error with a roughly

Gaussian distribution with a 3-sigma of 0.1 pixels.

Figure IV.1: Results of Monte Carlo simulation for centroiding. Sensitivity of cen-

troiding accuracy to image noise is shown.

In addition to ensuring that the algorithms were robust to noise, these tests
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showed that they work under drastically varied lighting conditions producing differ-

ent Moon phases.

Sensitivity to Obliquity, Distance, and Focal Length

To expand the testing envelope of the algorithms a simulator was built which

could simulate fully illuminated ellipsoids of varying obliquity, focus, focal length, and

distance from the observer. First, it was necessary to get an idea of the relationship

between focal length and apparent size of the Moon for a detector of fixed size and

pixel pitch. This is captured in Figure IV.2.

Figure IV.2: Apparent Moon size as a function of distance for three different focal

lengths. A focal length of 16mm allows capture of the full Moon at distances ranging

from 10,000 km to 400,000 km. 105 and 300 mm lenses cannot capture the full Moon

at less than 90,000 and 240,000 km, respectively.
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From this analysis it was evident what distance and focal length pairings could

be used to create simulated Moon images. Due to gnomonic projection, the Moon

(or any sphere) does not appear as a perfect circle when it is not centered in the

camera field of view, but looks like an ellipse instead. This is especially pronounced

for cameras with a wide field of view. Therefore, it made sense to be able to simulate

oblate bodies. This also made the algorithm generalizable to any triaxial ellipsoid,

such as the Earth. These bodies can appear as ellipses even when centered in the

field of view. Finally, noise was added to stress the algorithms and add realism.

Figure IV.3 shows a simulated Moon image with high distortion being passed to the

sigmoid fitting function.

Figure IV.3: Example of Ellipse Sigmoid Fit pixel selection on simulated image with

noise. Red marks indicate the pixels that will be used for least squares.

The goal here was, not necessarily to accurately characterize performance, but

once more to prove feasibility and get an idea of the operational scope of the al-

gorithms. Testing on these image sets indicated that algorithms could handle the

Moon at varying distances and degrees of distortion.
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Synthetic EDGE Images and Testing in the Electro-Optics Lab

Once basic feasibility was proven, the next phase of testing was dedicated to

characterizing performance and understanding exactly what kind of precision and

accuracy can be expected from the OpNav algorithms. The intuitive and obvious

next step would be to go out on a clear night and capture some images of the

Moon that can be used for testing. This approach however has several limitations.

Since the OpNav algorithms would eventually be used on board Orion, or other

spacecraft, in order to properly test the algorithms using realistic conditions, images

taken from space where there is no atmospheric aberration and distortion are needed.

This is especially important for understanding the stability of the algorithms when

integrated representative hardware and used at relatively long distances to the Moon.

One of the main issues, and one of the reasons why even minor atmospheric lensing

or distortion can severely hamper position estimates, is the sensitivity of distance

estimation to even the slightest change in apparent size of the Moon. This is not a

significant problem when relatively close to a target object, such as the Moon, since

changes in distance are paired with a fairly obvious change in apparent size. However,

as shown in Figure IV.4, the apparent change in size which an observer notices when

they move towards or away from an object, asymptotically approaches zero as their

distance from the object increases. This means that even the slightest mis-perception

of size can lead to enormous error in perceived distance when an observer is relatively

far away from their target. Specifically, in regards to the appearance of the Moon

when viewed from Earth, a change in apparent radius of a several arcseconds, a

distortion which the atmosphere is more than capable of inducing, can lead to a
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change in estimated distance of a few thousand kilometers.

Figure IV.4: Sensitivity of apparent Moon radius as a function of distance to the

Moon for a specific camera configuration. The change in radius is shown in units of

pixel per kilometer.

This issues with sensitivity, and a desire for finding realistic images represen-

tative of the eventual operating environment, encouraged the use of space-based

imagery of the Moon. However, even though it’s possible to find images of the Moon

captured by spacecraft above the Earth’s orbit, these pictures by themselves are not

enought to characterize the performance of the OpNav algorithms. To be able to ver-

ify that the algorithms can accurately estimate position when processing an image,

it must be known exactly from where the picture was taken and at precisely what

time, as celestial bodies move and thus a position fix without a defined epoch is not

meaningful. Finding images which include that kind of meta-data is a difficult task,

and while there are options available, such as images from the Lunar Reconnaissance
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Orbiter (LRO) and the Lunar Crater Observation and Sensing Satellite (LCROSS),

their availability is limited. Also, the available images might fail to stress the algo-

rithms in ways which might potentially be encountered when used on mission, and

thus it was decided that a simulation environment that generates realistic images of

the Moon based on simulated spacecraft trajectories is needed.

The EDGE Rendering Environment

The chosen simulation tool which was used for rendering Moon images was

NASA’s Engineering DOUG Graphics for Exploration (EDGE) developed at John-

son Space Center. EDGE is a rendering environment capable of providing realistic

textures, lighting, and model representation. Example rendering from EDGE can

be seen in Figure IV.5. By itself, however it cannot simulate the underlying physics

and dynamics which would be needed for a simulated cislunar trajectory. For that,

NASA’s Trick Simulation Environment is used to generate simulated spacecraft tra-

jectories as well as tracking spacecraft position, camera attitude, and timing infor-

mation.

With Orion’s cis-lunar trajectory calculated and simulated in Trick by JSC en-

gineers, EDGE image sequences could be generated which represent what Orion’s

camera’s would see en route to the Moon coming from Earth. One of these pre-

liminary image sequences is shown in Figure IV.6. Note that in this sequence there

are images where the observer is too close to the Moon to be able to see the full

lunar limb. In theory, once Orion were to get this close to the Moon a different

form of navigation would be needed, most likely revolving around tracking of surface
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Figure IV.5: Renderings generated in EDGE.

features.

In order to expand the simulated operational envelope random, but known,

pointing error was added to the camera’s attitude on every frame so that the Moon

doesn’t always appear perfectly centered in the Field of View (FoV). Lighting condi-

tions were also varied by randomly moving the Sun around so that different phases

of the Moon were visible and at different lighting angles. The Sun’s gravity was

ignored in the simulations, so this has no effect on the trajectory. This variable

lighting mimics the variability in appearance that one would see when travailing at

different times of the lunar cycle and when the camera’s roll angle is varied.

Lab Test Setup

Using EDGE by itself to generate images for testing, however was insufficient.

While EDGE has some basic tools for defining different camera parameters, such as

FoV or magnification, and includes some optical effects such as lens flares, it is not a

camera simulator, so things like defocusing, distortion, thermal noise, and shot noise
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Figure IV.6: A sequence of images generated in EDGE showing the Moon from the

point of view of Orion during lunar approach, orbit, and return to Earth.

are not simulated. Therefore, in order to increase the realism of the images, it was

decided that a real camera would be used to capture images of the Moon rendered

on a screen. The majority of algorithm development during the summer of 2014

was dedicated to setting up the experimental rig in the Electro-Optics Lab at JSC.

Figure IV.7 shows a preliminary set up in the lab with a camera aimed at an EDGE

rendering of the Moon being displayed on a 4K monitor.

The remainder of this section will focus on the EDGE rendering and preparation

for algorithm testing. The initial portion of rendering was dedicated to setting up

the correct EDGE environment and defining the cameras correctly. Once the EDGE

environment was set up, and trajectory information was provided, the next task was

to precisely align the camera with the screen. The simulated EDGE images were

displayed as a slideshow controlled by a computer which was also in control of the
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Figure IV.7: Preliminary camera calibration for capture of synthetic EDGE images

in the Electro-Optics Lab at JSC. An EDGE rendering of the Moon is being displayed

on a 4k display while a tripod mounted camera captures live footage.

camera, thus the image slideshow could be synchronized with the camera capture.

Once all of these pieces were set in place, capture sequences such as the one shown

in Figure IV.8 could finally be created.

These images captured in the lab would include some small amounts of optical

distortion and noise effects. Thus, not only would they represent imaging conditions

more realistically, they could also be used to test algorithm sensitivity to camera

calibration. Optical system which must perform with a high level of precision must
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Figure IV.8: The translation of EDGE Moon images to Camera Moon Images.

be calibrated and this would apply to the camera system which eventually flied and

operates on board Orion. Knowing how sensitive OpNav algorithms are to the quality

of the calibration and characterization would inform future operators and engineers

what procedures must be carried out on mission before the camera system can be

used reliably as a backup navigation solution.

The final step necessary before processing was to crop the images, removing

the black space surrounding the image shown on the monitor, and to calculate the

effective FoV of the camera images. FoV or focal length parameters need to be

provided as input to the OpNav algorithms in order to correctly process the images

and provide a position estimate. The FoV associated with the lab images is neither

the FoV of the camera, nor is it the FoV of the camera in EDGE used to render

the virtual scenes. The effective FoV associated with the lab Moon images would

be a function of how far away the screen is placed from the camera. Figure IV.9
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Figure IV.9: The effective FoV of the Moon camera images after cropping. Camera

in lab and virtual EGDE camera both have a HFoV of 20 degrees.

shows what the effective half horizontal FoV (HFoV), β would look like for a specific

lab configuration. With the lab configuration completed, all the necessary pieces for

generating and analyzing synthetic lab images were in place for image capture and

algorithm testing to commence. In addition to these lab images, other image sets

were acquired from the ISS. The processing of these real images is covered in the

next section.
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Images Captured from the ISS and Overall Assessment of Performance

The image sequences produced by EDGE made it possible to roughly charac-

terize the expected performance of the OpNav algorithms and perform sensitivity

analysis. This analysis could be used to create a model that relates OpNav perfor-

mance and accuracy to Moon distance. However, this testing could not provide an

idea of what kind of accuracy can realistically be expected from OpNav when used

on board a spacecraft with real imagery captured from space. To address this issue,

the following summer, images of the Moon were captured by astronaut Terry Virts

from on board the ISS and given to the Orion team for processing. With the image

sets in hand, it was possible to estimate the precision and accuracy with which the

algorithms could estimate the distance to the Moon. However, it should be noted

that pointing accuracy or precision could not directly be estimated, since this would

require precise knowledge of the attitude of the camera expressed in an inertial frame,

and such information was not available.

Several image sets were captured from the various viewing ports available on

the station. Figure IV.10 shows views of the Moon taken from the Cupola on board

the ISS. Again, the goal was to present pictures of the Moon that were more repre-

sentative of what might actually be observed. However, there were some additional

difficulties which were not expected. Some of the viewing ports on the space station

have protective screens on them which added slight distortion. Also, some of the

image sets had adjustments made to the focus during the imaging session. While

these effects are not necessarily representative of the eventual imaging camera, they

still offered useful opportunities for stress testing the image processing algorithms.
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Figure IV.10: Two sample images showing the Moon viewed from the ISS. On the

left the Moon has a reddish hue due to light passing through the Earth’s atmosphere.

On the right, structures from the ISS can be seen in the foreground. Photo Credit:

Terry Virts, NASA

Another useful test was that of the algorithm’s robustness to interference. While it

is unlikely that an OpNav camera designed fro viewing planets would be mounted

in such a way that parts of the Orion would be visible in the field of view, having

portions of the ISS visible in the images allowed us to test how algorithms would

fair in the case of such an eventuality. To make the algorithms work for such im-

ages, tweaks had to be made to limb pixel selection process so that edge pixels not

belonging to the limb would be rejected.

For example, Figure IV.11 shows chromatic aberration as the slight difference

in color on the left and right sides of the Moon. This could lead to a slight difference

in brightness when converted to grey scale, leading to slightly differing estimates

of distance. Other difficulties were introduced by the gamma correction which the

Nikon camera which was used to take the photos automatically applies to images
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to suit the needs of human observers. However, such gamma corrections would not

be applied to machine vision cameras such as the ones which would eventually be

installed on Orion.

Figure IV.11: Chromatic aberration is visible on the limb of the Moon. The lower

left side has a blue hue and the upper right side has a red tint. Photo Credit: Terry

Virts, NASA

One of the benefits of having images with a known time stamp captured on board

the ISS is that the precise location of the observer at the time of image capture is

known. The ISS is tracked by ground stations and one can readily find a time series

of its position in space by searching for the Two Line Elements (TLE) of “Zarya”, the

Russian name of the ISS’s Functional Cargo Block, and the first module of the ISS

to be launched. The time stamp of the images was also used to locate the position of

the Moon using ephemeris from JPL Horizons online service. Thus, the true distance
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from the ISS to the Moon at the time of image capture could be calculated.

Six image sets, three pairs, were taken from the Cupola of the ISS and processed.

The results of this processing have been previously presented by Borissov [41] and

are reproduced here. Figure IV.12 shows how the estimated distance to the Moon

compares to the true distance to the Moon in these six sets. The last pair of image

sets show noticeably larger deviation from the trues distance compared to the first

two sets and it is believed that this is due to a change in focus of the camera during

image capture. This highlights the importance of having a well characterized and

calibrated camera with fixed parameters which do not change if one desires to have

the most accurate navigation solution possible.

It is clear that over the course of each imaging set the distance between the ISS

and the Moon seems to decrease. This is due to the geometry and orientation of

the Cupola. The Cupola on the ISS is meant to be an observation port for viewing

Earth, and thus points nadir. It was chosen for imaging the Moon due to the better

optical qualities of the Cupola windows compared to those of other ports, however

due to its position on the ISS, the Moon could only be visible at Moon rise and

Moon set, for a relatively short interval before it would pass out of view. Thus, all

imaging sessions were done as the ISS was moving towards the Moon, right after

Moon rise. This produces the noticeable decrease in distance over the course of the

imaging window. Other image sets which were taken from other ports on the ISS do

not exhibit this behavior but arc instead.

There is also a large change in distance between the three pairs of viewing

sessions. This is due to the amount of time between each viewing pair, which was
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on the order of one month. Over the course of this time, the Moon’s distance to the

Earth changed by tens of thousands of kilometers. This distance can vary by over

50,000 km from perigee to apogee over the course of roughly two weeks, or one half a

lunar orbital period. Within each pair of viewing sessions however, the two sessions

were done one orbit apart, which corresponds to an interval of roughly 90 minutes.

Over the course of these 90 minutes the distance from the ISS to the Moon at the

start of the viewing time window does not significantly change.

Figure IV.12: Initial Distance Estimation Error. Left plot shows estimated distance

to the Moon for each image taken from the ISS and the right shows the corresponding

percent error of that distance estimate.

Due to the inconsistencies present in the last two Cupola sets, they omitted

when analyzing and characterizing the performance of the algorithms. Thus, the

final evaluation of algorithm’s performance on the ISS Moon images was based on

125



the first four sets, which in total contained about 65 images.

On average, distance estimation error of the first 4 Cupola sets was an overshoot

of about 717.0 km. Since any camera system which is deployed on mission would

realistically go through a calibration procedure, it is reasonable to expect that a bias

correction to the distance estimation would be applied, so that on average the error

is zero. With this bias correction of 717.0 km subtracted, the RMS error, identical

to standard deviation in the case of a zero mean, was 505.28km. This represents

0.128 percent of the total Earth to Moon distance. The results of this final analysis

are shown in Figure IV.13. The two plots shown indicate that the error distribution

is roughly Gaussian, and thus standard statistical analysis tools and jargon can be

used to describe the error distribution.

As can be recalled from the beginning of the section regarding centroiding pre-

cision requirement, NASA had stipulated that algorithms must be able to perform

centroiding to a precision of 1 sigma equaling 0.1 Aptina pixels. The ISS pictures

however, were taken with a handheld Nikon camera with a different focal length and

sensor size than the nominal Aptina imager. Also, the algorithms reported error in

terms of distance to target object, not in terms of centroiding error on the sensor. So,

to verify the requirement was met it was necessary to convert the distance error into

a pointing error expressed first in degrees or radians, and then converted to Aptina

pixels. Again, this was the only way to calculate centroiding or pointing error, since

true camera attitude was not known.

To help understand how distance estimation error could be converted to pointing

error, reference Figure IV.14 and Equations 4.1, 4.2, and 4.3.
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Figure IV.13: Bias Corrected Error. The left plot shows the bias corrected distance

error sorted over the 4 image sets. The right shows a histogram of the boas corrected

distance error

R

D
= sin θ

r

f
= tan θ (4.1)

Given the radius of the Moon R and the true distance between the observer and

the Moon D, it is easy to calculate the expected subtended angle θ associated with

the lunar radius using the first equation in 4.1. This subtended angle projects the

lunar radius onto the image plane according to the second equation in 4.1, where f

is the focal length. For the nominal Aptina imager, f is 16 mm. Note that θ is not

dependant in any way on the camera system setup, but is purely a question of the

geometry describing the observer and target. Thus if pointing error is known, it can

be converted into pixel error for any camera configuration.
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Figure IV.14: Pinhole camera model and the Moon. How angular deviation translates

into linear deviation on the imager. Note that D >> f .

To convert error in distance estimate ∆D into pointing error ∆θ Equation 4.2

is used.

∆θ = sin−1

(
R

D + ∆D

)
− sin−1

(
R

D

)
= sin−1

(
R

D + ∆D

)
− θ

(4.2)

This equation simply expresses the angular difference, ∆θ, between the esti-

mated subtended lunar half-angle and the true subtended lunar half-angle, θ. Fi-

nally, Equation 4.3 is used order to convert the angular difference ∆θ into a distance

error on the imager plane. ∆r will take on whatever units f is described in, which

is nominally millimeters.

∆r = f tan (θ + ∆θ)− f tan (θ)

= f tan(θ + ∆θ)− r
(4.3)
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Potential Complications and Final Requirements Verification

The last step is to convert ∆r from units of millimeters, to Aptina pixels. For the

chosen sensor, the pixel pitch is 0.0022 mm/px. Dividing ∆r by 0.0022 would give the

desired effective pointing error described in Aptina pixels. There are however, a few

potential complications that must be cleared up before verification of the algorithms

can be complete.

The first complication is that both Equation 4.2 establish a dependancy between

pointing error ∆θ and distance to the Moon D. The distance from the ISS to the

Moon is not constant and varies by roughly 6 percent between the imaging sessions.

To ensure that this was accounted for, the pointing accuracy conversions were done

using the ISS to Moon distance from the both the closest and furthest imaging

distances. The effect on the final precision was a difference in precision on the

order of 9 percent of the 0.1 pixel accuracy requirement, enough to be taken into

consideration if algorithms were in danger of not meeting requirements. However,

whether the closest of shortest distance is used in the calculations, the pointing

error corresponding to a 505km distance estimation error is between 0.048 and 0.038

Aptina pixels. Both of these precision estimates are well within the required 0.1

Aptina pixel pointing precision requirement.

The other potential complication would be the sign of the ∆ terms in Equations

4.1 and 4.2. Since sin and tan are nonlinear functions, a positive or negative deviation

in input would produce different deviations in output. All possible permutations of

the signs of the ∆ terms were tested on no difference was noted in the final precision

estimate when reporting th precision using 3 significant figures. Based on these

129



findings, it can be concluded that the effect of the sign of the deviation on the

final precision estimate is negligible when dealing with approximately Earth-Moon

distances, and can thus be neglected.

To recapitulate, the 1-sigma pointing precision of the OpNav algorithms used

on the ISS images was estimated to be about 0.04 Aptina pixels, more than double

the required precision of 0.1 Aptina pixels. The requirement was verified and the

results are actually better than they look! These results were obtained using a hand-

held camera with variable focus taking pictures from behind the glass of the Cupola.

Also, no camera calibration or characterization was done and the focal length of the

camera was assumed to be the nominal 58 mm as specified by Nikon. Even better

performance could be expected when using a dedicated machine vision camera with

constant focus mounted in the vacuum of space that has gone through thorough

calibration and characterization.
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CHAPTER V

X-RAY PULSAR-BASED NAVIGATION - BACKGROUND,

LITERATURE REVIEW, AND DEVELOPMENT FRAMEWORK

The study of pulsar based navigation has been growing in popularity as tech-

nological hurtles which stood in the way of it’s implementation are being overcome.

One of the largest technical innovation which has made the technology from theory

to practice has been the development of X-ray antenna which are capable of collect-

ing signals from X-ray pulsars. Unlike previous radio telescope based observation

of pulsars, these X-ray sensors have a significantly smaller form factor which allows

them to be placed on spacecraft. This innovation has led to a growing interest from

both NASA through the work of Goddard’s SEXTANT team [42] and China through

their XPNAV-1 mission [43]. The promise of a universal navigation for spacecraft

has piqued the interest of many research teams and stimulated research. in signal

processing hardware and algorithms.

The Story of Algorithm Development

Investigations in X-Nav by our team began first with the question of how a star

catalog would need to be updated if a spacecraft were to travel on an interstellar

mission [44]. Parallax between stars would begin to be noticeable as a spacecraft

leaves the solar system, and thus cataloged angles between stars would need to be

updated. This problem led to the investigation into other forms of navigation that

would be possible once a spacecraft leaves the solar system, such as positioning based
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on observing interstellar wind [45] and interstellar magnetic fields [46]. However, the

most promising navigation alternative seemed to be pulsars.

Initial investigation on the topic of pulsar based navigation was stimulated by

the question of assessing how useful and how accurate it can be. Of particular

interest was the issue of the ambiguity problem. It will be covered in great detail in

the following sections, but the first investigations of the problem involved modeling

the ambiguity problem in one dimension and seeing how far out in space or time

an observer must travel before a signal composed of multiple pulsar waves repeats

itself. But it was not initially clear which topic in pulsar navigation should be

investigated because there was little support for research on the topic at Texas A&M.

Nobody in the department worked on a similar kind of navigation problem, and the

physics department didn’t have anyone involved in pulsar astronomy. Though there

was ongoing work on X-Nav going on at NASA Goddard, establishing a working

relationship with the center was difficult, and thus, in order to make up for this deficit

of support The Aggie Research Program (ARP) at Texas A&M was leveraged. The

ARP provided a way of connected graduate students with undergraduate students

interested in gaining research experience. After an initial recruiting phase, a small

team of undergraduate students was assembled to help explore various topics related

to the field of pulsar astronomy and pulsar based navigation. Various aspects of

signal processing, position estimation, statistical analysis, mission simulation, GPS

signal analysis, and ambiguity resolution were studied. After exploring the topics it

seemed that the question of ambiguity resolution offered an interesting problem that

was rich enough to provide work for research.
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The team’s work on the ambiguity problem led towards the proposal of the

Spheres Algorithm which was initially developed by Samuel McConnell and Michael

McCarthy and was presented at the 2018 AAS/AIAA Astrodynamics Specialist Con-

ference in Snowbird, Utah [47]. For the students involved it their opportunity to be

directly involved with academic research efforts, as well as their first opportunity

to travel to an academic conference, let alone present. Spheres was a partitioning

algorithm which split up a spatial search domain in order to eliminate impossible

candidate solutions from intersections of pulsar signals. Methods of optimal packing

and partitioning were investigated. Ray tracing algorithms and rasterizing methods

were also studied as ways of searching through a discretized domain and selecting

relevant partitions. This algorithm served as the foundation for the ambiguity res-

olution algorithm presented in the following chapter, and while Spheres has been

largely reworked, and little remains of the original concept, it is important to note

that the work started from ideas developed by undergraduate researchers.
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Background on the X-Nav Position Estimation Problem

The key behind using pulsar signals to help estimate position is the ability to

measure precisely the arrival time of an observed pulse and compare that time to an

expected arrival time at a predetermined reference location. Hence, X-Nav provides a

position estimate not by locating an observer with respect to the pulsars themselves,

but by locating an observer with respect to a chosen reference point. Astronomers

have observed different pulsars from various locations on Earth, and to coordinate

their efforts, the agreed upon standard reference location at which expected arrival

times are cataloged is the Solar System Barycenter (SSB), which oscillates around

the center of the Sun, sometimes being inside the Sun and sometimes outside. Since

there is no actual observer or receiver at the SSB, all cataloged arrival times are

mathematically translated and converted to show when an observed pulse either

would arrive or would have arrived at the SSB. Thus, an implementation of X-Nav

using the currently available pulsar time data would produce position estimates with

respect to the SSB. Other reference points can be chosen, and all the arrival times can

be recomputed, however for the contents of this dissertation the SSB is considered

the reference point that all arrival times are cataloged with respect to.

A second key behind X-Nav is the assumption that the signal coming from a

pulsar can be modeled as a planar wavefront. This means that all points lying on a

plane perpendicular to the direction of pulse propagation see the pulse arrive simulta-

neously. If one were close to a pulsar, such an assertion would not be possible and the

path described by the rotating beam would produce a spiral radiating outward pro-

ducing spherical wavefront. However, given that the closest millisecond pulsar, PSR
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J04374715, is over five hundred light years away it is reasonable to assume planar

wavefronts when considering the problem of position estimation around Earth.

Phase of Wavefronts

When considering the line or plane representing a wavefront it is typically asso-

ciated with the peak of the signal which is assigned a zero phase. In the following

sections, this standard is assumed when attempting to determine position of an ob-

server with respect to a reference point. Later on, there will be examples of an

observer observing multiple peaks simultaneously at a single point in space. Realis-

tically, such a scenario is highly improbable, however the choice of phase associated

with a wavefront is arbitrary. Wavefronts can be aligned at their pulse peaks or any

other part of the signal. Therefore, there is no loss of generality in assuming that

wavefronts of observed pulsars can converge on a single point in space and time, since

those wavefronts can be assigned to any phase of the signal, not only the peaks.

Single Pulse X-Nav

To illustrate how arrival times are used to estimate position, we consider a

simplified scenario where a pulsar emits only one single pulse. This is shown in

Figure V.1 for an observer located at position p relative to a reference point and a

single pulse traveling in direction n.

The pulse moves at the speed of light, c, and the difference in time between the

pulse passing the reference point and the pulse arriving at the observing spacecraft

is called the ∆TOA, where TOA stands for Time Of Arrival. Realistically, mea-
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Figure V.1: Simplified diagram showing relationship between observing spacecraft,

reference point, and incoming pulse.

sured TOAs are not perfect and are affected by timing noise due to inaccuracies in

measuring exactly where the peak of the signal lies. This timing noise will be incor-

porated later, however for the purposes of this example it is ignored. The observer is

assumed to have a catalog of expected arrival times for pulses at the reference point.

By looking at the difference in arrival time between when the pulse was seen and

when it was expected, it’s possible to calculate the distance from the observer to the

reference point along the direction of the pulse propagation.

One pulsar is not enough to give an observer a position fix in three dimensions,

however if three pulses are observed with three ∆TOA values coming from three

distinct directions, n1, n2, and n3, then the system shown in Equation 5.1 can be
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formulated.

n1 · p = c∆TOA1

n2 · p = c∆TOA2

n3 · p = c∆TOA3

(5.1)

This system can be rewritten as the matrix equation
nT

1

nT
2

nT
3

p = c


∆TOA1

∆TOA2

∆TOA3

 (5.2)

where the matrix on the left-hand side containing the directions of the pulses is 3×3

and is invertible as long as the directions are distinct. Thus, Equation 5.2 offers

an easy and direct way to solve for the position of the observing spacecraft using

observations from three different pulsars.

Single Pulse X-Nav with Clock Drift

Over a long duration mission, an observer’s clock can drift with respect to

reference time if there are no synchronization updates. If this happens, then the

measured TOA of pulses will be offset. Fortunately, X-Nav can work in this scenario

as well, and not only can it still estimate the observer position, but it can also

estimate the clock drift. To illustrate how this works we assume that we have an

observer at position p and a pulse traveling in direction n. We then formulate a new

relationship for determining ∆TOA that includes clock drift:

TOAreference = TOAobserver + ∆t+ δτ

∆TOA = ∆t+ δτ

(5.3)
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where δ is the clock drift and where ∆t represents the time it takes for a pulse to

traverse the distance p · n:

∆t =
p · n
c

(5.4)

If a clock is perfectly synchronized and there is no clock drift with respect to

reference time, then δτ = 0 and ∆t = ∆TOA. If we assume that four distinct pulsars

are observed then combining Equations 5.3 and 5.4 we can create the system

n1 · p + cδτ = c∆TOA1

n2 · p + cδτ = c∆TOA2

n3 · p + cδτ = c∆TOA3

n4 · p + cδτ = c∆TOA4

which can be written in matrix form

nT
1 1

nT
2 1

nT
3 1

nT
4 1


 p

cδτ

 = c



∆TOA1

∆TOA2

∆TOA3

∆TOA4


(5.5)

The matrix on the left hand side is a 4 × 4 matrix which is invertible if the

pulse directions n are distinct. Multiplying Equation 5.5 by the its inverse gives a

solution for p = [x, y, z]T and δτ . This formulation can be extended to more than

four pulsars, however the solution of Equation 5.5 becomes a least-squares solution.

This will be explored more in later sections.
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Taking Advantage of Pulse Stability to Pre-Compute Arrival Times at

Reference

The stability of the pulsar signals means the arrival times are very predictable.

This means that the arrival times at a specific reference point can be all be pre-

computed for the foreseeable future. This can be done for multiple different reference

points as well. Thus, it is plausible that a spacecraft employing X-Nav would have an

on-board catalog of arrival times for all observable pulsars at various pre-determined

reference points around the solar system. If the reference points are placed at rel-

atively frequent intervals throughout the solar system, or any navigational space of

interest, then the planarity assumption can always be made, as long a spacecraft is

relatively close (tens of millions of kilometers) to the reference point.

Scope of X-Nav Position Estimation Problem and List of Assumptions

To demonstrate the full set of potential capabilities as well as limitations of

an X-Nav system very high fidelity models of light propagation through interstellar

medium, stellar astrophysics, and signal processing are needed. In addition, in order

to ensure that all potential operational modes are considered, spacecraft traveling

at non-constant velocities, rotating, and performing maneuvers would need to be

modeled, in addition to modeling the physics and operations of the detecting array,

antenna, or imager. This level of fidelity stretches far beyond the scope of this dis-

sertation. Therefore, to help contextualize the work and help clarify its applicability,

consider the following list of assumptions being made when addressing the problem

of X-ray pulsar-based position estimation.
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Assumptions Behind X-Nav in this Dissertation

The problem of X-Nav is complex and can feature many different physical pro-

cesses, and thus it is important to constrain the analysis by making some simplifying

assumptions.

Relativistic Effects Ignored: Large gravitational bodies, such as gas giants

like Jupiter, or other distant stars that lie near the path of incoming light from a

pulsar could deflect incoming pulses and change their direction and time of arrival.

Gravitational lensing like this is ignored and directions of pulse propagation and

signal periods are considered constant.

Fixed Reference Point: The location of the reference point is considered fixed

in inertial space with respect to observed pulsars. Additional reference points may

be defined, but they will each also be fixed with respect to the celestial reference.

Constant Spacecraft Velocity: Observing spacecraft velocities are known,

constant, and far below the speed of light. If a spacecraft has a non-zero velocity

with respect to the reference point, this velocity is known and constant. Orbital

mechanics and and thrusting maneuvers are not considered.

Simple Signal Processing: The pulse signal data acquisition process and sig-

nal processing are not modeled. The complications of photon capture, epoch folding,

channel alignment, gathering enough photons to be statistically significant and be

able to model the incoming pulsar signal are not considered. It is simply assumed

that the spacecraft observes incoming pulses and is able to associate an arrival time
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for the peak of each pulse and that TOA measures have timing noise which follow

a zero-mean Gaussian distribution with known standard deviation. Signal periods

and phase are assumed to also be known.

Planar Wavefronts: Wavefronts are assumed planar. Considering the closest

millisecond pulsar is over five hundred light years this assumption is appropriate

for navigating distances on the order of tens of millions of kilometers. If a larger

navigational space than that is being considered, then it is either necessary to use

multiple reference points or incur errors if the planarity assumption is not relaxed.

Another alternative is to ignore signals from all pulsars which are too close for the

assumption to be valid. This assumption also, along with the assumption that periods

are constant, implies that distances between wavefronts in a pulse chain are uniform

along the entire wavefront.

Bounded Navigational Space: The navigational space being explored is on

the order of tens of millions of km. Exploring a space outside of that range will begin

to interfere with the planar wavefront assumptions. The tighter the timing noise,

and the more precisely TOAs are known, the smaller the volume of space for which

the planarity assumption is valid.

Constant Periods: Pulsar periods are assumed constant and known with per-

fect accuracy. The period of a pulsar its tied to its angular momentum and rotational

kinetic energy, both of which are very stable. There are some small sources of varia-

tion in the angular spin rate of a pulsar. Pulsars slowly lose mass, and thus angular

momentum, as they burn and radiate out energy. Pulsars which have slight asym-
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metries on their surface or that are part of a binary system can also bleed kinetic

energy through the radiation of gravitational waves. It’s also possible that pulsar

are surrounded by an accretion disk and they are actively sucking up matter, which

would cause their spin rate to increase. Finally, pulsars can “glitch”, in which their

rotational frequency might suddenly shift by a factor of about one millionth due to

small changes in internal processes of the star or starquakes. Aside from the glitches,

most other changes in period are slow and predictable, so even when periods are not

constant their variation can be accounted for. These variations, however will not be

considered in this work.

Interstellar Medium Ignored: The effects of interstellar medium on pul-

sar signals are not considered. Dispersion between light at different wavelengths is

ignored. Any refraction or change in direction of pulse propagation is either not

considered or is considered constant and applies equally to all wavefronts.
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Background on the Ambiguity Problem and Multi-Pulse X-Nav

The ambiguity problem is a data association problem which occurs when an

observer is lost in space and/or time and has poor a priori estimates of their position

and clock. While the regularity of pulsar signals provides a means of accurately

predicting arrival times, the lack of variation or modulation between successive pulses

in a chain makes it difficult to discern one pulse from the next. Thus, when an

observer marks the TOA of a pulse and they want to compare it to TOAreference

there are actually multiple possible candidates for comparison. This is the ambiguity

problem: “How can an observer tell which pulse TOA in a chain of TOAs they have

observed in order to calculate the correct ∆TOA?” Given

∆TOAk = TOAreference,j − TOAobserver,i

how can we ensure that i = j = k? Failing to correctly associate the pulses and

being off by even just one period can shift an observer position estimate by thousands

or even tens of thousands of kilometers for slower-rotating pulsars. The degree of

difficulty of resolving the ambiguity problem depends on the confidence of a priori

time and position estimates. If one is very confident in their clock and position

estimate, then the problem is easy, though then there is less utility in using the

method in the first place. The problem is visualized in Figure V.2. Assume that a

signal, traveling at the speed of light c, with wavelength λ is observed by a spacecraft

with position uncertainty δr and timing uncertainty δτ from clock drift. Realistically,

position and time uncertainty would be modeled by Gaussian distributions, however

for the purposes of this section, let it be assumed that position and time uncertainty
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are distributed uniformly on the range [0, δ]. For the given scenario, there needs to

be a way of determining if there is risk of an ambiguous solution or not. If

λ− cδτ > δr

then there is no ambiguity. This is represented by the black circle in the Figure V.2.

The previous estimates of position and time are precise enough, i.e. the observing

spacecraft is confident enough in them, that it is obvious which pulse was observed

and there is no ambiguity. However, if

λ− cδt < δr

then there is too much uncertainty to know for sure which pulse was seen. This is

represented by the red circle in Figure V.2. As a least upper bound of the conditions

which create ambiguity, if δτ ≥ T , where T = λ/c and is the signal period or if δr ≥ λ

then there is guaranteed to be ambiguity in the observation.

As an example, consider a spacecraft with position uncertainty of δr = 1000km

and time uncertainty δτ = 0.0005s observing a pulse chain from a millisecond pulsar

with period P = 0.01s and wavelength λ = 3000km moving at c = 3e5km/s.

λ− cδτ > δr

3000km− 150km > 1000km

In this scenario, there is no ambiguity. However, if the period/wavelength is short-

ened, or the timing or spatial uncertainty increased, that may change.

If an observer happens to be dealing with the scenario of potentially ambiguous

observations, then there are two main approaches to resolving this problem:

144



Figure V.2: A spacecraft with time and position uncertainty observing pulses from

a pulsar. For the given timing uncertainty δτ the black circle represents a non-

ambiguous measurement scenario, while the red circle represents an ambiguous mea-

surement scenario

1. Improve position or time estimate using other measurements and state estima-

tion tools. If uncertainty in the position estimate can be reduced far below

that of the wavelength of the pulse signals and the timing uncertainty reduced

far below that signal period, then there is no ambiguity and the association

problem is easy to solve.

2. Just like superimposing waves create wave groups, so too can collections of

repeated measurements from multiple different pulsars create measurement

groups. Generally, the more waves of different phases and frequencies are

brought together, the lower the fundamental frequency of the overall signal

and the larger the spacing between wave groups. Similarly, by observing more
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pulsars, an observer can create local snapshots of the pulse wave landscape

which do not repeat until one either waits a very long time or moves a great

distance. Thus, the effective period and wavelength of the observed pattern is

increased, which allows position and time drift estimation even when a priori

knowledge of either might be poor.

Implementing the second approach boosts the capabilities of X-Nav and makes

it a more capable navigation scheme. Perhaps it’s possible with enough observed

pulsars that an observer can be truly lost in space, with position uncertainty of

millions of kilometers and clock drift on the order of days or weeks, and still be able

to find out where and when they are. The more pulsars they can confidently identify

and process their signals, the higher the chances of them finding a unique navigation

solution. Thus the ambiguity problem can be reformulated as: Given a particular set

of pulsar signals [P1, P2, ..., PN ] each with known period, how lost, in space and time,

can an observer be and still successfully implement X-Nav to estimate their position

and clock drift without worrying about ambiguous observations? To begin to answer

this question, we will first simplify the problem and look at it separately in one and

two dimensions.

Ambiguity in One Temporal Dimension with Multiple Pulsars

Consider first the one dimensional example of having a static observer who is

measuring pulse arrival times from three different pulsars with periods T1 > T2 > T3

as shown in Figure V.3. Suppose this observer notices an alignment of the pulses so

that all three happen to arrive at exactly the same time. How long does the observer
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have to wait until they observe the same pattern? For the chosen periods, after 3

periods of T1 the same alignment is observed. Thus at intervals of 3T1 the observer

will see the same pattern repeat. This is the minimal time between repeating solution

and will be denoted as TMin. If the timing uncertainty is δτ is greater than 3T1 then

the observer can’t be certain about which alignment they observed, and thus they

have at least two possible times associated with their observation.

Figure V.3: Observation times of pulse chains coming from three different pulsars

with periods T1 > T2 > T3. The alignment of all three pulses repeats after 3 periods

of T1

To get an idea of how accurate our clock needs to be, we want to know what

is the shortest possible time interval between t0 and t1. If the pulsar periods are

represented as integers, then this is the well known problem of finding the least

common multiple (LCM) between integers that has been studied for thousands of

years and it is solved by implementing the Euclidean Algorithm to first find the

greatest common divisor first. Even if the arrival times are not initially recorded

as integer values, it is possible to scale the units of the arrival times until they are

represented as integer multiples of very small time units and then find their LCM.
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Thus, the one dimensional problem considering time ambiguity is readily solved.

Ambiguity in Two Spatial Dimensions with Multiple Pulsars

Consider an observer who makes an instantaneous observations, and again sees

three simultaneous pulses coming from three different pulsars. The two dimensional

representation of such an arrangement is show in Figure V.4. Note that as more

pulsars are observed the distance between ambiguous solutions grows.

Figure V.4: A 2 dimensional view of multiple pulses coming from pulsars. Left:

An observer could be anywhere on any wavefront when considering only one pulsar.

Middle: An observer sees pulses from two distinct pulsars. They can only observe

both pulses simultaneously at the intersection points. The minimal distance between

possible solutions is DMin. Right: As the number of observed pulsars increases the

distance between candidate solutions grows.

If DMin is greater than the position uncertainty δr than an observer can confi-
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dently identify which solution is being observed. The value of DMin depends on the

number of observed pulsars, their periods, and their directions of propagation. The

intersecting wavefronts create a set of lattice points and there exist algorithms to

find the minimal distances between these lattice points.

Ambiguity in Two Spatial Dimensions and One Time Dimension with

Multiple Pulsars

We extend our analysis to a finite time and spatial domain. Consider again

the two dimensional space as before, however now the wavefronts move over time.

Referencing Figure V.5 suppose that a solution is observed at the observer location

at t0. A short time later at t1 a different solution is observed nearby.

Figure V.5: A two dimensional space of pulses at different times. At t0 a solution is

observed at the observer location. At time t1 the nearest solution jumps and is no

longer where the observer is.
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Previously, when considering only the two dimensional case, with no variation in

time, DMin was the shortest distance between solutions. Now the distance between

solutions needs to be measured in both time and space. One possibility is to use

a Minkowski space-time formulation using either the complex form u = (x, y, ict),

where c is the speed of light and i is the imaginary unit, or real form u = (x, y, t).

The norm for such a vector is defined as ‖u‖ =
√
c2t2 − x2 − y2. The utility of such

a formulation has not been investigated, however. As of the time of this writing it is

not known to the author if there exists a minimal space-time metric which separates

candidate solutions.

The key fact to understand is that the minimal distance between solutions can

now be less than than Dmin and the minimal time between them be less than TMin.

The implications of this are that even if for a given instant in time DMin is greater

than δr and at a given point in space TMin is greater than δτ , this is no longer enough

to assure that there are no ambiguous solutions. It’s possible that with a very small

time increment and small displacement, both of which are within the bounds of δτ

and δr that an ambiguous solution may exist. Thus a new minimal time step or

spatial step must be used. This will be discussed in a future chapter.

Extension of the ambiguity problem into three spatial dimensions is not inves-

tigated in this dissertation. However, with the assumption of planar wavefront, the

concepts developed in these examples with two spatial dimensions and one temporal

dimensions apply to any number of spatial dimensions.
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The Ambiguity Problem with Timing Noise

In order to fully formulate the ambiguity problem, the inclusion of pulse timing

noise is required. Pulse timing noise is not to be confused with timing uncertainty

δτ associated with clock drift. Pulse timing noise is the uncertainty that comes with

trying to pinpoint at exactly what point in time a pulse is observed. As previously

mentioned, pulses actually take the form of a chain of photons which exhibit shot

noise — arriving according to a non-homogeneous Poisson arrival process — traveling

along different decoherent frequency channels. Timing the exact arrival of a pulse

is not a deterministic process but a stochastic one which requires the use of epoch

folding in order to gather enough statistics about a signal to reproduce the waveform.

While clock drift δτ affects the timing of all pulse signals from all pulsars equally,

the timing noise, though it might follow a fixed distribution, will produce different

variations in the timing of observed pulses. An example of timing noise can be

seen in the work of Franzen [1] where several hours of photon collection were used to

reconstruct a signal from the Crab Pulsar. After the signal was processed, the arrival

phase of the peak was determined to within ±0.0004 parts, which for a signal with a

period of about 33.5ms, translates to ±13.4µs of timing noise. For a pulse traveling

at c = 3e5km/s, this gives an uncertainty in the location of the pulse wavefront

of about ±4km at an instant in time. The exact value of the timing noise is not

important, however it will be assumed that it is three to four orders of magnitude

smaller than the period of the pulse signal.
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Timing Noise – Revisiting the 1D Temporal Problem

We now re-examine the one dimensional ambiguity problem while also intro-

ducing timing noise σt. Again we are interested in finding the shortest time interval

between candidate solution observations, as that represents the most uncertainty in

clock drift that one can have before they must worry about ambiguous solutions.

Referring to Figure V.6 we note that again at t0 we have alignment of all pulses in

time. Also, as before, there are three pulse signals with periods T1 > T2 > T3 which

are known very precisely however the periods have been scaled so that they do not

perfectly line up in time after three periods of T1 as was the case in Figure V.3. Also,

in this scenario the arrival times can only be measured with a resolution of ±σt. This

means that if the estimated TOA of two pulses is separated by less than 2σt they

are considered to be simultaneous events.

Figure V.6: The one dimensional temporal ambiguity problem revisited with timing

noise added. The minimal time between solutions Tmin is about T1

Again, realistically, timing noise would be modeled likely by a Gaussian distri-
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bution meaning that two pulses which have been observed farther apart, but still

separated by less than 2σt have a lower probability of having arrived simultaneously

than two pulses which have arrive close together. However, for this example we con-

sider a uniform distribution of noise over the range 2σt, and thus the classification

of simultaneity between pulses is binary: if their spacing is less than 2σt they are

considered simultaneous, if it is greater then they are not simultaneous. A point

in time where all three pulses are observed simultaneously represents an ambiguous

candidate solution.

It’s important to note that as the time is progressed the first candidate solution

encountered at t1 is roughly three periods of T1 from the first solution at t0. How-

ever, this is not the minimal amount of time between two possible solutions. If one

continues to progress time past t1, or simply restarts the clock at t0 with a slight shift

in phase for T2 and T3 it’s possible to encounter a shorter spacing between solutions.

In this case, it can be seen that the shortest interval between candidate solutions,

Tmin encountered in the given time span is about T1. The exact length of the solution

interval depends on how the solution windows are assigned a TOA with respect to

the pulses and how the gap between solutions is measured. If we adopt a scheme

where a solution is assigned a TOA which is equidistant from the two farthest pulses

in the solution window, then the shortest interval between solution window centers

will be T1 and this would only occur if somehow all the shorter period solutions fell

exactly on the pulses of T1 which is not possible for the configuration in Figure V.6.

One of the difficulties created by the inclusion of timing noise is that even if the

periods could be written as integer values of a very small time unit, the Euclidean
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algorithm could no longer be implemented. In addition, the time to the first en-

countered solution after some initial time t0 is not necessarily the minimal possible

time between solutions. Therefore, simply running the clock forward and measuring

intervals between observed solutions is not an effective method of estimating Tmin,

as it is not clear when one has found the absolute minimal gap between solutions.

Thus, a different method is needed for finding this minimal time between solutions

and it is discussed in the next chapter.

Timing Noise – Revisiting the 2D Spatial Problem

Extending the effects of timing noise into the two dimensional domain, we first

look at a near intersection of single pulses from three different pulsars. We do this

first by giving a finite width to each line representing a wavefront. While previously

the lines where infinitely thin, they now have a finite width of 2cσt. Referencing

Figure V.7 we can see that when three pulses of finite width intersect, or nearly

intersect, their areas overlap to produce a convex polygon. When dealing with only

three pulsars these shapes can vary from triangle, to quadrilateral, to pentagon, and

finally hexagon, however the shape the overlapping area produces is always convex.

Like in the one dimensional case, the inclusion of timing noise increases the

number of potential solutions and decreases the intervals between ambiguous solution

candidates. Looking at the two dimensional problem with multiple pulses from three

pulsars shown in Figure V.8 there are multiple solution candidates even though

there is only one exact solution. The periods are assumed to be known with perfect

precision, so on average the gap between successive pulses remains constant, even
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Figure V.7: Intersecting bands from three pulsars. Overlapping shape is convex

polygon with three to six sides.

though there is uncertainty regarding when exactly each pulse arrives.

Figure V.8: Candidate ambiguous solutions for multiple pulses with timing noise

from three pulsars in two dimensions. Note that only one exact solution exists in the

observed space where all the pulses line up perfectly.

The figure was generated by taking Figure V.4 which demonstrated repeating

solutions with exact intersection in two dimensions and altering the short period T3

pulses to have a shorter period and different direction of propagation. For this new
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configuration the distance between solutions can be measured by either taking the

distance between the centers of the solution polygons or by finding the two points

on two separate solution polygons that are closest to one another. In either case, it

is clear that the minimal distance between solutions is much shorter than what it

would be if there was no timing noise. The shortest distance between two candidate

solutions is denoted by Dmin in the figure. Note that there happens to be an exact

intersection in the space being considered, however it is the only one, so any other

exact solutions which might exist are significantly farther awar than theDmin between

the two ambiguous candidate solutions.

Timing Noise – 2 Spatial Dimensions and 1 Temporal Dimension

The full complexity of the ambiguity problem being considered can be seen

once pulses are allowed to shift over time. Relative to the one and two dimensional

cases, and the cases without timing noise, this case will allow for significantly more

candidate solutions. For a sufficiently large enough search space and long enough

period of time these candidate solutions might be popping in and out of existence

by the thousands at every time step. To resolve the ambiguity problem, not only

must one find out what the shortest possible time and distance is between solutions

but one must also try to produce a position estimate by eliminating false candidate

solutions. The Pulse Ambiguity Resolver Algorithm which achieves this is presented

in the following chapter.
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Setting the Stage – State of the Art, Literature Review, and Available

Frameworks

Before diving into algorithm development, it is worth noting what resources and

frameworks are available for tackling the ambiguity problem. The following sections

contain information regarding new developments and improvements in the field of

X-Nav as well references and explanations to some of the foundational work and

tools available for continuing work in the field.

Literature Review

X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT: Win-

ternitz et. al present describe the design of the SEXTANT technology demonstration

as well as the design and capabilities of the GXLT testing platform. [48]. This plat-

form represents some of the latest developments in X-Nav being worked of at God-

dard Space Flight Center. The architecture is capable of simulating the generation

of pulsar signals as well as signal processing.

Introduction to X-Nav and Feasibility Studies: Becker’s work [49] pro-

vides an introduction to the basic techniques behind X-Nav as well as clear descrip-

tions and visualizations of the ambiguity problem. The ESA’s feasibility study [50],

covers in detail many aspects regarding hardware, algorithms and the physics of sig-

nal generation and processing and provides clear steps for integrating the results of

X-Nav into navigational filters.
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Spacecraft Navigation Using X-Ray Pulsars: Sheikh et. al present a

thorough summary of the developments in the field of X-Nav as well as some of

the challenges that must be overcome. [51]. First it’s pointed out that newly born

neutron stars rotate with periods on the order of tens of milliseconds. Older stars

eventually slow down to the order a several seconds. This rotation is very stable and

predictable. Accretion X-ray pulsars are divided into those with a high mass binary

companion and a low mass binary companion. X-ray signal stability is greater than

radio because of reduction in propagation effects from the interstellar medium on

X-ray light. The authors have cataloged 140 X-ray pulsars and Parkers Multibeam

Pulsar Survey database has listed many pulsar characteristics. Standard profile tem-

plates are created by observing pulsars over extended periods of time and averaging

the period or “epoch folding”. This produces a signal with a very high SNR. Radio

pulsars require huge receivers and broadband radio sources including local celestial

galaxies add noise. X-ray objects are very dim, for example the Crab Pulsar is at

9.9×10−9erg/cm2/s. Inaccuracy in position knowledge of pulsars allows the use only

of their direction, while distance to the pulsar cannot be used. Few sources are

available out of the galactic plane, leading to problems in finding signals coming

from unique directions. A priori estimates of pulse profiles or some other method to

identify correctly which specific pulse is detected is necessary. Some pulsars, such as

most accretion X-ray pulsars, exhibit glitches, which are changes in their spin rates.

These glitches make them unreliable for navigation purposes. A figure of merit is in-

troduced to assist in identifying X-ray sources with potential to provide good timing

and range accuracy. It is theoretically possible to achieve accuracies of about 100m
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with 100s observation windows and a 5 m2 antenna.

Time Corrections for Offset from Barycenter: The time offset must ac-

count for relativistic effects for a clock in motion about a gravitational body. It must

convert satellite clock to inertial coordinate time (TDB) clock. For distant pulsars

direction of pulses can be considered a constant for any movement within the solar

system. For accuracy under 300m relativistic time correction must be included which

includes gravitational effects of all large planets in the solar system.

Pulsar Based Nav: A full navigational system would include: a sensor to

detect the pulse, a clock on board, and a database of known timing models for the

pulsars. Static detectors would collect signals coming into FOV and compare them

to a catalog, while for moving sensors, a gimbaled system would perform faster due

to its ability to track targets. Doppler shift can be used to determine vehicle velocity

and pulsar signals can be used to stabilize atomic clocks. This can be done by

implementing a phase-locked loop. TOAs can also be used to correct clock error

based on how far off the on-board clock times are the incoming pulse. A Kalman

filter (KF) can be made to estimate the bias scale factor and jitter of the clock.

Pulsar Elevation Method: 4 methods presented. 1st and 2nd method are

comparable to OpNav techniques, however are more robust to blinding of detectors/

blocking of light. The two methods that use accurate pulse TOA measurements

require the coordinate time conversion and the barycenter offset corrections to be

applied. This requires that the spacecraft know its positions in order to compute

these corrections, so there is a chicken and egg problem. On-board attitude is known
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and used to get direction towards pulsar. Simultaneous observation of planetary

body, elevation angles between source and reference body, and apparent size of ref-

erence body can be used to provide position relative to body.

Delta-Correction Method: Use an on-board position estimate and improve

it by measuring phase discrepancy. Combining measurements from multiple pulsars

solves the offset problem in three dimensions. Knowing the correct phase shifts re-

quires knowing spacecraft position relative to solar system bodies in order to make

relativistic corrections. Any significant vehicle motion occurring during the time

space between measured and predicted pulse arrivals must be taken into considera-

tion. To measure performance the time equations can be linearized. There will be

geometric dilution of precision (GDOP) which is based on the covariance matrix of

the estimated errors of the position estimate. A more even pulsar distributions will

produce less GDOP. Measurements are uncorrelated so the covariance matrix can be

expressed as diagonal. The Unconventional Stellar Aspect (USA) Experiment [52],

which had 1000 cm2 effective area, and it’s results can be used to evaluate perofor-

mance of X-Nav systems. Comparing experimental results to USA results and using

template files to get observation TOA’s, it’s possible to get position offsetson the

order of ± 10 km.

Studies of Ambiguity Resolution: Several studies have been performed

which directly look at the ambiguity problem and propose ways of resolving it.

Huang [53] offers methods built on hypothesis testing and an SVD representation of

the acceptance space that builds upon previous approaches at solving the problem.
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Li [54] proposes a least squares and ambiguity covariance approach and Feng [55] in-

vestigates the phase ambiguity problem while also addressing the problem of GDOP.

Theoretical and Conceptual Frameworks

From an algorithmic perspective, the problem of X-Nav has many components

that leverage tools from many different fields of mathematics, physics, and engi-

neering. However, the focus of the developments presented in this dissertation is

on resolution of ambiguity when processing multiple pulses from different pulsars,

thus, theory related to pulsar astrophysics, signal processing, and stochastic pro-

cesses is not heavily leveraged. The frameworks leveraged heavily in this work are

listed below.

Parametric and Implicit Representations: Resolving the ambiguity prob-

lem requires heavy use of both parametric and implicit descriptions of geometries

and movements of points. Pulse wave fronts are represented both in parametric form

using normal vectors and propagation speed and in an implicit form when studying

intersections between signals.

Least Square Techniques: Least square techniques are used for estimating

solutions to the multi-line intersection problem and attempting to find points in

space and time which best correspond the observed pulsar signals.

Euclid’s Algorithm and LCM: For analyzing a simplified, one dimensional

version of the ambiguity problem, pulsar signal periods can be represented using

integers and thus Euclid’s algorithm can be used to look for repeating patterns in
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the signals. This approach does not work well once the problem is extended into

multiple dimensions.

Fundamentals of Geometry: Resolving the ambiguity problem involves rep-

resenting potential intersection areas and volumes. Understanding how to define

these spaces and translate and transform them in time is necessary and requires

concepts from fundamental geometry.

Closest Point of Approach: There are various forms of the Closest Point of

Approach problem [56]. The proposed ambiguity resolution algorithm requires solv-

ing of the simplest version of this problem in order to check for potential conjunctions

between signals: analyzing two points moving at constant velocities.

Lattice Algorithms and Geometry of Numbers: The intersection of multi-

ple wavefronts creates lattices of points that serve as candidate solutions for observer

locations. Understanding the geometric configurations between these points and be-

ing able to measure the distance between them leverages lattice algorithms [57] as

well general concepts from the geometry of numbers [58], [59].

Timing Noise and Uncertainty: Timing uncertainty associated with the

signal processing of pulses has a large impact on the number of potential solutions

and thus plays a key role in establishing areas of potential intersection between

signals and probabilities of candidate solutions being present in those areas.
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CHAPTER VI

X-RAY PULSAR-BASED NAVIGATION - RESOLVING AMBIGUITY

AND ESTIMATING POSITION

The algorithm proposed in this chapter seeks to discover the minimal time inter-

val Tmin and distance Dmin between candidate solutions and then provide a position

estimate associated with each solution. It works by first only checking the intersec-

tions between pulsar pairs that have the lowest periodicity of intersection. Then as

candidate solutions sets are investigated, those that satisfy conjunction criteria are

saved. Over multiple iterations the algorithms seeks to filter out candidate solution

sets which don’t have a sufficiently tight intersection of pulse waves. After filtering

and discarding, the remaining solutions are used to perform position estimation. If

more than one solution remains, the minimal time interval and distance between the

remaining solution pairs is considered to be the minimal interval for the given search

parameters.

Successful verification of the algorithm would entail that for a given known

drift in time and uncertainty in position the algorithm will successfully return all

candidate solutions and provide a true estimate of the distance between the minimal

solution pairs. Failure of the algorithm would be to omit intersections and produce

no candidate solution when the space being considered is large enough in time and

space to contain the true observer location. A partial successes would be to discover

candidate solutions, but not be able to ensure that all possible solutions have been

discovered and/or to be unable to guarantee that the estimated Tmin and Dmin are
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global minima. If a lower bound for Tmin and Dmin is not set, then the trustworthiness

of any proposed solution estimates is put into question.

A full detailing of the algorithm architecture follows. Potential shortcomings

and limitations of the method are also addressed. Empirical testing is needed in

order to verify functionality of the algorithm and whether or not proposed solution

pairs constitute global minima pairs. It is unknown currently if the minimal time and

space solutions can be found using deterministic means, however, initial investigation

towards a deterministic inductive method is also proposed. Testing procedures are

proposed for estimating the probability of false positives (perceiving and failing to

filter out a candidate solution when there isn’t one), and false negatives (omission of

candidate solution).

Algorithm Architecture

To understand the meaning behind the variables and terms used in the algo-

rithm, reference the nomenclature provided before the introduction of this disser-

tation. Referencing Figure VI.1 one can see that besides a few filtering loops, the

algorithm follows a linear progression along a series of steps.

The assumptions that go into the architecture of this algorithm are presented

next followed by a description of each of the steps shown in Figure VI.1.

Assumptions of Algorithm Construction

The following assumptions are made in the construction of the algorithm. Some

of them can be relaxed in the future in order to increase the capabilities of the
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Figure VI.1: Overall flowchart showing how ambiguity can be quantified and resolved,

and position and time be estimated.

algorithm in exchange for computational complexity and robustness.

2D Planar Wave Problem: Pulsars ar considered to be planar, only two

spatial dimensions are considered, so wavefronts are represented by infinite lines

that move through the field at c. Note that these lines do not represent planar

wavefront represented in a 3D space intersecting with a working plane. That would

allow for lines to move at speeds less than c in two dimensions, depending on the

direction of propagation with respect to the working plane. This is not the case,

and thus all lines move with velocity cn̂ in two dimensions. It is expected that the

algorithm can be extended to n dimensional space, and thus restricting the analysis

to two dimensions allows for a simpler architecture for proof of concept without loss

of generality.
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Stationary Observer: This is a simplifying assumption which reduces the

complexity of the problem. It is possible to still resolve the ambiguity problem

and determine a position estimate for a non stationary observer, however this adds

complexity which will not be studied here.

Non-Parallel Wavefronts: It is assumed that no two pulsars have signals

which come from exactly the same direction, and thus unique intersections can be

calculated for the lines that represent the wavefronts from each pulsar.

Observed Pulsars Are Readily Identifiable: All relevant information as-

sociated with a pulsar is known. Pulsar ID, period, phase, direction of propagation,

etc. is known immediately once a signal is resolved.

Simultaneous Observation of Multiple Pulsars is Possible: There exists

a time window which contains multiple TOAobss from all observed pulsars. TOAs

from various pulsars can either be observed during this time window, or if a TOA

lies outside this time window, it can be mapped into the time window using accu-

rate knowledge of pulsars periods if the clock drift is assumed to be the same for

observations during the time window and the TOA which lies outside of it.

Pulse Signals Provide TOAs with Fixed Time Uncertainty and Equal

Clock Drift: Observations provide a TOAobs associated with each pulsar. All TOAs

are affected by the same constant clock drift and all experience timing noise sampled

from a normal distribution of fixed standard deviation σt. This timing noise model is

simplified later by assuming that the probability of timing error is actually uniform

over the interval [0, σt].

TOA Alignment at True Solution: The true solution needs to exist at a
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single point in space-time which will be found by aligning the observation phases.

However, in setting this alignment up, we may be neglecting timing noise, and thus

potentially neglecting candidate solutions.

Step 0 – Pulsar Catalog Preprocessing and Loading System Parameters

Before the process of X-Nav and ambiguity resolution can begin a pulsar catalog

must be loaded. This catalog, or subcatalog, contains relevant information regard-

ing all pulsars P which would potentially be of interest to an observing spacecraft.

The periods T , directions of propagation n̂, and phases φ necessary for calculating

TOAref are provided. The minimal lattice distances λa,b between pulsar pairs are

also precomputed and provided.

System parameters pertaining to the observer are also necessary. An initial

estimate for the observer position p0 and initial estimate of observer time τ0 is

loaded. Estimates of position and clock uncertainty, δr and δτ are needed as well.

Finally the timing uncertainty σt associated with how accurately the timing of a

signal can be resolved by signal processing also must be provided.

Step 1 – Collect Observations

Once an observer has loaded their catalog and has estimates of their system

parameters they can collect observations. When pulsars are observed and identified

signal processing will resolve the incoming light and give a local time-of-arrival for

each observed pulse of the observed pulsars TOAobs,n,i. Each observed pulsar is

labeled as Pn where n ∈ [1, N ] and N is the total number of observed pulsars. For
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each pulsar Pn there are Mn observed pulse wavefronts, and each one is given an ID

Pn,i where i ∈ [1,Mn].

Step 2 – Find Largest Minimal Lattice Distance and Identify P1 and P2

For the observed pulsars Pn search the catalog for minimal lattice distance λa,b

and identify the largest minimal lattice distance λmax = λ1,2. The existence of these

minimal distances is proven by Minkowski’s Theorem and these distances can be

done through lattice algorithms. This serves to identify P1 and P2, which will be

the two pulsars which have the largest minimal lattice distance among all possible

observed pulsar pairs. Of those two, P1 has the longer period: T1 > T2. Collect all of

the other minimal lattice distances for the remaining pulsars paired with P1 so that

λ1,2 > λ1,3 > ... > λ1,N . From this ordering identify P3 associated with λ1,3.

Step 3 – Select Working Time and Apply Phase Shift

The next step is to identify the working time: tw = TOAobs,1,i. This time will

be associated a peak arrival time for one of the pulse waves coming from pulsar

P1. Which pulse number is chosen will depend on the time of interest t∗. Since

observation, signal processing, and resolving of pulsar signals is a process which

takes hundreds or thousands of periods from the incoming pulse, it is up to the

observer to decide at exactly which time during the observation window would they

like to estimate position. Whatever time of interest is chosen, the nearest associated

TOA from pulsar P1 is defined as TOAobs,1,i = tw so that |t∗ − tw| < T1. Once this

working time is selected, a phase shift ∆φ1,b is applied to all observed TOAobs,b,i from
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other pulsars so that one wavefront from every other pulsar lines up with TOAobs,1,i.

This phase shift is demonstrated in Figure VI.2. The goal of this shift is to help the

observer find a point in time (and space) where all wavefronts intersect since this

represents a candidate solution for a position estimate.

Figure VI.2: Selection of tw and phase shift ∆φ1,b applied to all TOAs from pulsars

P2 through PN .

These phase shifts are also applied in the spatial domain. All wavefronts for

pulsars Pb for b ∈ [2, N ] are shifted by a distance c∆tbn̂b, where ∆tb is the time shift

associated with ∆φ1,b and c is the speed of light. This is shown in Figure VI.3. This

shift will hopefully produce intersections between pulsars signals where one pulse

from every single observed pulsar meet to create a possible candidate solution for

a position estimate. It’s possible that before the shift there were locations where

an intersection pulse wavefront from all observed pulsars existed. These locations

would represent places in time and space where bright peaks from all pulsars could

be seen simultaneously. However, they would only represent candidate solutions if
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the observer actually observed simultaneous peaks from all pulsars. It’s more likely

that no such solution candidates will exist, until the phase shift is applied, since the

phase shift moves the wavefronts so that it’s possible for there to be a point in space

and time where signals come together in a way that is similar to what the observing

spacecraft witnessed in its observations.

Figure VI.3: Spatial shifting of wavefronts by c∆tbn̂b. Note that some extant candi-

date solutions may be eliminated by the shift and new ones may be created.

Step 4 – Define Search Area and Time Range, Identify Valid Pulse

Wave IDs

Once phase shifts have been applied to all pulses, the next step is to define

the search range for the position estimation problem. The system parameters δτ

and δr which represent estimated uncertainty of the observer’s clock and position

are needed. A reasonable minimal time range for searching for potential solutions
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would be tw ± δτ/2 and a reasonable minimal search space would be the area of the

circle (or sphere, in three dimensions) with radius δr/2 centered on position estimate

p0. The larger the search space, the more computationally complex the problem of

ambiguity resolution becomes. In the case where no candidate solutions are found

in the designated search space, and iterative approach is possible. Where the search

space is increased until one candidate solution, or some minimal number of candidate

solutions, are generated. Such an approach would be necessary in cases where clock

drift and/or position uncertainty are far worse than expected.

Once the search space is defined, the value Mn is calculated for each observed

pulsar Pn. Mn is the total number of unique pulses that enter the spatial range

over the designated time range. Pulsars with higher frequencies will have higher

Mn values, thus it is expected that MN ≥ ... ≥ Mn ≥ ... ≥ M1. These Mn values

can be easily calculated by knowing the direction and speed of propagation, c, as

well as the periods of each pulsar signal. Once these are calculated, a counting

index i ∈ [1,Mn] is associated to every single wavefront in the search space. These

wavefronts are identified by the pulse wave ID Pn,i where n indicates which pulsar

the signal belongs to, and i indicates the number of that wavefront.

Step 5 – Wave Triplet Conjunction Analysis

The intersection of two wavefronts from two different pulsars can be modeled

as the intersection between two non-parallel lines. It is guaranteed that at every

point in time there will be an intersection between these lines. If a third pulsar is

considered, then a third line which is not parallel to either of the first two is added.
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These lines do not intersect at all moments in time, however as long as they are all

moving relative to one another, it is guaranteed that there exists a point in time

where all three will intersect. Finding these intersections is the purpose of the wave

triplet conjunction analysis.

Since the computational complexity of the ambiguity problem is reduced when

there are fewer candidate solutions which are represented by intersections, triplet

conjunction analysis is performed on the signals from the three pulsars which have

the largest minimal lattice distances. P1 and P2 have already been defined. P3 is

the pulsar which has the second largest minimal lattice distance λ1,3 when paired

with P1 Thus, the pulse waves considered in the triplet conjunction analysis are

(P1,p, P2,q, P3,r) where p, q, r are the indices p ∈ [1,M1], q ∈ [1,M2], and r ∈ [1,M3].

Every single possible triplet of pulse waves creates a valid solution candidate

with a location in space and time of conjunction: (xc, yc, tc), thus the total number

of candidate solutions produced at this step is Nsol = M1×M2×M3. Every solution

Sk = (x, y, t)k has an ID associated with it Ik, where k ∈ [1, Nsol] where Nsol is the

number of current candidate solutions. The ID Ik is composed of the set of wave

number IDs which simultaneously overlap for that solution. Nsol, Ik, and Sk will

change value as solution candidates are filtered out and updated. Ik will grow as

more waves pulse ID’s are associated with the same solution candidate, starting off

initially as just Ik = (P1,p, P2,q, P3,r) and eventually at the last step containing a wave

from every observed pulsar Ik = (P1,p, P2,q, ..., PN−1,r, PN,u). Sk currently represents

an exact mathematical answer to the question of where three lines intersect in time

and space. In later steps, as more pulse waves are associated with a solution candidate
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this exact answer will be replaced by midpoint or least square solutions.

The time and location of triplet conjunction is calculated by first selecting the

index, p, q, r of the wavefronts. Then, using the working time tw as a reference, the

location of the intersection of P1,p, P2,q, is found. This is done by representing each

front by a line and finding their intersection. This is a virtual point with velocity v.

To find the distance from this point to P3,r, a line must be defined which represents

the wavefront, after which it’s a simply matter of calculating the distance from a point

to a line. The relative velocity between this point and the line of P3,r determines

when and where the triplet conjunction occurs. The dot product between v and

n̂3 provides the component of v which is perpendicular to the wavefront (which is

also moving) and allows for the calculation of the time elapsed (positive or negative)

between triplet conjunction and working time tw.

Duration and Bounds of Conjunction: Once the time and location of triplet

conjunction is found, (xc, yc, tc), it is also necessary to determine for how long this

conjunction is valid. Due to timing noise σt each wavefront is more accurately rep-

resented by a band of finite thickness, instead of a line. Thus, while the exact

conjunction might occur at an infinitesimal moment in time and space, the three

bands come together to create an overlapping area which endures for a finite period

of time as the bands come together to a perfect conjunction and then eventually

separate, going through the various stages of overlap that are shown in Figure V.7.

The center of the overlapping area also moves through space, potentially over large

distances between the instance where it first appears and the last moment when it

becomes an infinitesimal point of overlap and then vanishes. This fact is relevant
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when searching for other pulsar signals which may also intersect with this overlap

area.

In order to determine for how long the conjunction lasts, the three intersection

points and their corresponding areas are tracked. The locations of the three inter-

section points A,B,C, are found by solving for the intersection between the lines of

each pulse wave. These points define a triangle which shrinks as the lines converge

on its incenter before conjunction, and then grows as the wave fronts continue on

passed the conjunction. The lines will always meet at the incenter of the triangle,

however depending on the geometric configuration of the pulse waves, the location

of the incenter (xc(t), yc(t)) may move over time. To calculate the location of the

incenter Equation 6.1 is used

xc(t) =
aAx + bBx + cCx

a+ b+ c
yc(t) =

aAy + bBy + cCy
a+ b+ c

(6.1)

where Ax, Ay are the time varying coordinates of intersection point A, etc. and a, b, c

are the time varying side lengths opposite the vertexes A,B,C.

To understand how long the conjunction lasts, and what space it covers, it is

necessary to know the velocity, vc, of the incenter of the triangle, as well as know the

velocities of each of the corner points relative to the incenter point. These velocities

can be easily calculated by taking the derivatives of the time dependent locations

of the intersection points and the incenter point. Since the wave fronts move at

constant velocities all derived velocities will also be constant.

These relative velocities, ∆vi = vi − vc, are necessary in order to determine

how quickly intersection point moves away from the conjunction. Using the relative
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velocities, it is able to determine how much time elapses from conjunction before the

distance from each intersection point to the conjunction location is too great for the

possibility of overlapping areas from all three bands. The process is illustrated in

Figure VI.4.

Figure VI.4: Steps for finding distance from intersection points to conjunction point

for three pulse waves. Left to Right: Three points are defined by intersecting

waves. The points define a triangle with an incenter at (xc, yc). Each point has a

velocity v and associated a bounding radius r for the area created by the overlapping

bands of the wave fronts. The distance from the points to the incenter is d(t).

Ever intersection point is associated with an area of intersection. These areas

can be bound by a radius r by calculated and halving the long diagonal of a par-

allelogram. Since all three intersection points converge perfectly at the conjunction

point, the amount of time it takes for each of these points to traverse a distance r

from the conjunction point is the amount of time during which there will be solu-

tion candidate where bands from all three pulse wavefronts overlap. After that (or

before, if analyzing the problem before conjunction) no overlap is possible. Thus the
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maximal duration of the conjunction is calculated according to Equation 6.2

tmax = min

(
||∆vi||
ri

)
, i ∈ [1, 3] (6.2)

The subscript “max” indicates that it is the maximal amount of time which can

elapse before one of the three intersection points, or bounding triangle vertexes, is

too far away for there to be an overlap between all three wave front bands.

The last piece of necessary information for characterizing the nature of the triplet

overlapping areas is the size of area. As a conservative estimate, which removes that

chance of omitting potential conjunctions, the area can be slightly overestimated by

assuming it to be a circle of radius rmax = max (ri) where ri is the radius associated

with the areas around each of the three intersection points. The true overlapping

area created when all three points converge will be smaller than this.

Now, the time of conjunction, maximal overlapping area size, and duration of

solution have been estimated. Using this information a large bounding area can be

defined which encompasses all possible points where there might be a potential triplet

conjunction over the duration of the conjunction. This bound of this area will be

used in the next step in order to select candidate waves from another pulsar which

may also form a conjunction with triplet from this step. The complete bounding

area associated with the conjunction is depicted in Figure VI.5

The four vertexes of the bounding conjunction area parallelogram are labeled as

V1, V2, V3, V4. Vertexes V1 and V2 can be calculated by finding the locations xc(tc −

tmax), yc(tc−tmax) and xc(tc+tmax), yc(tc+tmax). Vertexes V3 and V4 can be calculated

by using the radius rmax of the inscribed circular area and knowledge of the direction
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Figure VI.5: Complete area which bounds the space of potential overlap between

three pulse waves over the duration of a conjunction. The area is defined by a

parallelogram with vertexes V1, V2, V3, V4

of v̂c. These four spatial coordinates must be recorded along with the candidate

solution. Thus Sk now also is accompanied by Vk = (V1, V2, V3, V4)k as well as the

first moment when the bounding area appears t0 = tc − tmax and last moment it

disappears t1 = tc + tmax. This information will be necessary for checking if pulse

waves from other pulsars might potentially form a conjunction with the existing

triplet conjunction. The final outputs of this step will be Ik = (P1,p, P2,q, P3,r)k,

Sk = (xc, yc, tc, t0, t1)k, and Vk = (V1, V2, V3, V4)k.

Step 6 – Pair-Pair Conjunction Analysis

First, P4 is identified by selecting the pulsar which forms the minimal lattice

distance λ1,4 when paired with P1. Pair-pair conjunction analysis is then performed

using pulse waves from the pulsars (P1, P2, P3, P4). This process is started by using
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the candidate solutions Ik and their bounding areas provided by Step 5 and solutions

which satisfy the conjunction analysis are kept while others are discarded. Also, a

new bounding area for each new solution Ik = (P1,p, P2,q, P3,r, P4,u)k is calculated at

the end of the pair-pair analysis which represents the conjunction area of the four

pulse waves.

At the beginning of Step 6, a given solution ID Ik is composed of three pulse wave

ID’s: (P1,p, P2,q, P3,r) and has an associated bounding area defined by the vertices

Vk. This area first appears at time t0 and lasts until time t1. All pulse waves of P4

which might potentially intersect this area during the interval of time (t0, t1) must

be selected as candidates for conjunction analysis. Even though the true conjunction

area of (P1,p, P2,q, P3,r) does not fill the entire bounding area for the interval (t0, t1),

treating the entire area as a viable area of conjunction for the full interval simplifies

analysis, at a marginal increase of computational complexity, in the form of additional

checks which must be performed.

The first waves which can immediately be selected as candidates for analysis

are the ones which are already intersecting the area at time t0. In addition to these

waves, all P4 waves which are not intersecting the area at t0, but are at a distance

d < c × (t1 − t0) from the closest vertex V must also be selected for conjunction

analysis, since they will eventually intersect the area before it disappears.

Once all the candidates have been selected, pair-pair conjunction analysis can

be done sequentially on each. The ordering doesn’t matter, since each conjunction

with different pulse waves is independent of others. Suppose the earliest pulse wave

from P4 to enter the bounding area is used to start the checking sequence. This pulse
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wave has an ID P4,u, where u takes on some value u ∈ [1,M4], however since only

one wave from any pulsar is being considered at a time, the second subscripts will

be temporarily omitted from all pulse wave IDs to simplify expressions. Once the

conjunction check with P4,u is complete, then next wave P4,u+1 is selected and the

check is performed again until all candidates have been exhausted for the current set

of waves provided from Step 5 Ik. After which, the next candidate solution from Step

5, Ik+1, is selected and another series of pair-pair conjunction checks is performed.

Thus, for a selected solution Ik from Step 5, and a selected candidate from P4 the

four lines associated with each of the four pulse waves can be defined using simplified

notation: P1, P2, P3, P4. These four lines are shown in the first panel of Figure VI.6

and can be intersected in pairs to create three unique sets of point pairs, as listed in

Equation 6.3.

Pairings(P1, P2, P3, P4) =


(P1, P2), (P3, P4)

(P1, P3), (P2, P4)

(P1, P4), (P2, P3)


(6.3)

Considering the first possible point paring: (P1, P2), (P3, P4) this defines two

points formed by the intersections of two pairs of lines. Each line is moving with

constant speed c with some direction n̂. Thus, each of the two intersection points

is also moving at a constant velocity, v1 and v2. In order to determine if the two

points meet at a conjunction, the Closest Point of Approach (CPA) problem must

be solved. It can be easily solved analyticity using non-iterative methods based on

linear algebra [56] and the solution returns the time of closest approach tca between
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the two intersection points as well as the minimal distance between the two points

dmin = d(tCA). In order to determine if a conjunction has occurred, the timing

noise σt is used to establish the width of the band associated with the pulse waves.

These bands overlap to define a bounding area around each intersection point which

represents the space of possible locations for where the intersection between the two

waves could occur. Figure VI.6 illustrates how the areas are defined and the final

conjunction check is performed.

Figure VI.6: Illustration of how conjunction is determined when analyzing a two

points defined by pulse wave pairs. Left to Right: Initial points defined by in-

tersecting waves. Each point has a velocity v and associated area A created by

overlapping bands of the wave fronts. The distance between points is d(t) and the

areas are bound be circles of radius r. At time of closest approach tCA the bounding

circles overlap, thus a possible conjunction is flagged.

If the points happen to come together close enough so that their corresponding

areas A might intersect, then a possible conjunction is flagged. Each area A is bound

by a circumscribing circle of radius r. Conjunction checks are performed using these
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bounding circles, instead of the areas A. The reason for this substitution is that it’s

possible for there to be overlap between areas A1 and A2 at times other than tCA

while having no overlap at time tCA. In order to insure that no possible conjunction is

missed (a false negative result) a more complex conjunction check between areas A1

and A2 would be necessary, one which possibly involves using a numerical approach

with small time steps checking for intersecting areas over a time range. By using

circles, not only is it computationally more simple to check for area intersections,

but there is also no chance of missing a possible conjunction when checking for

potential intersection at time tCA. However, since the intersection of circles does not

guarantee intersection of areas A1 and A2, conjunction flags indicate the possibility

of a conjunction only. If at time tCA Inequality 6.4 is satisfied,

dmin > r1 + r2 (6.4)

then there is no chance of there ever being a potential conjunction between the two

points; otherwise, a conjunction is possible. The drawback of this approach is the

inclusion of false positive candidate solutions, which adds computational complexity

when performing additional filtering of candidate solutions in later stages of the

algorithm.

If a potential conjunction has been detected, then, similar to Step 5, the dura-

tion and spatial bounds of the potential conjunction must be determined. A coarse

estimate of the entire bounding bounding area for the pair-pair conjunction can be

estimated by taking the area of the parallelogram which is formed when intersecting

the swaths of area created by the circles associated with each intersection point,

as shown in Figure VI.7. The method for identifying the locations of the vertexes
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of this parallelogram is identical to the method for identifying the vertexes of the

parallelograms creates when intersecting the bands of two wavefronts.

Figure VI.7: Bounding parallelogram with vertexes V1, V2, V3, V4 defined by overlap-

ping paths of bounding circles of two intersection points. Area bounds the possible

locations for a conjunction by the four pulse waves being analyzed.

This bounding area does not take into account the timing of the closest approach,

and is thus not a tightly fitting bound. A more accurate complete conjunction

bound may be devised if the locations where intersection of the two bounding circles

associated with the two intersection points is no longer possible, i.e. the locations

where the overlapping circles separate. At these locations the distance between the

two intersection points is dmax = r1 + r2, as shown in Figure VI.8.

At this moment, the two circles touch tangentially, and that point of contact

is the location of the last possible intersection between the bands of the four pulse

waves being studied. It is necessary to find this location to bound the area of possible

conjunction. To find this point, first consider Figure VI.9. This figure depicts the

change in distance between intersection points. That distance is minimal at time
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Figure VI.8: dmax is the maximal distance between intersection points which allows

there to be overlap between the areas described by r1 and r2.

tca and increases as time moves forward or backward from that moment. At some

point, the distance between the two intersection points, which can be measured as

the distance between a point on the line moving with velocity vc and the origin, will

reach dmax.

A right triangle is formed by dmin and dmax which allows the calculation of the

distance along the line, which will be called dl. It is necessary to calculate the amount

of time which a point moving along the line, which represents the varying distance

between the two intersection points, will traverse dl. This is given by Equation 6.5.

∆t =
dl
||vc||

=

√
d2

max − d2
min

||vc||
(6.5)

Thus, at time t0 = tca−∆t and t1 = tca + ∆t the two circles are tangent. Using

knowledge of the time at which this occurs the location of each intersection point can

be determined. Then, the line connecting the two points can be defined, and starting
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Figure VI.9: Parametric line representation of the distance between the two inter-

section points. The minimal distance between the line and origin dmin is the minimal

distance between the intersection points at the time of closest approach, tca. At

times tca±∆t the distance between the points is dmax.

at one of the points, move along the line by the radius of the bounding circle r. That

will be the location of the tangent point between the two circles at that moment in

time. The two tangent points associated with time t0 = tca −∆t and t1 = tca + ∆t

can serve as the refined vertexes V1 and V4 of the complete conjunction bounding

area. A form similar to that shown in Step 5 is used here. The parallelogram has

a circle inscribed in it which represents the maximal size of the overlapping area

created by the two intersection points during closest approach. One can take the

time to compute this area, or simply assume it to be the size of the smaller of the

two circles. The center of this overlap area at time tca is the center of the bounding

parallelogram. Having the locations of V1 and V4, as well as the radius and center of

the inscribed circle, one can defined the other two vertexes V2 and V3. If it turns out

that the distance between V1 and V4 is less than 2rmin then, the complete conjunction

bounding area can be bound by just a circle of radius rmin centered on the centroid
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of the intersecting area of the two circles at closest approach.

The procedure listed above is performed for each of the three possible point

pairs defined by P1, P2, P3 and P4 = P4,u and then again three more times for the

point pairs created by the remaining candidate pulse waves of P4. At the end of Step

6 the remaining candidate solutions have IDs in the form Ik = (P1,p, P2,q, P3,r, P4,u)k

and solutions Sk = (xc, yc, tCA, t0, t1) where (xc, yc) represent the coordinates of the

centroid of overlapping area between the two bounding circles at time tca, and Vk =

(V1, V2, V3, V4)k.

Step 7 – Conjunction Check Including P5 ... PN

Step 5 and Step 6 of the ambiguity resolving process attempt to narrow down

the spatial and time range where candidate solutions could occur. They also aim

to reduce the combinatorial complexity which would result from trying to check all

wave fronts from all pulsars for potential intersection without filtering. Step 7 does

not narrow down the search space any further. For each candidate solution Ik and

Sk passed on from Step 6 this step iterates through all the remaining pulse waves

from P5 through PN and checks which ones might potentially intersect the complete

conjunction bounding areas which were calculated in the previous steps. Pulse waves

with bands which intersect them are kept as members of potential candidate solu-

tions, while the remaining ones are discarded. Thus, at the end of this process the

relevant solution ID sets will be Ik = (P1,p, P2,q, ..., PN,r)k. Hopefully, at this stage

of the filtering process there are very few candidate solutions; ideally, there would

only be one left. If the timing noise is large, then there will potentially be many
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candidate solutions identified. If no candidate solutions are found, then the the time

and space domain in which the search is occurring might need to be expanded.

Step 8 – Final Solution Estimation

The final solutions estimate will be performed using least squares, since it is

highly improbable that all pulse waves will perfectly intersect each other at a moment

in time. Least squares is performed here using an implicit formulation of a line to

represent a pulse wave, which can be constructed at any point in time for any pulse

wave using the direction of propagation n̂n, period Tn and the pulse wave ID Pn,i,

however other representations are also valid. Each wave front is moving with a

constant velocity which is accounted for with a linear time term. Thus, the implicit

form of the line representing a moving wavefront is shown in Equation 6.6.

Dn = Anx+Bny + Cnt, n ∈ [1, N ] (6.6)

To get values for A,B,C,D for each line, tw = 0 can be used as a reference time.

Thus, t would represent time since, or before tw. We write the system of equations

representing all lines in a solution set Ik in the form dk = Akxk:



D1

D2

...

DN


k

=



A1 B1 C1

A2 B2 C2

...
...

...

AN BN CN


k


x

y

t


k

and can apply the pseudo-inverse, (ATA)−1ATd = x, to solve for the least squares

solution (x, y, t), which would give the point in space and time which is closest to all
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pulse waves belonging to Ik. Here, solutions which are too distant from any pulse

waves in the set Ik can be discarded, if at time t the distance between the least squares

solution x, y and any of the lines is greater than cσt, then the bands associated with

each line don’t all overlap, and thus there can’t be a solution. Alternatively, all

least squares solutions can be kept and fed into a navigation filter which weighs

the residuals associated with each solution, and selects the solution with the lowest

residuals.

Under nominal operation, there should always be a solution left after filtering,

since the observer must exist somewhere in time and space. In the case of multiple

solutions remaining at the end of the process, a navigation filter can help eliminate

false candidate solutions. Alternatively, system parameters may need to be updated

or re-estimated. If no solutions are remaining, or the ones produced by the algorithms

are not satisfactory, such as having too high a residual, then it may be necessary to

expand the time and space search domain.
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Alternative Proposed Methods

A method of using spherical volumes to partition the search space and speed

up the filtering of candidate solutions has been previously proposed [47], however

never fully implemented. This method could potentially provide a viable alternative

approach for ambiguity resolution, however it does not ensure that minimal intervals

between solutions is found.

Comparison with Huang’s Fast Ambiguity Resolution Method

Huang’s Fast Ambiguity Resolution Method [60] uses hypothesis testing to con-

struct an ambiguity acceptance space which is then converted to linear form using

singular value decomposition. Particle swarm techniques are used to quickly find an

initial solution. Huang provides an analysis of ambiguity resolution time vs problem

size. A comparison of speed, complexity, accuracy should be performed in order to

evaluate performance of the proposed algorithm. Thus, Huang’s algorithm is a good

marker of performance comparison and can be a useful tool in the development and

testing of the algorithm architecture.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

This chapter contains reflection regarding the specific immediate results which

have been achieved by the methods described in this dissertation in addition to the

broader implications of the completed work. The described methods require further

testing in real-world applications in order to understand their utility at the mission-

level scope. Ultimately, even if these methods are technically successful, if they do

not provide sufficient utility to engineers, operators, and managers, they will likely

not be implemented in the future.

Summary

This section provide a recap of the methods used in OpNav and X-Nav and any

results from testing and performance verification.

OpNav

OpNav is a means of autonomous optical navigation for spacecraft which uses

visible light imagery of extended object planets or moons in order to estimate the

position of the observing spacecraft with respect to the observed body. OpNav relies

on four phases 1) image preprocessing and camera calibration, 2)initial processing

and position estimate, 3) nonlinear iterative least squares limb fitting using a Gaus-

sian on the image gradient for refined position estimate, 4) translation and rotation

of position estimate into relevant coordinate frame with respect to desired reference
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body. The methods developed here were tested on real and synthetic data and suc-

cessfully met the pointing requirements given by NASA when performing centroid

and apparent size estimation of observed bodies. Algorithm can provide centroiding

precision on the order of σ = 0.12 px when used on real images of the Moon taken

from the ISS. This equates to a distance estimation error of about 500 km when

performing OpNav at Earth-Moon distances.

X-Nav

X-Nav is a means of autonomous position estimation for spacecraft using the

signals from distant X-ray pulsars. The method holds promise as a universal nav-

igation solution during interplanetary and deep space missions and can potentially

be a method of synchronizing ship clocks and estimating position, velocity, and at-

titude. The main difficulties of developing this technology lie in 1) developing X-ray

sensor technology that can accurately process and resolve signals 2) resolving signal

ambiguity and 3) compensating for effects of interstellar medium and gravitational

disturbances. The ambiguity problem arises from the fact that pulsar signal are

periodic and that an observer can potentially have multiple ambiguous candidate

solutions proposed by X-Nav. The algorithm proposed in this paper aims to re-

solve this ambiguity problem by subselecting likely pulse wave intersection locations

and then filtering out false candidate solutions. The method assumes perfect period

knowledge, planar wavefront, and successful signal processing. It is developed using

two spatial dimensions and one temporal dimensions but can be extended to n spatial

dimensions. The proposed algorithm still requires implantation and testing.
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Conclusion

This section aims to contextualize the work and results described in this dis-

sertation. Speculation regarding proper application of the developed algorithms as

well as commentary regarding the broader, far-reaching, utility of the methods is

provided.

OpNav

The results of OpNav testing indicate that it is sufficiently accurate to serve as

a backup navigation system for interplanetary and cislunar missions. However, it is

likely not appropriate for navigation when near a large planet or moon. If the body

can not be observed in its entirety, then the OpNav algorithms proposed here would

not work. It may be possible that while in orbit around one planet or moon, that

another planet or moon which appears as an extended body is used for OpNav. This

is technically possible, as was done with image processing of Moon images taken

from the ISS, however, the results would not be very accurate and it is likely not a

useful capability under those operating conditions. The distance estimation error of

about 500 km when using OpNav on board the ISS may be impressive considering

the distance from the Earth to the Moon is around a thousand times greater than the

error, however it’s probably not sufficient precision for orbital maneuvering around

Earth. It’s likely that other forms of relative navigation are more useful in this case.

The OpNav algorithms presented here have been successfully tested at Johnson

Space Center on synthetic and real image data. They have been undergoing con-

version to embedded C code in order to be compatible with Orions flight systems.
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Before they see flight heritage they must undergo integrated hardware testing where

a simulated Orion will fly through simulated space and attempt to image bodies,

perform image processing, navigate, and perform maneuvers successfully.

Though developed for Orion, these OpNav algorithms are vehicle agnostic. The

only constraint which they face is that a separate system, other than the OpNav

imaging system is needed in order to estimate attitude, which in turn is necessary

to generate an OpNav position estimate. Future developments could look into using

the imagery taken from OpNav to estimate attitude as well, and thus provide a fully

independent navigation solution.

The effects of successful implementation of these algorithms should be reflected

by increased safety margins, and reduced ground crew effort in navigation, and in-

creased capabilities of Orion during loss-of-comms scenarios compared to current per-

formance. To evaluate these broader goals, extensive system-level testing is needed

which potentially would involve simulated crew operations as well. This analysis

is necessary in order to determine the ultimate utility of OpNav as a backup, and

potentially additional navigation system. Upon successful testing, OpNav can hope-

fully serve, not only as a contingency measure, but be run in parallel with other

navigation systems and increase the capabilities of a spacecraft while on mission.

X-Nav

The proposed method of resolving ambiguity remains to be implemented and

tested. Proper testing would likely require the use of real pulsar TOA data along

with a simulation environment which can create synthetic TOAobs values based on
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where an observer is located in space and time. There are already existing methods

for resolving ambiguity, and thus a comparison of performance is warranted in the

future. Even if the proposed method does not appear to perform as well as some ex-

isting methods, it can perhaps serve as a foundation for solving the minimal interval

problem. While existing methods are able to resolve ambiguity, they do not seem to

provide an estimate of the minimal solution interval: [Tmin, Dmin]. It remains to be

seen if it is possible to use a algorithmic approach to solving this problem in a way

that guarantees convergence and allows zero false positives while also not missing

any potential minimal solution intervals. More work is required to develop methods

of investigating this problem. If it can be solved, the implications would likely extend

beyond the field of spacecraft navigation as a general tool for estimating distances

between lattice points when there is uncertainty in the lattice point locations. These

results could thus be relevant to the study of lattice algorithms which has appli-

cations in many fields of computer science such as cryptography and combinatorial

optimization.
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Future Work

This section contains potential ways of refining algorithms and verifying per-

formance. All of the following recommendations regarding future work are either

mathematical or algorithmic in nature. Integrated hardware testing, or systems

level developments, is not considered.

OpNav – Refinement of θ(ξ) Function

The relationship between ξ and θ was modeled as a simple scaling as shown

in Equation 3.14, however this linear approximation produced up to a 15% error in

estimation of ξ as shown in Figure III.17. A numerical estimate of the derivative

dξ/dθ looks linear over the domain of interest, which points towards using a quadratic

approximation to model ξ as a function of θ. This adds a minor complication, when

inverting this relationship in order to estimate θ as a function of ξ is a little more

complex. Also, the partial derivatives of the cost function with respect to ξ will

change.

OpNav – Asymmetric Gaussian Limb Model

It can be noted in Figure III.23 that the graytone data associated with the limb of

the Earth is nosier on the Earth side of the limb. In order to capture this asymmetry

in the distribution of data around the limb, an asymmetric fitting function could be

used. Initial tests have been done using fitting function made from the sum of a

Gaussian and sigmoid function where the transition of the sigmoid is aligned with

the center of the Gaussian.
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OpNav – Super-Resolution Image Gradient

The gradient of the image used in OpNav is computed using numerical differ-

encing techniques. Once the gradients are computed a new image is generated with

the same resolution as the original image. However, it is not necessary for the new

image to have the same resolution as the original, and it’s possible that a much

higher resolution image is generated to represent the gradient. Whether or not this

would improve the results of limb fitting is unclear, but it would provide much more

pixels to use for the least squares fit. It would also reduce discretization effects,

which might improve fit quality.

OpNav – Estimating Uncertainty of Position Fix Using Pixel Graytone

Statistics

The current formulation of the limb fitting in OpNav does not provide a con-

fidence measure along with the position estimate. The confidence of the position

estimate can have uncertainty introduced into it from several sources: timing noise,

optical distortion, inaccuracy in ephemeris data, and image noise. Image noise would

affect the quality of the limb fit. So the uncertainty associated with graytone level

due to noise can be propagated into the uncertainty of the position estimate, and

thus make it more useful for implementation into a navigation filter.

OpNav – Study of Atmospheric Bias on Limb Fitting

Atmospheres alter the appearance of the limb of planets and make fro a more

gradual transition across the limb. The effect this has is to alter the apparent size of
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the observed planet, generally biasing the results towards a larger appearance of the

target body and thus a closer distance estimate. This effect is only apparent when

close to the target body, and reduces as one moves away. This exact relationship can

be studied. Studies of this relationship have already been performed by Christian

[61].

X-Nav – Pulse TOA Simulator

Attempting to improve the performance of the proposed ambiguity resolution

method is not necessary until an initial implementation is completed. However,

testing would benefit from building a pulsar simulator, or at least a simulator of pulse

TOAs. Such a simulator would not have to handle the complexities of generating

realistic photon streams and then processing the signal, but it might provide a useful

tool for generating TOA values with realistic timing noise and periods.

X-Nav – Extension to 3D and Testing Against Other Pulse Ambiguity

Resolvers

The development of the ambiguity resolution algorithm was performed in two

dimensions, however, there is no reason why the method cannot readily be extended

into three spatial dimensions. A few of the steps will change when this is done. First,

wavefronts would be represented by planes instead of lines, and thus timing noise

will create volumes of finite thickness. Step 5 was originally a search for intersection

of triplets of fronts in two dimensions. In three dimensions this will be a quadruplet

intersection problem, searching for moments in time and locations in space where
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four wavefronts meet. Thus at the end of Step 5 signals from the first four pulsars

would be analyzed. Step 6 will still analyzes conjunction between pairs of intersection

points, however, each intersection point is now defined by three pulse waves, so this

step will actually be processing pulse waves from six pulsars. Therefore, at Step 7

the algorithm will be checking for conjunction checks starting with the first seven

pulsars up through all N pulsars.
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APPENDIX A

PARTIAL DERIVATIVES OF ξ AND M

ξ Derivatives

∂ξj
∂x

= bT

j

∂MB

∂x
bj

∂ξj
∂y

bT

j

∂MB

∂y
bj

∂ξj
∂z

bT

j

∂MB

∂z
bj (A.1)

M Derivatives

MB-matrix and its partials (triaxial body)

The MB matrix for a triaxial body has the expression

MB =
1

a2b2c2


b2c2 − c2y2 − b2z2 c2xy b2xz

c2xy a2c2 − a2z2 − c2x2 a2yz

b2xz a2yz a2b2 − b2x2 − a2y2

 (A.2)

whose partials are

∂MB

∂x
=

1

a2b2c2


0 c2y b2z

c2y −2c2x 0

b2z 0 −2b2x

 ,
∂MB

∂y
=

1

a2b2c2


−2c2y c2y 0

c2y 0 a2z

0 a2z −2a2y

 ,
(A.3)

and

∂MB

∂z
=

1

a2b2c2


−2b2z 0 b2x

0 −2a2z a2y

b2x a2y 0

 . (A.4)
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MB-matrix and its partials (Earth)

The Earth can be considered an axial symmetric ellipsoid with two identical

equatorial semi-axes, a = b = RE, and a polar semi-axis, c = RP .

MB =
1

a4c2


a2(c2 − z2)− c2y2 c2xy a2xz

c2xy a2(c2 − z2)− c2x2 a2yz

a2xz a2yz a2(a2 − x2 − y2)

 (A.5)

whose partials are

∂MB

∂x
=

1

a4c2


0 c2y a2z

c2y −2c2x 0

a2z 0 −2a2x

 ,
∂MB

∂y
=

1

a4c2


−2c2y c2y 0

c2y 0 a2z

0 a2z −2a2y

 ,
(A.6)

and

∂MB

∂z
=

1

a4c2


−2a2z 0 a2x

0 −2a2z a2y

a2x a2y 0

 . (A.7)

MB-matrix and its partials (Earth, scaled)

Previous matrices can be scaled by setting ρ =
RE

RP

=
a

c
> 1,

MB =


1− y2 − ρ2z2 xy ρ2xz

xy 1− x2 − ρ2z2 ρ2yz

ρ2xz ρ2yz ρ2(1− x2 − y2)

 (A.8)
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whose derivatives are

∂MB

∂x
=


0 y ρ2z

y −2x 0

ρ2z 0 −2ρ2x

 ,
∂MB

∂y
=


−2y x 0

x 0 ρ2z

0 ρ2z −2ρ2y

 , (A.9)

and

∂MB

∂z
=


−2ρ2z 0 ρ2x

0 −2ρ2z ρ2y

ρ2x ρ2y 0

 . (A.10)

MB-matrix and its partials (Moon)

Moon can be consider a sphere, a = b = c. Therefore,

MB =
1

a4


a2 − y2 − z2 xy xz

xy a2 − z2 − x2 yz

xz yz a2 − x2 − y2

 (A.11)

with derivatives

∂MB

∂x
=

1

a4


0 y z

y −2x 0

z 0 −2x

 ,
∂MB

∂y
=

1

a4


−2y y 0

y 0 z

0 z −2y

 (A.12)

and

∂MB

∂z
=

1

a4


−2z 0 x

0 −2z y

x y 0

 (A.13)
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MB-matrix and its partials (Moon, scaled)

a = b = c and ρ =
RE

RP

= 1

MB =


1− y2 − z2 xy xz

xy 1− x2 − z2 yz

xz yz 1− x2 − y2

 (A.14)

with derivatives

∂MB

∂x
=


0 y z

y −2x 0

z 0 −2x

 ,
∂MB

∂y
=


−2y x 0

x 0 z

0 z −2y

 (A.15)

and

∂MB

∂z
=


−2z 0 x

0 −2z y

x y 0

 (A.16)
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