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ABSTRACT

The effort to mimic a chemical plant’s operations or to design and operate a completely new

technology in silico is a highly studied research field under process systems engineering. As the

rising computation power allows us to simulate and model systems in greater detail through careful

consideration of the underlying phenomena, the increasing use of complex simulation software

and generation of multi-scale models that spans over multiple length and time scales calls for

computationally efficient solution strategies that can handle problems with different complexities

and characteristics. This work presents theoretical and algorithmic advancements for a range of

challenging classes of mathematical programming problems through introducing new data-driven

hybrid modeling and optimization strategies.

First, theoretical and algorithmic advances for bi-level programming, multi-objective optimiza-

tion, problems containing stiff differential algebraic equations, and nonlinear programming prob-

lems are presented. Each advancement is accompanied with an application from the grand chal-

lenges faced in the engineering domain including, food-energy-water nexus considerations, energy

systems design with economic and environmental considerations, thermal cracking of natural gas

liquids, and oil production optimization.

Second, key modeling challenges in environmental and biomedical systems are addressed

through employing advanced data analysis techniques. Chemical contaminants created during

environmental emergencies, such as hurricanes, pose environmental and health related risks for

exposure. The goal of this work is to alleviate challenges associated with understanding con-

taminant characteristics, their redistribution, and their biological potential through the use of data

analytics.
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1. INTRODUCTION*

Many engineering design and optimization problems in the fields of mechanical, aerospace,

civil, petroleum, chemical and biomedical engineering, and geosciences, are characterized by com-

plex first principle models, in the form of large systems of nonlinear partial differential equations

[21]. The aim of these rigorous and highly detailed models is to simulate industrial processes in

such a way that any mechanical, chemical and/or physical phenomena, which spans over multiple

length and time scales, is captured with highest accuracy. In such complex systems, locating the

globally optimal solution poses a formidable challenge due to the lack of analytical mathematical

forms (i.e., simulation or proprietary model dependence) or due to the noise and/or computational

expense associated with the calculation or approximation of the derivatives. These are commonly

referred to as “grey-box” or “black-box” problems, where the entirety or a portion of the sys-

tem characteristics are provided in the form of input-output data. In this dissertation, a special

attention is given to; (1) constrained optimization of grey-box/black-box problems, (2) using sur-

rogate modeling and high-performance computing for the explicit handling of constraints in these

systems, (3) employing algorithmic features of grey-box optimization strategies to postulate the-

oretical advances in solving challenging classes of mathematical programming formulations, and

(4) developing data-driven predictive models for environmental and biological systems.

The goal of this chapter is to provide an introduction to grey-box optimization (Section 1.1),

discuss previous algorithmic advances for the constrained optimization of these problems (Section

1.2), state the challenges and open research questions existing in this field (Section 1.3), and deliver

the objectives and the structure of this dissertation (Section 1.4).

*Part of this chapter is reprinted with permissions from “Global optimization of grey-box computational systems us-
ing surrogate functions and application to highly constrained oil-field operations” by B. Beykal, F. Boukouvala, C.A. 
Floudas, N. Sorek, H. Zalavadia, E. Gildin, 2018. Computers & Chemical Engineering, vol. 114, pp. 99-110, 
Copyright [2018] by Elsevier and Copyright Clearance Center, and “DOMINO: Data-driven Optimization of bi-level 
Mixed-Integer NOnlinear Problems” by B. Beykal, S. Avraamidou, I.P.E. Pistikopoulos, M. Onel, E.N. Pistikopou-
los, 2020. Journal of Global Optimization, DOI: https://doi.org/10.1007/s10898-020-00890-3, Copyright [2020] by 
Springer Nature and Copyright Clearance Center.
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1.1 Constrained Grey-Box Optimization

General constrained grey-box problems have the mathematical form described in Equation 1.1,

min
x

f(x)

s.t. gm ≤ 0 ∀m ∈ {1, . . . ,M}

gk(x) ≤ 0 ∀k ∈ {1, . . . , K}

xi ∈ [xL
i , x

U
i ] i = 1, . . . , n

x ∈ Rn

(1.1)

where set k ∈ {1, . . . , K} represents the constraints with known closed-form (i.e., known con-

straints), and n represents the dimensionality of the problem or else, the number of decision vari-

ables, with known lower and upper bounds [xL,xU ]. The mechanistic expressions defining the

objective, f(x), and the constraints, represented by set m ∈ {1, . . . ,M}, are not explicitly avail-

able as a function of the continuous decision variables. However, the values of these unknown

formulations can be retrieved as outputs to the problem simulator, which is typically computation-

ally expensive.

This class of problems is tackled using data-driven or derivative-free optimization (DFO) tech-

niques where the derivative information of the original formulation is not utilized to get the optimal

solution [22]. A typical DFO procedure starts with an initial design of experiments on the decision

variables x, which provides a set of pre-determined locations for evaluating the system and collect-

ing the corresponding outputs (objective function value and constraint violations) from the simu-

lated high-fidelity model. This input-output data will be further used by the data-driven optimizer

to find the true optimum of the original model either through (a) a purely sample-based methodol-

ogy, which only uses function-call data guided by pattern-based rules; or (b) a hybrid methodology

(model-based methods), which uses samples in order to fit parametric functions that are subse-

quently used as surrogates of the original optimization formulation. Many algorithmic advances

have been made in the last decade for data-driven grey-box optimization of both box-constrained
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problems [23, 24] and general constrained problems [25–27] including, the ARGONAUT frame-

work [28–30], the ALAMO framework [31, 32] and the SO-MI algorithm [33]. Further details

on DFO and other algorithmic advances in this field can be found in the textbook by Conn et al.

[22], which introduces the rich theory of sample-based DFO, and in several recent and valuable

review articles and surveys, including a review by Kolda et al. [34] on sample-based methods, by

Rios and Sahinidis [35] on box-constrained DFO and comparison of software implementations, by

Boukouvala et al. [21] on constrained DFO, and by Bhosekar and Ierapetritou [36] and Vu et al.

[37] on surrogate-based DFO.

1.2 Literature Review on Constraint Handling Strategies in Grey-Box Optimization

1.2.1 Constraint Handling in Search-based Methods

Traditionally, constraint handling in search-based methods has been done through augmented

Lagrangian formulations [38–40], penalty methods [41–44] and restoration steps [45, 46]. Re-

cently, Di Pillo et al. [47] introduced a DIRECT-type approach for the global optimization of

general constrained optimization problems without using the derivatives. The authors make use

of the well-known DIRECT algorithm and further combine it with a constrained derivative-free

local minimization algorithm for improved solutions, where the nonlinear constraints are handled

via an exact penalty function. In another study, Liuzzi et al. [48] employ an exact merit func-

tion to penalize the nonlinear constraints while converting the original constrained problem to a

box-constrained problem in a multi-objective optimization framework.

1.2.2 Constraint Handling in Model-based Methods

In model-based approaches, the unknown constraints can be handled through surrogate mod-

els. Regis and Shoemaker [49] and Müller et al. [33], have proposed to optimize costly black-box

systems using radial basis functions to create inexpensive approximations for the objective and the

constraints. In another study by Bajaj et al. [26], the authors have introduced a trust-region based

two-phase algorithm for the constrained optimization of grey/black-box problems. The two-phase

algorithm starts with a feasible point identification, and proceeds with the optimization step, where
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cubic radial basis function (RBF) with linear polynomial tail is used as a surrogate to approximate

any unknown equation. Furthermore, several noteworthy studies have used local kriging approx-

imations [50], local linear approximations [51, 52] and quadratic models [53] for handling con-

straints in grey/black-box optimization problems. In a more recent study, Müller and Shoemaker

[54] showed that the selection of the surrogate function type affects the accuracy of obtaining the

optimal solution, by taking into consideration the combination of different surrogate functions. A

recent review describes advances in constrained DFO theory, applications, literature, algorithms

and software along with advances in Mixed-Integer Nonlinear Optimization (MINLP) and their

potential interactions [21].

1.3 Challenges in Grey-Box Optimization

Despite the many advances in the past and recent literature, there still exist several challenges

towards the development of efficient DFO methods and algorithms. First, guarantee of conver-

gence to ϵ-global optimality has not been achieved by any method within a finite number of steps.

Second, DFO methods suffer from the curse-of-dimensionality, since sampling requirements and

the number of parameters of surrogate models increase at high rates with the number of dimen-

sions. Third, the presence of a large number of grey/black-box constraints within the optimization

formulation cannot be handled efficiently by most existing DFO frameworks. Last, efficient meth-

ods are needed which can optimize hybrid problems comprised of both unknown information and

mathematically known functions, in a way that maximizes the communication between the known

and unknown components.

1.4 Dissertation Objectives and Structure

The goal of this dissertation is to present theoretical and algorithmic advances towards allevi-

ating a subset of the aforementioned challenges in grey-box optimization, postulating novel strate-

gies for solving challenging classes of mathematical programming problems, and extending these

data-driven modeling capabilities to applications in the environmental and biomedical sciences do-

main. The challenging class of mathematical programming problems that are investigated in this
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dissertation include bi-level optimization, multi-objective optimization, stiff differential algebraic

equations (DAEs), and nonlinear nonconvex optimization. Specific objectives of this dissertation

are further listed below.

1. Develop a data-driven optimization framework for solving bi-level mixed-integer nonlinear

programming problems with guaranteed feasibility.

2. Establish a hybrid framework for solving multi-objective programming problems through

reformulation and grey-box optimization strategies.

3. Introduce a Support Vector Machine-based constraint handling scheme for handling the stiff-

ness in multi-dimensional DAE systems.

4. Enable distributed computing for the parallel execution of a grey-box optimization solver

such that a realistic high-dimensional highly constrained black-box problem is solved to

optimality.

5. Employ exploratory data analysis techniques for an effective interpretation of environmental

contaminants and for the diagnosis of their potential pathways for redistribution.

6. Create predictive data-driven models for understanding the biological responses of environ-

mental contaminants.

The following sections summarize the theoretical and algorithmic advances presented in this

dissertation alongside the application areas explored in each chapter.

1.4.1 Theoretical Advances in Data-Driven Modeling and Optimization

• Feasibility guarantee for special classes of bi-level mixed-integer nonlinear programming

problems (Chapter 2).

• Feasibility guarantee for general constrained continuous multi-objective optimization prob-

lems (Chapter 3).
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• Derivation of the stability constraint for ill-conditioned (i.e., stiff) DAE systems that do not

have an analytical solution (Chapter 4).

• Feasibility guarantee for high-dimensional highly constrained grey/black-box optimization

problems with expensive simulators (Chapter 5).

1.4.2 Algorithmic Advances in Mathematical Programming

• DOMINO algorithm for bi-level mixed-integer nonlinear optimization (Chapter 2).

• Data-driven multi-objective optimization using ϵ-constraint reformulation and grey-box op-

timization algorithms (Chapter 3).

• Support Vector Machine-based constraint handling scheme for the data-driven optimization

of stiff DAE systems without the full discretization of the underlying first-principles model

(Chapter 4).

• Parallelization of a grey-box optimization solver, namely the ARGONAUT algorithm, for

solving high-dimensional highly constrained nonlinear programming problems (Chapter 5).

1.4.3 Application Areas

• Land allocation problem in Food-Energy-Water Nexus considerations (Chapter 2).

• Energy systems design under economic and environmental considerations (Chapter 3).

• Reactor design and operation for thermal cracking of natural gas liquids (Chapter 4).

• Water-flooding control operations for secondary oil recovery (Chapter 5).

• Visualization of environmental contaminants for facilitating the interpretation and diagnosis

of potential pathways for redistribution in a post-hurricane event (Chapter 6).

• Characterization of the estrogenic potential of chemical compounds (Chapter 6).
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2. DATA-DRIVEN BI-LEVEL MIXED-INTEGER NONLINEAR OPTIMIZATION WITH

APPLICATIONS TO FOOD-ENERGY-WATER NEXUS*

The Data-driven Optimization of bi-level Mixed-Integer NOnlinear problems (DOMINO)

framework is presented for addressing the optimization of bi-level mixed-integer nonlinear pro-

gramming problems. In this framework, bi-level optimization problems are approximated as

single-level optimization problems by collecting samples of the upper-level objective and solv-

ing the lower-level problem to global optimality at those sampling points. This process is done

through the integration of the DOMINO framework with a grey-box optimization solver to perform

design of experiments on the upper-level objective, and to consecutively approximate and optimize

bi-level mixed-integer nonlinear programming problems that are challenging to solve using exact

methods. The performance of DOMINO is assessed through solving numerous bi-level benchmark

problems, a land allocation problem in Food-Energy-Water Nexus, and through employing differ-

ent data-driven optimization methodologies, including both local and global methods. Although

this data-driven approach cannot provide a theoretical guarantee to global optimality, we present an

algorithmic advancement that can guarantee feasibility to large-scale bi-level optimization prob-

lems when the lower-level problem is solved to global optimality at convergence.

This chapter is organized as follows. In Section 2.1, a background on bi-level programming

is provided along with a literature review on data-driven bi-level optimization. The DOMINO

framework is introduced in Section 2.2. Furthermore, in Section 2.3, the results for an extensive

set of benchmark studies are presented alongside the results of a large-scale case study of land

allocation in Food-Energy-Water Nexus problem. Finally, the concluding remarks are provided in

Section 2.4.
*Part of this chapter is reprinted with permission from “DOMINO: Data-driven Optimization of bi-level Mixed-Integer
NOnlinear Problems” by B. Beykal, S. Avraamidou, I.P.E. Pistikopoulos, M. Onel, E.N. Pistikopoulos, 2020. Journal
of Global Optimization, DOI: https://doi.org/10.1007/s10898-020-00890-3, Copyright [2020] by Springer Nature and
Copyright Clearance Center.

7

https://doi.org/10.1007/s10898-020-00890-3


2.1 Multi-level Programming

Multi-level programming is a class of mathematical optimization with hierarchical structures,

where one optimization problem is constrained by other optimization problems. It arises in the

presence of multiple decision makers, where each of them is concerned with optimizing its own

objective function. As a result, multi-level programming problems are encountered in many differ-

ent application areas, including supply chain planning [55, 56], scheduling [57–59], government

policy decision [60], price setting problems [61, 62], economics [63], and other multi-stage deci-

sion making problems [64, 65].

This chapter presents a data-driven framework for the solution of bi-level mixed-integer non-

linear problems with the general mathematical form shown in Equation 2.1. The considered class

of problems contain two optimization levels with F (x,y) and f(x,y) representing the objective

functions of the upper and lower-level problems, respectively. The upper-level problem (ULP) is

constrained by the inequality G(x,y), whereas the lower-level problem (LLP) is constrained both

by the inequality g(x,y) and the equality constraint h(y), where y is a vector of continuous and/or

integer variables strictly controlled by the LLP, and x is a vector of continuous variables strictly

controlled by the ULP. It is worth noting here that the developed framework cannot address bi-level

problems with upper-level integer variables, although lower-level integer variables can appear in

the ULP.

min
x

F (x,y)

s.t. G(x,y) ≤ 0

y ∈ argmin
y

{f(x,y) : g(x,y) ≤ 0,h(y) = 0}

[x1, ..., xn] ∈ Rn

[y1, ..., yp] ∈ Rp, [yp+1, ..., yr] ∈ Zr−p

(2.1)

This hierarchical structure can be viewed as a Stackelberg game [66, 67] where the upper-level

objective will lead and decide on the decision variables x, and the lower-level decision maker

will then follow the leader by reacting accordingly, choosing the optimal values for y to opti-
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mize its own objective function. Previously, the solutions of bi-level and multi-level program-

ming problems have been studied extensively using branch and bound algorithms [68–72] and

multi-parametric optimization techniques [73–80]. Although the aforementioned studies represent

important theoretical advances for retrieving either ϵ-optimal or exact solutions of bi-level and

multi-level optimization problems, the primary goal of this work is to tackle problems where the

deterministic solution strategies cannot be applied due to the highly nonlinear nonconvex nature

of many two-level large-scale optimization problems (i.e., problems that contain high number of

variables and/or constraints).

To this end, many studies have focused on implementing evolutionary algorithms (i.e., ge-

netic and meta-heuristic algorithms) and trust-region approaches to solve problems with multiple

nested layers as presented in the detailed review by Sinha et al. [81]. Although evolutionary al-

gorithms are very-well established and can be applicable to bi-level optimization problems, these

methodologies typically require a large number of function evaluations for convergence, which

come with a significant computational burden. Furthermore, evolutionary algorithms are generally

implemented to unconstrained or box-constrained problems which limit their applicability to many

real-life, constrained optimization problems. Extensions of evolutionary algorithms are proposed

in the literature for handling constraints using aggregated approaches, through penalty functions

[82, 83] or Augmented Lagrangian techniques [84].

In fact, several novel genetic and evolutionary algorithms have been presented for the solu-

tion of integer linear bi-level problems [85, 86] but both of these studies cannot guarantee global

optimality or feasibility. Further advances to genetic algorithms have also been presented for the

solution of mixed-integer nonlinear bi-level problems in the last decade [87, 88]. However, the

study by Hecheng and Yuping [87] is not applicable to bi-level programming problems with gen-

eral nonlinear lower-level problems. In addition, similar to the integer linear algorithms, these

nonlinear genetic algorithms [87, 88] cannot also guarantee global optimality or feasibility. As

an alternative approach to evolutionary algorithms, Sinha et al. [81] suggested building a local

single-level approximation of the bi-level problem using Artificial Neural Networks (ANNs). The
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authors briefly discuss how local surrogate modeling efforts can be a useful tool for solving bi-

level optimization problems. However, the challenges associated with training an ANN, such as

the hyperparameter optimization, decisions on the architecture of the network, and the number of

samples required for training are not addressed. Therefore, new algorithmic approaches are neces-

sary for solving nonlinear nonconvex bi-level mixed-integer optimization problems with improved

constraint handling capabilities and maximum computational efficiency.

Hence, in this work, a new data-driven optimization framework is proposed to alleviate the

aforementioned challenges as well as to bridge the gaps in solving a special class of bi-level pro-

gramming problems, as shown in Equation 2.1. To this end, the Data-driven Optimization of bi-

level Mixed-Integer NOnlinear problems (DOMINO) algorithm is presented where this approach

reformulates bi-level optimization problems into single-level approximations through collecting

samples on the upper-level objective, while the lower-level is solved to global optimality at these

sampling points. This data-driven approach enables the collected input-output information to be

utilized by a grey-box optimization solver, where the upper-level objective is solved to optimality

via a derivative-free optimization methodology. Through this work, the aim is to:

• Establish a powerful computational algorithm for solving large-scale bi-level mixed-integer

nonlinear programming (B-MINLP) problems of the form provided in Equation 2.1, which

are difficult to solve using deterministic algorithms,

• Test the framework on an extensive list of bi-level optimization benchmark problems,

• Assess the performance of different grey-box solvers on the benchmark problems,

• Utilize the framework for the optimization of a large scale bi-level engineering problem.

2.2 DOMINO Framework

The Data-driven Optimization of bi-level Mixed-Integer NOnlinear problems (DOMINO)

framework solves the constrained bi-level mixed-integer nonlinear nonconvex optimization prob-

lems following a similar procedure as a generic grey-box optimization algorithm, where the novelty
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of the work underlies in approximating the bi-level problem into a single-level grey-box optimiza-

tion problem. A general overview of the algorithm is provided in Figure 2.1. Given a bi-level

programming problem, the first step to DOMINO framework is to pass the dimensionality infor-

mation of the ULP (i.e., number of upper-level decision variables, n, and their respective bounds)

along with any known constraints (i.e., constraints that are explicitly and solely imposed on the

upper-level decision variables) to the design of experiments, if the data-driven optimizer can ex-

plicitly handle this information. In the absence of such a capability, the known constraints are

directly handled as grey-box constraints.

The dimensionality information of the ULP is further processed by the data-driven optimizer to

identify an initial starting point or an initial design of experiments at random. The choice of start-

ing with a random initial point or a random design of experiments strictly depends on the type of

grey-box solver that is incorporated in the framework. Typically, local black/grey-box solvers, such

as a direct search algorithm [41], start with random single initial point whereas global approaches

like ARGONAUT [28, 29] create a random space-filling maximin Latin Hypercube Design within

the provided bounds. Then, at each of these pre-determined candidate locations of x, the corre-

sponding optimal value of the LLP, y∗, is determined using either a local solver such as CPLEX

[89], or global MINLP solvers such as ANTIGONE [90–92] and BARON [93], depending on the

problem type. CPLEX is implemented for linear (LP), mixed-integer linear (MILP), quadratically

constrained (QCP), and mixed-integer quadratically constrained (MIQCP) programming problems,

whereas BARON and ANTIGONE are implemented to general nonlinear (NLP) and mixed-integer

nonlinear (MINLP) programming problems at the lower-level. Thus, the LLP is solved determin-

istically to global optimality at each iteration at the given upper-level sampling points. Later, the

optimal solution of the LLP, y∗, and the pre-determined sampling points will be used to enumer-

ate the upper-level objective, F (x,y∗), and the constraint violations of both levels, G(x,y∗) and

g(x,y∗). This input-output data will be further passed onto the derivative-free optimization stage

to retrieve a candidate solution of the original bi-level programming problem once the DFO con-

vergence criteria are met. If this returned solution violates any of the grey-box constraints, the

11
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Figure 2.1: Algorithmic flowchart of the DOMINO framework. DOMINO is integrated with a
DFO algorithm and a deterministic global optimizer for solving bi-level programming problems.
The LLP is solved to global optimality at each iteration for a given vector of upper-level decision
variables, x (input data). The objective function and the constraint violations (output data) that
contain at least one upper-level variable are enumerated using the optimal solution y∗ and the
corresponding input upper-level decision variables x. This input-output data is later passed to a
DFO subroutine to retrieve a candidate solution of the bi-level programming problem.

algorithm is restarted to explore a feasible solution, starting with a new initial point/design. If all

constraints are satisfied but the LLP is only locally optimal or feasible, then the algorithm will ter-

minate without identifying a feasible solution to the bi-level programming problem. If the solution

satisfies all grey-box constraints, and the LLP is globally optimal at the given solution, the solution

is a guaranteed feasible point for the original bi-level programming problem.

DOMINO is a flexible algorithm where any type of data-driven optimizer (i.e., local versus

global or sample-based versus model-based algorithms) and deterministic solver (i.e., CPLEX,
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ANTIGONE, BARON) can be incorporated depending on the problem definition. This flexibility

allows DOMINO to benefit from the advantages of different approaches and does not impose a

strict form on the single-level approximation of different bi-level optimization problems. The most

important properties of the DOMINO framework are listed as remarks below.

Remark 1. The proposed framework is tailored to handle special classes of bi-level optimization

problems that are given in the form of Equation 2.1.

Remark 2. DOMINO cannot guarantee ϵ-global optimality to the upper-level objective. Although

commercially available optimization solvers such as CPLEX, ANTIGONE [90–92], and BARON

[93] are incorporated within the framework for the deterministic optimization of the LLP, the ULP

is treated as a grey-box, where the explicit analytical formulation and the convexity of the problem

is assumed to be unknown.

Remark 3. Feasibility of the bi-level programming problem is guaranteed at convergence if and

only if a feasible solution for the ULP is identified by DOMINO and the lower-level converges

to a globally optimal solution at the given upper-level solution. The feasibility guarantee is

achieved by formulating all the upper-level variable-containing constraints, G(x,y) and g(x,y),

as black/grey-box constraints where their respective violations are tracked throughout the DFO

procedure. As the LLP is solved to global optimality deterministically at every iteration, the con-

straints with only lower-level variables (i.e., h(y) = 0), are satisfied for a feasible solution of

an ULP. In addition, the lower-level feasibility is verified through an a posteriori analysis for the

returned bi-level solution.

Remark 4. DOMINO framework can handle a wide range of dimensionality, including several

hundred variables, and constraints in both upper and lower-level problems, and provide feasible

near-optimal solutions to varying bi-level programming problem types.

Remark 5. When the optimal solution of the LLP is not unique for the vector of optimal upper-

level variables, the decision maker can take a pessimistic decision, an optimistic decision or any

decision in between. Although many other bi-level approaches can guarantee and characterize
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the solution type as pessimistic or optimistic, the proposed framework is not able to provide this

characterization.

Remark 6. DOMINO does not impose any extra criterion for convergence or re-sampling. These

decisions solely depend on the data-driven optimizer that is integrated within the DOMINO frame-

work and vary from one data-driven methodology to another.

In our previous study [94], the basic idea of this data-driven approach was tested using a single

data-driven optimizer for solving a B-MINLP problem in Food-Energy-Water Nexus considera-

tions. In this chapter, the properties of the framework that are listed here are further demonstrated

on an extended class of benchmark problems and the number of problems solved to global optimal-

ity is improved. The framework is extended to include an array of data-driven optimizers, which

are presented in the following section. In addition, the full formulation of the Food-Energy-Water

Nexus case study, its reformulation to B-MILP problem using Big-M constraints, as well as its

detailed computational study with DOMINO is provided.

2.3 Computational Studies

The proposed data-driven methodology for solving bi-level optimization problems is tested on

a challenging set of 100 test problems and a land allocation case study. In this work, 4 different

constrained data-driven optimization strategies are identified to be implemented in the DOMINO

framework: (1) Nonlinear Optimization by Mesh Adaptive Direct search (NOMAD) [95]; (2) Con-

strained Optimization BY Linear Approximations (COBYLA) [51]; (3) AlgoRithms for Global

Optimization of coNstrAined grey-box compUTational problems (ARGONAUT) [28–30]; and (4)

Improved Stochastic Ranking Evolution Strategy (ISRES) [96]. The selection of these solvers is

based on their ability to perform constrained optimization on black/grey-box problems as well as

their difference in solution methodology, where both local (NOMAD and COBYLA) and global

(ARGONAUT and ISRES) optimization strategies are investigated. Each algorithm is briefly de-

scribed in Table 2.1. These DFO solvers are available and/or implemented in R statistical software.

ARGONAUT is implemented in R, the NLopt implementation of ISRES and COBYLA [97] is

available in “nloptr” library in R, and the NOMAD software is available at [98]. All the tested case
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Table 2.1: Descriptions and the convergence criteria of data-driven algorithms tested in this study.

Algorithm Name Description
NOMAD Local optimization based on pattern method (search, poll and update). Convergence

criteria: maximum number of samples reached, mesh size tolerance reached [99].

COBYLA Constraint handling via progressive barrier approach. Local optimization using linear
approximations for the objective and constraints by interpolation at the vertices of a
simplex. Convergence criteria: maximum number of samples reached, minimum trust
region radius is exceeded/reached, an optimization step causes a relative change in the
decision variables less than the set tolerance [51, 97].

ARGONAUT Global optimization using surrogate model identification for the objective and con-
straints. Convergence criteria: maximum number of samples reached, no improvement
of the incumbent solution over a consecutive set of iterations, all unknown functions are
modeled with high accuracy (i.e., very low cross-validation mean squared error) and the
incumbent solution is feasible [28].

ISRES Global optimization via evolutionary method; couples mutation rule and differential vari-
ation. Constraint handling via stochastic ranking. Convergence criteria: maximum num-
ber of samples reached, an optimization step causes a relative change in the decision
variables less than the set tolerance [97].

studies are modeled in GAMS and interfaced through R, where the input-output data collection on

each grey-box problem is performed via text files.

All benchmark problems and high-dimensional case studies are executed 10 times on a High-

Performance Computing (HPC) machine at Texas A&M High-Performance Research Computing

facility using Ada IBM/Lenovo Intel Xeon E5-2670 v2 (Ivy Bridge-EP) HPC Cluster operated

with Linux (CentOS 6). COBYLA, ISRES and NOMAD algorithms are executed using 1 node (1

core per node with 64 GB RAM), whereas the ARGONAUT algorithm is executed as a parallel

job, using 1 node (20 cores per node with 64 GB RAM) on the supercomputer. Furthermore, for

a fair comparison of results, the starting points of COBYLA, ISRES, and NOMAD are randomly

generated, as well as the starting initial design of experiments for ARGONAUT is randomly deter-

mined for each run. In addition, all data-driven solvers are tested and implemented at their default

setting provided from [97, 98], with the exception of ARGONAUT. By default, ARGONAUT sets

the number of initial sampling points to 10k + 1 for k ≤ 20 and to 251 when k > 20, where

k is the dimensionality of the problem (i.e., number of inputs). Since for k ≤ 2, the number of

15



initial samples is not sufficient to reveal the input-output relationship for both levels in a bi-level

programming problem, the number of initial points to be collected is increased to 40k + 1. For

problems with dimensionality 2 < k ≤ 20 and k > 20, the default values are implemented.

2.3.1 Benchmark Problems

The comprehensive test set from Mitsos and Barton [100] (Errata: from Paulavicius et al.

[101]), as well as individual bi-level programming problems from Edmunds and Bard [102], Sahin

and Ciric [103], Gümüş and Floudas [68], Colson [104], Mitsos [105], Kleniati and Adjiman [106],

Woldemariam and Kassa [107], and Nie et al. [108] are used for assessing the performance of the

DOMINO framework and for comparing the performance of different data-driven optimizers in

finding the true global solution of the bi-level programming problems. In addition to this set,

61 benchmark studies are randomly generated using the bi-level random problem generator in B-

POP toolbox [77] and are solved to global optimality, where the formulation of these are provided

in Appendix A. The selection of the benchmark problems aim to cover various different types

of bi-level optimization problems with varying dimensionalities in both upper and lower level

problems. Especially for the problems generated by B-POP, the computational complexity of the

test problems are limited to the dimensionalities that this solver can handle, so as to establish a

basis for comparison and to be able to assess the performance of DOMINO accurately throughout

the benchmark problems.

The dimensionality of each problem and their corresponding properties are provided in Tables

2.2, 2.3 and 2.4, where n represents the number of upper-level continuous variables, p and r−p rep-

resents the lower-level dimensionality (continuous and integer, respectively) and ngrey
g represents

the number of grey-box constraints for each problem. The number of grey-box constraints shown

here is the sum of the number of the upper-level constraints and the lower-level constraints that in-

clude at least one upper-level variable in its mathematical form. This criterion is imposed since the

LLP is solved deterministically within the framework, where the optimal solution already satisfies

the constraints with only lower-level decision variables. This eliminates redundant model building

or point search in the optimization phase, which speeds up the computational time required for
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Table 2.2: Dimensionality of continuous bi-level linear benchmark problems tested with
DOMINO.

Problem ID Label Problem Type n p r − p ngrey
g ny

g

[Source] (Upper-Lower)
1 [103] sc_1 LP-LP 1 2 0 3 0
2 [77] LPLP1 LP-LP 2 2 0 2 0
3 [77] LPLP2 LP-LP 2 2 0 5 2
4 [77] LPLP3 LP-LP 5 5 0 2 0
5 [77] LPLP4 LP-LP 10 10 0 4 0
6 [77] LPLP5 LP-LP 20 500 0 350 0
7 [77] LPLP6 LP-LP 20 20 0 4 0
8 [77] LPLP7 LP-LP 20 30 0 5 0
9 [77] LPLP8 LP-LP 20 50 0 7 0

10 [77] LPLP9 LP-LP 20 80 0 7 0
11 [77] LPLP10 LP-LP 40 150 0 10 0
12 [77] LPLP11 LP-LP 50 200 0 20 0
13 [77] LPLP12 LP-LP 80 90 0 3 0
14 [77] LPLP13 LP-LP 200 200 0 200 0

convergence for all data-driven algorithms. In addition, an a posteriori analysis is performed on

the LLP to ensure feasibility of the unmodeled constraints at convergence. The number of con-

straints with only the lower-level decision variables, hence not presented as grey-box constraints,

are also provided in Tables 2.2, 2.3 and 2.4 under ny
g .

The performance of each solver within DOMINO is assessed based on its efficiency and con-

sistency in identifying the true global optimum of the benchmark studies over multiple repetitive

runs. The accuracy and the consistency of each algorithm is evaluated by calculating the normal-

ized mean absolute error (% MAE = 100 · |(Fbest − Fglobal)/Fglobal|) of the best found solution

with respect to the true global optimum and the standard deviation of this error over 10 runs,

respectively. In the benchmark problems with Fglobal = 0, the percent absolute error (% MAE

= 100·|Fbest−Fglobal|) is calculated. It is important to note that 100% MAE is assigned for runs that

returned an infeasible solution, constraint violation ≥ 10−6 and/or lower-level is not globally opti-

mal (lower-level absolute optimality gap > 0 for LP, QP, MILP, MIQP-type lower-level problems

and lower-level absolute optimality gap ≥ 10−6 for NLP and INLP-type lower-level problems),
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Table 2.3: Dimensionality of continuous bi-level nonlinear benchmark problems tested with
DOMINO.

Problem ID Label Problem Type n p r − p ngrey
g ny

g

[Source] (Upper-Lower)
15 [100] mb_1_1_06 LP-QP 1 1 0 0 0
16 [77] LPQP1 LP-QP 30 60 0 10 0

17 [100] mb_1_1_16 QP-QP 1 1 0 2 0
18 [107] wk_2015_01 QP-QP 1 1 0 2 0
19 [68] gf_4 QP-QP 1 1 0 3 0
20 [103] sc_2 QP-QP 1 1 0 3 0

21 [68] gf_2 NLP-QP 1 2 0 2 0
22 [100] mb_2_3_02 NLP-QP 2 3 0 1∗ 2

23 [100] mb_1_1_03 LP-NLP 1 1 0 0 0
24 [100] mb_1_1_04 LP-NLP 1 1 0 0 0
25 [100] mb_1_1_05 LP-NLP 1 1 0 0 0
26 [100] mb_1_1_08 LP-NLP 1 1 0 0 0
27 [100] mb_1_1_09 LP-NLP 1 1 0 0 0
28 [100] mb_1_1_12 LP-NLP 1 1 0 0 0
29 [100] mb_1_1_01 LP-NLP 1 1 0 0 2
30 [100] mb_1_1_02 LP-NLP 1 1 0 1 0
31 [68] gf_5 LP-NLP 1 2 0 1 1
32 [68] gf_3 LP-NLP 2 3 0 2 1

33 [100] mb_1_1_07 QP-NLP 1 1 0 0 0
34 [100] mb_1_1_10 QP-NLP 1 1 0 0 0
35 [100] mb_1_1_11 QP-NLP 1 1 0 0 0
36 [100] mb_1_1_13 QP-NLP 1 1 0 0 0
37 [100] mb_1_1_14 QP-NLP 1 1 0 0 0
38 [100] mb_1_1_17 QP-NLP 1 1 0 0 0
39 [100] mb_1_1_15 QP-NLP 1 1 0 1 0
40 [68] gf_1 QP-NLP 1 1 0 2 0

41 [104] c_2002_01 NLP-NLP 1 1 0 2 0
42 [104] c_2002_03 NLP-NLP 1 1 0 2 0
43 [104] c_2002_05 NLP-NLP 1 2 0 2 0
44 [108] nwj_2017_02 NLP-NLP 2 3 0 1 2
45 [100] mb_2_3_01 NLP-NLP 2 3 0 3 2
46 [107] wk_2015_04 NLP-NLP 2 4 0 4 0
47 [107] wk_2015_06 NLP-NLP 4 4 0 4 0
48 [106] ka_2014_02 NLP-NLP 5 5 0 4 0
49 [100] mb_5_5_01 NLP-NLP 5 5 0 4 2
50 [100] mb_5_5_02 NLP-NLP 5 5 0 4 2

* This constraint is handled as “known" in ARGONAUT runs and as a grey-box constraint for
other solvers.
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Table 2.4: Dimensionality of bi-level mixed-integer benchmark problems tested with DOMINO.

Problem ID Label Problem Type n p r − p ngrey
g ny

g

[Source] (Upper-Lower)
51 [105] am_1_0_0_1_01 LP-ILP 1 0 1 0 0
52 [77] LPMILP1 LP-MILP 10 10 10 4 0
53 [77] LPMILP2 LP-MILP 10 10 10 4 0
54 [77] LPMILP3 LP-MILP 20 20 10 2 0
55 [77] LPMILP4 LP-MILP 30 30 30 4 0

56 [77] QPMILP1 QP-MILP 5 5 5 4 1
57 [77] QPMILP2 QP-MILP 10 5 5 5 0
58 [77] QPMILP3 QP-MILP 10 10 6 3 0
59 [77] QPMILP4 QP-MILP 20 10 5 2 3
60 [77] QPMILP5 QP-MILP 22 12 7 5 0
61 [77] QPMILP6 QP-MILP 25 20 15 3 0
62 [77] QPMILP7 QP-MILP 25 25 10 6 0
63 [77] QPMILP8 QP-MILP 30 120 120 120 0
64 [77] QPMILP9 QP-MILP 30 200 200 250 0

65 [77] NLPMILP1 NLP-MILP 5 8 6 9 1
66 [77] NLPMILP2 NLP-MILP 10 10 10 10 0
67 [77] NLPMILP3 NLP-MILP 15 15 15 14 1
68 [77] NLPMILP4 NLP-MILP 20 20 20 20 0
69 [77] NLPMILP5 NLP-MILP 25 30 30 30 0
70 [77] NLPMILP6 NLP-MILP 25 50 50 50 0
71 [77] NLPMILP7 NLP-MILP 30 70 70 70 0
72 [77] NLPMILP8 NLP-MILP 30 100 100 100 0
73 [77] NLPMILP9 NLP-MILP 30 200 200 200 0

74 [77] LPMIQP1 LP-MIQP 7 7 6 1 0
75 [77] LPMIQP2 LP-MIQP 7 7 6 1 0
76 [77] LPMIQP3 LP-MIQP 10 7 6 1 0
77 [77] LPMIQP4 LP-MIQP 10 7 6 1 0
78 [77] LPMIQP5 LP-MIQP 10 10 6 1 0
79 [77] LPMIQP6 LP-MIQP 10 13 6 1 0
80 [77] LPMIQP7 LP-MIQP 10 13 6 1 0
81 [77] LPMIQP8 LP-MIQP 12 13 6 1 0

82 [102] eb_1 QP-IQP 1 0 1 3 0
83 [77] QPMIQP1 QP-MIQP 5 20 10 1 0
84 [77] QPMIQP2 QP-MIQP 6 5 2 3 0
85 [77] QPMIQP3 QP-MIQP 6 5 3 4 0
86 [77] QPMIQP4 QP-MIQP 6 5 5 4 0
87 [77] QPMIQP5 QP-MIQP 10 3 3 3 0
88 [77] QPMIQP6 QP-MIQP 10 30 7 1 0
89 [77] QPMIQP7 QP-MIQP 10 40 7 1 0

90 [77] NLPMIQP1 NLP-MIQP 5 5 2 0 3
91 [77] NLPMIQP2 NLP-MIQP 7 5 3 3 0
92 [77] NLPMIQP3 NLP-MIQP 9 6 3 2 0
93 [77] NLPMIQP4 NLP-MIQP 11 7 5 2 0
94 [77] NLPMIQP5 NLP-MIQP 12 10 10 1 0
95 [77] NLPMIQP6 NLP-MIQP 12 11 10 0 1
96 [77] NLPMIQP7 NLP-MIQP 12 11 5 1 0
97 [77] NLPMIQP8 NLP-MIQP 12 12 6 1 0
98 [77] NLPMIQP9 NLP-MIQP 13 9 8 1 0
99 [77] NLPMIQP10 NLP-MIQP 15 15 4 1 0

100 [103] sc_3 NLP-INLP 2 0 2 0 1
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and their respective standard deviation of error is not calculated. Furthermore, the efficiency of the

framework is evaluated based on the average elapsed time it takes for each solver to converge and

based on the total number of function evaluations (i.e., samples) collected at convergence. The re-

sults for continuous linear, continuous nonlinear, mixed-integer linear and mixed-integer nonlinear

bi-level programming problems are discussed in Sections 2.3.1.1, 2.3.1.2 and 2.3.1.3, respectively.

2.3.1.1 Results for Bi-Level Linear Programming Problems

The results of the bi-level linear benchmark problems are reported in Table 2.5. The over-

all performance of all grey-box solvers, tested as a part of the DOMINO framework, indicate

that they return consistent feasible solutions with low errors to the bi-level linear programming

(B-LP) problems. Specifically, it is observed that NOMAD, as a local sample-based grey-box

optimization solver, outperforms the rest of the solvers in B-LP problems. Only in the bench-

mark problem with the highest number of upper-level variables, NOMAD returns an objective

value with more than 5% average MAE. A similar trend is also observed in the ISRES algorithm,

where at higher upper-level dimensionality benchmarks (i.e., 80 and 200 upper-level variables) the

algorithm converges with high % MAE. One possible reason for this behavior in sample-based

methodologies is reported in Figure 2.2B, where both NOMAD and ISRES algorithms converge

and return the incumbent solution after hitting the maximum number of samples allowed (i.e., 105

samples) in all computational studies. Hence, by allowing these algorithms to collect more sam-

ples at high-dimensional B-LP problems, it is possible to get more consistent solutions with lower

errors. Specifically, in problem 5 (“LPLP4”), it is observed that the ISRES algorithm hits the max-

imum number of samples even though a solution with 0.0000 average % MAE and 0.0000 average

standard deviation of % MAE is found. This is due to the fact that the tolerance set for the criterion

that defines the convergence with respect to the relative change in the decision variables is not met.

Another optimization step taken by ISRES will result in a relative change in the decision variables

that is greater than 10−6. Hence for this specific case, ISRES algorithm terminates by reaching

the maximum number of samples allowed. On the other hand, it is observed that model-based

algorithms, such as COBYLA and ARGONAUT, can provide consistent near-optimal solutions
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Table 2.5: Average % MAE and average standard deviation of % MAE for the bi-level linear
programming problems. No infeasibility is reported by any of the grey-box solvers for this set of
bi-level linear programming problems.

Problem
Average % MAE Average Standard Deviation of % MAE

ID NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES

1 0.0000 16.1538 0.0007 0.0001 0.0000 26.0102 0.0007 0.0001
2 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0032
3 0.0000 8.0448 0.0000 0.0001 0.0000 10.3858 0.0000 0.0001
4 0.0000 0.0388 0.0000 0.0000 0.0000 0.1225 0.0000 0.0000
5 0.1044 6.4958 11.2746 0.0000 0.0960 8.8862 6.9450 0.0000
6 0.0000 4.6180 16.1528 0.0287 0.0000 9.3016 14.1927 0.0119
7 0.2804 6.4321 1.3349 0.1767 0.1462 4.6339 0.6668 0.0427
8 0.0000 0.0000 0.0000 0.1018 0.0000 0.0000 0.0000 0.0336
9 0.0000 0.0000 0.0000 0.0830 0.0000 0.0000 0.0000 0.0107

10 0.0000 0.0000 0.0000 0.1493 0.0000 0.0000 0.0000 0.0283
11 0.0000 0.0000 0.0000 1.4393 0.0000 0.0000 0.0000 0.1732
12 0.0000 0.0000 0.0000 1.8667 0.0000 0.0000 0.0000 0.1101
13 0.0001 0.0584 0.0664 30.2788 0.0004 0.1838 0.0975 1.3798
14 6.9641 0.0000 0.0779 57.6624 1.4234 0.0000 0.2463 1.0838

to these high-dimensional B-LPs. However in certain benchmark problems, these methodologies

may return solutions with higher % MAE, where also a higher variability is observed among 10

repetitive runs of these test problems.

In addition to the solution accuracy of each grey-box solver tested as a part of the DOMINO

framework, the computational performance of each methodology is compared with respect to the

total elapsed time for convergence and the average number of samples collected at convergence

(Figure 2.2). The overall computational performance of all solvers, shown in Figure 2.2A and B,

indicates that the computational requirements for the DOMINO increases as the ULP dimension-

ality increases. This is an expected result since the computational efficiency of all grey-box solvers

will highly depend on the number of decision variables and the grey-box constraints handled by

these algorithms. Although the overall trend shows an increase in computational expense with

increasing upper-level dimensionality, Figure 2.2A shows that the total elapsed time for DOMINO
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Figure 2.2: (A) Average elapsed time for solving bi-level linear programming problems; (B) Aver-
age total number of samples collected by each solver in bi-level linear programming problems.

is comparable when using NOMAD, COBYLA or ARGONAUT algorithms as the preferred grey-

box solvers within the framework. On the contrary, the elapsed computational time for the ISRES

algorithm is at least an order of magnitude higher for most of the B-LP benchmark problems when

compared to other solvers. This is mainly because the solution strategy of the ISRES algorithm

dictates significantly higher number of samples for convergence for all B-LP problems, where this

in return increases the computational requirements for DOMINO, as shown in Figure 2.2B. It is

also important to note that the computational time for solving the LLP in B-LP benchmark prob-

lems is minimal. On average, the amount of time required to solve the LLP took 0.013-0.065

seconds per sample. For example, for the ARGONAUT algorithm, it is observed that the total

sampling time (i.e., total time spent to solve the LLP for a given B-LP benchmark problem) ac-

counted for less than 9% of the total elapsed time spent for convergence. For this grey-box solver,

the parameter estimation and the surrogate model optimization stages accounted for at least 59%

of the total elapsed time, showing that the grey-box optimization stage was computationally much

more expensive than solving the LLP at different sampling points.

The overall results demonstrate that NOMAD, as a sample-based local grey-box solver, is more
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favorable to be incorporated in the DOMINO framework for solving B-LP problems. NOMAD is

shown to achieve highly consistent solution accuracy with good computational efficiency compared

to other methodologies. In spite of that, it is important to note that the incumbent solution obtained

at convergence from all algorithms in the DOMINO framework are guaranteed feasible solutions

to the B-LP problems, as all constraints, including the optimality of the LLP, are satisfied.

2.3.1.2 Results for Continuous Nonlinear Bi-Level Programming Problems

In addition to the B-LPs, the DOMINO framework is extensively tested with continuous bi-

level nonlinear programming (B-NLP) problems. The results of this computational study are pro-

vided in Table 2.6. The overall results show that in B-NLP problems, the global methodologies

outperform local solution strategies. Global grey-box solvers, namely ARGONAUT and ISRES,

solve more benchmark problems with lower % MAE and with lower standard deviations of this

error. ISRES solves 30 benchmark problems with less than 5% MAE and ARGONAUT solves 28

in the same error range out of the 36 benchmark problems tested. This number drops to 23 and 14

for NOMAD and COBYLA, respectively. Especially, the deteriorating performance of COBYLA

is somewhat expected since this algorithm uses linear approximations for the objective function

and constraints. In many of these B-NLP case studies, the linear approximations constructed by

COBYLA are not sufficient to capture the nonlinear relationship in the input-output data. Hence,

DOMINO is more prone to converging to sub-optimal solutions in B-NLP benchmark problems

when COBYLA is preferred over other solvers.

Furthermore, Table 2.6 provides a more detailed overview on DOMINO’s accuracy and con-

sistency in solving many challenging B-NLP problems. In the LP-QP test problems, it is observed

that for problem 16 (“LPQP1”) NOMAD, COBYLA and ARGONAUT converge consistently to

the true global solution over multiple repetitive runs, whereas ISRES converges to a near-optimal

solution with less than 5% MAE. For benchmark 15 (“mb_1_1_06"), it is observed that DOMINO

returns feasible solutions with high % MAE regardless of the grey-box solver of choice. The un-

derlying reason for this inferior performance by DOMINO is due to the fact that the problem is

degenerate. The optimal solution to the bi-level problem exists at x = 0, where all points for
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y ∈ [−1, 1] are trivially optimal [100]. However, for −1 ≤ x < 0 the unique global solution exists

at y = −1 and for 0 < x ≤ 1 the unique global minimum is at y = x2. Hence, the data-driven

algorithms tend to go to either unique optimal solution at the lower-level (y = −1 or y = x2)

due to the deterministic optimization step taken by the DOMINO at provided sampling points for

x. As a result, higher deviations are observed in DOMINO solutions compared to the true global

solution. It is also important to note that for this class of bi-level benchmark problems, all grey-box

solvers provide guaranteed feasible solutions as the LLP returns the global optimum and a feasible

solution to the grey-box problem is identified at convergence (Remark 3).

In the QP-QP problem set, the results indicate that global solvers can provide consistent near-

optimal solutions to these benchmark problems. Especially, ISRES algorithm consistently con-

verges to the true optimal solution in 3 out of 4 QP-QP benchmark problems. However, local

methodologies (NOMAD and COBYLA) converge to sub-optimal solutions with high variability.

Moreover, it is important to note that NOMAD’s standard deviation of the % MAE for problem 17

(“mb_1_1_16”) is not reported since this algorithm has returned an infeasible solution in 1 of the

10 random runs. In this case, the lower-level optimality is satisfied, however, one of the grey-box

constraints is violated. In addition, it is important to highlight that a better solution for the prob-

lem 18 (“wk_2015_01”) is identified by the DOMINO framework. Different decision variables

are identified at the LLP with an improved objective function value compared to the ones reported

by Woldemariam and Kassa [107]. Thus, the solution reported by this study [107] does not meet

the optimality condition of the lower-level where the overall solution becomes infeasible for this

B-NLP problem. The best found solution by DOMINO is reported in the Appendix A.

In the NLP-QP problem set, a similar trend is observed where global solvers outperform the

local grey-box solution strategies. For problem 22 (“mb_2_3_02”), the global optimization step

taken at the lower-level returned the optimal solution to all repetitive runs of the 4 grey-box solvers

tested as a part of the DOMINO framework. However, due to the nonconvexity at the upper-level,

it is observed that the local solvers converge to sub-optimal solutions and yield higher % MAE

values with higher deviations. Hence, the global exploration of candidate sampling points by
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ARGONAUT and ISRES leads to improved solution accuracy in this challenging B-NLP problem.

Similarly, in the LP-NLP problem set, the overall performance of ARGONAUT and ISRES

show that these solvers are more favorable to be incorporated into the DOMINO framework for

solving B-NLP problems, as they provide highly consistent and accurate solutions to these case

studies. In several benchmark problems, it is observed that NOMAD and COBYLA return highly

variable solutions with a high % MAE. Especially for problems 31 (“gf_5”) and 32 (“gf_3”),

COBYLA returns 1 infeasible solution out of 10 repetitive runs of these bi-level problems. In case

of the NOMAD algorithm, an infeasible solution is returned for problem 32 (“gf_3”). In addition,

it is important to note that for problem 24 (“mb_1_1_04") all grey-box solvers provide feasible

solutions with more than 100% MAE with respect to the true global solution. In this case, the

upper-level objective consists of the lower-level variable, y, and the inner objective is parametrized

in x. As a result, the proposed data-driven approach can detect the unique global minimum for the

inner objective, which is y∗ = 0.5 for x > 0 and y∗ = 1 for x < 0. However, none of the data-

driven solvers can pinpoint the unique optimal solution of this bi-level problem at x = 0 where any

y ∈ [−0.8, 1] is trivially optimal. The main reason behind this issue is that the LLP is degenerate

and the piecewise nature of the input-output data hinders the information collected at the sampling

stage. Even though various points are sampled, with different x values, the corresponding upper-

level objective is either 0.5 or 1. As a result, the solvers terminate the optimization procedure after

several consecutive iterations, since there is no improvement to the best found objective as new

sampling points are added. Hence, DOMINO fails to pinpoint the unique optimal solution to this

benchmark problem.

Furthermore, in the QP-NLP problem set, the global grey-box solvers continue to provide

optimal or near-optimal solutions consistently to many B-NLPs of this type. However, in problem

38 (“mb_1_1_17") all solvers consistently converge to the same sub-optimal solution. The main

reason for this is that the LLP has two global minima with the objective function value of zero

and y = 1 + 0.1x ± 0.5
√
2 + 2x. By default, the negative counterpart is used for computing y,

whereas the optimal solution reported in Mitsos and Barton [100] uses the positive counterpart for
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the inner problem. Hence, all the grey-box solvers converge to the same sub-optimal solution and

the results reported in Table 2.6 reflect the errors based on the negative counterpart of y. However,

if y is strictly constrained to the positive counterpart, then all the grey-box solvers will identify a

near-optimal solution with 0.0161 average % MAE and 0.0000 average standard deviation of %

MAE. This observation is also consistent with Remark 5, where DOMINO cannot characterize

pessimistic, optimistic and other types of decisions in the presence of multiple optima at the lower-

level.

Finally for the NLP-NLP type bi-level problems, it is observed that global solvers return con-

sistent feasible near-optimal solutions whereas the local solvers are prone to converging to sub-

optimal solutions in a portion these nonconvex B-NLPs. This difference is also supported by the

standard deviation values of the % MAE provided in Table 2.6, where high values of the devi-

ation indicates that in a portion of the repeated test runs, these local solvers can find a feasible

near-optimal solution, whereas in the rest they converge to feasible sub-optimal solutions that are

distant to the true global solution. However, it is important to state that COBYLA struggles to find

feasible solutions in 50% of the NLP-NLP type benchmark problems. As this algorithm uses linear

approximations, using the COBYLA algorithm within the DOMINO framework is not favorable

for solving nonconvex nonlinear bi-level programming problems. It is also observed that ARG-

ONAUT returns an infeasible result for problems 46 (“wk_2015_04”) and 47 (“wk_2015_06”),

whereas NOMAD and ISRES return infeasible solutions to problem 47 (“wk_2015_06”). Both

of these case studies are particularly challenging since they contain the absolute value function,

where the derivative of the objective/constraints is discontinuous. Nonetheless, it is important to

note that, for both of these benchmark problems, out of 10 random runs for each solver, a better

objective function value is found than the solution reported in Woldemariam and Kassa [107]. This

is possible since the lower-level optimality in this study [107] was not satisfied at the provided op-

timal solution, hence making the reported solution an infeasible point for both of these bi-level

programming problems. The best found solutions by DOMINO for these benchmark problems are

reported in the Appendix A.
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Table 2.6: Average % MAE and average standard deviation of % MAE for continuous nonlinear
bi-level benchmark problems. Number of infeasible solutions reported out of 10 runs: by NOMAD
for problem 17 (“mb_1_1_16”) is 1, for problem 32 (“gf_3”) is 1, for problem 47 (“wk_2015_06”)
is 4; by COBYLA for problem 31 (“gf_5”) is 1, for problem 32 (“gf_3”) is 1, for problem 42
(“c_2002_03”) is 2, for problem 44 (“nwj_2017_02”) is 1, for problem 46 (“wk_2015_04”) is 3,
for problem 47 (“wk_2015_06”) is 9, problem 48 (“ka_2014_02”) is 1; by ARGONAUT for for
problem 46 (“wk_2015_04”) is 1, for problem 47 (“wk_2015_06”) is 1; by ISRES for problem 47
(“wk_2015_06”) is 8.

Problem
Average % MAE Average Standard Deviation of % MAE

ID NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES
LP-QP

15 90.0046 70.0139 100.0000 30.0175 31.6081 48.2822 0.0000 48.2929
16 0.0000 0.0000 0.0000 4.1468 0.0000 0.0000 0.0000 0.6435

QP-QP
17 89.6785 56.8518 3.3533 0.0314 - 101.4962 3.0133 0.0007
18† 0.0000 0.0000 0.8891 0.0001 0.0000 0.0000 1.2213 0.0001
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0000 78.4000 0.0077 0.0000 0.0000 28.6713 0.0161 0.0000

NLP-QP
21 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0005
22 17.2004 59.1898 15.8680 6.3927 13.2570 32.6424 9.8335 3.0217

LP-NLP
23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
24 FS* FS* FS* FS* 32.9404 32.2749 0.0000 0.1002
25 0.0141 0.0252 0.5802 0.0141 0.0000 0.0352 0.4652 0.0000
26 0.0000 10.0001 0.0000 0.0001 0.0000 31.6227 0.0000 0.0002
27 0.0000 5.0002 0.0000 0.0002 0.0000 15.8114 0.0000 0.0004
28 31.4656 FS* 0.1973 0.0293 47.3844 121.6939 0.3698 0.0000
29 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
31 0.0009 10.0007 0.8179 0.0007 0.0000 - 1.4561 0.0003
32 14.5205 29.9388 12.8843 0.0000 - - 5.8265 0.0000

QP-NLP
33 0.0000 90.0002 1.4847 0.0000 0.0000 144.9136 1.1691 0.0001
34 0.0000 0.0000 0.0035 0.0000 0.0000 0.0000 0.0069 0.0000
35 40.0000 20.0000 0.0000 0.0024 51.6398 42.1637 0.0000 0.0068
36 54.0004 FS* 2.6282 0.0005 88.4684 140.8542 2.1959 0.0003
37 0.0024 0.0024 0.0165 0.0024 0.0000 0.0000 0.0214 0.0000
38 83.3109 83.3109 83.3109 83.3109 0.0000 0.0000 0.0000 0.0000
39 0.0024 0.0024 0.0326 0.0024 0.0000 0.0000 0.0625 0.0000
40 1.1953 1.4353 0.0001 0.0000 1.2599 1.2353 0.0002 0.0000

NLP-NLP
41 1.1490 1.1490 1.1490 1.1490 0.0000 0.0000 0.0000 0.0000
42 0.0000 20.0000 0.0000 0.0007 0.0000 - 0.0000 0.0008
43 0.0084 10.9125 0.0867 0.0084 0.0000 9.3847 0.1319 0.0000
44 9.9140 79.9494 5.8744 0.7041 19.5323 - 4.5579 0.0774
45 27.3509 37.5217 0.1481 0.0004 35.3098 40.7806 0.4682 0.0006
46‡ 56.6928 62.3959 FS* 64.7918 39.1217 - - 34.1483
47§ FS* FS* FS* FS* - - - -
48 0.0000 16.0616 0.0054 2.8125 0.0000 - 0.0172 4.5286
49 0.0025 40.0776 4.0394 0.0025 0.0000 43.6221 2.0734 0.0000
50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

*Feasible solution with more than 100% MAE on average is returned at convergence.
† % MAE calculated with respect to the best solution found by DOMINO (Fbest = 99.9955).
‡ % MAE calculated with respect to the best solution found by DOMINO (Fbest = 0).
§ % MAE calculated with respect to the best solution found by DOMINO (Fbest = 4.5078 · 10−6).
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Figure 2.3: (A) Average elapsed time for solving continuous bi-level nonlinear programming prob-
lems; (B) Average total number of samples collected by each solver in continuous bi-level nonlin-
ear programming problems.

Computational performance of DOMINO is also provided in Figure 2.3. As expected, the

elapsed time for local solvers is significantly less than the global ones (Figure 2.3A). Specifically,

ISRES stands out as the most computationally demanding methodology both in the time required

to retrieve the optimal solution as well as the total number of samples required for convergence,

where in many instances it hits the maximum number of function evaluations (105 samples) al-

lowed for the algorithm, as shown in Figure 2.3B. This occurrence is due to the evolutionary

nature of this method, as ISRES requires too many samples for convergence, even for the lower

dimensional and relatively simpler benchmark problems. This is followed by the ARGONAUT al-

gorithm where in certain benchmark problems the time required for convergence is higher, where

in others the overall performance is comparable to local methodologies. The computation time

required to solve the continuous nonlinear lower-level problems is minimal similar to the B-LP

benchmark problems with the exception of problem 47 (“wk_2015_06”). On average, the compu-

tational expense for solving the lower-level varies between 0.0171-5.5514 seconds and the overall

contribution of sampling to the total elapsed time varies between 0.03-18.9%. Specifically, in
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problem 47 (“wk_2015_06”), the average computational time required to solve the LLP is 88.789

seconds with an overall contribution of 50.9% in total elapsed time. As this problem is more chal-

lenging to optimize due to the discontinuous derivatives at the lower-level, a higher contribution

from the sampling phase is observed to the overall DFO procedure than the grey-box optimiza-

tion phase. On the contrary, for the other B-NLP problems, the grey-box optimization phase (i.e.,

surrogate model building and its respective optimization) is the most computationally demanding

step in ARGONAUT’s solutions. As for the sampling requirements, ARGONAUT collects fewer

samples than the ISRES algorithm, since ARGONAUT is a model-based grey-box solver. The

overall results show that COBYLA is the most computationally efficient methodology; however,

this solver was unable to provide consistent feasible solutions to several B-NLP benchmark prob-

lems. Although the ARGONAUT and ISRES are computationally more expensive to execute, it is

possible to retrieve optimal or near-optimal solutions more consistently through using these global

data-driven solvers in DOMINO for B-NLP problems.

2.3.1.3 Results for Bi-Level Mixed-Integer Programming Problems

The results for the bi-level mixed-integer programming problems are summarized in Table 2.7.

For this class of problems, it is observed that sample-based grey-box solvers outperform model-

based methodologies. DOMINO can identify optimal or near-optimal solutions consistently to

various types of bi-level mixed-integer programming problems when using NOMAD as the grey-

box solver of choice. NOMAD almost perfectly returns solutions with low errors where only

in one benchmark problem this algorithm returns a sub-optimal feasible solution. Likewise, the

ISRES algorithm is very successful in finding near-optimal solutions, but struggles in finding near-

optimal solutions in higher dimensional benchmark problems. It is also important to highlight that

NOMAD, ARGONAUT and ISRES identify feasible solutions in all of the bi-level mixed-integer

programming problems tested. However, COBYLA fails to identify a feasible solution in 1 of the

10 repetitive runs of benchmark 57 (“QPMILP2”).

Furthermore, the computational performance of DOMINO in solving bi-level mixed-integer

programming problems is summarized in Figure 2.4. Figure 2.4A shows that ISRES requires an
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Table 2.7: Average % MAE and average standard deviation of % MAE for bi-level mixed-integer
benchmark problems. Infeasible solutions reported: by COBYLA for problem 57 (“QPMILP2”)
in 1 out of 10 runs.

Problem
Average % MAE Average Standard Deviation of % MAE

ID NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES
LP-MILP

51 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000 0.0018
52 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
53 0.3050 0.0000 0.8756 0.0000 0.8052 0.0000 1.3089 0.0000
54 0.0000 1.7135 8.3347 0.2276 0.0000 3.7096 5.2589 0.0846
55 0.0000 0.0004 0.0000 2.8790 0.0000 0.0011 0.0000 0.5561

QP-MILP
56 0.0000 0.0028 0.0365 0.0000 0.0000 0.0088 0.1151 0.0000
57 0.0074 28.4286 2.3668 0.0002 0.0042 - 1.7631 0.0002
58 0.0000 18.9344 0.0000 0.0000 0.0000 57.5193 0.0000 0.0000
59 0.0000 FS* FS* FS* 0.0000 > 105 791.0469 > 103

60 0.0000 FS* 7.9741 2.5208 0.0000 220.4544 2.5821 1.3129
61 0.0000 FS* 55.6621 50.5639 0.0000 > 103 49.1259 27.5322
62 0.0000 2.8949 0.4577 0.5772 0.0000 5.3286 0.2089 0.1691
63 0.0000 FS* FS* 36.5575 0.0000 364.1700 188.6630 5.9444
64 0.0000 26.7727 FS* 8.9426 0.0000 23.3885 116.9957 2.1176

NLP-MILP
65 0.0000 27.5060 0.7382 0.0000 0.0000 44.6080 1.8132 0.0000
66 0.4039 0.4038 4.6050 0.4038 0.0000 0.0001 7.3684 0.0001
67 0.0000 1.2185 1.8888 0.0087 0.0000 3.8531 1.6111 0.0037
68 0.0026 6.9802 23.7610 0.5531 0.0049 10.8381 22.8133 0.1229
69 0.0000 23.3259 5.6201 0.5171 0.0001 32.5728 7.8602 0.2278
70 0.0039 0.2861 2.2180 0.8578 0.0079 0.9044 1.8165 0.1276
71 0.0006 0.0115 0.7633 1.1059 0.0016 0.0358 0.6795 0.1253
72 0.0023 1.7054 3.9910 1.1129 0.0074 3.2354 4.6783 0.1573
73 0.0030 1.3933 1.7064 1.1861 0.0068 1.3013 1.8636 0.1718

LP-MIQP
74 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
76 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
77 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
78 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
79 0.1192 0.0000 0.0000 0.0000 0.3770 0.0000 0.0000 0.0000
80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
81 0.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0000 0.0008

QP-MIQP
82 37.5000 25.0001 2.3111 0.0003 60.3807 52.7046 1.7433 0.0003
83 0.0000 3.7386 0.0000 0.0000 0.0000 11.6915 0.0000 0.0000
84 0.0000 13.5220 0.6207 0.0000 0.0000 36.4485 1.5634 0.0000
85 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
86 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
87 0.0000 6.9291 3.6101 0.0000 0.0000 21.9079 7.8285 0.0000
88 0.0000 FS* 0.3254 0.0000 0.0000 > 104 0.5022 0.0000
89 0.0000 FS* 0.0015 0.0000 0.0000 945.6580 0.0047 0.0000

NLP-MIQP
90 0.0000 0.0000 0.2280 0.0000 0.0000 0.0000 0.2448 0.0000
91 0.0000 0.0055 0.0000 0.0000 0.0000 0.0056 0.0001 0.0000
92 0.0006 0.0024 0.6045 0.0004 0.0018 0.0021 0.8118 0.0007
93 0.1603 9.7658 0.8294 0.0774 0.3379 30.3412 0.7244 0.2442
94 0.0000 0.0076 28.2385 0.0004 0.0000 0.0184 16.3438 0.0006
95 0.0002 0.0126 0.4367 0.0007 0.0006 0.0393 0.3314 0.0009
96 0.0000 0.0000 0.0014 0.0004 0.0001 0.0000 0.0041 0.0004
97 0.0050 0.0022 1.5956 0.0072 0.0087 0.0046 4.7409 0.0053
98 0.0044 0.0131 1.0333 0.0074 0.0135 0.0180 1.5260 0.0142
99 0.0002 0.9624 2.1801 0.0071 0.0007 3.0432 2.2069 0.0022

NLP-INLP
100 2.5628 32.4959 0.0000 0.0000 8.1043 52.6317 0.0000 0.0000

*Feasible solution with more than 100% MAE on average is returned at convergence.
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order of magnitude higher time for convergence compared to other algorithms, and converges pre-

maturely by hitting the maximum number of samples allowed in almost all tested case studies

(Figure 2.4B). Moreover, it is important to note that for many of the bi-level mixed-integer bench-

mark problems both model-based methodologies (COBYLA and ARGONAUT) are recorded to

have higher computational expense. Like in the other classes of bi-level programming problems, it

is observed that the computation time to deterministically solve the LLP is small, between 0.016-

0.067 seconds on average per sample. The overall contribution of solving the LLP deterministi-

cally to the total elapsed computation time was at most 15%, where the rest of the computational

expense was sourced majorly from the grey-box optimization phase in the ARGONAUT results.

Overall, NOMAD is computationally efficient both in terms of the computational time required for

convergence as well as in terms of the total number of samples collected throughout the data-driven

optimization step. Although in Figure 2.4B, ARGONAUT is shown to be the most sample efficient

algorithm, the errors reported in Table 2.7 indicate that ARGONAUT converges to a sub-optimal

feasible solution in high-dimensional problems, hindering the overall performance of DOMINO in

finding the globally optimal solution to bi-level mixed-integer programming problems. The over-

all results show that NOMAD is more favorable to be incorporated in the DOMINO framework

for solving bi-level mixed-integer programming problems. In the following section, the DOMINO

framework is tested on a larger bi-level MINLP case study, which considers a land allocation prob-

lem under Food-Energy-Water Nexus considerations.

2.3.2 Land Allocation Problem in Food-Energy-Water Nexus

The sustainable development of an agricultural farming area is of critical importance for main-

taining the interconnected elements, namely food, energy and water, that depend on the same land

resources. Hence, the actions taken towards allocating land resources will essentially affect food

production, which requires energy, in the form of fertilizers, and water for irrigation. On the other

hand, clean water production requires energy (i.e., operating a filtration system) and energy can

be produced through agriculture as biofuels. This interconnected relationship between these key

resources is referred to as the Food-Energy-Water Nexus (FEW-N) and has recently gained a lot of
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Figure 2.4: (A) Average elapsed time for solving bi-level mixed-integer programming problems;
(B) Average total number of samples collected by each solver in bi-level mixed-integer program-
ming problems.

attention for land use optimization in areas with resource scarcity [109–111].

While the government regulators would like to minimize the stress on the nexus in the long-

term, many companies allocating and processing the land are concerned with short-term goals,

such as maximizing profit. Thus, a formidable challenge exists in the optimization of the land allo-

cation problem, where multiple stakeholders, each concerned with optimizing their own objective

functions, are acting upon the optimal decision-making process. We have previously developed a

hierarchical FEW-N approach to tackle this issue and to facilitate decision making under competi-

tion for these key resources while promoting the sustainable development of the land [94]. In this

section, the data-driven optimization of the land allocation problem will be addressed by using the

DOMINO framework.

The land allocation case study consists of two players: the government regulators and the

agricultural developer. The goal of the agricultural developer is to maximize its profit whereas the

government that regulates this piece of land aims to minimize the stress on the FEW-N, by offering

subsidies to the agricultural producer or land developer. Hence, this can be viewed as a Stackelberg
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game where the government regulators will lead, making the first move by assigning the subsidies,

whereas the agricultural producer will follow the leader by reacting accordingly, taking optimal

actions towards maximizing its own profit. This leads to the following hierarchical optimization

problem [94],

min Stress on FEW Nexus

s.t. Government′s Budget

max Developer′s Profit

s.t. Land Properties

Land Process Models

(2.2)

where the agricultural developer will invest on a piece of land to maximize its profit through a

careful consideration of land properties, subsidies offered by the government and land process

models at the lower-level. On the other hand, at the upper-level, the government agency that

regulates this land will focus on sustainable development through minimizing the FEW-N stress,

with respect to their allowed budget.

The detailed land allocation model (please see Appendix B for the model equations) is devel-

oped in GAMS and the lower-level problem is an MILP problem with 1,721 equations, 216 discrete

variables and 772 continuous variables. The upper-level is an NLP problem consisting of 5 con-

tinuous variables with 165 grey-box constraints from the Big-M formulation (Equations B.19 and

B.21). This large-scale bi-level NLP-MILP optimization problem is solved using the DOMINO

framework and the performance of the 4 data-driven solvers are compared in the following section.

2.3.2.1 Computational Results of the FEW-N Case Study

The results of the hierarchical land allocation problem are summarized in Figures 2.5 and 2.6.

The boxplot results in Figure 2.5A show that the DOMINO framework, when coupled with a global

solver, consistently returns the same objective value over multiple repetitive runs, whereas some

variability is observed in the returned solutions when the framework is coupled with local data-

driven solvers. This result clearly indicates that the hierarchical FEW-N land allocation problem
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Figure 2.5: (A) Optimal FEW-N metric returned by DOMINO when coupled with local and global
grey-box solvers; (B) Optimal nexus solution represented as the area of a triangle (Best solution
found by ARGONAUT and NOMAD algorithms in DOMINO, fbest = 1.2258); (C) Boxplot of
total amount of subsidies offered by the government for the solution of FEW-N land allocation
problem over 10 runs.

is nonconvex and global optimization is necessary to find a superior solution. The maximum value

for the FEW-N metric for this case study is identified by two algorithms, namely NOMAD and

ARGONAUT. In addition, Figure 2.5B and C shows the globally optimal FEW-N metric found

by the DOMINO framework and the distribution of the total amount of subsidies offered by the

government for each solver over 10 runs, respectively. The radar plot in Figure 2.5B shows that the

globally optimal solution can capture the food and water dimensions of the nexus almost perfectly

(99.5% in food and 99% in water) with a small trade-off in the energy dimension (93%).

In addition, the boxplot in Figure 2.5C shows that all solvers are subject to some variability

in finding the optimal set of decisions for the government regulators’ objective. More specifically,

the variability within the results of two global solvers, which returned consistent objective function

values as shown in Figure 2.5A, is a clear indication of the multiplicity of solutions that exists in the

problem. For the same optimal FEW-N metric value (fbest = 1.2258), NOMAD allocates a total of

$58.1M with a breakdown of $0M for livestock grazing and solar energy, $7.6M for wind energy,
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Table 2.8: Computational performance of DOMINO with different grey-box solvers for the land
allocation problem. The results are averaged over 10 runs.

Solver Average Elapsed Time (s) Average Total Number of Samples
NOMAD 138.6 283.9
COBYLA 23.6 67.1
ARGONAUT 1.2 · 104 247.4
ISRES 3.3 · 104 105

$37.8M and $12.7M for fruit and vegetable production, respectively. On the other hand, for the

same optimal FEW-N metric value, ARGONAUT allocates a total of $115.2M with a breakdown

of $0M for livestock grazing and solar energy, $15.2M for wind energy and $50M for both fruit and

vegetable production. A clear difference between the solutions provided by these two algorithms is

more apparent at the lower-level objective function value, where the solution provided by NOMAD

enables the agricultural developer to have $3.47B profit, whereas this number increases by $500M

to $3.97B profit with the ARGONAUT solution. This difference in profit values is captured in the

optimal allocation results that are provided in Figure 2.6, where the allocation patterns for the same

nexus solution differ as the subsidies offered by the government is lowered. Figures 2.6A and B

show that the optimal allocation pattern for the land is exactly the same for the spring, summer

and autumn seasons for both NOMAD and ARGONAUT, where a mix of wind energy and fruit

production is preferred on the land. However, in winter, the optimal allocation for plot 7 changes

to vegetable production for the ARGONAUT solution, while others remain the same. In the case

of the NOMAD solution, the allocation pattern for plot 3 in winter changes from wind energy and

fruit production to wind energy and vegetable production. Overall, both configurations are equally

optimal and are sufficient to minimize the nexus stress, where the government will decide whether

to subsidize the agricultural processes with a higher or a lower amount depending on their available

budget and preferences.

The computational performance of each solver within the DOMINO framework for the FEW-N

case study is also compared (Table 2.8). The average elapsed time and the average number of sam-

ples collected at convergence indicates that COBYLA is computationally very efficient. However,
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Figure 2.6: (A) Optimal land allocation returned by ARGONAUT; (B) Optimal land allocation
returned by NOMAD. Both solutions are equally optimal with the FEW-N metric value of 1.2258.

COBYLA was unable to locate the best solution found by NOMAD and ARGONAUT algorithms

for the FEW-N problem, which is undesirable to a decision maker. NOMAD stands out as a grey-

box solver of choice for this problem as this is the second most efficient algorithm that was able to

locate the global solution. As mentioned earlier in this section, the optimal solution provided by

NOMAD is more favorable for the government regulator as the total amount of subsidy offered is

minimal. On the other hand, the solution offered by ARGONAUT is equally optimal with respect

to the NOMAD solution, and favors the agricultural developer at the lower-level as this solution

provides an additional $500M in their profit. However, ARGONAUT being a global model-based

grey-box solver makes it more computationally demanding for this problem with respect to the

elapsed time for convergence, since ARGONAUT explicitly constructs individual surrogate for-

mulations for the 165 unknown grey-box constraints in this case study. In terms of sampling

requirements, as shown in Table 2.8, it is observed that NOMAD and ARGONAUT are compara-

ble as they both collect about equal number of samples on average over 10 repetitive runs. Finally,

as observed in the results of many benchmark problems that are provided in Section 2.3.1, ISRES

reaches the maximum number of samples allowed for the algorithm in all repetitive runs, which

also leads to a more demanding computational time for the execution of this algorithm. Overall,
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the results of the benchmark studies and the large-scale land allocation problem demonstrate that

the DOMINO framework serves as an effective methodology for solving many large-scale bi-level

MINLPs.

2.4 Concluding Remarks

In this chapter, the DOMINO framework is presented as an algorithmic advancement for solv-

ing bi-level mixed-integer nonlinear programming (B-MINLP) problems with guaranteed feasibil-

ity when the lower-level problem is solved to global optimality at convergence. A novel data-driven

approach is followed to approximate a bi-level optimization problem into a single-level problem,

where the upper-level decision variables are used to simulate the optimality of the lower-level prob-

lem. The resulting input-output data is further sent to a data-driven optimizer to retrieve the optimal

solution to the bi-level problem, where the DOMINO framework is flexible to house any type of

data-driven/grey-box optimizer. The accuracy, consistency and the computational performance of

DOMINO is extensively investigated on a large set of benchmark problems consisting of bi-level

linear, continuous nonlinear and mixed-integer programming problems. In addition, the effect of

the data-driven solver on DOMINO’s performance is investigated by incorporating a local sample-

based, local model-based, global sample-based, and global model-based methodologies. Further-

more, the performance of the DOMINO framework is tested on a large-scale bi-level mixed-integer

nonlinear case study in Food-Energy-Water Nexus (FEW-N). The results of the benchmark studies

show that the DOMINO framework can identify the true global solution or a near-optimal solu-

tion for an extensive set of challenging bi-level optimization problems. Moreover, the results of

the FEW-N case study demonstrate that DOMINO can handle large-scale bi-level mixed-integer

nonlinear programming problems and provide superior feasible solutions consistently over mul-

tiple repetitive runs. Hence, DOMINO serves as a powerful computational algorithm for solving

large-scale B-MINLPs which are traditionally difficult to solve using exact techniques.
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3. CONSTRAINED GREY-BOX MULTI-OBJECTIVE OPTIMIZATION WITH

APPLICATIONS TO ENERGY SYSTEMS DESIGN*

As discussed in Chapter 1, the global optimization of many engineering problems, which are 

commonly characterized by high-fidelity and large-scale complex models, poses a formidable chal-

lenge partially due to the high noise and/or computational expense associated with the calculation 

of derivatives. This complexity is further amplified in the presence of multiple conflicting ob-

jectives, for which the goal is to generate trade-off compromise solutions, commonly known as 

the Pareto-optimal solutions. In this chapter, an algorithmic advancement is presented for solv-

ing a special class of problems under mathematical programming that entail multiple competing 

objectives (i.e., multi-objective optimization) using a data-driven methodology. The presented 

framework uses the ϵ-constraint method to convert a multi-objective optimization problem into 

series of single objective sub-problems and uses a global constrained grey-box optimization al-

gorithm to retrieve the optimal solution at each sub-problem. Computational results are reported 

for a number of benchmark multi-objective problems and a case study of an energy market design 

problem for a commercial building, while the performance of the framework is compared with 

other derivative-free optimization solvers.

This chapter is organized as follows. Section 3.1 provides a brief introduction to multi-

objective optimization. In Section 3.2, an extensive literature review is provided on population-

based and surrogate-based algorithms. Section 3.4 describes our methodology in detail, where 

Section 3.4.2 introduces the ϵ-constraint method for reformulating multi-objective optimization 

problems into a series of single objective sub-problems, and Section 3.4.3 demonstrates the steps 

of the proposed framework on a motivating example. The mathematical formulations of the com-

putational studies are provided in Section 3.5. Finally, the results of the computational studies are 

presented in Section 3.6, along with concluding remarks in Section 3.7.

*Part of this chapter is reprinted with permission from “Optimal design of energy systems using constrained grey-box 
multi-objective optimization” by B. Beykal, F. Boukouvala, C.A. Floudas, E.N. Pistikopoulos, 2018. Computers 
& Chemical Engineering, vol. 116, pp. 488-502, Copyright [2018] by Elsevier and Copyright Clearance Center.
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3.1 Multi-Objective Optimization

Multi-objective optimization (MOO) is a branch of mathematical programming where multiple

competing objectives (i.e., economic, environmental, societal, political objectives) are present in

the problem formulation. The general form of MOO problems is presented in Equation 3.1:

min
x

[f1(x), f2(x), ..., fN(x)]

s.t. x ∈ X

(3.1)

where X is a non-empty feasible region, X ⊆ Rn.

For this class of problems, it is not possible to locate a unique optimal solution since there

are trade-offs between the conflicting objectives. As a result, MOO aims to find the best set of

decisions that will simultaneously optimize multiple objectives in such a way that the solutions

cannot be improved without degrading at least one of the other objectives [112]. In other words,

the goal of MOO is to derive a set of trade-off optimal solutions, known as the Pareto-optimal

solutions, that the decision makers can choose from, depending on their preferences.

3.2 Literature Review on Data-Driven Multi-Objective Optimization

While several methodologies exist in the open literature for MOO, this section only consid-

ers the ones that are linked to population-based and surrogate-based algorithms. Meta-heuristic

(population-based) algorithms are advantageous since they do not require any reformulations, such

as converting the multi-objective problem into a set of single objective sub-problems. These can si-

multaneously deal with a set of possible solutions without requiring series of separate runs, thus en-

abling the direct investigation of the multi-objective problem [113]. As a result, population-based

algorithms have been a popular choice among many researchers for the MOO of various systems,

including truss design [114], thermal system design [115], environmental economic power dis-

patch [116, 117], beam design [118], water distribution network design [119] and more recently

the MOO of zeolite framework determination [120]. In addition to these, the books by Rangaiah

and Bonilla-Petriciolet [121], and Coello et al. [113] demonstrate a plethora of applications of
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evolutionary algorithms to numerous MOO problems.

Even though the population-based algorithms are widely studied in the open literature, their

application to grey/black-box problems are rather limited. There are two main reasons for this: (1)

most existing algorithms consider the box-constrained problem or handle general constraints via

penalty functions, where the system is being continuously treated as a black-box, and (2) stochastic

algorithms typically require a large number of function calls to reach the global optimality, which

can be computationally prohibitive for expensive simulations. Several researchers have focused on

hybrid implementations of surrogate modeling with stochastic algorithms to overcome such prob-

lems. Datta and Regis [122] have proposed a surrogate-assisted evolution strategy, which makes

use of cubic radial basis surrogate models to guide the evolution strategy for the optimization of

multi-objective black-box functions that are subject to black-box inequality constraints. Likewise,

Bhattacharjee et al. [123] have used a well-known evolutionary algorithm, NSGA-II, as the base-

line algorithm while using multiple local surrogates of different types to represent the objectives

and the constraints.

Surrogate-based approaches, where the objectives and the grey/black-box constraints are ap-

proximated with simple tractable models, have also been investigated in the open literature in

conjunction with derivative-free algorithms. Singh et al. [124] have proposed the Efficient Con-

strained Multi-objective Optimization (ECMO) algorithm to solve computer-intensive constrained

multi-objective problems using kriging models for the objectives and the constraints. They make

use of the hypervolume-based Probability of Improvement (PoI) criterion to handle multiple ob-

jectives along with the Probability of Feasibility (PoF) criterion to handle computationally expen-

sive constraints and solve the final formulation using MATLAB’s fmincon optimizer. Feliot et

al. [125] have used an expected hypervolume improvement sampling criterion in their Bayesian

Multi-Objective Optimization (BMOO) framework, where the nonlinear implicit constraints and

the black-box objectives are handled via extended domination rule. In this algorithm, the au-

thors use sequential Monte Carlo sampling technique for the computation and optimization of

the expected improvement criterion. Martínez-Frutos and Herrero-Pérez [126] have introduced
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the Kriging-based Efficient Multi-Objective Constrained Optimization (KEMOCO) algorithm that

uses a kriging-based infill sampling strategy with DIRECT algorithm for constrained MOO of

expensive black-box simulations. They combine the expected hypervolume improvement and the

PoF to obtain the Pareto-front with minimum number of samples. Regis [127] has presented Multi-

Objective Constrained Stochastic optimization using Response Surfaces (MOCS-RS) framework

where the author uses radial basis surrogates as approximations for the objective and constraint

functions. A more detailed overview on the existing methods for using surrogates in computation-

ally expensive MOO problems can be found in an excellent survey by Tabatabaei et al. [128].

3.3 Novelty of the Proposed Data-Driven Multi-Objective Optimization Framework

Different than the studies discussed above, this work aims to implement a hybrid methodology

that performs global parameter estimation coupled with k-fold cross-validation for individualized

surrogate model identification on each unknown formulation (objective and constraints) in a given

multi-objective programming problem. An algorithmic advancement is presented where a reformu-

lation strategy and a global grey-box optimization solver is integrated for the global optimization

of general constrained MOO problems. The methodological details are further described below.

3.4 Methodology

3.4.1 General Overview of the Data-Driven Multi-Objective Optimization Framework

Figure 3.1 demonstrates the workflow of the proposed data-driven multi-objective optimization

methodology. Given a constrained MOO problem, the first step of the workflow is to reformulate

it using the ϵ-constraint method. This reformulation will enable the discretization of the objective

space, essentially creating a series of single objective sub-problems. Once the sub-problems are

identified, a grey-box simulator is created for each sub-problem where the input-output data is

generated. Finally, a global constrained grey-box optimization solver, namely the ARGONAUT

algorithm [28, 29], is executed for finding the optimal solution of each sub-problem, through sur-

rogate modeling and grey-box optimization of the input-output data. The detailed explanation of

the methodology and its step-by-step demonstration on a motivating example is provided in the
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following sections.
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Figure 3.1: General workflow of the data-driven MOO framework using the ARGONAUT algo-
rithm and the ϵ-constraint method.

3.4.2 ϵ-Constraint Method

The ϵ-constraint method is introduced by Clark and Westerberg [129] for converting multi-

objective design problems into series of single objective sub-problems. Consider an optimization

problem given in the form of Equation 3.1 with only 2 objectives (i.e., N = 2). The main idea be-

hind ϵ-constraint method is to discretize the objective space into smaller sections, while obtaining

the optimal solution at each discretization point to generate the Pareto-optimal curve. The dis-

cretization is done by moving one of the objectives into the constraints set, while setting an upper

bound (ϵ) on the new constraint. This simply converts the MOO problem into a single objec-

tive optimization problem with an added expense of a single inequality constraint per discretized
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problem, as shown in Equation 3.2.

min
x

f1(x)

s.t. f2(x) ≤ ϵ

x ∈ X

X ⊆ Rn

(3.2)

The lower and upper bounds, [ϵL, ϵU ], on the discretization points can be derived by minimizing

each of the objectives independently. The optimal solution resulting from the minimization of the

first objective, x∗
1, mathematically formulated in Equation 3.3, will give the maximum value of the

second objective, f2(x∗
1), provided that increasing the value of f2 beyond this maximum value will

not affect the value of f1. Thus, ϵU will be equal to f2(x
∗
1).

min
x

f1(x)

s.t. x ∈ X

X ⊆ Rn

(3.3)

Similarly, the lower bound on ϵL is derived by minimizing f2 as a single objective optimization

problem. The optimal solution to this problem, x∗
2, gives the minimum possible value of f2, which

is also the minimum value of ϵ. Hence, ϵL will be equal to f2(x
∗
2). Using these values of [ϵL, ϵU ],

the objective region can now be divided into D equal intervals as follows:

ϵq = ϵq−1 − ϵU − ϵL

D − 1
∀q = 2, . . . , D, ϵ1 = ϵU , ϵD = ϵL (3.4)
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Then, the final optimization problem becomes:

min
x

f1(x)

s.t. f2(x) ≤ ϵ

x ∈ X

ϵ ∈ [ϵ1, . . . , ϵD]

X ⊆ Rn

(3.5)

Although a walk-through is provided for problems with two objectives, the ϵ-constraint method

is a general partitioning strategy. For a system with N competing objectives, a similar procedure

will be followed as the one shown in Equation 3.2, creating a minimization problem with N − 1

constraints, which are added to the initial problem formulation. Then, the lower and upper bounds

on ϵ for the partitioned objectives, [ϵL, ϵU ]1 × · · · × [ϵL, ϵU ]N−1, will define the boundaries of a

Pareto-optimal surface when N = 3, and a Pareto-optimal polyhedron when N ≥ 3.

3.4.3 Motivating Example

This section demonstrates the key steps of the solution methodology based on the integration of

ARGONAUT with the ϵ-constraint method, on a 2-dimensional motivating example. The following

multi-objective programming problem is considered:

min
x

U =


f1 = 4x2

1 + 4x2
2

f2 =
(
x1 − 5)2 +

(
x2 − 5)2

s.t.
(
x1 − 5)2 + x2

2 ≤ 25(
x1 − 8)2 +

(
x2 + 3)2 ≥ 7.7

x1 ∈ [0, 5]

x2 ∈ [0, 3]

(3.6)
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• Step 1: Dissect the objective space using Equation 3.4

As shown in Section 3.4.2, minimization of the first and second objectives gives the upper and

lower bounds for the ϵ parameter (ϵ ∈ [4, 50]), respectively. Within these bounds, the objective

space is dissected into 30 equal points using Equation 3.4. Table 3.1 summarizes the values of ϵ

corresponding to each point.

Table 3.1: Resulting values of ϵ from discretization of the objective space into 30 points.

Point number ϵ Point number ϵ Point number ϵ

1 50 11 34.13793 21 18.27586
2 48.41379 12 32.55172 22 16.68966
3 46.82759 13 30.96552 23 15.10345
4 45.24138 14 29.37931 24 13.51724
5 43.65517 15 27.79310 25 11.93103
6 42.06897 16 26.20690 26 10.34483
7 40.48276 17 24.62069 27 8.75862
8 38.89655 18 23.03448 28 7.17241
9 37.31034 19 21.44828 29 5.58621

10 35.72414 20 19.86207 30 4

• Step 2: Reformulate Equation 3.6 into single objective sub-problem

Each point summarized in Table 3.1 is used to reformulate Equation 3.6 into the form of Equa-

tion 3.5. For demonstration purposes, only the reformulation of the second point is shown below.

min
x

4x2
1 + 4x2

2

s.t.
(
x1 − 5)2 +

(
x2 − 5)2 − 48.41379 ≤ 0(

x1 − 5)2 + x2
2 − 25 ≤ 0

−
(
x1 − 8)2 −

(
x2 + 3)2 + 7.7 ≤ 0

x1 ∈ [0, 5]

x2 ∈ [0, 3]

(3.7)
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It is important to realize that the optimization problem shown in Equation 3.7 has the exact

same form as Equation 1.1, where set k, representing the known formulations, is assumed to be

empty. Thus, it is assumed that the explicit forms of the objective function and the constraints are

unknown as a function of the continuous variables, where their respective values are collected as

outputs to the problem simulator, like in a true grey/black-box system. Once the constrained multi-

objective problem is reduced to a constrained grey-box single objective problem, the simulation is

passed on to the ARGONAUT algorithm for global optimization.

• Step 3: Perform Latin Hypercube Design within the continuous variable bounds

Initially, ARGONAUT utilizes Latin Hypercube Sampling to decide on the values of the input

variables. Figure 3.2A shows the surface plot of the original objective function in Equation 3.7,

and Figure 3.2B shows a sample design of experiments superimposed on the contour plot of the

original objective.

(A) (B)

Figure 3.2: Original objective function; (A) shown in a surface plot and (B) shown in a contour
plot superimposed on the initial sampling points to be collected by ARGONAUT.
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• Step 4: Perform global parameter estimation on each unknown equation

In the next step, a subset of the collected samples is randomly chosen and passed on to the

parameter estimation phase where the least-squares error between the predictions and the observed

data is minimized to global optimality. This procedure is repeated k times (k-fold cross-validation),

each starting with a random subset of samples, for all the unknown formulations. The surrogate

identification is based on the cross-validation mean squared error (CVMSE) calculated across these

repetitions and the surrogate with minimum CVMSE is selected. Table 3.2 summarizes the results

of the first parameter estimation for the motivating example.

Table 3.2: Results from the first parameter estimation using ARGONAUT. In this case, quadratic
surrogates are fitted to the initial sampling points.

Unknown Surrogate formulation from ARGONAUT
equation

Objective f(x1, x2) = 0.091− 1.222x1 − 0.038x2 + 0.784x21 − 2.254 · 10−7x1x2 + 0.276x22

Constraint #1 1.478− 1.385x1 − 0.795x2 + 0.621x21 − 3.550 · 10−8x1x2 + 0.219x22 ≤ 0

Constraint #2 1.029− 1.675x1 − 0.037x2 + 0.751x21 − 8.010 · 10−8x1x2 + 0.265x22 ≤ 0

Constraint #3 0.325− 1.098x1 − 0.218x2 − 0.316x21 − 1.117 · 10−7x1x2 − 0.111x22 ≤ 0

• Step 5: Solve the resulting NLP, identify new sampling points, and cluster data

Surrogate formulations presented in Table 3.2 are passed on to the optimization phase where

multiple local solutions at pre-determined points are calculated alongside with the global optimum.

These optimal results now become the new sampling points and this procedure is repeated until a

convergence criteria is met.

Once the convergence is achieved, a session is completed and ARGONAUT clusters the data

based on the Euclidean distance between the samples. Clustering of the samples for this problem is

shown in Figure 3.3A, where the results are clustered into 6 different groups with the best cluster
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shown in diamonds. Based on this clustering analysis, it is possible to further tighten the pre-

defined variable bounds to focus in a specific region which provides the best objective. The new

variable bounds are shown in Figure 3.3B. Once this region is determined, ARGONAUT resumes

with the second session where the sample collection, modeling and optimization procedures are

repeated within the reduced bounds. Once the desired accuracy is achieved in the second session,

ARGONAUT will reach convergence and terminate the process.

(A) (B)

Figure 3.3: Clustering results for the motivating example; (A) Each cluster is represented with
different shapes where the best cluster is given in diamonds; (B) Based on the best cluster, variable
bounds are tightened and refined to the box marked with arrows. New iterations will now focus on
this region for improved solutions.

• Step 6: Final solution

ARGONAUT returns the global solution as x∗
1 = 0.07995, x∗

2 = 0.07995 with the objective

value of f(x∗
1, x

∗
2) = 0.051136, which is significantly close to the actual deterministic solution(

x∗
1 = 0.07995, x∗

2 = 0.07995, f(x∗
1, x

∗
2) = 0.051135). The plot of the final approximation gener-

ated by ARGONAUT is shown in Figure 3.4.
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Figure 3.4: Comparison of the original objective function (top layer in blue) and its scaled surrogate
formulation obtained using ARGONAUT (bottom layer in red).

3.5 Computational Studies

3.5.1 Benchmark Problems

Initially, the framework is tested on three constrained MOO benchmark problems, namely

the Binh and Korn function (BNH), the CONSTR problem and the car-side impact test problem

[130–132]. The BNH and CONSTR problems contain 2 objectives, 2 variables, and 2 constraints,

whereas the car-side impact problem has 3 objectives, 7 variables and 10 constraints. Problem

formulations are provided in Table 3.3.

3.5.2 Energy Systems Design Model for a Supermarket

In addition to the benchmark problems, the generic framework is extensively tested on a higher

dimensional MOO problem, where an energy systems design model is chosen as the case study.

This problem is initially investigated by Liu et al. [4], in which the authors proposed a super-

structure and a mixed-integer model for the utilization of various available technologies for energy

generation in a commercial building, as well as a multi-objective optimization strategy that min-

imizes the cost along with the environmental impact. In this work, the aforementioned relatively
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Table 3.3: Multi-objective optimization test problems.

Test Problem Mathematical Formulation

BNH min
x

U =

{
f1 = 4x2

1 + 4x2
2

f2 = (x1 − 5)2 + (x2 − 5)2

s.t. (x1 − 5)2 + x2
2 ≤ 25

(x1 − 8)2 + (x2 + 3)2 ≥ 7.7
x1 ∈ [0, 5]
x2 ∈ [0, 3]

CONSTR min
x

U =

{
f1 = x1

f2 =
(1+x2)

x1

s.t. 9x1 + x2 − 6 ≥ 0
9x1 − x2 − 1 ≥ 0
x1 ∈ [0.1, 1]
x2 ∈ [0, 5]

Car-side Impact min
x

U =


f1 = 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4

+1.78x5 + 0.00001x6 + 2.73x7

f2 = F

f3 = 0.5(VMBP + VFD)

s.t. 1.16− 0.3717x2x4 − 0.0092928x3 ≤ 1
0.261− 0.0159x1x2 − 0.06486x1 − 0.019x2x7

+0.0144x3x5 + 0.0154464x6 ≤ 0.32
0.214 + 0.00817x5 − 0.0587x1 + 0.03099x2x6 − 0.018x2x7

+0.0304x3 − 0.00364x5x6 − 0.018x2
2 ≤ 0.32

0.74− 0.61x2 − 0.031296x3 − 0.031872x7 + 0.227x2
2 ≤ 0.32

28.98 + 3.818x3 − 4.2x1x2 + 1.27296x6 − 2.68065x7 ≤ 32
33.86 + 2.95x3 − 5.057x1x2 − 3.795x2 − 3.4431x7

+1.45728 ≤ 32
46.36− 9.9x2 − 4.4505x1 ≤ 32

F = 4.72− 0.5x4 − 0.19x2x3 ≤ 4
VMBP = 10.58− 0.674x1x2 − 0.67275x2 ≤ 9.9
VFD = 16.45− 0.489x3x7 − 0.843x5x6 ≤ 15.7

x1 ∈ [0.5, 1.5]
x2 ∈ [0.45, 1.35]
x3 ∈ [0.5, 1.5]
x4 ∈ [0.5, 1.5]

x5 ∈ [0.875, 2.625]
x6 ∈ [0.4, 1.2]
x7 ∈ [0.4, 1.2]
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high-dimensional model is used to test the constrained grey-box global optimization algorithm.

The superstructure of the problem can be found in Figure 3.5.

Refrigeration

Lighting

Ventilation

Bakery

Space Heating

On-Site Energy 
Generation 

Technologies

Energy Conversion 
Technologies Demand

Primary Energy
Sources

GE

Grid
Electricity

BM

Biomass

NG

Natural
Gas

Cold Air Retrieval

Refrigeration 
with Heat Recovery

Refrigeration 
without Heat Recovery

Fluorescent 
Lighting

LED

Bakery A

Bakery B

Heating A

Heating B

Wind Turbine

Solar PV

NG Boiler

Biomass Boiler

NG CHP

Biomass CHP

E

H

Electricity

Heat

Figure 3.5: Superstructure for the energy design problem for a commercial building.

As demonstrated in Figure 3.5, the problem contains two primary energy sources, namely

biomass and natural gas, which are converted into electricity and/or heat using the available on-

site energy generation technologies. The total electricity (generation + supply from the electricity

grid) and heat will then be converted into an output, using the energy conversion technologies

shown in Figure 3.5, to meet the demand in refrigeration, lighting, ventilation, bakery and space

heating. This can be mathematically modeled as follows. First, the conversion of primary sources

to electricity and heat is subject to energy balance, where any generated capacity using the on-site

energy generation technologies must be proportional to the efficiency of the technology and to the
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energy provided by the primary source:

CAP e
i · ti · T = Pij · ηei ∀i = 1, . . . , 6, j = 1, 2 (3.8)

CAP h
i · ti · T = Pij · ηhi ∀i = 1, . . . , 6, j = 1, 2 (3.9)

CAP e
i and CAP h

i denote the capacity of electricity and heat generated in (kW), respectively,

ti is the availability of the ith on-site energy generation technology throughout the year given in

(hr/yr), T is the total time of operation in years, Pij is the amount of energy delivered by the

utilization of the jth energy source by the ith on-site energy generation technology in kJ, and ηei

and ηhi denote the efficiency of the ith on-site energy generation technology for electricity and heat

generation, respectively. The availability of each technology is bounded (Equation 3.10), given

that the technologies can be available for a certain amount of time during the year (τi).

ti ≤ τi ∀i = 1, . . . , 6 (3.10)

In addition, the capacity resulting from each energy generation technology is bounded, as mod-

eled in Equation 3.11, and binary variables are included in the model to represent the selection of

available technologies.

yi · CAPL
i ≤ CAPi ≤ yi · CAPU

i ∀i = 1, . . . , 6, yi ∈ {0, 1} (3.11)

Here, CAPi represents the total capacity of energy generated, both in the form of electricity

and heat by a given technology.

CAPi = CAP e
i + CAP h

i ∀i = 1, . . . , 6 (3.12)

The total amount of electricity (ETotal), including any supply from the grid (egrid), and heat
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(HTotal) generated using the on-site energy generation technologies is defined as:

ETotal = T ·
6∑

i=1

CAP e
i · ti + egrid (3.13)

HTotal = T ·
6∑

i=1

CAP h
i · ti (3.14)

The energy balance on total electricity and heat dictates that the total amount generated must

be utilized in energy conversion technologies (CAP conv
k ) into an output. Here, it is assumed that

there is no energy dissipation to the surroundings in on-site energy generation and conversion

technologies. Thus, the total amount of energy generated is equal to the total energy utilized in the

next step, as mathematically expressed in Equations 3.15 and 3.16.

ETotal = T ·
7∑

k=1

CAP conv
k (3.15)

HTotal = T ·
9∑

k=8

CAP conv
k (3.16)

It is important to note that only a portion of the energy conversion technologies take electricity

or heat as an input. Hence, only the relevant conversion technologies are included in each balance.

The details on the technical parameters for energy conversion technologies can be found in Table

3.6 in Section 3.6.2.

The final amount of output capacity (OutputUk ) generated using the appropriate energy con-

version technologies is proportional to the efficiency of the corresponding technology (ηconvk ), as

shown in Equation 3.17.

OutputUk = CAP conv
k · ηconvk ∀k = 1, . . . , 9 (3.17)

Here U , is the set of end-uses for the generated output which significantly contribute to the

energy consumption in a supermarket such as refrigeration, lighting, ventilation, bakery, and space
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heating. Thus, in this supermarket case study, U ∈ {Refrigeration, . . . , Space Heating}. The

final output generated using each technology can only be utilized in a specific end-use and must

meet the demand, as shown in Equation 3.18.

∑
k∈U

OutputUk ≥ DemandU ∀U = {Refrigeration, . . . , Space Heating} (3.18)

Given the energy balances, conversion equations, bounds and the demand constraints, the ob-

jectives in this case study is to minimize the cost of energy generation alongside with the total CO2

emissions, explicitly defined in Equations 3.19 and 3.20.

Cost =
6∑

i=1

INVi · CAPi + T
6∑

i=1

OMi · CAPi +
9∑

k=1

INVk · CAP conv
k

+T
9∑

k=1

OMk · CAP conv
k + egrid · Pricegrid +

2∑
j=1

Pricej

6∑
i=1

Pij

(3.19)

Emission = egrid · Emissiongrid +
2∑

j=1

Emissionj

6∑
i=1

Pij (3.20)

INV and OM represent the investment cost ($/kW), and operation and maintenance costs

($/kW/yr) associated with each on-site energy generation or conversion technology, respectively.

Pricej and Emissionj represents the price of the primary energy source per GJ of energy deliv-

ered and the amount of CO2 emitted (kton CO2/PJ) by each primary energy source, respectively.

Subscript “grid” indicates the price and emissions related to the electricity supplied from the elec-

tricity grid.

3.6 Results of Computational Studies

Series of computational studies have been performed on the benchmark problems and on the

energy systems design problem to test the accuracy and consistency of the proposed data-driven

multi-objective optimization framework. Two other grey/black-box optimization solvers are also

tested alongside the ARGONAUT algorithm to fully characterize the effect of different data-driven

solvers on the integrated framework performance. The following solvers are tested as a part of
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this framework: Improved Stochastic Ranking Evolution Strategy (ISRES) [96], and the Nonlinear

Optimization by Mesh Adaptive Direct Search (NOMAD) algorithm [95]. The description of these

solvers are provided in Chapter 2, Table 2.1.

In this work, an exhaustive comparison between all the recently published black-box algo-

rithms is not performed, however, the performance of the proposed approach is compared with

two widely accepted algorithms that can handle general black-box constraints. The criteria behind

selecting these two algorithms for comparison is directly associated with their ability to handle

nonlinear constraints and availability through user-friendly implementations [97, 98]. It should

also be mentioned that these search algorithms have been executed without any tuning of their

convergence parameters, which were left at their default settings. For all the benchmark problems,

ARGONAUT is also tested at the default setting, assuming no a priori knowledge on the analytical

forms of the equations, and let ARGONAUT perform model identification, parameter estimation

and cross-validation. For the energy systems design problem, ARGONAUT is initially used at the

default setting to perform numerous tests on the constrained problem. Through cross-validation of

various types of functions in the library, individualized information regarding the optimal surrogate

representation for each unknown function is gathered. Then, using this information, the parame-

ter estimation problem is solved to global optimality for only these specific types of surrogates.

Detailed information about the dimensionality of this case study as well as the surrogates used in

modeling the energy systems design problem is provided in Table 3.9.

All the test problems are executed 10 times on a High-Performance Computing (HPC) machine

at Texas A&M High-Performance Research Computing facility using Ada IBM/Lenovo x86 HPC

Cluster operated with Linux (CentOS 6) using 1 node (20 cores per node with 64 GB RAM) for

ARGONAUT runs, and on Intel Core i7-4770 CPU (3.4 GHz) operated with Linux (CentOS 7)

for the other solvers. The average results for each solver across these 10 runs are reported in the

following sections. It is also important to state that for fairness, the starting sampling design for

ARGONAUT as well as the starting points for ISRES and NOMAD are randomly generated for

each of the 10 executions of these solvers.
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3.6.1 Pareto-optimal Solution for the Benchmark Problems

The Pareto-optimal curves resulting from this study are shown in scatter plots, given in Figures

3.6 and 3.7. Each row of figures represents a solver that is used to optimize the grey-box system,

where Figures 3.6A, C, and E show the results for BNH, and Figures 3.6B, D, and F show the

results for CONSTR benchmark problem. In addition, Figure 3.7 summarizes the results for car-

(A) (B)

(C) (D)

(E) (F)

Figure 3.6: Pareto-optimal curves for the BNH and CONSTR benchmark problems. Diamonds
represent the exact global solution for the fully deterministic problem.
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side impact problem for all methods. All the results shown in Figures 3.6 and 3.7 are also compared

with the exact global solution of the fully deterministic problem, which are shown in diamonds.

Figure 3.6 demonstrates that all three optimization methods show good performance in locating

the true global optimum at every point of the Pareto-optimal curve. In Figures 3.6E and F, it is

observed that ISRES is unable to find a feasible solution for the very last point of the Pareto-curve

over the course of 10 random runs. It is suspected the reason behind such a behavior is due to

the stochastic nature of this algorithm [133]. The average results show that NOMAD outperforms

ARGONAUT and ISRES algorithms in the BNH and CONSTR problems as shown in Figure

3.6C and D in locating the true global optimum. This increased performance of NOMAD can be

explained in two-fold: (1) These two problems are relatively easy functions and the random initial

starting point actually provides good solutions to the problem; (2) These good solutions are further

refined towards the global solution due to NOMAD’s detailed local exploration strategy which

results in surpassing the performance of two global methods. It is worth mentioning that even

though NOMAD, on average, seems to better locate the optimal point, the average performance

does not consider the cases where NOMAD has failed to find a feasible solution. For the BNH

benchmark problem, NOMAD returns highly infeasible solutions in 12% of the total number of

runs. The performance is better for the CONSTR problem, where only in less than 1% of the

executed runs, NOMAD terminates with an infeasible solution. This also shows that the location

of the initial point provided for the algorithm plays a critical role in terms locating the global

optimum and for identifying a feasible solution. On the contrary, ARGONAUT provides feasible

solutions consistently for all the runs, which is a significant advantage of the algorithm compared

to other methods.

Furthermore, Figure 3.7 shows the Pareto-front for the car-side impact benchmark problem

where the trade-off solutions between three objective functions form the Pareto-optimal surface.

Figures 3.7A and B show that both ARGONAUT and NOMAD on average perform well in locating

the global solution in a higher dimensional problem. In total of 640 runs (64 points with 10 repeti-

tive runs) executed to generate the Pareto-optimal surface, the NOMAD algorithm has returned an
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infeasible solution in 10% of the runs. On the contrary, ARGONAUT was able to provide feasible

solutions to all runs, where only in 2% of all cases the algorithm has returned a sub-optimal so-

lution (a solution with an absolute error greater than 10-3 with respect to the true global solution).

This clearly shows that ARGONAUT can sustain the solution accuracy over multiple repetitions,

while being subject to variations at the initialization stage. Moreover, in Figure 3.7C, it is observed

that ISRES is unable to locate any feasible solution in 36% of 640 runs whereas it converges to

sub-optimal solutions in others. As expected, as the problem complexity increases, it is harder for

all algorithms to find the optimal set of decision variables. Hence, compared to the results shown

in Figure 3.6, ISRES and NOMAD algorithms have terminated with highly infeasible solutions

in more runs than in lower dimensional problems, resulting in higher number of mismatches be-

tween the true global solution on Pareto-optimal curves. This result is compelling especially for

problems with higher number of variables and constraints, where augmented number of failures in

identifying the global solution would interfere with the shape of the Pareto-optimal curve and may

alter the decision maker’s ultimate judgment.

(A) (B) (C)

Figure 3.7: Pareto-optimal surfaces generated by different solvers for the car-side impact bench-
mark problem; (A) ARGONAUT; (B) NOMAD; (C) ISRES. Diamonds represent the exact global
solution for the fully deterministic problem.

In addition to assessing the consistency and accuracy of different solvers, a comparison is es-

tablished based on their computational performance, both in terms of sample collection and elapsed
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(A) (B)

(C)

Figure 3.8: Comparison of average total number of samples collected by each solver in each bench-
mark problem. Results are shown for (A) BNH, (B) CONSTR and (C) car-side impact benchmark
problems.

59



time, as shown in Figures 3.8 and 3.9, respectively. The infeasible results are excluded from both

figures. In Figure 3.8, it is observed that ISRES collects 3000 samples for all benchmark problems

which is also the maximum allowable number of function evaluations that was set. This observa-

tion may suggest that ISRES could have a better performance if more samples were collected, but

the value of this limit is decided on by realizing that one of the main computational challenges of

black-box optimization is convergence with a reasonable number of calls to the expensive black-

box simulation. NOMAD algorithm on the other hand, collects about 500 samples in average on

lower dimensional benchmark problems (Figure 3.8A and B), whereas the total number of sam-

ples collected significantly increases for the car-side impact benchmark (Figure 3.8C). However,

ARGONAUT collects less than 100 samples on average for the BNH and CONSTR problems

and less than 205 samples for the car-side impact problem while converging to globally optimal

solutions. This feature of ARGONAUT is quite advantageous, especially for the problems with

computationally expensive simulations, where the sample collection can significantly burden the

whole optimization process.

Furthermore, Figure 3.9 shows the average elapsed time spent by each solver for the three

different benchmark problems. As demonstrated in Figures 3.9A and C, ISRES and NOMAD

algorithms take relatively longer time to converge to an optimum, as oppose to ARGONAUT. Es-

pecially for the NOMAD algorithm, the computational usage has increased at least by 5-fold with

the increasing number of dimensions and problem complexity. This shows that NOMAD’s re-

finement and detailed local search strategies comes with added number of function evaluations in

higher dimensional problems, which in return increases the total amount of CPU time it takes for

the algorithm to converge to an optimum. Interestingly, in Figure 3.9B, it is observed that ARG-

ONAUT takes significant amount of time to converge to the global optimum in comparison to the

other solvers. The reason behind this large difference in elapsed times across different benchmark

problems is that the BNH and car-side impact benchmark problems are approximated via linear

and/or quadratic surrogates within ARGONAUT, whereas the CONSTR problem is modeled via

kriging and/or radial basis functions. As a result, the global optimization of convex surrogates
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(A) (B)

(C)

Figure 3.9: Average elapsed time for each solver across all the Pareto-points for (A) BNH; (B)
CONSTR; (C) car-side impact benchmark problems.
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that represent the BNH and car-side impact benchmark problems are much easier and much faster

compared to the global optimization of nonconvex functions, which is the case in the CONSTR

problem. Thus, the deterministic global optimization of nonconvex surrogate formulations rep-

resenting the unknown objective and constraints adds up to the computational time it takes for

ARGONAUT to converge to the optimum.

3.6.2 Pareto-optimal Solution for the Energy Systems Design Problem

In addition to the benchmark problems, the performance of the framework is extensively tested

on a relatively high-dimensional energy systems design problem in a commercial building. The

prices for the energy sources as well as the parameters associated with the costs, capacities and

availabilities of each technology in the supermarket case study is summarized in Tables 3.4-3.6. In

this case study, it is assumed that all the energy conversion technologies are available throughout

the entire operation time horizon, which is set to 20 years.

Table 3.4: Prices and CO2 emissions of energy sources and grid electricity [4].

Natural Gas Electricity Biomass

Price ($/GJ) 8.89 36.11 9.72
CO2 Emission (kton CO2/PJ) 56 90 100

Table 3.5: Technical and economic parameters of on-site energy generation technologies [4].

Technology ηe ηh CAPL CAPU τ INV O&M
(kW) (kW) (hr/yr) ($/kW) ($/kW/yr)

Wind Turbine - - 10 30 1750 2000 1200
Solar PV - - 10 20 800 2000 500

NG Boiler - 0.9 100 106 7000 200 10
Biomass Boiler - 0.85 100 106 7000 250 15

NG CHP 0.35 0.55 800 106 7000 500 15
Biomass CHP 0.33 0.50 1000 106 7000 2000 30
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Table 3.6: Technical and economic parameters of energy conversion technologies [4]. COP stands
for coefficient of performance.

Technology Input Output ηconv INV O&M
($/kW) ($/kW/yr)

Cold Air Retrieval Electricity Ventilation 6(COP) 50 3
Refrigeration with Electricity Refrigeration, 3,2(COP) 100 5

Heat Recovery Space Heating
Refrigeration without Electricity Refrigeration 3(COP) 70 4

Heat Recovery
Fluorescent Lighting Electricity Lighting 0.2 5 0.5

LED Electricity Lighting 0.8 10 1
Bakery A Electricity Bakery 0.7 30 3
Bakery B Electricity Bakery 0.75 40 4
Heating A Heat Space Heating 0.85 30 3
Heating B Heat Space Heating 0.9 40 4

In addition to the parameters taken from the original case study, this energy consumption prob-

lem is also investigated with the current updated values, which are shown in Tables 3.7 and 3.8, to

observe the shift in the Pareto-optimal solution with changing prices. In the updated case, the tech-

nical and economic parameters regarding the energy conversion technologies are kept unchanged

as in Table 3.6.

Table 3.7: Current prices and CO2 emissions of energy sources [5–8].

Natural Gas Electricity Biomass

Price ($/GJ) 7.056 28.694 8.137
CO2 Emission (kton CO2/PJ) 48.548 138.094 101.729

As it was shown previously in Equation 3.11, the selection of on-site energy generation tech-

nologies is handled via binary variables. This study does not enumerate all the possible combi-

nations (26 = 64 possible combinations) but only show the results for 1 cost effective (natural

gas-powered CHP) and 1 most environmentally benign (wind turbine and solar photovoltaic) set of
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Table 3.8: Updated technical and economic parameters for on-site energy generation technologies
[4, 9–12].

Technology ηe ηh CAPL CAPU τ INV O&M
(kW) (kW) (hr/yr) ($/kW) ($/kW/yr)

Wind Turbine - - 10 50 1750 6118 35
Solar PV - - 10 273 2500 2493 19

NG Boiler - 0.85 88 106 8000 107 5
Biomass Boiler - 0.80 100 106 8000 575 98

NG CHP 0.31 0.45 800 106 8000 1500 120
Biomass CHP 0.22 0.69 1000 106 8000 5792 98

technologies as suggested by Liu et al. [4]. It is also important to note that the equality constraints

in the supermarket case study, resulting from the energy balances, shown in Section 3.5.2, further

challenges the algorithmic framework to its greatest extents in locating the global optimum with

highest accuracy. However, numerical issues may arise while satisfying these equality constraints

in the derivative-free context. Thus, all the equality constraints are relaxed into two inequalities

while being penalized with a small number (i.e., 1E-6), in order to set the numerical accuracy to

10-6.

The Pareto-optimal curve resulting from the information provided in Table 3.9 as well as the

parameters shown in Tables 3.4, 3.5 and 3.6, which reflect the prices and efficiencies reported in

2010, is presented in Figure 3.10. One of the most important characteristics of the curve shown

in Figure 3.10A is that, each point represents an equally optimal design with different economic

and environmental behaviors when different technologies are used as the on-site energy generation

technology in a supermarket. For example, the most cost-effective design is achieved using natural

gas-powered CHP system, shown as the very first point on the Pareto-frontier. However, this design

completely neglects any constraints on the greenhouse gas emissions and possible impacts on the

environment. As a result, CO2 emissions are at its highest level when the cost is minimal. On the

contrary, using wind turbine and solar PV provides an environmentally friendly alternative to the

natural-gas powered CHP as an on-site energy generation technology in a supermarket. However,

the cost of having this system on a supermarket is now at its maximum value, which is $11M.
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Table 3.9: Dimensionality of the multi-objective energy systems design problem. The table also
summarizes the types of surrogate used in the study for each grey-box constraint that was present
in the problem formulation.

Type of on-site energy gener-
ation technology considered

Number of Input
Variables

Number of Grey-
Box Constraints

Types of Surrogates
Used

Natural gas-powered CHP
(NG CHP)

17 19 Objective: linear
Constraints 1, 6, 7, 10-
19: linear
Constraints 2-5, 8, 9:
quadratic

Wind Turbine & Solar Photo-
voltaics (WT + SPV)

16 12 Objective: quadratic
Constraints: quadratic

This problem is also studied using the ISRES and the NOMAD algorithms, in which the re-

sults are summarized in Figure 3.10B. The complete Pareto-curve generated by ARGONAUT is

now presented in squares whereas the results for the NOMAD algorithm are represented in circles,

as shown in Figure 3.10B. It is important to note that the ISRES algorithm is unable to locate

any feasible solutions within the maximum allowable number of samples (sample tolerance set to

3000) for this case study over the course of 10 runs for each Pareto-point. As a result, only the

values found by the NOMAD algorithm are reported in comparison to the results obtained using

ARGONAUT. Figure 3.10B demonstrates that the NOMAD algorithm can locate feasible solutions

to the problem in the objective space. However, due to its local exploration strategy, the algorithm

struggles to converge to the global optimum at each Pareto-point and can only return local fea-

sible solutions. In addition, a fraction of the NOMAD runs is terminated with high infeasibility,

where the algorithm is unable to satisfy all the constraints posed in the problem. On the contrary,

ARGONAUT is able to report consistent feasible solutions for all the points that construct the

Pareto-frontier reported in Figures 3.10A and B.

Furthermore, Figure 3.11 summarizes the computational performance of the two methods with

respect to the elapsed computational time and number of samples collected by each method. Fig-

ures 3.11A and B show the elapsed time utilized by each solver for the case with natural gas-

powered CHP and for the case with wind turbine and solar PV, respectively. For the natural gas-

65



(A) (B)

Figure 3.10: Pareto-frontier for the energy systems design problem in a supermarket obtained using
ARGONAUT. (A) Pareto-frontier showing the cost-effective design using natural gas-powered
CHP technology (NG CHP), and the environmentally friendly design using wind turbine (WT)
and solar photovoltaics (SPV); (B) Comparison of results using ARGONAUT and the NOMAD
algorithm.

powered CHP case, it is observed that both derivative-free solvers perform comparably with each

other. However, Figure 3.11C shows that for the same case study NOMAD collects 5000 points on

average per Pareto-point to converge to a feasible solution whereas ARGONAUT collects less than

700 samples per Pareto-point. Compared to the results summarized in Figure 3.8, ARGONAUT

converges to the global optimal solution with higher number of samples at every Pareto-point. This

is an expected result given that all the derivative-free solvers experience an increase in sampling

requirements with increasing problem complexity. This trend is also reflected in NOMAD’s results

where there is a gradual increase in the total number of samples collected in each problem set, as

shown in Figures 3.8 and 3.11.

Moreover, for the case with wind turbine and solar PV, it is observed that ARGONAUT collects

significantly low number of samples to converge to global optimum, as shown in Figure 3.11D. It
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(A) (B)

(C) (D)

Figure 3.11: Comparison of computational performance of ARGONAUT and NOMAD; (A) Av-
erage elapsed time for the ARGONAUT and NOMAD algorithms per Pareto-point in natural gas-
powered CHP (NG CHP) case; (B) Average elapsed time for the ARGONAUT and NOMAD
algorithms per Pareto-point in wind turbine and solar PV (WT + SPV) case; (C) Average total
number of samples collected by the ARGONAUT and NOMAD algorithms per Pareto-point in
NG CHP case; (D) Average total number of samples collected by the ARGONAUT and NOMAD
algorithms per Pareto-point in WT + SPV case.

is important to note that for both cases NOMAD consistently hits the tolerance set for maximum

number of allowable samples and returns the best-found solution from these 5000 collected points.

Furthermore, like in Figure 3.10, the results with infeasible solutions are not plotted in Figure 3.11.

As a result, one can clearly see that for certain sub-problems in both natural gas-powered CHP and

wind turbine and solar PV cases, NOMAD is unable to locate feasible solutions over 10 repetitive

runs. Thus, it is safe to say that ARGONAUT outperforms other available derivative-free software,

both in terms of computational performance and in accuracy for locating the global solution for

the MOO of energy market design problem.

The same case study is repeated with the updated values for prices and efficiencies, where the

values of these new parameters are summarized in Tables 3.7 and 3.8. The results for the energy
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(A) (B)

Figure 3.12: Multi-objective optimization results using the updated parameters; (A) Pareto-frontier
obtained using ARGONAUT where the cost-effective design is achieved via solar photovoltaics
(SPV), and the environmentally friendly design is achieved using wind turbine (WT) and solar
photovoltaics (WT + SPV); (B) Comparison of results using ARGONAUT and the NOMAD algo-
rithm.

market design problem with the updated parameters are summarized in Figure 3.12.

Interestingly, Figure 3.12A shows that the most economic on-site energy generation for a super-

market is achieved via solar PV rather than the natural-gas powered CHP. With the recent develop-

ments in the solar PV technology, the solar PV’s are more available throughout the year with lower

operating costs and higher capacities. As a result, the technology selection has shifted from natural

gas-based to a renewable-based system for the supermarket. Thus, it is possible to minimize both

the cost and the CO2 emissions of on-site energy generation using solar PV, which also replaces the

existing trade-off between the two objectives for this system, while shrinking the Pareto-curve into

a single optimum. In addition, Figure 3.12A shows that using wind turbine and solar PV together

as the on-site energy generation technologies result in lower CO2 emissions. Yet again, as in Fig-

ure 3.10, as the CO2 emissions decrease, the cost of having that technology increases. Moreover,
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Figure 3.12B shows the comparison between the results obtained using ARGONAUT and the NO-

MAD algorithm. Like in the previous results, ISRES runs are terminated with high infeasibility

for all three points constructing the Pareto-frontier hence, not included in the plots. The results

show that NOMAD can locate local feasible solutions, but it struggles to find the Pareto-optimal

solution for the current values of the energy market design problem where a fraction of runs has

ended with high infeasibility. Especially for one of the points of the Pareto-curve, it is observed

that the NOMAD solution is quite distant from the Pareto-optimal solution designated by ARG-

ONAUT. Figure 3.12B also shows a zoomed view of the results that are close to each other. The

zoomed picture shows that the NOMAD solutions are very close to the optimal solutions found by

ARGONAUT but still does not perfectly capture the global solution.

3.7 Concluding Remarks

In this chapter, a hybrid framework is introduced for solving a class of mathematical program-

ming problems, namely the general constrained multi-objective optimization problems, using a

data-driven strategy. This hybrid framework integrates the ϵ-constraint methodology with a con-

strained grey-box optimization solver for the reformulation of multi-objective optimization prob-

lems into series of single objective sub-problems and for their respective optimization through a

data-driven methodology. The performance of the framework is tested on three constrained multi-

objective benchmark problems from the literature and on a case study of energy market design

problem for a commercial building. The results show that ARGONAUT can consistently and effi-

ciently identify the Pareto-frontier, which entails all the trade-off solutions that are equally optimal

with respect to each other, under varying conditions and dimensions of constrained multi-objective

problems. Furthermore, ARGONAUT outperforms other available derivative-free algorithms by

providing consistent feasible solutions for the energy systems design case study, involving numer-

ous equality constraints which are typically challenging for general derivative-free algorithms.
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4. DATA-DRIVEN OPTIMIZATION OF STIFF DIFFERENTIAL ALGEBRAIC EQUATIONS

WITH APPLICATIONS TO THERMAL CRACKING OF NATURAL GAS LIQUIDS

In this chapter, a Support Vector Machines (SVMs) based optimization framework is presented

for the data-driven optimization of stiff Differential Algebraic Equations (DAEs) without the full

discretization of the underlying first-principles model. By formulating the stability constraint of

the numerical integration of a stiff DAE system as a supervised classification problem, it is demon-

strated that SVMs can accurately map the feasible boundary of stiffness. The necessity of this

data-driven approach is shown on a 2-dimensional motivating example, where highly accurate

SVM models are trained, tested and validated using the data collected from the numerical integra-

tion of stiff DAEs. Furthermore, this methodology is extended and tested for a multi-dimensional

case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data-driven

optimization of this complex case study is explored through integrating the SVM models with a

constrained global grey-box optimization algorithm, namely the ARGONAUT framework.

This chapter is organized as follows. First, the challenges with data-driven optimization in

the presence of stiff DAEs or stiff Ordinary Differential Equations (ODEs) are discussed, and

the stated challenges are demonstrated on a motivating example in Section 4.2. Next, in Section

4.3, the SVM-based filtering methodology is described and its implementation to a data-driven

optimization algorithm for the global optimization of stiff DAEs is provided in Section 4.4. Finally,

the algorithm is tested on a steam cracking model for ethylene and propylene production and

the results for computational experiments are provided (Section 4.6) along with the concluding

remarks (Section 4.7).

4.1 Differential Algebraic Equations and Dynamic Programming

The system of differential algebraic equations (DAEs) is ubiquitous in mathematical modeling

of chemical engineering systems, as many first-principles models include differential equations

like mass, energy, momentum balances along with process constraints, such as physical properties
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and rate laws. DAE systems are commonly observed in the areas of process control, as well as

chemical reactions and reactor design [134, 135].

The mathematical optimization of such systems is challenging since the direct implementa-

tion of deterministic optimization methods is prohibitive. Hence, many dynamic programming

problems in the aforementioned application areas utilize commercial software like the gPROMS

environment and Aspen Custom Modeler for first-principles modeling of DAE systems and their

respective dynamic optimization [136–138]. Alternatively, full discretization of the DAE system

and its incorporation into a nonlinear programming (NLP) formulation using orthogonal colloca-

tion on finite elements is also preferred for making DAEs amenable for optimization, specifically

for unstable and ill-conditioned problems [139–141]. For example, Caballero et al. [142] in-

vestigated the optimization of ethylene production through one-dimensional plug-flow model at

steady-state conditions with heat flux along the reactor length to be the only decision variable. In

the problem formulation, the equality constraints governing the rate, mass, energy and momentum

balance equations were expressed with stiff nonlinear DAEs, which inhibits the global optimiza-

tion via direct deterministic methods. Hence, the authors implemented the orthogonal collocation

on finite elements method that will spatially discretize the DAEs into a set of nonlinear equality

constraints, while solving the resulting large-scale NLP problem to local optimality. In another

study by Onel [17], the dynamic optimization of steam cracking of ethane, as well as the cracking

of propane and butane with reactor coking considerations were investigated in detail. Similar to the

aforementioned study, orthogonal collocation on finite elements was implemented to discretize the

stiff DAEs and the resulting model was solved to local optimality using a multi-start approach to

generate high-quality solutions. In addition, the reactor length was modeled using binary variables

and the optimal length that maximizes the ethylene yield was also investigated by Onel [17].

A third alternative for dynamic optimization of the system of DAEs can be through the uti-

lization of data-driven approaches and novel machine learning algorithms. The idea of represent-

ing highly complex engineering processes with simple tractable models using data (i.e., surrogate

models) has gained accelerated attention in the last decade [36]. Although surrogate models were
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primarily used as means of replacing detailed unit operations in flowsheet synthesis [50, 143–

146], their application has also been expanding in different areas of process systems engineering

including but not limited to dimensionality reduction in control [147], grey/black-box optimization

[30, 31, 148, 149], bi-level programming [94, 150] and predictive modeling of environmental sys-

tems [151, 152]. In this work, a global constrained grey-box optimization algorithm, ARGONAUT

[28–30], is utilized for the data-driven modeling and optimization of system of DAEs without the

full discretization of the governing equations. Furthermore, a novel Support Vector Machine-based

constraint handling scheme is introduced for handling the stiffness of multi-dimensional DAE sys-

tems, which further enables high-quality solution generation by rapidly eliminating the infeasible

variable combinations, thus allowing the exploration of a wider range of decision variable space.

4.2 Challenges in Design of Experiments with Stiff Ordinary Differential Equations

Data-driven modeling and derivative-free optimization rely on different sampling strategies that

provide an initial plan for the controlled experiments on problem simulators, which is commonly

known as the Design of Experiments (DoE). The goal of DoE is to provide possible candidate

locations for the input variables within the pre-defined box-constraints such that these experiments

capture a variety of system dynamics. There are many different ways of constructing this initial

set of candidate points including Latin Hypercube (LHD) and full factorial designs. The details

on different types of DoE and the current developments in DoE research are discussed in a recent

review article by Garud et al. [153], as well as in a notable textbook by Cavazzuti [154].

It is important to note that the DoE is a statistical procedure and not guided by the physical

information that entails an engineering process. Thus, a subset of candidate initial points gener-

ated by the DoE may result in unphysical and/or undesirable outcomes, such as an early termi-

nation of the problem simulator due to failures or solving a numerically unstable problem (stiff

DAEs/ODEs). This generally implies that a constraint should exist between the decision (input)

variables, in which the explicit analytical formulation of this, as a function of the input variables,

is unknown to the user. As a result, the global optimization of such a system using a data-driven

methodology will be hindered since the returned optimal solution may not be a feasible one. Con-
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sider the following initial value problem as a motivating example,

ẏ = y2, y(0) = yo > 0 (4.1)

The analytical solution of this separable ODE is given in the following form,

y(t) =
yo

1− yo · t
, t <

1

yo
(4.2)

It is important to note that, the validity and the stability of solution in Equation 4.2 strictly

depend on the condition between the time and the initial condition value. Specifically, at t = 1/yo,

the denominator will become zero and the solution will be undefined. If we wanted to explore

the full space defined by t and yo using DoE, the samples that violate this constraint are going

to be removed a priori to sample collection, which will also prevent us from sampling in regions

that won’t yield a feasible or a numerically stable solution for the problem of interest. This is

demonstrated in Figure 4.1.

Although in this motivating example it is rather easy to derive the constraint for a valid in-

tegration solution concerning the time horizon and the initial condition, in many complex engi-

neering problems (i.e., reaction engineering), the analytical solution may not be trivial or may not

even exist. Furthermore, in multi-dimensional problems where multiple variables are initialized

for solving a system of ODEs, it is more challenging to postulate appropriate explicit constraints

for the underlying relationships between the initial conditions. Hence, optimizing a black-box

simulator with a system of multi-dimensional DAEs/ODEs that exert stiffness or contain implicit

constraints (i.e., constraints that do not have an explicit mathematical or an analytical form) using

a data-driven methodology is a challenging task.

Several approaches can be explored such as sampling in smaller regions or removing infeasible

samples a posteriori to the simulator call. A smaller sampling region can be imposed such that all

sampling points are feasible. For example, if we were to set the upper bound to be 0.5 for both t

and yo in the motivating example, all points collected within this new box will be feasible (Figure
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Figure 4.1: Design of experiments for the motivating example. Shaded area represents the feasible
region defined by the constraint in Equation 4.2, t < 1/yo. The sampling points that satisfy
this constraint are represented with filled circles. Candidate points that violate this constraint are
removed before calling the problem simulator. Removed samples are represented with hollow
circles in the infeasible region.

4.1). However, in an optimization context, tighter bounds will yield a conservative decision vari-

able space, where the global solution may lie outside these newly imposed bounds. Furthermore,

a posteriori analysis on the input-output data can be computationally demanding since this will

require all candidate points to be evaluated through the problem simulator. This is undesirable

in many high-fidelity problems given that as the number of ODEs and the problem complexity in-

creases, the numerical integration will become more time-consuming. Especially, evaluation of the

infeasible candidate points that create numerical instability can take more than a couple of hundred

seconds. For example, assuming a failed simulation takes 200 seconds per sample to evaluate, col-

lecting the output of 150 numerically unstable candidate points will take more than 8 hours, where

these points will not be viable for identifying the optimal solution.

Hence, this sampling challenge with stiff DAEs requires a systematic approach, where a wider

range of system dynamics should be captured in a computationally efficient way. To this end, a su-

74



pervised machine learning methodology, namely the Support Vector Machines (SVMs), is used to

assess the numerical stability of a given combination of initial conditions postulated at the several

stages of a data-driven optimization process (i.e., initial sampling, and re-sampling) a priori to the

simulator call. Previously, the idea of using SVMs to approximate the feasible region of optimiza-

tion problems was explored in bi-level and mixed-integer programming problems [155, 156]. In

this work, SVMs are used to handle the stiffness in a multi-dimensional system of DAEs such that

they are amenable for data-driven modeling and optimization without the full discretization of the

underlying first-principles model. Specifically, the SVMs are used to derive an implicit function

that mimics the stability constraint for the solution of stiff DAEs in multi-dimensional space, rather

than approximating the full feasible space of the problem as done in the aforementioned studies.

Through this supervised machine learning approach, the nonlinear dependencies between the ini-

tial conditions and the independent variable of the differential equation that strictly defines the

stability of the numerical integration are captured with high accuracy. The details of the approach

are further explained in the following section.

4.3 Modeling Implicit Constraints with Support Vector Machines

In machine learning, SVMs are extensively used for classification and regression-type of anal-

yses, spanning over several different application areas including but not limited to fault detection

and diagnosis [157–159], improvement of process operations [160], and predictive modeling of

complex substances [161]. In this work, an SVM model is used to mimic the implicit constraint

imposed on the solution of the system of DAEs. Specifically, an SVM-based classification model

is built in the offline phase by using a dataset of simulated samples with their outcome (feasi-

ble/infeasible). The obtained classification model acts as a filter and guides the sampling strategy

of a data-driven optimizer such that the numerically unstable combinations of independent vari-

ables are eliminated a priori to sample collection.

If we now consider the initial value problem in Equation 4.1 from a data-driven perspective

while assuming no knowledge on the stability constraint, we can numerically integrate Equation

4.1 for every combination of t and yo values provided by the DoE. At the end of each simulation,
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we can check whether the integration has failed or not and assign a label, “0” for “feasible” or

a valid integration solution and “1" for “infeasible" or a failed integration solution. The resulting

continuous input and the discrete output information can be used to formulate a nonlinear two-class

classification problem using SVM, where this model will provide a decision boundary between

feasible and infeasible combinations of t and yo.

Figure 4.2: Nonlinear SVM model is trained to mimic the constraint, 1/yo, by only using the input-
output data from the numerical integration of the initial value problem given in Equation 4.1. SVM
classifier can model the boundary of the stability constraint with high accuracy, where the green
area corresponds to the feasible, and the red area corresponds to the infeasible class, respectively.

Essentially, as shown in Figure 4.2, if the SVM classifier is properly trained, tested and vali-

dated, this separating nonlinear boundary will be the same as the constraint imposed on the input

variables shown in Figure 4.1. As new samples are desired to be collected in this decision space,

the SVM model can now be used to classify and filter the incoming combinations of input variables

based on their probabilistic feasibility information provided by this model. This filtering step is

essentially a function call that has minimal computational expense to execute and will allow us to
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remove the infeasible combinations a priori to the problem simulator call, improving the stability

and the computational speed of the data-driven optimization process with stiff DAEs. In the next

section, the generalized framework for using and implementing SVM classifiers in data-driven

optimization of stiff multi-dimensional DAE systems are described in detail.

4.4 Data-Driven Optimization Framework for Stiff Multi-Dimensional DAE Systems

The outline of the generalized framework for handling implicit constraints in data-driven op-

timization is provided in Figure 4.3. In phase 1, which is the offline phase of the framework,

sampling is performed within the lower and upper bounds of the decision variables of a given op-

timization problem with a stiff DAE system. For each sampling point, a respective output class

information (feasible/infeasible) is collected as described in the previous section. Using this con-

tinuous input and categorical output dataset, a nonlinear two-class classification problem is for-

mulated and an SVM model is tuned for an accurate representation of the stability constraint of

a multi-dimensional stiff DAE system. In phase 2, this trained, tested and validated SVM model

is implemented to a grey-box optimization solver. In this phase, the SVM model filters the nu-

merically unstable combination of input variables online as the grey-box optimization algorithm is

executed. Each phase is further described in detail in the following sections.

4.4.1 Offline Phase: Data Collection and Tuning the SVM Model

• Step 1: Sampling

For all the computational experiments performed in this study, maximin LHD is constructed

for 2000 sampling points within the pre-defined bounds of each variable. The respective

class information of each sample (i.e., feasible or infeasible) is collected from the problem

simulator that performs the numerical integration. This offline sampling stage is done once

and is solely used for the C-SVM model building stage.

• Step 2: Data normalization and allocation

The input data is normalized by min-max scaling within the provided variable bounds and

the collected data is split into train-test and validation sets. For the validation set, 10% of the

77



§ Two-class classification using
Support Vector Machines
(SVM)

§ The trained model will filter
“infeasible” samples a priori
to simulation call

Offline Implementation Online Implementation

Implicit Constraint Handling in Data-Driven Optimization 

Phase 1: Phase 2:

§ Sample Collection for model
training, validation and
testing

§ Implementation of the SVM
model to a grey-box
optimization solver

Figure 4.3: Outline of the SVM-based constraint handling framework for data-driven optimization
with stiff DAEs.

data from each class is separated. This validation set is not used in any of the training and

testing steps, hence allowing us to assess the unbiased performance of the trained C-SVM

model. The remaining 90% of the data is used for model development.

• Step 3: Model tuning and development

Here, 5-fold cross-validation is used to avoid the overfitting problem. This is a crucial step

in achieving an accurate and generalizable C-SVM model simultaneously. Two important

hyperparameters that require tuning in a C-SVM formulation are the γ and C parameters. In

this study, the optimal γ and C parameters are obtained via grid search. In particular, the C

parameter is tuned over the set of 2−10, 2−9, ..., 210, while the γ parameter is tuned over the

2−10

n
, 2

−9

n
, ..., 2

10

n
, where n is the number of features of the dataset used in training. Normal-

ization of the γ parameter based on the dataset density is performed to achieve an optimal

separation of feasible and infeasible data points without overfitting. Finally, the model is

developed by using the entire 90% of the dataset via the optimal C-SVM hyperparameters

obtained during the tuning stage. The developed C-SVM model assigns probability to each
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input sampling point. If the probability is higher than 0.5, the sampling point is classified as

“feasible”, otherwise “infeasible”.

• Step 4: Model performance assessment metrics

In this study, the classification model performance is quantified by calculating 5 different

performance metrics on the validation dataset: (1) Accuracy; (2) Precision; (3) Recall; (4)

Area under the Receiver Operating Characteristics (ROC) curve (AUC); (5) F1 score. Ac-

curacy is described as TP+TN
TP+TN+FP+FN

, while precision and recall are defined as TP
TP+FP

and

TP
TP+FN

, respectively. Here, TP (TN) indicates the number of feasible (infeasible) sampling

points that are correctly classified by the model. On the contrary, FP (FN) yields the number

of infeasible (feasible) sampling points that are misclassified as feasible (infeasible) by the

model. Note that F1 score is the harmonic mean of precision and recall metrics.

The model developed with the described offline phase model building procedure has produced a

perfect classifier (Validation scores: Accuracy = 100%, Precision = 100%, Recall = 100%, AUC

= 100%, F1 score = 100%) for the dataset provided in the motivating example (Figure 4.2). It is

important to state that the normalization step is not performed for the motivating example as both

t and yo have the same upper and lower bounds.

Once the offline phase is completed, the validated SVM model is incorporated into a grey-

box optimization solver. In this work, the ARGONAUT algorithm is utilized to demonstrate the

effectiveness of this data-driven approach, outline the key steps of the framework and its integration

with the SVM classifier in the following section.

4.4.2 Online Phase: Integration of the SVM Classifier with the ARGONAUT Framework

The ARGONAUT algorithm [28–30] is a constrained grey-box optimization solver that utilizes

the input-output data to postulate appropriate surrogate formulations for the objective function and

the unknown constraints, through solving the parameter estimation problem to global optimality.

Initially, this framework has been developed to solve general constrained nonlinear grey/black-box

optimization problems and was tested on a pressure swing adsorption example for CO2 capture
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[29] and numerous benchmark global optimization problems [28]. Later, several key stages of

the framework are parallelized for utilizing distributed high-performance computing for improved

computational efficiency [30]. The details of the parallelization are further described in Chapter 5.

The ARGONAUT algorithm starts with the DoE and sampling stages. In the presence of known

constraints for the input variables, the algorithm will first run Optimality Based Bound Tightening

(OBBT) to reduce the search space. OBBT cycles through each variable present in the known con-

straint by minimizing and maximizing their values, while being subject to this known constraint.

This will allow the algorithm to update the current bounds on the variables and then generate a

maximin LHD within the updated search space. When known constraints are present, the LHD is

created with a large set of samples based on the input dimensionality (Ndim), where for Ndim ≤ 10

the initial design will have Nsample = 100 ·Ndim samples, whereas for Ndim > 10 the initial design

will have Nsample = 2000. Among this large set of initial design points, the ones that do not satisfy

the known constraint are removed from the initial design through an explicit function evaluation.

The default version of ARGONAUT then continues with reducing the remaining set of feasible

samples using the Optimal Scenario Reduction algorithm (OSCAR) [162] or by augmenting the

LHD depending on the cardinality of the sampling set.

To handle stiff problems or problems with implicit constraints, an additional checkpoint is

introduced before the OSCAR scenario reduction step using the developed C-SVM model in the

offline phase (Figure 4.4). This C-SVM model filters the pre-determined values of input variables

that potentially lead to numerical instability by classifying them as infeasible and removing these

from the initial sampling set. Later, if the cardinality of the remaining numerically stable samples is

higher than the intended size of the initial DoE, the algorithm proceeds with the scenario reduction

step which leaves us with an appropriate set of sampling points to be executed in the problem

simulator.

Once this feasible set of input variables are simulated and their corresponding outputs (i.e.,

objective function value and black-box constraint violations) are collected, this input-output data is

passed onto the parameter estimation stage. Here, a distinction is made between different sources
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of infeasibility: (1) Infeasibility due to a violation of a known constraint which is available in

closed-form; (2) Infeasibility due to a violation of the black-box output, where this information

can only be extracted by running the full problem simulator; (3) Infeasibility due to a violation

of implicit constraints or constraints that characterize the stability of the integration. Although

samples that are feasible with respect to the known constraints and the integration stability are

simulated, any of these combinations may still lead to an infeasible operation based on the process

constraints, which requires the execution of the full problem simulation. Hence, ARGONAUT will

keep track of this second type of infeasibility and construct individual surrogate models for these

constraints at the parameter estimation stage. ARGONAUT contains multiple surrogate forms in

its surrogate model library (i.e., linear, general quadratic, signomial, radial basis functions, kriging

interpolation), where the algorithm can decide on the best surrogate form for a given input-output

data through cross-validation. The algorithm is flexible in such a way that it can choose different

surrogate forms for each unknown function. For example, for a problem with 3 unknown equations,

ARGONAUT can construct a quadratic surrogate objective with 1 nonlinear (radial basis function)

constraint and 1 linear constraint. As an alternative, the preferred surrogate form can also be

specified for any unknown function at the start of the algorithm, where only this specific type of

surrogate form will be explored. This exploration for both known and unknown forms are done

through solving the parameter estimation problem to global optimality, which is one of the key

properties of the algorithm to ensure accurate representations of the input-output information.

Once individual surrogate models are constructed for all unknown equations, a grey-box op-

timization problem is formulated using the surrogate functional forms for the objective and the

unknown constraints. The known constraints are also included in this formulation to ensure the

feasibility of the optimal solution. This formulation is then solved to global optimality and lo-

cal optimality with a multi-start approach. The resulting high-quality solutions are then assigned

as new sampling points on the next iteration to explore promising regions in the feasible space.

Again, the C-SVM model will check the numerical stability of these candidate sampling points a

priori to the simulator call and remove samples that are classified as infeasible. This procedure
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will continue until one of the convergence criteria (Chapter 2, Table 2.1) are met.

Once a convergence criterion is met, a session of an ARGONAUT run will be completed, and

the algorithm will perform clustering. Clustering will allow the algorithm to identify a promising

sub-region of the sampling space based on the cluster with the best incumbent solution. Then,

the bounds on the decision variables can be tightened around this cluster and the algorithm will

proceed with the second session, where the number of sampling points in this reduced space is

augmented. In the augmentation stage, as new combinations of decision variables are postulated,

the C-SVM model needs to be called for a feasibility evaluation of these new combinations of

candidate points. However, it is important to note that as the bounds on the decision variables are

tightened at the end of the first session, the C-SVM model needs to be reconstructed again using

the input-output relationship from the reduced decision variable space. Hence, the procedure de-

scribed in the offline phase is repeated to generate the new C-SVM model within the new tightened

bounds at the end of the first session. If the algorithm does not tighten the bounds, then the C-SVM

model from the first session is still valid and the same model can be used to filter the numerically

unstable combinations of variables prior to simulator call. After the new model is trained, tested,

validated and incorporated in the framework, the algorithm restarts the iterative steps for sampling,

parameter estimation and optimization of the grey-box formulation as described earlier. By default,

the algorithm will reach full convergence after one of the aforementioned criteria is met and the

second session is completed. The total number of sessions in the algorithm can be increased, how-

ever, as the C-SVM model requires reconstruction with changing variable bounds, the algorithm

is used in the default mode, where the C-SVM models are only constructed twice.

As shown in Figure 4.4, this data-driven methodology to mimic the stability constraint through

the use of SVM models is incorporated at every stage of ARGONAUT, where procedures regarding

sampling are taken care of, including when the initial design is created, the existing design is

augmented and when new samples are adaptively collected from the optimization step at every

iteration. Although here the SVM-ARGONAUT integration is extensively discussed, the idea of

using SVMs in this framework is generic and can be implemented to other data-driven solvers as
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well. In the next section, a more complicated computational case study is described, namely the

steam cracking of ethane and propane, where the data-driven modeling and optimization of these

stiff DAE systems are explored using the SVM approach.

4.5 Data-Driven Dynamic Steam Cracking Optimization for Ethylene and Propylene Pro-

duction

The rapid increase in shale gas production in the Appalachian and Permian Basins for the

last decade has lead to significant growth in natural gas liquids (NGLs) production, as well as

a projected increase for these petrochemical feedstocks in the upcoming years (Figure 4.5) [1–

3, 163].
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Figure 4.5: Historic natural gas liquids production in the U.S. and its short-term projection for the
upcoming year [1–3].

Ethane and propane, being the major constituents of NGLs, are predominantly used for the

production of ethylene and propylene, respectively, where ethylene consumption is expected to

increase by 49% from the year 2017 to 2020 [2]. Naturally, the growing petrochemical feedstock
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supply and the rising demand for light olefins sparks an interest in converting NGLs to olefins via

the non-catalytic steam cracking process. In this perspective, many existing ethylene crackers have

expanded capacity and new crackers are becoming online to benefit from this unique opportunity

[164]. Hence, the mathematical optimization of this process emerges as a necessity to determine

the optimal operating conditions for the steam cracker, in such a way that the profit from ethylene

and propylene production is maximized.

To this end, the integrated SVM-ARGONAUT framework is utilized to handle the stiffness

in the cracking model equations while exploring high-quality solutions for the optimal reactor

length, inlet ethane/propane and steam flowrates, inlet temperature, inlet pressure, and heat flux

profile along the optimal reactor length, through surrogate modeling and optimization. The steam

cracker reactor model for ethylene and propylene production is adapted from [14–17, 165–168]

and modeled as a one-dimensional plug flow reactor with coking effects (Figure 4.6). The detailed

reactor model equations and parameters [18–20] are presented in Appendix C.

Length
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Figure 4.6: One-dimensional plug flow reactor for steam cracking (Tube diameter: Dt). P (z),
Fj(z) and T (z) represent the spatial change of pressure, species molar flowrate and temperature
along the reactor length, respectively. Steam and feed (i.e., ethane or propane) is co-fed at the
reactor inlet. Heat required for the endothermic cracking reactions is provided by the external heat
flux, Q(z).

The mathematical formulations presented in Appendix C for the steam cracking case studies

are modeled in MATLAB and this problem simulator is used for the data-driven modeling and
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optimization of the thermal cracking process with SVM-ARGONAUT. For both case studies, 10

input variables (the decision variables, Table C.7) are considered, 1 known constraint (Equation

C.23 for ethane cracking model, Equation C.24 for propane cracking model), and 4 grey-box

constraints (Equations C.19, C.20, 4.3, 4.4), where the objective is to maximize the profitability

of operation (Equation C.21 for ethane, C.22 for propane). The detailed analysis of the results is

provided in the following section.

4.6 Results of Computational Studies

The computational studies for the data-driven steam cracking optimization are performed on a

High-Performance Computing (HPC) machine at Texas A&M High-Performance Research Com-

puting facility (Ada HPC Cluster operated with Linux CentOS 6: Intel Xeon E5-2670 v2 10-core

processor (Ivy Bridge-EP)). The supercomputer is used at both stages of the framework: (1) In the

offline phase, for data collection and SVM model building; (2) In the online phase, for executing

the ARGONAUT algorithm as a parallel job, using 1 node (20 cores per node with 64 GB RAM) on

the supercomputer. Likewise, the data collection and SVM model-building phases are performed

as a parallel job, using 1 node (20 cores per node with 64 GB RAM and 1 node (4 cores per node

with 64 GB RAM), respectively. The results of the offline and the online phases of the framework

are discussed in the following sections.

4.6.1 Offline Phase: Results of SVM Model Building

As a first step, the SVM model is built using the data generated from the steam cracking model

which is subject to the known constraint (Equation C.23 for ethane cracking model, Equation

C.24 for propane cracking model) and the provided bounds on the decision variables (Table C.7),

following the methodology described in previous sections. As the bounds on the decision variables

are the same in the first session of ARGONAUT runs, only 1 SVM model is built per case study.

The model evaluation metrics on the validation data for both ethane and propane cracking case

studies are provided in Table 4.1.

The validation results show that SVM models for these datasets can be generated in high ac-
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Table 4.1: SVM model performance for the first session of runs with ARGONAUT.

Cracking Model Accuracy (%) Precision (%) Recall (%) AUC (%) F1 score (%)

Ethane 98.492 96.591 100 99.948 98.266
Propane 98.492 98.780 97.590 99.875 98.182

curacy (98.492%). It is important to note that the SVM model cannot guarantee feasibility to the

selected sampling points as the model may misclassify 1.508% of the samples as “feasible” based

on the validation dataset. When this model is implemented in the online phase, it may cause ARG-

ONAUT to converge to a numerically unstable solution at the end of its iterations. To absolutely

guarantee the feasibility of the solution, an extra grey-box constraint is added in the online phase

that essentially confirms the assigned value for the length variable as a candidate point is equal

to the simulation endpoint (i.e., simulation does not quit prematurely without reaching the end-

point of length). As ARGONAUT cannot directly handle equality constraints, this constraint is

reformulated into two inequalities (Equations 4.3 and 4.4) with an added relaxation parameter.

Lin − Lout ≤ 0.000001 (4.3)

Lin − Lout ≥ 0.000001 (4.4)

Once the SVM model for the first session is established, the online phase of the SVM-

ARGONAUT integrated approach is executed 20 times for each cracking model, each starting

with a random LHD. After the convergence is reached, the first session is completed and the vari-

able bounds are tightened, new SVM models are generated for each run such that they represent

the numerical stability of the cracking models in the reduced space. The detailed validation perfor-

mances of these SVM models under the tightened bounds are summarized in Appendix C (Tables

C.8 and C.9). The overall results show that these models also have very high accuracy, with more

than 97% and 95% correct classification performance among all tested samples for the ethane and

propane cracking case studies, respectively. The other performance metrics are also satisfactory,
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where the model precision is greater than or equal to 98% and 94%, the recall is greater than 98%

and 95%, the AUC is greater than 99% and 99%, and the F1 score is greater than 98% and 96% for

ethane and propane case studies, respectively.

4.6.2 Online Phase: Results of the Grey-Box Optimization

In the online phase, the goal is to find the optimal solution to the steam cracking problem using

the integrated approach for implicit modeling of the stability constraint and the constrained grey-

box optimization of the problem of interest. For all case studies and their respective 20 repetitive

runs, the number of initial sampling points is set to be Nsample = 30 · Ndim + 1. The same

rule-of-thumb is also used when performing sampling reduction via OSCAR and in the second

session of the algorithm, when the LHD is augmented for exploring the most promising region for

the optimal solution. For processes regarding the surrogate modeling and grey-box optimization,

ARGONAUT is executed in the default mode, where the algorithm decides on the surrogate model

form for the objective function and the grey-box constraints.

The thermal cracking models provided in Appendix C are used as grey-box problem simulators,

where different combinations of decision variables are input to each simulator and the correspond-

ing objective function value and the constraint violations are collected. The input combinations to

the problem simulators are first evaluated to satisfy the known constraint and then evaluated by the

SVM-feasibility checkpoint to ensure that this combination will yield a numerically stable solu-

tion. If the sampling point passes these two feasibility checks, then that sample is evaluated in the

process models and its corresponding outputs are collected and further processed in the parameter

estimation and data-driven optimization stages of the algorithm. Following this procedure, the best

solution out of the 20 runs for the ethane cracking case study is summarized in Figure 4.7 and

Table 4.2.

Figure 4.7A shows that the molar flowrate of the main products is increasing along the reactor

length as the desirable reaction is taking place. Clearly, the ethane cracking shows a single-feed-

single-product trend where ethylene is produced through the favorable reaction alongside with H2.

In addition, the molar flowrate of the byproducts are significantly limited compared to the desired
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Figure 4.7: (A) The molar flowrate of species for the optimal configuration of an ethane ther-
mal cracker. (B) The molar flowrate of C4

+ species which lead to reactor coking in the optimal
configuration.

products. Figure 4.7B shows the molar flowrate of the C4
+ species which were previously identified

as the coke precursors. It is observed that among these 4 species, 1-butene has the highest flowrate

along the reactor length, hence contributing the most to the reactor coking. This observation is also

consistent with the findings of Onel [17], demonstrating the validity of the presented data-driven

approach for finding high-quality feasible solutions for the optimization of stiff DAEs.

Table 4.2: The results of the best solution found with SVM-ARGONAUT integration for the ethane
cracking case study.

Decision Variables Optimal Value Decision Variables Optimal Value Results Value

Qo
1 (kW/m2) 507.393 F o

C2H6
(kmol/s) 0.04272 Ethane Conversion 0.7247

Qo
2 (kW/m2) 741.484 F o

H2O (kmol/s) 0.00377 Ethylene Yield 0.6161
Qo

3 (kW/m2) 954.021 T o (K) 727.027 Ethylene Selectivity 0.8501
Qo

4 (kW/m2) 462.987 P o (kPa) 303.741 Tout (K) 1170.207
Qo

5 (kW/m2) 260.125 L (m) 32.117 Pout (kPa) 131.289

Furthermore, Table 4.2 summarizes the results pertaining to the optimal decision variables

achieved in the ethane cracking reactor using the SVM-ARGONAUT integrated framework. For
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the thermal cracking of ethane, the SVM-ARGONAUT framework identifies the maximum profit

as $0.3359/s which corresponds to an overall annual profit of $10.6M. The optimal decision vari-

ables show that a greater heat flux supply is required at the first 3/5 portion of the reactor where it

later decreases gradually towards the exit of the reactor. This is consistent with the inlet temper-

ature value as the reactor entrance temperature is low, a greater heat flux needs to be supplied to

ensure endothermic cracking reactions take place. In addition, a higher ethane flowrate is estab-

lished where the steam flowrate is relatively lower. This is an expected result; as ethane cracking

being a single-feed-single-product system, the only positive contribution to the profit comes from

ethylene production. It is also observed that the optimal value of the inlet temperature for the

ethane cracker is lower than expected as higher temperatures will increase the reaction rates. How-

ever, as high temperature promotes faster reactions, the reactor coking will be enhanced due to

the creation of more side products, hence leading to a loss of profit. As a result, the selected

optimal inlet temperature value prevents early reactor coking and promotes a higher profit of op-

eration. This is also supported by a lower steam flowrate for the ethane cracker where a minimal

amount of steam will be required at minimal amounts of coking on the reactor wall. Moreover, a

shorter reactor length is identified in the optimal configuration compared to a typical longer reactor

lengths that are commonly reported in the literature. This is a key result showing that fine-tuning

the reactor length will generate valid high-quality solutions with high profit values by decreasing

the investment, heating and decoking costs of bigger reactors. In addition, it is observed that the

reported optimal solution in Table 4.2 favors good ethane conversion and ethylene yield with high

selectivity for ethylene.

Similarly, the optimal results of the thermal cracking of propane found using SVM-

ARGONAUT integration are reported in Figure 4.8 and in Table 4.3. The results show that the

profit obtained from thermal cracking of propane is $0.0845/s which corresponds to an annual

profit of $2.67M. The reactor molar flowrate profiles in Figure 4.8A show that the favorable reac-

tion starts taking place early at the reactor entrance, where propane flowrate depletes and products

are produced along the reactor length. Figure 4.8A also shows that the thermal cracking of propane
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Figure 4.8: (A) The molar flowrate of the main products for the optimal configuration of a propane
thermal cracker. (B) Reactor temperature and pressure profiles at the optimal configuration for the
propane cracker. The dashed line represents the atmospheric pressure.

Table 4.3: The results of the best solution found with SVM-ARGONAUT integration for the
propane cracking case study.

Decision Variables Optimal Value Decision Variables Optimal Value Results Value

Qo
1 (kW/m2) 910.298 F o

C3H8
(kmol/s) 0.02883 Propane Conversion 0.8708

Qo
2 (kW/m2) 282.332 F o

H2O (kmol/s) 0.01004 Propylene Yield 0.1745
Qo

3 (kW/m2) 55.025 T o (K) 916.716 Ethylene Yield 0.5377
Qo

4 (kW/m2) 177.221 P o (kPa) 325.276 Propylene Selectivity 0.2004
Qo

5 (kW/m2) 21.516 L (m) 34.957 Ethylene Selectivity 0.6175

enables the production of two main products, namely ethylene and propylene. As reported in Ta-

ble 4.3, this optimal reactor configuration leads to a high propane conversion value with a larger

yield and selectivity favored for ethylene. Hence, the optimal configuration of the propane cracker

at maximum profit pushes for a greater ethylene production than propylene. Furthermore, Fig-

ure 4.8B shows the optimal temperature and pressure profiles for the propane cracker. Although

higher inlet temperature and pressure are required for this case study where a slightly longer re-

actor length is also preferred for maximizing the profit, the solution is feasible with regards to the

limits provided for outlet temperature and pressure.
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Table 4.4: The profit breakdown for the optimal solution of ethane and propane cracking case
studies.

Ethane Cracking Propane Cracking
Objective Variable Value ($/s) Objective Variable Value ($/s)
Ethane Feed Cost - 0.2991 Propane Feed Cost - 0.6361
Steam Feed Cost - 0.0006 Steam Feed Cost - 0.0022
Heating Cost - 0.0621 Heating Cost - 0.0381
Investment Cost - 0.0088 Investment Cost - 0.0095
Decoking Cost - 0.0855 Decoking Cost - 0.0345
Ethylene Production + 0.7920 Propylene Production + 0.2581
- Ethylene Production + 0.5468
Total + 0.3359 Total + 0.0845

Moreover, the overall profit breakdown in Table 4.4 shows that for both case studies the petro-

chemical feedstock costs, reactor heating and decoking costs take the most out of the profit,

whereas the reactor investment cost is relatively small due to the optimized reactor length. In

the thermal cracking of propane, the results show that ethylene production contributes more to the

profit than the propylene, as the coking mechanism for this case study utilizes C3H6 as the cok-

ing precursor. Hence, this limits the propylene production while favoring ethylene production for

profit and minimum coking generation on the reactor wall. It is important to note that the reaction

mechanism for propane cracking allows flexibility in the mode of operation depending on the mar-

ket demand or prices (i.e., maximizing ethylene or maximizing propylene production). However,

it is important to note that exhaustive exploration of the full Pareto solution between maximizing

ethylene versus maximizing propylene is possible, but out of the scope of this work. Nonetheless,

the case studies presented in this work show that the SVM-based data-driven optimization algo-

rithm is effective for optimizing process models with stiff DAEs and can generate high-quality

feasible solutions.

Finally, the total elapsed computational time of the online phase with and without the SVM

approach is compared. Figure 4.9 shows that the integrated SVM-based data-driven optimization

algorithm is more computationally efficient than in the absence of this approach for both ethane and
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Figure 4.9: Boxplots for the total elapsed time in the online phase for the data-driven optimization
of: (A) Ethane; and, (B) propane cracking case studies in the presence and absence of the SVM
approach.

propane cracking case studies in the online phase. Furthermore, lower profit values are observed

for both cracking case studies when the SVM approach is not implemented. For ethane cracking,

the best-found profit over 20 random runs without the SVM approach is $0.2970/s, whereas for

propane cracking the best profit is $0.0834/s. It is observed that the integrated approach can lo-

cate better solutions where the profit is improved by 13.1% for ethane cracking and 1.3% for the

propane cracking problem. The overall results show that the SVM-based optimization algorithm

can find superior feasible solutions to stiff multi-dimensional DAEs in a computationally efficient

way.

4.7 Concluding Remarks

In this chapter, a data-driven optimization algorithm is presented using Support Vector Ma-

chines (SVMs) for systems with stiff Differential Algebraic Equations (DAEs). The numerical

stability of a system of stiff DAEs is formulated as a nonlinear two-class classification problem,

where the feasibility boundary of stiffness is implicitly modeled using an SVM model. Later

by incorporating SVM models to a global constrained grey-box optimization solver, namely the

ARGONAUT framework, any numerically unstable sampling points are filtered and removed a

priori to simulator call and the optimal solution of the complex process model is explored using

a data-driven approach. The fundamental idea behind this integrated approach is demonstrated on

a 2-dimensional motivating example where the SVM approximation of the stability constraint is
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shown to achieve high validation accuracy. Further, this approach is extended and tested on more

challenging case studies, namely the thermal cracking of natural gas liquids. The results from ther-

mal cracking case studies show that an SVM-based approach enables feasible, numerically stable,

and high-quality solutions for the data-driven optimization of systems with stiff DAEs without the

full discretization of the underlying first-principles process model.
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5. DATA-DRIVEN NONLINEAR NONCONVEX OPTIMIZATION WITH APPLICATIONS

TO HIGHLY CONSTRAINED OIL FIELD OPERATIONS*

This chapter presents algorithmic advances within the AlgoRithms for Global Optimization 

of coNstrAined grey-box compUTational problems (ARGONAUT) framework, developed for the 

global optimization of systems which lack analytical forms and/or derivative information. By

taking advantage of high-performance computing, a new parallel version of ARGONAUT (p-

ARGONAUT) is introduced to solve problems with high dimensionality and a large number of

constraints. This framework is motivated by a complex case study, which pushes the boundaries

of complexity of derivative-free optimization in terms of both dimensionality and number of con-

straints, namely the identification of the optimal operational control trajectories of an oilfield using

water-flooding. The objective of this case study is the maximization of the Net Present Value of

the operation over a five-year period by manipulating the pressures of the injection and production

wells, while satisfying a set of complicating constraints related to water-cut limitations, platform

capacity constraints and operational limits. First, a dimensionality reduction is performed via the 

parametrization of the pressure well control domain, which allows the efficient optimization of the

constrained grey-box system by the proposed algorithm. Results are presented for various cases

with increasing number of constraints and the performance of p-ARGONAUT is compared to other

derivative-free optimization methods.

This chapter is organized as follows. Section 5.1 introduces water-flooding control optimiza-

tion and provides an overview of the current state-of-the-art for addressing this challenging mathe-

matical programming problem. Later in Section 5.2, the new parallel algorithm is described which 

enables a theoretical advancement in water-flooding control optimization by explicitly accounting 

for all the process constraints, while identifying superior guaranteed feasible solutions for these

*Part of this chapter is reprinted with permission from “Global optimization of grey-box computational systems using 
surrogate functions and application to highly constrained oil-field operations” by B. Beykal, F. Boukouvala, C.A. 
Floudas, N. Sorek, H. Zalavadia, E. Gildin, 2018. Computers & Chemical Engineering, vol. 114, pp. 
99-110, Copyright [2018] by Elsevier and Copyright Clearance Center.
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high-dimensional highly constrained grey/black-box problems. Furthermore, Section 5.3 outlines

the Functional Control Method (FCM) for reducing the dimensionality of water-flooding control

optimization via parametrization of the well control domain. Finally, the new parallel algorithm

is tested on a realistic benchmark problem where the results of series of computational studies are

provided in Section 2.3, along with concluding remarks in Section 5.6.

5.1 Optimization of Water-flooding Control Operations

Oil companies continuously strive to maximize oil recovery factors, using new technologies for

enhanced oil recovery [169]. Primary oil recovery, uses the reservoir’s initial pressure to transmit

fluids to the production wellbore, however, as the reservoir depletes this initial pressure declines,

and leads to the entrapment of significant amounts of oil in reservoirs. Water-flooding is a well-

known and historically widely used secondary oil recovery (SOR) method, through which water is

injected to the wells to displace and extract oil that is entrapped in the reservoir after primary oil

recovery. SOR methods play an important role in the oil economy, since they are used to extract a

significant amount of oil annually, using fluids such as water, CO2 or hydrocarbon gases [170, 171],

while water is one of the most inexpensive available options. Despite its popularity, water control

during water-flooding poses significant challenges due to the amount of water required for the

extraction, as well as costs for water handling [172]. In addition, uncertainty in the geological

description of the reservoirs (e.g., unknown permeabilities and porosities) contribute to challenges

in the operations, such as the fluid to bypass unswept regions, and thus detailed simulations are

necessary to predict the behavior of these complex systems under different operating conditions.

During any oil extraction operation, reservoir management aims to find the optimal values

for continuous operating variables, such as the well rates or the bottom hole pressures (BHP), to

maximize the net present value (NPV), or the cumulative oil production of the operation over a

specified period of time. Specifically in water-flooding, there are several constraints that must

be taken into account when maximizing the profitability of an operation, such as the water-cut

constraint, which directly affects the cost associated with water handling. Efficient optimization

of the aforementioned constrained formulation is a challenging problem. First, the objective is a
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nonlinear nonconvex function, which often displays many local optima. Second, the optimization

problem is subject to constraints that can only be obtained as an output of a reservoir simulation.

Third, the evaluation of the objective function and the constraints is costly since the reservoir

simulations require the solution of a system of multi-dimensional partial differential equations.

Lastly, the gradient information of the objective function and the constraints of such problems is

often not available, due to the black-box, or proprietary nature of the simulators.

Generalized pattern search and global-search algorithms (i.e., genetic algorithms, particle

swarm optimization) are commonly utilized in the literature for the optimization of water-flooding

operations [173]. Recent studies have focused on box-constrained optimization [170, 174], as well

as general constrained optimization, where the nonlinear constraints are treated using filter-based

methods [175, 176], penalty functions or barrier methods [177–179] and an augmented Lagrangian

approach [180, 181]. There are also studies concentrating on the incorporation of surrogate-based

techniques to the water-flooding optimization problem. Queipo et al. [182] have investigated the

global optimization of the box-constrained water-flooding problem by constructing a kriging sur-

rogate function to represent the objective function. In addition, Horowitz et al. [183] have exten-

sively studied the water-flooding optimization problem under general constraints using surrogate

formulations. The authors build kriging surrogates for the objective function and for the nonlinear

constraints, which they locally optimize using Sequential Quadratic Programming (SQP).

The main distinction of the approach followed in this work compared to the studies discussed

above, is the use of adaptive sampling, and the optimal training and selection of hybrid surrogate

formulations, which are solved to global optimality. The ARGONAUT framework [28, 29] trains

and validates optimal approximations, selecting from a pool of potential surrogate functions, rang-

ing from linear regression, to nonlinear interpolating functions for each of the unknown equations

(objective and constraints) of the problem. ARGONAUT addresses many elements ranging from

optimal sampling, optimal sampling reduction, model identification, bound refinement, variable

selection to global optimization, which further amplifies the consistency and the performance of

this framework. A detailed description of this algorithm is provided in Chapter 4 of this disserta-
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tion. In the following section, the algorithmic parallelization developments for ARGONAUT are

discussed, which allows the consideration of a variety of important constraints for water-flooding

control that have a significant effect on the profitability of operations.

5.2 Parallelization of the ARGONAUT Algorithm

Even though the ARGONAUT algorithm is previously shown to find the global optimum for

a large set of nonlinear optimization problems with up to 100 variables and constraints [28], the

computational cost of it becomes a limiting step as the number of dimensions and the number

of constraints of the problem formulation increases. There are three stages of the algorithm that

contribute significantly to the computational cost of the method. First, the time required to collect

samples from the simulation, has a large impact on the computational cost of the overall optimiza-

tion, and this is directly linked to the computational cost of a single function call, which is often

significant. Second, as the number of unknown constraints increases, the surrogate training, se-

lection and validation stage becomes a limiting step since this procedure must be performed for

each individual unknown function of Equation 1.1. Third, the final optimization of the hybrid

grey-box formulations is performed multiple times to collect a diverse set of local optima as well

as the global optimum as new promising sampling locations. This final stage can become com-

putationally intensive, as the number of dimensions and/or the number of nonconvex terms in the

optimization problem increase.

These stated challenges can be resolved by taking advantage of the fact that several stages

of ARGONAUT can be independently performed in parallel. To achieve this, high-performance

computing is employed to implement a fully parallel version of ARGONAUT (p-ARGONAUT).

Specifically, three main stages of ARGONAUT are now performed on multiple processors: (1)

sample collection; (2) model selection and validation; and (3) solution of multiple local and global

optimization problems of surrogate formulations, as shown in Figure 5.1.

The parallelization of all these three stages is possible because of the following reasons. In

the sample collection phase, shown in Figure 5.1A, each sample has a pre-determined location in

the x-space. Thus, when p processors are available, it is possible to form p different subsets of
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(A) (B)

(C)

Figure 5.1: Parallelized sections of ARGONAUT: (A) Sample collection; (B) surrogate model
identification and validation; (C) local and global optimization of surrogate formulations.

the initial sampling set, in order to run the simulation in parallel and collect the outputs accord-

ingly. Moreover, each of the unknown equations is assumed to have a form that is unique and

independent of the remaining formulations (Figure 5.1B). Consequently, the model identification,

parameter estimation and cross-validation for each of the unknown constraints and the objective

can be performed independently on multiple processors. Finally, at the end of one iteration, ARG-

ONAUT collects multiple potential local optima, starting with multiple initial points using a local

optimization solver (CONOPT) [184], and the global optimum of the surrogate formulation using

a global optimization solver (ANTIGONE) [90–92], depicted in Figure 5.1C. Each of these op-

timization problems are independent from each other and can be solved in parallel for improved

computational efficiency. The solutions from these parallel optimization problems are collected by

p-ARGONAUT, which further identifies the unique solutions as new sampling points and proceeds
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to the next iteration.

5.3 Dimensionality Reduction Using Functional Control Method

For the problem of well control optimization, the goal is to generate the optimal control tra-

jectory of an oil-well for a given time horizon, and this tends to create very high-dimensional

optimization formulations. As described in Section 5.1, the optimal water-flooding control prob-

lem can be tackled either by optimizing (1) the well rates or (2) the bottom hole pressures (BHPs).

Using the BHP control approach, the simulation variables are the pressures for the producers and

the injectors per time step, given in Equations 5.1 and 5.2, where nI is the number of injectors, nP

is the number of producers and nT is the number of time steps, respectively.

BHP (i, t) ∀i = 1, ..., nI , t = 1, ..., nT (5.1)

BHP (p, t) ∀p = 1, ..., nP , t = 1, ..., nT (5.2)

Naturally, the dimensionality of the (discretized) optimal control problem is dependent on the

time step, the total time horizon, and the number of wells. Thus, as the time step gets smaller, or

in other words the control over the wells is more frequent among a given time horizon, the number

of variables of the optimization problem increases significantly. Likewise, in realistic scenarios,

there are multiple injectors and producers that need to be controlled simultaneously, thus this leads

to a very high-dimensional search space.

To overcome the problem, a dimensionality reduction technique (Functional Control Method,

FCM) is employed to parameterize the well control domain using surrogate functions [147, 185,

186]. In this method, a known functional form is used to define the control trajectory of each well

as a function of time, representing the control value at each time step. As a result, the optimization

variables are reduced from the total number of pressure levels for every time step, to a set of

surrogate function coefficients. This concept is illustrated with a simple example provided in

Figure 5.2.

In Figure 5.2A, a typical BHP trajectory for a single well is plotted over a control interval. The

100



(A) (B) (C)

Figure 5.2: Simple illustration of the FCM: (A) An example of an BHP trajectory along a control
interval; (B) midpoints of the BHPs at each control step are selected for the functional approxi-
mation, shown in black points; (C) second-order polynomial approximation is fitted through these
points for approximating the original control trajectory, shown in red curve.

fundamental idea behind FCM is that this BHP trajectory can be approximated by a continuous

surrogate approximation, which is a unidimensional function of time. The points that are used to

train the approximation are obtained by taking the midpoints of each time step, as shown in Figure

5.2B. These points are used to fit a known surrogate function, which must be flexible enough to

capture the typical trends of well control profiles, as shown in Figure 5.2C. Assuming that the

number of parameters of the selected surrogate function is significantly less than the total number

of well control pressures over the discretized time horizon, this approach leads to a significant

reduction in the number of decision variables of the optimization problem. Specifically, using this

approach, the optimization variables for the oil-well production optimization with BHP control

become the parameters of the function BHP (t), as described by Equations 5.3 and 5.4, where F

is the maximum order of function BHP (t), bI and bP are parameters of the injector and producer

functions BHP (t), respectively.

bI(i, f) ∀i = 1, ..., nI , f = 0, ..., F (5.3)

bP (p, f) ∀p = 1, ..., nP , f = 0, ..., F (5.4)

FCM dictates that any type of functional form that seems fit can be used to approximate the

control trajectory. In this study, two functional forms are extensively tested: a second order polyno-
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mial function (Equations 5.5-5.6), and a modified exponential function (Equations 5.7-5.8), which

mimics an s-shaped trajectory within the control domain. The form of these functions was selected

after carefully studying the form of many pressure control profiles in water-flooding applications.

BHPI(t) = bI,0(i) + bI,1(i) · t+ bI,2(i) · t2 ∀i = 1, ..., nI (5.5)

BHPP (t) = bP,0(p) + bP,1(p) · t+ bP,2(p) · t2 ∀p = 1, ..., nP (5.6)

BHPI(t) =
1

1 + exp(bI,0(i) + bI,1(i) · t+ bI,2(i) · t2)
∀i = 1, ..., nI (5.7)

BHPP (t) =
1

1 + exp(bP,0(p) + bP,1(p) · t+ bP,2(p) · t2)
∀p = 1, ..., nP (5.8)

In addition to dimensionality reduction, this approach results in optimal pressure control pro-

files that are relatively smooth, avoiding the occurrence of drastic changes in pressure levels from

one time step to the next, which can cause operational difficulties. In fact, bounds on parameters

of the surrogate functions can indirectly control the rate of change of the surrogate control profiles.

In other words, upper and lower bounds on the new optimization variables, namely the surrogate

function parameters bI and bP , can be inferred depending on the type of function used and known

bounds on the control BHP variables. As an example, the effect of each parameter of the second-

order polynomial expression on the trajectory characteristics is used to derive bounds that allow

the proposed formulations to capture any possible control trajectory that the simulation might

encounter. Hence, the bounds on the parameters are inferred by realizing that the zeroth-order

parameter gives insights on the point where the polynomial intercepts the y-axis (initial pressure

level), while the first and second-order parameters define the rate of change and the curvature of the

polynomial, respectively. It is important to note that the pressure calculated using the polynomial

approximation may exceed its bounds. In that case, the value of the pressure at that specific time

step is set to the value at the nearest bound.

The second type of surrogate proposed is based on the fact that the pressure depletion in an

oil reservoir is characterized by an exponential form, since the pressure control profiles have a
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tendency to show a gradual increase or decrease towards their upper or lower bounds, after a

certain amount of time has passed within the simulation [187]. To better capture this inherent

trend in the pressure profiles, a unique s-shaped exponential functional form is introduced as an

alternative way to approximate control trajectories within FCM, which contains the same number

of parameters as the polynomial function (Equations 5.7-5.8). Through the results of this work, the

ultimate aim is to quantify which of the two parametrization techniques is the most versatile and

appropriate for optimization.

5.4 UNISIM Case Study Models

The proposed methodologies, namely the p-ARGONAUT coupled with an initial parametriza-

tion of the pressure space using FCM, have been used to solve the UNISIM case study, which

is a complex oil reservoir benchmark problem. This benchmark problem is a realistic three-

dimensional model developed by Gaspar et al. [188], and it has been widely used for identifying

optimal oil exploitation strategies. The original model for this case study contains approximately

3.5 million active grid blocks based on the petrophysical characteristics of the Namorado Field,

located in Campos Basin, Brazil. Avansi and Schiozer [189] developed a medium-scale reservoir

model based on the UNISIM case study, to make it more applicable to the optimization of reservoir

management operations, which may require many simulation calls. In this work, the latter reservoir

model is used, which contains 20 layers with 100× 100× 8 grid cell resolution and approximately

37,000 active grid blocks.

The problem contains 4 vertical production wells, 10 horizontal production wells and 11 hor-

izontal injection wells [190]. Pore pressure, fracture pressure and minimum allowable pressure

difference between an injector and a producer are dictating the bounds on the simulation vari-

ables which are given in bar in Equations 5.9-5.10. These bounds allow us to infer bounds on the

parameters of the surrogate functions show in Equations 5.5-5.8.

190 ≤ BHP (i) ≤ 350 ∀i = 1, ..., nI (5.9)
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35 ≤ BHP (p) ≤ 180 ∀p = 1, ..., nP (5.10)

In addition to the bound constraints, there are flowrate, platform capacity and economic limit

constraints that are being considered in this work. The maximum flowrates (m3/day) of water,

qW (i, t), (Equation 5.11), and total liquid (water and oil, qliq(i, t)), (Equation 5.12), which can be

processed by each injector and producer, respectively are:

qW (i, t) ≤ 6000 ∀i = 1, ..., nI , t = 1, ..., nT (5.11)

qliq(p, t) ≤ 3000 ∀p = 1, ..., nP , t = 1, ..., nT (5.12)

Platform capacity constraints for water in producers, QP,W (t), (Equation 5.13), oil in produc-

ers, QP,O(t), (Equation 5.14) and water in injectors, QI,W (t), (Equation 5.15) in m3/day are:

QP,W (t) =

nP∑
p=1

qW (p, t) ≤ 21240 ∀t = 1, ..., nT (5.13)

QP,O(t) =

nP∑
p=1

qO(p, t) ≤ 21240 ∀t = 1, ..., nT (5.14)

QI,W (t) =

nI∑
i=1

qW (i, t) ≤ 30680 ∀t = 1, ..., nT (5.15)

The constraints represented in Equations 5.11-5.15 are critical for obtaining realistic solutions

in terms of water handling based on the capabilities and capacities of the field. These constraints

seem like simple bound constraints, however, it must be stressed that these are complicating grey-

box constraints, since the flowrates at each well and time step are outputs of the reservoir sim-

ulation, controlled by the original variables, namely the BHP and the solution of the discretized

model.

Finally, the water-cut (WC) constraint is considered, which is critical to the economic viability

of the field. The term water-cut is defined as the fraction of water produced in the total amount of

liquid (water and oil) produced from all producer wells. The expression for the WC constraint is
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obtained by setting the revenue on oil, RO, to be greater than the costs of injecting and producing

water (Equation 5.16). By enforcing this limit, the field cash flow is restricted to nonnegative

values in each control time step, and thus this constrains the feasible space of the overall problem

by taking into account the project’s economic limit.

WC(t) ≤ RO − CI,W · V RR(t)

CP,W (t) +RO

∀t = 1, ..., nT (5.16)

Here, CI,W and CP,W are the costs of injecting and producing water, respectively, and V RR is

the voidage replacement ratio, defined as the ratio of the volume of the injected fluid to the volume

of the total produced fluid (Equation 5.17).

V RR(t) =
QI,W (t)

QP,W (t) +QP,O(t)
(5.17)

The revenue, RO, is given by the difference between the price of oil, PRO, and cost of oil

production, CO. In this study, the cost of oil production is assumed to be zero and the revenue is

taken to be equal to the price of oil, which provides an upper bound on the economic profitability of

the operation. Given the bounds and constraints, the objective is to maximize the NPV, explicitly

defined in Equation 5.18, using d as the discount rate of the project, ∆tj as the time interval at

each step, qk,jO and qk,jW as the flowrate of oil and water for each injector/producer at each time step,

respectively.

NPV =

nT∑
j=1

∆tj(1 + d)
−(

tj
nT

)

( nP∑
k=1

ROq
k,j
O −

nP∑
k=1

CP,W qk,jW −
nI∑
k=1

CI,W qk,jW

)
(5.18)

5.5 Results of Computational Studies

The goal of this study is to (a) solve the UNISIM benchmark using the constrained formula-

tion described in Equations 5.9-5.18, in order to provide valuable insights regarding the nature and

complexity of all the constraints under consideration, and (b) test and compare various components
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of the proposed methods. For this reason, series of computational studies were performed on the

UNISIM benchmark problem to test the accuracy, efficiency and consistency of p-ARGONAUT

coupled with FCM, for maximizing the NPV of oil production. The MATLAB Reservoir Simula-

tion Toolbox (MRST) is used as the forward model simulator for the UNISIM benchmark problem

[191, 192]. In this simulation, it is assumed that the reservoir pressure is above the bubble point

and the fluids are immiscible and incompressible.

This water-flooding optimization problem is studied for a horizon time of 5 years, with control

adjustment performed on a montly basis. As a result, the overall process time is discretized into 61

intervals, and for a total of 25 wells, the total number of original pressure control variables is 1525.

It is important to note that the decision variables for the water-flooding optimization problem are

not the original control variables at the simulation level, but they are the coefficients of the second-

order polynomial (Equations 5.5-5.6) and exponential functions (Equations 5.7-5.8) postulated in

FCM, which are directly linked to the BHP for each injector and producer. As a result, by using the

FCM, the size of the input space is transformed from 1525 variables to 75 variables. Through the

results of this work, the aim is to investigate whether the selection of the type of surrogate function

for the FCM has an effect on the optimization, and if yes, to identify which surrogate function is

optimal. For this reason, all the case studies are solved using both the polynomial and exponential

functions, to represent the pressure control trajectories. The detailed list of the parameters used in

the analysis of this problem, as well as a comparison of the dimensionality of the problem with

and without the FCM approach are provided in Table 5.1.

Another key point is that the input space of the water-flooding optimization problem is defined

as a function of the BHPs, whereas the constraints that are presented in Equations 5.11-5.16, as

well as the objective in Equation 5.18, are functions of well flowrates. As a result, this problem is

inherently a grey-box problem, with many unknown functions. In other words, the reservoir sim-

ulation requires the bottom-hole pressure profiles as inputs, and provides as outputs the flowrates

at each well, which are in return used for the calculation of the constraints and the objective. Al-

ternatively, one can choose to use flowrates as control variables for this optimization problem, in
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Table 5.1: Values of the parameters used in the reservoir simulation and the dimensionality of the
problem using traditional approach versus FCM.

Parameters Value
RO, PRO $50/stb
CI,W , CP,W $1/stb

d 0.09
nT 61
nI 11
nP 14

Dimensionality of the Optimization Problem

Original Control at Simulation Level Functional Control Method with F = 2
1525 variables 75 variables

which case, any constraints related to pressure-control and pressure bounds would be grey-box

constraints.

One of the goals of this work is to start with the most comprehensive formulation, including

all potential realistic constraints related to water-flooding operations, however, it was expected that

some constraints may be more difficult to satisfy than others. This was proven after initial testing

of the problem, which revealed that water-cut constraints, total liquid flowrate constraints and plat-

form capacity constraints for the producers are satisfied easily for this case study. However, water

flowrate constraints and platform capacity constraints for the injectors constrained the feasible re-

gion significantly. Based on this insight, a cascaded approach was followed, which involved first

studying the problem with only bound constraints, and subsequently adding each set of grey-box

constraints (Equations 5.11-5.16) to individual sub-problems. This approach allows (a) testing the

performance of p-ARGONAUT on problems of increasing complexity, and (b) the identification

of the set of complicating constraints that significantly affect the profitability of the operation,

which is an aspect that is typically not studied simultaneously through a formalized optimization

formulation. The case studies that have been solved are shown below:

• Case 0: No grey-box constraints.

107



• Case 1: 61 grey-box constraints: Equation 5.15.

• Case 2: 671 grey-box constraints: Equation 5.11.

• Case 3: 732 grey-box constraints: Equations 5.11 and 5.15.

• Case 4: 733 grey-box constraints: Equations 5.11, 5.15 and one penalty constraint calculated

by summing the violations of Equations 5.12-5.14, 5.16.

• Case 5: 1769 grey-box constraints: Equations 5.11-5.16.

In addition to the selection of the appropriate surrogate function for the initial dimensionality

reduction stage, there is a need to select a surrogate function to represent each of the objective

and the constraints of the grey-box formulations of all six case studies. However, one of the

advantages of the ARGONAUT framework is its ability to train, select and validate a function

for each unknown correlation out of a pool of a library of functions using the minimum average

cross-validation error. This aspect provides insight on the nonlinearity of each individual unknown

constraint and the objective, which is reported in the results. Throughout the results that are pre-

sented in the following sections, the solution strategy relies on the framework’s ability to select

the most appropriate function to represent the objective and the different classes of constraints.

Nonlinear functions, such as quadratic and kriging functions were selected most frequently to rep-

resent the objective function and the constraints in the formulation, indicating that the problem is

in fact nonlinear. Surprisingly, a linear function was found to be optimal to represent a certain class

of constraints, as described in detail in the next section. In previous work, it was shown that the

selection of the surrogate function combination to represent the grey-box formulation has a signif-

icant effect on the quality of the optimal solution, the computational cost, and the required number

of samples for convergence [29]. Although the same effects are observed in this study, this work

does not present a thorough comparison between different types of surrogates for optimization,

assuming that the framework has made the optimal selection.

The results for each case are also compared with other gradient-free methods: the local-

search NOMAD method [95] and the global model-based constrained EGO (con-EGO) algorithm
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[193, 194]. The NOMAD algorithm makes use of surrogate formulations to guide the search, im-

plements a progressive barrier approach to handle general constraints, and requires an initial point

to be provided. On the other hand, con-EGO models the objective and the constraints using kriging

formulations and selects new points by maximizing the Expected Improvement function over the

entire search space. For fairness, the first stage of dimensionality reduction is used for all compar-

isons that are performed, so all of the methods are tested on case studies with 75 variables. Each

case is executed five times on a High-Performance Computing (HPC) machine at Texas A&M

High Performance Research Computing facility, using Ada IBM/Lenovo x86 HPC Cluster oper-

ated with Linux (CentOS 6) using 1 node (20 cores per node with 256 GB RAM), where each

time the global search algorithms (p-ARGONAUT and con-EGO) algorithms are initialized with

different sampling sets, while NOMAD is initialized with a different initial point.

5.5.1 NPV Without the Grey-Box Constraints

In this first case study, none of the constraints are considered, and comparative results be-

tween the use of the polynomial and the s-shaped exponential function for the pressure profile

parametrization are presented. The optimal NPV obtained from each method is provided in a box-

plot in Figure 5.3. The overlaid plots show the pressure profiles for the first injector and eighth

producer of the best solution out of five runs. The objective function within the p-ARGONAUT

runs is fitted using a quadratic surrogate, which indicates that the objective is a relatively smooth

function. Even though in several pressure control oil-field operation problems a flat objective

function surface has been reported Zhao et al. [195], it is found that the global behavior of this

problem is highly multimodal. Similar nonlinear behavior has also been reported in the literature

by Fonseca et al. [196], which provides a plot of the undiscounted NPV projections using multi-

dimensional scaling. The multimodal nature of this objective function is evident in the results

provided in Figure 5.3, by observing that different methods converge to different local solutions.

The results show that p-ARGONAUT provides a higher NPV with consistency, when compared

to NOMAD for both functional forms (-poly and -exp). On the other hand, p-ARGONAUT and

con-EGO provide comparable results when the problem is box-constrained. The high variability
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of the results obtained by the local solver NOMAD, can be explained by the effect of the random

initial point, which is a starting point of the local adaptive search. If a good initial point is known

and is used, the performance of this method is expected to improve significantly.

Figure 5.3: Optimal NPV for the box-constrained water-flooding optimization problem. -poly
indicates that a second-order polynomial is used in the FCM formulation, given in Equations 5.5
and 5.6. -exp indicates that a modified exponential function is used in the FCM formulation, given
in Equations 5.7 and 5.8. Overlaid pressure profiles, for the first injector and eighth producer,
show the difference between the control trajectories that are approximated with polynomial versus
exponential function.

In order to quantify the computational and qualitative gain achieved by parallelization, the

results obtained by the original, sequential ARGONAUT framework, is compared with the results

obtained by p-ARGONAUT for this case. By setting a CPU limit of 168 hours, it is observed

that the non-parallelized algorithm often hits this limit, while the parallel version converges within

20-50 hours. Most importantly, better solutions are always obtained with the p-ARGONAUT

framework.
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5.5.2 NPV With the Grey-Box Constraints

All of the case studies presented in this Section contain different combinations of grey-box

constraints, as described earlier. Case 1, represents a formulation with only the platform capacity

constraints, which were identified to be active and highly nonlinear. For this reason, it is observed

that p-ARGONAUT transitions to using kriging surrogate functions for their representation. In or-

der to validate the framework’s ability to select the most appropriate surrogate function, this case

is specifically solved twice, first fixing the surrogate functions to quadratic and second to kriging

type (Figure 5.4). Kriging surrogates were able to locate improved feasible solutions based on

the NPV (Figure 5.4A). In addition, faster convergence is achieved by a simultaneous reduction

in the number of required calls to the reservoir simulation when p-ARGONAUT uses kriging sur-

rogates for the grey-box functions (Figure 5.4B). This is a highly desirable result, since reservoir

simulations can have a significant computational cost.

(A) (B)

Figure 5.4: Using quadratic versus kriging surrogates as surrogate approximations for optimization
within the p-ARGONAUT framework, for case 1 (61 highly nonlinear grey-box constraints). (A)
Best obtained NPV values; (B) required number of samples from the simulation for convergence
to solutions in (A).
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The cumulative results for cases 1 through 5 are presented in Figure 5.5. In all cases, p-

ARGONAUT obtains the best NPV for both functional forms, and by using kriging surrogate

functions to represent most of the constraints of the investigated problems. Furthermore, it should

be noted that only for case 4, all of the less active constraints are lumped into a single penalty

function, which is the sum of the violations of the grey-box constraints given by Equations 5.12-

5.14 and 5.16. For this case study, the penalty function is best approximated by a linear surrogate

function, which is another indication that p-ARGONAUT can select the most appropriate and

simplest function to represent correlations. In cases 2 through 5, it is important to state that a

fraction of con-EGO and NOMAD runs are terminated with high infeasibility within the dedicated

CPU time. In case 2, for the con-EGO runs, 2 out of 5 runs were infeasible for the second-

order polynomial approximation and 4 out 5 runs were infeasible for the modified exponential

approximation. Similarly, in the NOMAD runs, 1 out of 5 runs were infeasible for the second-

order polynomial approximation and 5 out of 5 runs were infeasible for the modified exponential

approximation. Since all the runs for NOMAD-exp were infeasible, their results are excluded from

the boxplot in Figure 5.5. Likewise, in case 3, 4 out of 5 runs of con-EGO-poly and 1 out of 5

runs of con-EGO-exp were infeasible. Also, 1 out of 5 runs of NOMAD-poly and 5 out of 5 runs

of NOMAD-exp were infeasible. This trend is also observed in the most complete cases 4 and

5, while p-ARGONAUT consistently identifies feasible solutions throughout all the runs for the

highly constrained optimization problems.

It is important to note that in case 4, even though 4 out 5 runs of NOMAD for the exponential

approximation were infeasible, the one single solution that this method finds is better than the

average performance of p-ARGONAUT. This is an indication that a local solver can perform quite

well, when a good, feasible initial point is provided. In addition, it is important to note that both

con-EGO and NOMAD, are reliable and efficient tools, which have been used to solve many

significant problems successfully. However, these methods are designed for problems with lower

number of dimensions and constraints.

The details on the CPU times and number of samples collected are provided in Figures 5.6 and
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5.7, respectively. Comparing all the methods used in this work in terms of number of required

samples and CPU times, it is evident that con-EGO converges to the solutions reported in Figure

5.5 with a fewer number of samples than p-ARGONAUT, while NOMAD consistently requires

more samples for local convergence. However, by taking a fully parallelized approach in the new

algorithm, consistent and reliable performance with less, or at least comparable CPU times was

achieved. In addition, it is important to factor in the fact that the collection of more samples is ac-

companied by improved and consistent behavior in terms of locating better and feasible solutions.

Furthermore in Figure 5.7, it is observed that the total number of samples collected by p-

ARGONAUT in the unconstrained problem (case 0) is significantly higher than the number of sam-

ples collected for the constrained problems in cases 1-5, which is an interesting finding. Studying

the results in detail, it is found that this observation can be explained by the following two reasons.

First, as more constraints are added, there is a significant reduction of the feasible region, which

reduces the sampling search space, and thus this leads to faster convergence. This can be observed

in case 1, where results are obtained before p-ARGONAUT reaches the maximum CPU limit, but

with a fewer number of samples than case 0. Secondly, when the problem is unconstrained, p-

ARGONAUT is generally able to complete more iterations within the maximum computational

time that is enforced, which is directly connected to the number of samples collected. This af-

fects some of the runs with even higher number of constraints, where the parameter estimation

and global optimization of several hundred to thousand equations increases the time required per

iteration.

Through these results, it is observed that the performance of all methods is affected by the

type of the function used to approximate the pressure control profile. The best and most consistent

results are obtained using the simpler second-order polynomial in FCM, which implies that there

is no need to resort to the more complex s-shaped function to represent pressure control profiles. In

addition, the difficult constraints which limit the feasible NPV can be identified as the maximum

amount of water processed by the injectors, as well as the total amount of injection water that the

platform can hold. In other words, if the water-related constraints were not considered, the optimal
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attainable NPV would be misleadingly overestimated. On the contrary, water-cut constraint that

is considered in this case study, is satisfied easily without a significant effect on the NPV. The

effect of each set of grey-box constraint on the cumulative oil and water production for the optimal

solution obtained using p-ARGONAUT-poly is shown in Figure 5.8.

(A) (B)

(C) (D)

Figure 5.8: Production plots as a function of time for the best solution for all cases for p-
ARGONAUT using polynomial approximation in FCM: (A) Water-Cut plots; (B) cumulative water
production rate from the producer wells; (C) cumulative oil flowrate from producer wells; (D) cu-
mulative water injection rate at the injection wells.

As shown in Figure 5.8, in the case where water constraints are not considered (Case 0), the

cumulative oil production, as well as the injected and produced water is significantly overestimated

compared to the Cases 4 and 5, where these constraints are taken into account. It is also observed

that results from cases 1, 3, 4 and 5 almost overlap for all the production plots which suggests that

cumulative water injection constraint captures most of the characteristics of the full formulation

in the context of fluid flowrates throughout the time horizon. Even though case 2 limits the NPV

and total fluid flowrates to some extent, it is important to include the necessary additional con-
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straints that are included in cases 4 and 5. These results clearly show that implicit constraints that

depend on the simulation output may have significant effects on the optimal objective, and thus it

is essential to be able to solve highly constrained simulation-based problems.

5.6 Concluding Remarks

This chapter highlights new computational developments in the ARGONAUT framework and

presents the performance of the new parallel algorithm (p-ARGONAUT) on a challenging non-

linear nonconvex programming case study of oil-well control operations using water-flooding.

Through this work, it is shown that high-performance computing can be used to reduce the compu-

tational cost of the ARGONAUT framework significantly, which leads to also extending its capa-

bilities towards solving high-dimensional, highly constrained problems. In addition, the usefulness

of surrogate functions is shown within two steps of this work: (a) the reduction of the dimension-

ality of the water-flooding optimization problem via parametrization of the control domain; and,

(b) the optimization of simulation-based grey-box problems through the p-ARGONAUT frame-

work. For the first step, different functional control surrogate functions are studied and it is shown

that a polynomial functional form leads to an improved performance of the overall optimization

framework. More importantly, it is observed that the selection of the pressure control profile in-

fluences the shape, smoothness and gradient changes of the control trajectory, and is an important

decision towards creating tractable optimization formulations, without limiting the solution space

of the original problem. Overall, the results of this work show that compared to a few existing

derivative-free optimization methods, p-ARGONAUT can locate feasible solutions with higher

objective function values, in the presence of thousands of grey-box constraints.
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6. DATA-DRIVEN MODELING OF ENVIRONMENTAL AND BIOMEDICAL SYSTEMS

In this chapter, the redistribution of toxic chemical compounds due to natural disasters (i.e.,

hurricanes) and their corresponding biological effect on human health due to chemical exposure is

investigated using exploratory data analytics and data-driven modeling.

First, in Section 6.1, exploratory data analytics is employed to investigate the redistribution of

contaminated soil samples, collected after Hurricane Harvey hit the Galveston coastline within the

Manchester, TX area. These contaminated sediments were previously analyzed for trace metals,

Polycyclic Aromatic Hydrocarbons (PAHs), Polybrominated Diphenyl Ethers (PBDEs), Polychlo-

rinated Biphenyls (PCBs), and Organochlorine Pesticides (OCs) using series of experimental tech-

niques to retrieve the concentrations of these pollutants [197]. In this work, the resulting dataset

is visualized using boxplots and heatmaps, and the correlations between the geospatial location

of sediments and the detected pollutant concentrations are investigated. Hierarchical clustering is

performed on each dataset to explore their corresponding grouping information, where the clus-

tering similarity with respect to their geospatial location is quantified using the Fowlkes-Mallows

index. The studied visualization and data analysis techniques demonstrate an effective methodol-

ogy for the interpretation of contaminants and enable the diagnosis of the potential pathways for

the redistribution in a post-hurricane event.

Second, in Section 6.2, the biological impact of several benchmark chemicals is explored,

as many environmental toxicants affect human health in various ways. This study focuses on a

subclass of chemicals that impacts the estrogen receptor (ER), a pivotal transcriptional regulator

in health and disease. The estrogenic or anti-estrogenic activity of compounds can be measured

by many in vitro or cell-based high throughput assays that record various endpoints from large

pools of cells, and increasingly at the single-cell level. More specifically, multiple mechanistic ER

endpoints in individual cells that are affected by endocrine-disrupting chemicals (EDCs) can be

captured simultaneously by using a sensitive high throughput/high content imaging assay that is

based upon a stable cell line harboring a visible multicopy ER responsive transcription unit and
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expressing a green fluorescent protein (GFP) fusion of ER [198–202]. This high content anal-

ysis generates voluminous multiplex data comprised of minable features that describe numerous

mechanistic endpoints. In this work, a high content image analysis and machine learning pipeline

are presented for rapid, accurate and sensitive assessment of the endocrine-disrupting potential of

benchmark chemicals. The multi-dimensional high throughput/high content imaging data is used

to train a classification model to ultimately predict the impact of unknown compounds on the ER,

either as agonists or antagonists. To this end, both linear logistic regression and nonlinear Random

Forest classifiers are benchmarked, evaluated and compared for predicting the estrogenic activity

of unknown compounds. Furthermore, through feature selection, exploratory data visualization

and model discrimination, the most informative features are identified for the classification of ER

agonists/antagonists. The results of this data-driven study showed that highly accurate and gener-

alized classification models with a minimum number of features can be constructed without loss

of generality, where these statistical models serve as a means for rapid mechanistic/phenotypic

evaluation of the estrogenic potential of many chemicals.

6.1 Understanding Contaminant Characteristics and Redistribution in Post-Harvey Soil

Samples Through Data Visualization and Clustering Analysis

The ultimate goal of this work is to investigate the redistribution of contaminated sediments

as a result of a natural environmental disaster. To this end, several different experimental charac-

terization techniques are used, essentially generating diverse sets of data. However, these datasets

are often hard to communicate solely using spreadsheets and/or tables. As a result, identifying an

effective data-driven methodology that facilitates the dissemination and interpretation of the ex-

perimental results to a wider community is of critical importance for developing rapid detection,

assessment, and evaluation tools.

In this section, exploratory data analytics is used for enabling the easy visualization and in-

terpretation of varying types of environmental datasets. 4 different data visualization techniques

are explored to represent the concentration profiles of sampled soil sediments. These include;

(i) boxplots, (ii) heatmaps, (iii) pie charts, and (iv) scatter plots. In addition to the visualization
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of experimental analysis, the correlation of the collected samples is investigated based on their

concentration profiles and geospatial locations using unsupervised analysis. The details of the ex-

perimental data acquisition and the data-driven analysis are described in Sections 6.1.1 and 6.1.2,

respectively.

6.1.1 Experimental Data Acquisition

Twenty-four soil samples are collected within the Manchester, TX area for their experimental

characterization. Several different experimental data acquisition techniques are utilized to measure

the concentrations of various environmental toxicants within these sediment samples. Inductively

Coupled Plasma Mass Spectrometer (ICP-MS) is used for measuring the concentrations of trace

metals (Hg is measured using cold vapor atomic absorption spectrometry) in soil samples. Gas

Chromatography/mass spectrometry (GC-MS-MS) is used for measuring the concentrations of

Polycyclic Aromatic Hydrocarbons (PAHs) and Polybrominated Diphenyl Ethers (PBDEs). Gas

Chromatography Electron Capture Detection (GC-ECD) is used for measuring the concentrations

of Polychlorinated Biphenyls (PCBs) and Organochlorine Pesticides (OCs). The detailed experi-

mental procedures followed for the data acquisition are described in [197].

6.1.2 Data Visualization Techniques and Analysis

First, the experimental datasets for the 24 soil samples are pre-processed by scanning them for

missing entries. If a missing value is detected, this entry is replaced with the value of zero. Later,

the datasets are normalized following a series of scaling steps. The concentrations of all trace

metals and their respective crustal abundances (CA) are normalized with respect to the detected

Aluminum concentration (Equation 6.1 and 6.2).

Metalnormal
i,j =

[Metali,j]

[Metali,Al]
∀i ∈ Samples, j ∈ Metals (6.1)

CAnormal
j =

[CAj]

mean([MetalAl])
∀j ∈ Metals (6.2)
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The organic pollutants (i.e., PAHs, PBDEs, PCBs, OCs) are normalized with respect to their total

values.

Organicnormal
i,j =

[Organici,j]

[Total Organicj]
∀i ∈ Samples, j ∈ Organic Pollutants (6.3)

The resulting normalized trace metal and organic compound datasets are used for exploratory data

analytics and visualization. For this purpose, boxplots, heatmaps, pie charts and scatter plots are

used for the effective communication of the observed patterns in environmental datasets.

Later, the standardized z-scores of the normalized data from Equations 6.1 and 6.3 are cal-

culated prior to the clustering analysis using Equation 6.4 for trace metals and Equation 6.5 for

organic pollutants.

zscorenormal
i,j =

Metalnormal
i,j −mean(Metalnormal

j )

std.dev(Metalnormal
j )

∀i ∈ Samples, j ∈ Metals (6.4)

zscorenormal
i,j =

Organicnormal
i,j −mean(Organicnormal

j )

std.dev(Organicnormal
j )

∀i ∈ Samples, j ∈ Organic Pollutants (6.5)

After the final normalization step, the resulting datasets are clustered using hierarchical clus-

tering with average linkage and the Euclidean distance metric. The clustering on the geospatial

locations is performed using hierarchical clustering with the Haversine distance metric. The group-

ing of the samples on the map of the studied area along with the clustering dendrogram is shown

in Figure 6.1. The quantitative comparison of the resulting dendrograms is calculated using the

Fowlkes-Mallows (FM) index [161]. The clustering analysis is performed in R (version 3.6.0)

using the “hclust” function under the “stats” library, the Fowlkes-Mallows index is calculated us-

ing the “Bk” function under the “dendextend” library and the Haversine distance of the geospatial

locations are calculated using the “distHaversine” function under the “geosphere” library.

Moreover, the Mantel test is used to evaluate the correlation between geospatial distance matrix

and chemical/concentration profile distance matrices under the null hypothesis. In this study, the

null hypothesis is that any observed relationship between the tested two matrices could have been

122



(A) (B)

Figure 6.1: Geospatial location-based clustering analysis of the 24 soil samples collected from the
Manchester, TX area. (A) Samples are divided into 3 distinct groups shown on the map. (B) The 3
groups of samples are shown on the dendrogram.

obtained by random arrangement. Hence, the statistical significance of any observed relationship

between the geospatial locations and the chemical/concentration profiles are reported where the

strength of the correlation is quantified using the Pearson correlation coefficient (r). The Mantel

test is also performed in R (version 3.6.0) using the “mantel.test” function under the “cultevo”

library.

6.1.3 Results

6.1.3.1 Visualizing Trace Metal Concentrations

The results of the overall distribution of trace metal concentrations across all samples are shown

in Figure 6.2 using boxplots. Boxplots provide basic statistical analysis for a given dataset, includ-

ing median, outliers, range, interquartile range. In addition, the crustal abundance information is
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also provided with the boxplots, where the overall distribution of the detected metal concentrations

can be evaluated for their environmental availability. Results show that several toxic trace metals

are above their crustal abundance. Specifically, it is observed that Zinc, Lead, Mercury and Arsenic

have higher concentrations than their crustal abundance in the analyzed soil samples.

The trace metal concentration dataset is also visualized using a heatmap to get sample-specific

information. To aid the visualization, the normalized datasets from Equations 6.1 and 6.2 are

used to calculate a relative normalized concentration value. If a sample is above its CA, then the

following formula is used to calculate the relative concentration:

Conc+relative =
Metalnormal

i,j − CAnormal
j

max(Metalnormal
i,j − CAnormal

j )
∀i ∈ Samples, j ∈ Metals (6.6)

If a sample is below its CA, then the following formula is used to calculate the relative concentra-

tion:

Conc−relative = −
Metalnormal

i,j − CAnormal
j

min(Metalnormal
i,j − CAnormal

j )
∀i ∈ Samples, j ∈ Metals (6.7)

If the sample is at its CA, then the value of the relative normalized concentration is zero. This

relative concentration dataset is then normalized once again prior to the clustering analysis using

Equation 6.4. The resulting processed data is finally clustered and the results are visualized using

a heatmap as provided in Figure 6.3.

The results show that the detected Zinc, Mercury and Selenium levels are the highest in sample

4, whereas sample 22 has elevated levels of Copper, Lead and Arsenic, and sample 10 has elevated

levels of Thallium, Antimony, Cadmium, and Silver. Through the use of intuitive colors and

relative scaling in this analysis, it is safe to conclude that heatmaps serve as useful visualization

tools for seeing sample-specific information, thus enabling the rapid diagnosis of the elevated

levels of trace metal content.
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Figure 6.3: Heatmap of relative trace metal concentrations of each soil sample. The heatmap is
coupled with a dendrogram to show the grouping of samples with respect to their relative con-
centrations. Red indicates highest level of detection, yellow indicates the CA level, and purple
indicates lowest level of detection.
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Figure 6.4: Pie chart showing the distribution of 16 priority pollutant PAHs in the collected sedi-
ment samples.

6.1.3.2 Visualizing 16 Priority Pollutant Polycyclic Aromatic Hydrocarbon Concentrations

Furthermore, the distribution of the 16 priority pollutant PAH content detected across all sam-

ples is shown in the pie chart provided in Figure 6.4. The results indicate that the sediment samples

contain high levels of Benzo(b)fluoranthene, Fluoranthene, Naphthalene, Pyrene, and Chrysene

compared to the other priority pollutants.

In addition, the pyrogenic and petrogenic sources of the sediment samples are explored via

scatter plots. Figure 6.5A shows the Indeno(1,2,3-cd)pyrene (InP) to Benzo(ghi)perylene (BgP)

ratio, indicating that all 24 samples come from a pyrogenic source. On the other hand, Figure 6.5B

shows the Fluoranthene (FLA) to Pyrene (PYR) ratio which indicates that 3 of the 24 samples

come from a petrogenic source. As a result, scatter plots facilitate the visualization of petrogenic

or pyrogenic sources of sediments and prominently display the corresponding sample-specific in-

formation.
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(A) (B)

Figure 6.5: Scatter plot showing samples corresponding to pyrogenic and petrogenic sources. The
pyrogenic/petrogenic cutoff is shown with a dashed line.

6.1.3.3 Clustering and Correlations with Geospatial Locations

Finally, the hierarchical clustering results of the sediments based on their pollutant concen-

trations and their corresponding similarity to the geospatial location-based grouping are reported.

Table 6.1 provides a summary of the findings along with the results of two statistical tests. The

individual clustering dendrograms generated in this analysis are provided in Appendix D (Figures

D.1-D.5).

Table 6.1: The results of the clustering analysis and the similarity calculation with respect to the
geospatial location grouping. Null hypothesis test is performed over 10,000 permutations.

Comparison FM Index Null FM Index Mantel r p-value

Geospatial Location - Trace Metals 0.50 0.51 0.112 0.162
Geospatial Location - 16 Priority PAHs 0.41 0.43 -0.002 0.486
Geospatial Location - PBDEs 0.51 0.51 -0.004 0.499
Geospatial Location - PCBs 0.48 0.49 0.074 0.135
Geospatial Location - OCs 0.51 0.51 0.041 0.258

The clustering results show that the trace metal content of the soil samples from the Manchester
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area does not group similarly with respect to their geospatial locations. The similarity between

these two clustering dendrograms is moderate as indicated by the FM index. Similarly, the com-

parison of clustering analysis with respect to the geospatial locations and the organic compound

content shows that there is no strong correlation between the detected concentrations of organic

toxicants and geospatial locations. As the area has been subject to high volumes of rain and flood-

water after Hurricane Harvey, the incoming water to the area may have caused the environmental

pollutants to randomly disperse over the sampled area. The correlation analysis also indicates that

there is no point source of contamination and the observed correlation coefficient (r) between the

samples is close to zero (i.e., no correlation). This observation is further supported by two sta-

tistical analyses: (1) the true value of the FM index for all pollutants is equal or worse than the

null FM index; and, (2) the p-value of the permuted results is high. This indicates that there is

little evidence against the null hypothesis and the observed grouping similarity with respect to the

geospatial locations is due to the random arrangement. The next section discusses the biological

impact of environmental toxicants due to chemical exposure.

6.2 Classification of Estrogenic Compounds Through Image Analysis Using Machine

Learning Algorithms

Characterization and prediction of the endocrine disruptive potential of complex chemical mix-

tures are essential to prevent their adverse effects on human health while understanding the bio-

logical pathways that lead to such undesirable health outcomes [203]. A key target of endocrine-

disrupting chemicals (EDCs) is the Estrogen Receptor (ER), a modulator of important physiolog-

ical and pathological states, including reproduction, metabolism, hormone-sensitive cancers and

obesity. There are many natural and man-made compounds that are capable of binding to the ER

interfering with its activity, either as agonists, which activate a biological response (i.e., genis-

tein, bisphenol A); or as antagonists, which generally compete with the endogenous hormones

(i.e., 17β-Estradiol (E2)) to suppress the receptor function (i.e., 4-hydroxytamoxifen, fulvestrant).

Mechanistically, E2 activates the ER pathway cascade through enabling a specific ER conforma-

tional change, receptor dimerization, DNA binding to regulatory elements in the genome, coregu-
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lator recruitment and gene transcription activation/repression [204–206].

The estrogenic potential of different chemicals can be measured using cell-based or cell-free

in vitro assays by recording several facets of the ER mechanism of action (i.e., ligand binding, cell

proliferation, gene expression, etc.) [13, 198, 199]. Previously, a high content/high throughput

microscopy-based assay in HeLa cells, engineered to harbor a visible multicopy integration of the

ER responsive unit present within the prolactin promoter/enhancer, was developed to capture sev-

eral mechanistic steps of the ER pathway by imaging [198–202]. Coupled with stable expression

of GFP-ER, this high content analysis-based approach facilitates the characterization of ligands

based upon their effect on ER activity when compared to known agonists and antagonists.

Furthermore, recent efforts have also focused on coupling high throughput experimentation

with computational methods for enabling the rapid diagnosis of the estrogenic potential of various

chemicals via in silico predictions [13, 207–212]. Judson et al. [13] used a linear model to pre-

dict the estrogenic activity of 1812 commercial and environmental chemicals based on the activity

patterns across in vitro assays. The accuracy of this linear model is further tested by Browne et

al. [209] for evaluating the ER agonist bioactivity, in which the authors postulated an integrated

methodology to discriminate bioactivity from assay-specific interference. Similarly, Kleinstreuer

et al. [211] used high throughput screening data of 1855 chemicals along with a linear additive

model to predict the Androgen Receptor (AR) activity. Furthermore, Li and Gramatica [210] used

AR data to develop quantitative structure-activity relationship (QSAR) models to classify binders

as AR agonist or antagonist. The authors also investigated the performance of 4 different classifica-

tion models, namely k-nearest neighbors (kNN), local lazy method (lazy IB1), alternating decision

tree (ADTree) and an integrated consensus model [210]. In another study by Chierici et al. [212],

deep learning and support vector machine (SVM) models were developed using the Collaborative

Estrogen Receptor Activity Prediction Project (CERAPP) ToxCast dataset for predicting the ef-

fects of EDCs on ER binding activity. A further detailed overview of in silico toxicity predictions

using machine learning algorithms is provided in the notable review by Idakwo et al. [213].

Different from the aforementioned studies, an integrated data-driven framework is presented
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for characterizing the endocrine-disrupting potential of chemicals that affect ER functions. In

this framework, the high throughput/high content image analysis data, which provides hundreds

of intensity and geometry-based features per cell, are used to generate classification models for

promptly detecting the endocrine disruptive potential of unknown compounds as ER agonists or

antagonists. This approach is benchmarked using a group of control chemicals and presents a sys-

tematic computational approach for predicting the estrogenic potential of unknown chemicals. Fur-

thermore, by incorporating feature selection steps in this framework, the most informative image-

based features that enable a highly accurate separation between an ER agonist and antagonist are

identified without the loss of generality.

6.2.1 Methodology

6.2.1.1 Benchmark Chemicals

Forty-five chemicals (Table 6.2) with varying estrogenic potentials were obtained from the

United States Environmental Protection Agency (EPA) and were utilized for benchmarking the

data-driven framework. The same compounds have been used by NIEHS/EPA as a set for devel-

oping computational models of the ER pathway [13].

6.2.1.2 Experimental Data Generation

High throughput microscopy and high content analysis-based experiments were performed us-

ing the GFP-ERα:PRL-HeLa cell line model following the experimental methodology described

previously [198–202]. 384 multiwell plates were treated for 2 hrs with a six-point dose-response

of 45 reference compounds provided by the EPA. Control compounds included the agonist 17β-

estradiol (E2) and the antagonist 4-hydroxytamoxifen (4HT). Experiments with these compounds

were repeated 8 times, resulting in 392 different observations (8 technical replicates of the con-

trols and media, and 8 biological replicates for each of the 45 compounds) and 40 different im-

age descriptors. The single-cell descriptors capture GFPα-ER fluorescence intensity (i.e., pixel

intensity-PI) and morphology features of each cell, nucleus and PRL array that are identified using

myImage Analysis (mIA) automated image analysis pipelines [214]. The single-cell population
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Table 6.2: Summary of benchmark chemicals analyzed in this work. The ER activity information
is adapted from Judson et al. [13].

CASRN Compound Name ER Activity [13] Potency [13]

140-66-9 4-(1,1,3,3-Tetramethylbutyl)phenol Agonist Weak
599-64-4 4-Cumylphenol Agonist Weak
521-18-6 5α-Dihydrotestosterone Agonist Weak
57-91-0 17α-Estradiol Agonist Moderate
57-63-6 17α-Ethinyl estradiol Agonist Strong
58-18-4 17α-Methyltestosterone Agonist Very weak
50-28-2 17β-Estradiol Agonist Strong
520-36-5 Apigenin Agonist Very weak
85-68-7 Butylbenzyl phthalate Agonist Very weak
80-05-7 Bisphenol A Agonist Weak
77-40-7 Bisphenol B Agonist Weak
480-40-0 Chrysin Agonist Very weak
486-66-8 Daidzein Agonist Weak
117-81-7 Diethylhexyl phthalate Agonist Very weak
84-74-2 Di-n-butyl phthalate Agonist Very weak
115-32-2 Dicofol Agonist Very weak
56-53-1 Diethylstilbestrol Agonist Strong
53-16-7 Estrone Agonist Moderate
120-47-8 Ethylparaben Agonist Very weak
60168-88-9 Fenarimol Agonist Very weak
446-72-0 Genistein Agonist Weak
520-18-3 Kaempferol Agonist Very weak
143-50-0 Kepone Agonist Weak
84-16-2 meso-Hexestrol Agonist Strong
72-43-5 Methoxychlor Agonist Very weak
789-02-6 o,p’-DDT Agonist Weak
104-40-5 p-n-Nonylphenol Agonist Very weak
72-55-9 p,p’-DDE Agonist Very weak
68392-35-8 4-Hydroxytamoxifen Antagonist -
82640-04-8 Raloxifene Hydrochloride Antagonist -
10540-29-1 Tamoxifen Antagonist -
54965-24-1 Tamoxifen citrate Antagonist -
1912-24-9 Atrazine Inactive -
50-22-6 Corticosterone Inactive -
66-81-9 Cycloheximide Inactive -
13311-84-7 Flutamide Inactive -
52-86-8 Haloperidol Inactive -
52806-53-8 Hydroxyflutamide Inactive -
65277-42-1 Ketoconazole Inactive -
330-55-2 Linuron Inactive -
57-30-7 Phenobarbital sodium Inactive -
32809-16-8 Procymidone Inactive -
57-83-0 Progesterone Inactive -
50-55-5 Reserpine Inactive -
52-01-7 Spironolactone Inactive -
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is filtered to remove artifacts generated from cell toxicity, cell clusters, and incorrectly segmented

cells. The remaining cell population data is averaged per sample to yield a data matrix size of 392

observations x 40 features, where the categorical output information for classification is provided

in Table 6.2 in the “ER Activity” column. A full list of experimental features is provided in [202].

6.2.1.3 Computational Methodology

The computational methodology follows a similar approach described in [215] where key steps

of the framework are summarized in Figure 6.6. First, a series of pre-processing steps are exe-

cuted to ensure accurate in silico predictions of ER activity with classification models. Once the

pre-processing is completed, the dataset is then passed on to the feature selection phase, where

collinear features are eliminated from the analysis using hierarchical clustering. Later, a two-class

classification problem is formulated using a subset of the features that are identified as indepen-

dent and biologically relevant in the previous step. Finally, model validation is performed, and the

predictive capability of the resulting classification model is quantified using model performance

metrics. A detailed description of each step is provided below.

Data Preprocessing

The pre-processing steps used in this analysis are: (1) missing data handling, (2) data cleaning,

(3) outlier detection via unsupervised analysis, and (4) data normalization. The experimental data

is first analyzed for missing data entries. If any missing data is detected, several procedures can

be followed including, deletion of the entire row, deletion of the entire column, or data imputation

[216]. As the experimental data from the image analysis did not have any missing points, no action

is taken at this step and the data matrix size of 392 observations x 40 features are retained.

In the next preprocessing step, the dataset is cleaned by removing the observations correspond-

ing to inactive compounds (Table 6.2) and technical replicates. After this cleaning step, the data

matrix size is reduced to 256 observations x 40 features. For outlier detection, the replicate ob-

servations of each compound are averaged, yielding a data matrix size of 32 average observations

x 40 features. Hierarchical clustering is performed on the Euclidean distance-based dissimilarity
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ER Data

Data pre-processing

Feature Selection

Classification Model

Validation

Figure 6.6: Classification framework for characterizing the estrogenic potential of chemical com-
pounds.

matrix of this aggregate data with complete linkage. The clustering analysis is visualized using a

dendrogram tree as shown in Figure 6.7. The results of the clustering analysis indicate that there

are no global outliers present in the dataset as none of the compounds significantly differ from each

other. It is observed that the active compounds are generally clustered under two groups based on

their feature-specific patterns and are not presenting themselves on a separate branch at the root

node of the dendrogram tree. As a result, the imaging data for all 32 compounds are viable for

further analysis. The clustering is performed in R (version 3.6.0) using the “hclust” function under

the “stats” library.

In the final preprocessing step, the remaining 32 active compounds are normalized using

column-wise mean absolute deviation with respect to the control agonist E2 (Equation 6.8). The

normalization is performed on the complete cleaned dataset with biological replicates (Data matrix

size: 256 observations x 40 features). In Equation 6.8, i represents the rows in the dataset (i.e.,
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Figure 6.7: Outlier analysis via hierarchical clustering shown on a dendrogram tree.
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observations) and j represents the columns in the dataset (i.e., features).

ER Datanormal
i,j =

ER Dataoriginali,j −median(E2j)

mean(|E2i,j −mean(E2j)|j)
∀i, j (6.8)

Feature Selection

The ultimate goal of this work is to present a data-driven methodology that integrates high

content, high throughput image analysis-based data with machine learning algorithms for devel-

oping a robust, generalized classification model that accurately predicts the estrogenic potential of

unknown chemicals. Within the scope of this work, as the image analysis provides numerous fluo-

rescence intensity and morphology features, several challenges come to rise in classification model

development: (1) Only a subset of experimental features may provide valuable knowledge for the

separation of agonist/antagonist ER activity and identification of those is a challenging task; (2) A

subset of the features may be highly correlated, and may cause bias, leading to loss of generality,

precision and accuracy in the predictive capability of the data-driven model; (3) Modeling with a

high number of features without an adequate amount of samples may lead to overfitting.

In this work, the aforementioned challenges are addressed by incorporating a feature selection

step in our data-driven modeling framework. Feature selection or variable selection is one of

the key processes in machine learning model building, where the aim is to identify a subset of

features among many others that are uncorrelated and the most informative set of descriptors,

for a given data-driven modeling problem. There is a growing interest within various fields of

engineering and sciences for developing computationally efficient feature selection algorithms that

enable the identification of the minimum number of features for maximum predictive capabilities

in data-driven models [158, 159, 217–219]. Here, the feature selection is done in two steps: (1)

Through hierarchical clustering for identifying the groups of similar and correlated features, and

(2) Through a heuristic feature selection step, in which a single feature is selected from each cluster

based on the ER pathway model presented in [13].

In step 1, hierarchical clustering is performed on the pairwise similarity of experimental fea-
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tures, calculated using the Pearson correlation, with complete linkage. From the clusters of corre-

lated features, groups that possess less than 5% similarity are identified as unique and uncorrelated

for classification analysis. The clustering outcome is shown in Figure 6.8 with 20 independent

feature groups of which we can select a subset of these for analysis. Like in the outlier analysis,

the clustering for feature selection is performed in R (version 3.6.0) using the “hclust” function

under the “stats” library.

In step 2, the goal is to further reduce the number of features for the classification analysis such

that they are: (1) selected from the independent groups of features following the clustering analysis

(Figure 6.8); and, (2) the selected features are biologically relevant. The biological relevance of

features is assessed through cross-referencing the image-based features to the ER pathway nodes

presented in Judson et al. [13]. So, from 20 independent groups of features, the top 5 biologically

relevant features (one shape and four PI-related descriptors) that are closely associated with a

node on the ER signaling pathway, are selected. A summary of these features along with their

descriptions are provided in Table 6.3. This selection yields a data matrix size of 256 observations

x 5 features that are passed on to the model development stage of the presented framework.

Table 6.3: A subset of experimental features identified as uncorrelated and biologically significant
for the classification analysis.

Feature Name Image-Based Property of the Feature ER Pathway
Node [13]

Biological Relevance

Array Area Size in pixels of visible promoter array A4 Describes the chromatin remodeling of
promoter array

Array Mean PI Average intensity of the ER-GFP signal
at the visible promoter array

A3, A5 Describes the level of ER-GFP binding
to the promoter array

Array PI Variance Statistical variance of ER-GFP pixel in-
tensity at the visible promoter array

A3, A5 Describes the ER-GFP intensity distri-
bution at the visible promoter array

Array Total PI Total intensity of the ER-GFP signal at
the visible promoter array

A3, A5 Describes the level of ER-GFP binding
to the promoter array

Array to Nucleoplasm
Intensity Ratio

Ratio of ER-GFP intensity at visible
promoter array to ER-GFP intensity in
the surrounding nucleoplasm

A5 Describes the efficiency of ER-GFP
binding the promoter array
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Figure 6.8: Uncorrelated feature selection using hierarchical clustering on pairwise feature sim-
ilarity. The red line indicates the 5% similarity cutoff used for identifying independent feature
groups.
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Classification Model Development Using Logistic Regression and Random Forest Classifier

Once the feature selection step is completed, the clean normalized dataset is split into training,

testing and validation sets, and the training data are passed on to the model building phase for su-

pervised analysis. Supervised learning algorithms are widely studied in many fields of engineering

and sciences primarily in classification and regression-type problems for predicting either a cate-

gorical output or a continuous output, respectively [30, 148, 151, 161, 218]. Classification is the

problem of finding the categorical output of a new observation and distinguishing between differ-

ent classes of information via statistical recognition of patterns in a training dataset. In this study,

classification models are developed to predict the endocrine disruptor activity of a set of bench-

mark chemicals. In this effort, both linear and nonlinear models are tested and their predictive

performance on unknown chemicals is shown for comparison.

Linear classification is performed using the logistic regression model and the variables are

selected using the Akaike Information Criterion (AIC). The logistic regression model with one

predictor is provided in Equation 6.9,

P (antagonist) =
1

1 + exp(−βo − x · β1)
(6.9)

where x is the value of a predictor, P (antagonist) is the probability that the outcome is an “an-

tagonist”, and β1 and βo are the parameters of the linear model where their values are estimated

using the training data. The goal of the logistic regression training stage is two-fold: (1) To cre-

ate a highly accurate and precise linear separating boundary between ER agonist and antagonist

compounds; and, (2) to identify the most descriptive feature out of the 5 selected in the feature

selection step such that the in silico distinction between an ER agonist and antagonist is achieved

without loss of generality. To this end, an exhaustive search is performed where individual logistic

regression models are constructed for all possible combinations of single features. The best per-

forming model in this training phase with the minimum AIC, the highest CV training accuracy,

and the highest testing accuracy is selected. In addition, the most informative feature for the linear
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classification problem is identified through analyzing the β1 parameter given that exp(−β1) quan-

tifies the increase in the odds of a compound being an antagonist. As a result, an important feature

with a larger weight in the closed-form equation will have a larger impact on the classification

predictions.

For nonlinear classification, the random forest (RF) algorithm is used with built-in feature rank-

ing. RF is a nonparametric, tree-based ensemble learning method that uses multiple decision trees,

independently constructed with a bootstrap sample of training data, to predict an outcome based

on a majority vote [220]. The algorithm can identify “strong features” that causes a larger mean

decrease in accuracy and display the relevance of features used in the training stage via the “Gini

index” score [220, 221]. In this work, RF classifiers are constructed with 500 decision trees on the

training data. The data-driven models for linear and nonlinear classification are implemented in R

(version 3.6.0) using “glm” function in “stats” library, and “randomForest” function in “random-

Forest” library, respectively.

Model Validation and Performance Metrics

Model validation is done with the validation dataset that the model has not been trained or

tested on. As a result, the validation set will enable the quantification of the unbiased predictive

performance of the trained classification model. The classification model performances are as-

sessed using several evaluation metrics. These include accuracy, sensitivity (i.e., true positive rate

or recall), specificity and balanced accuracy. Definitions of accuracy and sensitivity are provided

in Chapter 4 in Section 4.4.1. Specificity is defined as TN
TN+FP

and the balanced accuracy is defined

as the average of sensitivity and specificity, 1
2
·
(

TP
TP+FN

+ TN
TN+FP

)
. For this study, a “true positive”

(TP) is defined as an agonist being correctly identified as an agonist and a “false positive” (FP)

is defined as an agonist being misclassified as an antagonist. On the contrary, a “true negative”

(TN) is defined as an antagonist being correctly classified as an antagonist and a “false negative”

(FN) is defined as an antagonist being misclassified as an agonist. The classification results of the

integrated data-driven framework are presented in the following section.
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6.2.2 Results and Discussion

During and after environmental emergencies (i.e., hurricanes), humans are exposed to a number

of chemicals, which in return creates an urgent need for the precise identification of their estrogenic

potentials using rapid assessment techniques. Towards this goal, 18 experimental analyses are

performed (each containing 392 observations x 40 features) on the 45 benchmark compounds

for generating their high throughput, high content image analysis data, using the methodology

described in Section 6.2.1.2. The aim is to construct robust, generalized data-driven models that

can accurately predict the endocrine-disrupting potential of unknown compounds from a limited

number of experimental observations. To this end, one experimental dataset is randomly selected

for constructing the classification models among the 18 repeated image analysis experiments. The

remaining 17 datasets serve as the validation sets and are reserved for quantifying the classification

model performance of estrogenic potential of chemicals subject to experimental noise.

The selected dataset is first preprocessed, and the uncorrelated features are identified using

the computational methodology described in Section 6.2.1.3. Then, the clean data is split into

training and test sets. Although it is common to split the dataset using 80-20 or 70-30 rules (i.e.,

80% training - 20% testing), the experimental analysis on the 45 benchmark chemicals yields an

unbalanced dataset due to the limited number antagonist versus agonist compounds. Hence, five

agonist compounds (Table 6.4) are randomly selected for analysis with varying potency such that

the classification models are trained on data where the distinct characteristics of the two classes

of estrogenic activity are learned precisely. Furthermore, identification of a balanced dataset is

critical, as the primary goal of this study is to predict the endocrine-disrupting potential of unknown

chemicals on the ER; and, the remaining active compounds serve as the test set, enabling fair

assessment of the classification accuracy and other performance metrics. As a result, the final

training data matrix size becomes 72 observations x 5 features, the final testing data matrix size

becomes 184 observations x 5 features and the validation set matrix size which is comprised of the

other experimental replicates is 17 experiments x 184 observations x 5 features.
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Table 6.4: The agonist and antagonist compounds with varying ER potency selected for classifica-
tion model training.

CASRN Compound Name ER Activity [13] Potency [13]

115-32-2 Dicofol Agonist Very weak
56-53-1 Diethylstilbestrol Agonist Strong
53-16-7 Estrone Agonist Moderate
60168-88-9 Fenarimol Agonist Very weak
789-02-6 o,p’-DDT Agonist Weak
68392-35-8 4-Hydroxytamoxifen Antagonist -
82640-04-8 Raloxifene Hydrochloride Antagonist -
10540-29-1 Tamoxifen Antagonist -
54965-24-1 Tamoxifen citrate Antagonist -

6.2.2.1 Linear Classification Results

For the logistic regression model, the computational methodology described in Section 6.2.1.3

is followed. The five biologically relevant features that were previously identified in the feature

selection step are used to construct individual linear classification models with a single descrip-

tor. The best performing model is then selected out of these five logistic regression classifiers

based on their AIC value, 5-fold training CV accuracy, and testing accuracy. The results of linear

classification training with the logistic regression model are provided in Table 6.5.

Table 6.5: Linear classification model results with 1 experimental feature. The bootstrap confi-
dence intervals (CI) for β1 are presented alongside with AIC, training CV accuracy and testing
accuracy results.

Experimental Feature in Model β1 95% CI of β1 AIC CV Accuracy Testing Accuracy

Array to Nucleoplasm Intensity Ratio 7.12 ( 6.65, 7.44) 4.00 1.00 0.96
Array PI Variance 8.25 ( 5.05, 8.78) 4.00 1.00 0.87
Array Area - 0.65 (-0.68, -0.60) 4.00 1.00 0.87
Array Mean PI 0.20 ( 0.14, 0.31) 51.83 0.87 0.84
Array Total PI - 0.11 (-0.17, 0.06) 89.79 0.78 0.70

The results show that a logistic regression model with a single image analysis feature can accu-
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rately map the separation between agonist and antagonist compounds in the training phase. Specif-

ically, it is observed that linear classifiers trained with “Array PI Variance,” “Array to Nucleoplasm

Intensity Ratio” and “Array Area” descriptors can classify the compounds with 100% training CV

accuracy. The linear models with “Array Mean PI” and “Array Total PI” features have an inferior

training performance, as the AIC values for these two models are higher and the CV accuracies are

lower compared to the other models. Furthermore, the results show that “Array Area” and “Array

Total PI” features have a negative effect on the linear classifier whereas the rest of the features

have a positive effect. Specifically, values of the β1 parameter for “Array PI Variance” and “Ar-

ray to Nucleoplasm Intensity Ratio” are the highest, respectively, indicating that a compound with

higher values of these two features has an increased probability of being an antagonist. In addition,

among these two most prominent features for the linear classification of estrogenic potentials of

unknown chemicals, it is observed that the model parameters of “Array to Nucleoplasm Intensity

Ratio” and “Array PI Variance” have a relatively wider range of 95% confidence intervals. Finally,

the testing accuracy of trained models is evaluated using the remaining 23 active compounds in

this experimental replicate. The testing accuracy results show that although “Array PI Variance”

has a larger weight in the linear classifier compared to the rest of the descriptors, “Array to Nucle-

oplasm Intensity Ratio” has a higher testing accuracy for predicting the class information of the

unseen chemicals. Table 6.5 shows that the linear classifier with “Array to Nucleoplasm Intensity

Ratio” has a testing accuracy of 96% where this number drops to 87% when “Array PI Variance”

is used as the sole predictor in the linear model. As a result, both predictors can perfectly map

the separating linear boundary between the agonistic and antagonistic behaviors of chemicals in

the training phase, whereas the linear model with “Array to Nucleoplasm Intensity Ratio” has a

superior testing performance with a higher potential for achieving generality.

6.2.2.2 Nonlinear Classification Results

The nonlinear classification analysis results are summarized in Table 6.6 where it shows the

ranking of the experimental features based on the mean decrease in the Gini index score. The

mean decrease in Gini index score is a measure of how strong a feature is for separating different
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classes of information, where prominent features lead to a larger decrease in this index. The

results of the Random Forest (RF) model indicate that “Array to Nucleoplasm Intensity Ratio” is

the top informative feature followed by “Array Area” and “Array PI Variance.” The mean decrease

in Gini index for these 3 descriptors are very close to each other, showing that they are equally

important for modeling the estrogenic potential of chemicals. The nonlinear classification results

are consistent with the linear model, where these 3 features had 100% training CV accuracy and

minimum AIC. Through careful consideration of the model parameters and the testing accuracy in

linear models, “Array to Nucleoplasm Intensity Ratio” and “Array PI Variance” are distinguished

as the top two informative features for linear classification of agonist and antagonist compounds.

Different than the linear analysis, it is observed that the “Array Area” is the second most important

feature for the nonlinear classification of estrogenic compounds whereas in the linear model the

second-best feature was identified as “Array PI Variance.” Moreover, the initial model performance

assessment with the training and testing data for the RF showed 100% and 93% classification

accuracy, respectively. This high performance on the training data is expected as the model has

learned the patterns within this set with high precision. The high testing accuracy of this model,

on the other hand, shows that RF retains its predictive capability over a set of compounds that the

model has not seen. As these initial tests show satisfactory results, further characterization of the

model performance over different experimental replicates is provided in the following section.

Table 6.6: Experimental features ranked with respect to their mean decrease in the Gini index.

Experimental Feature Mean decrease in Gini index

Array to Nucleoplasm Intensity Ratio 11.28
Array Area 11.26
Array PI Variance 10.15
Array Mean PI 1.94
Array Total PI 0.47

In addition to the classification model development and using their mathematical properties
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to extract valuable information on the experimental features, additional insights on the separation

between agonist and antagonist compounds are obtained through exploratory data analytics. To

this end, the density distributions of agonist/antagonist compounds are plotted for all experimental

replicates using the top important features identified by both linear and nonlinear classification

analysis, namely the “Array to Nucleoplasm Intensity Ratio” and “Array PI Variance.” The density

plots are provided in Figure 6.9 and 6.10 where the separation between agonistic and antagonistic

behaviors of the chemicals, based on the values of the aforementioned descriptors, are visualized.

The results in Figure 6.9 and 6.10 show that the “Array PI Variance” and “Array to Nucleoplasm

Intensity Ratio” lead to a clear distinction between an agonist and antagonist for all experimental

replicates. To clearly distinguish between these two prominent features, the separation between the

agonist and antagonist density distributions are quantified by calculating the Hellinger Distance

(HD). This metric provides a measure of the distance between probability distributions and takes

the values between 0 and 1, where smaller HD indicates that the two distributions are similar and

the separation between them through the use of this feature is not statistically significant.

In Figure 6.9, the results show that the HD between the density distributions of agonist and

antagonist compounds based on the “Array to Nucleoplasm Intensity Ratio” is high (min = 0.63,

max = 0.90). Specifically, for experimental replicates 3, 5, 9, 11, 15 and 17 there is a clear separa-

tion between agonistic and antagonistic behavior based on this descriptor, hence a linear classifier

enables a highly accurate separation between these two estrogenic potential classes. However, in

experimental replicates 4, 10 and 16, a portion of the density distributions of these two estrogenic

activities overlap and may lead to misclassification of compounds if the normalized “Array to Nu-

cleoplasm Intensity Ratio” value of an agonist/antagonist fall into this overlapping region. Overall,

it is observed that ER antagonists possess strong signals for this experimental feature, thus enabling

the separation of these two classes via a linear logistic regression model.

Similarly, in Figure 6.10, it is observed that the HD distance of “Array PI Variance” measure-

ments for all experimental replicates is high (min = 0.66, max = 0.87), indicating that this feature

is a valid descriptor for agonist versus antagonist separation. Different from Figure 6.9, in this
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case it is observed that ER agonists have strong signals for this experimental feature in 12 out of

18 experimental replicates. Furthermore, although the range of HD values are similar for both

features, the number of experimental replicates with HD > 0.8 is higher for “Array to Nucleoplasm

Intensity Ratio” compared to “Array PI Variance.” This result indicates that “Array to Nucleoplasm

Intensity Ratio” is more favorable for classification model building as this feature provides a clear

distinction between ER agonists and antagonists over multiple experimental replicates. Overall,

visualization results are also consistent with findings in the supervised analysis phase, essentially

validating the importance of “Array to Nucleoplasm Intensity Ratio” for robust and precise mod-

eling of estrogenic potentials of compounds using high throughput microscopy and high content

analysis-based assays.

6.2.2.3 Model Validation Results

In addition to the HD calculations, the predictive capabilities of the trained and tested logistic

regression (linear) and RF (nonlinear) classifiers are validated with a set of new experimental

replicates, and their corresponding predictive performance is quantified. The results for the model

performance evaluation are presented in Figure 6.11 and Tables 6.7-6.9. In Figure 6.11, the model

performance is quantified using 17 experimental replicates comprised of 24 agonist compounds

that the model has not been trained on, hence allowing us to test the prediction accuracy of the

constructed models. In Tables 6.7-6.9, an overall accuracy, sensitivity, and specificity of different

classification models are reported for the same 17 experimental replicates, but with all 32 active

compounds.

The “blind” validation accuracy results in Figure 6.11 shows that the predictive performance

of the logistic regression model with “Array PI Variance” feature is inferior to the logistic regres-

sion model with “Array to Nucleoplasm Ratio” and the RF classifier. In 4 out of 17 experimental

replicates, the validation accuracy of this model is below 80% whereas, for the logistic regression

model with “Array to Nucleoplasm Ratio” and the RF classifier, the validation accuracies exceed

90% for all experimental replicates. Furthermore, the predictive capability of the latter two mod-

els is comparable to each other, where only in experimental replicates 1 and 6, a relatively high
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difference between the validation accuracies of these two models is observed. In replicates 1 and

6, the validation accuracy of the RF model is 95% and 97%, respectively, whereas for the logistic

regression model with “Array to Nucleoplasm Ratio” has a validation accuracy of 91% for both

replicate testing. The lowest prediction accuracy for these two models is 95% for the RF classifier

and 91% for the logistic regression model with “Array to Nucleoplasm Ratio” whereas this number

drops to 75% for the logistic regression model with “Array PI Variance.” Moreover, the 95% CI

of the validation accuracy is also provided in Figure 6.11. The RF and logistic regression mod-

els using “Array to Nucleoplasm Ratio” have tighter CI around the validation accuracy whereas

the other logistic regression model has a wider CI on the prediction accuracy for all experimental

replicates. Overall, the blind validation accuracy results indicate that the nonlinear RF and linear

logistic regression models with “Array to Nucleoplasm Ratio” are more favorable for predicting

the estrogenic potential of unknown compounds as they have a more robust performance and can

sustain their predictive capabilities over multiple experimental replicates. The other performance

metrics are also computed on all the active compounds, and their analysis is provided in Tables

6.7-6.9.

The results in Tables 6.7-6.9 indicate that all three classification models have high accuracy and

sensitivity for predicting the estrogenic potential of all active compounds considered in this study.

Specifically, all models predict > 90% accuracy in 11 out of 17 experimental replicates. Moreover,

it is observed that specificity and balanced accuracy of the logistic regression model with “Array

PI Variance” is higher overall, when compared to other models, whereas the sensitivity of the

RF classifier and logistic regression model with “Array to Nucleoplasm Ratio” is higher across

different replicates. For the latter two models, it is observed that the specificity value is 0 for

5 experimental replicates, indicating that these models identified all compounds as agonists and

failed to classify the 4 antagonist compounds correctly. As a result, their balanced accuracy is also

lower (50%), as this performance metric averages specificity and sensitivity values.

The biphasic performance of each model on the identification of antagonist compounds sug-

gests an underlying feature of the replicate datasets that determines model performance. An ex-
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Figure 6.11: Model validation results with 24 unseen agonist compounds over 17 experimental
replicates for the logistic regression model as a function of “Array PI Variance”, the logistic re-
gression model as a function of “Array to Nucleoplasm Intensity Ratio” and the Random Forest
classifier.
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Table 6.7: Logistic regression model validation results with all active compounds for 17 experi-
mental replicates with “Array PI Variance” as the model predictor.

Experimental
Replicate

Overall
Accuracy 95% CI Sensitivity Specificity

Balanced
Accuracy

1 0.84 (0.79, 0.89) 0.82 1.00 0.91
2 0.93 (0.89, 0.96) 0.97 0.62 0.80
3 0.80 (0.74, 0.84) 0.77 1.00 0.88
4 0.94 (0.90, 0.96) 0.98 0.62 0.80
5 0.95 (0.91, 0.97) 0.97 0.75 0.86
6 0.91 (0.87, 0.95) 0.90 1.00 0.95
7 0.92 (0.88, 0.95) 0.97 0.56 0.77
8 0.80 (0.74, 0.84) 0.77 1.00 0.88
9 0.94 (0.90, 0.96) 0.98 0.62 0.80

10 0.91 (0.86, 0.94) 0.90 0.94 0.92
11 0.89 (0.85, 0.93) 0.91 0.75 0.83
12 0.82 (0.77, 0.87) 0.79 1.00 0.90
13 0.93 (0.89, 0.96) 0.97 0.62 0.80
14 0.82 (0.77, 0.87) 0.79 1.00 0.90
15 0.93 (0.89, 0.96) 0.97 0.62 0.80
16 0.91 (0.87, 0.95) 0.92 0.88 0.90
17 0.97 (0.94, 0.99) 1.00 0.75 0.88

Average 0.89 - 0.90 0.81 0.86
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Table 6.8: Logistic regression model validation results with all active compounds for 17 experi-
mental replicates with “Array to Nucleoplasm Intensity Ratio” as the model predictor.

Experimental
Replicate

Overall
Accuracy 95% CI Sensitivity Specificity

Balanced
Accuracy

1 0.92 (0.88, 0.95) 0.91 1.00 0.96
2 0.88 (0.83, 0.91) 1.00 0.00 0.50
3 0.94 (0.90, 0.96) 0.93 1.00 0.96
4 0.88 (0.83, 0.91) 1.00 0.00 0.50
5 0.95 (0.91, 0.97) 1.00 0.56 0.78
6 0.93 (0.89, 0.96) 0.92 1.00 0.96
7 0.88 (0.83, 0.91) 1.00 0.00 0.50
8 0.96 (0.93, 0.98) 0.97 0.88 0.92
9 0.88 (0.83, 0.91) 1.00 0.00 0.50

10 0.97 (0.94, 0.99) 0.97 0.94 0.96
11 0.95 (0.92, 0.98) 1.00 0.62 0.81
12 0.98 (0.95, 0.99) 0.99 0.88 0.93
13 0.88 (0.83, 0.91) 1.00 0.00 0.50
14 0.94 (0.90, 0.96) 0.94 0.94 0.94
15 0.89 (0.85, 0.93) 1.00 0.12 0.56
16 0.96 (0.93, 0.98) 0.96 0.94 0.95
17 0.91 (0.87, 0.95) 1.00 0.31 0.66

Average 0.92 - 0.98 0.54 0.76
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Table 6.9: Random Forest model validation results with all active compounds for 17 experimental
replicates.

Experimental
Replicate

Overall
Accuracy 95% CI Sensitivity Specificity

Balanced
Accuracy

1 0.95 (0.91, 0.97) 0.94 1.00 0.97
2 0.88 (0.83, 0.91) 1.00 0.00 0.50
3 0.95 (0.92, 0.98) 0.95 1.00 0.97
4 0.88 (0.83, 0.91) 1.00 0.00 0.50
5 0.95 (0.91, 0.97) 1.00 0.56 0.78
6 0.98 (0.95, 0.99) 0.97 1.00 0.99
7 0.88 (0.83, 0.91) 1.00 0.00 0.50
8 0.95 (0.92, 0.98) 0.96 0.88 0.92
9 0.88 (0.83, 0.91) 1.00 0.00 0.50

10 0.97 (0.94, 0.99) 0.97 0.94 0.96
11 0.95 (0.92, 0.98) 1.00 0.62 0.81
12 0.98 (0.96, 1.00) 1.00 0.88 0.94
13 0.88 (0.83, 0.91) 1.00 0.00 0.50
14 0.95 (0.92, 0.98) 0.96 0.94 0.95
15 0.89 (0.85, 0.93) 1.00 0.12 0.56
16 0.95 (0.92, 0.98) 0.96 0.88 0.92
17 0.91 (0.87, 0.95) 1.00 0.31 0.66

Average 0.93 - 0.98 0.54 0.76
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haustive analysis of the correlation between dataset features and model performance identified cell

density (number of cells per microscopic image) as having a strong negative correlation (- 0.54

to -0.71) with model balanced accuracy. Cell density varies by 12.6% across replicates (Figure

6.12A). Using a threshold of 257.5 cells/well to divide replicates into “Low Density” and “High

Density”, it is observed that the superior performance by all three models in the “Low Density”

replicates (Figure 6.12B) with average balanced accuracy exceeding 0.9 or 0.95. This result is not

surprising based on the technical limitations of the assay and features used by the model. Increas-

ing cell density increases the likelihood of any individual cell in a field being slightly out of focus.

Since both “Array PI Variance” and “Array to Nucleoplasm Ratio” are contrast based features, they

are dependent on focus quality. While the original optimization of cell density was based simply

on the ability to detect the presence of a nuclear spot, slightly lower cell densities may be required

to produce higher quality data required for high classification performance.

Overall, the nonlinear classification model, namely the RF algorithm, and the logistic regres-

sion model with “Array to Nucleoplasm Ratio” are found to be highly accurate and robust for

predicting the endocrine-disrupting potential of compounds on the ER. Among 40 different ex-

perimental features studied in this work, “Array to Nucleoplasm Ratio” is found to be the top

informative feature through a series of supervised and unsupervised analyses, and the results indi-

cate that it is essential for predicting the ER activity of compounds through generalized predictive

models.

6.3 Concluding Remarks

In this chapter, data-driven modeling and exploratory data analytics are used for: (1) under-

standing the redistribution of toxic chemical compounds after natural disasters (i.e., hurricanes);

and, (2) characterizing the biological effects of toxic chemical compounds on human health. In

Section 6.1, various environmental datasets are visualized and analyzed using exploratory data an-

alytics. The results of this study indicate that boxplots and heatmaps are complementary to each

other when visualizing environmental datasets, where boxplots provide information on the overall

distribution whereas heatmaps display sample-specific patterns. Furthermore, clustering analysis
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Figure 6.12: Cell density negatively affects model performance. (A) The average number of cells
per microscopic field for replicates. The dashed line indicates the threshold for low- and high-
density replicates. (B) Box plots of model balanced accuracy performance observed in low- and
high-density replicates.

is performed to investigate the grouping patterns of the sediment samples with respect to their

pollutant concentrations. These results are also compared to the grouping of sediment samples

based on their geospatial locations and the similarities between pollutant concentration patterns

and geospatial location of the sediment samples are investigated. The similarity between two dif-

ferent groupings is evaluated using the Fowlkes-Mallows (FM) index and the statistical significance

of the results is assessed under the null hypothesis. The clustering results show that the detected

concentrations of environmental pollutants do not group similarly with respect to their geospatial

locations, indicating that there is no point source of contamination. The statistical significance of

results is further investigated by two tests: (1) Null FM index calculation; and, (2) the Mantel test.

The results of these statistical tests indicate that the true value of the FM index for all pollutants is

equal or worse than the null FM index and the p-value of the permuted results is high. As a result,

the null hypothesis cannot be rejected which confirms that the observed grouping similarities are
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due to the random arrangement.

In Section 6.2, an integrated data-driven framework is developed that enables the rapid identifi-

cation of unknown pure chemicals that affect the estrogen receptor (ER) pathway as either agonists

or antagonists. High throughput microscopy and high content analysis-based data are utilized to

formulate highly accurate classification models by following a series of preprocessing, visualiza-

tion, unsupervised, and supervised analysis steps. The framework is benchmarked with a set of

chemicals with known ER activity. In the presented framework, a detailed preprocessing step is

executed where: (1) experimental image analysis data is scanned for missing data points; (2) data

is cleaned by removing the inactive compounds; (3) dataset outliers are detected via hierarchical

clustering; and, (4) experimental features are normalized via mean absolute deviation. Following

preprocessing, the framework continues with a two-step feature selection methodology where un-

correlated features are first identified by hierarchical clustering using the pairwise similarity of the

descriptors; secondly, the biologically relevant descriptor(s) are selected for analysis. Both linear

and nonlinear classifiers are tested as a part of this framework for modeling endocrine-disrupting

potentials of chemicals that affect ER functions, and their predictive performances are quanti-

fied via evaluation metrics. The linear and nonlinear classification model results show that high

throughput microscopy and high content analysis-based experimental data can be used to train

robust, highly accurate classifiers with a minimum number of features and sampling points (i.e.,

one feature for linear classification and five features for nonlinear classification). Through the re-

sults of this framework, one can identify the topmost important feature for the classification of ER

agonists/antagonists without loss of generality and provide recommendations for the appropriate

model selection. In addition, the presented data-driven framework serves as a guideline for rapidly

scanning unknown chemicals and obtaining their estrogenic potentials with high accuracy. This

property of the framework will be profound during environmental emergencies, where it is of the

utmost importance to rapidly identify the potential biological risks of unknown chemicals.
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7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

7.1 Conclusions

In this dissertation, theoretical and algorithmic advances are presented for a number of chal-

lenging classes of optimization problems, including: (1) Bi-level mixed-integer nonlinear pro-

gramming; (2) general constrained multi-objective programming; (3) stiff differential algebraic

equations; and, (4) general constrained nonlinear nonconvex programming. Furthermore, this dis-

sertation addresses the key modeling challenges in environmental and biomedical systems using

advanced data analytics methods.

In Chapter 2, the Data-driven Optimization of bi-level Mixed-Integer NOnlinear problems

(DOMINO) framework is established for the optimization of bi-level mixed-integer nonlinear pro-

gramming (B-MINLP) problems. In this framework, bi-level optimization problems are approx-

imated as single-level optimization problems by collecting samples of the upper-level objective

and solving the lower-level problem to global optimality at those sampling points. The accuracy,

consistency, and the computational performance of DOMINO are extensively investigated on 100

benchmark problems, consisting of bi-level linear, continuous nonlinear and mixed-integer pro-

gramming problems, and on a bi-level mixed-integer nonlinear land allocation problem in Food-

Energy-Water Nexus. The results of the computational studies show that the DOMINO framework

can identify the true global solution or a near-optimal solution for an extensive set of challenging

bi-level optimization problems.

Chapter 3 presents an algorithmic advancement for solving a special class of problems under

mathematical programming that entails multiple competing objectives. The presented framework

uses the ϵ-constraint method to convert a multi-objective optimization problem into a series of

single objective sub-problems and uses a global constrained grey-box optimization algorithm to

retrieve the optimal solution at each sub-problem. Computational results are reported for a num-

ber of benchmark multi-objective problems and a case study of an energy market design prob-
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lem for a commercial building, while the performance of the framework is compared with other

derivative-free optimization solvers. The results show that ARGONAUT can consistently and effi-

ciently identify the Pareto-frontier, which entails all the trade-off solutions that are equally optimal

with respect to each other, under varying conditions and dimensions of constrained multi-objective

problems.

Furthermore, Chapter 4 proposes a Support Vector Machines (SVMs) based optimization

framework for the data-driven optimization of stiff Differential Algebraic Equations (DAEs) with-

out the full discretization of the underlying first-principles model. By formulating the stability

constraint of the numerical integration of a stiff DAE system as a supervised classification prob-

lem, it is demonstrated that SVMs can accurately map the feasible boundary of stiffness. The

fundamental idea behind this integrated approach is demonstrated on a 2-dimensional motivating

example where the SVM approximation of the stability constraint is shown to achieve high val-

idation accuracy. Further, this approach is extended and tested on more challenging case study,

namely the thermal cracking of natural gas liquids.

In Chapter 5, new computational developments in the ARGONAUT framework are highlighted

and the performance of the new parallel algorithm (p-ARGONAUT) is presented on a challenging

nonlinear nonconvex programming case study of oil-well control operations using water-flooding.

Through this work, it is shown that high-performance computing can be used to reduce the com-

putational cost of the ARGONAUT framework significantly, which leads to also extending its

capabilities towards solving high-dimensional, highly constrained problems. Data-driven approx-

imations are used within two steps of this work: (a) the reduction of the dimensionality of the

water-flooding optimization problem via parametrization of the control domain; and, (b) the opti-

mization of simulation-based grey-box problems through the p-ARGONAUT framework.

Finally, in Chapter 6, the redistribution of toxic chemical compounds due to natural disasters

(i.e., hurricanes) and their corresponding biological effect on human health due to chemical expo-

sure is investigated using exploratory data analytics and data-driven modeling. Exploratory data

analytics is employed to investigate the redistribution of contaminated soil samples, collected after
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the Hurricane Harvey hit the Galveston coastline within the Manchester, TX area. The sediment

samples are experimentally characterized and the resulting datasets are visualized using boxplots

and heatmaps, and the correlations between geospatial locations of the sediments and the detected

pollutant concentrations are investigated. Moreover, the biological impact of several benchmark

chemicals is explored, as many environmental toxicants affect human health in various ways. In

this chapter, a high content image analysis and machine learning pipeline are presented for rapid,

accurate and sensitive assessment of the endocrine-disrupting potential of benchmark chemicals.

The results of this data-driven study show that highly accurate and generalized classification mod-

els with a minimum number of features can be constructed without the loss of generality. The

presented data-driven framework serves as a guideline for rapidly scanning unknown chemical

compounds and obtaining their estrogenic potential with high accuracy. This property of the

framework will be profound during environmental emergencies, where identifying the potential

biological risks of chemical compounds is of utmost importance.

Overall, data-driven hybrid modeling and optimization tools presented in this dissertation ad-

dress special classes of mathematical programming problems and key modeling challenges in en-

vironmental and biomedical systems. These computational tools are used for finding solutions to

a diverse set of problems faced in the engineering and sciences domain including, food-energy-

water nexus considerations, energy systems design with economic and environmental considera-

tions, thermal cracking of natural gas liquids, oil production optimization, pollutant redistribution

in environmental studies, and the biological impact of toxic chemicals in biomedical sciences.

7.2 Key Contributions

Key contributions of this dissertation are provided below.

1. DOMINO framework is presented as an algorithmic advancement for solving bi-level mixed-

integer nonlinear programming problems with guaranteed feasibility when the lower-level

problem is solved to global optimality at convergence. A novel data-driven approach is fol-

lowed to approximate a bi-level optimization problem into a single-level problem, where the

upper-level decision variables are used to simulate the optimality of the lower-level problem
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(Chapter 2).

2. A hybrid framework is introduced for the optimization of general constrained multi-objective

programming problems. This framework integrates the ϵ-constraint methodology with a con-

strained grey-box optimization solver for the reformulation of multi-objective optimization

problems into series of single objective sub-problems and for their respective optimization

through a data-driven methodology (Chapter 3).

3. A theoretical advancement is presented for the data-driven optimization of stiff Differential

Algebraic Equations (DAEs) without the full discretization of the underlying first-principles

model. Support Vector Machines (SVMs) are used to formulate the stability constraint of

the numerical integration of a stiff DAE system as a nonlinear two-class classification prob-

lem. Through this approach, high-quality solutions are generated by rapidly eliminating the

numerically unstable variable combinations, thus allowing the exploration of a wider range

of decision variable space for improved solutions (Chapter 4).

4. A new parallel version of the ARGONAUT algorithm (p-ARGONAUT) is introduced for

solving high-dimensional highly constrained nonlinear programming problems. Through

this work, it is shown that high-performance computing can be used to reduce the compu-

tational cost of the ARGONAUT framework significantly, which leads to also extending its

capabilities towards solving high-dimensional, highly constrained problems (Chapter 5).

5. An effective data-driven methodology is presented for understanding the redistribution of

toxic chemical compounds after being mobilized via natural disasters, and for characterizing

the biological effects of these compounds on human health due to chemical exposure. First,

through a systematic study of various visualization and data analysis techniques, it is shown

that the potential pathways of environmental pollutant redistribution can be effectively com-

municated, interpreted and diagnosed using exploratory data analytics in a post-hurricane

event. Second, through developing an integrated data-driven framework, the endocrine-

disrupting potential of chemical compounds is characterized using two-class classification
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models which enable the rapid evaluation of the estrogenic potential of many chemical com-

pounds (Chapter 6).

7.3 Future Work

7.3.1 Data-Driven Bi-level Optimization for Integrated Planning and Scheduling

The DOMINO algorithm presented in Chapter 2 can be extended to handle multiple followers

at the lower-level and utilized to solve integrated planning and scheduling problems. The pro-

duction planning and scheduling formulations typically use a sequential approach, where higher

level decisions are made first (i.e., planning) and implemented at the lower level (i.e., schedul-

ing). However, the sequential approach may lead to an infeasible lower-level solution given that

there is a natural hierarchy between different levels of planning. This natural hierarchy between

planning and scheduling problems can be formulated as a bi-level programming problem where

the DOMINO algorithm can be used to solve this challenging optimization problem. The bi-level

formulation of the integrated planning and scheduling problem will consider the minimization

of the total cost of planning subject to inventory and balance equations at the upper-level. The

lower-level will entail the scheduling problem where the cost for each planning period is mini-

mized subject to the scheduling constraints. The production targets for the given products in an

integrated planning and scheduling problem will be the inputs to the data-driven algorithm where

each schedule is solved to global optimality over the entire planning period. The total cost and

inventories at each schedule will be accounted and the total cost of planning will be calculated

(output data). This input-output data can be used by DOMINO to find the optimal allocation of

inventories and assignment of production goals to meet the demand in products. Further exten-

sions to the conventional formulation are also possible. For example, planning and scheduling

variable costs are typically approximated as linear functions whereas, in reality, the variable cost is

nonlinear in nature. As DOMINO can efficiently handle nonlinearities in the problem formulation

through its data-driven strategy, quadratic and cubic variable cost functions can also be explored.

As DOMINO can provide guaranteed feasibility of a given bi-level programming problem, it can

provide feasible solutions to integrated planning and scheduling problems.
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7.3.2 Extensions to the DOMINO Algorithm for Solving Tri-level Mixed-Integer Program-

ming Problems

The DOMINO framework, presented in Chapter 2, can be extended to handle tri-level mixed-

integer programming problems. The tri-level problems can be reformulated into a single-level

problem by integrating the DOMINO algorithm with B-POP, where the exact solution from the

two lower-level problems will be recovered via parametric programming. The dimensionality

information of the leader problem can be used to generate a random initial point or a random

design of experiments. These pre-determined candidate solutions can then be simulated at the

constraining bi-level problem where B-POP will retrieve the exact solution of the bi-level integer

programming problem for a given set of upper level variables. This input-output data can then

be used by a derivative-free optimization solver to retrieve the guaranteed feasible solution of the

original problem as discussed in Chapter 2.

7.3.3 Multi-class Classification Models for Characterizing the Biological Potential of Toxic

Compounds

The proposed modeling framework in Chapter 6 can be extended for the characterization and

prediction of the endocrine disruptive potential of complex chemicals on other nuclear hormone

receptors, such as the androgen receptor and thyroid hormone receptor. Furthermore, the two-

class classification model presented in Chapter 6 can be extended to handle multiple classes of

information on the estrogen receptor activity. Specifically, the separation between the three classes

of estrogenic potential activity (i.e., agonist, antagonist and inactive) can be explored using the

Random Forest algorithm. Moreover, the different agonist potency levels (i.e., strong, moderate,

weak, very weak) can be distinguished through multi-class classification algorithms.
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APPENDIX A

DOMINO SOLUTIONS AND BENCHMARK PROBLEMS

A.1 Best Found Solutions for Benchmark Problems 18, 46 and 47

Problem 18 (“wk_2015_01”):

x∗ = 9.999776, y∗ = 9.9998, fbest = 4.5443471 · 10−7, Fbest = 99.9955201008.

Lower Level Relative Gap: 0 (Retrieved from CPLEX version 12.8.0.0)

Problem 46 (“wk_2015_04”):

x∗
1 = 0, x∗

2 = 0, y∗1 = 0, y∗2 = 0, y∗3 = 0, y∗4 = 0, fbest = 0, Fbest = 0.

Lower Level Relative Gap: 1 · 10−9 (Retrieved from ANTIGONE version 1.1)

Problem 47 (“wk_2015_06”):

x∗
1 = 0.000984369218350, x∗

2 = −0.001021751016379, x∗
3 = 1.663984077237546, x∗

4 =

−0.076938496530056, y∗1 = −1.0187598163, y∗2 = 1.0574476104, y∗3 = −0.0004531744, y∗4 =

0, fbest = −5, Fbest = 0.0000045078.

Lower Level Relative Gap: 1.76 · 10−7 (Retrieved from BARON version 18.11.12)

A.2 Randomly Generated Benchmark Problems Using B-POP

The randomly generated 61 benchmark studies using the bi-level random problem generator in

B-POP toolbox [77] are provided online at http://parametric.tamu.edu/POP/. For example, for the

following bi-level optimization problem, a corresponding text file (Figure A.1) is provided.
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min
x

F (x, y) = 2y1/5 + 2y2/5 + 3x1 + 2x2/5

s.t.

min
y

f(x, y) = 5 · y1/2 + 5 · y2 + x2

s.t.

−(2020.5 · (3y1 − 12x1 − 7x2 + 13))/202 ≤ 0

−(3730.5 · (2y1 − 15x1 − 12x2 + 6))/373 ≤ 0

x ∈ [−10, 10]2, y ∈ [−10, 10]2

(A.1)

======================================================================
================================
Supplementary Material
DOMINO: Data-driven Optimization of bi-level Mixed-Integer NOnlinear 
Problems
Burcu Beykal, Styliani Avraamidou, Ioannis P.E. Pistikopoulos, Melis 
Onel, Efstratios N. Pistikopoulos
======================================================================
================================
Benchmark Problem Definitions from B-POP: LPLP1

Upper Level Continuous Variables: x1, x2;

Lower Level Continuous Variables: y1, y2;

Lower Level Binary Variables:;

min F(x,y) =  (2*y1)/5 + (2*y2)/5 + 3*x1 + (2*x2)/5;
 x
s.t.

min f(x,y) = (5*y1)/2 + 5*y2 + x2;
 y
s.t.
    -(202^(1/2)*(3*y1 - 12*x1 - 7*x2 + 13))/202 <= 0; 
    -(373^(1/2)*(2*y1 - 15*x1 - 12*x2 + 6))/373 <= 0; 

Bounds on the Upper Level Variables:
x1.lo = -10;
x1.up = 10;

x2.lo = -10;
x2.up = 10;

Bounds on the Lower Level Variables:
y1.lo = -10;
y1.up = 10;

y2.lo = -10;
y2.up = 10;

Figure A.1: An example problem definition file for the “LPLP1” benchmark problem.
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APPENDIX B

FOOD-ENERGY-WATER NEXUS MODEL FOR LAND ALLOCATION

B.1 Notation for the Food-Energy-Water Nexus Case Study

e efficiency

energy energy

max maximum

min minimum

profit profit

total total

trans transportation

H2O water

B.2 List of Land Processes Considered in the Food-Energy-Water Nexus Case Study

Energy Land Processes

1. Solar Energy

2. Wind Energy

Agricultural Processes

3. Fruit Production

4. Vegetable Production

5. Livestock Grazing
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B.3 Agricultural Developer’s Problem

The chosen land allocation problem considers a piece of land which will be processed by an

agricultural developer over 4 seasons in a climate similar to that of Texas, U.S. and is divided

into 8 equal (1 km2) plots. The nomenclature for this problem is provided in Table B.1. On each

piece of land, a subset of agricultural and energy land processes can occur, where fruit production,

vegetable production, and livestock grazing are representatives of agricultural processes defined by

the subset TA, whereas solar energy and wind energy are representatives of energy land processes,

defined by the subset TE . Two important properties regarding these subsets are given in Equations

B.1 and B.2.

TA ∪ TE = TL (B.1)

TA ∩ TE = ∅ (B.2)

Table B.1: Nomenclature for the Food-Energy-Water Nexus case study.

Type Name Description

Indices i ∈ {1, 2, ..., I} land processes (card(i) = 5)
j ∈ {1, 2, ..., J} land plot square number (card(j) = 8)
k ∈ {1, 2, ...,K} seasons in a Texas-type climate (card(k) = 4)

Sets TL land use types
TA ⊂ TL agriculture land use type (card(TA) = 3)
TE ⊂ TL energy land use type (card(TE) = 2)

Binary Variables yi,j,k activates the ith process that occurs on the jth plot in the kth sea-
son

yH20
j activates water availability on the jth plot
ytrans,H2O
i,j,k activates water transportation that is required for the ith process

on the jth plot in the kth season, where i ∈ TA

Parameters P e
i,k efficiency multiplier of the ith land process in the kth season

P profit
i,k profit multiplier of the ith land process for the kth season, where

i ∈ TE

DH2O
k multiplier of minimum water required for the kth season

Ctrans,H2O
k water transportation cost multiplier for the kth season
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Table B.1: Continued.

Type Name Description

LH2O
i lower bound on water transportation and consumption for the ith

land process in kg, where i ∈ TA

UH2O
i upper bound on water transportation and consumption for the ith

land process in kg, where i ∈ TA

Lenergy
i lower bound on energy consumption for the ith land process in

kWh, where i ∈ TA

U energy
i upper bound on energy consumption for the ith land process in

kWh, where i ∈ TA

M energy
i metric ton of yield per kWh energy consumed for the ith land

process, where i ∈ TA

MH2O
i metric ton of yield per kg of water consumption in the ith land

process, where i ∈ TA

Mprofit
i profit made from the ith land process per unit energy produced in

k$/kWh when i ∈ TE and profit made from ith land process per
unit yield obtained in k$/ton when i ∈ TA

Bi government budget allocated for supporting the ith land process
type in k$

BM Big-M parameter

Continuous Variables EPi,j,k energy produced by the ith land process type on the jth plot during
the kth season in kWh, where i ∈ TE

ECi,j,k energy consumed by the ith land process type on the jth plot dur-
ing the kth season in kWh, where i ∈ TA

Wi,j,k water consumed from an existing source by the ith land process
type on the jth plot during the kth season in kg, where i ∈ TA

W trans
i,j,k water consumed from a transported source by the ith land process

type on the jth plot during the kth season in kg, where i ∈ TA

Yi,j,k yield produced by the ith land process type on the jth plot during
the kth season in metric tonnes, where i ∈ TA

Gprofit
i,j,k profit gained by the ith land process type on the jth plot during

the kth season in k$
Si subsidies offered by the government for using the ith land process
Śi,j,k variable introduced in the Big-M formulation for replacing the bi-

linear term Si · yi,j,k
Etotal total energy gained from the land in kWh
Y total total yield gained from the land in metric tonnes
W total total water consumed on the land in kg
Gprofit,total total profit gained from the land in k$
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Table B.2: Land properties for the case study. These limit the processes that can occur on each plot
over 4 seasons, defined by the binary variable yi,j,k. The water availability is defined by the binary
variable yH20

j . 1 indicates existence and 0 indicates absence of that property.

Land Properties for all seasons (∀k)
Land Plot Number (j)

1 2 3 4 5 6 7 8
Good Soil (yi,j,k ∀i ∈ TA) 1 1 1 1 0 0 1 1

Adequate Sun (y1,j,k) 0 0 1 1 1 1 1 1
Adequate Wind (y2,j,k) 1 1 1 1 1 1 0 0
Water Available (yH20

j ) 0 0 0 0 1 1 0 1

The agricultural producer will be subject to various constraints regarding the properties of the

land, the properties of the agricultural and energy production processes while making an optimal

decision towards its own objective. First, the land characteristics will affect the selection of any

process that can occur in each land plot. If good soil is not available in a plot section, agricultural

processes are restricted to not to take place in that land section for all seasons. If the adequate sun

is not available in a plot section, solar energy will not be implemented in that land section for all

seasons. Finally, if a plot section does not have access to the adequate amount of wind, wind energy

production will not be implemented in that land section for all seasons. These characteristics are

summarized in Table B.2. Based on this information, constraints regarding water transportation

can be defined for the problem such as water must be transported to the land if there is no water on

a plot and an agricultural process is selected to occur on that plot:

ytrans,H2O
i,j,k ≤ yi,j,k + yH20

j ∀i ∈ TA, j, k (B.3)

No water will be transported, if water is already available on the plot:

ytrans,H2O
i,j,k ≤ 1− yH20

j ∀i ∈ TA, j, k (B.4)

No water should be transported, if there is no water on the plot and no agricultural process is
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selected to occur on that plot:

ytrans,H2O
i,j,k ≥ yi,j,k − yH20

j ∀i ∈ TA, j, k (B.5)

In addition to the land properties, there are other constraints that further influence the selection

of land processes and restrict the feasible space for this case study. The constraints regarding the

selection of land processes is imposed such that at least one land process must be allocated on each

plot. ∑
i∈I

yi,j,k ≥ 1 ∀j, k (B.6)

Furthermore, it is not practical to have solar panels and agricultural production on the same plot.

Thus, at most one out of solar energy, fruit, vegetables and livestock can be allocated in one plot:

∑
i̸=2,i∈TL

yi,j,k ≤ 1 ∀j, k (B.7)

Wind energy will occupy minimal space on the land plot, compared to solar energy production

systems, hence both wind energy and either fruit or vegetable production can be allocated on the

same plot:
4∑

i=2

yi,j,k ≤ 2 ∀j, k (B.8)

Moreover, only one energy process is allowed on a plot:

∑
i∈TE

yi,j,k ≤ 1 ∀j, k (B.9)

If an energy process is selected in a plot, the type of energy production will stay the same through-

out the year, since it is too expensive to move equipment over seasons:

yi,j,k+1 ≥ yi,j,k ∀i ∈ TE, j, k ≤ card(k)− 1 (B.10)
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Second, the seasonal differences must be considered, as these can impact the energy demand,

water transportation cost, water availability for irrigation and efficiency of energy production pro-

cesses. For example, in seasons with rainfall, such as winter, spring and fall, the transportation

cost for water will be less and less water will be required for irrigation. On the other hand, the

solar systems will have lower efficiency due to the reduced amount of sunshine throughout these

seasons. A similar analysis is also done for the summer, where there is going to be greater demand

for energy and water, and higher transportation costs for water will be in effect. However, the solar

systems will have greater efficiency since there will be plenty of sunshine during summer. Hence,

both spatial and time scenarios are considered and their respective parameters are included in the

model equations (for the parameters please see Tables B.3-B.6).

The land processes will be quantified on the amount of energy produced or agricultural yield,

if an energy or an agricultural process is selected, respectively. It is important to note that, if an

energy process is selected for a given plot in a given season, a fixed amount of energy can be

produced from these technologies:

EP1,j,k = P e
1,k · 50 · y1,j,k ∀j, k

EP2,j,k = P e
2,k · 1000 · y2,j,k ∀j, k

(B.11)

Likewise, the yield for agricultural processes can be calculated as a function of water and energy

consumption. The parameter P e
i,k is used to take in consideration the changes in efficiency of land

processes over different seasons.

Yi,j,k = P e
i,k

(
M energy

i · ECi,j,k +MH2O
i ·Wi,j,k

)
∀i ∈ TA, j, k (B.12)

The amount of energy consumption and water consumption (from an already existing source) by

agricultural processes, which are used to calculate the yield in Equation B.12, are bounded. Note

that the lower bound on the water consumption depends on seasonal effects (dry seasons versus
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seasons with rainfall), hence multiplied by its respective parameter, DH2O
k .

Lenergy
i · yi,j,k ≤ ECi,j,k ≤ U energy

i · yi,j,k ∀i ∈ TA, j, k

DH2O
k · LH2O

i · yi,j,k ≤ Wi,j,k ≤ UH2O
i · yi,j,k ∀i ∈ TA, j, k

(B.13)

In addition to the box-constraints, it is important to supply adequate amount of water to each

plot in each season for the agricultural land processes. Thus, the amount of water consumption

(source-based and transportation-based) is set to be at least 200 times greater than the energy

consumption in each plot and in each season:

∑
i∈TA

Wi,j,k +DH2O
k ·

∑
i∈TA

W trans
i,j,k ≥ 200 ·

∑
i∈TA

ECi,j,k ∀j, k (B.14)

The amount of water transported for agricultural processes is also bounded and affected by the

seasonal differences:

DH2O
k · LH2O

i · ytrans,H2O
i,j,k ≤ W trans

i,j,k ≤ UH2O
i · ytrans,H2O

i,j,k ∀i ∈ TA, j, k (B.15)

As described previously in Chapter 2, Section 2.3.2, the objective of the agricultural developer

is to maximize its profit. The profit calculation for all land processes includes the money made

from energy production and the yield from the agricultural processes, if an energy or an agricultural

process is selected, respectively. For energy producing land processes profit is given as:

Gprofit
i,j,k = Mprofit

i · P profit
i,k · EPi,j,k + Śi,j,k ∀i ∈ TE, j, k (B.16)

For agricultural processes, the profit is given as:

Gprofit
i,j,k = Mprofit

i · Yi,j,k + Śi,j,k ∀i ∈ TA, j, k (B.17)

The profit calculations also considers the relevant subsidies (Śi,j,k) offered by the government
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agencies for developing different processes on the land, where these subsidies should only be

considered in the profit when their respective land process is activated.

Śi,j,k = Si · yi,j,k ∀i, j, k (B.18)

To avoid this bilinear term that appears in the profit equation, the variable Śi,j,k and its Big-M

formulation is introduced in Equations B.18-B.21, where BM is the Big-M parameter.

Si ≤ BM ·
∑
j

∑
k

yi,j,k ∀i (B.19)

Śi,j,k ≤ BM · yi,j,k ∀i, j, k (B.20)

Śi,j,k ≤ Si ∀i, j, k (B.21)

Moreover, the agricultural developer is interested in maximizing the total profit, which is a

function of the total energy production, total yield from agricultural production and total water

consumption. The total energy, Etotal, is defined as the difference between total energy produced

from energy land processes and total energy consumed by the agricultural processes in all plots

throughout the 4 seasons.

Etotal =
∑
i∈TE

∑
j

∑
k

EPi,j,k −
∑
i∈TA

∑
j

∑
k

ECi,j,k (B.22)

Similarly, the total yield, Y total, is the summation of yield of all agricultural processes over all

plots and 4 seasons.

Y total =
∑
i∈TA

∑
j

∑
k

Yi,j,k (B.23)

The total water consumption, W total, includes both the amount of water consumed from a natu-

ral source (i.e. water already existing as in the land properties, given in Table B.2) and from a

transported source. The transported total water also considers seasonal demand, defined by the
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parameter DH2O
k .

W total =
∑
i∈TA

∑
j

∑
k

Wi,j,k +
∑
k

DH2O
k

∑
i∈TA

∑
j

W trans
i,j,k (B.24)

The total profit, Gprofit,total, is calculated by subtracting the total water transportation cost through-

out all plots, all seasons and all agricultural land processes from the cumulative profit from all land

processes. The cost of water transportation is assumed to be $10/kg of water. In addition, the cost

of transportation is impacted by seasonal differences, as explained previously, hence the formula-

tion includes the CH2O,trans
k parameter to account for such effects. The objective function of the

LLP is given as:

Gprofit,total =
∑
i

∑
j

∑
k

Gprofit
i,j,k − 0.01 ·

∑
k

CH2O,trans
k

∑
i∈TA

∑
j

W trans
i,j,k (B.25)

Finally, the continuous variables defined in Equations B.22-B.25 are bounded and their respec-

tive values are obtained through minimizing and maximizing each variable as the sole objective to

the land allocation problem.

0 ≤ W total ≤ 2.46 · 109

0 ≤ Y total ≤ 13860

0 ≤ Etotal ≤ 21945

Gprofit,total ≥ 0

(B.26)

The variables defined in Equations B.22-B.25 as well as their respective bounds, provided in Equa-

tion B.26, are used to enumerate the upper level objective function of the government regulators.

The ULP is discussed in detail in the following section.

B.4 Government Regulators’ Problem

As shown in Equation 2.2, the objective of the government regulators is to minimize the nexus

stress. However, the mathematical quantification of the nexus, which will take in consideration

of the trade-offs between food, energy and water, has not yet been fully established. Recently,
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Figure B.1: FEW-N metric represented as the area of a triangle. Shaded area demonstrates an
example solution to FEW-N.

Avraamidou et al. [222] has introduced a methodology to develop a FEW-N metric, which brings

relevant decision elements and their respective quantification together through rth order averaging.

In this work, we adopt this idea through a similar methodology where a single geometric metric,

i.e. the area of a triangle, is used to represent the FEW-N metric as the government regulators’

objective. An illustration of the FEW-N metric is provided in Figure B.1.

In Figure B.1, the corners of the triangle represent the scaled quantities of each FEW-N ele-

ment, where their respective values lie between 0 and 1. In this case, a value of 1 represents the best

possible scenario and 0 represents the worst. The objective of the government regulators is to max-

imize the best possible scenario for each element, namely minimizing the total water consumed

and maximizing the total energy and food produced, which essentially translates into maximizing

the area of the triangle. The explicit formulation of this objective is provided in Equation B.27.

FEWmetric =

[
Etotal − Emin

Emax − Emin
·

(
1− W total −Wmin

Wmax −Wmin

)
+

Etotal − Emin

Emax − Emin
· Y

total − Y min

Y max − Y min

+

(
1− W total −Wmin

Wmax −Wmin

)
· Y

total − Y min

Y max − Y min

]
· sin120

◦

2
(B.27)
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Note that Etotal, Y total, and W total is obtained through solving the agricultural producer’s problem,

explicitly defined in Equations B.22-B.24, respectively.

In this case study, the government is offering subsidies (Si) to the land developers for each

nexus element, as much as their budget (Bi) allows.

0 ≤ Si ≤ Bi ∀i (B.28)

These subsidies further motivate the land owner to properly allocate and utilize the land to maxi-

mize their own profit (Equations B.16-B.17). The upper bound on the total governmental budget

is set to be $250M where this is allocated equally among all land processes. Essentially, the goal

of the government agency is to decide on the amount of subsidies to be offered to the agricultural

producer in such a way that the objective function defined in Equation B.27 is maximized.

B.5 Parameters

Parameter values are tabulated in Tables B.3-B.6, where 4 seasons (autumn, winter, spring,

and summer) are considered for the FEW-N case study with production starting in autumn and

ending after summer. These parameters are used as multipliers to capture seasonal differences

among technological efficiencies, water demand and transportation costs. The efficiency of the

solar energy production process is lower in autumn and winter whereas it is higher in the summer.

Likewise, the efficiency of agricultural processes is lower in winter as shown in Table B.3.

Table B.3: Parameter values for P e
i,k

k
i 1 (Autumn) 2 (Winter) 3 (Spring) 4 (Summer)
1 (solar energy) 0.85 0.70 0.90 1.00
2 (wind energy) 0.90 1.00 0.90 0.80
3 (fruit production) 1.00 0.85 1.00 1.00
4 (vegetable production) 1.00 0.85 1.00 1.00
5 (livestock grazing) 1.00 0.85 1.00 1.00
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Table B.4: Parameter values for P profit
i,k

k
i 1 (Autumn) 2 (Winter) 3 (Spring) 4 (Summer)
1 (solar energy) 1.00 1.20 1.00 1.20
2 (wind energy) 1.00 1.20 1.00 1.20

Table B.5: Parameter values for DH2O
k and Ctrans,H2O

k

k 1 (Autumn) 2 (Winter) 3 (Spring) 4 (Summer)
DH2O

k 1.00 0.70 1.00 1.20
CH2O,trans

k 1.00 1.00 1.00 1.30

The profit from energy production during winter and summer should be higher since there

would be higher demand for energy in very cold and hot weathers. Hence, higher multipliers are

assigned for both energy production land processes, which are summarized in Table B.4.

Table B.5 summarizes the multipliers for the minimum amount of water required as well as

the cost of transporting water over 4 seasons. Both the required amount of water and the cost of

transportation is expected to be higher in summertime due to elevated temperatures and higher

demand for water in agricultural production. Finally, Table B.6 summarizes other parameters used

in the FEW-N case study.

Table B.6: Parameter values for LH2O
i , UH2O

i , Lenergy
i , U energy

i , M energy
i , MH2O

i and Mprofit
i

i 1 (solar energy) 2 (wind energy) 3 (fruit production) 4 (vegetable production) 5 (livestock grazing)
LH2O
i - - 100 100 104

UH2O
i - - 106 106 108

Lenergy
i - - 5 5 5

U energy
i - - 50 50 100

M energy
i - - 10 10 1

MH2O
i - - 10-4 15-4 40-4

Mprofit
i 100 100 2 1.3 5
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APPENDIX C

DYNAMIC STEAM CRACKING OPTIMIZATION MODEL FOR ETHYLENE AND

PROPYLENE PRODUCTION

C.1 Model Equations for Ethane and Propane Cracking

The tubular steam cracking reactor model considers the mass (Equation C.1), energy (Equa-

tion C.3), and momentum (Equation C.7) balances, which are further explained in the relevant

subsections. The full notation of the model equations are provided in Section C.1.1.

C.1.1 Notation

∆Hi Enthalpy of reaction i, J/kmol

ϵ Pipe roughness, m

µp Pure component viscosity, Pa · s

µm Viscosity of gas mixture, Pa · s

νi Order of reaction i

C Average mass concentration, kg/m3

T Average temperature, K

ρc Density of coke, kg/L

τ Reactor runtime before decoking cycle begins, hr

Ao Pre-exponential factor

Cpj Heat capacity of species j, J/kmol ·K

Dnew
t Tube diameter after coking, m

Dt Tube diameter, m
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Ecoke
a Activation energy of coking reaction, kcal/mol

Ea Activation energy, J/kmol

Fj Molar flowrate of species j, kmol/s

Fr Friction factor, m−1

Gm Mass flux of gas mixture, kg/m2 · s

i Reaction index

j, jj Species index

Jcoke Subset of species j identified as coke precursor in a given cracking model

kcoke Reaction rate constant for coking reaction

Mm Mean molecular weight of gas mixture, kg/kmol

MWj Molecular weight of species j, kg/kmol

objj Objective function for product j, $/s

P Pressure, Pa

P $
decoking Decoking cost, $/cycle

P $
heat Heating cost, $/J

P $
inv Investment cost, $/m · s

P $
j Price of species j, $/kg

Q(z) External heat flux, W/m2

Qtotal Area under the heat flux vs. length curve, W/m

R Gas constant, J/kmol ·K

Re Reynolds Number
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ri Rate of reaction i

Red Reduction percentage in diameter per hour, hr−1

sij Stoichiometric coefficient of species j in reaction i

T Temperature, K

ts Timestep, s

V Volumetric flowrate, m3/s

xj Mole fraction of species j

z Spatial coordinate

C.1.2 Mass Balance

The molecular reaction scheme and their respective kinetic parameters for ethane and propane

cracking are provided in Tables C.1 and C.2. For both cracking models, the reactions are assumed

to follow Arrhenius-type kinetics (Equation C.2) [14]. The steam cracking of ethane and propane

is modeled based on the kinetic information provided in [14–17, 165]. For ethane cracking, 11

molecular species and 15 reactions are considered, whereas for the propane cracking 9 molecular

species and 13 reactions are considered in the model.

dFj

dz
= −(

∑
i

sijri)
πD2

t

4
∀j (C.1)

ri = Ao · exp(−
Ea

RT
)
∏

j∈Rxn

[
Fj

V
]νi ∀i (C.2)

C.1.3 Energy Balance

The heat balance, shown in Equation C.3, includes the external heat flux term, Q(z), provided

to the reactor to enable the endothermic cracking reactions. Previously, Tarafder et al. [166]

explored polynomial external heat flux trajectories over the spatial coordinate, z, whereas Onel
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Table C.1: Molecular reaction scheme and their respective kinetic parameters for ethane cracking.
The reaction mechanisms are adapted from [14–17].

Reaction Scheme, i Ao (s-1 or 1 mol-1s-1) Ea (kcal/mol)

C2H6
k1 C2H4 + H2 4.652 · 1013 65.20

C2H4 + H2
k2 C2H6 8.490 · 108 32.62

2 C2H6
k3 C3H8 + CH4 3.850 · 1011 65.25

C3H6
k4 C2H2 + CH4 3.794 · 1011 59.39

C2H2 + CH4
k5 C3H6 1.990 · 107 29.23

C2H2 + C2H4
k6 C4H6 1.026 · 1012 41.26

C2H4 + C2H6
k7 C3H6 + CH4 7.083 · 1013 60.43

C2H4 + C4H6
k8 C6H6 + 2 H2 8.385 · 109 34.56

C3H8
k9 C3H6 + H2 5.888 · 1010 51.29

C3H6 + H2
k10 C3H8 9.030 · 105 22.78

C3H8 + C2H4
k11 C2H6 + C3H6 2.536 · 1013 59.06

2 C3H6
k12 3 C2H4 1.514 · 1011 55.80

nC4H10
k13 C4H8 + H2 1.637 · 1012 62.36

C4H8 + H2
k14 nC4H10 1.780 · 107 32.30

C3H6 + C2H6
k15 C4H8 + CH4 5.553 · 1014 60.01
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Table C.2: Molecular reaction scheme and their respective kinetic parameters for propane cracking.
The reaction mechanisms are adapted from [14, 15, 17].

Reaction Scheme, i Ao (s-1 or 1 mol-1s-1) Ea (kcal/mol)

C2H6
k1 C2H4 + H2 4.652 · 1013 65.20

C2H4 + H2
k2 C2H6 8.490 · 108 32.62

C3H6
k3 C2H2 + CH4 3.794 · 1011 59.39

C2H2 + CH4
k4 C3H6 1.990 · 107 29.23

C2H2 + C2H4
k5 C4H6 1.026 · 1012 41.26

C2H4 + C2H6
k6 C3H6 + CH4 7.083 · 1013 60.43

C3H8
k7 C3H6 + H2 5.888 · 1010 51.29

C3H6 + H2
k8 C3H8 9.030 · 105 22.78

C3H8 + C2H4
k9 C2H6 + C3H6 2.536 · 1013 59.06

2 C3H6
k10 3 C2H4 1.514 · 1011 55.80

C3H6 + C2H6
k11 C4H8 + CH4 5.553 · 1014 60.01

C3H8
k12 C2H4 + CH4 4.692 · 1010 50.60

2 C3H6
k13 0.5 C6 + 3 CH4 1.423 · 109 45.50

[17] implemented a piece-wise constant external heat flux over a fixed reactor length. In this work,

a similar piece-wise constant external heat flux trajectory is implemented, but over a continuously

varying reactor length and with a wider range of operating conditions. In this approach, the reactor

is assumed to be divided into 5 distinctive regions, where each region can be supplied with a

different constant heat flux.

dT

dz
=

Q(z)πDt + π
D2

t

4

∑
i

ri(−∆Hi)∑
j

FjCpj
(C.3)

The energy balance expression considers the enthalpy of reaction, ∆Hi:

∆Hi = ∆Ho
i +

∫ 298

T

∑
j∈Reactants

Cpj · |si,j|dT +

∫ T

298

∑
j∈Products

Cpj · si,jdT ∀i (C.4)
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Table C.3: Formation enthalpy of species considered in thermal cracking of ethane and propane
[18].

Molecular Specie, j ∆Ho
fj (kJ/mol)

Methane, CH4 -74.87
Acetylene, C2H2 226.73
Ethylene, C2H4 52.47
Ethane, C2H6 -84
Propylene, C3H6 20.41
Propane, C3H8 -104.7
Butadiene, C4H6 108.8
Butene, C4H8 -0.63
Butane, C4H10 -125.6
Benzene*, C6H6 82.9
Hydrogen, H2 0
Water, H2O -241.826

*Taken for C6

Hess’ law is used for calculating the standard enthalpy of reaction in Equation C.4:

∆Ho
i =

∑
j

si,j ·∆Ho
fj ∀i (C.5)

In Equation C.5, the formation enthalpy, ∆Ho
fj , of molecular species is retrieved from the gas

phase thermochemistry data provided at NIST [18]. Furthermore, the heat capacity is calculated

using the ideal gas state heat capacity polynomial (Equation C.6) provided in the textbook by Smith

et al. [19]. The values of the polynomial coefficients and the formation enthalpy of all molecular

species are listed in Tables C.4 and C.3, respectively.

Cpj
R

= Aj +Bj · T + Cj · T 2 +
Dj

T 2
∀j (C.6)
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Table C.4: Coefficients of the polynomial Cpj/R = Aj + Bj · T + Cj · T 2 + Dj · T−2 for the
calculation of the heat capacity in ideal gas state [19].

Molecular Specie, j A B C D

Methane, CH4 1.702 9.081 · 10-3 -2.164 · 10-6 0
Acetylene, C2H2 6.132 1.952 · 10-3 0 -1.299 · 105

Ethylene, C2H4 1.424 14.394 · 10-3 -4.392 · 10-6 0
Ethane, C2H6 1.131 19.225 · 10-3 -5.561 · 10-6 0
Propylene, C3H6 1.637 22.706 · 10-3 -6.915 · 10-6 0
Propane, C3H8 1.213 28.785 · 10-3 -8.824 · 10-6 0
Butadiene, C4H6 2.734 26.786 · 10-3 -8.882 · 10-6 0
Butene, C4H8 1.967 31.630 · 10-3 -9.873 · 10-6 0
Butane, C4H10 1.935 36.915 · 10-3 -11.402 · 10-6 0
Benzene*, C6H6 -0.206 39.064 · 10-3 -13.301 · 10-6 0
Hydrogen, H2 3.249 0.422 · 10-3 0 0.083 · 105

Water, H2O 3.470 1.450 · 10-3 0 0.121 · 105

*Taken for C6

C.1.4 Momentum Balance

The momentum balance equation (Equation C.7) considers the mean molecular weight (Mm),

the tube pressure (P ), the friction factor (Fr) and the total mass flux (Gm).

dP

dz
=

d
dz
( 1
Mm

) + 1
Mm

( 1
T

dT
dz

+ Fr)
1

MmP
− P

G2
mRT

(C.7)

Total mass flux and mean molecular weight of the gas mixture are expressed respectively as:

Gm =

∑
j Fj ·MWj

π ·D2
t /4

(C.8)

Mm =

∑
j Fj ·MWj∑

j Fj

(C.9)

The friction factor is calculated using Equation C.10, where f is calculated using the average of

the Swamee-Jain and Halaand approximations for the Colebrook equation, where ϵ = 4.572 ·10−5
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m for steel pipe.

Fr =
2f

Dt

(C.10)

f = 0.125 ·

0.25 · (log [ϵ/Dt

3.7
+

5.74

Re0.9

])−2

+

(
−1.8 · log

[(
ϵ/Dt

3.7

)1.11

+
6.9

Re

])−2


(C.11)

The Reynolds number of the mixture is calculated using the following equation:

Re =

∑
j Fj ·MWj

πDt/4 · µm

(C.12)

The viscosity of the gas mixture, µm, is computed using the Wilke’s method (Equation C.13)

[168], which also contains an expression for the temperature dependent pure component viscosity,

µp. The DIPPR 102 vapor viscosity model (Equation C.15) is used for retrieving the temperature

dependent pure viscosity of molecular species [20]. The coefficients of the DIPPR model for

each molecular specie is reported in Table C.5, along with their respective temperature range of

validity. For temperature values outside the DIPPR model, the viscosity of pure molecular species

is calculated using linear extrapolation.

µm =
∑
j

µp
j

1 + 1
xj

·
∑

jj ̸=j ϕj,jj · xjj

(C.13)

ϕj,jj =

[
1 + (µp

j/µ
p
jj)

0.5 · (MWjj/MWj)
0.25
]2

(4/
√
2) [1 + (MWj/MWjj)]

0.5 (C.14)

µp
j =

Aj · TBj

1 +
Cj

T
+

Dj

T 2

(C.15)

C.1.5 Coking Effects

Coke formation in thermal cracking of natural gas liquids is an important consideration as this

phenomena can lead to an increase in pressure drop, an interruption in the steady-state operation

and an increase in tube wall temperature due to heat transfer limitations [17]. Hence, it is essential
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Table C.5: Coefficients of the DIPPR model µp
j = Aj · TBj/ [1 + Cj · T−1 +Dj · T−2] for the

calculation of pure component gas phase viscosity in Pa·s and their respective valid temperature
range (Tmin - Tmax) in K [20].

Molecular Specie, j A B C D Tmin Tmax

Methane, CH4 5.2546 · 10-7 0.59006 105.67 0 90.69 1000
Acetylene, C2H2 1.2025 · 10-6 0.4952 291.4 0 192.40 600
Ethylene, C2H4 2.0789 · 10-6 0.4163 352.7 0 169.41 1000
Ethane, C2H6 2.5906 · 10-7 0.67988 98.902 0 90.35 1000
Propylene, C3H6 7.3919 · 10-7 0.5423 263.73 0 87.89 1000
Propane, C3H8 4.9054 · 10-8 0.90125 0 0 85.47 1000
Butadiene, C4H6 2.696 · 10-7 0.6715 134.7 0 164.25 1000
Butene, C4H8 6.9744 · 10-7 0.5462 305.25 0 87.80 1000
Butane, C4H10 3.4387 · 10-8 0.94604 0 0 134.86 1000
Benzene*, C6H6 3.134 · 10-8 0.9676 7.9 0 278.68 1000
Hydrogen, H2 1.797 · 10-7 0.685 -0.59 140 13.95 3000
Water, H2O 1.7096 · 10-8 1.1146 0 0 273.16 1073.15

*Taken for C6

to consider the coking effects in the steam cracking model as the reactor coking and its regeneration

will affect the profitability of operation. For ethane cracking, C4
+ species are identified as the coke

precursors and its kinetics are implemented based on Sundaram et al. [167]. On the other hand,

for propane cracking, C3H6 is determined as the main coke precursor and the reaction mechanism

and kinetic data are adapted from [15].

For natural gas liquid feeds, the mechanisms and kinetic data provided in [167] indicates that

coking reaction rate is slow compared to that of the cracking reactions. As a result, the coke buildup

and reduction in the tube diameter can be calculated under the quasi-steady state assumption as

suggested by Onel [17]. Under this assumption, the reduction in the tube diameter due to coking is

calculated after solving the cracking model at steady-state. Once the cracking model is solved, the

coke accumulation on the reactor wall is calculated for a timestep ts, and the diameter is updated

respectively [17]. When the reactor reaches a 25% reduction in its diameter, the decoking cycle is

initiated.
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Dnew
t = Dt − 2 · kcoke · exp(−Ecoke

a /RT ) · C · ts
ρc · 106

(C.16)

Calculating reduction percentage per hour:

Red =
(Dt −Dnew

t )

Dt

· 100 · ts · 3600 (C.17)

Calculating the reactor runtime before decoking cycle begins:

τ = 25/Red (C.18)

C.1.6 Model Parameters, Process Constraints, Decision Variables and the Objective Func-

tion

The output temperature is constrained to be less than 1300 K (Equation C.19) due the limi-

tations in the metallurgy of the reactor. Also, the output pressure of the reactor is limited to be

at least 1 atm (Equation C.20). In these case studies, T out and P out are considered as grey-box

constraints, as their value can only be obtained after solving and simulating the entire system.

T out ≤ 1300 (C.19)

P out ≥ 101325 (C.20)

In ethylene/propylene production, the objective function is to maximize the profitability of op-

eration by selecting the optimal values for the reactor length, inlet temperature, inlet pressure,

ethane/propane flowrate, steam flowrate, and the piece-wise constant external heat flux profile

along the reactor length. For ethane production, the objective function considers the production of
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ethylene as the sole product:

objC2H4 =

(
P $

C2H4
· FC2H4

·MWC2H4
− P $

C2H6
· F o

C2H6
·MWC2H6

− P $
H2O · F o

H2O ·MWH2O

−P $
inv · L− P $

heat ·Qtotal · π ·Dt

)
· τ

τ + 48
−

P $
decoking

(τ + 48) · 3600

(C.21)

For propylene production, the reaction mechanism allows a single-feed-multi-product system,

where propylene and ethylene are the two main products. Hence the objective function consid-

ers the profit made from these two:

objC3H6 =

(
P $

C3H6
· FC3H6

·MWC3H6
+ P $

C2H4
· FC2H4

·MWC2H4
− P $

C3H8
· F o

C3H8
·MWC3H8

−P $
H2O · F o

H2O ·MWH2O − P $
inv · L− P $

heat ·Qtotal · π ·Dt

)
· τ

τ + 48

−
P $
decoking

(τ + 48) · 3600

(C.22)

If any combination of input variables lead to a simulation result with no coking, then the cost

for decoking the reactor is neglected and the profit calculation is solely based on the operating

(heating, production and consumption of the output and input materials) and fixed cost of the reac-

tor. The model parameters for the cracking case studies are summarized in Table C.6 and bounds

on the decision variables are provided in Table C.7. In addition to the variables bounds, a known

constraint (Equation C.23 for ethane cracking model, Equation C.24 for propane cracking model)

is also included in the formulation, where the total inlet flowrate to the reactor constrained to be

less than or equal to 0.05 kmol/s. This constraint avoids simulating cases that will create a large

pressure drop in the reactor, and essentially won’t yield a feasible solution. As this relationship

is available in closed form and valid for any candidate sampling point for simulation, only the

samples that satisfy this known relationship are used to construct the SVM-feasibility constraint.

F o
C2H6

+ F o
H2O ≤ 0.05 (C.23)

F o
C3H8

+ F o
H2O ≤ 0.05 (C.24)
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Table C.6: Parameters considered in modeling thermal cracking of ethane and propane.

Parameter Value

Coking Parameters
Activation Energy for Coking (Ethane Cracking), Ecoke

a 28.25 kcal/mol
Activation Energy for Coking (Propane Cracking), Ecoke

a 73.58 kcal/mol
Decoking Cycle Downtime 48 hr
Density of Coke, ρc 1.6 kg/L
Reaction Rate Constant (Ethane Cracking) 8.55·105 g coke/m2·s/(kg j/m3)
Reaction Rate Constant (Propane Cracking) 5.82·1014 g coke/(m2·s)/(mol j/L)
Timestep (Ethane Cracking), ts 72,000 s
Timestep (Propane Cracking), ts 144,000 s

Cost Parameters
Decoking Cost, P $

decoking $66,000/cycle
Heating Cost, P $

heat $1.26·10-8/J
Investment Cost, P $

inv $2.725·10-4/m·s
Price of Ethane, P $

C2H6
$0.3/kg

Price of Ethylene, P $
C2H4

$1.382/kg
Price of Propane, P $

C3H8
$0.55/kg

Price of Propylene, P $
C3H6

$1.340/kg
Price of Steam, P $

H2O $0.0129/kg

Reactor Parameters
Diameter, Dt 0.108 m

Table C.7: Decision variables for the grey-box optimization problem.

Decision Variables Lower Bound Upper Bound

External Heat Flux (Region 1, kW/m2), Qo
1 10 1000

External Heat Flux (Region 2, kW/m2), Qo
2 10 1000

External Heat Flux (Region 3, kW/m2), Qo
3 10 1000

External Heat Flux (Region 4, kW/m2), Qo
4 10 1000

External Heat Flux (Region 5, kW/m2), Qo
5 10 1000

Feed Flowrate of Ethane (kmol/s), F o
C2H6

0.003 0.05
Feed Flowrate of Propane (kmol/s), F o

C3H8
0.003 0.05

Feed Flowrate of Steam (kmol/s), F o
H2O 0.003 0.05

Inlet Temperature (K), T o 700 1100
Inlet Pressure (kPa), P o 290 500
Reactor Length (m), L 5 100
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C.2 Offline Phase SVM Model Performance Validation Results

Table C.8: Ethane cracking SVM model performance for the second session of runs with ARG-
ONAUT.

Run ID Accuracy (%) Precision (%) Recall (%) AUC (%) F1 score (%)

1 98.492 98.895 99.444 99.825 99.169
2 98.995 98.901 100 99.942 99.448
3 98.492 98.788 99.390 99.843 99.088
4 97.487 98.276 98.844 99.800 98.559
5 97.487 98 98.658 99.691 98.328
6 100 100 100 100 100
7 98.492 98.582 99.286 99.964 98.932
8 97.487 98.225 98.810 99.789 98.516
9 99.000 99.425 99.425 99.889 99.425

10 99.497 99.296 100 99.963 99.647
11 98.492 98.571 99.281 99.820 98.925
12 98.995 99.301 99.301 99.988 99.301
13 98.492 99.242 98.496 99.875 98.868
14 98.995 98.765 98.765 99.937 98.765
15 99.497 100.000 99.265 99.965 99.631
16 98.492 98.701 99.346 99.943 99.023
17 99.497 100 99.315 99.922 99.656
18 98.995 98.844 100 99.645 99.419
19 97.487 98.193 98.788 99.643 98.489
20 100 100 100 100 100
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Table C.9: Propane cracking SVM model performance for the second session of runs with ARG-
ONAUT.

Run ID Accuracy (%) Precision (%) Recall (%) AUC (%) F1 score (%)

1 95.477 97.541 95.200 99.351 96.356
2 97.487 97.647 96.512 99.784 97.076
3 97.990 97.321 99.091 99.908 98.198
4 95.980 96.190 96.190 99.473 96.190
5 98.995 100 98.795 99.945 99.394
6 99 98.561 100 99.734 99.275
7 96.482 94.815 100 99.813 97.338
8 96.985 96.460 98.198 99.314 97.321
9 98.492 96.774 100 99.959 98.361
10 97.990 97.872 99.281 99.772 98.571
11 97.487 98.630 97.959 99.843 98.294
12 97.487 95.890 97.222 99.661 96.552
13 96.482 96.970 96.000 99.818 96.482
14 100 100 100 100 100
15 97.487 97.810 98.529 99.895 98.169
16 97.990 97.727 99.231 99.933 98.473
17 100 100 100 100 100
18 97.990 98.000 99.324 99.907 98.658
19 97.990 99.275 97.857 99.891 98.561
20 98.492 100 97.321 99.949 98.643
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APPENDIX D

CLUSTERING ANALYSIS AND SIMILARITY ASSESSMENT FOR ENVIRONMENTAL

DATASETS

Dendrograms for the geospatial location-based and the pollutant concentration-based cluster-

ing are provided along with the Fowlkes-Mallows (FM) index profiles in Figures D.1-D.5. The

similarity between these two dendrograms is quantified with the FM index where “k” represents

the number of groups in the clustering analysis.

Geospatial Trace Metals

Null FM Index = 0.51

FM Index (3 groups) = 0.50
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Figure D.1: Dendrograms for the geospatial-based and concentrations of trace metals-based group-
ing in soil sediments.
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Geospatial 16 Priority PAHs
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Figure D.2: Dendrograms for the geospatial-based and concentrations of 16 priority pollutant
PAHs-based grouping in soil sediments.
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Figure D.3: Dendrograms for the geospatial-based and concentrations of PBDEs-based grouping
in soil sediments.
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Geospatial PCBs
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Figure D.4: Dendrograms for the geospatial-based and concentrations of PCBs-based grouping in
soil sediments.
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Figure D.5: Dendrograms for the geospatial-based and concentrations of OCs-based grouping in
soil sediments.
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