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ABSTRACT

The effort to mimic a chemical plant’s operations or to design and operate a completely new
technology in silico is a highly studied research field under process systems engineering. As the
rising computation power allows us to simulate and model systems in greater detail through careful
consideration of the underlying phenomena, the increasing use of complex simulation software
and generation of multi-scale models that spans over multiple length and time scales calls for
computationally efficient solution strategies that can handle problems with different complexities
and characteristics. This work presents theoretical and algorithmic advancements for a range of
challenging classes of mathematical programming problems through introducing new data-driven
hybrid modeling and optimization strategies.

First, theoretical and algorithmic advances for bi-level programming, multi-objective optimiza-
tion, problems containing stiff differential algebraic equations, and nonlinear programming prob-
lems are presented. Each advancement is accompanied with an application from the grand chal-
lenges faced in the engineering domain including, food-energy-water nexus considerations, energy
systems design with economic and environmental considerations, thermal cracking of natural gas
liquids, and oil production optimization.

Second, key modeling challenges in environmental and biomedical systems are addressed
through employing advanced data analysis techniques. Chemical contaminants created during
environmental emergencies, such as hurricanes, pose environmental and health related risks for
exposure. The goal of this work is to alleviate challenges associated with understanding con-
taminant characteristics, their redistribution, and their biological potential through the use of data

analytics.
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1. INTRODUCTION*

Many engineering design and optimization problems in the fields of mechanical, aerospace,
civil, petroleum, chemical and biomedical engineering, and geosciences, are characterized by com-
plex first principle models, in the form of large systems of nonlinear partial differential equations
[21]. The aim of these rigorous and highly detailed models is to simulate industrial processes in
such a way that any mechanical, chemical and/or physical phenomena, which spans over multiple
length and time scales, is captured with highest accuracy. In such complex systems, locating the
globally optimal solution poses a formidable challenge due to the lack of analytical mathematical
forms (i.e., simulation or proprietary model dependence) or due to the noise and/or computational
expense associated with the calculation or approximation of the derivatives. These are commonly
referred to as “grey-box” or “black-box” problems, where the entirety or a portion of the sys-
tem characteristics are provided in the form of input-output data. In this dissertation, a special
attention is given to; (1) constrained optimization of grey-box/black-box problems, (2) using sur-
rogate modeling and high-performance computing for the explicit handling of constraints in these
systems, (3) employing algorithmic features of grey-box optimization strategies to postulate the-
oretical advances in solving challenging classes of mathematical programming formulations, and
(4) developing data-driven predictive models for environmental and biological systems.

The goal of this chapter is to provide an introduction to grey-box optimization (Section 1.1),
discuss previous algorithmic advances for the constrained optimization of these problems (Section
1.2), state the challenges and open research questions existing in this field (Section 1.3), and deliver

the objectives and the structure of this dissertation (Section 1.4).

“Part of this chapter is reprinted with permissions from “Global optimization of grey-box computational systems us-
ing surrogate functions and application to highly constrained oil-field operations” by B. Beykal, F. Boukouvala, C.A.
Floudas, N. Sorek, H. Zalavadia, E. Gildin, 2018. Computers & Chemical Engineering, vol. 114, pp. 99-110,
Copyright [2018] by Elsevier and Copyright Clearance Center, and “DOMINO: Data-driven Optimization of bi-level
Mixed-Integer NOnlinear Problems” by B. Beykal, S. Avraamidou, I.P.E. Pistikopoulos, M. Onel, E.N. Pistikopou-
los, 2020. Journal of Global Optimization, DOI: https://doi.org/10.1007/s10898-020-00890-3, Copyright [2020] by
Springer Nature and Copyright Clearance Center.
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1.1 Constrained Grey-Box Optimization

General constrained grey-box problems have the mathematical form described in Equation 1.1,

mmin f(x)

st.gm <0 Vme{l,...,.M}

gr(x) <0 Vke{l,...,K} (1.1)
z; € [zkalli=1,...,n
xz e R"”

where set & € {1,..., K} represents the constraints with known closed-form (i.e., known con-

straints), and n represents the dimensionality of the problem or else, the number of decision vari-
ables, with known lower and upper bounds [z”, £V]. The mechanistic expressions defining the
objective, f(x), and the constraints, represented by set m € {1,..., M}, are not explicitly avail-
able as a function of the continuous decision variables. However, the values of these unknown
formulations can be retrieved as outputs to the problem simulator, which is typically computation-
ally expensive.

This class of problems is tackled using data-driven or derivative-free optimization (DFO) tech-
niques where the derivative information of the original formulation is not utilized to get the optimal
solution [22]. A typical DFO procedure starts with an initial design of experiments on the decision
variables @&, which provides a set of pre-determined locations for evaluating the system and collect-
ing the corresponding outputs (objective function value and constraint violations) from the simu-
lated high-fidelity model. This input-output data will be further used by the data-driven optimizer
to find the true optimum of the original model either through (a) a purely sample-based methodol-
ogy, which only uses function-call data guided by pattern-based rules; or (b) a hybrid methodology
(model-based methods), which uses samples in order to fit parametric functions that are subse-

quently used as surrogates of the original optimization formulation. Many algorithmic advances

have been made in the last decade for data-driven grey-box optimization of both box-constrained



problems [23, 24] and general constrained problems [25-27] including, the ARGONAUT frame-
work [28-30], the ALAMO framework [31, 32] and the SO-MI algorithm [33]. Further details
on DFO and other algorithmic advances in this field can be found in the textbook by Conn et al.
[22], which introduces the rich theory of sample-based DFO, and in several recent and valuable
review articles and surveys, including a review by Kolda et al. [34] on sample-based methods, by
Rios and Sahinidis [35] on box-constrained DFO and comparison of software implementations, by
Boukouvala et al. [21] on constrained DFO, and by Bhosekar and Ierapetritou [36] and Vu et al.

[37] on surrogate-based DFO.
1.2 Literature Review on Constraint Handling Strategies in Grey-Box Optimization
1.2.1 Constraint Handling in Search-based Methods

Traditionally, constraint handling in search-based methods has been done through augmented
Lagrangian formulations [38—40], penalty methods [41—44] and restoration steps [45, 46]. Re-
cently, Di Pillo et al. [47] introduced a DIRECT-type approach for the global optimization of
general constrained optimization problems without using the derivatives. The authors make use
of the well-known DIRECT algorithm and further combine it with a constrained derivative-free
local minimization algorithm for improved solutions, where the nonlinear constraints are handled
via an exact penalty function. In another study, Liuzzi et al. [48] employ an exact merit func-
tion to penalize the nonlinear constraints while converting the original constrained problem to a

box-constrained problem in a multi-objective optimization framework.
1.2.2 Constraint Handling in Model-based Methods

In model-based approaches, the unknown constraints can be handled through surrogate mod-
els. Regis and Shoemaker [49] and Miiller et al. [33], have proposed to optimize costly black-box
systems using radial basis functions to create inexpensive approximations for the objective and the
constraints. In another study by Bajaj et al. [26], the authors have introduced a trust-region based
two-phase algorithm for the constrained optimization of grey/black-box problems. The two-phase

algorithm starts with a feasible point identification, and proceeds with the optimization step, where



cubic radial basis function (RBF) with linear polynomial tail is used as a surrogate to approximate
any unknown equation. Furthermore, several noteworthy studies have used local kriging approx-
imations [50], local linear approximations [51, 52] and quadratic models [53] for handling con-
straints in grey/black-box optimization problems. In a more recent study, Miiller and Shoemaker
[54] showed that the selection of the surrogate function type affects the accuracy of obtaining the
optimal solution, by taking into consideration the combination of different surrogate functions. A
recent review describes advances in constrained DFO theory, applications, literature, algorithms
and software along with advances in Mixed-Integer Nonlinear Optimization (MINLP) and their

potential interactions [21].
1.3 Challenges in Grey-Box Optimization

Despite the many advances in the past and recent literature, there still exist several challenges
towards the development of efficient DFO methods and algorithms. First, guarantee of conver-
gence to e-global optimality has not been achieved by any method within a finite number of steps.
Second, DFO methods suffer from the curse-of-dimensionality, since sampling requirements and
the number of parameters of surrogate models increase at high rates with the number of dimen-
sions. Third, the presence of a large number of grey/black-box constraints within the optimization
formulation cannot be handled efficiently by most existing DFO frameworks. Last, efficient meth-
ods are needed which can optimize hybrid problems comprised of both unknown information and
mathematically known functions, in a way that maximizes the communication between the known

and unknown components.
1.4 Dissertation Objectives and Structure

The goal of this dissertation is to present theoretical and algorithmic advances towards allevi-
ating a subset of the aforementioned challenges in grey-box optimization, postulating novel strate-
gies for solving challenging classes of mathematical programming problems, and extending these
data-driven modeling capabilities to applications in the environmental and biomedical sciences do-

main. The challenging class of mathematical programming problems that are investigated in this



dissertation include bi-level optimization, multi-objective optimization, stiff differential algebraic
equations (DAEs), and nonlinear nonconvex optimization. Specific objectives of this dissertation

are further listed below.

1. Develop a data-driven optimization framework for solving bi-level mixed-integer nonlinear

programming problems with guaranteed feasibility.

2. Establish a hybrid framework for solving multi-objective programming problems through

reformulation and grey-box optimization strategies.

3. Introduce a Support Vector Machine-based constraint handling scheme for handling the stiff-

ness in multi-dimensional DAE systems.

4. Enable distributed computing for the parallel execution of a grey-box optimization solver
such that a realistic high-dimensional highly constrained black-box problem is solved to

optimality.

5. Employ exploratory data analysis techniques for an effective interpretation of environmental

contaminants and for the diagnosis of their potential pathways for redistribution.

6. Create predictive data-driven models for understanding the biological responses of environ-

mental contaminants.
The following sections summarize the theoretical and algorithmic advances presented in this
dissertation alongside the application areas explored in each chapter.
1.4.1 Theoretical Advances in Data-Driven Modeling and Optimization
* Feasibility guarantee for special classes of bi-level mixed-integer nonlinear programming

problems (Chapter 2).

* Feasibility guarantee for general constrained continuous multi-objective optimization prob-

lems (Chapter 3).



14.2

14.3

Derivation of the stability constraint for ill-conditioned (i.e., stiff) DAE systems that do not

have an analytical solution (Chapter 4).

Feasibility guarantee for high-dimensional highly constrained grey/black-box optimization

problems with expensive simulators (Chapter 5).

Algorithmic Advances in Mathematical Programming

DOMINO algorithm for bi-level mixed-integer nonlinear optimization (Chapter 2).

Data-driven multi-objective optimization using e-constraint reformulation and grey-box op-

timization algorithms (Chapter 3).

Support Vector Machine-based constraint handling scheme for the data-driven optimization
of stiff DAE systems without the full discretization of the underlying first-principles model

(Chapter 4).

Parallelization of a grey-box optimization solver, namely the ARGONAUT algorithm, for

solving high-dimensional highly constrained nonlinear programming problems (Chapter 5).

Application Areas

Land allocation problem in Food-Energy-Water Nexus considerations (Chapter 2).

Energy systems design under economic and environmental considerations (Chapter 3).

Reactor design and operation for thermal cracking of natural gas liquids (Chapter 4).

Water-flooding control operations for secondary oil recovery (Chapter 5).

Visualization of environmental contaminants for facilitating the interpretation and diagnosis

of potential pathways for redistribution in a post-hurricane event (Chapter 6).

Characterization of the estrogenic potential of chemical compounds (Chapter 6).



2. DATA-DRIVEN BI-LEVEL MIXED-INTEGER NONLINEAR OPTIMIZATION WITH
APPLICATIONS TO FOOD-ENERGY-WATER NEXUS*

The Data-driven Optimization of bi-level Mixed-Integer NOnlinear problems (DOMINO)
framework is presented for addressing the optimization of bi-level mixed-integer nonlinear pro-
gramming problems. In this framework, bi-level optimization problems are approximated as
single-level optimization problems by collecting samples of the upper-level objective and solv-
ing the lower-level problem to global optimality at those sampling points. This process is done
through the integration of the DOMINO framework with a grey-box optimization solver to perform
design of experiments on the upper-level objective, and to consecutively approximate and optimize
bi-level mixed-integer nonlinear programming problems that are challenging to solve using exact
methods. The performance of DOMINO is assessed through solving numerous bi-level benchmark
problems, a land allocation problem in Food-Energy-Water Nexus, and through employing differ-
ent data-driven optimization methodologies, including both local and global methods. Although
this data-driven approach cannot provide a theoretical guarantee to global optimality, we present an
algorithmic advancement that can guarantee feasibility to large-scale bi-level optimization prob-
lems when the lower-level problem is solved to global optimality at convergence.

This chapter is organized as follows. In Section 2.1, a background on bi-level programming
is provided along with a literature review on data-driven bi-level optimization. The DOMINO
framework is introduced in Section 2.2. Furthermore, in Section 2.3, the results for an extensive
set of benchmark studies are presented alongside the results of a large-scale case study of land
allocation in Food-Energy-Water Nexus problem. Finally, the concluding remarks are provided in

Section 2.4.

“Part of this chapter is reprinted with permission from “DOMINO: Data-driven Optimization of bi-level Mixed-Integer
NOnlinear Problems” by B. Beykal, S. Avraamidou, I.P.E. Pistikopoulos, M. Onel, E.N. Pistikopoulos, 2020. Journal
of Global Optimization, DOL: https://doi.org/10.1007/s10898-020-00890-3, Copyright [2020] by Springer Nature and
Copyright Clearance Center.
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2.1 Multi-level Programming

Multi-level programming is a class of mathematical optimization with hierarchical structures,
where one optimization problem is constrained by other optimization problems. It arises in the
presence of multiple decision makers, where each of them is concerned with optimizing its own
objective function. As a result, multi-level programming problems are encountered in many differ-
ent application areas, including supply chain planning [55, 56], scheduling [57-59], government
policy decision [60], price setting problems [61, 62], economics [63], and other multi-stage deci-
sion making problems [64, 65].

This chapter presents a data-driven framework for the solution of bi-level mixed-integer non-
linear problems with the general mathematical form shown in Equation 2.1. The considered class
of problems contain two optimization levels with F'(x,y) and f(x,y) representing the objective
functions of the upper and lower-level problems, respectively. The upper-level problem (ULP) is
constrained by the inequality G(«, y), whereas the lower-level problem (LLP) is constrained both
by the inequality g(«, y) and the equality constraint h(y), where y is a vector of continuous and/or
integer variables strictly controlled by the LLP, and @ is a vector of continuous variables strictly
controlled by the ULP. It is worth noting here that the developed framework cannot address bi-level
problems with upper-level integer variables, although lower-level integer variables can appear in

the ULP.

min  F(x,y)
st. G(z,y) <0
yE arg;nin{f(w,y) 1g(x,y) < 0,h(y) = 0} (2.1)
[, ..., x,] € R"
Y1, Up) € R [Yypin, . y,] € 2777
This hierarchical structure can be viewed as a Stackelberg game [66, 67] where the upper-level

objective will lead and decide on the decision variables @, and the lower-level decision maker

will then follow the leader by reacting accordingly, choosing the optimal values for y to opti-



mize its own objective function. Previously, the solutions of bi-level and multi-level program-
ming problems have been studied extensively using branch and bound algorithms [68-72] and
multi-parametric optimization techniques [73—80]. Although the aforementioned studies represent
important theoretical advances for retrieving either e-optimal or exact solutions of bi-level and
multi-level optimization problems, the primary goal of this work is to tackle problems where the
deterministic solution strategies cannot be applied due to the highly nonlinear nonconvex nature
of many two-level large-scale optimization problems (i.e., problems that contain high number of
variables and/or constraints).

To this end, many studies have focused on implementing evolutionary algorithms (i.e., ge-
netic and meta-heuristic algorithms) and trust-region approaches to solve problems with multiple
nested layers as presented in the detailed review by Sinha et al. [81]. Although evolutionary al-
gorithms are very-well established and can be applicable to bi-level optimization problems, these
methodologies typically require a large number of function evaluations for convergence, which
come with a significant computational burden. Furthermore, evolutionary algorithms are generally
implemented to unconstrained or box-constrained problems which limit their applicability to many
real-life, constrained optimization problems. Extensions of evolutionary algorithms are proposed
in the literature for handling constraints using aggregated approaches, through penalty functions
[82, 83] or Augmented Lagrangian techniques [84].

In fact, several novel genetic and evolutionary algorithms have been presented for the solu-
tion of integer linear bi-level problems [85, 86] but both of these studies cannot guarantee global
optimality or feasibility. Further advances to genetic algorithms have also been presented for the
solution of mixed-integer nonlinear bi-level problems in the last decade [87, 88]. However, the
study by Hecheng and Yuping [87] is not applicable to bi-level programming problems with gen-
eral nonlinear lower-level problems. In addition, similar to the integer linear algorithms, these
nonlinear genetic algorithms [87, 88] cannot also guarantee global optimality or feasibility. As
an alternative approach to evolutionary algorithms, Sinha et al. [81] suggested building a local

single-level approximation of the bi-level problem using Artificial Neural Networks (ANNs). The



authors briefly discuss how local surrogate modeling efforts can be a useful tool for solving bi-
level optimization problems. However, the challenges associated with training an ANN, such as
the hyperparameter optimization, decisions on the architecture of the network, and the number of
samples required for training are not addressed. Therefore, new algorithmic approaches are neces-
sary for solving nonlinear nonconvex bi-level mixed-integer optimization problems with improved
constraint handling capabilities and maximum computational efficiency.

Hence, in this work, a new data-driven optimization framework is proposed to alleviate the
aforementioned challenges as well as to bridge the gaps in solving a special class of bi-level pro-
gramming problems, as shown in Equation 2.1. To this end, the Data-driven Optimization of bi-
level Mixed-Integer NOnlinear problems (DOMINO) algorithm is presented where this approach
reformulates bi-level optimization problems into single-level approximations through collecting
samples on the upper-level objective, while the lower-level is solved to global optimality at these
sampling points. This data-driven approach enables the collected input-output information to be
utilized by a grey-box optimization solver, where the upper-level objective is solved to optimality

via a derivative-free optimization methodology. Through this work, the aim is to:

Establish a powerful computational algorithm for solving large-scale bi-level mixed-integer
nonlinear programming (B-MINLP) problems of the form provided in Equation 2.1, which

are difficult to solve using deterministic algorithms,

Test the framework on an extensive list of bi-level optimization benchmark problems,

Assess the performance of different grey-box solvers on the benchmark problems,

Utilize the framework for the optimization of a large scale bi-level engineering problem.

2.2 DOMINO Framework

The Data-driven Optimization of bi-level Mixed-Integer NOnlinear problems (DOMINO)
framework solves the constrained bi-level mixed-integer nonlinear nonconvex optimization prob-

lems following a similar procedure as a generic grey-box optimization algorithm, where the novelty

10



of the work underlies in approximating the bi-level problem into a single-level grey-box optimiza-
tion problem. A general overview of the algorithm is provided in Figure 2.1. Given a bi-level
programming problem, the first step to DOMINO framework is to pass the dimensionality infor-
mation of the ULP (i.e., number of upper-level decision variables, n, and their respective bounds)
along with any known constraints (i.e., constraints that are explicitly and solely imposed on the
upper-level decision variables) to the design of experiments, if the data-driven optimizer can ex-
plicitly handle this information. In the absence of such a capability, the known constraints are
directly handled as grey-box constraints.

The dimensionality information of the ULP is further processed by the data-driven optimizer to
identify an initial starting point or an initial design of experiments at random. The choice of start-
ing with a random initial point or a random design of experiments strictly depends on the type of
grey-box solver that is incorporated in the framework. Typically, local black/grey-box solvers, such
as a direct search algorithm [41], start with random single initial point whereas global approaches
like ARGONAUT [28, 29] create a random space-filling maximin Latin Hypercube Design within
the provided bounds. Then, at each of these pre-determined candidate locations of «x, the corre-
sponding optimal value of the LLP, y*, is determined using either a local solver such as CPLEX
[89], or global MINLP solvers such as ANTIGONE [90-92] and BARON [93], depending on the
problem type. CPLEX is implemented for linear (LP), mixed-integer linear (MILP), quadratically
constrained (QCP), and mixed-integer quadratically constrained (MIQCP) programming problems,
whereas BARON and ANTIGONE are implemented to general nonlinear (NLP) and mixed-integer
nonlinear (MINLP) programming problems at the lower-level. Thus, the LLP is solved determin-
istically to global optimality at each iteration at the given upper-level sampling points. Later, the
optimal solution of the LLP, y*, and the pre-determined sampling points will be used to enumer-
ate the upper-level objective, F'(x, y*), and the constraint violations of both levels, G(x, y*) and
g(x,y*). This input-output data will be further passed onto the derivative-free optimization stage
to retrieve a candidate solution of the original bi-level programming problem once the DFO con-

vergence criteria are met. If this returned solution violates any of the grey-box constraints, the
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Figure 2.1: Algorithmic flowchart of the DOMINO framework. DOMINO is integrated with a
DFO algorithm and a deterministic global optimizer for solving bi-level programming problems.
The LLP is solved to global optimality at each iteration for a given vector of upper-level decision
variables, « (input data). The objective function and the constraint violations (output data) that
contain at least one upper-level variable are enumerated using the optimal solution y* and the
corresponding input upper-level decision variables x. This input-output data is later passed to a
DFO subroutine to retrieve a candidate solution of the bi-level programming problem.

algorithm is restarted to explore a feasible solution, starting with a new initial point/design. If all
constraints are satisfied but the LLP is only locally optimal or feasible, then the algorithm will ter-
minate without identifying a feasible solution to the bi-level programming problem. If the solution
satisfies all grey-box constraints, and the LLP is globally optimal at the given solution, the solution
is a guaranteed feasible point for the original bi-level programming problem.

DOMINO is a flexible algorithm where any type of data-driven optimizer (i.e., local versus

global or sample-based versus model-based algorithms) and deterministic solver (i.e., CPLEX,
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ANTIGONE, BARON) can be incorporated depending on the problem definition. This flexibility
allows DOMINO to benefit from the advantages of different approaches and does not impose a
strict form on the single-level approximation of different bi-level optimization problems. The most

important properties of the DOMINO framework are listed as remarks below.

Remark 1. The proposed framework is tailored to handle special classes of bi-level optimization

problems that are given in the form of Equation 2.1.

Remark 2. DOMINO cannot guarantee e-global optimality to the upper-level objective. Although
commercially available optimization solvers such as CPLEX, ANTIGONE [90-92], and BARON
[93] are incorporated within the framework for the deterministic optimization of the LLP, the ULP
is treated as a grey-box, where the explicit analytical formulation and the convexity of the problem

is assumed to be unknown.

Remark 3. Feasibility of the bi-level programming problem is guaranteed at convergence if and
only if a feasible solution for the ULP is identified by DOMINO and the lower-level converges
to a globally optimal solution at the given upper-level solution. The feasibility guarantee is
achieved by formulating all the upper-level variable-containing constraints, G(x,y) and g(x, y),
as black/grey-box constraints where their respective violations are tracked throughout the DFO
procedure. As the LLP is solved to global optimality deterministically at every iteration, the con-
straints with only lower-level variables (i.e., h(y) = 0), are satisfied for a feasible solution of
an ULP. In addition, the lower-level feasibility is verified through an a posteriori analysis for the

returned bi-level solution.

Remark 4. DOMINO framework can handle a wide range of dimensionality, including several
hundred variables, and constraints in both upper and lower-level problems, and provide feasible

near-optimal solutions to varying bi-level programming problem types.

Remark 5. When the optimal solution of the LLP is not unique for the vector of optimal upper-
level variables, the decision maker can take a pessimistic decision, an optimistic decision or any

decision in between. Although many other bi-level approaches can guarantee and characterize
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the solution type as pessimistic or optimistic, the proposed framework is not able to provide this

characterization.

Remark 6. DOMINO does not impose any extra criterion for convergence or re-sampling. These
decisions solely depend on the data-driven optimizer that is integrated within the DOMINO frame-

work and vary from one data-driven methodology to another.

In our previous study [94], the basic idea of this data-driven approach was tested using a single
data-driven optimizer for solving a B-MINLP problem in Food-Energy-Water Nexus considera-
tions. In this chapter, the properties of the framework that are listed here are further demonstrated
on an extended class of benchmark problems and the number of problems solved to global optimal-
ity is improved. The framework is extended to include an array of data-driven optimizers, which
are presented in the following section. In addition, the full formulation of the Food-Energy-Water
Nexus case study, its reformulation to B-MILP problem using Big-M constraints, as well as its

detailed computational study with DOMINO is provided.
2.3 Computational Studies

The proposed data-driven methodology for solving bi-level optimization problems is tested on
a challenging set of 100 test problems and a land allocation case study. In this work, 4 different
constrained data-driven optimization strategies are identified to be implemented in the DOMINO
framework: (1) Nonlinear Optimization by Mesh Adaptive Direct search (NOMAD) [95]; (2) Con-
strained Optimization BY Linear Approximations (COBYLA) [51]; (3) AlgoRithms for Global
Optimization of coNstrAined grey-box compUTational problems (ARGONAUT) [28-30]; and (4)
Improved Stochastic Ranking Evolution Strategy (ISRES) [96]. The selection of these solvers is
based on their ability to perform constrained optimization on black/grey-box problems as well as
their difference in solution methodology, where both local (NOMAD and COBYLA) and global
(ARGONAUT and ISRES) optimization strategies are investigated. Each algorithm is briefly de-
scribed in Table 2.1. These DFO solvers are available and/or implemented in R statistical software.
ARGONAUT is implemented in R, the NLopt implementation of ISRES and COBYLA [97] is

available in “nloptr” library in R, and the NOMAD software is available at [98]. All the tested case
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Table 2.1: Descriptions and the convergence criteria of data-driven algorithms tested in this study.

Algorithm Name Description
NOMAD Local optimization based on pattern method (search, poll and update). Convergence
criteria: maximum number of samples reached, mesh size tolerance reached [99].

COBYLA Constraint handling via progressive barrier approach. Local optimization using linear
approximations for the objective and constraints by interpolation at the vertices of a
simplex. Convergence criteria: maximum number of samples reached, minimum trust
region radius is exceeded/reached, an optimization step causes a relative change in the
decision variables less than the set tolerance [51, 97].

ARGONAUT Global optimization using surrogate model identification for the objective and con-
straints. Convergence criteria: maximum number of samples reached, no improvement
of the incumbent solution over a consecutive set of iterations, all unknown functions are
modeled with high accuracy (i.e., very low cross-validation mean squared error) and the
incumbent solution is feasible [28].

ISRES Global optimization via evolutionary method; couples mutation rule and differential vari-
ation. Constraint handling via stochastic ranking. Convergence criteria: maximum num-
ber of samples reached, an optimization step causes a relative change in the decision
variables less than the set tolerance [97].

studies are modeled in GAMS and interfaced through R, where the input-output data collection on
each grey-box problem is performed via text files.

All benchmark problems and high-dimensional case studies are executed 10 times on a High-
Performance Computing (HPC) machine at Texas A&M High-Performance Research Computing
facility using Ada IBM/Lenovo Intel Xeon E5-2670 v2 (Ivy Bridge-EP) HPC Cluster operated
with Linux (CentOS 6). COBYLA, ISRES and NOMAD algorithms are executed using 1 node (1
core per node with 64 GB RAM), whereas the ARGONAUT algorithm is executed as a parallel
job, using 1 node (20 cores per node with 64 GB RAM) on the supercomputer. Furthermore, for
a fair comparison of results, the starting points of COBYLA, ISRES, and NOMAD are randomly
generated, as well as the starting initial design of experiments for ARGONAUT is randomly deter-
mined for each run. In addition, all data-driven solvers are tested and implemented at their default
setting provided from [97, 98], with the exception of ARGONAUT. By default, ARGONAUT sets
the number of initial sampling points to 10k + 1 for £ < 20 and to 251 when k£ > 20, where

k is the dimensionality of the problem (i.e., number of inputs). Since for £ < 2, the number of
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initial samples is not sufficient to reveal the input-output relationship for both levels in a bi-level
programming problem, the number of initial points to be collected is increased to 40k + 1. For

problems with dimensionality 2 < k£ < 20 and k£ > 20, the default values are implemented.
2.3.1 Benchmark Problems

The comprehensive test set from Mitsos and Barton [100] (Errata: from Paulavicius et al.
[101]), as well as individual bi-level programming problems from Edmunds and Bard [102], Sahin
and Ciric [103], Giimiis and Floudas [68], Colson [104], Mitsos [105], Kleniati and Adjiman [106],
Woldemariam and Kassa [107], and Nie et al. [108] are used for assessing the performance of the
DOMINO framework and for comparing the performance of different data-driven optimizers in
finding the true global solution of the bi-level programming problems. In addition to this set,
61 benchmark studies are randomly generated using the bi-level random problem generator in B-
POP toolbox [77] and are solved to global optimality, where the formulation of these are provided
in Appendix A. The selection of the benchmark problems aim to cover various different types
of bi-level optimization problems with varying dimensionalities in both upper and lower level
problems. Especially for the problems generated by B-POP, the computational complexity of the
test problems are limited to the dimensionalities that this solver can handle, so as to establish a
basis for comparison and to be able to assess the performance of DOMINO accurately throughout
the benchmark problems.

The dimensionality of each problem and their corresponding properties are provided in Tables
2.2,2.3 and 2.4, where n represents the number of upper-level continuous variables, p and r—p rep-
resents the lower-level dimensionality (continuous and integer, respectively) and nJ" represents
the number of grey-box constraints for each problem. The number of grey-box constraints shown
here is the sum of the number of the upper-level constraints and the lower-level constraints that in-
clude at least one upper-level variable in its mathematical form. This criterion is imposed since the
LLP is solved deterministically within the framework, where the optimal solution already satisfies
the constraints with only lower-level decision variables. This eliminates redundant model building

or point search in the optimization phase, which speeds up the computational time required for
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Table 2.2: Dimensionality of continuous bi-level linear benchmark problems tested with
DOMINO.

Problem ID  Label = Problem Type n p r—p nIY nY

[Source] (Upper-Lower) ’ ’
1[103] sc_1 LP-LP 1 2 0 3 0
2 [77] LPLP1 LP-LP 2 2 0 2 0
3[77]  LPLP2 LP-LP 2 2 0 5 2
41771  LPLP3 LP-LP 5 5 0 20
5[77] LPLP4 LP-LP 10 10 0 4 0
6 [77] LPLP5 LP-LP 20 500 0 350 O
T177] LPLP6 LP-LP 20 20 0 4 0
8 [77] LPLP7 LP-LP 20 30 0 5 0
9[77]  LPLPS LP-LP 20 50 0 70
10[77]  LPLP9 LP-LP 20 8 0 70
11 [77] LPLPI0O LP-LP 40 150 0 10 0
12 [77] LPLP11 LP-LP 50 200 0 20 0
13[(77]  LPLPI2 LP-LP 80 90 0 30
14[77]  LPLPI13 LP-LP 200 200 0 200 0

convergence for all data-driven algorithms. In addition, an a posteriori analysis is performed on
the LLP to ensure feasibility of the unmodeled constraints at convergence. The number of con-
straints with only the lower-level decision variables, hence not presented as grey-box constraints,
are also provided in Tables 2.2, 2.3 and 2.4 under ny.

The performance of each solver within DOMINO is assessed based on its efficiency and con-
sistency in identifying the true global optimum of the benchmark studies over multiple repetitive
runs. The accuracy and the consistency of each algorithm is evaluated by calculating the normal-
ized mean absolute error (% MAE = 100 - |(Fpest — Fyiobat)/ Fyiovar]) of the best found solution
with respect to the true global optimum and the standard deviation of this error over 10 runs,
respectively. In the benchmark problems with Fy.,,; = 0, the percent absolute error (% MAE
= 100-| Fyest— F, ylobal|) 1s calculated. It is important to note that 100% MAE is assigned for runs that
returned an infeasible solution, constraint violation > 10~% and/or lower-level is not globally opti-
mal (lower-level absolute optimality gap > 0 for LP, QP, MILP, MIQP-type lower-level problems

and lower-level absolute optimality gap > 107% for NLP and INLP-type lower-level problems),
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Table 2.3: Dimensionality of continuous bi-level nonlinear benchmark problems tested with
DOMINO.

Problem ID Label ProblemType n p r—p nf n}
[Source] (Upper-Lower)
15 [100] mb_1_1_06 LP-QP I 1 0 0 0
16 [77] LPQP1 LP-QP 30 60 O 10 O
17 [100] mb_1_1_16 QP-QP 1 1 0 2 0
18 [107]  wk_2015_01 QP-QP 1 1 0 2 0
19 [68] ef 4 QP-QP I 1 0 3 0
20[103] sc_2 QP-QP I 1 0 3 0
21 [68] gf 2 NLP-QP 1 2 0 2 0
22 [100] mb_2 3 02 NLP-QP 3 0 2
23 [100] mb_1_1_03 LP-NLP 1 1 0 0 0
24 [100] mb_1_1_04 LP-NLP 1 1 0 0 0
25[100] mb_1_1_05 LP-NLP 1 1 0 0 0
26 [100] mb_1_1_08 LP-NLP 1 1 0 0 0
27 [100] mb_1_1_09 LP-NLP 1 1 0 0 0
28 [100] mb_1_1_12 LP-NLP 1 1 0 0 0
29 [100] mb_1_1_01 LP-NLP I 1 0 0 2
30 [100] mb_1_1_02 LP-NLP 1 1 0 1 0
31 [68] ef 5 LP-NLP 1 2 0 1 1
32 [68] gf 3 LP-NLP 2 3 0 2 1
33 [100] mb_1_1_07 QP-NLP I 1 0 0 0
34 [100] mb_1_1_10 QP-NLP 1 1 0 0 0
35[100] mb_1_1_11 QP-NLP 1 1 0 0 0
36 [100] mb_1_1_13 QP-NLP I 1 0 0 0
37 [100] mb_1_1_14 QP-NLP 1 1 0 0 0
38 [100] mb_1_1_17 QP-NLP 1 1 0 0 0
39 [100] mb_1_1_15 QP-NLP 1 1 0 1 0
40 [68] gf 1 QP-NLP 1 1 0 2 0
41 [104] c_2002_01 NLP-NLP 1 1 0 2 0
42 [104] c_2002_03 NLP-NLP I 1 0 2 0
43 [104] c_2002_05 NLP-NLP 1 2 0 2 0
44 1108] nwj_2017_02 NLP-NLP 2 3 0 1 2
45 [100] mb_2 3 01 NLP-NLP 2 3 0 3 2
46 [107]  wk_2015_04 NLP-NLP 2 4 0 4 0
4711071  wk_2015_06 NLP-NLP 4 4 0 4 0
48 [106] ka_2014_02 NLP-NLP 5 5 0 4 0
49 [100] mb_5_5_01 NLP-NLP 5 5 0 4 2
50 [100] mb_5_5_02 NLP-NLP 5 5 0 4 2

* This constraint is handled as “known" in ARGONAUT runs and as a grey-box constraint for
other solvers.
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Table 2.4: Dimensionality of bi-level mixed-integer benchmark problems tested with DOMINO.

Problem ID Label ProblemType n p r—p nf¥ n}
[Source] (Upper-Lower)
51[105] am_1_0_0_1_01 LP-ILP 1 0 1 0 0
52 [77] LPMILP1 LP-MILP 10 10 10 4 0
53 [77] LPMILP2 LP-MILP 10 10 10 4 0
54 [77] LPMILP3 LP-MILP 20 20 10 2 0
55[77] LPMILP4 LP-MILP 30 30 30 4 0
56 [77] QPMILP1 QP-MILP 5 5 5 4 1
57[77] QPMILP2 QP-MILP 10 5 5 5 0
58 [77] QPMILP3 QP-MILP 10 10 6 3 0
59 [77] QPMILP4 QP-MILP 20 10 5 2 3
60 [77] QPMILPS5 QP-MILP 22 12 7 5 0
61 [77] QPMILP6 QP-MILP 25 20 15 3 0
62 [77] QPMILP7 QP-MILP 25 25 10 6 0
63 [77] QPMILPS QP-MILP 30 120 120 120 O
64 [77] QPMILP9 QP-MILP 30 200 200 250 O
65 [77] NLPMILP1 NLP-MILP 5 8 6 9 1
66 [77] NLPMILP2 NLP-MILP 10 10 10 100 0
67 [77] NLPMILP3 NLP-MILP 15 15 15 14 1
68 [77] NLPMILP4 NLP-MILP 20 20 20 20 O
69 [77] NLPMILPS NLP-MILP 25 30 30 30 0
70 [77] NLPMILP6 NLP-MILP 25 50 50 50 0
71 [77] NLPMILP7 NLP-MILP 30 70 70 70 0
72 [77] NLPMILPS NLP-MILP 30 100 100 100 O
73 [77] NLPMILP9 NLP-MILP 30 200 200 200 O
74 [77] LPMIQP1 LP-MIQP 7 7 6 1 0
75 [77] LPMIQP2 LP-MIQP 7 7 6 1 0
76 [77] LPMIQP3 LP-MIQP 10 7 6 1 0
77 [77] LPMIQP4 LP-MIQP 10 7 6 1 0
78 [77] LPMIQPS5 LP-MIQP 10 10 6 1 0
79 [77] LPMIQP6 LP-MIQP 10 13 6 1 0
80 [77] LPMIQP7 LP-MIQP 10 13 6 1 0
81 [77] LPMIQP8 LP-MIQP 12 13 6 1 0
82 [102] eb_1 QP-1QP 1 0 1 3 0
83 [77] QPMIQPI QP-MIQP 5 20 10 1 0
84 [77] QPMIQP2 QP-MIQP 6 5 2 30
85 [77] QPMIQP3 QP-MIQP 6 5 3 4 0
86 [77] QPMIQP4 QP-MIQP 6 5 5 4 0
87 [77] QPMIQPS5 QP-MIQP 10 3 3 3 0
88 [77] QPMIQP6 QP-MIQP 10 30 7 1 0
89 [77] QPMIQP7 QP-MIQP 10 40 7 1 0
90 [77] NLPMIQPI NLP-MIQP 5 5 2 0 3
91 [77] NLPMIQP2 NLP-MIQP 7 5 3 3 0
92 [77] NLPMIQP3 NLP-MIQP 9 6 3 2 0
93 [77] NLPMIQP4 NLP-MIQP 117 5 2 0
94 [77] NLPMIQPS5 NLP-MIQP 12 10 10 1 0
95 [77] NLPMIQP6 NLP-MIQP 12 11 10 0 1
96 [77] NLPMIQP7 NLP-MIQP 12 11 5 1 0
97 [77] NLPMIQPS NLP-MIQP 12 12 6 1 0
98 [77] NLPMIQP9 NLP-MIQP 13 9 8 1 0
99 [77] NLPMIQP10 NLP-MIQP 15 15 4 1 0
100 [103] sc_3 NLP-INLP 2 0 2 0 1
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and their respective standard deviation of error is not calculated. Furthermore, the efficiency of the
framework is evaluated based on the average elapsed time it takes for each solver to converge and
based on the total number of function evaluations (i.e., samples) collected at convergence. The re-
sults for continuous linear, continuous nonlinear, mixed-integer linear and mixed-integer nonlinear

bi-level programming problems are discussed in Sections 2.3.1.1, 2.3.1.2 and 2.3.1.3, respectively.
2.3.1.1 Results for Bi-Level Linear Programming Problems

The results of the bi-level linear benchmark problems are reported in Table 2.5. The over-
all performance of all grey-box solvers, tested as a part of the DOMINO framework, indicate
that they return consistent feasible solutions with low errors to the bi-level linear programming
(B-LP) problems. Specifically, it is observed that NOMAD, as a local sample-based grey-box
optimization solver, outperforms the rest of the solvers in B-LP problems. Only in the bench-
mark problem with the highest number of upper-level variables, NOMAD returns an objective
value with more than 5% average MAE. A similar trend is also observed in the ISRES algorithm,
where at higher upper-level dimensionality benchmarks (i.e., 80 and 200 upper-level variables) the
algorithm converges with high % MAE. One possible reason for this behavior in sample-based
methodologies is reported in Figure 2.2B, where both NOMAD and ISRES algorithms converge
and return the incumbent solution after hitting the maximum number of samples allowed (i.e., 10°
samples) in all computational studies. Hence, by allowing these algorithms to collect more sam-
ples at high-dimensional B-LP problems, it is possible to get more consistent solutions with lower
errors. Specifically, in problem 5 (“LPLP4”7), it is observed that the ISRES algorithm hits the max-
imum number of samples even though a solution with 0.0000 average % MAE and 0.0000 average
standard deviation of % MAE is found. This is due to the fact that the tolerance set for the criterion
that defines the convergence with respect to the relative change in the decision variables is not met.
Another optimization step taken by ISRES will result in a relative change in the decision variables
that is greater than 10~°. Hence for this specific case, ISRES algorithm terminates by reaching
the maximum number of samples allowed. On the other hand, it is observed that model-based

algorithms, such as COBYLA and ARGONAUT, can provide consistent near-optimal solutions
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Table 2.5: Average % MAE and average standard deviation of % MAE for the bi-level linear
programming problems. No infeasibility is reported by any of the grey-box solvers for this set of
bi-level linear programming problems.

Average % MAE Average Standard Deviation of % MAE
Problem

ID NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES

0.0000 16.1538 0.0007 0.0001  0.0000 26.0102 0.0007  0.0001
0.0000  0.0000 0.0000 0.0011  0.0000  0.0000 0.0000  0.0032
0.0000  8.0448 0.0000 0.0001  0.0000 10.3858 0.0000  0.0001
0.0000  0.0388 0.0000 0.0000  0.0000  0.1225 0.0000  0.0000
0.1044  6.4958 11.2746  0.0000 0.0960  8.8862 6.9450  0.0000
0.0000 4.6180 16.1528  0.0287  0.0000  9.3016 14.1927  0.0119
0.2804 6.4321 1.3349 0.1767 0.1462  4.6339 0.6668  0.0427
0.0000  0.0000 0.0000 0.1018  0.0000  0.0000 0.0000  0.0336
0.0000  0.0000 0.0000 0.0830  0.0000  0.0000 0.0000  0.0107
10 0.0000  0.0000 0.0000 0.1493  0.0000  0.0000 0.0000  0.0283
11 0.0000  0.0000 0.0000 1.4393  0.0000  0.0000 0.0000  0.1732
12 0.0000  0.0000 0.0000 1.8667  0.0000  0.0000 0.0000  0.1101
13 0.0001  0.0584 0.0664  30.2788 0.0004  0.1838 0.0975 1.3798
14 6.9641  0.0000 0.0779  57.6624 1.4234  0.0000 0.2463 1.0838

O 0 O\ N W

to these high-dimensional B-LPs. However in certain benchmark problems, these methodologies
may return solutions with higher % MAE, where also a higher variability is observed among 10
repetitive runs of these test problems.

In addition to the solution accuracy of each grey-box solver tested as a part of the DOMINO
framework, the computational performance of each methodology is compared with respect to the
total elapsed time for convergence and the average number of samples collected at convergence
(Figure 2.2). The overall computational performance of all solvers, shown in Figure 2.2A and B,
indicates that the computational requirements for the DOMINO increases as the ULP dimension-
ality increases. This is an expected result since the computational efficiency of all grey-box solvers
will highly depend on the number of decision variables and the grey-box constraints handled by
these algorithms. Although the overall trend shows an increase in computational expense with

increasing upper-level dimensionality, Figure 2.2A shows that the total elapsed time for DOMINO
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Figure 2.2: (A) Average elapsed time for solving bi-level linear programming problems; (B) Aver-
age total number of samples collected by each solver in bi-level linear programming problems.

is comparable when using NOMAD, COBYLA or ARGONAUT algorithms as the preferred grey-
box solvers within the framework. On the contrary, the elapsed computational time for the ISRES
algorithm is at least an order of magnitude higher for most of the B-LLP benchmark problems when
compared to other solvers. This is mainly because the solution strategy of the ISRES algorithm
dictates significantly higher number of samples for convergence for all B-LP problems, where this
in return increases the computational requirements for DOMINO, as shown in Figure 2.2B. It is
also important to note that the computational time for solving the LLP in B-LP benchmark prob-
lems is minimal. On average, the amount of time required to solve the LLP took 0.013-0.065
seconds per sample. For example, for the ARGONAUT algorithm, it is observed that the total
sampling time (i.e., total time spent to solve the LLP for a given B-LP benchmark problem) ac-
counted for less than 9% of the total elapsed time spent for convergence. For this grey-box solver,
the parameter estimation and the surrogate model optimization stages accounted for at least 59%
of the total elapsed time, showing that the grey-box optimization stage was computationally much
more expensive than solving the LLP at different sampling points.

The overall results demonstrate that NOMAD, as a sample-based local grey-box solver, is more
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favorable to be incorporated in the DOMINO framework for solving B-LP problems. NOMAD is
shown to achieve highly consistent solution accuracy with good computational efficiency compared
to other methodologies. In spite of that, it is important to note that the incumbent solution obtained
at convergence from all algorithms in the DOMINO framework are guaranteed feasible solutions

to the B-LP problems, as all constraints, including the optimality of the LLP, are satisfied.
2.3.1.2  Results for Continuous Nonlinear Bi-Level Programming Problems

In addition to the B-LPs, the DOMINO framework is extensively tested with continuous bi-
level nonlinear programming (B-NLP) problems. The results of this computational study are pro-
vided in Table 2.6. The overall results show that in B-NLP problems, the global methodologies
outperform local solution strategies. Global grey-box solvers, namely ARGONAUT and ISRES,
solve more benchmark problems with lower % MAE and with lower standard deviations of this
error. ISRES solves 30 benchmark problems with less than 5% MAE and ARGONAUT solves 28
in the same error range out of the 36 benchmark problems tested. This number drops to 23 and 14
for NOMAD and COBYLA, respectively. Especially, the deteriorating performance of COBYLA
is somewhat expected since this algorithm uses linear approximations for the objective function
and constraints. In many of these B-NLP case studies, the linear approximations constructed by
COBYLA are not sufficient to capture the nonlinear relationship in the input-output data. Hence,
DOMINO is more prone to converging to sub-optimal solutions in B-NLP benchmark problems
when COBYLA is preferred over other solvers.

Furthermore, Table 2.6 provides a more detailed overview on DOMINO’s accuracy and con-
sistency in solving many challenging B-NLP problems. In the LP-QP test problems, it is observed
that for problem 16 (“LPQP1”) NOMAD, COBYLA and ARGONAUT converge consistently to
the true global solution over multiple repetitive runs, whereas ISRES converges to a near-optimal
solution with less than 5% MAE. For benchmark 15 (“mb_1_1_06"), it is observed that DOMINO
returns feasible solutions with high % MAE regardless of the grey-box solver of choice. The un-
derlying reason for this inferior performance by DOMINO is due to the fact that the problem is

degenerate. The optimal solution to the bi-level problem exists at x = 0, where all points for
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y € [—1, 1] are trivially optimal [100]. However, for —1 < = < 0 the unique global solution exists
aty = —1 and for 0 < x < 1 the unique global minimum is at y = 2. Hence, the data-driven
algorithms tend to go to either unique optimal solution at the lower-level (y = —1 or y = 2?%)
due to the deterministic optimization step taken by the DOMINO at provided sampling points for
x. As aresult, higher deviations are observed in DOMINO solutions compared to the true global
solution. It is also important to note that for this class of bi-level benchmark problems, all grey-box
solvers provide guaranteed feasible solutions as the LLP returns the global optimum and a feasible
solution to the grey-box problem is identified at convergence (Remark 3).

In the QP-QP problem set, the results indicate that global solvers can provide consistent near-
optimal solutions to these benchmark problems. Especially, ISRES algorithm consistently con-
verges to the true optimal solution in 3 out of 4 QP-QP benchmark problems. However, local
methodologies (NOMAD and COBYLA) converge to sub-optimal solutions with high variability.
Moreover, it is important to note that NOMAD’s standard deviation of the % MAE for problem 17
(“mb_1_1_16") is not reported since this algorithm has returned an infeasible solution in 1 of the
10 random runs. In this case, the lower-level optimality is satisfied, however, one of the grey-box
constraints is violated. In addition, it is important to highlight that a better solution for the prob-
lem 18 (“wk_2015_01") is identified by the DOMINO framework. Different decision variables
are identified at the LLP with an improved objective function value compared to the ones reported
by Woldemariam and Kassa [107]. Thus, the solution reported by this study [107] does not meet
the optimality condition of the lower-level where the overall solution becomes infeasible for this
B-NLP problem. The best found solution by DOMINO is reported in the Appendix A.

In the NLP-QP problem set, a similar trend is observed where global solvers outperform the
local grey-box solution strategies. For problem 22 (“mb_2_3_02"), the global optimization step
taken at the lower-level returned the optimal solution to all repetitive runs of the 4 grey-box solvers
tested as a part of the DOMINO framework. However, due to the nonconvexity at the upper-level,
it is observed that the local solvers converge to sub-optimal solutions and yield higher % MAE

values with higher deviations. Hence, the global exploration of candidate sampling points by
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ARGONAUT and ISRES leads to improved solution accuracy in this challenging B-NLP problem.

Similarly, in the LP-NLP problem set, the overall performance of ARGONAUT and ISRES
show that these solvers are more favorable to be incorporated into the DOMINO framework for
solving B-NLP problems, as they provide highly consistent and accurate solutions to these case
studies. In several benchmark problems, it is observed that NOMAD and COBYLA return highly
variable solutions with a high % MAE. Especially for problems 31 (“gf_5”) and 32 (“gf_37),
COBYLA returns 1 infeasible solution out of 10 repetitive runs of these bi-level problems. In case
of the NOMAD algorithm, an infeasible solution is returned for problem 32 (“gf_3”). In addition,
it is important to note that for problem 24 (“mb_1_1_04") all grey-box solvers provide feasible
solutions with more than 100% MAE with respect to the true global solution. In this case, the
upper-level objective consists of the lower-level variable, y, and the inner objective is parametrized
in x. As a result, the proposed data-driven approach can detect the unique global minimum for the
inner objective, which is y* = 0.5 for x > 0 and y* = 1 for x < 0. However, none of the data-
driven solvers can pinpoint the unique optimal solution of this bi-level problem at z = 0 where any
y € [—0.8,1] is trivially optimal. The main reason behind this issue is that the LLP is degenerate
and the piecewise nature of the input-output data hinders the information collected at the sampling
stage. Even though various points are sampled, with different = values, the corresponding upper-
level objective is either 0.5 or 1. As a result, the solvers terminate the optimization procedure after
several consecutive iterations, since there is no improvement to the best found objective as new
sampling points are added. Hence, DOMINO fails to pinpoint the unique optimal solution to this
benchmark problem.

Furthermore, in the QP-NLP problem set, the global grey-box solvers continue to provide
optimal or near-optimal solutions consistently to many B-NLPs of this type. However, in problem
38 (“mb_1_1_17") all solvers consistently converge to the same sub-optimal solution. The main
reason for this is that the LLP has two global minima with the objective function value of zero
and y = 1 + 0.1z & 0.5v/2 + 22. By default, the negative counterpart is used for computing v,

whereas the optimal solution reported in Mitsos and Barton [100] uses the positive counterpart for
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the inner problem. Hence, all the grey-box solvers converge to the same sub-optimal solution and
the results reported in Table 2.6 reflect the errors based on the negative counterpart of y. However,
if y is strictly constrained to the positive counterpart, then all the grey-box solvers will identify a
near-optimal solution with 0.0161 average % MAE and 0.0000 average standard deviation of %
MAE. This observation is also consistent with Remark 5, where DOMINO cannot characterize
pessimistic, optimistic and other types of decisions in the presence of multiple optima at the lower-
level.

Finally for the NLP-NLP type bi-level problems, it is observed that global solvers return con-
sistent feasible near-optimal solutions whereas the local solvers are prone to converging to sub-
optimal solutions in a portion these nonconvex B-NLPs. This difference is also supported by the
standard deviation values of the % MAE provided in Table 2.6, where high values of the devi-
ation indicates that in a portion of the repeated test runs, these local solvers can find a feasible
near-optimal solution, whereas in the rest they converge to feasible sub-optimal solutions that are
distant to the true global solution. However, it is important to state that COBYLA struggles to find
feasible solutions in 50% of the NLP-NLP type benchmark problems. As this algorithm uses linear
approximations, using the COBYLA algorithm within the DOMINO framework is not favorable
for solving nonconvex nonlinear bi-level programming problems. It is also observed that ARG-
ONAUT returns an infeasible result for problems 46 (“wk_2015_04") and 47 (“wk_2015_06"),
whereas NOMAD and ISRES return infeasible solutions to problem 47 (“wk_2015_06"). Both
of these case studies are particularly challenging since they contain the absolute value function,
where the derivative of the objective/constraints is discontinuous. Nonetheless, it is important to
note that, for both of these benchmark problems, out of 10 random runs for each solver, a better
objective function value is found than the solution reported in Woldemariam and Kassa [107]. This
is possible since the lower-level optimality in this study [107] was not satisfied at the provided op-
timal solution, hence making the reported solution an infeasible point for both of these bi-level
programming problems. The best found solutions by DOMINO for these benchmark problems are

reported in the Appendix A.
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Table 2.6: Average % MAE and average standard deviation of % MAE for continuous nonlinear
bi-level benchmark problems. Number of infeasible solutions reported out of 10 runs: by NOMAD
for problem 17 (“mb_1_1_16")is 1, for problem 32 (“gf_3") is 1, for problem 47 (“wk_2015_06")
is 4; by COBYLA for problem 31 (“gf_57) is 1, for problem 32 (“gf_3”) is 1, for problem 42
(“c_2002_03”) is 2, for problem 44 (“nwj_2017_02") is 1, for problem 46 (“wk_2015_04") is 3,
for problem 47 (“wk_2015_06") is 9, problem 48 (“ka_2014_02") is 1; by ARGONAUT for for
problem 46 (“wk_2015_04") is 1, for problem 47 (“wk_2015_06") is 1; by ISRES for problem 47
(“wk_2015_06") is 8.

Average % MAE Average Standard Deviation of % MAE
Problem
ID NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES
LP-QP

15 90.0046 70.0139  100.0000 30.0175 31.6081 48.2822 0.0000  48.2929
16 0.0000  0.0000 0.0000 4.1468  0.0000  0.0000 0.0000 0.6435

QP-QP
17 89.6785 56.8518 33533  0.0314 - 1014962  3.0133  0.0007
181 0.0000 0.0000  0.8891  0.0001 0.0000 0.0000 12213 0.0001
19 00000 0.0000  0.0000  0.0000 0.0000 0.0000  0.000  0.0000
20 0.0000 784000  0.0077  0.0000 0.0000 28.6713  0.0161  0.0000

NLP-QP
21 0.0000  0.0000 0.0000  0.0003 0.0000  0.0000 0.0000  0.0005
22 172004 59.1898  15.8680  6.3927 13.2570 32.6424  9.8335  3.0217

LP-NLP
23 0.0000  0.0000 0.0000 0.0000  0.0000  0.0000 0.0000 0.0000
24 FS* FS* FS* FS*  32.9404 322749 0.0000 0.1002

25 0.0141  0.0252 0.5802 0.0141  0.0000  0.0352 0.4652 0.0000
26 0.0000  10.0001 0.0000 0.0001  0.0000 31.6227 0.0000 0.0002
27 0.0000  5.0002 0.0000 0.0002  0.0000 15.8114 0.0000 0.0004
28 31.4656 FS* 0.1973 0.0293  47.3844 121.6939 0.3698 0.0000
29 1.0000  1.0000 1.0000 1.0000  0.0000  0.0000 0.0000 0.0000
30 0.0000  0.0000 0.0000 0.0000  0.0000  0.0000 0.0000 0.0001

31 0.0009 10.0007  0.8179  0.0007  0.0000 - 14561 0.0003
32 145205 29.9388  12.8843  0.0000 - - 5.8265  0.0000
QP-NLP

33 0.0000  90.0002 1.4847 0.0000  0.0000 1449136 1.1691 0.0001
34 0.0000  0.0000 0.0035 0.0000  0.0000  0.0000 0.0069 0.0000
35 40.0000 20.0000 0.0000 0.0024 51.6398 42.1637 0.0000 0.0068
36 54.0004  FS* 2.6282 0.0005 88.4684 140.8542 2.1959 0.0003
37 0.0024  0.0024 0.0165 0.0024  0.0000  0.0000 0.0214 0.0000
38 83.3109 83.3109 83.3109  83.3109 0.0000  0.0000 0.0000 0.0000
39 0.0024  0.0024 0.0326 0.0024  0.0000  0.0000 0.0625 0.0000
40 1.1953 14353 0.0001 0.0000 1.2599  1.2353 0.0002 0.0000

NLP-NLP
41 1.1490  1.1490 1.1490 1.1490  0.0000  0.0000 0.0000 0.0000
42 0.0000  20.0000 0.0000 0.0007  0.0000 - 0.0000 0.0008
43 0.0084 10.9125 0.0867 0.0084  0.0000  9.3847 0.1319 0.0000

44 9.9140  79.9494 5.8744 0.7041 19.5323 - 4.5579 0.0774
45 27.3509 37.5217 0.1481 0.0004 35.3098 40.7806 0.4682 0.0006
46t 56.6928 62.3959 FS* 64.7918 39.1217 - - 34.1483
478 FS* FS* FS* FS* - - - -

48 0.0000 16.0616 0.0054 2.8125  0.0000 - 0.0172 4.5286

49 0.0025 40.0776 4.0394 0.0025 0.0000 43.6221 2.0734 0.0000
50 0.0000  0.0000 0.0000 0.0000  0.0000  0.0000 0.0000 0.0000

*Feasible solution with more than 100% MAE on average is returned at convergence.

T % MAE calculated with respect to the best solution found by DOMINO (Fp..; = 99.9955).

1 9% MAE calculated with respect to the best solution found by DOMINO (Fj.s; = 0).

§ 9% MAE calculated with respect to the best solution found by DOMINO (F}.s; = 4.5078 - 1079).
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Figure 2.3: (A) Average elapsed time for solving continuous bi-level nonlinear programming prob-
lems; (B) Average total number of samples collected by each solver in continuous bi-level nonlin-
ear programming problems.

Computational performance of DOMINO is also provided in Figure 2.3. As expected, the
elapsed time for local solvers is significantly less than the global ones (Figure 2.3A). Specifically,
ISRES stands out as the most computationally demanding methodology both in the time required
to retrieve the optimal solution as well as the total number of samples required for convergence,
where in many instances it hits the maximum number of function evaluations (10° samples) al-
lowed for the algorithm, as shown in Figure 2.3B. This occurrence is due to the evolutionary
nature of this method, as ISRES requires too many samples for convergence, even for the lower
dimensional and relatively simpler benchmark problems. This is followed by the ARGONAUT al-
gorithm where in certain benchmark problems the time required for convergence is higher, where
in others the overall performance is comparable to local methodologies. The computation time
required to solve the continuous nonlinear lower-level problems is minimal similar to the B-LP
benchmark problems with the exception of problem 47 (“wk_2015_06"). On average, the compu-
tational expense for solving the lower-level varies between 0.0171-5.5514 seconds and the overall

contribution of sampling to the total elapsed time varies between 0.03-18.9%. Specifically, in
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problem 47 (“wk_2015_06"), the average computational time required to solve the LLP is 88.789
seconds with an overall contribution of 50.9% in total elapsed time. As this problem is more chal-
lenging to optimize due to the discontinuous derivatives at the lower-level, a higher contribution
from the sampling phase is observed to the overall DFO procedure than the grey-box optimiza-
tion phase. On the contrary, for the other B-NLP problems, the grey-box optimization phase (i.e.,
surrogate model building and its respective optimization) is the most computationally demanding
step in ARGONAUT’s solutions. As for the sampling requirements, ARGONAUT collects fewer
samples than the ISRES algorithm, since ARGONAUT is a model-based grey-box solver. The
overall results show that COBYLA is the most computationally efficient methodology; however,
this solver was unable to provide consistent feasible solutions to several B-NLP benchmark prob-
lems. Although the ARGONAUT and ISRES are computationally more expensive to execute, it is
possible to retrieve optimal or near-optimal solutions more consistently through using these global

data-driven solvers in DOMINO for B-NLP problems.
2.3.1.3 Results for Bi-Level Mixed-Integer Programming Problems

The results for the bi-level mixed-integer programming problems are summarized in Table 2.7.
For this class of problems, it is observed that sample-based grey-box solvers outperform model-
based methodologies. DOMINO can identify optimal or near-optimal solutions consistently to
various types of bi-level mixed-integer programming problems when using NOMAD as the grey-
box solver of choice. NOMAD almost perfectly returns solutions with low errors where only
in one benchmark problem this algorithm returns a sub-optimal feasible solution. Likewise, the
ISRES algorithm is very successful in finding near-optimal solutions, but struggles in finding near-
optimal solutions in higher dimensional benchmark problems. It is also important to highlight that
NOMAD, ARGONAUT and ISRES identify feasible solutions in all of the bi-level mixed-integer
programming problems tested. However, COBYLA fails to identify a feasible solution in 1 of the
10 repetitive runs of benchmark 57 (“QPMILP2”).

Furthermore, the computational performance of DOMINO in solving bi-level mixed-integer

programming problems is summarized in Figure 2.4. Figure 2.4A shows that ISRES requires an
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Table 2.7: Average % MAE and average standard deviation of % MAE for bi-level mixed-integer
benchmark problems. Infeasible solutions reported: by COBYLA for problem 57 (“QPMILP2”)
in 1 out of 10 runs.

Average % MAE Average Standard Deviation of % MAE
Problem
1D NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES
LP-MILP

51 0.0000  0.0000 0.0000 0.0009  0.0000  0.0000 0.0000 0.0018
52 0.0000  0.0000 0.0000 0.0000  0.0000  0.0000 0.0000 0.0000
53 0.3050  0.0000 0.8756 0.0000  0.8052  0.0000 1.3089 0.0000
54 0.0000  1.7135 8.3347 02276 0.0000  3.7096 5.2589 0.0846
55 0.0000  0.0004 0.0000 2.8790  0.0000  0.0011 0.0000 0.5561

QP-MILP
56 0.0000  0.0028 0.0365  0.0000 0.0000 0.0088 0.1151  0.0000
57 0.0074 28.4286 23668  0.0002  0.0042 - 1.7631  0.0002
58 0.0000 18.9344  0.0000  0.0000 0.0000 57.5193  0.0000  0.0000

59 0.0000 FS* FS* FS* 0.0000 > 10° 791.0469 > 10°
60 0.0000 FS* 7.9741 2.5208  0.0000 220.4544 2.5821 1.3129
61 0.0000 FS* 55.6621  50.5639 0.0000 > 10° 49.1259  27.5322
62 0.0000  2.8949 0.4577 0.5772  0.0000  5.3286 0.2089 0.1691
63 0.0000 FS* FS* 36.5575 0.0000 364.1700 188.6630  5.9444
64 0.0000 26.7727 FS* 8.9426  0.0000 23.3885  116.9957 2.1176
NLP-MILP
65 0.0000  27.5060 0.7382 0.0000  0.0000 44.6080 1.8132 0.0000
66 0.4039  0.4038 4.6050 0.4038  0.0000  0.0001 7.3684 0.0001
67 0.0000  1.2185 1.8888 0.0087  0.0000  3.8531 1.6111 0.0037
68 0.0026  6.9802 237610  0.5531  0.0049 10.8381 22.8133  0.1229

69 0.0000  23.3259 5.6201 0.5171  0.0001 32.5728 7.8602 0.2278
70 0.0039  0.2861 2.2180 0.8578  0.0079  0.9044 1.8165 0.1276
71 0.0006  0.0115 0.7633 1.1059  0.0016  0.0358 0.6795 0.1253
72 0.0023  1.7054 3.9910 1.1129  0.0074  3.2354 4.6783 0.1573
73 0.0030  1.3933 1.7064 1.1861  0.0068  1.3013 1.8636 0.1718

LP-MIQP
74 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000
75 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000
76 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000
77 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000
78 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000
79 0.1192  0.0000 0.0000  0.0000 0.3770  0.0000 0.0000  0.0000
80 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000
81 0.0000  0.0000 0.0000  0.0012 0.0000  0.0000 0.0000  0.0008

QP-MIQP
82 37.5000 25.0001 23111  0.0003 603807 527046  1.7433  0.0003
83 0.0000  3.7386 0.0000  0.0000 0.0000 11.6915  0.0000  0.0000
84 0.0000 13.5220  0.6207  0.0000 0.0000 36.4485 15634  0.0000
85 0.0000  0.0000 0.0000  0.0000  0.0000 0.0000  0.0000  0.0000
86 0.0000  0.0000 0.0000  0.0000 0.0000 0.0000  0.0000  0.0000
87 0.0000  6.9291 36101 0.0000 0.0000 21.9079  7.8285  0.0000

88 0.0000 FS* 0.3254 0.0000  0.0000 > 10* 0.5022 0.0000
89 0.0000 FS* 0.0015 0.0000  0.0000 945.6580 0.0047 0.0000
NLP-MIQP
90 0.0000  0.0000 0.2280 0.0000  0.0000  0.0000 0.2448 0.0000
91 0.0000  0.0055 0.0000 0.0000  0.0000  0.0056 0.0001 0.0000
92 0.0006  0.0024 0.6045 0.0004  0.0018  0.0021 0.8118 0.0007
93 0.1603  9.7658 0.8294 0.0774  0.3379  30.3412 0.7244 0.2442
94 0.0000  0.0076 28.2385  0.0004 0.0000 0.0184 16.3438  0.0006
95 0.0002  0.0126 0.4367 0.0007  0.0006  0.0393 0.3314 0.0009
96 0.0000  0.0000 0.0014 0.0004  0.0001  0.0000 0.0041 0.0004
97 0.0050  0.0022 1.5956 0.0072  0.0087  0.0046 4.7409 0.0053
98 0.0044  0.0131 1.0333 0.0074  0.0135  0.0180 1.5260 0.0142

99 0.0002  0.9624 2.1801 0.0071  0.0007  3.0432 2.2069 0.0022

NLP-INLP
100 2.5628  32.4959 0.0000 0.0000 8.1043 52.6317 0.0000 0.0000

*Feasible solution with more than 100% MAE on average is returned at convergence.
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order of magnitude higher time for convergence compared to other algorithms, and converges pre-
maturely by hitting the maximum number of samples allowed in almost all tested case studies
(Figure 2.4B). Moreover, it is important to note that for many of the bi-level mixed-integer bench-
mark problems both model-based methodologies (COBYLA and ARGONAUT) are recorded to
have higher computational expense. Like in the other classes of bi-level programming problems, it
is observed that the computation time to deterministically solve the LLP is small, between 0.016-
0.067 seconds on average per sample. The overall contribution of solving the LLP deterministi-
cally to the total elapsed computation time was at most 15%, where the rest of the computational
expense was sourced majorly from the grey-box optimization phase in the ARGONAUT results.
Overall, NOMAD is computationally efficient both in terms of the computational time required for
convergence as well as in terms of the total number of samples collected throughout the data-driven
optimization step. Although in Figure 2.4B, ARGONAUT is shown to be the most sample efficient
algorithm, the errors reported in Table 2.7 indicate that ARGONAUT converges to a sub-optimal
feasible solution in high-dimensional problems, hindering the overall performance of DOMINO in
finding the globally optimal solution to bi-level mixed-integer programming problems. The over-
all results show that NOMAD is more favorable to be incorporated in the DOMINO framework
for solving bi-level mixed-integer programming problems. In the following section, the DOMINO
framework is tested on a larger bi-level MINLP case study, which considers a land allocation prob-

lem under Food-Energy-Water Nexus considerations.
2.3.2 Land Allocation Problem in Food-Energy-Water Nexus

The sustainable development of an agricultural farming area is of critical importance for main-
taining the interconnected elements, namely food, energy and water, that depend on the same land
resources. Hence, the actions taken towards allocating land resources will essentially affect food
production, which requires energy, in the form of fertilizers, and water for irrigation. On the other
hand, clean water production requires energy (i.e., operating a filtration system) and energy can
be produced through agriculture as biofuels. This interconnected relationship between these key

resources is referred to as the Food-Energy-Water Nexus (FEW-N) and has recently gained a lot of
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Figure 2.4: (A) Average elapsed time for solving bi-level mixed-integer programming problems;
(B) Average total number of samples collected by each solver in bi-level mixed-integer program-
ming problems.

attention for land use optimization in areas with resource scarcity [109—111].

While the government regulators would like to minimize the stress on the nexus in the long-
term, many companies allocating and processing the land are concerned with short-term goals,
such as maximizing profit. Thus, a formidable challenge exists in the optimization of the land allo-
cation problem, where multiple stakeholders, each concerned with optimizing their own objective
functions, are acting upon the optimal decision-making process. We have previously developed a
hierarchical FEW-N approach to tackle this issue and to facilitate decision making under competi-
tion for these key resources while promoting the sustainable development of the land [94]. In this
section, the data-driven optimization of the land allocation problem will be addressed by using the
DOMINO framework.

The land allocation case study consists of two players: the government regulators and the
agricultural developer. The goal of the agricultural developer is to maximize its profit whereas the
government that regulates this piece of land aims to minimize the stress on the FEW-N, by offering

subsidies to the agricultural producer or land developer. Hence, this can be viewed as a Stackelberg
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game where the government regulators will lead, making the first move by assigning the subsidies,
whereas the agricultural producer will follow the leader by reacting accordingly, taking optimal
actions towards maximizing its own profit. This leads to the following hierarchical optimization

problem [94],

min Stress on FEW Nexus
s.t. Government's Budget
max Developer's Profit (2.2)

s.t.  Land Properties
Land Process Models

where the agricultural developer will invest on a piece of land to maximize its profit through a
careful consideration of land properties, subsidies offered by the government and land process
models at the lower-level. On the other hand, at the upper-level, the government agency that
regulates this land will focus on sustainable development through minimizing the FEW-N stress,
with respect to their allowed budget.

The detailed land allocation model (please see Appendix B for the model equations) is devel-
oped in GAMS and the lower-level problem is an MILP problem with 1,721 equations, 216 discrete
variables and 772 continuous variables. The upper-level is an NLP problem consisting of 5 con-
tinuous variables with 165 grey-box constraints from the Big-M formulation (Equations B.19 and
B.21). This large-scale bi-level NLP-MILP optimization problem is solved using the DOMINO

framework and the performance of the 4 data-driven solvers are compared in the following section.
2.3.2.1 Computational Results of the FEW-N Case Study

The results of the hierarchical land allocation problem are summarized in Figures 2.5 and 2.6.
The boxplot results in Figure 2.5A show that the DOMINO framework, when coupled with a global
solver, consistently returns the same objective value over multiple repetitive runs, whereas some
variability is observed in the returned solutions when the framework is coupled with local data-

driven solvers. This result clearly indicates that the hierarchical FEW-N land allocation problem
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Figure 2.5: (A) Optimal FEW-N metric returned by DOMINO when coupled with local and global
grey-box solvers; (B) Optimal nexus solution represented as the area of a triangle (Best solution
found by ARGONAUT and NOMAD algorithms in DOMINO, fi.,; = 1.2258); (C) Boxplot of
total amount of subsidies offered by the government for the solution of FEW-N land allocation
problem over 10 runs.

is nonconvex and global optimization is necessary to find a superior solution. The maximum value
for the FEW-N metric for this case study is identified by two algorithms, namely NOMAD and
ARGONAUT. In addition, Figure 2.5B and C shows the globally optimal FEW-N metric found
by the DOMINO framework and the distribution of the total amount of subsidies offered by the
government for each solver over 10 runs, respectively. The radar plot in Figure 2.5B shows that the
globally optimal solution can capture the food and water dimensions of the nexus almost perfectly
(99.5% in food and 99% in water) with a small trade-off in the energy dimension (93%).

In addition, the boxplot in Figure 2.5C shows that all solvers are subject to some variability
in finding the optimal set of decisions for the government regulators’ objective. More specifically,
the variability within the results of two global solvers, which returned consistent objective function
values as shown in Figure 2.5A, is a clear indication of the multiplicity of solutions that exists in the
problem. For the same optimal FEW-N metric value (fy.s; = 1.2258), NOMAD allocates a total of

$58.1M with a breakdown of $OM for livestock grazing and solar energy, $7.6M for wind energy,
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Table 2.8: Computational performance of DOMINO with different grey-box solvers for the land
allocation problem. The results are averaged over 10 runs.

Solver Average Elapsed Time (s) Average Total Number of Samples
NOMAD 138.6 283.9

COBYLA 23.6 67.1

ARGONAUT 1.2-10% 2474

ISRES 3.3-10% 10°

$37.8M and $12.7M for fruit and vegetable production, respectively. On the other hand, for the
same optimal FEW-N metric value, ARGONAUT allocates a total of $115.2M with a breakdown
of $OM for livestock grazing and solar energy, $15.2M for wind energy and $50M for both fruit and
vegetable production. A clear difference between the solutions provided by these two algorithms is
more apparent at the lower-level objective function value, where the solution provided by NOMAD
enables the agricultural developer to have $3.47B profit, whereas this number increases by $500M
to $3.97B profit with the ARGONAUT solution. This difference in profit values is captured in the
optimal allocation results that are provided in Figure 2.6, where the allocation patterns for the same
nexus solution differ as the subsidies offered by the government is lowered. Figures 2.6A and B
show that the optimal allocation pattern for the land is exactly the same for the spring, summer
and autumn seasons for both NOMAD and ARGONAUT, where a mix of wind energy and fruit
production is preferred on the land. However, in winter, the optimal allocation for plot 7 changes
to vegetable production for the ARGONAUT solution, while others remain the same. In the case
of the NOMAD solution, the allocation pattern for plot 3 in winter changes from wind energy and
fruit production to wind energy and vegetable production. Overall, both configurations are equally
optimal and are sufficient to minimize the nexus stress, where the government will decide whether
to subsidize the agricultural processes with a higher or a lower amount depending on their available
budget and preferences.

The computational performance of each solver within the DOMINO framework for the FEW-N
case study is also compared (Table 2.8). The average elapsed time and the average number of sam-

ples collected at convergence indicates that COBYLA is computationally very efficient. However,
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(A)

Optimal Land Allocation for Autumn,

Spring and Summer Seasons

Optimal Land Allocation for Winter

1. Wind | 2. Wind | 3.Wind | 4. Wind 1. Wind | 2. Wind | 3. Wind | 4. Wind
& Fruits | & Fruits | & Fruits | & Fruits & Fruits | & Fruits | & Fruits | & Fruits
5. Wind 6. Wind | 7.Fruits | 8. Fruits 5. Wind | 6. Wind| 7. Veggie | 8. Fruits

(B)

Optimal Land Allocation for Autumn,
Spring and Summer Seasons

Optimal Land Allocation for Winter

1. Wind | 2. Wind | 3.Wind | 4. Wind 1. Wind | 2. Wind. | 3. Wind | 4.Wind
& Fruits | & Fruits | & Fruits | & Fruits & Fruits | & Fruits | & Veggie | & Fruits
5.Wind | 6. Wind | 7.Fruits | 8. Fruits 5.Wind | 6. Wind | 7.Fruits | 8. Fruits

Figure 2.6: (A) Optimal land allocation returned by ARGONAUT; (B) Optimal land allocation
returned by NOMAD. Both solutions are equally optimal with the FEW-N metric value of 1.2258.

COBYLA was unable to locate the best solution found by NOMAD and ARGONAUT algorithms
for the FEW-N problem, which is undesirable to a decision maker. NOMAD stands out as a grey-
box solver of choice for this problem as this is the second most efficient algorithm that was able to
locate the global solution. As mentioned earlier in this section, the optimal solution provided by
NOMAD is more favorable for the government regulator as the total amount of subsidy offered is
minimal. On the other hand, the solution offered by ARGONAUT is equally optimal with respect
to the NOMAD solution, and favors the agricultural developer at the lower-level as this solution
provides an additional $500M in their profit. However, ARGONAUT being a global model-based
grey-box solver makes it more computationally demanding for this problem with respect to the
elapsed time for convergence, since ARGONAUT explicitly constructs individual surrogate for-
mulations for the 165 unknown grey-box constraints in this case study. In terms of sampling
requirements, as shown in Table 2.8, it is observed that NOMAD and ARGONAUT are compara-
ble as they both collect about equal number of samples on average over 10 repetitive runs. Finally,
as observed in the results of many benchmark problems that are provided in Section 2.3.1, ISRES
reaches the maximum number of samples allowed for the algorithm in all repetitive runs, which

also leads to a more demanding computational time for the execution of this algorithm. Overall,
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the results of the benchmark studies and the large-scale land allocation problem demonstrate that
the DOMINO framework serves as an effective methodology for solving many large-scale bi-level

MINLPs.
2.4 Concluding Remarks

In this chapter, the DOMINO framework is presented as an algorithmic advancement for solv-
ing bi-level mixed-integer nonlinear programming (B-MINLP) problems with guaranteed feasibil-
ity when the lower-level problem is solved to global optimality at convergence. A novel data-driven
approach is followed to approximate a bi-level optimization problem into a single-level problem,
where the upper-level decision variables are used to simulate the optimality of the lower-level prob-
lem. The resulting input-output data is further sent to a data-driven optimizer to retrieve the optimal
solution to the bi-level problem, where the DOMINO framework is flexible to house any type of
data-driven/grey-box optimizer. The accuracy, consistency and the computational performance of
DOMINO is extensively investigated on a large set of benchmark problems consisting of bi-level
linear, continuous nonlinear and mixed-integer programming problems. In addition, the effect of
the data-driven solver on DOMINO’s performance is investigated by incorporating a local sample-
based, local model-based, global sample-based, and global model-based methodologies. Further-
more, the performance of the DOMINO framework is tested on a large-scale bi-level mixed-integer
nonlinear case study in Food-Energy-Water Nexus (FEW-N). The results of the benchmark studies
show that the DOMINO framework can identify the true global solution or a near-optimal solu-
tion for an extensive set of challenging bi-level optimization problems. Moreover, the results of
the FEW-N case study demonstrate that DOMINO can handle large-scale bi-level mixed-integer
nonlinear programming problems and provide superior feasible solutions consistently over mul-
tiple repetitive runs. Hence, DOMINO serves as a powerful computational algorithm for solving

large-scale B-MINLPs which are traditionally difficult to solve using exact techniques.
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3. CONSTRAINED GREY-BOX MULTI-OBJECTIVE OPTIMIZATION WITH
APPLICATIONS TO ENERGY SYSTEMS DESIGN*

As discussed in Chapter 1, the global optimization of many engineering problems, which are
commonly characterized by high-fidelity and large-scale complex models, poses a formidable chal-
lenge partially due to the high noise and/or computational expense associated with the calculation
of derivatives. This complexity is further amplified in the presence of multiple conflicting ob-
jectives, for which the goal is to generate trade-off compromise solutions, commonly known as
the Pareto-optimal solutions. In this chapter, an algorithmic advancement is presented for solv-
ing a special class of problems under mathematical programming that entail multiple competing
objectives (i.e., multi-objective optimization) using a data-driven methodology. The presented
framework uses the e-constraint method to convert a multi-objective optimization problem into
series of single objective sub-problems and uses a global constrained grey-box optimization al-
gorithm to retrieve the optimal solution at each sub-problem. Computational results are reported
for a number of benchmark multi-objective problems and a case study of an energy market design
problem for a commercial building, while the performance of the framework is compared with
other derivative-free optimization solvers.

This chapter is organized as follows. Section 3.1 provides a brief introduction to multi-
objective optimization. In Section 3.2, an extensive literature review is provided on population-
based and surrogate-based algorithms. Section 3.4 describes our methodology in detail, where
Section 3.4.2 introduces the e-constraint method for reformulating multi-objective optimization
problems into a series of single objective sub-problems, and Section 3.4.3 demonstrates the steps
of the proposed framework on a motivating example. The mathematical formulations of the com-
putational studies are provided in Section 3.5. Finally, the results of the computational studies are

presented in Section 3.6, along with concluding remarks in Section 3.7.

“Part of this chapter is reprinted with permission from “Optimal design of energy systems using constrained grey-box
multi-objective optimization” by B. Beykal, F. Boukouvala, C.A. Floudas, E.N. Pistikopoulos, 2018. Computers

& Chemical Engineering, vol. 116, pp. 488-502, Copyright [2018] by Elsevier and Copyright Clearance Center.
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3.1 Multi-Objective Optimization

Multi-objective optimization (MOO) is a branch of mathematical programming where multiple
competing objectives (i.e., economic, environmental, societal, political objectives) are present in

the problem formulation. The general form of MOO problems is presented in Equation 3.1:

min Lfi(@), fa(@), ...s ()]
(3.1

st.xe X

where X is a non-empty feasible region, X C R".

For this class of problems, it is not possible to locate a unique optimal solution since there
are trade-offs between the conflicting objectives. As a result, MOO aims to find the best set of
decisions that will simultaneously optimize multiple objectives in such a way that the solutions
cannot be improved without degrading at least one of the other objectives [112]. In other words,
the goal of MOO is to derive a set of trade-off optimal solutions, known as the Pareto-optimal

solutions, that the decision makers can choose from, depending on their preferences.
3.2 Literature Review on Data-Driven Multi-Objective Optimization

While several methodologies exist in the open literature for MOO, this section only consid-
ers the ones that are linked to population-based and surrogate-based algorithms. Meta-heuristic
(population-based) algorithms are advantageous since they do not require any reformulations, such
as converting the multi-objective problem into a set of single objective sub-problems. These can si-
multaneously deal with a set of possible solutions without requiring series of separate runs, thus en-
abling the direct investigation of the multi-objective problem [113]. As a result, population-based
algorithms have been a popular choice among many researchers for the MOO of various systems,
including truss design [114], thermal system design [115], environmental economic power dis-
patch [116, 117], beam design [118], water distribution network design [119] and more recently
the MOO of zeolite framework determination [120]. In addition to these, the books by Rangaiah

and Bonilla-Petriciolet [121], and Coello et al. [113] demonstrate a plethora of applications of
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evolutionary algorithms to numerous MOO problems.

Even though the population-based algorithms are widely studied in the open literature, their
application to grey/black-box problems are rather limited. There are two main reasons for this: (1)
most existing algorithms consider the box-constrained problem or handle general constraints via
penalty functions, where the system is being continuously treated as a black-box, and (2) stochastic
algorithms typically require a large number of function calls to reach the global optimality, which
can be computationally prohibitive for expensive simulations. Several researchers have focused on
hybrid implementations of surrogate modeling with stochastic algorithms to overcome such prob-
lems. Datta and Regis [122] have proposed a surrogate-assisted evolution strategy, which makes
use of cubic radial basis surrogate models to guide the evolution strategy for the optimization of
multi-objective black-box functions that are subject to black-box inequality constraints. Likewise,
Bhattacharjee et al. [123] have used a well-known evolutionary algorithm, NSGA-II, as the base-
line algorithm while using multiple local surrogates of different types to represent the objectives
and the constraints.

Surrogate-based approaches, where the objectives and the grey/black-box constraints are ap-
proximated with simple tractable models, have also been investigated in the open literature in
conjunction with derivative-free algorithms. Singh et al. [124] have proposed the Efficient Con-
strained Multi-objective Optimization (ECMO) algorithm to solve computer-intensive constrained
multi-objective problems using kriging models for the objectives and the constraints. They make
use of the hypervolume-based Probability of Improvement (Pol) criterion to handle multiple ob-
jectives along with the Probability of Feasibility (PoF) criterion to handle computationally expen-
sive constraints and solve the final formulation using MATLAB’s fmincon optimizer. Feliot et
al. [125] have used an expected hypervolume improvement sampling criterion in their Bayesian
Multi-Objective Optimization (BMOQO) framework, where the nonlinear implicit constraints and
the black-box objectives are handled via extended domination rule. In this algorithm, the au-
thors use sequential Monte Carlo sampling technique for the computation and optimization of

the expected improvement criterion. Martinez-Frutos and Herrero-Pérez [126] have introduced
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the Kriging-based Efficient Multi-Objective Constrained Optimization (KEMOCO) algorithm that
uses a kriging-based infill sampling strategy with DIRECT algorithm for constrained MOO of
expensive black-box simulations. They combine the expected hypervolume improvement and the
PoF to obtain the Pareto-front with minimum number of samples. Regis [127] has presented Multi-
Objective Constrained Stochastic optimization using Response Surfaces (MOCS-RS) framework
where the author uses radial basis surrogates as approximations for the objective and constraint
functions. A more detailed overview on the existing methods for using surrogates in computation-

ally expensive MOO problems can be found in an excellent survey by Tabatabaei et al. [128].
3.3 Novelty of the Proposed Data-Driven Multi-Objective Optimization Framework

Different than the studies discussed above, this work aims to implement a hybrid methodology
that performs global parameter estimation coupled with k-fold cross-validation for individualized
surrogate model identification on each unknown formulation (objective and constraints) in a given
multi-objective programming problem. An algorithmic advancement is presented where a reformu-
lation strategy and a global grey-box optimization solver is integrated for the global optimization

of general constrained MOO problems. The methodological details are further described below.
3.4 Methodology
3.4.1 General Overview of the Data-Driven Multi-Objective Optimization Framework

Figure 3.1 demonstrates the workflow of the proposed data-driven multi-objective optimization
methodology. Given a constrained MOO problem, the first step of the workflow is to reformulate
it using the e-constraint method. This reformulation will enable the discretization of the objective
space, essentially creating a series of single objective sub-problems. Once the sub-problems are
identified, a grey-box simulator is created for each sub-problem where the input-output data is
generated. Finally, a global constrained grey-box optimization solver, namely the ARGONAUT
algorithm [28, 29], is executed for finding the optimal solution of each sub-problem, through sur-
rogate modeling and grey-box optimization of the input-output data. The detailed explanation of

the methodology and its step-by-step demonstration on a motivating example is provided in the
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following sections.

MULTI-OBJECTIVE PROBLEM REFORMULATE

min U= [ f1=4x% + 4x} min f1=4x% + 4x}
x f2=(x1—5)* + (2 — 5)? st (21— 5)2+ (x, — 5)2 —48.41379 < 0
s.t. (x,—5)%+ x4 <25 EE—— (x1—5)2%+x5-25<0
(x1— 8?2+ (x+3)% =27.7 —(x1— 82— (x2+3)2+7.7<0
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Figure 3.1: General workflow of the data-driven MOO framework using the ARGONAUT algo-
rithm and the e-constraint method.

3.4.2 c-Constraint Method

The e-constraint method is introduced by Clark and Westerberg [129] for converting multi-
objective design problems into series of single objective sub-problems. Consider an optimization
problem given in the form of Equation 3.1 with only 2 objectives (i.e., N = 2). The main idea be-
hind e-constraint method is to discretize the objective space into smaller sections, while obtaining
the optimal solution at each discretization point to generate the Pareto-optimal curve. The dis-
cretization is done by moving one of the objectives into the constraints set, while setting an upper
bound (€) on the new constraint. This simply converts the MOO problem into a single objec-

tive optimization problem with an added expense of a single inequality constraint per discretized
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problem, as shown in Equation 3.2.

msgn fi(@)

.. <
sit. fa(x) <€ (32)

xze X
X CR”

The lower and upper bounds, [¢Z, €U], on the discretization points can be derived by minimizing
each of the objectives independently. The optimal solution resulting from the minimization of the
first objective, 7, mathematically formulated in Equation 3.3, will give the maximum value of the
second objective, fo(x]), provided that increasing the value of f; beyond this maximum value will

not affect the value of f. Thus, ¢V will be equal to fo(x}).

min fi(x)
st.xeX (3.3)

X CR"

Similarly, the lower bound on €’ is derived by minimizing f, as a single objective optimization
problem. The optimal solution to this problem, 3, gives the minimum possible value of f;, which
is also the minimum value of €. Hence, e© will be equal to f»(x3%). Using these values of [¢l, €V

b

the objective region can now be divided into D equal intervals as follows:

U L

D—-1

Vg=2,...,D,e' =V, P =€ 3.4)
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Then, the final optimization problem becomes:

min f1(z)
st fo(m) < €
reX (3.5)
1 D]

€ecfe,... e

X CR"

Although a walk-through is provided for problems with two objectives, the e-constraint method
is a general partitioning strategy. For a system with N competing objectives, a similar procedure
will be followed as the one shown in Equation 3.2, creating a minimization problem with N — 1
constraints, which are added to the initial problem formulation. Then, the lower and upper bounds

LGU

on € for the partitioned objectives, [¢l, V]t x -+ x [l V]V 71

, will define the boundaries of a

Pareto-optimal surface when N = 3, and a Pareto-optimal polyhedron when N > 3.
3.4.3 Motivating Example

This section demonstrates the key steps of the solution methodology based on the integration of
ARGONAUT with the e-constraint method, on a 2-dimensional motivating example. The following

multi-objective programming problem is considered:

min U =
xr

fo= (xl —5)2 + (xz —5)°
2, .2
st (x; —5)* + a3 <25 (3.6)
(21— 8)+ (22 +3)* > 7.7
YANS [075]

T € [073]
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» Step 1: Dissect the objective space using Equation 3.4

As shown in Section 3.4.2, minimization of the first and second objectives gives the upper and
lower bounds for the € parameter (e € [4,50]), respectively. Within these bounds, the objective
space is dissected into 30 equal points using Equation 3.4. Table 3.1 summarizes the values of €

corresponding to each point.

Table 3.1: Resulting values of € from discretization of the objective space into 30 points.

Point number ‘ € ‘ Point number ‘ € ‘ Point number ‘ €
1 50 11 34.13793 21 18.27586
2 48.41379 12 32.55172 22 16.68966
3 46.82759 13 30.96552 23 15.10345
4 45.24138 14 29.37931 24 13.51724
5 43.65517 15 27.79310 25 11.93103
6 42.06897 16 26.20690 26 10.34483
7 40.48276 17 24.62069 27 8.75862
8 38.89655 18 23.03448 28 7.17241
9 37.31034 19 21.44828 29 5.58621
10 35.72414 20 19.86207 30 4

o Step 2: Reformulate Equation 3.6 into single objective sub-problem

Each point summarized in Table 3.1 is used to reformulate Equation 3.6 into the form of Equa-

tion 3.5. For demonstration purposes, only the reformulation of the second point is shown below.

min 4x% + 4x§
st. (z1 —5)% + (z2 — 5)? — 48.41379 < 0
(21 —5)*+25—-25<0
(3.7)
— (21 =8 = (22 +3)*+7.7<0
T € [0,5]
Ty € [0,3]
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It is important to realize that the optimization problem shown in Equation 3.7 has the exact
same form as Equation 1.1, where set £, representing the known formulations, is assumed to be
empty. Thus, it is assumed that the explicit forms of the objective function and the constraints are
unknown as a function of the continuous variables, where their respective values are collected as
outputs to the problem simulator, like in a true grey/black-box system. Once the constrained multi-
objective problem is reduced to a constrained grey-box single objective problem, the simulation is

passed on to the ARGONAUT algorithm for global optimization.

o Step 3: Perform Latin Hypercube Design within the continuous variable bounds

Initially, ARGONAUT utilizes Latin Hypercube Sampling to decide on the values of the input
variables. Figure 3.2A shows the surface plot of the original objective function in Equation 3.7,
and Figure 3.2B shows a sample design of experiments superimposed on the contour plot of the

original objective.

(A)

-
k=)
2 o2
__ 100
N
x
x .
s 50
2 g
0
0
4 5

Figure 3.2: Original objective function; (A) shown in a surface plot and (B) shown in a contour
plot superimposed on the initial sampling points to be collected by ARGONAUT.
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» Step 4: Perform global parameter estimation on each unknown equation

In the next step, a subset of the collected samples is randomly chosen and passed on to the
parameter estimation phase where the least-squares error between the predictions and the observed
data is minimized to global optimality. This procedure is repeated k times (k-fold cross-validation),
each starting with a random subset of samples, for all the unknown formulations. The surrogate
identification is based on the cross-validation mean squared error (CVMSE) calculated across these
repetitions and the surrogate with minimum CVMSE is selected. Table 3.2 summarizes the results

of the first parameter estimation for the motivating example.

Table 3.2: Results from the first parameter estimation using ARGONAUT. In this case, quadratic
surrogates are fitted to the initial sampling points.

Unknown Surrogate formulation from ARGONAUT

equation

Objective | f(z1,22) = 0.091 — 1.22221 — 0.038z3 + 0.7842% — 2.254 - 10~ 212 + 0.27623
Constraint #1 | 1.478 — 1.385x1 — 0.795z2 + 0.6212% — 3.550 - 10~ 82129 + 0.21922 < 0
Constraint #2 | 1.029 — 1.675x1 — 0.037x2 + 0.7512% — 8.010 - 10~8z1 29 + 0.26523 < 0
Constraint #3 | 0.325 — 1.098z1 — 0.21829 — 0.31622 — 1.117 - 10~ "z129 — 0.11123 < 0

e Step 5: Solve the resulting NLP, identify new sampling points, and cluster data

Surrogate formulations presented in Table 3.2 are passed on to the optimization phase where
multiple local solutions at pre-determined points are calculated alongside with the global optimum.
These optimal results now become the new sampling points and this procedure is repeated until a
convergence criteria is met.

Once the convergence is achieved, a session is completed and ARGONAUT clusters the data
based on the Euclidean distance between the samples. Clustering of the samples for this problem is

shown in Figure 3.3A, where the results are clustered into 6 different groups with the best cluster
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shown in diamonds. Based on this clustering analysis, it is possible to further tighten the pre-
defined variable bounds to focus in a specific region which provides the best objective. The new
variable bounds are shown in Figure 3.3B. Once this region is determined, ARGONAUT resumes
with the second session where the sample collection, modeling and optimization procedures are
repeated within the reduced bounds. Once the desired accuracy is achieved in the second session,

ARGONAUT will reach convergence and terminate the process.

. s Y s N
) .00 \ £ .00 \
2 2
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2\ \\ ) 2\ \ ]
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Figure 3.3: Clustering results for the motivating example; (A) Each cluster is represented with
different shapes where the best cluster is given in diamonds; (B) Based on the best cluster, variable
bounds are tightened and refined to the box marked with arrows. New iterations will now focus on
this region for improved solutions.

» Step 6: Final solution

ARGONAUT returns the global solution as 7 = 0.07995, 25 = 0.07995 with the objective
value of f(z7,z3) = 0.051136, which is significantly close to the actual deterministic solution
(x’{ = 0.07995, x5 = 0.07995, f(x7, x3) = 0.051135). The plot of the final approximation gener-
ated by ARGONAUT is shown in Figure 3.4.
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Figure 3.4: Comparison of the original objective function (top layer in blue) and its scaled surrogate
formulation obtained using ARGONAUT (bottom layer in red).

3.5 Computational Studies
3.5.1 Benchmark Problems

Initially, the framework is tested on three constrained MOO benchmark problems, namely
the Binh and Korn function (BNH), the CONSTR problem and the car-side impact test problem
[130-132]. The BNH and CONSTR problems contain 2 objectives, 2 variables, and 2 constraints,
whereas the car-side impact problem has 3 objectives, 7 variables and 10 constraints. Problem

formulations are provided in Table 3.3.
3.5.2 Energy Systems Design Model for a Supermarket

In addition to the benchmark problems, the generic framework is extensively tested on a higher
dimensional MOO problem, where an energy systems design model is chosen as the case study.
This problem is initially investigated by Liu et al. [4], in which the authors proposed a super-
structure and a mixed-integer model for the utilization of various available technologies for energy
generation in a commercial building, as well as a multi-objective optimization strategy that min-

imizes the cost along with the environmental impact. In this work, the aforementioned relatively
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Table 3.3: Multi-objective optimization test problems.

Test Problem

Mathematical Formulation

BNH

min U =

xr

f2 = (.’L‘l — 5)2 + (ZEQ - 5)2
sit. (xy —5)?+ 23 <25
(21— 8)2 + (22 +3)2 > 7.7
T € [0,5]
To € [0,3]

CONSTR

. Ji=m
magn U= f2 — (1+z2)
x1
s.t. 9ZL’1+$2—6 Z 0
95(31 — T — 1 2 0
T € [01, 1]
To € [O, 5]

Car-side Impact

min U =

fi =198+ 49z + 6.67x5 + 6.98x3 + 4.01x4
+1.78x5 + 0.00001z¢ + 2.7327

fo=F

f3=0.5(Vysp + VFp)

5..1.16 — 0.3717xoz4 — 0.009292825 < 1

0.261 — 0.01592 292 — 0.064862; — 0.0192527
+0.01442325 + 0.01544642¢ < 0.32
0.214 + 0.00817z5 — 0.0587x1 + 0.03099z92¢ — 0.018x27
+0.0304x5 — 0.00364z526 — 0.01822 < 0.32
0.74 — 0.61z5 — 0.03129623 — 0.031872x7 + 0.22722 < 0.32
28.98 + 3.818z3 — 4.2z129 + 1.272962¢ — 2.6806527 < 32
33.86 + 2.95x3 — 5.057x129 — 3.79529 — 3.443127
+1.45728 < 32
46.36 — 9.9x9 — 4.45052; < 32
F=472—-0.524 — 0192923 < 4
VMBP = 10.58 — 0674CC1.’132 — 067275CE’2 S 9.9
Vrp = 16.45 — 0.489z327 — 0.843z526 < 15.7
T € [05, 15]
5 € [0.45,1.35]
T3 € [05, 15]
Ty € [05, 15]
x5 € [0.875,2.625]
Te € [04, 12]
X7 € [04, 12]
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high-dimensional model is used to test the constrained grey-box global optimization algorithm.

The superstructure of the problem can be found in Figure 3.5.

On-Site Energy Energy Conversion
Generation Technologies
Technologies

Demand

Cold Air Retrieval

- A A A A

Grid Electricity e e
Electricity with Heat Recovery
[ Wind Turbine Refrigeration
Primary Energy without Heat Recovery Refrigeration
Sources [ Solar PV Fluorescent
NG Boiler LED
Ventilation
Biomass Biomass Boiler Bakery A
Bakery
NG CHP Bakery B
Space Heating
@ Biomass CHP Heating A
Heating B
Natural
Gas

Figure 3.5: Superstructure for the energy design problem for a commercial building.

As demonstrated in Figure 3.5, the problem contains two primary energy sources, namely

biomass and natural gas, which are converted into electricity and/or heat using the available on-

site energy generation technologies. The total electricity (generation + supply from the electricity

grid) and heat will then be converted into an output, using the energy conversion technologies

shown in Figure 3.5, to meet the demand in refrigeration, lighting, ventilation, bakery and space

heating. This can be mathematically modeled as follows. First, the conversion of primary sources

to electricity and heat is subject to energy balance, where any generated capacity using the on-site

energy generation technologies must be proportional to the efficiency of the technology and to the
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energy provided by the primary source:

CAPf - t,-T=PF,;-n; Vi=1,...,6,7=1,2 (3.8)

CAP! - t;- T =Py-n' VYi=1,...,6,j=1,2 (3.9)

C AP¢ and C AP denote the capacity of electricity and heat generated in (kW), respectively,
t; is the availability of the i*" on-site energy generation technology throughout the year given in
(hr/yr), T' is the total time of operation in years, P;; is the amount of energy delivered by the
utilization of the j* energy source by the i*" on-site energy generation technology in kJ, and 7¢
and n!* denote the efficiency of the i*" on-site energy generation technology for electricity and heat
generation, respectively. The availability of each technology is bounded (Equation 3.10), given

that the technologies can be available for a certain amount of time during the year (7).

In addition, the capacity resulting from each energy generation technology is bounded, as mod-
eled in Equation 3.11, and binary variables are included in the model to represent the selection of

available technologies.

yi - CAPF < OAP; <y;- CAPY Vi=1,...,6,y; € {0,1} (3.11)

Here, C'AP, represents the total capacity of energy generated, both in the form of electricity

and heat by a given technology.

CAP, = CAPf + CAP! Vi=1,...,6 (3.12)

The total amount of electricity (Er4tq), including any supply from the grid (e4iq), and heat
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(Hrotar) generated using the on-site energy generation technologies is defined as:

6
Erota =T -y  CAPf - t; + €gri (3.13)
=1
6
Hroa =T Y CAP]' -t (3.14)
=1

The energy balance on total electricity and heat dictates that the total amount generated must
be utilized in energy conversion technologies (C'AFP°") into an output. Here, it is assumed that
there is no energy dissipation to the surroundings in on-site energy generation and conversion
technologies. Thus, the total amount of energy generated is equal to the total energy utilized in the

next step, as mathematically expressed in Equations 3.15 and 3.16.

7
Ero =T-»  CAP™ (3.15)
k=1
9
Hropa =T - Y  CAPE™ (3.16)
k=8

It is important to note that only a portion of the energy conversion technologies take electricity
or heat as an input. Hence, only the relevant conversion technologies are included in each balance.
The details on the technical parameters for energy conversion technologies can be found in Table
3.6 in Section 3.6.2.

The final amount of output capacity (Outputy) generated using the appropriate energy con-
version technologies is proportional to the efficiency of the corresponding technology (7:°""), as

shown in Equation 3.17.

Output! = CAPF™ - ™ Yk =1,...,9 (3.17)

Here U, is the set of end-uses for the generated output which significantly contribute to the

energy consumption in a supermarket such as refrigeration, lighting, ventilation, bakery, and space
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heating. Thus, in this supermarket case study, U € {Refrigeration, ..., Space Heating}. The
final output generated using each technology can only be utilized in a specific end-use and must

meet the demand, as shown in Equation 3.18.

Z Outputl > Demand” YU = {Refrigeration, ..., Space Heating} (3.18)
keU

Given the energy balances, conversion equations, bounds and the demand constraints, the ob-
jectives in this case study is to minimize the cost of energy generation alongside with the total CO,

emissions, explicitly defined in Equations 3.19 and 3.20.

6 6 9
Cost=>» INV;-CAP,+TY OM;-CAP;+ Y INV,-CAP™
=1 i=1 =1 6 (3.19)
+T Z OM, - CAP™™ + egpiq - Pricegriq + Z Price; Z P;;

k=1 j=1 i=1

2 6
Emission = egpiq - Emissiongiq + Z Emission; Z Pi; (3.20)

j=1 i=1
INV and OM represent the investment cost ($/kW), and operation and maintenance costs
($/kW/yr) associated with each on-site energy generation or conversion technology, respectively.
Price; and Emission; represents the price of the primary energy source per GJ of energy deliv-
ered and the amount of CO, emitted (kton CO,/PJ) by each primary energy source, respectively.
Subscript “grid” indicates the price and emissions related to the electricity supplied from the elec-
tricity grid.
3.6 Results of Computational Studies
Series of computational studies have been performed on the benchmark problems and on the
energy systems design problem to test the accuracy and consistency of the proposed data-driven
multi-objective optimization framework. Two other grey/black-box optimization solvers are also

tested alongside the ARGONAUT algorithm to fully characterize the effect of different data-driven

solvers on the integrated framework performance. The following solvers are tested as a part of
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this framework: Improved Stochastic Ranking Evolution Strategy (ISRES) [96], and the Nonlinear
Optimization by Mesh Adaptive Direct Search (NOMAD) algorithm [95]. The description of these
solvers are provided in Chapter 2, Table 2.1.

In this work, an exhaustive comparison between all the recently published black-box algo-
rithms is not performed, however, the performance of the proposed approach is compared with
two widely accepted algorithms that can handle general black-box constraints. The criteria behind
selecting these two algorithms for comparison is directly associated with their ability to handle
nonlinear constraints and availability through user-friendly implementations [97, 98]. It should
also be mentioned that these search algorithms have been executed without any tuning of their
convergence parameters, which were left at their default settings. For all the benchmark problems,
ARGONAUT is also tested at the default setting, assuming no a priori knowledge on the analytical
forms of the equations, and let ARGONAUT perform model identification, parameter estimation
and cross-validation. For the energy systems design problem, ARGONAUT is initially used at the
default setting to perform numerous tests on the constrained problem. Through cross-validation of
various types of functions in the library, individualized information regarding the optimal surrogate
representation for each unknown function is gathered. Then, using this information, the parame-
ter estimation problem is solved to global optimality for only these specific types of surrogates.
Detailed information about the dimensionality of this case study as well as the surrogates used in
modeling the energy systems design problem is provided in Table 3.9.

All the test problems are executed 10 times on a High-Performance Computing (HPC) machine
at Texas A&M High-Performance Research Computing facility using Ada IBM/Lenovo x86 HPC
Cluster operated with Linux (CentOS 6) using 1 node (20 cores per node with 64 GB RAM) for
ARGONAUT runs, and on Intel Core 17-4770 CPU (3.4 GHz) operated with Linux (CentOS 7)
for the other solvers. The average results for each solver across these 10 runs are reported in the
following sections. It is also important to state that for fairness, the starting sampling design for
ARGONAUT as well as the starting points for ISRES and NOMAD are randomly generated for

each of the 10 executions of these solvers.
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3.6.1 Pareto-optimal Solution for the Benchmark Problems

The Pareto-optimal curves resulting from this study are shown in scatter plots, given in Figures

3.6 and 3.7. Each row of figures represents a solver that is used to optimize the grey-box system,

where Figures 3.6A, C, and E show the results for BNH, and Figures 3.6B, D, and F show the

results for CONSTR benchmark problem. In addition, Figure 3.7 summarizes the results for car-
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Figure 3.6: Pareto-optimal curves for the BNH and CONSTR benchmark problems. Diamonds
represent the exact global solution for the fully deterministic problem.
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side impact problem for all methods. All the results shown in Figures 3.6 and 3.7 are also compared
with the exact global solution of the fully deterministic problem, which are shown in diamonds.
Figure 3.6 demonstrates that all three optimization methods show good performance in locating
the true global optimum at every point of the Pareto-optimal curve. In Figures 3.6E and F, it is
observed that ISRES is unable to find a feasible solution for the very last point of the Pareto-curve
over the course of 10 random runs. It is suspected the reason behind such a behavior is due to
the stochastic nature of this algorithm [133]. The average results show that NOMAD outperforms
ARGONAUT and ISRES algorithms in the BNH and CONSTR problems as shown in Figure
3.6C and D in locating the true global optimum. This increased performance of NOMAD can be
explained in two-fold: (1) These two problems are relatively easy functions and the random initial
starting point actually provides good solutions to the problem; (2) These good solutions are further
refined towards the global solution due to NOMAD’s detailed local exploration strategy which
results in surpassing the performance of two global methods. It is worth mentioning that even
though NOMAD, on average, seems to better locate the optimal point, the average performance
does not consider the cases where NOMAD has failed to find a feasible solution. For the BNH
benchmark problem, NOMAD returns highly infeasible solutions in 12% of the total number of
runs. The performance is better for the CONSTR problem, where only in less than 1% of the
executed runs, NOMAD terminates with an infeasible solution. This also shows that the location
of the initial point provided for the algorithm plays a critical role in terms locating the global
optimum and for identifying a feasible solution. On the contrary, ARGONAUT provides feasible
solutions consistently for all the runs, which is a significant advantage of the algorithm compared
to other methods.

Furthermore, Figure 3.7 shows the Pareto-front for the car-side impact benchmark problem
where the trade-off solutions between three objective functions form the Pareto-optimal surface.
Figures 3.7A and B show that both ARGONAUT and NOMAD on average perform well in locating
the global solution in a higher dimensional problem. In total of 640 runs (64 points with 10 repeti-

tive runs) executed to generate the Pareto-optimal surface, the NOMAD algorithm has returned an
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infeasible solution in 10% of the runs. On the contrary, ARGONAUT was able to provide feasible
solutions to all runs, where only in 2% of all cases the algorithm has returned a sub-optimal so-
lution (a solution with an absolute error greater than 10 with respect to the true global solution).
This clearly shows that ARGONAUT can sustain the solution accuracy over multiple repetitions,
while being subject to variations at the initialization stage. Moreover, in Figure 3.7C, it is observed
that ISRES is unable to locate any feasible solution in 36% of 640 runs whereas it converges to
sub-optimal solutions in others. As expected, as the problem complexity increases, it is harder for
all algorithms to find the optimal set of decision variables. Hence, compared to the results shown
in Figure 3.6, ISRES and NOMAD algorithms have terminated with highly infeasible solutions
in more runs than in lower dimensional problems, resulting in higher number of mismatches be-
tween the true global solution on Pareto-optimal curves. This result is compelling especially for
problems with higher number of variables and constraints, where augmented number of failures in
identifying the global solution would interfere with the shape of the Pareto-optimal curve and may

alter the decision maker’s ultimate judgment.

(A) (B) (€

° Original Pareto + p-ARGONAUT © Original Pareto - NOMAD ° Original Pareto - ISRES

4 4
f,(x) 50 40 f,(x) 50 40

4
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Figure 3.7: Pareto-optimal surfaces generated by different solvers for the car-side impact bench-
mark problem; (A) ARGONAUT; (B) NOMAD; (C) ISRES. Diamonds represent the exact global
solution for the fully deterministic problem.

In addition to assessing the consistency and accuracy of different solvers, a comparison is es-

tablished based on their computational performance, both in terms of sample collection and elapsed
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Figure 3.8: Comparison of average total number of samples collected by each solver in each bench-
mark problem. Results are shown for (A) BNH, (B) CONSTR and (C) car-side impact benchmark
problems.
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time, as shown in Figures 3.8 and 3.9, respectively. The infeasible results are excluded from both
figures. In Figure 3.8, it is observed that ISRES collects 3000 samples for all benchmark problems
which is also the maximum allowable number of function evaluations that was set. This observa-
tion may suggest that ISRES could have a better performance if more samples were collected, but
the value of this limit is decided on by realizing that one of the main computational challenges of
black-box optimization is convergence with a reasonable number of calls to the expensive black-
box simulation. NOMAD algorithm on the other hand, collects about 500 samples in average on
lower dimensional benchmark problems (Figure 3.8A and B), whereas the total number of sam-
ples collected significantly increases for the car-side impact benchmark (Figure 3.8C). However,
ARGONAUT collects less than 100 samples on average for the BNH and CONSTR problems
and less than 205 samples for the car-side impact problem while converging to globally optimal
solutions. This feature of ARGONAUT is quite advantageous, especially for the problems with
computationally expensive simulations, where the sample collection can significantly burden the
whole optimization process.

Furthermore, Figure 3.9 shows the average elapsed time spent by each solver for the three
different benchmark problems. As demonstrated in Figures 3.9A and C, ISRES and NOMAD
algorithms take relatively longer time to converge to an optimum, as oppose to ARGONAUT. Es-
pecially for the NOMAD algorithm, the computational usage has increased at least by 5-fold with
the increasing number of dimensions and problem complexity. This shows that NOMAD’s re-
finement and detailed local search strategies comes with added number of function evaluations in
higher dimensional problems, which in return increases the total amount of CPU time it takes for
the algorithm to converge to an optimum. Interestingly, in Figure 3.9B, it is observed that ARG-
ONAUT takes significant amount of time to converge to the global optimum in comparison to the
other solvers. The reason behind this large difference in elapsed times across different benchmark
problems is that the BNH and car-side impact benchmark problems are approximated via linear
and/or quadratic surrogates within ARGONAUT, whereas the CONSTR problem is modeled via

kriging and/or radial basis functions. As a result, the global optimization of convex surrogates
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that represent the BNH and car-side impact benchmark problems are much easier and much faster
compared to the global optimization of nonconvex functions, which is the case in the CONSTR
problem. Thus, the deterministic global optimization of nonconvex surrogate formulations rep-
resenting the unknown objective and constraints adds up to the computational time it takes for

ARGONAUT to converge to the optimum.
3.6.2 Pareto-optimal Solution for the Energy Systems Design Problem

In addition to the benchmark problems, the performance of the framework is extensively tested
on a relatively high-dimensional energy systems design problem in a commercial building. The
prices for the energy sources as well as the parameters associated with the costs, capacities and
availabilities of each technology in the supermarket case study is summarized in Tables 3.4-3.6. In
this case study, it is assumed that all the energy conversion technologies are available throughout

the entire operation time horizon, which is set to 20 years.

Table 3.4: Prices and CO, emissions of energy sources and grid electricity [4].

Natural Gas Electricity Biomass

Price ($/GJ) 8.89 36.11 9.72
CO2 Emission (kton CO,/PJ) 56 90 100

Table 3.5: Technical and economic parameters of on-site energy generation technologies [4].

Technology n® n* CAPY CAPY T INV o&M
(kW) (kW)  (hr/yr) ($/kW) ($/kW/yr)

Wind Turbine - - 10 30 1750 2000 1200
Solar PV - - 10 20 800 2000 500
NG Boiler - 0.9 100 106 7000 200 10
Biomass Boiler - 0.85 100 106 7000 250 15
NG CHP 0.35 0.55 800 109 7000 500 15
Biomass CHP  0.33 0.50 1000 108 7000 2000 30
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Table 3.6: Technical and economic parameters of energy conversion technologies [4]. COP stands
for coefficient of performance.

Technology Input Output neonY INV o&M
($/kW)  ($/kW/yr)
Cold Air Retrieval Electricity Ventilation 6(COP) 50 3
Refrigeration with  Electricity = Refrigeration, 3,2(COP) 100 5
Heat Recovery Space Heating
Refrigeration without Electricity = Refrigeration  3(COP) 70 4
Heat Recovery
Fluorescent Lighting  Electricity Lighting 0.2 5 0.5
LED Electricity Lighting 0.8 10 1
Bakery A Electricity Bakery 0.7 30 3
Bakery B Electricity Bakery 0.75 40 4
Heating A Heat Space Heating 0.85 30 3
Heating B Heat Space Heating 0.9 40 4

In addition to the parameters taken from the original case study, this energy consumption prob-
lem is also investigated with the current updated values, which are shown in Tables 3.7 and 3.8, to
observe the shift in the Pareto-optimal solution with changing prices. In the updated case, the tech-
nical and economic parameters regarding the energy conversion technologies are kept unchanged

as in Table 3.6.

Table 3.7: Current prices and CO, emissions of energy sources [5—8].

Natural Gas Electricity Biomass

Price ($/GJ) 7.056 28.694 8.137
CO5 Emission (kton CO»/PJ) 48.548 138.094 101.729

As it was shown previously in Equation 3.11, the selection of on-site energy generation tech-
nologies is handled via binary variables. This study does not enumerate all the possible combi-
nations (2° = 64 possible combinations) but only show the results for 1 cost effective (natural

gas-powered CHP) and 1 most environmentally benign (wind turbine and solar photovoltaic) set of
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Table 3.8: Updated technical and economic parameters for on-site energy generation technologies
[4,9-12].

Technology n® n* CAPLY CAPY T INV Oo&M
(kW) (kW)  (hr/yr) ($/kKW) ($/kW/yr)
Wind Turbine - - 10 50 1750 6118 35
Solar PV - - 10 273 2500 2493 19
NG Boiler - 0.85 88 106 8000 107 5
Biomass Boiler - 0.80 100 106 8000 575 98
NG CHP 0.31 045 800 106 8000 1500 120
Biomass CHP  0.22 0.69 1000 106 8000 5792 98

technologies as suggested by Liu et al. [4]. It is also important to note that the equality constraints
in the supermarket case study, resulting from the energy balances, shown in Section 3.5.2, further
challenges the algorithmic framework to its greatest extents in locating the global optimum with
highest accuracy. However, numerical issues may arise while satisfying these equality constraints
in the derivative-free context. Thus, all the equality constraints are relaxed into two inequalities
while being penalized with a small number (i.e., 1E-6), in order to set the numerical accuracy to
10°©.

The Pareto-optimal curve resulting from the information provided in Table 3.9 as well as the
parameters shown in Tables 3.4, 3.5 and 3.6, which reflect the prices and efficiencies reported in
2010, is presented in Figure 3.10. One of the most important characteristics of the curve shown
in Figure 3.10A is that, each point represents an equally optimal design with different economic
and environmental behaviors when different technologies are used as the on-site energy generation
technology in a supermarket. For example, the most cost-effective design is achieved using natural
gas-powered CHP system, shown as the very first point on the Pareto-frontier. However, this design
completely neglects any constraints on the greenhouse gas emissions and possible impacts on the
environment. As a result, CO, emissions are at its highest level when the cost is minimal. On the
contrary, using wind turbine and solar PV provides an environmentally friendly alternative to the
natural-gas powered CHP as an on-site energy generation technology in a supermarket. However,

the cost of having this system on a supermarket is now at its maximum value, which is $11M.
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Table 3.9: Dimensionality of the multi-objective energy systems design problem. The table also
summarizes the types of surrogate used in the study for each grey-box constraint that was present
in the problem formulation.

Type of on-site energy gener- | Number of Input | Number of Grey- | Types of Surrogates

ation technology considered | Variables Box Constraints Used

Natural gas-powered CHP 17 19 Objective: linear

(NG CHP) Constraints 1, 6, 7, 10-
19: linear
Constraints 2-5, 8, 9:
quadratic

Wind Turbine & Solar Photo- 16 12 Objective: quadratic

voltaics (WT + SPV) Constraints: quadratic

This problem is also studied using the ISRES and the NOMAD algorithms, in which the re-
sults are summarized in Figure 3.10B. The complete Pareto-curve generated by ARGONAUT is
now presented in squares whereas the results for the NOMAD algorithm are represented in circles,
as shown in Figure 3.10B. It is important to note that the ISRES algorithm is unable to locate
any feasible solutions within the maximum allowable number of samples (sample tolerance set to
3000) for this case study over the course of 10 runs for each Pareto-point. As a result, only the
values found by the NOMAD algorithm are reported in comparison to the results obtained using
ARGONAUT. Figure 3.10B demonstrates that the NOMAD algorithm can locate feasible solutions
to the problem in the objective space. However, due to its local exploration strategy, the algorithm
struggles to converge to the global optimum at each Pareto-point and can only return local fea-
sible solutions. In addition, a fraction of the NOMAD runs is terminated with high infeasibility,
where the algorithm is unable to satisfy all the constraints posed in the problem. On the contrary,
ARGONAUT is able to report consistent feasible solutions for all the points that construct the
Pareto-frontier reported in Figures 3.10A and B.

Furthermore, Figure 3.11 summarizes the computational performance of the two methods with
respect to the elapsed computational time and number of samples collected by each method. Fig-
ures 3.11A and B show the elapsed time utilized by each solver for the case with natural gas-

powered CHP and for the case with wind turbine and solar PV, respectively. For the natural gas-
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Figure 3.10: Pareto-frontier for the energy systems design problem in a supermarket obtained using
ARGONAUT. (A) Pareto-frontier showing the cost-effective design using natural gas-powered
CHP technology (NG CHP), and the environmentally friendly design using wind turbine (WT)

and solar photovoltaics (SPV); (B) Comparison of results using ARGONAUT and the NOMAD
algorithm.

powered CHP case, it is observed that both derivative-free solvers perform comparably with each
other. However, Figure 3.11C shows that for the same case study NOMAD collects 5000 points on
average per Pareto-point to converge to a feasible solution whereas ARGONAUT collects less than
700 samples per Pareto-point. Compared to the results summarized in Figure 3.8, ARGONAUT
converges to the global optimal solution with higher number of samples at every Pareto-point. This
is an expected result given that all the derivative-free solvers experience an increase in sampling
requirements with increasing problem complexity. This trend is also reflected in NOMAD’s results
where there is a gradual increase in the total number of samples collected in each problem set, as
shown in Figures 3.8 and 3.11.

Moreover, for the case with wind turbine and solar PV, it is observed that ARGONAUT collects

significantly low number of samples to converge to global optimum, as shown in Figure 3.11D. It
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Figure 3.11: Comparison of computational performance of ARGONAUT and NOMAD; (A) Av-
erage elapsed time for the ARGONAUT and NOMAD algorithms per Pareto-point in natural gas-
powered CHP (NG CHP) case; (B) Average elapsed time for the ARGONAUT and NOMAD
algorithms per Pareto-point in wind turbine and solar PV (WT + SPV) case; (C) Average total
number of samples collected by the ARGONAUT and NOMAD algorithms per Pareto-point in
NG CHP case; (D) Average total number of samples collected by the ARGONAUT and NOMAD
algorithms per Pareto-point in WT + SPV case.

is important to note that for both cases NOMAD consistently hits the tolerance set for maximum
number of allowable samples and returns the best-found solution from these 5000 collected points.
Furthermore, like in Figure 3.10, the results with infeasible solutions are not plotted in Figure 3.11.
As aresult, one can clearly see that for certain sub-problems in both natural gas-powered CHP and
wind turbine and solar PV cases, NOMAD is unable to locate feasible solutions over 10 repetitive
runs. Thus, it is safe to say that ARGONAUT outperforms other available derivative-free software,
both in terms of computational performance and in accuracy for locating the global solution for
the MOO of energy market design problem.

The same case study is repeated with the updated values for prices and efficiencies, where the

values of these new parameters are summarized in Tables 3.7 and 3.8. The results for the energy
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Figure 3.12: Multi-objective optimization results using the updated parameters; (A) Pareto-frontier
obtained using ARGONAUT where the cost-effective design is achieved via solar photovoltaics
(SPV), and the environmentally friendly design is achieved using wind turbine (WT) and solar

photovoltaics (WT + SPV); (B) Comparison of results using ARGONAUT and the NOMAD algo-
rithm.

market design problem with the updated parameters are summarized in Figure 3.12.

Interestingly, Figure 3.12A shows that the most economic on-site energy generation for a super-
market is achieved via solar PV rather than the natural-gas powered CHP. With the recent develop-
ments in the solar PV technology, the solar PV’s are more available throughout the year with lower
operating costs and higher capacities. As a result, the technology selection has shifted from natural
gas-based to a renewable-based system for the supermarket. Thus, it is possible to minimize both
the cost and the CO, emissions of on-site energy generation using solar PV, which also replaces the
existing trade-off between the two objectives for this system, while shrinking the Pareto-curve into
a single optimum. In addition, Figure 3.12A shows that using wind turbine and solar PV together
as the on-site energy generation technologies result in lower CO, emissions. Yet again, as in Fig-

ure 3.10, as the CO, emissions decrease, the cost of having that technology increases. Moreover,
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Figure 3.12B shows the comparison between the results obtained using ARGONAUT and the NO-
MAD algorithm. Like in the previous results, ISRES runs are terminated with high infeasibility
for all three points constructing the Pareto-frontier hence, not included in the plots. The results
show that NOMAD can locate local feasible solutions, but it struggles to find the Pareto-optimal
solution for the current values of the energy market design problem where a fraction of runs has
ended with high infeasibility. Especially for one of the points of the Pareto-curve, it is observed
that the NOMAD solution is quite distant from the Pareto-optimal solution designated by ARG-
ONAUT. Figure 3.12B also shows a zoomed view of the results that are close to each other. The
zoomed picture shows that the NOMAD solutions are very close to the optimal solutions found by

ARGONAUT but still does not perfectly capture the global solution.
3.7 Concluding Remarks

In this chapter, a hybrid framework is introduced for solving a class of mathematical program-
ming problems, namely the general constrained multi-objective optimization problems, using a
data-driven strategy. This hybrid framework integrates the e-constraint methodology with a con-
strained grey-box optimization solver for the reformulation of multi-objective optimization prob-
lems into series of single objective sub-problems and for their respective optimization through a
data-driven methodology. The performance of the framework is tested on three constrained multi-
objective benchmark problems from the literature and on a case study of energy market design
problem for a commercial building. The results show that ARGONAUT can consistently and effi-
ciently identify the Pareto-frontier, which entails all the trade-off solutions that are equally optimal
with respect to each other, under varying conditions and dimensions of constrained multi-objective
problems. Furthermore, ARGONAUT outperforms other available derivative-free algorithms by
providing consistent feasible solutions for the energy systems design case study, involving numer-

ous equality constraints which are typically challenging for general derivative-free algorithms.
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4. DATA-DRIVEN OPTIMIZATION OF STIFF DIFFERENTIAL ALGEBRAIC EQUATIONS
WITH APPLICATIONS TO THERMAL CRACKING OF NATURAL GAS LIQUIDS

In this chapter, a Support Vector Machines (SVMs) based optimization framework is presented
for the data-driven optimization of stiff Differential Algebraic Equations (DAEs) without the full
discretization of the underlying first-principles model. By formulating the stability constraint of
the numerical integration of a stiff DAE system as a supervised classification problem, it is demon-
strated that SVMs can accurately map the feasible boundary of stiffness. The necessity of this
data-driven approach is shown on a 2-dimensional motivating example, where highly accurate
SVM models are trained, tested and validated using the data collected from the numerical integra-
tion of stiff DAEs. Furthermore, this methodology is extended and tested for a multi-dimensional
case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data-driven
optimization of this complex case study is explored through integrating the SVM models with a
constrained global grey-box optimization algorithm, namely the ARGONAUT framework.

This chapter is organized as follows. First, the challenges with data-driven optimization in
the presence of stiff DAEs or stiff Ordinary Differential Equations (ODEs) are discussed, and
the stated challenges are demonstrated on a motivating example in Section 4.2. Next, in Section
4.3, the SVM-based filtering methodology is described and its implementation to a data-driven
optimization algorithm for the global optimization of stiff DAEs is provided in Section 4.4. Finally,
the algorithm is tested on a steam cracking model for ethylene and propylene production and
the results for computational experiments are provided (Section 4.6) along with the concluding

remarks (Section 4.7).
4.1 Differential Algebraic Equations and Dynamic Programming

The system of differential algebraic equations (DAEs) is ubiquitous in mathematical modeling
of chemical engineering systems, as many first-principles models include differential equations

like mass, energy, momentum balances along with process constraints, such as physical properties
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and rate laws. DAE systems are commonly observed in the areas of process control, as well as
chemical reactions and reactor design [134, 135].

The mathematical optimization of such systems is challenging since the direct implementa-
tion of deterministic optimization methods is prohibitive. Hence, many dynamic programming
problems in the aforementioned application areas utilize commercial software like the gPROMS
environment and Aspen Custom Modeler for first-principles modeling of DAE systems and their
respective dynamic optimization [136—138]. Alternatively, full discretization of the DAE system
and its incorporation into a nonlinear programming (NLP) formulation using orthogonal colloca-
tion on finite elements is also preferred for making DAEs amenable for optimization, specifically
for unstable and ill-conditioned problems [139-141]. For example, Caballero et al. [142] in-
vestigated the optimization of ethylene production through one-dimensional plug-flow model at
steady-state conditions with heat flux along the reactor length to be the only decision variable. In
the problem formulation, the equality constraints governing the rate, mass, energy and momentum
balance equations were expressed with stiff nonlinear DAEs, which inhibits the global optimiza-
tion via direct deterministic methods. Hence, the authors implemented the orthogonal collocation
on finite elements method that will spatially discretize the DAESs into a set of nonlinear equality
constraints, while solving the resulting large-scale NLP problem to local optimality. In another
study by Onel [17], the dynamic optimization of steam cracking of ethane, as well as the cracking
of propane and butane with reactor coking considerations were investigated in detail. Similar to the
aforementioned study, orthogonal collocation on finite elements was implemented to discretize the
stiff DAEs and the resulting model was solved to local optimality using a multi-start approach to
generate high-quality solutions. In addition, the reactor length was modeled using binary variables
and the optimal length that maximizes the ethylene yield was also investigated by Onel [17].

A third alternative for dynamic optimization of the system of DAEs can be through the uti-
lization of data-driven approaches and novel machine learning algorithms. The idea of represent-
ing highly complex engineering processes with simple tractable models using data (i.e., surrogate

models) has gained accelerated attention in the last decade [36]. Although surrogate models were

71



primarily used as means of replacing detailed unit operations in flowsheet synthesis [50, 143—
146], their application has also been expanding in different areas of process systems engineering
including but not limited to dimensionality reduction in control [147], grey/black-box optimization
[30, 31, 148, 149], bi-level programming [94, 150] and predictive modeling of environmental sys-
tems [151, 152]. In this work, a global constrained grey-box optimization algorithm, ARGONAUT
[28-30], is utilized for the data-driven modeling and optimization of system of DAEs without the
full discretization of the governing equations. Furthermore, a novel Support Vector Machine-based
constraint handling scheme is introduced for handling the stiffness of multi-dimensional DAE sys-
tems, which further enables high-quality solution generation by rapidly eliminating the infeasible

variable combinations, thus allowing the exploration of a wider range of decision variable space.
4.2 Challenges in Design of Experiments with Stiff Ordinary Differential Equations

Data-driven modeling and derivative-free optimization rely on different sampling strategies that
provide an initial plan for the controlled experiments on problem simulators, which is commonly
known as the Design of Experiments (DoE). The goal of DoE is to provide possible candidate
locations for the input variables within the pre-defined box-constraints such that these experiments
capture a variety of system dynamics. There are many different ways of constructing this initial
set of candidate points including Latin Hypercube (LHD) and full factorial designs. The details
on different types of DoE and the current developments in DoE research are discussed in a recent
review article by Garud et al. [153], as well as in a notable textbook by Cavazzuti [154].

It is important to note that the DoE is a statistical procedure and not guided by the physical
information that entails an engineering process. Thus, a subset of candidate initial points gener-
ated by the DoE may result in unphysical and/or undesirable outcomes, such as an early termi-
nation of the problem simulator due to failures or solving a numerically unstable problem (stiff
DAEs/ODE:s). This generally implies that a constraint should exist between the decision (input)
variables, in which the explicit analytical formulation of this, as a function of the input variables,
is unknown to the user. As a result, the global optimization of such a system using a data-driven

methodology will be hindered since the returned optimal solution may not be a feasible one. Con-
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sider the following initial value problem as a motivating example,

v=vy,  y(0) =y >0 (4.1)
The analytical solution of this separable ODE is given in the following form,

y(t) = 1_y—yt t< yl (4.2)

It is important to note that, the validity and the stability of solution in Equation 4.2 strictly
depend on the condition between the time and the initial condition value. Specifically, at ¢t = 1/y,,
the denominator will become zero and the solution will be undefined. If we wanted to explore
the full space defined by ¢ and y, using DoE, the samples that violate this constraint are going
to be removed a priori to sample collection, which will also prevent us from sampling in regions
that won’t yield a feasible or a numerically stable solution for the problem of interest. This is
demonstrated in Figure 4.1.

Although in this motivating example it is rather easy to derive the constraint for a valid in-
tegration solution concerning the time horizon and the initial condition, in many complex engi-
neering problems (i.e., reaction engineering), the analytical solution may not be trivial or may not
even exist. Furthermore, in multi-dimensional problems where multiple variables are initialized
for solving a system of ODEs, it is more challenging to postulate appropriate explicit constraints
for the underlying relationships between the initial conditions. Hence, optimizing a black-box
simulator with a system of multi-dimensional DAEs/ODE:s that exert stiffness or contain implicit
constraints (i.e., constraints that do not have an explicit mathematical or an analytical form) using
a data-driven methodology is a challenging task.

Several approaches can be explored such as sampling in smaller regions or removing infeasible
samples a posteriori to the simulator call. A smaller sampling region can be imposed such that all
sampling points are feasible. For example, if we were to set the upper bound to be 0.5 for both ¢

and y, in the motivating example, all points collected within this new box will be feasible (Figure
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Figure 4.1: Design of experiments for the motivating example. Shaded area represents the feasible
region defined by the constraint in Equation 4.2, ¢ < 1/y,. The sampling points that satisfy
this constraint are represented with filled circles. Candidate points that violate this constraint are
removed before calling the problem simulator. Removed samples are represented with hollow
circles in the infeasible region.

4.1). However, in an optimization context, tighter bounds will yield a conservative decision vari-
able space, where the global solution may lie outside these newly imposed bounds. Furthermore,
a posteriori analysis on the input-output data can be computationally demanding since this will
require all candidate points to be evaluated through the problem simulator. This is undesirable
in many high-fidelity problems given that as the number of ODEs and the problem complexity in-
creases, the numerical integration will become more time-consuming. Especially, evaluation of the
infeasible candidate points that create numerical instability can take more than a couple of hundred
seconds. For example, assuming a failed simulation takes 200 seconds per sample to evaluate, col-
lecting the output of 150 numerically unstable candidate points will take more than 8 hours, where
these points will not be viable for identifying the optimal solution.

Hence, this sampling challenge with stiff DAEs requires a systematic approach, where a wider

range of system dynamics should be captured in a computationally efficient way. To this end, a su-
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pervised machine learning methodology, namely the Support Vector Machines (SVMs), is used to
assess the numerical stability of a given combination of initial conditions postulated at the several
stages of a data-driven optimization process (i.e., initial sampling, and re-sampling) a priori to the
simulator call. Previously, the idea of using SVMs to approximate the feasible region of optimiza-
tion problems was explored in bi-level and mixed-integer programming problems [155, 156]. In
this work, SVMs are used to handle the stiffness in a multi-dimensional system of DAEs such that
they are amenable for data-driven modeling and optimization without the full discretization of the
underlying first-principles model. Specifically, the SVMs are used to derive an implicit function
that mimics the stability constraint for the solution of stiff DAEs in multi-dimensional space, rather
than approximating the full feasible space of the problem as done in the aforementioned studies.
Through this supervised machine learning approach, the nonlinear dependencies between the ini-
tial conditions and the independent variable of the differential equation that strictly defines the
stability of the numerical integration are captured with high accuracy. The details of the approach

are further explained in the following section.
4.3 Modeling Implicit Constraints with Support Vector Machines

In machine learning, SVMs are extensively used for classification and regression-type of anal-
yses, spanning over several different application areas including but not limited to fault detection
and diagnosis [157-159], improvement of process operations [160], and predictive modeling of
complex substances [161]. In this work, an SVM model is used to mimic the implicit constraint
imposed on the solution of the system of DAEs. Specifically, an SVM-based classification model
is built in the offline phase by using a dataset of simulated samples with their outcome (feasi-
ble/infeasible). The obtained classification model acts as a filter and guides the sampling strategy
of a data-driven optimizer such that the numerically unstable combinations of independent vari-
ables are eliminated a priori to sample collection.

If we now consider the initial value problem in Equation 4.1 from a data-driven perspective
while assuming no knowledge on the stability constraint, we can numerically integrate Equation

4.1 for every combination of ¢ and y, values provided by the DoE. At the end of each simulation,
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we can check whether the integration has failed or not and assign a label, “0” for “feasible” or
a valid integration solution and “1" for “infeasible" or a failed integration solution. The resulting
continuous input and the discrete output information can be used to formulate a nonlinear two-class
classification problem using SVM, where this model will provide a decision boundary between

feasible and infeasible combinations of ¢ and ¥,

Figure 4.2: Nonlinear SVM model is trained to mimic the constraint, 1/y,, by only using the input-
output data from the numerical integration of the initial value problem given in Equation 4.1. SVM
classifier can model the boundary of the stability constraint with high accuracy, where the green
area corresponds to the feasible, and the red area corresponds to the infeasible class, respectively.

Essentially, as shown in Figure 4.2, if the SVM classifier is properly trained, tested and vali-
dated, this separating nonlinear boundary will be the same as the constraint imposed on the input
variables shown in Figure 4.1. As new samples are desired to be collected in this decision space,
the SVM model can now be used to classify and filter the incoming combinations of input variables
based on their probabilistic feasibility information provided by this model. This filtering step is

essentially a function call that has minimal computational expense to execute and will allow us to
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remove the infeasible combinations a priori to the problem simulator call, improving the stability
and the computational speed of the data-driven optimization process with stiff DAEs. In the next
section, the generalized framework for using and implementing SVM classifiers in data-driven

optimization of stiff multi-dimensional DAE systems are described in detail.
4.4 Data-Driven Optimization Framework for Stiff Multi-Dimensional DAE Systems

The outline of the generalized framework for handling implicit constraints in data-driven op-
timization is provided in Figure 4.3. In phase 1, which is the offline phase of the framework,
sampling is performed within the lower and upper bounds of the decision variables of a given op-
timization problem with a stiff DAE system. For each sampling point, a respective output class
information (feasible/infeasible) is collected as described in the previous section. Using this con-
tinuous input and categorical output dataset, a nonlinear two-class classification problem is for-
mulated and an SVM model is tuned for an accurate representation of the stability constraint of
a multi-dimensional stiff DAE system. In phase 2, this trained, tested and validated SVM model
is implemented to a grey-box optimization solver. In this phase, the SVM model filters the nu-
merically unstable combination of input variables online as the grey-box optimization algorithm is

executed. Each phase is further described in detail in the following sections.
4.4.1 Offline Phase: Data Collection and Tuning the SVM Model
o Step 1: Sampling

For all the computational experiments performed in this study, maximin LHD is constructed
for 2000 sampling points within the pre-defined bounds of each variable. The respective
class information of each sample (i.e., feasible or infeasible) is collected from the problem
simulator that performs the numerical integration. This offline sampling stage is done once

and is solely used for the C-SVM model building stage.

» Step 2: Data normalization and allocation

The input data is normalized by min-max scaling within the provided variable bounds and

the collected data is split into train-test and validation sets. For the validation set, 10% of the
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Implicit Constraint Handling in Data-Driven Optimization

Phase 1: Phase 2:
Offline Implementation Online Implementation
= Sample Collection for model * |mplementation of the SVM
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testing optimization solver
= Two-class classification using * The trained model will filter
Support Vector Machines “infeasible” samples a priori
(SVM) to simulation call

Figure 4.3: Outline of the SVM-based constraint handling framework for data-driven optimization
with stiff DAEs.

data from each class is separated. This validation set is not used in any of the training and
testing steps, hence allowing us to assess the unbiased performance of the trained C'-SVM

model. The remaining 90% of the data is used for model development.

e Step 3: Model tuning and development

Here, 5-fold cross-validation is used to avoid the overfitting problem. This is a crucial step
in achieving an accurate and generalizable C'-SVM model simultaneously. Two important
hyperparameters that require tuning in a C-SVM formulation are the v and C' parameters. In
this study, the optimal v and C' parameters are obtained via grid search. In particular, the C
parameter is tuned over the set of 2710, 279 210 while the - parameter is tuned over the

2710 279 20 , where n is the number of features of the dataset used in training. Normal-

n ' n Y

ization of the v parameter based on the dataset density is performed to achieve an optimal
separation of feasible and infeasible data points without overfitting. Finally, the model is
developed by using the entire 90% of the dataset via the optimal C'-SVM hyperparameters

obtained during the tuning stage. The developed C'-SVM model assigns probability to each
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input sampling point. If the probability is higher than 0.5, the sampling point is classified as

“feasible”, otherwise “infeasible”.

e Step 4: Model performance assessment metrics

In this study, the classification model performance is quantified by calculating 5 different
performance metrics on the validation dataset: (1) Accuracy; (2) Precision; (3) Recall; (4)

Area under the Receiver Operating Characteristics (ROC) curve (AUC); (5) F; score. Ac-

curacy is described as 7 HT,ﬁLTT]IX —7~- While precision and recall are defined as 7775 PT+P 5 and
%’ respectively. Here, TP (TN) indicates the number of feasible (infeasible) sampling

points that are correctly classified by the model. On the contrary, FP (FN) yields the number
of infeasible (feasible) sampling points that are misclassified as feasible (infeasible) by the

model. Note that F; score is the harmonic mean of precision and recall metrics.

The model developed with the described offline phase model building procedure has produced a
perfect classifier (Validation scores: Accuracy = 100%, Precision = 100%, Recall = 100%, AUC
= 100%, F; score = 100%) for the dataset provided in the motivating example (Figure 4.2). It is
important to state that the normalization step is not performed for the motivating example as both
t and y, have the same upper and lower bounds.

Once the offline phase is completed, the validated SVM model is incorporated into a grey-
box optimization solver. In this work, the ARGONAUT algorithm is utilized to demonstrate the
effectiveness of this data-driven approach, outline the key steps of the framework and its integration

with the SVM classifier in the following section.
4.4.2 Online Phase: Integration of the SVM Classifier with the ARGONAUT Framework

The ARGONAUT algorithm [28-30] is a constrained grey-box optimization solver that utilizes
the input-output data to postulate appropriate surrogate formulations for the objective function and
the unknown constraints, through solving the parameter estimation problem to global optimality.
Initially, this framework has been developed to solve general constrained nonlinear grey/black-box

optimization problems and was tested on a pressure swing adsorption example for CO, capture
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[29] and numerous benchmark global optimization problems [28]. Later, several key stages of
the framework are parallelized for utilizing distributed high-performance computing for improved
computational efficiency [30]. The details of the parallelization are further described in Chapter 5.

The ARGONAUT algorithm starts with the DoE and sampling stages. In the presence of known
constraints for the input variables, the algorithm will first run Optimality Based Bound Tightening
(OBBT) to reduce the search space. OBBT cycles through each variable present in the known con-
straint by minimizing and maximizing their values, while being subject to this known constraint.
This will allow the algorithm to update the current bounds on the variables and then generate a
maximin LHD within the updated search space. When known constraints are present, the LHD is
created with a large set of samples based on the input dimensionality (Vg ), where for Ny;,,, < 10
the initial design will have Nyqpe = 100 - Ny, samples, whereas for Ny, > 10 the initial design
will have Nyqmpe. = 2000. Among this large set of initial design points, the ones that do not satisfy
the known constraint are removed from the initial design through an explicit function evaluation.
The default version of ARGONAUT then continues with reducing the remaining set of feasible
samples using the Optimal Scenario Reduction algorithm (OSCAR) [162] or by augmenting the
LHD depending on the cardinality of the sampling set.

To handle stiff problems or problems with implicit constraints, an additional checkpoint is
introduced before the OSCAR scenario reduction step using the developed C-SVM model in the
offline phase (Figure 4.4). This C'-SVM model filters the pre-determined values of input variables
that potentially lead to numerical instability by classifying them as infeasible and removing these
from the initial sampling set. Later, if the cardinality of the remaining numerically stable samples is
higher than the intended size of the initial DoE, the algorithm proceeds with the scenario reduction
step which leaves us with an appropriate set of sampling points to be executed in the problem
simulator.

Once this feasible set of input variables are simulated and their corresponding outputs (i.e.,
objective function value and black-box constraint violations) are collected, this input-output data is

passed onto the parameter estimation stage. Here, a distinction is made between different sources
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of infeasibility: (1) Infeasibility due to a violation of a known constraint which is available in
closed-form; (2) Infeasibility due to a violation of the black-box output, where this information
can only be extracted by running the full problem simulator; (3) Infeasibility due to a violation
of implicit constraints or constraints that characterize the stability of the integration. Although
samples that are feasible with respect to the known constraints and the integration stability are
simulated, any of these combinations may still lead to an infeasible operation based on the process
constraints, which requires the execution of the full problem simulation. Hence, ARGONAUT will
keep track of this second type of infeasibility and construct individual surrogate models for these
constraints at the parameter estimation stage. ARGONAUT contains multiple surrogate forms in
its surrogate model library (i.e., linear, general quadratic, signomial, radial basis functions, kriging
interpolation), where the algorithm can decide on the best surrogate form for a given input-output
data through cross-validation. The algorithm is flexible in such a way that it can choose different
surrogate forms for each unknown function. For example, for a problem with 3 unknown equations,
ARGONAUT can construct a quadratic surrogate objective with 1 nonlinear (radial basis function)
constraint and 1 linear constraint. As an alternative, the preferred surrogate form can also be
specified for any unknown function at the start of the algorithm, where only this specific type of
surrogate form will be explored. This exploration for both known and unknown forms are done
through solving the parameter estimation problem to global optimality, which is one of the key
properties of the algorithm to ensure accurate representations of the input-output information.
Once individual surrogate models are constructed for all unknown equations, a grey-box op-
timization problem is formulated using the surrogate functional forms for the objective and the
unknown constraints. The known constraints are also included in this formulation to ensure the
feasibility of the optimal solution. This formulation is then solved to global optimality and lo-
cal optimality with a multi-start approach. The resulting high-quality solutions are then assigned
as new sampling points on the next iteration to explore promising regions in the feasible space.
Again, the C'-SVM model will check the numerical stability of these candidate sampling points a

priori to the simulator call and remove samples that are classified as infeasible. This procedure
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will continue until one of the convergence criteria (Chapter 2, Table 2.1) are met.

Once a convergence criterion is met, a session of an ARGONAUT run will be completed, and
the algorithm will perform clustering. Clustering will allow the algorithm to identify a promising
sub-region of the sampling space based on the cluster with the best incumbent solution. Then,
the bounds on the decision variables can be tightened around this cluster and the algorithm will
proceed with the second session, where the number of sampling points in this reduced space is
augmented. In the augmentation stage, as new combinations of decision variables are postulated,
the C'-SVM model needs to be called for a feasibility evaluation of these new combinations of
candidate points. However, it is important to note that as the bounds on the decision variables are
tightened at the end of the first session, the C-SVM model needs to be reconstructed again using
the input-output relationship from the reduced decision variable space. Hence, the procedure de-
scribed in the offline phase is repeated to generate the new C'-SVM model within the new tightened
bounds at the end of the first session. If the algorithm does not tighten the bounds, then the C-SVM
model from the first session is still valid and the same model can be used to filter the numerically
unstable combinations of variables prior to simulator call. After the new model is trained, tested,
validated and incorporated in the framework, the algorithm restarts the iterative steps for sampling,
parameter estimation and optimization of the grey-box formulation as described earlier. By default,
the algorithm will reach full convergence after one of the aforementioned criteria is met and the
second session is completed. The total number of sessions in the algorithm can be increased, how-
ever, as the C-SVM model requires reconstruction with changing variable bounds, the algorithm
is used in the default mode, where the C-SVM models are only constructed twice.

As shown in Figure 4.4, this data-driven methodology to mimic the stability constraint through
the use of SVM models is incorporated at every stage of ARGONAUT, where procedures regarding
sampling are taken care of, including when the initial design is created, the existing design is
augmented and when new samples are adaptively collected from the optimization step at every
iteration. Although here the SVM-ARGONAUT integration is extensively discussed, the idea of

using SVMs in this framework is generic and can be implemented to other data-driven solvers as
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well. In the next section, a more complicated computational case study is described, namely the
steam cracking of ethane and propane, where the data-driven modeling and optimization of these

stiff DAE systems are explored using the SVM approach.

4.5 Data-Driven Dynamic Steam Cracking Optimization for Ethylene and Propylene Pro-

duction

The rapid increase in shale gas production in the Appalachian and Permian Basins for the
last decade has lead to significant growth in natural gas liquids (NGLs) production, as well as
a projected increase for these petrochemical feedstocks in the upcoming years (Figure 4.5) [1-

3, 163].
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Figure 4.5: Historic natural gas liquids production in the U.S. and its short-term projection for the
upcoming year [1-3].

Ethane and propane, being the major constituents of NGLs, are predominantly used for the
production of ethylene and propylene, respectively, where ethylene consumption is expected to

increase by 49% from the year 2017 to 2020 [2]. Naturally, the growing petrochemical feedstock
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supply and the rising demand for light olefins sparks an interest in converting NGLs to olefins via
the non-catalytic steam cracking process. In this perspective, many existing ethylene crackers have
expanded capacity and new crackers are becoming online to benefit from this unique opportunity
[164]. Hence, the mathematical optimization of this process emerges as a necessity to determine
the optimal operating conditions for the steam cracker, in such a way that the profit from ethylene
and propylene production is maximized.

To this end, the integrated SVM-ARGONAUT framework is utilized to handle the stiffness
in the cracking model equations while exploring high-quality solutions for the optimal reactor
length, inlet ethane/propane and steam flowrates, inlet temperature, inlet pressure, and heat flux
profile along the optimal reactor length, through surrogate modeling and optimization. The steam
cracker reactor model for ethylene and propylene production is adapted from [14-17, 165-168]
and modeled as a one-dimensional plug flow reactor with coking effects (Figure 4.6). The detailed

reactor model equations and parameters [18-20] are presented in Appendix C.
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Figure 4.6: One-dimensional plug flow reactor for steam cracking (Tube diameter: D,). P(z),
F;(z) and T'(z) represent the spatial change of pressure, species molar flowrate and temperature
along the reactor length, respectively. Steam and feed (i.e., ethane or propane) is co-fed at the
reactor inlet. Heat required for the endothermic cracking reactions is provided by the external heat

flux, Q(2).

The mathematical formulations presented in Appendix C for the steam cracking case studies

are modeled in MATLAB and this problem simulator is used for the data-driven modeling and
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optimization of the thermal cracking process with SVM-ARGONAUT. For both case studies, 10
input variables (the decision variables, Table C.7) are considered, 1 known constraint (Equation
C.23 for ethane cracking model, Equation C.24 for propane cracking model), and 4 grey-box
constraints (Equations C.19, C.20, 4.3, 4.4), where the objective is to maximize the profitability
of operation (Equation C.21 for ethane, C.22 for propane). The detailed analysis of the results is

provided in the following section.
4.6 Results of Computational Studies

The computational studies for the data-driven steam cracking optimization are performed on a
High-Performance Computing (HPC) machine at Texas A&M High-Performance Research Com-
puting facility (Ada HPC Cluster operated with Linux CentOS 6: Intel Xeon E5-2670 v2 10-core
processor (Ivy Bridge-EP)). The supercomputer is used at both stages of the framework: (1) In the
offline phase, for data collection and SVM model building; (2) In the online phase, for executing
the ARGONAUT algorithm as a parallel job, using 1 node (20 cores per node with 64 GB RAM) on
the supercomputer. Likewise, the data collection and SVM model-building phases are performed
as a parallel job, using 1 node (20 cores per node with 64 GB RAM and 1 node (4 cores per node
with 64 GB RAM), respectively. The results of the offline and the online phases of the framework

are discussed in the following sections.
4.6.1 Offline Phase: Results of SVM Model Building

As a first step, the SVM model is built using the data generated from the steam cracking model
which is subject to the known constraint (Equation C.23 for ethane cracking model, Equation
C.24 for propane cracking model) and the provided bounds on the decision variables (Table C.7),
following the methodology described in previous sections. As the bounds on the decision variables
are the same in the first session of ARGONAUT runs, only 1 SVM model is built per case study.
The model evaluation metrics on the validation data for both ethane and propane cracking case
studies are provided in Table 4.1.

The validation results show that SVM models for these datasets can be generated in high ac-
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Table 4.1: SVM model performance for the first session of runs with ARGONAUT.

Cracking Model Accuracy (%) Precision (%) Recall (%) AUC (%) F, score (%)

Ethane 98.492 96.591 100 99.948 98.266
Propane 98.492 98.780 97.590 99.875 98.182

curacy (98.492%). It is important to note that the SVM model cannot guarantee feasibility to the
selected sampling points as the model may misclassify 1.508% of the samples as “feasible” based
on the validation dataset. When this model is implemented in the online phase, it may cause ARG-
ONAUT to converge to a numerically unstable solution at the end of its iterations. To absolutely
guarantee the feasibility of the solution, an extra grey-box constraint is added in the online phase
that essentially confirms the assigned value for the length variable as a candidate point is equal
to the simulation endpoint (i.e., simulation does not quit prematurely without reaching the end-
point of length). As ARGONAUT cannot directly handle equality constraints, this constraint is

reformulated into two inequalities (Equations 4.3 and 4.4) with an added relaxation parameter.

L — L < 0.000001 4.3)

L™ — L2 > 0.000001 4.4)

Once the SVM model for the first session is established, the online phase of the SVM-
ARGONAUT integrated approach is executed 20 times for each cracking model, each starting
with a random LHD. After the convergence is reached, the first session is completed and the vari-
able bounds are tightened, new SVM models are generated for each run such that they represent
the numerical stability of the cracking models in the reduced space. The detailed validation perfor-
mances of these SVM models under the tightened bounds are summarized in Appendix C (Tables
C.8 and C.9). The overall results show that these models also have very high accuracy, with more
than 97% and 95% correct classification performance among all tested samples for the ethane and

propane cracking case studies, respectively. The other performance metrics are also satisfactory,
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where the model precision is greater than or equal to 98% and 94%, the recall is greater than 98%
and 95%, the AUC is greater than 99% and 99%, and the F, score is greater than 98% and 96% for

ethane and propane case studies, respectively.
4.6.2 Online Phase: Results of the Grey-Box Optimization

In the online phase, the goal is to find the optimal solution to the steam cracking problem using
the integrated approach for implicit modeling of the stability constraint and the constrained grey-
box optimization of the problem of interest. For all case studies and their respective 20 repetitive
runs, the number of initial sampling points is set to be Nygmpe = 30 - Ngip, + 1. The same
rule-of-thumb is also used when performing sampling reduction via OSCAR and in the second
session of the algorithm, when the LHD is augmented for exploring the most promising region for
the optimal solution. For processes regarding the surrogate modeling and grey-box optimization,
ARGONAUT is executed in the default mode, where the algorithm decides on the surrogate model
form for the objective function and the grey-box constraints.

The thermal cracking models provided in Appendix C are used as grey-box problem simulators,
where different combinations of decision variables are input to each simulator and the correspond-
ing objective function value and the constraint violations are collected. The input combinations to
the problem simulators are first evaluated to satisfy the known constraint and then evaluated by the
SVM-feasibility checkpoint to ensure that this combination will yield a numerically stable solu-
tion. If the sampling point passes these two feasibility checks, then that sample is evaluated in the
process models and its corresponding outputs are collected and further processed in the parameter
estimation and data-driven optimization stages of the algorithm. Following this procedure, the best
solution out of the 20 runs for the ethane cracking case study is summarized in Figure 4.7 and
Table 4.2.

Figure 4.7A shows that the molar flowrate of the main products is increasing along the reactor
length as the desirable reaction is taking place. Clearly, the ethane cracking shows a single-feed-
single-product trend where ethylene is produced through the favorable reaction alongside with H,.

In addition, the molar flowrate of the byproducts are significantly limited compared to the desired
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Figure 4.7: (A) The molar flowrate of species for the optimal configuration of an ethane ther-
mal cracker. (B) The molar flowrate of C,* species which lead to reactor coking in the optimal
configuration.

products. Figure 4.7B shows the molar flowrate of the C,* species which were previously identified
as the coke precursors. It is observed that among these 4 species, 1-butene has the highest flowrate
along the reactor length, hence contributing the most to the reactor coking. This observation is also
consistent with the findings of Onel [17], demonstrating the validity of the presented data-driven

approach for finding high-quality feasible solutions for the optimization of stiff DAEs.

Table 4.2: The results of the best solution found with SVM-ARGONAUT integration for the ethane
cracking case study.

Decision Variables Optimal Value ‘ Decision Variables Optimal Value ‘ Results Value
Q% (kW/m?) 507.393 Fé’zﬁﬁ (kmol/s) 0.04272 Ethane Conversion 0.7247
Q5 (kW/m?) 741.484 Ff,0 (kmol/s) 0.00377 Ethylene Yield 0.6161
Q3 (kW/m?) 954.021 T° (K) 727.027 Ethylene Selectivity  0.8501
Q35 (kW/m?) 462.987 P° (kPa) 303.741 T (K) 1170.207
Q2 (kW/m?) 260.125 L (m) 32.117 Pt (kPa) 131.289

Furthermore, Table 4.2 summarizes the results pertaining to the optimal decision variables

achieved in the ethane cracking reactor using the SVM-ARGONAUT integrated framework. For
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the thermal cracking of ethane, the SVM-ARGONAUT framework identifies the maximum profit
as $0.3359/s which corresponds to an overall annual profit of $10.6M. The optimal decision vari-
ables show that a greater heat flux supply is required at the first 3/5 portion of the reactor where it
later decreases gradually towards the exit of the reactor. This is consistent with the inlet temper-
ature value as the reactor entrance temperature is low, a greater heat flux needs to be supplied to
ensure endothermic cracking reactions take place. In addition, a higher ethane flowrate is estab-
lished where the steam flowrate is relatively lower. This is an expected result; as ethane cracking
being a single-feed-single-product system, the only positive contribution to the profit comes from
ethylene production. It is also observed that the optimal value of the inlet temperature for the
ethane cracker is lower than expected as higher temperatures will increase the reaction rates. How-
ever, as high temperature promotes faster reactions, the reactor coking will be enhanced due to
the creation of more side products, hence leading to a loss of profit. As a result, the selected
optimal inlet temperature value prevents early reactor coking and promotes a higher profit of op-
eration. This is also supported by a lower steam flowrate for the ethane cracker where a minimal
amount of steam will be required at minimal amounts of coking on the reactor wall. Moreover, a
shorter reactor length is identified in the optimal configuration compared to a typical longer reactor
lengths that are commonly reported in the literature. This is a key result showing that fine-tuning
the reactor length will generate valid high-quality solutions with high profit values by decreasing
the investment, heating and decoking costs of bigger reactors. In addition, it is observed that the
reported optimal solution in Table 4.2 favors good ethane conversion and ethylene yield with high
selectivity for ethylene.

Similarly, the optimal results of the thermal cracking of propane found using SVM-
ARGONAUT integration are reported in Figure 4.8 and in Table 4.3. The results show that the
profit obtained from thermal cracking of propane is $0.0845/s which corresponds to an annual
profit of $2.67M. The reactor molar flowrate profiles in Figure 4.8 A show that the favorable reac-
tion starts taking place early at the reactor entrance, where propane flowrate depletes and products

are produced along the reactor length. Figure 4.8 A also shows that the thermal cracking of propane
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Figure 4.8: (A) The molar flowrate of the main products for the optimal configuration of a propane
thermal cracker. (B) Reactor temperature and pressure profiles at the optimal configuration for the
propane cracker. The dashed line represents the atmospheric pressure.

Table 4.3: The results of the best solution found with SVM-ARGONAUT integration for the
propane cracking case study.

Decision Variables Optimal Value ‘ Decision Variables Optimal Value ‘ Results Value
Q% (kW/m?) 910.298 F83H8 (kmol/s) 0.02883 Propane Conversion  0.8708
Q5 (kW/m?) 282.332 F§ 0 (kmol/s) 0.01004 Propylene Yield 0.1745
Q35 (kW/m?) 55.025 7° (K) 916.716 Ethylene Yield 0.5377
Q5 (kW/m?) 177.221 P° (kPa) 325.276 Propylene Selectivity 0.2004
Q2 (kW/m?) 21.516 L (m) 34.957 Ethylene Selectivity ~ 0.6175

enables the production of two main products, namely ethylene and propylene. As reported in Ta-
ble 4.3, this optimal reactor configuration leads to a high propane conversion value with a larger
yield and selectivity favored for ethylene. Hence, the optimal configuration of the propane cracker
at maximum profit pushes for a greater ethylene production than propylene. Furthermore, Fig-
ure 4.8B shows the optimal temperature and pressure profiles for the propane cracker. Although
higher inlet temperature and pressure are required for this case study where a slightly longer re-
actor length is also preferred for maximizing the profit, the solution is feasible with regards to the

limits provided for outlet temperature and pressure.
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Table 4.4: The profit breakdown for the optimal solution of ethane and propane cracking case
studies.

Ethane Cracking Propane Cracking
Objective Variable Value ($/s) Objective Variable Value ($/s)
Ethane Feed Cost - 0.2991 Propane Feed Cost -0.6361
Steam Feed Cost - 0.0006 Steam Feed Cost - 0.0022
Heating Cost - 0.0621 Heating Cost - 0.0381
Investment Cost - 0.0088 Investment Cost - 0.0095
Decoking Cost - 0.0855 Decoking Cost - 0.0345
Ethylene Production + 0.7920 Propylene Production + 0.2581
- Ethylene Production  + 0.5468
Total + 0.3359 Total + 0.0845

Moreover, the overall profit breakdown in Table 4.4 shows that for both case studies the petro-
chemical feedstock costs, reactor heating and decoking costs take the most out of the profit,
whereas the reactor investment cost is relatively small due to the optimized reactor length. In
the thermal cracking of propane, the results show that ethylene production contributes more to the
profit than the propylene, as the coking mechanism for this case study utilizes CsHg as the cok-
ing precursor. Hence, this limits the propylene production while favoring ethylene production for
profit and minimum coking generation on the reactor wall. It is important to note that the reaction
mechanism for propane cracking allows flexibility in the mode of operation depending on the mar-
ket demand or prices (i.e., maximizing ethylene or maximizing propylene production). However,
it is important to note that exhaustive exploration of the full Pareto solution between maximizing
ethylene versus maximizing propylene is possible, but out of the scope of this work. Nonetheless,
the case studies presented in this work show that the SVM-based data-driven optimization algo-
rithm is effective for optimizing process models with stiff DAEs and can generate high-quality
feasible solutions.

Finally, the total elapsed computational time of the online phase with and without the SVM
approach is compared. Figure 4.9 shows that the integrated SVM-based data-driven optimization

algorithm is more computationally efficient than in the absence of this approach for both ethane and
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Figure 4.9: Boxplots for the total elapsed time in the online phase for the data-driven optimization
of: (A) Ethane; and, (B) propane cracking case studies in the presence and absence of the SVM
approach.

propane cracking case studies in the online phase. Furthermore, lower profit values are observed
for both cracking case studies when the SVM approach is not implemented. For ethane cracking,
the best-found profit over 20 random runs without the SVM approach is $0.2970/s, whereas for
propane cracking the best profit is $0.0834/s. It is observed that the integrated approach can lo-
cate better solutions where the profit is improved by 13.1% for ethane cracking and 1.3% for the
propane cracking problem. The overall results show that the SVM-based optimization algorithm
can find superior feasible solutions to stiff multi-dimensional DAEs in a computationally efficient

way.
4.7 Concluding Remarks

In this chapter, a data-driven optimization algorithm is presented using Support Vector Ma-
chines (SVMs) for systems with stiff Differential Algebraic Equations (DAEs). The numerical
stability of a system of stiff DAEs is formulated as a nonlinear two-class classification problem,
where the feasibility boundary of stiffness is implicitly modeled using an SVM model. Later
by incorporating SVM models to a global constrained grey-box optimization solver, namely the
ARGONAUT framework, any numerically unstable sampling points are filtered and removed a
priori to simulator call and the optimal solution of the complex process model is explored using
a data-driven approach. The fundamental idea behind this integrated approach is demonstrated on

a 2-dimensional motivating example where the SVM approximation of the stability constraint is
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shown to achieve high validation accuracy. Further, this approach is extended and tested on more
challenging case studies, namely the thermal cracking of natural gas liquids. The results from ther-
mal cracking case studies show that an SVM-based approach enables feasible, numerically stable,
and high-quality solutions for the data-driven optimization of systems with stifft DAEs without the

full discretization of the underlying first-principles process model.
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5. DATA-DRIVEN NONLINEAR NONCONVEX OPTIMIZATION WITH APPLICATIONS
TO HIGHLY CONSTRAINED OIL FIELD OPERATIONS*

This chapter presents algorithmic advances within the AlgoRithms for Global Optimization
of coNstrAined grey-box compUTational problems (ARGONAUT) framework, developed for the
global optimization of systems which lack analytical forms and/or derivative information. By
taking advantage of high-performance computing, a new parallel version of ARGONAUT (p-
ARGONAUT) is introduced to solve problems with high dimensionality and a large number of
constraints. This framework is motivated by a complex case study, which pushes the boundaries
of complexity of derivative-free optimization in terms of both dimensionality and number of con-
straints, namely the identification of the optimal operational control trajectories of an oilfield using
water-flooding. The objective of this case study is the maximization of the Net Present Value of
the operation over a five-year period by manipulating the pressures of the injection and production
wells, while satisfying a set of complicating constraints related to water-cut limitations, platform
capacity constraints and operational limits. First, a dimensionality reduction is performed via the
parametrization of the pressure well control domain, which allows the efficient optimization of the
constrained grey-box system by the proposed algorithm. Results are presented for various cases
with increasing number of constraints and the performance of p-ARGONAUT is compared to other
derivative-free optimization methods.

This chapter is organized as follows. Section 5.1 introduces water-flooding control optimiza-
tion and provides an overview of the current state-of-the-art for addressing this challenging mathe-
matical programming problem. Later in Section 5.2, the new parallel algorithm is described which
enables a theoretical advancement in water-flooding control optimization by explicitly accounting

for all the process constraints, while identifying superior guaranteed feasible solutions for these

“Part of this chapter is reprinted with permission from “Global optimization of grey-box computational systems using
surrogate functions and application to highly constrained oil-field operations” by B. Beykal, F. Boukouvala, C.A.

Floudas, N. Sorek, H. Zalavadia, E. Gildin, 2018. Computers & Chemical Engineering, vol. 114, pp.
99-110, Copyright [2018] by Elsevier and Copyright Clearance Center.
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high-dimensional highly constrained grey/black-box problems. Furthermore, Section 5.3 outlines
the Functional Control Method (FCM) for reducing the dimensionality of water-flooding control
optimization via parametrization of the well control domain. Finally, the new parallel algorithm
is tested on a realistic benchmark problem where the results of series of computational studies are

provided in Section 2.3, along with concluding remarks in Section 5.6.
5.1 Optimization of Water-flooding Control Operations

Oil companies continuously strive to maximize oil recovery factors, using new technologies for
enhanced oil recovery [169]. Primary oil recovery, uses the reservoir’s initial pressure to transmit
fluids to the production wellbore, however, as the reservoir depletes this initial pressure declines,
and leads to the entrapment of significant amounts of oil in reservoirs. Water-flooding is a well-
known and historically widely used secondary oil recovery (SOR) method, through which water is
injected to the wells to displace and extract oil that is entrapped in the reservoir after primary oil
recovery. SOR methods play an important role in the oil economy, since they are used to extract a
significant amount of oil annually, using fluids such as water, CO, or hydrocarbon gases [170, 171],
while water is one of the most inexpensive available options. Despite its popularity, water control
during water-flooding poses significant challenges due to the amount of water required for the
extraction, as well as costs for water handling [172]. In addition, uncertainty in the geological
description of the reservoirs (e.g., unknown permeabilities and porosities) contribute to challenges
in the operations, such as the fluid to bypass unswept regions, and thus detailed simulations are
necessary to predict the behavior of these complex systems under different operating conditions.

During any oil extraction operation, reservoir management aims to find the optimal values
for continuous operating variables, such as the well rates or the bottom hole pressures (BHP), to
maximize the net present value (NPV), or the cumulative oil production of the operation over a
specified period of time. Specifically in water-flooding, there are several constraints that must
be taken into account when maximizing the profitability of an operation, such as the water-cut
constraint, which directly affects the cost associated with water handling. Efficient optimization

of the aforementioned constrained formulation is a challenging problem. First, the objective is a
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nonlinear nonconvex function, which often displays many local optima. Second, the optimization
problem is subject to constraints that can only be obtained as an output of a reservoir simulation.
Third, the evaluation of the objective function and the constraints is costly since the reservoir
simulations require the solution of a system of multi-dimensional partial differential equations.
Lastly, the gradient information of the objective function and the constraints of such problems is
often not available, due to the black-box, or proprietary nature of the simulators.

Generalized pattern search and global-search algorithms (i.e., genetic algorithms, particle
swarm optimization) are commonly utilized in the literature for the optimization of water-flooding
operations [173]. Recent studies have focused on box-constrained optimization [170, 174], as well
as general constrained optimization, where the nonlinear constraints are treated using filter-based
methods [175, 176], penalty functions or barrier methods [177-179] and an augmented Lagrangian
approach [180, 181]. There are also studies concentrating on the incorporation of surrogate-based
techniques to the water-flooding optimization problem. Queipo et al. [182] have investigated the
global optimization of the box-constrained water-flooding problem by constructing a kriging sur-
rogate function to represent the objective function. In addition, Horowitz et al. [183] have exten-
sively studied the water-flooding optimization problem under general constraints using surrogate
formulations. The authors build kriging surrogates for the objective function and for the nonlinear
constraints, which they locally optimize using Sequential Quadratic Programming (SQP).

The main distinction of the approach followed in this work compared to the studies discussed
above, is the use of adaptive sampling, and the optimal training and selection of hybrid surrogate
formulations, which are solved to global optimality. The ARGONAUT framework [28, 29] trains
and validates optimal approximations, selecting from a pool of potential surrogate functions, rang-
ing from linear regression, to nonlinear interpolating functions for each of the unknown equations
(objective and constraints) of the problem. ARGONAUT addresses many elements ranging from
optimal sampling, optimal sampling reduction, model identification, bound refinement, variable
selection to global optimization, which further amplifies the consistency and the performance of

this framework. A detailed description of this algorithm is provided in Chapter 4 of this disserta-
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tion. In the following section, the algorithmic parallelization developments for ARGONAUT are
discussed, which allows the consideration of a variety of important constraints for water-flooding

control that have a significant effect on the profitability of operations.
5.2 Parallelization of the ARGONAUT Algorithm

Even though the ARGONAUT algorithm is previously shown to find the global optimum for
a large set of nonlinear optimization problems with up to 100 variables and constraints [28], the
computational cost of it becomes a limiting step as the number of dimensions and the number
of constraints of the problem formulation increases. There are three stages of the algorithm that
contribute significantly to the computational cost of the method. First, the time required to collect
samples from the simulation, has a large impact on the computational cost of the overall optimiza-
tion, and this is directly linked to the computational cost of a single function call, which is often
significant. Second, as the number of unknown constraints increases, the surrogate training, se-
lection and validation stage becomes a limiting step since this procedure must be performed for
each individual unknown function of Equation 1.1. Third, the final optimization of the hybrid
grey-box formulations is performed multiple times to collect a diverse set of local optima as well
as the global optimum as new promising sampling locations. This final stage can become com-
putationally intensive, as the number of dimensions and/or the number of nonconvex terms in the
optimization problem increase.

These stated challenges can be resolved by taking advantage of the fact that several stages
of ARGONAUT can be independently performed in parallel. To achieve this, high-performance
computing is employed to implement a fully parallel version of ARGONAUT (p-ARGONAUT).
Specifically, three main stages of ARGONAUT are now performed on multiple processors: (1)
sample collection; (2) model selection and validation; and (3) solution of multiple local and global
optimization problems of surrogate formulations, as shown in Figure 5.1.

The parallelization of all these three stages is possible because of the following reasons. In
the sample collection phase, shown in Figure 5.1A, each sample has a pre-determined location in

the z-space. Thus, when p processors are available, it is possible to form p different subsets of
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Figure 5.1: Parallelized sections of ARGONAUT: (A) Sample collection; (B) surrogate model
identification and validation; (C) local and global optimization of surrogate formulations.

the initial sampling set, in order to run the simulation in parallel and collect the outputs accord-
ingly. Moreover, each of the unknown equations is assumed to have a form that is unique and
independent of the remaining formulations (Figure 5.1B). Consequently, the model identification,
parameter estimation and cross-validation for each of the unknown constraints and the objective
can be performed independently on multiple processors. Finally, at the end of one iteration, ARG-
ONAUT collects multiple potential local optima, starting with multiple initial points using a local
optimization solver (CONOPT) [184], and the global optimum of the surrogate formulation using
a global optimization solver (ANTIGONE) [90-92], depicted in Figure 5.1C. Each of these op-
timization problems are independent from each other and can be solved in parallel for improved
computational efficiency. The solutions from these parallel optimization problems are collected by

p-ARGONAUT, which further identifies the unique solutions as new sampling points and proceeds
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to the next iteration.
5.3 Dimensionality Reduction Using Functional Control Method

For the problem of well control optimization, the goal is to generate the optimal control tra-
jectory of an oil-well for a given time horizon, and this tends to create very high-dimensional
optimization formulations. As described in Section 5.1, the optimal water-flooding control prob-
lem can be tackled either by optimizing (1) the well rates or (2) the bottom hole pressures (BHPs).
Using the BHP control approach, the simulation variables are the pressures for the producers and
the injectors per time step, given in Equations 5.1 and 5.2, where n; is the number of injectors, np

is the number of producers and n is the number of time steps, respectively.

BHP(i,t) Vi=1,..,n,t=1,..nr (5.1)

BHP(p,t) Vp=1,...,np,t=1,...,np (5.2)

Naturally, the dimensionality of the (discretized) optimal control problem is dependent on the
time step, the total time horizon, and the number of wells. Thus, as the time step gets smaller, or
in other words the control over the wells is more frequent among a given time horizon, the number
of variables of the optimization problem increases significantly. Likewise, in realistic scenarios,
there are multiple injectors and producers that need to be controlled simultaneously, thus this leads
to a very high-dimensional search space.

To overcome the problem, a dimensionality reduction technique (Functional Control Method,
FCM) is employed to parameterize the well control domain using surrogate functions [147, 185,
186]. In this method, a known functional form is used to define the control trajectory of each well
as a function of time, representing the control value at each time step. As a result, the optimization
variables are reduced from the total number of pressure levels for every time step, to a set of
surrogate function coefficients. This concept is illustrated with a simple example provided in
Figure 5.2.

In Figure 5.2A, a typical BHP trajectory for a single well is plotted over a control interval. The
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Figure 5.2: Simple illustration of the FCM: (A) An example of an BHP trajectory along a control
interval; (B) midpoints of the BHPs at each control step are selected for the functional approxi-
mation, shown in black points; (C) second-order polynomial approximation is fitted through these
points for approximating the original control trajectory, shown in red curve.

fundamental idea behind FCM is that this BHP trajectory can be approximated by a continuous
surrogate approximation, which is a unidimensional function of time. The points that are used to
train the approximation are obtained by taking the midpoints of each time step, as shown in Figure
5.2B. These points are used to fit a known surrogate function, which must be flexible enough to
capture the typical trends of well control profiles, as shown in Figure 5.2C. Assuming that the
number of parameters of the selected surrogate function is significantly less than the total number
of well control pressures over the discretized time horizon, this approach leads to a significant
reduction in the number of decision variables of the optimization problem. Specifically, using this
approach, the optimization variables for the oil-well production optimization with BHP control
become the parameters of the function BH P(t), as described by Equations 5.3 and 5.4, where F
is the maximum order of function BH P(t), by and bp are parameters of the injector and producer

functions BH P(t), respectively.

bi(i,f)  Vi=1,..n;,f=0,.,F (5.3)

bp(p, f) Vp=1,...np,f=0,.., F (5.4)

FCM dictates that any type of functional form that seems fit can be used to approximate the

control trajectory. In this study, two functional forms are extensively tested: a second order polyno-
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mial function (Equations 5.5-5.6), and a modified exponential function (Equations 5.7-5.8), which
mimics an s-shaped trajectory within the control domain. The form of these functions was selected

after carefully studying the form of many pressure control profiles in water-flooding applications.

BHP[(t) = b],o(’i) + b[’l(i) -t + b[}g(i) . t2 Vi = 1, LNy (55)
BHPp(t) = bpo(p) + bpa(p) - t + bpa(p) - £ Vp=1,..,np (5.6)
BHP(1) ! Vi=1 (5.7)
= 1 = ,...7n .
T Tt eap(bro(i) + bra(i) -t + brali) - 12) !
BHPp(t> L \V/p: 1,...,?”Lp (58)

T 1+ exp(bpo(p) + bp1(p) -t + bpa(p) - 2)

In addition to dimensionality reduction, this approach results in optimal pressure control pro-
files that are relatively smooth, avoiding the occurrence of drastic changes in pressure levels from
one time step to the next, which can cause operational difficulties. In fact, bounds on parameters
of the surrogate functions can indirectly control the rate of change of the surrogate control profiles.
In other words, upper and lower bounds on the new optimization variables, namely the surrogate
function parameters b; and bp, can be inferred depending on the type of function used and known
bounds on the control BHP variables. As an example, the effect of each parameter of the second-
order polynomial expression on the trajectory characteristics is used to derive bounds that allow
the proposed formulations to capture any possible control trajectory that the simulation might
encounter. Hence, the bounds on the parameters are inferred by realizing that the zeroth-order
parameter gives insights on the point where the polynomial intercepts the y-axis (initial pressure
level), while the first and second-order parameters define the rate of change and the curvature of the
polynomial, respectively. It is important to note that the pressure calculated using the polynomial
approximation may exceed its bounds. In that case, the value of the pressure at that specific time
step is set to the value at the nearest bound.

The second type of surrogate proposed is based on the fact that the pressure depletion in an

oil reservoir is characterized by an exponential form, since the pressure control profiles have a
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tendency to show a gradual increase or decrease towards their upper or lower bounds, after a
certain amount of time has passed within the simulation [187]. To better capture this inherent
trend in the pressure profiles, a unique s-shaped exponential functional form is introduced as an
alternative way to approximate control trajectories within FCM, which contains the same number
of parameters as the polynomial function (Equations 5.7-5.8). Through the results of this work, the
ultimate aim is to quantify which of the two parametrization techniques is the most versatile and

appropriate for optimization.
5.4 UNISIM Case Study Models

The proposed methodologies, namely the p-ARGONAUT coupled with an initial parametriza-
tion of the pressure space using FCM, have been used to solve the UNISIM case study, which
is a complex oil reservoir benchmark problem. This benchmark problem is a realistic three-
dimensional model developed by Gaspar et al. [188], and it has been widely used for identifying
optimal oil exploitation strategies. The original model for this case study contains approximately
3.5 million active grid blocks based on the petrophysical characteristics of the Namorado Field,
located in Campos Basin, Brazil. Avansi and Schiozer [189] developed a medium-scale reservoir
model based on the UNISIM case study, to make it more applicable to the optimization of reservoir
management operations, which may require many simulation calls. In this work, the latter reservoir
model is used, which contains 20 layers with 100 x 100 x 8 grid cell resolution and approximately
37,000 active grid blocks.

The problem contains 4 vertical production wells, 10 horizontal production wells and 11 hor-
izontal injection wells [190]. Pore pressure, fracture pressure and minimum allowable pressure
difference between an injector and a producer are dictating the bounds on the simulation vari-
ables which are given in bar in Equations 5.9-5.10. These bounds allow us to infer bounds on the

parameters of the surrogate functions show in Equations 5.5-5.8.

190 < BHP(i) <350  Vi=1,..,n; (5.9)
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35 < BHP(p) <180 VYp=1,...np (5.10)

In addition to the bound constraints, there are flowrate, platform capacity and economic limit
constraints that are being considered in this work. The maximum flowrates (m?®/day) of water,
qw (7,t), (Equation 5.11), and total liquid (water and oil, ¢;;,(,t)), (Equation 5.12), which can be

processed by each injector and producer, respectively are:
qw (i,t) < 6000 Vi=1,...n,t=1,...,np (5.11)

Qig(p, t) < 3000 Vp=1,...np,t=1,...,np (5.12)

Platform capacity constraints for water in producers, @ pw (t), (Equation 5.13), oil in produc-

ers, Qpo(t), (Equation 5.14) and water in injectors, Q7 (), (Equation 5.15) in m*/day are:

np

Qpw(t) = qu(p, t) < 21240 Vt=1,..,np (5.13)

p=1

np

Qrol(t) = Z go(p,t) < 21240  Vt=1,..,nr (5.14)

p=1

nr

Qrw(t) = qw(i,t) <30680  Vt=1,.. ng (5.15)

i=1

The constraints represented in Equations 5.11-5.15 are critical for obtaining realistic solutions
in terms of water handling based on the capabilities and capacities of the field. These constraints
seem like simple bound constraints, however, it must be stressed that these are complicating grey-
box constraints, since the flowrates at each well and time step are outputs of the reservoir sim-
ulation, controlled by the original variables, namely the BHP and the solution of the discretized
model.

Finally, the water-cut (WC) constraint is considered, which is critical to the economic viability
of the field. The term water-cut is defined as the fraction of water produced in the total amount of

liquid (water and oil) produced from all producer wells. The expression for the WC constraint is
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obtained by setting the revenue on oil, R, to be greater than the costs of injecting and producing
water (Equation 5.16). By enforcing this limit, the field cash flow is restricted to nonnegative
values in each control time step, and thus this constrains the feasible space of the overall problem

by taking into account the project’s economic limit.

Wew) < Ro — Crw - VRR(t)

Vi=1,...n 5.16
S T G T o T (5.16)

Here, C;w and Cpyy are the costs of injecting and producing water, respectively, and V RR is
the voidage replacement ratio, defined as the ratio of the volume of the injected fluid to the volume

of the total produced fluid (Equation 5.17).

Qrw(t)

VER() = 5D + Qro®

(5.17)

The revenue, Rp, is given by the difference between the price of oil, PRp, and cost of oil
production, Cp. In this study, the cost of oil production is assumed to be zero and the revenue is
taken to be equal to the price of oil, which provides an upper bound on the economic profitability of
the operation. Given the bounds and constraints, the objective is to maximize the NPV, explicitly
defined in Equation 5.18, using d as the discount rate of the project, A¢; as the time interval at
each step, qg’j and q];‘}j as the flowrate of oil and water for each injector/producer at each time step,

respectively.

NPV = Zm 1+d)” (ZROqO Z(Jpwqw ZC’[WqW) (5.18)

j=1

5.5 Results of Computational Studies

The goal of this study is to (a) solve the UNISIM benchmark using the constrained formula-
tion described in Equations 5.9-5.18, in order to provide valuable insights regarding the nature and

complexity of all the constraints under consideration, and (b) test and compare various components
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of the proposed methods. For this reason, series of computational studies were performed on the
UNISIM benchmark problem to test the accuracy, efficiency and consistency of p-ARGONAUT
coupled with FCM, for maximizing the NPV of oil production. The MATLAB Reservoir Simula-
tion Toolbox (MRST) is used as the forward model simulator for the UNISIM benchmark problem
[191, 192]. In this simulation, it is assumed that the reservoir pressure is above the bubble point
and the fluids are immiscible and incompressible.

This water-flooding optimization problem is studied for a horizon time of 5 years, with control
adjustment performed on a montly basis. As a result, the overall process time is discretized into 61
intervals, and for a total of 25 wells, the total number of original pressure control variables is 1525.
It is important to note that the decision variables for the water-flooding optimization problem are
not the original control variables at the simulation level, but they are the coefficients of the second-
order polynomial (Equations 5.5-5.6) and exponential functions (Equations 5.7-5.8) postulated in
FCM, which are directly linked to the BHP for each injector and producer. As a result, by using the
FCM, the size of the input space is transformed from 1525 variables to 75 variables. Through the
results of this work, the aim is to investigate whether the selection of the type of surrogate function
for the FCM has an effect on the optimization, and if yes, to identify which surrogate function is
optimal. For this reason, all the case studies are solved using both the polynomial and exponential
functions, to represent the pressure control trajectories. The detailed list of the parameters used in
the analysis of this problem, as well as a comparison of the dimensionality of the problem with
and without the FCM approach are provided in Table 5.1.

Another key point is that the input space of the water-flooding optimization problem is defined
as a function of the BHPs, whereas the constraints that are presented in Equations 5.11-5.16, as
well as the objective in Equation 5.18, are functions of well flowrates. As a result, this problem is
inherently a grey-box problem, with many unknown functions. In other words, the reservoir sim-
ulation requires the bottom-hole pressure profiles as inputs, and provides as outputs the flowrates
at each well, which are in return used for the calculation of the constraints and the objective. Al-

ternatively, one can choose to use flowrates as control variables for this optimization problem, in
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Table 5.1: Values of the parameters used in the reservoir simulation and the dimensionality of the
problem using traditional approach versus FCM.

Parameters Value
Ro, PRo $50/stb
CI,W’ CP,W $1/Stb
d 0.09
nr 61
nr 11
np 14

Dimensionality of the Optimization Problem

Original Control at Simulation Level Functional Control Method with F' = 2
1525 variables 75 variables

which case, any constraints related to pressure-control and pressure bounds would be grey-box
constraints.

One of the goals of this work is to start with the most comprehensive formulation, including
all potential realistic constraints related to water-flooding operations, however, it was expected that
some constraints may be more difficult to satisfy than others. This was proven after initial testing
of the problem, which revealed that water-cut constraints, total liquid flowrate constraints and plat-
form capacity constraints for the producers are satisfied easily for this case study. However, water
flowrate constraints and platform capacity constraints for the injectors constrained the feasible re-
gion significantly. Based on this insight, a cascaded approach was followed, which involved first
studying the problem with only bound constraints, and subsequently adding each set of grey-box
constraints (Equations 5.11-5.16) to individual sub-problems. This approach allows (a) testing the
performance of p-ARGONAUT on problems of increasing complexity, and (b) the identification
of the set of complicating constraints that significantly affect the profitability of the operation,
which is an aspect that is typically not studied simultaneously through a formalized optimization

formulation. The case studies that have been solved are shown below:

* Case 0: No grey-box constraints.
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Case 1: 61 grey-box constraints: Equation 5.15.

Case 2: 671 grey-box constraints: Equation 5.11.

Case 3: 732 grey-box constraints: Equations 5.11 and 5.15.

Case 4: 733 grey-box constraints: Equations 5.11, 5.15 and one penalty constraint calculated

by summing the violations of Equations 5.12-5.14, 5.16.

* Case 5: 1769 grey-box constraints: Equations 5.11-5.16.

In addition to the selection of the appropriate surrogate function for the initial dimensionality
reduction stage, there is a need to select a surrogate function to represent each of the objective
and the constraints of the grey-box formulations of all six case studies. However, one of the
advantages of the ARGONAUT framework is its ability to train, select and validate a function
for each unknown correlation out of a pool of a library of functions using the minimum average
cross-validation error. This aspect provides insight on the nonlinearity of each individual unknown
constraint and the objective, which is reported in the results. Throughout the results that are pre-
sented in the following sections, the solution strategy relies on the framework’s ability to select
the most appropriate function to represent the objective and the different classes of constraints.
Nonlinear functions, such as quadratic and kriging functions were selected most frequently to rep-
resent the objective function and the constraints in the formulation, indicating that the problem is
in fact nonlinear. Surprisingly, a linear function was found to be optimal to represent a certain class
of constraints, as described in detail in the next section. In previous work, it was shown that the
selection of the surrogate function combination to represent the grey-box formulation has a signif-
icant effect on the quality of the optimal solution, the computational cost, and the required number
of samples for convergence [29]. Although the same effects are observed in this study, this work
does not present a thorough comparison between different types of surrogates for optimization,
assuming that the framework has made the optimal selection.

The results for each case are also compared with other gradient-free methods: the local-

search NOMAD method [95] and the global model-based constrained EGO (con-EGO) algorithm
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[193, 194]. The NOMAD algorithm makes use of surrogate formulations to guide the search, im-
plements a progressive barrier approach to handle general constraints, and requires an initial point
to be provided. On the other hand, con-EGO models the objective and the constraints using kriging
formulations and selects new points by maximizing the Expected Improvement function over the
entire search space. For fairness, the first stage of dimensionality reduction is used for all compar-
isons that are performed, so all of the methods are tested on case studies with 75 variables. Each
case is executed five times on a High-Performance Computing (HPC) machine at Texas A&M
High Performance Research Computing facility, using Ada IBM/Lenovo x86 HPC Cluster oper-
ated with Linux (CentOS 6) using 1 node (20 cores per node with 256 GB RAM), where each
time the global search algorithms (p-ARGONAUT and con-EGO) algorithms are initialized with

different sampling sets, while NOMAD is initialized with a different initial point.
5.5.1 NPV Without the Grey-Box Constraints

In this first case study, none of the constraints are considered, and comparative results be-
tween the use of the polynomial and the s-shaped exponential function for the pressure profile
parametrization are presented. The optimal NPV obtained from each method is provided in a box-
plot in Figure 5.3. The overlaid plots show the pressure profiles for the first injector and eighth
producer of the best solution out of five runs. The objective function within the p-ARGONAUT
runs is fitted using a quadratic surrogate, which indicates that the objective is a relatively smooth
function. Even though in several pressure control oil-field operation problems a flat objective
function surface has been reported Zhao et al. [195], it is found that the global behavior of this
problem is highly multimodal. Similar nonlinear behavior has also been reported in the literature
by Fonseca et al. [196], which provides a plot of the undiscounted NPV projections using multi-
dimensional scaling. The multimodal nature of this objective function is evident in the results
provided in Figure 5.3, by observing that different methods converge to different local solutions.
The results show that p-ARGONAUT provides a higher NPV with consistency, when compared
to NOMAD for both functional forms (-poly and -exp). On the other hand, p-ARGONAUT and

con-EGO provide comparable results when the problem is box-constrained. The high variability
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of the results obtained by the local solver NOMAD, can be explained by the effect of the random
initial point, which is a starting point of the local adaptive search. If a good initial point is known

and is used, the performance of this method is expected to improve significantly.
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Figure 5.3: Optimal NPV for the box-constrained water-flooding optimization problem. -poly
indicates that a second-order polynomial is used in the FCM formulation, given in Equations 5.5
and 5.6. -exp indicates that a modified exponential function is used in the FCM formulation, given
in Equations 5.7 and 5.8. Overlaid pressure profiles, for the first injector and eighth producer,
show the difference between the control trajectories that are approximated with polynomial versus
exponential function.

In order to quantify the computational and qualitative gain achieved by parallelization, the
results obtained by the original, sequential ARGONAUT framework, is compared with the results
obtained by p-ARGONAUT for this case. By setting a CPU limit of 168 hours, it is observed
that the non-parallelized algorithm often hits this limit, while the parallel version converges within
20-50 hours. Most importantly, better solutions are always obtained with the p-ARGONAUT

framework.
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5.5.2 NPV With the Grey-Box Constraints

All of the case studies presented in this Section contain different combinations of grey-box
constraints, as described earlier. Case 1, represents a formulation with only the platform capacity
constraints, which were identified to be active and highly nonlinear. For this reason, it is observed
that p-ARGONAUT transitions to using kriging surrogate functions for their representation. In or-
der to validate the framework’s ability to select the most appropriate surrogate function, this case
is specifically solved twice, first fixing the surrogate functions to quadratic and second to kriging
type (Figure 5.4). Kriging surrogates were able to locate improved feasible solutions based on
the NPV (Figure 5.4A). In addition, faster convergence is achieved by a simultaneous reduction
in the number of required calls to the reservoir simulation when p-ARGONAUT uses kriging sur-
rogates for the grey-box functions (Figure 5.4B). This is a highly desirable result, since reservoir

simulations can have a significant computational cost.

(A) (B)
11.5 2800 —

1

_ ] wo|

c 11 1

g O 2400

om 10.5 1 £ 2200

& 1 @©

° L @ 2000

=] o =

w 10 ». 1800

> 2

= = 1600

Q 95 S

7]

8 E 1400

o $ 1200

5 9 °

4 1000

8.5 800 =
Quadratic Kriging Quadratic Kriging

Figure 5.4: Using quadratic versus kriging surrogates as surrogate approximations for optimization
within the p-ARGONAUT framework, for case 1 (61 highly nonlinear grey-box constraints). (A)
Best obtained NPV values; (B) required number of samples from the simulation for convergence
to solutions in (A).
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The cumulative results for cases 1 through 5 are presented in Figure 5.5. In all cases, p-
ARGONAUT obtains the best NPV for both functional forms, and by using kriging surrogate
functions to represent most of the constraints of the investigated problems. Furthermore, it should
be noted that only for case 4, all of the less active constraints are lumped into a single penalty
function, which is the sum of the violations of the grey-box constraints given by Equations 5.12-
5.14 and 5.16. For this case study, the penalty function is best approximated by a linear surrogate
function, which is another indication that p-ARGONAUT can select the most appropriate and
simplest function to represent correlations. In cases 2 through 5, it is important to state that a
fraction of con-EGO and NOMAD runs are terminated with high infeasibility within the dedicated
CPU time. In case 2, for the con-EGO runs, 2 out of 5 runs were infeasible for the second-
order polynomial approximation and 4 out 5 runs were infeasible for the modified exponential
approximation. Similarly, in the NOMAD runs, 1 out of 5 runs were infeasible for the second-
order polynomial approximation and 5 out of 5 runs were infeasible for the modified exponential
approximation. Since all the runs for NOMAD-exp were infeasible, their results are excluded from
the boxplot in Figure 5.5. Likewise, in case 3, 4 out of 5 runs of con-EGO-poly and 1 out of 5
runs of con-EGO-exp were infeasible. Also, 1 out of 5 runs of NOMAD-poly and 5 out of 5 runs
of NOMAD-exp were infeasible. This trend is also observed in the most complete cases 4 and
5, while p-ARGONAUT consistently identifies feasible solutions throughout all the runs for the
highly constrained optimization problems.

It is important to note that in case 4, even though 4 out 5 runs of NOMAD for the exponential
approximation were infeasible, the one single solution that this method finds is better than the
average performance of p-ARGONAUT. This is an indication that a local solver can perform quite
well, when a good, feasible initial point is provided. In addition, it is important to note that both
con-EGO and NOMAD, are reliable and efficient tools, which have been used to solve many
significant problems successfully. However, these methods are designed for problems with lower
number of dimensions and constraints.

The details on the CPU times and number of samples collected are provided in Figures 5.6 and
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Figure 5.5: Best obtained NPV values for the cases 1 through 5. The number of grey-box constraints increases with increasing case
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5.7, respectively. Comparing all the methods used in this work in terms of number of required
samples and CPU times, it is evident that con-EGO converges to the solutions reported in Figure
5.5 with a fewer number of samples than p-ARGONAUT, while NOMAD consistently requires
more samples for local convergence. However, by taking a fully parallelized approach in the new
algorithm, consistent and reliable performance with less, or at least comparable CPU times was
achieved. In addition, it is important to factor in the fact that the collection of more samples is ac-
companied by improved and consistent behavior in terms of locating better and feasible solutions.

Furthermore in Figure 5.7, it is observed that the total number of samples collected by p-
ARGONAUT in the unconstrained problem (case 0) is significantly higher than the number of sam-
ples collected for the constrained problems in cases 1-5, which is an interesting finding. Studying
the results in detail, it is found that this observation can be explained by the following two reasons.
First, as more constraints are added, there is a significant reduction of the feasible region, which
reduces the sampling search space, and thus this leads to faster convergence. This can be observed
in case 1, where results are obtained before p-ARGONAUT reaches the maximum CPU limit, but
with a fewer number of samples than case 0. Secondly, when the problem is unconstrained, p-
ARGONAUT is generally able to complete more iterations within the maximum computational
time that is enforced, which is directly connected to the number of samples collected. This af-
fects some of the runs with even higher number of constraints, where the parameter estimation
and global optimization of several hundred to thousand equations increases the time required per
iteration.

Through these results, it is observed that the performance of all methods is affected by the
type of the function used to approximate the pressure control profile. The best and most consistent
results are obtained using the simpler second-order polynomial in FCM, which implies that there
is no need to resort to the more complex s-shaped function to represent pressure control profiles. In
addition, the difficult constraints which limit the feasible NPV can be identified as the maximum
amount of water processed by the injectors, as well as the total amount of injection water that the

platform can hold. In other words, if the water-related constraints were not considered, the optimal
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Figure 5.6: CPU times for each case and each solver.
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Figure 5.7: Number of samples collected by each solver for each case.



attainable NPV would be misleadingly overestimated. On the contrary, water-cut constraint that
is considered in this case study, is satisfied easily without a significant effect on the NPV. The
effect of each set of grey-box constraint on the cumulative oil and water production for the optimal

solution obtained using p-ARGONAUT-poly is shown in Figure 5.8.
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Figure 5.8: Production plots as a function of time for the best solution for all cases for p-
ARGONAUT using polynomial approximation in FCM: (A) Water-Cut plots; (B) cumulative water
production rate from the producer wells; (C) cumulative oil flowrate from producer wells; (D) cu-
mulative water injection rate at the injection wells.

As shown in Figure 5.8, in the case where water constraints are not considered (Case 0), the
cumulative oil production, as well as the injected and produced water is significantly overestimated
compared to the Cases 4 and 5, where these constraints are taken into account. It is also observed
that results from cases 1, 3, 4 and 5 almost overlap for all the production plots which suggests that
cumulative water injection constraint captures most of the characteristics of the full formulation
in the context of fluid flowrates throughout the time horizon. Even though case 2 limits the NPV

and total fluid flowrates to some extent, it is important to include the necessary additional con-
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straints that are included in cases 4 and 5. These results clearly show that implicit constraints that
depend on the simulation output may have significant effects on the optimal objective, and thus it

is essential to be able to solve highly constrained simulation-based problems.
5.6 Concluding Remarks

This chapter highlights new computational developments in the ARGONAUT framework and
presents the performance of the new parallel algorithm (p-ARGONAUT) on a challenging non-
linear nonconvex programming case study of oil-well control operations using water-flooding.
Through this work, it is shown that high-performance computing can be used to reduce the compu-
tational cost of the ARGONAUT framework significantly, which leads to also extending its capa-
bilities towards solving high-dimensional, highly constrained problems. In addition, the usefulness
of surrogate functions is shown within two steps of this work: (a) the reduction of the dimension-
ality of the water-flooding optimization problem via parametrization of the control domain; and,
(b) the optimization of simulation-based grey-box problems through the p-ARGONAUT frame-
work. For the first step, different functional control surrogate functions are studied and it is shown
that a polynomial functional form leads to an improved performance of the overall optimization
framework. More importantly, it is observed that the selection of the pressure control profile in-
fluences the shape, smoothness and gradient changes of the control trajectory, and is an important
decision towards creating tractable optimization formulations, without limiting the solution space
of the original problem. Overall, the results of this work show that compared to a few existing
derivative-free optimization methods, p-ARGONAUT can locate feasible solutions with higher

objective function values, in the presence of thousands of grey-box constraints.
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6. DATA-DRIVEN MODELING OF ENVIRONMENTAL AND BIOMEDICAL SYSTEMS

In this chapter, the redistribution of toxic chemical compounds due to natural disasters (i.e.,
hurricanes) and their corresponding biological effect on human health due to chemical exposure is
investigated using exploratory data analytics and data-driven modeling.

First, in Section 6.1, exploratory data analytics is employed to investigate the redistribution of
contaminated soil samples, collected after Hurricane Harvey hit the Galveston coastline within the
Manchester, TX area. These contaminated sediments were previously analyzed for trace metals,
Polycyclic Aromatic Hydrocarbons (PAHs), Polybrominated Diphenyl Ethers (PBDEs), Polychlo-
rinated Biphenyls (PCBs), and Organochlorine Pesticides (OCs) using series of experimental tech-
niques to retrieve the concentrations of these pollutants [197]. In this work, the resulting dataset
is visualized using boxplots and heatmaps, and the correlations between the geospatial location
of sediments and the detected pollutant concentrations are investigated. Hierarchical clustering is
performed on each dataset to explore their corresponding grouping information, where the clus-
tering similarity with respect to their geospatial location is quantified using the Fowlkes-Mallows
index. The studied visualization and data analysis techniques demonstrate an effective methodol-
ogy for the interpretation of contaminants and enable the diagnosis of the potential pathways for
the redistribution in a post-hurricane event.

Second, in Section 6.2, the biological impact of several benchmark chemicals is explored,
as many environmental toxicants affect human health in various ways. This study focuses on a
subclass of chemicals that impacts the estrogen receptor (ER), a pivotal transcriptional regulator
in health and disease. The estrogenic or anti-estrogenic activity of compounds can be measured
by many in vitro or cell-based high throughput assays that record various endpoints from large
pools of cells, and increasingly at the single-cell level. More specifically, multiple mechanistic ER
endpoints in individual cells that are affected by endocrine-disrupting chemicals (EDCs) can be
captured simultaneously by using a sensitive high throughput/high content imaging assay that is

based upon a stable cell line harboring a visible multicopy ER responsive transcription unit and
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expressing a green fluorescent protein (GFP) fusion of ER [198-202]. This high content anal-
ysis generates voluminous multiplex data comprised of minable features that describe numerous
mechanistic endpoints. In this work, a high content image analysis and machine learning pipeline
are presented for rapid, accurate and sensitive assessment of the endocrine-disrupting potential of
benchmark chemicals. The multi-dimensional high throughput/high content imaging data is used
to train a classification model to ultimately predict the impact of unknown compounds on the ER,
either as agonists or antagonists. To this end, both linear logistic regression and nonlinear Random
Forest classifiers are benchmarked, evaluated and compared for predicting the estrogenic activity
of unknown compounds. Furthermore, through feature selection, exploratory data visualization
and model discrimination, the most informative features are identified for the classification of ER
agonists/antagonists. The results of this data-driven study showed that highly accurate and gener-
alized classification models with a minimum number of features can be constructed without loss
of generality, where these statistical models serve as a means for rapid mechanistic/phenotypic

evaluation of the estrogenic potential of many chemicals.

6.1 Understanding Contaminant Characteristics and Redistribution in Post-Harvey Soil

Samples Through Data Visualization and Clustering Analysis

The ultimate goal of this work is to investigate the redistribution of contaminated sediments
as a result of a natural environmental disaster. To this end, several different experimental charac-
terization techniques are used, essentially generating diverse sets of data. However, these datasets
are often hard to communicate solely using spreadsheets and/or tables. As a result, identifying an
effective data-driven methodology that facilitates the dissemination and interpretation of the ex-
perimental results to a wider community is of critical importance for developing rapid detection,
assessment, and evaluation tools.

In this section, exploratory data analytics is used for enabling the easy visualization and in-
terpretation of varying types of environmental datasets. 4 different data visualization techniques
are explored to represent the concentration profiles of sampled soil sediments. These include;

(1) boxplots, (ii) heatmaps, (ii1) pie charts, and (iv) scatter plots. In addition to the visualization
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of experimental analysis, the correlation of the collected samples is investigated based on their
concentration profiles and geospatial locations using unsupervised analysis. The details of the ex-
perimental data acquisition and the data-driven analysis are described in Sections 6.1.1 and 6.1.2,

respectively.
6.1.1 Experimental Data Acquisition

Twenty-four soil samples are collected within the Manchester, TX area for their experimental
characterization. Several different experimental data acquisition techniques are utilized to measure
the concentrations of various environmental toxicants within these sediment samples. Inductively
Coupled Plasma Mass Spectrometer (ICP-MS) is used for measuring the concentrations of trace
metals (Hg is measured using cold vapor atomic absorption spectrometry) in soil samples. Gas
Chromatography/mass spectrometry (GC-MS-MS) is used for measuring the concentrations of
Polycyclic Aromatic Hydrocarbons (PAHs) and Polybrominated Diphenyl Ethers (PBDEs). Gas
Chromatography Electron Capture Detection (GC-ECD) is used for measuring the concentrations
of Polychlorinated Biphenyls (PCBs) and Organochlorine Pesticides (OCs). The detailed experi-

mental procedures followed for the data acquisition are described in [197].
6.1.2 Data Visualization Techniques and Analysis

First, the experimental datasets for the 24 soil samples are pre-processed by scanning them for
missing entries. If a missing value is detected, this entry is replaced with the value of zero. Later,
the datasets are normalized following a series of scaling steps. The concentrations of all trace
metals and their respective crustal abundances (CA) are normalized with respect to the detected

Aluminum concentration (Equation 6.1 and 6.2).

Metal:
Metalzgrm“l = % Vi € Samples,j € Metals (6.1
A
CApormel = 04 Vj € Metals (6.2)

mean([Metal 4])

121



The organic pollutants (i.e., PAHs, PBDEs, PCBs, OCs) are normalized with respect to their total

values.

O Ci . . :
Organichor™ = (Organic "7], Vi € Samples, j € Organic Pollutants (6.3)
" [Total Organic;]

The resulting normalized trace metal and organic compound datasets are used for exploratory data
analytics and visualization. For this purpose, boxplots, heatmaps, pie charts and scatter plots are
used for the effective communication of the observed patterns in environmental datasets.

Later, the standardized z-scores of the normalized data from Equations 6.1 and 6.3 are cal-
culated prior to the clustering analysis using Equation 6.4 for trace metals and Equation 6.5 for

organic pollutants.

Metal?g™ — mean(Metal?o ™)

normal __

zscore; Vi € Samples, j € Metals  (6.4)
9 l )
” std.dev(Metal}o ™)
normal _ Orgamcz;’-rm“lfmean(OTganic?‘”m“l) . . .
zscore;§ = <t dev(Organiciermal) Vi € Samples, j € Organic Pollutants (6.5)
J

After the final normalization step, the resulting datasets are clustered using hierarchical clus-
tering with average linkage and the Euclidean distance metric. The clustering on the geospatial
locations is performed using hierarchical clustering with the Haversine distance metric. The group-
ing of the samples on the map of the studied area along with the clustering dendrogram is shown
in Figure 6.1. The quantitative comparison of the resulting dendrograms is calculated using the
Fowlkes-Mallows (FM) index [161]. The clustering analysis is performed in R (version 3.6.0)
using the “hclust” function under the “stats” library, the Fowlkes-Mallows index is calculated us-
ing the “Bk” function under the “dendextend” library and the Haversine distance of the geospatial
locations are calculated using the “distHaversine” function under the “geosphere” library.

Moreover, the Mantel test is used to evaluate the correlation between geospatial distance matrix
and chemical/concentration profile distance matrices under the null hypothesis. In this study, the

null hypothesis is that any observed relationship between the tested two matrices could have been
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Figure 6.1: Geospatial location-based clustering analysis of the 24 soil samples collected from the
Manchester, TX area. (A) Samples are divided into 3 distinct groups shown on the map. (B) The 3
groups of samples are shown on the dendrogram.

obtained by random arrangement. Hence, the statistical significance of any observed relationship
between the geospatial locations and the chemical/concentration profiles are reported where the
strength of the correlation is quantified using the Pearson correlation coefficient (). The Mantel
test is also performed in R (version 3.6.0) using the “mantel.test” function under the “cultevo”

library.
6.1.3 Results
6.1.3.1 Visualizing Trace Metal Concentrations

The results of the overall distribution of trace metal concentrations across all samples are shown
in Figure 6.2 using boxplots. Boxplots provide basic statistical analysis for a given dataset, includ-

ing median, outliers, range, interquartile range. In addition, the crustal abundance information is
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also provided with the boxplots, where the overall distribution of the detected metal concentrations
can be evaluated for their environmental availability. Results show that several toxic trace metals
are above their crustal abundance. Specifically, it is observed that Zinc, Lead, Mercury and Arsenic
have higher concentrations than their crustal abundance in the analyzed soil samples.

The trace metal concentration dataset is also visualized using a heatmap to get sample-specific
information. To aid the visualization, the normalized datasets from Equations 6.1 and 6.2 are
used to calculate a relative normalized concentration value. If a samp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>