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ABSTRACT

Quadratic unconstrained binary optimization (QUBO) problems are of paramount importance

in scientific and industrial applications as many interesting non-deterministic polynomial (NP)-

hard problems can be mapped to them. QUBO is a subset of combinatorial optimization in which

one seeks the global minimum of an objective function within a finite by occasionally towering set

of possible configurations. Many simplistic algorithms, such as the gradient descent, fail to solve

hard QUBO problems within a reasonable time frame as they find themselves lingering through the

myriad of valleys and hills, hardly ever advancing toward the true ground state. Hence, designing

new heuristics that can efficiently find solutions to such problems, as well as studying new instances

of them can be extremely fruitful. QUBO problems have also shown great utility in quantum

computing applications via quantum annealing, which has proven to be a promising endeavor to

demonstrate the superiority of quantum devices over their classical counterparts. This work is,

therefore, dedicated to studying quadratic optimization problems from several perspectives. We

develop and benchmark physics-inspired algorithms such as population annealing Monte Carlo

and thermal cycling. Using the designed algorithms, we study electron glasses, an instance of

hard QUBO problems. Here, we show numerically that a transition to a spin-glass phase occurs

at extremely low temperatures, which previous numerical studies have not been able to capture.

We also study another case of QUBO problems, where we investigate the distribution of spin

avalanches in systems with quench disorder. We establish new quantities similar to the concept of

natural time in Seismology used as a potential measure for predicting large earthquakes. Finally,

we turn to another exciting application of QUBO, namely quantum machine learning, an effort to

use quantum devices in order to perform artificial intelligence algorithms more efficiently. Here,

in addition to showing the advantage of physics-inspired solvers over the conventional heuristics

such as Ridge regression, we propose a new way to uncover the power of quantum annealers in

conducting machine learning tasks.
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NOMENCLATURE

L Linear system size

D Dimension

T Temperature

β Inverse temperature 1/T

E Energy

H Hamiltonian

L Lagrangian

si Ising spin on the i’th lattice site

hi Local magnetic field of spin si

B External magnetic field

Jij Interaction between spins si and sj

kB Boltzmann constant

Z Partition function

F Helmholtz Free energy

Qab Overlap auxiliary field

SN Symmetric group of N objects

µi Classical state

|ψ⟩ Quantum State

Π(µi → µj) Transition probability from state µi to µj

A Acceptance probability

Γ Transverse field

σi Pauli matrices
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ϵ0 Permittivity of free space

NS Number of sweeps

NT Number of temperatures

NC Number of cycles

NP Pool size

R Replica population size

Sf Family entropy

ρs Entropic family size

ρf equilibrium population size

CV Heat capacity

Tc Critical temperature

ms Staggered magnetization

Wc Critical Disorder strength

ξ Correlation Length

χ Susceptibility

k Reciprocal lattice momentum

r Position vector

g Binder cumulant

qαβ Spin overlap between replicas α and β

∆A Inter-event time

ωi Weight variable

D Data set

||ω⃗||p
(

N∑
i=1

|ωi|p
)1/p

Lp-norm

erfc Complementary error function

var Variance
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TSP Traveling Salesman Problem

NP Non-Deterministic Polynomial

AQC Adiabatic Quantum Computing

MH Metropolis-Hastings

REMC Replica Exchange Monte Carlo

MCMC Markov Chain Monte Carlo

PAMC Population Annealing Monte Carlo

PT Parallel Tempering

SA Simulated Annealing

PIMC Path Integral Monte Carlo

SQA Simulated Quantum Annealing

ICM Isoenergetic Cluster Move

LB Linear in Beta

LBLT Linear in Beta and Linear in Temperature

TSPL Two Stage Power Law

MPI Message Passing Interface

CPU Central Processing Unit

DOS Density of States

DC Direct Current

CG Coulomb Glass

CO Charge Order

SG Spin Glass

AT de Almeida Thouless

RS Replica Symmetric

RSB Replica Symmetry Breaking
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FSS Finite-Size Scaling

PDF Probability Distribution Function

CDF Cumulative Distribution Function

RFIM Random Field Ising Model

SKM Sherrington-Kirkpatrick Model

VBM Viana-Bray Model

SOC Self-Organized Criticality

RPM Return Point Memory

D-Wave Commercial Quantum Annealer

QML Quantum Machine Learning

AI Artificial Intelligence

gcPBM genomic-context Protein Binding Microarray

DNA Deoxyribonucleic Acid

LASSO Least Absolute Shrinkage and Selection Operator

AUPRC Area Under Precision-Recall Curve

SVMC Spin-Vector Monte Carlo

TCA Thermal Cycling Algorithm

TTS Time to Solution

DCL Deceptive Cluster Loop

GEO Gene Expression Omnibus

NCBI National Center for Biotechnology Information
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1. INTRODUCTION

Optimization is ubiquitous in many areas of science and industry; search for the ground state of

exotic states of matter such as high temperature superconductors in physics, topology optimization

in material science, lead optimization in pharmaceutical drug discovery, spacecraft trajectory opti-

mization, active filter design in electric engineering, portfolio optimization in finance, scheduling

in transportation, and speech recognition in artificial intelligence are only a few examples of the

numerous applications of optimization. One important category in this plethora is combinatorial

optimization, which is the search for the minima of an objective function within a finite set of

solutions, for instance, the traveling salesman problem and graph coloring.

An important subset of combinatorial optimization are quadratic unconstrained binary opti-

mization (QUBO) problems which in general have the following form:

ζ(Q) = min

{
1

2
xTQx+ hTx | x ∈ {0, 1}N

}
, (1.1)

where Q is a real symmetric matrix called interaction, and h is a real column vector often referred

to as field. As a matter of fact, it can be shown [1–3] that many hard optimization problems

such as number partitioning, satisfiability problems, set packing, vertex cover, job sequencing, and

Hamiltonian cycles can be mapped to this format. Hence, it would be beneficial to study these

problems and, at the same time, design new heuristics that can solve them efficiently.

The keen observer will notice the close similarity between Eq. (2.1) and the Hamiltonian for

an Ising spin glass [4–6]. More than fifty years of research in the area of systems with quenched

disorder, of which spin glasses are a subcategory, equip us with broad knowledge regarding the

structure of such systems, much of which can be readily applied to the QUBO problems. A critical

understanding that we gain from the spin-glass physics is the reason for the numerical hardness of

such problems; disorder causes frustration and gives rise to competing interactions, which in turn

contorts the energy landscape into a rugged manifold of many metastable states. Naturally, any
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attempt to extrapolate the locally attained information to global statements about the system will

be in vain. That is why the time required to solve many QUBO problems often grows exponentially

with the problem size rendering them intractable for even the best available algorithms. Such

problems are often referred to as non-deterministic polynomial (NP) in the complexity theory

jargon.

Another significant area where QUBO plays a crucial role is its utility in quantum computing

applications. Since 1994 when Peter Shor proposed the first quantum algorithm involving integer

factorization [7], there has been considerable interest in building noise-robust quantum devices as

well ad finding problems where quantum advantage can be demonstrated. A promising endeavor

in this area is adiabatic quantum computing (AQC) [8–10] that has lead to the advent of quantum

annealing (QA). In QA, the ground state is found by slowly deforming the energy landscape from

a trivially solvable problem to a target problem of often NP complexity by taking advantage of

quantum phenomena such as tunneling and entanglement. Quantum annealers like D-Wave [11–

14] processors are commercially available now. The qubits on a D-Wave processor form a Chimera

graph architecture [14] that consists of a two-dimensional lattice of fully-connected K4,4 cells

inside which all qubits are coupled together ferromagnetically. Most optimization problems can

be embedded on the Chimera graph in the QUBO format, which further highlights the importance

of these problems.

Motivated by the above discussion, this dissertation is dedicated to studying quadratic binary

optimization problems in various, yet complementary settings. From a purely algorithmic point of

view, we develop and test the performance of new heuristics inspired by statistical physics such as

Population Annealing Monte Carlo (PAMC) after presenting some elementary concepts in Chapter

2. Using the developed PAMC algorithm, we investigate an instance of a quadratic binary model

in the context of a real physical system, i.e., Coulomb glasses in chapter 4, where we successfully

identify a glass phase within the phase diagram, which has been elusive to numerical studies for

many years. Later in Chapter 5, we study a QUBO problem with geophysical applications. There

we show that the distribution of spin avalanches, following the hysteresis loop of a long-range spin

2



glass, resembles that of the number of small earthquakes occurring between large seismic events

often called natural time, which can be useful in predictions of major earthquakes.

We then embark on developing and optimizing another algorithm called thermal cycling, an

effective tool in solving many hard QUBO problems. Thermal cycling takes advantage of periodic

heating and cooling of a system to help it in escaping from local minima within an often jagged

energy landscape teeming with meta-stable states. Our results show that thermal cycling performs

better than conventional heuristics, such as simulated annealing and competitive with state-of-the-

art algorithms, for instance, parallel tempering.

Finally, in chapter 7, we turn to another interesting practice in quadratic binary optimization,

namely quantum machine learning, where we use techniques in artificial intelligence to study bi-

ological data involving DNA transcription factors of the human genome. Our results show that

physics-inspired algorithms such as simulated quantum annealing outperform the commonly used

models in machine learning, for instance, Ridge regression. We also show that the introduction

of so-called “soft” spins can improve the predictive accuracy of the above algorithms during the

learning process. This effectively implies that the true quantum states of an adiabatic quantum an-

nealer, which are a linear combination of classical states due to entanglement, can indeed be used

to show quantum advantage.
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2. FUNDAMENTAL CONCEPTS

2.1 A Brief Overview of Complexity

Combinatorial optimization constitutes an important area of optimization in which one seeks

to globally minimize or maximize a cost function with finite but often exponentially large con-

figuration space. Some examples include the traveling salesman problem (TSP), the geometrical

packing problem, graph coloring, the cutting stock problem, and integer quadratic programming.

Many of these problems are considered non-deterministic polynomial (NP) in the sense that their

solutions can be verified efficiently; however, the time required to solve them does not scale as a

polynomial function of the problem size, but rather exponential. Note that for any NP problem,

NP 
Efficiently 
verifiable

NP-
Complete

P 
Efficiently 
Solvable

BQP 
Efficiently Solvable 

on Quantum 
Computer

BPP 
Solvable on 
Probabilistic  

Classical 
Computer

NP-Hard 
All NP Efficiently 

 Reducible to these

Figure 2.1: Computational complexity classes. P problems are efficiently solvable in polynomial
time. The NP class includes all decision problems which cannot be solved efficiently, but their
solution can be verified in polynomial time. NP-complete problems are the hardest problems
in the entire NP class. The NP-hard class consists of the problems that are at least as hard as
the hardest problem in NP to which all other NP problems can be reduced in polynomial time.
BPP and BQP are decision problems that can be efficiently solved on a probabilistic classical and
quantum computer, respectively.
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there might be a yet unknown deterministic heuristic that can solve it efficiently. Therefore, it is

uncertain whether or not P = NP, a conjecture that is listed as one of the millennium prize prob-

lems [15]. Some other problems in combinatorial optimization, such as the TSP, are shown to be

NP-complete, which constitute the hardest problems in the NP class. NP-hard problems, which

are not necessarily decision problems, are at least as hard as the hardest NP problem. It can be

shown [16] that all NP problems can be reduced to NP-hard problems in polynomial time. Hence,

an efficient solution to any of the NP-hard problems will automatically guarantee a polynomial-

time solution to the entire NP class. As we show on the complexity diagram in Fig. 2.1 there are

additional problems that can be solved efficiently using non-deterministic algorithms that make up

the bounded-error probabilistic polynomial time (BPP) class. On the other hand, problems such as

integer factorization are shown [7] to have polynomial time solution on quantum computers.

An important subset of combinatorial optimization are quadratic unconstrained binary opti-

mization (QUBO) problems, which in general involve minimizing the following cost function:

H =
1

2

N∑
i=1

N∑
j=1

Qijxixj +
N∑
i=1

hixi, xi ∈ {0, 1}, (2.1)

where Qij are the elements of a a symmetric real matrix and hi are also real-valued. As a matter

of fact, it can be shown [1–3] that many NP optimization problems such as number partitioning,

satisfiability problems, set packing, vertex cover, job sequencing, Hamiltonian cycles, etc., can be

mapped to this format. As an example, here we demonstrate how the traveling salesman problem

can be set up in the QUBO format. The TSP is a subset of the Hamiltonian cycle problems which

seeks the shortest route between a number of cities identified by their coordinates, such that each

city is be visited only once and the path returns to its starting point in the end. This is shown

schematically in Fig. 2.2. In the graph theory language, this problem can be thought as a directed

graph G = (V,E) where the edge (uv) ∈ E is weighted by the Euclidean distance duv between

the vertices u, v ∈ V . So the problem becomes finding the Hamiltonian cycle on which the sum of

5



Figure 2.2: The traveling salesman problem (picture credit https://blog.essaycorp.com). The goal
is to find a shortest closed route between N cities such that each city is visited exactly once. The
configuration space grows as N !, which makes TSP an NP-complete problem.

weights is minimized. Using the variables xv,j ∈ {0, 1} in which the index j shows that the vertex

v appears j’th in the cycle, we can present the cost function as follows:

HTSP =
N∑
v=1

(
1−

N∑
j=1

xv,j

)2

+
N∑
j=1

(
1−

N∑
v=1

xv,j

)2

+
∑

(uv)∈E

N∑
j=1

duvxu,jxv,j+1, (2.2)

where the first two terms ensure that each vertex appears in the cycles exactly once and the last

term is simply the total length of the path.

2.2 Spin Glasses

It is straightforward to show that with some small modifications, Eq. (2.1) can also be shown

in the following form:

H =
1

2

N∑
i

∑
j∈Ni

Jijsisj −
N∑
i

hisi, (2.3)
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where the spin variables si can take the values si = ±1, and the neighbor set Ni depends on the

topology of the lattice. The above equation can be recognized as the Hamiltonian for an Ising

spin glass [4–6, 17, 18]. Spin glasses are magnetic materials with quenched disorder meaning that

the couplings Jij are constant on the time scales over which the spins fluctuate. The introduction

of such a disorder has far-reaching implications such as frustration and competing interactions.

In the presence of frustration, it is impossible to simultaneously satisfy all of the bonds, which

gives rise to spatially random configurations that are frozen in time. This results in a rugged

energy landscape teeming with metastable states, making it extremely difficult to travel around in

an ergodic fashion, which may explain the underlying reason for the intractability of many QUBO

problems. A conceptual difficulty that poses itself here is that in the presence of disorder, any

thermodynamic quantity will naturally depend on the disorder because the partition function is

calculated based on a particular disorder instance.

Z(J) =
∑
{si}

e−βH[s,J]. (2.4)

When the system size N is sufficiently large, extensive quantities such as the free energy, can be

generated by accumulating the contributions of smaller and relatively independent subsystems due

to the additivity of such quantities. The central limit theorem [19] then predicts that the variance

of the extensive quantity will fall off proportional to 1/N , i.e., it will be independent of J in the

thermodynamic limit N → ∞. This phenomena is called self averaging. Therefore, the true

disorder-independent value of extensive quantities can be obtained by averaging over the disorder

instances. For instance, the free energy density can be calculated as follows:

f = − 1

βN
logZ(J) = − 1

βN

∫ N∏
i,j

dJijP (Jij) logZ(J). (2.5)

Note that the disorder average is over the logarithm of the partition function, where a seemingly im-

passe is reached for the analytic calculation of the thermodynamic quantities. What often referred

to as the replica method [4] is a clever way to circumvent this problem in which the following
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mathematical representation is used:

logZ = lim
n→0

Zn − 1

n
. (2.6)

Using this technique, the disorder average over the logarithm is reduced to the average over the

product of n replicas of the partition function.

logZ = lim
n→0

logZn

n
= lim

n→0

1

n
log
∑
{sai }

e
−β

n∑
a
H[sa,J]

. (2.7)

For instance, in the case of a fully connected lattice, i.e., Ni = {1, · · · , N} with Gaussian disorder,

namely, P (Jij) ∼ e−NJ2
ij/2J

2

and uniform external field hi = h, which is called the Sherrington-

Kirkpatrick model [20], it is easy to show that after disorder average we find:

Zn =
∑
{sai }

exp

β2J2

8N

N∑
i

N∑
j ̸=i

(
n∑
a

sai s
a
j

)2

− βh
n∑
a

N∑
i

sai


=
∑
{sai }

exp

β2J2

2N

n∑
a>b

(
N∑
i

sai s
b
i

)2

− βh
n∑
a

N∑
i

sai +
nNβ2J2

8

 . (2.8)

Note that the terms proportional to quadratic and higher powers of n can be dropped because the

limit n → 0 will be applied at the end. Using the Hubbard-Stratonovich transformation [21, 22],

we can introduce the continuous overlap variables Qab.

Zn =
∑
{sai }

∫ n∏
a̸=b

(√
Nβ2J2

4π
dQab

)
exp

[
−Nβ

2J2

4

n∑
a̸=b

Q2
ab +

β2J2

2

n∑
a̸=b

Qab

N∑
i

sai s
b
i

−βh
n∑
a

N∑
i

sai +
nNβ2J2

8

]
=
e−nNβ2J2/8

[Nβ2J2]
n
2

∫ n∏
a̸=b

(
dQab√
4π

)
eL[Q], (2.9)
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in which the Lagrangian L[Q] has the following definition:

L[Q] = −Nβ
2J2

4

n∑
a̸=b

Q2
ab +N log

∑
{sa}

e−βHeff [s,Q], (2.10)

where the effective Hamiltonian is defined as:

Heff [s,Q] = −β
2J2

2

n∑
a̸=b

Qabs
asb + βh

n∑
a

sa. (2.11)

Using the above Lagrangian, it is straightforward to determine the saddle point (most probable)

solution for the overlap variables.

∂L
∂Qab

= 0 ⇒ Q̃ab =
⟨
sasb

⟩
=

∑
{sa}

sasbe−βHeff [s,Q̃]

∑
{sa}

e−βHeff [s,Q̃]
, (2.12)

From Eq. (2.12), it becomes clear why the auxiliary variables Qab were referred to as “overlap”

earlier. We notice that the saddle point solution is symmetric in the replica indices, which motivates

the so called replica symmetric (RS) solution where the overlap is assumed to be a constant and

traceless matrix.

Qab = (1− δa,b)Q. (2.13)

With the RS solution, the Hamiltonian in Eq. (2.46) reduces to the one dimensional ferromag-

netic Ising model, which can be solved exactly using the transfer matrix method. After taking the

limit n→ 0, Eq. (2.12) gives:

Q̃ =

∫ ∞

−∞

dz√
2π

e
−z2

2 tanh2

(
βJ

√
Q̃z + βh

)
. (2.14)

The above equation can then be solved to give the RS overlap function. At zero external field

9
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Figure 2.3: Phase diagram of the Sherrington-Kirkpatrick model. De Almeida-Thouless (AT) line
separates the paramagnetic (PM) phase from the spin-glass (SG) phase. Below the AT line, the
replica symmetric solution becomes unstable and is replaced by the replica symmetry breaking
ansatz.

h = 0 and to the lowest orders, we find:

Q̃ = (βJ)2Q̃− 2

3
(βJ)4Q̃2 +O(Q4) (2.15)

We observe that depending on the temperature, two distinct cases emerge.

βJ < 1, Q̃ = 0 (2.16)

βJ > 1, Q̃ ̸= 0, (2.17)

which indicates a continuous phase transition with the overlap function as the order parameter.

For βJ < 1 the system is in a paramagnetic phase, while for βJ > 1 it enters a spin glass

(SG) phase. It can be shown that below the phase transition point, the replica symmetric solution

becomes unstable to infinitesimal perturbations and gives a negative values for the entropy. This

phenomenon is called replica symmetry breaking (RSB). Indeed, if we keep the external field h,
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we get a phase diagram like what is shown in Fig. 2.3. The line separating the the paramagnetic

phase from the glass phase is called de Almeida-Thouless (AT) [23] line below which the replica

symmetry is lost. Since in the SG phase the RS solution is no longer valid, one must think of

an alternative anzats. This was first done by Blandin [24] and later generalized by Parisi [25–27]

to what is known as the one-step and multiple-step replica symmetry breaking solutions. In the

one-step ansatz, replicas are grouped into blocks with the overlap functionQab taking two different

values on the diagonal blocks and the off-diagonal ones. For a more comprehensive analysis, we

refer the reader to Ref. [18].

2.3 Monte Carlo Methods

In the quest for the solution of NP-hard QUBO problems, the exact enumeration of states

is impractical as the number of states increases exponentially with the problem size. Heuristics

such as gradient descent and branch and bound [28] tend to become equally inefficient due to the

innumerable local minima within the rugged energy landscapes of these problems often caused

by disorder and frustration, as we saw in the previous section. A better approach in this regard is

stochastic optimization, where some randomness is introduced in the process to allow for escaping

from the local minima and eventually reaching the global optimum. The prime example of such

stochastic sampling are Monte Carlo methods. Monte Carlo methods use random sampling to

obtain numerical estimates of deterministic quantities, for instance, a definite multidimensional

integral or to find probabilistic expectation values in applications such as weather forecasting.

2.3.1 Markov Chains

When the probability distribution is known in advance, Markov Chain Monte Carlo (MCMC)

techniques are often used. A Markov chain [29] is a memoryless random process in which the

probability of future events depends solely on the state that the system is currently in, regardless

of what its history has been so far. An example of such a process is a random walk like Brownian

motion [30], where the momentum of each particle is determined based on its imminent collisions
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Figure 2.4: Random walk on the first 100 billion digits of π in base 4 (picture credit: F. J. Aragón,
et al., 2013). The walker takes equal strides to the right, left, up, or down depending if the next
digit is 0, 1, 2, or 3, respectively. The walker returns to the starting point at the end of the walk.
The color spectrum shows the relative spatial distance between different regions in the walk.

with the neighboring particles. In Fig. 2.4 we show a random walk on the first 100 billion digits

of number π in base 4 [31], where the walker, with uniform probability, takes an equal step to

the right, left, up, or down if the current digit is 0, 1, 2 or 3, respectively. The color map shows

the relative spatial distance between different parts of the walk. Formally a discrete Morkov chain

is a sequence of random variables x0, x1, . . . with the possible states µ0, µ1, . . . which satisfy the

following property:

P(xn = µn |xn−1 = µn−1) = P(xn = µn |x0 = µ0, x1 = µ1, . . . , xn−1 = µn−1), (2.18)

meaning that knowledge of the previous state is all that is necessary to determine the probability

distribution of the current state. As such, we can define the marginal distribution P(xn = µj), i.e,

the probability that the system acquires the state µj at the step k in the sequence.

P(xn = µj) =
∑
i

P(xn = µj |xn−1 = µi)P(xn−1 = µi). (2.19)
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From the above equation, we may define the transition probability matrix for a time-homogeneous

Markov process as follows:

Πij = Π(µi → µj) = P(xn+1 = µj |xn = µi), ∀n. (2.20)

One can then use Eq. (2.19) recursively to show that

P(xn = µj) =
∑

k1,...kn−1

Πik1Πk1k2 · · ·Πkn−1j = Πn
ij (2.21)

in which we have assumed that P(x0 = µi) = 1 for the initial state µi. If after a sufficiently

long time P(xn = µj) converges, then the Markov chain reaches its steady state and the limiting

probabilities p(µj) = lim
n→∞

Πn
ij are called the stationary or equilibrium distribution of the Morkov

process. The transition probabilities can be chosen such that a desired distribution is generated by

the stationary distribution of the Markov chain. Note that p(µj) is independent of the initial state,

meaning that it is possible to eventually get from every state to every other state if p(µj) > 0 for all

µj . In that case, the Markov chain is called ergodic after the ergodic hypothesis of thermodynamics

[32], which says that all possible states are equiprobable over a long period of time. Ergodicity

ensures that the time average of any quantity is equal to its average over the statistical ensemble.

In other words, statistical properties can be deduced from a single and sufficiently long instance of

the process. Returning to Eq. (2.19), it is straightforward to see that

P(xn+1 = µj)− P(xn = µj) =
∑
i

P(xn+1 = µj |xn = µi)P(xn = µi)

−
∑
i

P(xn+1 = µi |xn = µj)P(xn = µj), (2.22)
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where we have used the identity
∑
i

P(xn+1 = µi |xn = µj) = 1 in the second term. When the

steady state is reached P(xn+1 = µj) = P(xn = µj), we find the equilibrium condition as follows:

∑
i

p(µi)Π(µi → µj) =
∑
i

p(µj)Π(µj → µi). (2.23)

If the above equation holds for each state µj , the Morkov chain is called reversible,

p(µi)Π(µi → µj) = p(µj)Π(µj → µi). (2.24)

This expression is also referred to as detailed balance. It can be shown from the Boltzmann’s

H-theorem [33] that for an isolated physical system, detailed balance is the sufficient condition for

strict increase of entropy, as stipulated by the second law of thermodynamics.

It is customary to separate the transition probability into the proposalQ(µj |µi) and acceptance

A(µi → µj) parts:

Π(µi → µj) = Q(µj |µi)A(µi → µj), (2.25)

which upon substitution in Eq. (2.24) gives the acceptance ratio,

r =
A(µi → µj)

A(µj → µi)
=
p(µj)Q(µi |µj)

p(µi)Q(µj |µi)
. (2.26)

Now, the goal is to choose the above probabilities such that Eq. (2.26) is satisfied and at the same

time the acceptance probability A(µi → µj) is as high as possible, if not rejection free. One

possibility is the Metropolis-Hastings (MH) [34, 35] approach:

AMH(µi → µj) = min

[
1,
p(µj)Q(µi |µj)

p(µi)Q(µj |µi)

]
. (2.27)

We can apply the MH algorithm at a finite and fixed temperature T = 1/β, where the equilibrium

configurations of a system are represented by the canonical ensemble, and the probability for each
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state is given by the Boltzmann distribution:

p(µj) =
1

Z
e−βH[µj ] =

e−βEj∑
k

e−βEk
(2.28)

in which H[µj] is the Hamiltonian of the system at microstate µj with energy Ej , and Z is the

partition function. Since the proposition of the update µi → µj is equally probable as µj → µi, we

have Q(µj |µi) = Q(µi |µj). Therefore, using Eqs. (2.27) and (2.28) we find:

AMH(µi → µj) = min
[
1, e−β(Ej−Ei)

]
. (2.29)

We observe that the MH acceptance probability becomes excessively small, namely the algorithms

is rendered inefficient, when the energy difference ∆E = Ej − Ei is large relative to the ambient

temperature. This problem is occasionally encountered at low temperatures or in systems with

tall barriers within their energy landscapes, for instance, spin glasses. This shortcoming can be

remedied by using multiple Markov chain techniques such as parallel tempering or annealing-

based algorithms like simulated annealing and path integral Monte Carlo. In the next sections, we

will explain these methods in greater detail.

2.3.2 Parallel Tempering

As we discussed earlier, the Metropolis dynamics tend to critically slow down when the height

of the energy barriers is considerably larger than the temperature at which the Markov chain op-

erates. A natural way to get around this problem is to use a so-called replica-exchange Monte

Carlo (REMC) method [36] in which one has a number of the above Markov chains at different

temperatures, whose configurations are regularly exchanged. Since the dynamics are slow at lower

temperatures, the stochastic processes are confined to a small region of the phase space. In practice,

the above exchange acts as a driving force that propels such impeded processes to other parts of

the phase space, which could not otherwise be possible. A modern variant of the replica-exchange
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Figure 2.5: Schematic diagram of the parallel tempering algorithm. The enclosing circle represents
the phase space, and the blobs show the Markov chains at different temperatures. The Markov
chains at high temperatures explore larger areas of the phase space in a coarser fashion, wheres at
low temperatures that the Metropolis dynamics become critically slow, the walkers are confined
to small regions, which are searched in greater detail. By exchanging the configurations of the
neighboring temperatures, we ensure that such processes have access to other regions as well.

Monte Carlo algorithms is parallel tempering (PT) [37–39] in which M copies of the system, ini-

tialized with random configurations, are subject to the Metropolis updates at a set of temperatures

T1 > T2 > . . . > TM that usually form a geometric progression, i.e,

Tk = T1

k−1∏
i=1

M−1

√
TM
T1
. (2.30)

Once in a while, the configurations of the neighboring temperatures are exchanged based on a

probability distribution that preserves the detailed balance relation. This is shown schematically in

Fig. 2.5. Assuming that we are exchanging the replicas at inverse temperatures β′ > β with energy
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E ′ and E, respectively. Because the exchange is symmetric, we have:

Q (µ, β;µ′, β′ |µ′, β;µ, β′) = Q (µ′, β;µ, β′ |µ, β;µ′, β′) . (2.31)

Substituting the above equation in Eq. (2.26) and using p(µ, β) = e−βE/Z(β) we find:

r =
A (µ, β;µ′, β′ → µ′, β;µ, β′)

A (µ′, β;µ, β′ → µ, β;µ′, β′)
=
p(µ′, β;µ, β′)

p(µ, β;µ′, β′)
= exp [(β′ − β)(E ′ − E)] , (2.32)

which can be used to find the acceptance probability as follows:

APT (µ, β;µ′, β′ → µ′, β;µ, β′) = min
[
1, e(β

′−β)(E′−E)
]
. (2.33)

Comparing the PT acceptance ratio to that of the simple Metropolis algorithm in Eq. (2.27), we

notice that the temperature prefactor in the exponent appears as a difference, which can be tuned to

be as small as desired, and therefore the algorithm continues to the be efficient even if ∆E is large.

The configuration swaps allow the replicas to continuously move up and down in temperature

in a round trip. In this way, the system is able to avert metastable states when it visits higher

temperatures and, subsequently, sample low-lying states once it has relaxed at lower temperatures

again.

2.3.3 Simulated Annealing

Here we give a brief overview of the annealing-based algorithms that are sequential in tem-

perature, meaning that the configurations at different temperatures are not independent. The cor-

nerstone of such algorithms is simulated annealing (SA) [40]. Simulated annealing is a Markov

Chain Monte Carlo process where equilibration is continuously maintained following an annealing

schedule during which the temperature of the system is gradually lowered to a target temperature,

starting from a sufficiently high temperature. The goal is to guide the stochastic process through an

occasionally complex energy landscape toward the low-lying states. At high temperatures where
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the random “walker” can take long strides across the phase space, many energy minima can be

visited. As the system is cooled down, the exploration domain of the walker is shrunk to the most

probable, i.e., the lowest energy states, such that it eventually lands in the ground state. In many

cases, the temperature schedule must be sufficiently slow in order for the annealing process to

function because if the temperature is decreased too quickly, the system may become trapped in a

local minimum. For a generic combinatorial optimization problem, it has been shown [41] that if

the annealing schedule is T ∼ 1/ log(t) or slower, the ground state is asymptotically reached by a

simulated annealing process.

The equilibration in simulated annealing is usually achieved by the Metropolis algorithm. As

we pointed out in Sec. 2.3, the acceptance rates of the Metropolis updates become exponentially

small at low temperatures; therefore, simulated annealing will also suffer from such slow-down.

Similar to the replica-exchange algorithms, one can accelerate the dynamics in SA by using multi-

ple copies of the system as semi-independent sequences that are annealed separately but replicated

according to their relative Boltzmann weight. This improved algorithm is called Population An-

nealing Monte Carlo (PAMC), which we will study in great depth in Chapter. 3.

2.3.4 Quantum Annealing

We saw in the previous sections that thermal fluctuation could be used to prevent a stochastic

process from stalling due to being trapped in metastable states. However, if it happens that the

height of the energy barriers is much larger than the amplitude of the above fluctuations, the dy-

namics can come to an indefinite stop. An alternative is to introduce quantum fluctuation such that

the system can tunnel through the barriers as opposed to thermally jumping over them. This is

shown schematically in Fig. 2.6. Note that the tunneling is suppressed when the barrier width is

large; one can use the WKB semi-classical approximation to show that the tunneling probability

decays exponentially with the barrier width. Kadowaki and Nishimori [42] were first to show that

the addition of a quantum transverse field to a simulated annealing process of the Ising model can

indeed improve the chance of finding the ground state, a method which they named quantum an-
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Figure 2.6: Quantum versus thermal fluctuations. Thermal fluctuations cause the system to jump
over the barriers, which can get inefficient if the barrier height is large. On the other hand, with
quantum fluctuations, the system is able to tunnel through the barrier directly. The tunneling
probability decays exponentially with the barrier width.

nealing (QA). Quantum annealing owes its success to the adiabatic theorem of quantum mechanics

[43] which states that:

A physical system remains in its instantaneous eigenstate if a given perturbation acts on it slowly

enough and if there is a gap between that eigenstate and the rest of the Hamiltonian’s spectrum.

QA uses the above theorem in the following way: suppose we have a gapped Hamiltonian H0

whose ground state H0|ψ⟩ = E0|ψ⟩ we would like to find. We add to this a driving perturbation

H1 with a known ground state H1|ϕ⟩ = E1|ϕ⟩ as follows:

H(λ) = λH0 + (1− λ)H1, H|Ψ(λ)⟩ = E(λ)|Ψ(λ)⟩. (2.34)

We start from λ = 0 when H(λ = 0) = H1 and prepare the system at the ground state, namely

|Ψ(λ = 0)⟩ = |ϕ⟩. We then increase λ slowly to λ = 1, where the adiabatic theorem can be

invoked to ensure that the system remains in the ground state of the instantaneous Hamiltonian.
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Figure 2.7: Quantum annealing by adiabatic evolution of a quantum state. The system is initialized
at the known ground states of H1, and the Hamiltonian is slowly deformed to H0, whose ground
state |ψ⟩ we are interested in. The adiabatic theorem guarantees that the system remains in the
ground state throughout the annealing process.

Therefore, at the end of the process, when H(λ = 1) = H0, the system will settle in the ground

state of the target Hamiltonian, i.e., |Ψ(λ = 1)⟩ = |ψ⟩. We have shown this in Fig. 2.7.

Numerical simulations of quantum annealing were initially done by solving the time-dependent

shrödinger equation. In an alternative approach, the full quantum Hamiltonian is approximated by

a classical system comprised of many ferromagnetically interacting copies of the original system.

This method is often called path integral Monte Carlo (PIMC) or simulated quantum annealing

(SQA) [44–47]. PIMC uses the Trotter-Suzuki formalism [48–50], which we will briefly explain

below. Suppose we want to find the solution to a QUBO problem which, as we discussed in

Sec. 2.1, can be mapped to a classical Ising spin glass Hamiltonian, i.e.,

H0 =
N∑
i=1

∑
j∈N (i)

Jijsisj. (2.35)
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Now, we elevate this Hamiltonian to the quantum transverse Ising spin glass [51] as follows:

H = λ

N∑
i=1

∑
j∈N (i)

Jijσ
z
iσ

z
j − (1− λ)Γ

N∑
i=1

σx
i = λH0 + (1− λ)H1 (2.36)

in which Γ is the transverse field strength, and λ is the annealing parameter. σz
i and σx

i are the

Pauli matrices that satisfy the commutation relation [σz
n,σ

x
m] = iδn,mσ

y
n with σz

i |σi⟩ = si|σi⟩.

The quantum partition function is calculated as the trace of the Boltzmann exponential, namely,

Z = Tr
(
e−βH) = Tr

[
e−βλH0−β(1−λ)H1

]
. (2.37)

Because the two terms in the Hamiltonian (2.36) are non-commuting, we cannot separate the ex-

ponentials. Instead, we use the Lie-Trotter formula [48] :

eA+B = lim
M→∞

(
eA/MeB/M

)M
. (2.38)

Using Eqs. (2.37) and (2.38) we find:

Z = lim
M→∞

Tr
[
e−βλH0/Me−β(1−λ)H1/M

]M
= lim

M→∞

∑
{σi}

⟨σ1, . . . , σN |
[
e−βλH0/Me−β(1−λ)H1/M

]M |σ1, . . . , σN⟩. (2.39)

We now make 2M − 1 insertions the identity operator I =
∑
{σi}

|σ1, . . . , σN⟩⟨σ1, . . . , σN | to get:

Z = lim
M→∞

∑
{σ1

i ,...,σ
M
i }

M−1∏
α∈2N+1

⟨σα
1 , . . . , σ

α
N |e−βλH0/M |σα+1

1 , . . . , σα+1
N ⟩

⟨σα+1
1 , . . . , σα+1

N |e−β(1−λ)H1/M |σα+2
1 , . . . , σα+2

N ⟩, (2.40)

where periodic boundary conditions, i.e., σ1
i = σM+1

i are assumed for all i values. Using Eq. (2.36),
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it is straightforward to see that

M∏
α=1

⟨σα
1 , . . . , σ

α
N |e−βλH0/M |σα+1

1 , . . . , σα+1
N ⟩ = exp

−βλ
M

M∑
α=1

N∑
i=1

∑
j∈N (i)

Jijs
α
i s

α
j

 . (2.41)

As for the H1 part in Eq. (2.40), we use the identity exp(ζσx) = cosh ζ + σx sinh ζ which gives:

M∏
α=1

⟨σα
1 , . . . , σ

α
N |e−β(1−λ)H1/M |σα+1

1 , . . . , σα+1
N ⟩ = C

M
2 exp

(
βJ ′

M

M∑
α=1

N∑
i=1

sαi s
α+1
i

)
(2.42)

in which C and J ′ are defined as following:

C =
1

2
sinh

[
2(1− λ)Γβ

M

]
, J ′ =

M

2β
ln coth

[
(1− λ)Γβ

M

]
. (2.43)

Substituting Eqs. (2.41) and (2.42) in Eq. (2.40), we find:

Z = lim
M→∞

C
M
2

∑
{σ1

i ,...,σ
M
i }

exp

−βλ
M

M∑
α=1

N∑
i=1

∑
j∈N (i)

Jijs
α
i s

α
j +

βJ ′

M

M∑
α=1

N∑
i=1

sαi s
α+1
i

 (2.44)

that can be written in terms of the classical temperature βc = β
M

as

Z = lim
M→∞

C
M
2

∑
{σ1

i ,...,σ
M
i }

e−βcHeff [σ
α
i ], (2.45)

where the effective classical Hamiltonian Heff has the following definition:

Heff [σ
α
i ] = λ

M∑
α=1

N∑
i=1

∑
j∈N (i)

Jijs
α
i s

α
j − 1

2βc
ln coth [(1− λ)Γβc]

M∑
α=1

N∑
i=1

sαi s
α+1
i . (2.46)

What we have done here is that we have encoded all the information in the original quantum

Hamiltonian into the effective classical system at the expense of adding an extra dimension with

ferromagnetic coupling J ′ to the system. Loosely speaking, we have mimicked the quantum par-

allelism by infinite classical replication and quantum entanglement by establishing interactions
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between those replicas. From Eq. (2.46), we see that the ferromagnetic coupling between the

neighboring copies grows unboundedly as λ → 1, showing that they become strongly coupled

in the latter stages of the anneal. The above coupling ensures that the collective “knowledge” of

the replicas, as they move around the phase space independently, is used to continuously push the

system toward the ground state.

2.3.5 Spin-Vector Monte Carlo

As we saw in the previous section, quantum fluctuations can be induced in an Ising spin glass

Hamiltonian by introducing a transverse field Γ that causes the classical pure states to become

mixed owing to quantum entanglement. Therefore, the most general state of a system of N qubits

is as follows:

|ψ⟩ = 1√
N !

∑
p∈SN

Cp(q1, . . . , qN)|qp(1)⟩ ⊗ . . .⊗ |qp(N)⟩ (2.47)

in which the sum is over N ! permutations of the symmetric group SN and |qi⟩ = αi|0⟩ + βi|1⟩ is

the state of the i’th qubit. Let us now take a transverse Ising Hamiltonian with local fields, i.e.,

H =
N∑
i=1

∑
j∈N (i)

Jijσ
z
iσ

z
j −

N∑
i=1

hiσ
z
i − Γ

N∑
i=1

σx
i . (2.48)

A semi-classical approximation can be made by assuming no entanglement between the qubit

states but still preserving the quantum superposition of the computational basis:

|ψ̃⟩ =
(
cos

θ1
2
|0⟩+ sin

θ1
2
|1⟩
)
⊗ . . .⊗

(
cos

θN
2
|0⟩+ sin

θN
2
|1⟩
)
. (2.49)

We my now use the above state to find the expectation value of the Hamiltonian in Eq. (2.48):

HSVMC = ⟨ψ̃|H|ψ̃⟩ =
N∑
i=1

∑
j∈N (i)

Jij⟨σz
i ⟩⟨σz

j⟩ −
N∑
i=1

hi⟨σz
i ⟩ − Γ

N∑
i=1

⟨σx
i ⟩. (2.50)
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Now using ⟨σz
i ⟩ = cos θi and ⟨σx

i ⟩ = sin θi we find:

HSVMC =
N∑
i=1

∑
j∈N (i)

Jij cos θi cos θj −
N∑
i=1

hi cos θi − Γ
N∑
i=1

sin θi, (2.51)

which is precisely the spin-vector Monte Carlo (SVMC) Hamiltonian. Therefore, we observe that

SVMC is the semi-classical limit of a quantum Ising model that naturally inherits some quantum

properties. The transverse field Γ controls how “soft” the variables are; if Γ = 0, the energy is min-

imized by θi ∈ {0, π}, and the SVMC Hamiltonian reduces to the classical spin glass Hamiltonian

with “hard” spins, namely, si = ±1. On the other hand when Γ > 0, any real value is possible for

the angles θi, and hence the corresponding spin variables are continuous.
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3. OPTIMIZATION OF POPULATION ANNEALING MONTE CARLO FOR

LARGE-SCALE SPIN-GLASS SIMULATIONS†

3.1 Introduction

Monte Carlo algorithms are widely used in many areas of science, engineering, and mathemat-

ics. These approaches are of paramount importance for problems where no analytical solutions are

possible. For example, the class of Ising-like Hamiltonians can only be solved analytically in a

few exceptionally rare cases. The vanilla Ising model can only be solved analytically in one, two,

as well as infinite space dimensions. A solution in three space dimensions remains elusive to date

[51, 53]. Therefore, simulations are necessary to understand these systems in three space dimen-

sions. The situation is far direr when more complex interactions–such as k-local terms rather than

the usual quadratic or 2-local terms–are used. Similarly, the inclusion of disorder allows for analyt-

ical solutions only in the mean-field regime [4, 5, 20, 25, 54]. These spin-glass problems, a subset

of frustrated and glassy systems, represent the easiest 2-local Hamiltonian that is computationally

hard. A combination of diverging algorithmic time scales (with the size of the input) due to rough

energy landscapes and the need for configurational (disorder) averages to compute thermodynamic

quantities makes them the perfect benchmark problems to study novel algorithms. Finally, com-

puting ground states of spin glasses on non-planar graphs is an NP-hard problem, where Monte

Carlo methods have been known to be efficient heuristics [55–57], whereas only a few efficient

exact methods exist for small system sizes.

It is, therefore, of much importance to design or improve efficient algorithms either to save

computational effort or to have better quality data with the same computational effort, when study-

ing these complex systems. Two popular algorithms that are currently in use (for both thermal

sampling as well as optimization) are parallel tempering (PT) Monte Carlo [37, 38] and population

annealing Monte Carlo (PAMC) [58–61].

Although both PT and PAMC are extended ensemble Monte Carlo methods, PAMC is a se-
†Reprinted with permission from [52].
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• Wolff cluster updates 
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Parallel implementation
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optimization

Figure 3.1: Diagram outlining the different optimizations we have implemented for population
annealing Monte Carlo. These range from optimizations in the implementation, such as efficient
spin selection techniques, to algorithmic accelerators (e.g., the inclusion of cluster updates), as
well as parallel implementations. See the main text for details. Reprinted with permission from
[52].

quential Monte Carlo algorithm, in contrast to PT that is a replica-exchange Markov-Chain Monte

Carlo method. PAMC is a population-based Monte Carlo method and thus well-suited for imple-

mentations on multi-core high-performance computing machines. PAMC is similar to simulated

annealing [40] with an extra resampling step, where the temperature is reduced to maintain thermal

equilibrium. PT has been intensively optimized and has been the workhorse in statistical physics

to date. It has also shown [61] to be equally efficient in simulating spin glasses, when compared to

PAMC. PAMC, on the other hand, remains a relatively new simulation method. Although careful

systematic studies of PAMC [61, 62] exist, and the method has been applied broadly [56, 63–66],

little effort has been made to thoroughly optimize the algorithm. Here, we focus on this prob-

lem and study various approaches to improve the efficiency of PAMC for large-scale simulations.

While some approaches improve PAMC, others have little to no effect. Note that related optimiza-

tion ideas are explored in Ref. [67].

Our strategy to optimize PAMC is three-pronged, as illustrated in diagram 3.1. First, we study
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different implementation optimizations, where we discuss dynamic population sizes that vary with

the temperature during the anneal, as well as the optimization of different annealing schedules. We

also investigate different spin selection methods (order of spin updates in the simulation), such as

random, sequential, and checkerboard. While for disordered systems sequential updates are com-

monplace, random updates are needed for nonequilibrium studies. In the case of bipartite lattices,

a checkerboard spin-update technique can be used, which is perfectly suited for parallelization.

Furthermore, we discuss how to determine the optimum number of temperatures for a given sim-

ulation. Second, we analyze the effects of algorithmic accelerators by adding cluster updates to

PAMC. We have studied Wolff cluster updates [68] as well as Houdayer cluster updates [69], and

isoenergetic cluster moves [70]. Third, we discuss different parallel implementations using both

OpenMP * (ideal for shared-memory machines [61, 62]) and MPI † with load balancing (ideal for

scalable massively-parallel implementations). Note that the implementation of PAMC on graphics

processing units (GPUs) has been discussed extensively in Refs. [63, 71].

The chapter is structured as follows. We first introduce in Sec. 3.2 some concepts needed in

this study, such as the case study Hamiltonian, and outline the PAMC algorithm. Implementation

optimizations are presented in Sec. 3.3, algorithmic accelerators via cluster updates in Sec. 3.4,

and parallel implementations are discussed in Sec. 3.5, followed by concluding remarks.

3.2 Preliminaries

In this section, we introduce some concepts needed for the PAMC optimization in the subse-

quent section. In particular, we introduce the Ising spin-glass Hamiltonian (our case study) as well

as PAMC and different algorithmic accelerators.

*See http://www.openmp.org
†See, for example, https://www.open-mpi.org
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3.2.1 Case Study: Spin Glasses

We study the zero-field two-dimensional (2D) and three-dimensional (3D) Edwards-Anderson

Ising spin-glass [4] given by the Hamiltonian

H = −
∑
⟨ij⟩

JN
ij sisj, (3.1)

where si = ±1 are Ising spins, and the sum is over the nearest neighbors on a D-dimensional

lattice of linear size L with N = LD spins. The random couplings Jij are chosen from a Gaus-

sian distribution with mean zero and variance one. We refer to each disorder realization as an

“instance”. The model has no phase transition to a spin-glass phase in 2D [72], while in 3D there

is a spin-glass phase transition at Tc ≈ 0.96 [73] for Gaussian disorder.

3.2.2 Outline of Population Annealing Monte Carlo

One of the commonly used algorithms for sampling the equilibrium states of a physical sys-

tem as well as finding solutions to binary optimization problems is simulated annealing (SA) [40].

As we discussed in Chapter 2, simulated annealing is a Markov-Chain Monte Carlo (MCMC)

process in which equilibration is achieved via simple Metropolis-Hastings algorithm [34, 35], as

the temperature is continuously lowered. Population Annealing Monte Carlo (PAMC) introduced

by Hukushima and Iba [58] and further developed by Machta and Wang [60, 61] has simulated

annealing as its core, yet borrows some additional features from multi Markov-chain algorithms,

such as parallel tempering and histogram reweighting [74]. Similar to simulated annealing, PAMC

is sequential in the sense that it follows an annealing schedule, which is often linear in inverse

temperature β. PAMC, however, outperforms SA by introducing a population of replicas of the

system, which are simultaneously annealed toward the target temperature. PAMC [61] starts with

a large population of R0 replicas at a high temperature, where thermalization is easy. In our simu-

lations, we initialize replicas randomly at the inverse temperature β = 1/T = 0. The population

traverses an annealing schedule with NT temperatures and maintains thermal equilibrium to a low
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target temperature of Tmin = 1/βmax. Physical measurements can then be carried out by simple

averaging of the desired observables at the replica level. When the temperature is lowered from

β to β′, the population is resampled. The mean number of the copies of replica i is proportional

to the appropriate reweighting factor, exp[−(β′ − β)Ei]. The constant of proportionality is cho-

sen such that the expectation value of the population size at the new temperature is R(β′). Note

that R(β′) is usually kept close to R although this is not a necessary condition. Indeed, in our

dynamical population size implementation, we let R change as a function of β and seek better al-

gorithmic efficiency in the number of spin updates. The resampling is followed byNS = 10 Monte

Carlo sweeps (one Monte Carlo sweep represents N attempted spin updates) for each replica of

the new population using the Metropolis algorithm. We keep NS = 10 without loss of generality

because the performance of PAMC is mostly sensitive to the product of NSNT near optimum. For

example, two PAMC simulations with {NS = 10, NT} and {NS = 1, 10NT} are similar in effi-

ciency, if NT is reasonably large. The amount of work of a PAMC simulation in terms of sweeps

is W = RNSNT , where R is the average population size.

One of the unique benefits of population annealing is the convenient access to the free energy,

which is often an arduous task, if not impossible, in many other algorithms. Another advantage

of PAMC is the inherent parallelizability of the algorithm, which can considerably reduce the run-

time of a simulation. Below, we present a brief outline of the PAMC algorithm.

Algorithm 1 Population Annealing Monte Carlo
1: Initialize R0 replicas with random configurations at β0 = 0.
2: for NT steps until β = βmax do
3: Increase β → β +∆β in which the step size ∆β depends on the annealing schedule.
4: Perform NS Metropolis sweeps on each replica independently at inverse temperature β.
5: for n = 1 to R, i.e., current population size do

6: Copy the n’th replica with energy En, rn = R0

Q
e−∆βEn times, where Q =

R∑
i=1

e−∆βEn .

7: end for
8: Make measurements of the physical observables by simple averaging over the replicas.
9: end for
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As shown in Ref. [61], the quality of thermalization of any thermodynamic observable is in

direct correlation with the family entropy Sf and the entropic family size ρs. The systematic errors,

on the other hand, are controlled by the equilibrium population size ρf . What we here refer to as

“efficiency” or “speed-up” relates to reducing the statistical as well as the systematic errors, while

keeping the computational effort constant. Thus, it would be reasonable to use these quantities as

measures of optimality for various PAMC implementations. Sf , ρs and ρf are defined as

Sf = −
∑
i

νi ln νi, (3.2)

ρs = lim
R→∞

R/eSf , (3.3)

ρf = lim
R→∞

R× var(βF), (3.4)

where νi is the fraction of the population that have descended from replica i in the initial popu-

lation, and β and F are the inverse temperature and the free energy of the system, respectively.

The free energy is measured using the free energy perturbation method. Intuitively, exp(Sf) char-

acterizes the number of surviving families, and therefore ρs shows the average surviving family

size. For a set of simulation parameters, the larger ρs and ρf , or the smaller Sf , the computationally

harder the instance. Keep in mind that ρf is computationally more expensive to measure because

many independent runs (at least 10) are needed to measure the variance of the free energy. Note

that Sf is “extensive” and asymptotically grows as log(R), while both ρs and ρf are “intensive”

quantities, growing asymptotically independent of Rfor a sufficiently large R. In our simulations,

these metrics are estimated using finite but large enough R values such that the systematic errors

are negligible.

It can be shown [61, 67] that the systematic errors in any population annealing observable at

the limit of large R are proportional to var(βF ). Therefore, in order to ensure that the simulations

are not affected by the systematic errors, one needs to make certain that the quantity ρf/R is

sufficiently small. When well defined, ρs is strongly correlated with ρf [61], as it is the case for

the majority of the spin-glass instances that we study in this chapter. Hence, we may alternatively
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minimize ρs/R or equivalently maximize Sf as a proxy for the quality of equilibration. In our

simulations, we ensure that Sf ≳ 2 for all the instances.

3.2.3 Outline of the Cluster Updates Used

Having outlined PAMC, we now briefly introduce the different cluster algorithms we have

experimented with in order to speed up thermalization.

Wolff cluster algorithm: the Wolff algorithm [68] greatly speeds up simulations of Ising sys-

tems without frustration near the critical point. It is well known that the Wolff algorithm does not

work well for spin glasses in 3D [75] because the cluster size grows too quickly with β. Never-

theless, we revisit this algorithm systematically in both 2D and 3D. The idea is that even if the

cluster size grows too quickly when β is still relatively small, the mean cluster size (normalized

by the number of spins N ) is still a continuous function in the range [0, 1], when β grows from

β = 0 to β = ∞. Therefore, it is a reasonable question to ask if there would be some speed-up

when restricting the algorithm to the temperature range where the normalized mean cluster size is

neither too larger nor too small, for example, in the range [0.1, 0.9].

In the ferromagnetic Ising model, where Jij = J = 1, one adds a neighboring spin sj when

it is parallel to a spin si in the cluster with probability pc = 1 − exp(−2Jβ). In spin glasses, this

is generalized as follows: One adds a neighboring spin sj to si when the bond between the two

spins is satisfied, and with probability pc = 1 − exp(−2|Jij|β). This can be compactly written as

pc = max[0, 1 − exp(−2βJijsisj)] [75]. Note that from the above pc expression, there are two

interesting limits in order for the mean cluster size . In the limit β → 0, the average cluster size

is clearly 0, and in the limit β → ∞, the normalized cluster size tends to 1 because in the ground

state, each spin has at least one satisfied bond with its neighbors, and all the spins would be added

to the cluster. One can also see that frustration actually makes the cluster size grow slower as a

function of β. However, frustration significantly reduces the transition temperature, which is the

primary reason why the Wolff algorithm is less efficient for spin glasses. Finally, note that the

Wolff algorithm is both ergodic and satisfies detailed balance.
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Houdayer cluster algorithm: designed for spin glasses, the Houdayer cluster algorithm [69]

or its generalization, the isoenergetic cluster moves (ICM) [70] greatly improves the sampling for

parallel tempering in 2D, while less so in 3D. ICM in 3D, like the Wolff algorithm, is restricted to a

temperature window where the method is most efficient [70]. ICM works by updating two replicas

at the same time. First, an overlap between the two replicas is constructed, which naturally forms

positive and negative islands. One island is selected, and the spin configurations of the island in

both replicas are flipped.

In its original implementation, the spin-down sector is always used to construct the cluster. In

the implementation of Zhu et al., a full replica is flipped if the chosen island is in the positive

sector to make it negative [70] and therefore reduce the size of the clusters. Here, we improve on

this implementation by allowing the chosen island to be either positive or negative and flipping the

spins of the island in both replicas. Therefore, we never flip a full replica. This saves computa-

tional time and also has the advantage that it does not artificially make the spin-overlap function

symmetric. ICM satisfies detailed balance, but its is not ergodic. Therefore, the algorithm is usu-

ally combined with an ergodic method, such as the Metropolis algorithm. ICM greatly improves

the thermalization time and also slightly the autocorrelation time in parallel tempering. Because

PAMC is a sequential method, there is no thermalization stage. We, therefore, focus on whether

the algorithm reduces correlations, i.e., systematic and statistical errors.

Our implementation of PAMC with ICM is as follows: First, after each resampling step, we

do regular Monte Carlo sweeps and ICM updates alternately. We first do NS/2 lattice sweeps for

each replica, followed by R ICM updates done by randomly pairing two replicas in the population,

followed by another NS/2 lattice sweeps. Second, for each ICM update, we choose an island from

the spin sector with the smaller number of spins. Then, the spin configurations of the island in

both replicas are flipped. This effectively means that the spin configurations associated with the

selected island are either exchanged or flipped depending on the sign of the island being negative

in the former or positive in the latter case. Note that the combined energy of the two replicas is

conserved in both cases, therefore making the algorithm rejection free.

32



Table 3.1: Simulation parameters for various experiments to optimize PAMC. Spin selection meth-
ods (SSM), annealing schedules (AS), number of temperatures tuning (NT), dynamic population
size experiment (DPS), and cluster algorithms (CA). D is the space dimension, L is the linear
system size, R is the population size, Tmin = 1/βmax is the lowest temperature simulated, NT

is the number of temperatures, and M is the number of disorder realizations studied. The label
“Schedule” refers to the annealing schedule used, such as the linear-in-β (LB) or the linear-in-β
linear-in-T (LBLT) schedules. NS = 10 sweeps are applied to each replica at each temperature.
Note that in the case of dynamic population sizes (DPS), R is the mean population size. See the
text for more details. Reprinted with permission from [52].

Technique D L R Tmin NT Schedule M
SSM 3 4 5× 104 0.2 101 LB 1000
SSM 3 6 2× 105 0.2 101 LB 1000
SSM 3 8 5× 105 0.2 201 LB 1000
SSM 3 10 1× 106 0.2 301 LB 1000
AS 3 8 5× 105 0.2 201 All 1000
AS 3 10 1× 106 0.2 301 All 1000
NT 2 8 5× 104 0.2 variable LBLT 100
NT 2 16 2× 105 0.2 variable LBLT 100
NT 2 25 5× 105 0.2 variable LBLT 100
NT 2 32 1× 106 0.2 variable LBLT 100
NT 3 4 5× 104 0.2 variable LBLT 100
NT 3 6 2× 105 0.2 variable LBLT 100
NT 3 8 5× 105 0.2 variable LBLT 100
NT 3 10 1× 106 0.2 variable LBLT 100
DPS 3 6 2× 105 0.2 101 LB 1000
DPS 3 8 5× 105 0.2 201 LB 1000
DPS 3 10 1× 106 0.2 301 LB 1000
CA 2 8 5× 104 0.2 101 LB/LBLT 1000
CA 2 16 2× 105 0.2 101 LB/LBLT 1000
CA 2 25 5× 105 0.2 201 LB/LBLT 1000
CA 2 32 1× 106 0.2 301 LB/LBLT 1000
CA 3 4 5× 104 0.2 101 LB/LBLT 1000
CA 3 6 2× 105 0.2 101 LB/LBLT 1000
CA 3 8 5× 105 0.2 201 LB/LBLT 1000
CA 3 10 1× 106 0.2 301 LB/LBLT 1000

3.3 Implementation Optimizations

In this section, we present our implementation improvement to the population annealing algo-

rithm. We first present spin selection methods, followed by experiments using different annealing
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(b)Figure 3.2: Comparison of the entropic population size ρs for different spin selection methods.
Random, sequential and checkerboard updates in three space dimensions. Sequential and checker-
board updates have similar efficiency [panel (b)], and both are more efficient than random updates
[panel (a)]. Reprinted with permission from [52].

schedules, numbers of temperatures, and the use of a dynamic population. The simulation param-

eters are summarized in Table 3.1.

3.3.1 Comparison of the Spin Selection Methods

We have studied three spin selection methods: sequential, random, and checkerboard. We have

carried out large-scale simulations in 3D to compare these methods for L = 4, 6, 8, and 10, with

1000 instances for each system size. We first run the simulations using the parameters in Table. 3.1.

To measure Sf or ρs reliably, we require Sf ≳ 2 [61]. When this is not satisfied for a particular

instance, we rerun it with larger population size. We then compare ρs at the lowest temperature

between different spin selection methods. Figure 3.2 shows scatter plots comparing ρs instance

by instance for different system sizes and using different spin selections methods. Figure 3.2(a)

compares random to sequential updates, whereas Fig. 3.2(b) compares checkerboard to sequential

updates. Interestingly, sequential and checkerboard updates have similar efficiency (the data lie on

the diagonal), whereas both sequential and checkerboard are more efficient than random updates.

This is particularly visible for the larger system sizes, e.g., L = 10.
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The random selection method is, therefore, the least efficient update technique for disordered

Boolean problems, keeping in mind that it requires the computation of an additional random num-

ber for each attempted spin update, thus slowing down the simulation. We surmise that sequential

updating of the spins accelerates the mobility of domain walls in most cases. However, in some

pathological examples, such as the one-dimensional Ising chain, random updating is needed for

Monte Carlo to be ergodic.

3.3.2 Optimization of the Annealing Schedules

Most early population annealing simulations used a simple linear-in-β (LB) schedule, where

the change in β in the annealing schedule is constant as a function of the temperature index. This,

however, is not necessarily the most optimal schedule to use. We use the following two approaches

to optimize the annealing schedules and the number of temperatures: one approach uses a math-

ematical model with free parameters to be optimized, and the other includes adaptive schedules

based on a guiding function, e.g., the energy fluctuations or the specific heat. For the paramet-

ric schedules, we introduce a linear-in-β linear-in-T (LBLT) and a two-stage power-law schedule

(TSPL). For the LBLT schedule, there is one parameter to tune, namely, a tuning temperature TN .

In this schedule, half of the temperatures above TN are linear in β, while the other half below

TN are linear in T . It is worth noting that optimizing Tmin for various annealing schedules is not

necessary because ρs is a monotonically-increasing function of temperature. Thus, a higher Tmin

with the same number of temperature steps trivially results in a better thermalization.

For the TSPL schedule, we define a rescaled annealing time τ = kβ/(NT − 1) ∈ [0, 1], where

kβ = 0, . . . , NT − 1 is the annealing step or temperature index. The TSPL schedule is modeled as

β(τ) = aτα1θ(τ0 − τ) + bτα2θ(τ − τ0), (3.5)

where θ is the Heaviside step-function. Here α1 and α2 are free parameters, while a and b enforce

continuity and fix the final annealing temperature. In addition, τ0 determines a switch-over temper-
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Figure 3.3: Annealing schedules experimented in two and three dimensions. Panel (a) shows the β
values as a function of the inverse temperature index kβ for the different schedules, and panel (b)
shows the resulting β-densities, g(β) (the data is cut off at β = 3 for clarity). Note that both TSPL
and LBLT schedules have more temperatures at high T . Panels (c) and (d) show ρs as a function of
TN for two-dimensional (2D) and three-dimensional (3D) simulations, respectively. The vertical
shaded line marks the optimum. See the main text for details. Reprinted with permission from
[52].

ature β0. We optimize the LBLT schedule with a simple scan of the parameter TN . The optimum

value of TN (where ρs is minimal) is shown in Fig. 3.3(c) for 2D (TN ≈ 0.8, marked with a vertical

shaded area) and Fig. 3.3(d) for 3D (TN ≈ 1.0, marked with a vertical shaded area). The TSPL

schedule, however, has more parameters that must be tuned. Therefore, we have used the Bayesian

optimization package Spearmint [76, 77] rather than a full grid scan in the entire parameter space.

We find numerically that the parameters α1 = exp(−0.0734), α2 = exp(2.15), and β0 = 1.63
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work well although there is no guarantee of global optimality. We optimize the adaptive schedules

using information provided by energy fluctuations because energy is directly related to the resam-

pling of the population. We, therefore, define a density of inverse temperature β, g(β), and study

the following adaptive schemes:

• var(E) schedule with g(β) ∼ var(E),

• std(E) schedule with g(β) ∼
√

var(E),

• CV schedule with g(β) ∼ CV (β),

•
√
CV schedule with g(β) ∼

√
CV (β),

where CV is the specific heat of the system. Note that the functions are disorder averaged, and

the proportionality is determined by the number of temperatures. Because g(β) may become ex-

tremely small, we have replaced all the function value less than 10% of max(g) with 0.1×max(g)

to prevent large temperature leaps. With this small modification, we generate NT temperatures

according to the above density functions. The shapes and β-densities of all schedules are shown

in Figs. 3.3(a) and 3.3(b), respectively. There are clear distinctions between different schedules,

especially in comparison to the traditionally-used LB schedule. We compare the efficiency of the

above schedules in Fig. 3.4 by analyzing the systematic errors in a number of observables. We have

studied the internal energy )E), free energy (F ), and the spin-glass Binder cumulant (gSG) [78] for

the system size L = 10. To overcome the scale difference when showing the systematic errors

of different observables in one plot, we have normalized the errors with respect to the schedule

that has the greatest error. Therefore, all the errors will be relative to that of the worst schedule.

In panel (a) of Fig. 3.4, we show the normalized systematic errors for a randomly-chosen and ex-

tremely hard instance. In panel (b), we show the disorder averaged systematic errors calculated

from 100 of the hardest instances. It can be readily seen from the plots that the LBLT and TSPL

schedules yield the best efficiencies among all of the experimented schedules, with TSPL slightly

more efficient. Both LBLT and TSPL schedules place more temperatures on the high-temperature
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Figure 3.4: Comparison of the systematic errors for various annealing schedules. The studied ob-
servables are energy (E), free energy (F ) and the spin-glass Binder cumulant (gSG) for the system
size L = 10. Panel (a) shows the systemic errors fora randomly chosen hard instance, whereas
panel (b) illustrates the systematic errors averaged over 100 of the hardest instances. Systematic
errors of different observable often have magnitudes largely apart. For this reason, the errors in
each observable have been normalized relative to the maximum error across all schedules. For
instance, in the top panel, the std(E) schedule that has the greatest systematic error is normalized
to 1, while the rest of the schedules lie below 1. It is seen from the plots that the TSPL schedule
is the most efficient. The LBLT schedule, although conveniently simple, competes well with the
optimal schedule. Note that we also show ρs (as a dual y-axis) in panel (b). We observe that ρs
greatly correlates with the systematic errors justifying the use of it as an effective optimization
criterion. Reprinted with permission from [52].

side (smaller β values), presumably because the Metropolis dynamics are more effective at high

temperatures. Additionally, in panel (b) of Fig. 3.4, we have shown ρs for various schedules. We

observe a great correlation between ρs and the systematic errors, which corroborates the use of ρs

as a good measure of efficiency.

We stress that the optimal schedule depends on the choice of the number of sweeps at each

anneal step, NS, because NT and NS are exchangeable for large enough NT . In our approach,

we have fixed NS. It is, therefore, possible that other techniques may result in different optimal

schedules. For instance, one may use the energy distribution overlaps at two temperatures to

define the optimal schedule [67, 71] that which depends only on the thermodynamic properties of

the system. As an example, in Fig. 3.5, we show the energy distributions of the LBLT schedule
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Figure 3.5: Energy density distribution of the LBLT annealing schedule for L = 8 in three space
dimensions. Thinner curves show the histograms at all temperatures, whereas the thicker ones are
drawn at every 10 temperature steps. There are 200 temperature steps in total. The histograms
overlap considerably. Reprinted with permission from [52].

for L = 8 in 3D. The energy histograms overlap considerably up to several temperature steps.

Within this framework, the optimization is transferred to the distribution of sweeps. However, the

density of work (the product of the density of β and density of sweeps) should be similar in both

approaches. In our implementation, as the number of sweeps is constant, the density of work is the

same as the density of β.

3.3.3 Optimization of the Number of Temperatures

To optimize the number of temperatures and their range, we use the LBLT schedule as it is

easy to implement and very close to optimal. Our figure of merit is to maximize the number

of independent measurements R/ρs for constant work W = RNSNT . We define efficiency as

γ = R/(ρsW ) by tuning NT for a constant W . Because NS = 10 is fixed, we need to maximize

1/(ρsNT ) by tuning NT . In the limit R → ∞, ρs and the efficiency γ are independent of the
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Figure 3.6: Optimization of the number of annealing steps NT in two space dimensions [2D, panel
(a)] and three space dimensions [3D, panel (b)]. To maximize sampling efficiency, one needs
to optimize 1/(ρsNT ) with respect to NT . In both panels, the points and the solid curves show
the disorder average, while the dashed envelopes display all 100 studied instances. For smaller
system sizes, the peak (optimum) is sharp, whereas for systems with more than approximately
1000 spins, the peak is broadened, especially in two dimensions. The reason for this broadening
can be understood by noticing the increase in the density of chaotic samples as the system grows
in size (wiggly lines). Reprinted with permission from [52].

population size. This is expected as γ is an intensive quantity. Therefore, to measure γ, we only

need to make sure that R is sufficiently large, such that ρs has converged. It is not necessary to use

the same W for different NT .

The results for both two and three-dimensional systems are shown in Figs. 3.6(a) and 3.6(b),

respectively. The solid curves show the disorder average, while the dashed envelopes are the

instance-by-instance results. It is interesting to note that for relatively smaller system sizes, we

observe a pronounced peak. The existence of an optimal number of temperatures can be intuitively

understood in the following way: for a fixed amount of computational effort, if NT is too small,

the annealing or resampling would become too stochastic, which is inefficient. On the other hand,

if the annealing is too slow (NT is too large), keeping a larger population size is more efficient.

Therefore, optimality comes from a careful balance between NT and R. As the system size grows,

the optimal peak starts to flatten out due to the onset of temperature chaos[79–85]. This can

be seen in Fig. 3.6 as a discernible increase in the density of instances with irregular oscillatory
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behavior. Thus, we conclude that the optimization presented here, although capturing the bulk of

the instances, might not be reliable in the case of extremely hard (chaotic) instances. Instead, one

may consider performing more Metropolis sweeps rather than merely increasing the temperature

steps or the population size. This is especially relevant if memory (which correlates with R)

becomes a concern for the hardest instances.

3.3.4 Dynamic Population Sizes

The reason the LBLT schedule is more efficient than a simple LB schedule is that the Metropo-

lis dynamics are less effective at low temperatures, and therefore using more “hotter” temperatures

is more efficient. Here, we investigate another technique, namely, a variable number of replicas

that depends on the annealing temperature, thus having a similar effect to more temperatures at

higher values. Regular PAMC is designed to have an approximately uniform population size as

a function of temperature. Here, we allow the population size to change with β. Because most

families are removed at a relatively early stage of the anneal, transferring some replicas from low

temperatures to high temperatures may increase the diversity of the final population even though

the final population size would be smaller. Note that the uniform population size is a special case of

this generalized population schedule. We study a simple clipped exponential population schedule

in which the population starts at a constant valueR0 until β = β0, and then decreases exponentially

to Rf = rR0 at β = βmax:

R(β) =


R0 β ≤ β0,

R0
eaβ0+b
eaβ+b

β > β0,

(3.6)

where b = (reaβmax − eaβ0)/(1 − r). The free parameters to tune are a, β0 and r in which r is

the ratio of the final to initial population size, and a characterizes the slope of the curve. Once the

parameters are optimized, we can scale the full function to have a comparable average population

size to that of the uniform schedule. Again, the optimization is done using Bayesian statistics, and

we obtain β0 = 0.9, r = 0.03, and a = 0.08. It is noteworthy to mention that there are two different

measures to detect efficiency, when the population size is allowed to change. For the same average
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Figure 3.7: Instance-by-instance comparison for a PAMC simulation with fixed and dynamic pop-
ulation sizes. With a dynamic population size, ρs and ρf are well-correlated, similar to the case of
uniform population. ρs is greatly reduced, suggesting that the simulation is much better at the level
of averaging over all temperatures. The dynamic population size is also more efficient than the
uniform one using the worst-case measure. Here, Rf is the final population size. Reprinted with
permission from [52].

population size, the dynamic population schedule is always better at high temperatures. However,

at low temperature, a smaller ρs does not justify that the number of independent measurements is

larger because R is also smaller. Thus, It is reasonable to optimize the parameters using ρs, and

then also compare to R/ρs. Note that we use the local population size R at each temperature to

compute ρs. The correlations and comparisons between ρs and ρf are also studied. With the optimal

parameters, we compare the efficiency of the dynamic and uniform population sizes. The results

are shown in Fig. 3.7. We see that ρs and ρf are well-correlated for the dynamic population size.
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Figure 3.8: Population annealing with ICM updates in 2D. Note that replica family is not well
defined when ICM updates are included. Therefore, we use ρf to characterize speed-up. Significant
speed-up is observed in 2D. Reprinted with permission from [52].

ρs is greatly reduced, suggesting that the simulation is much better at the level of averaging over

all temperatures. We also see that even using the worst-case measure, the dynamic population size

is more efficient than the uniform one. Note, however, that the peak memory use of the dynamic

population size is larger due to the non-uniformity of the number of replicas as a function of β.

3.4 Algorithmic Accelerators

We now turn our attention to algorithmic accelerators by including cluster updates in the sim-

ulations. The simulation parameters are summarized in Table 3.1.
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Figure 3.9: Population annealing with ICM updates in 3D. Note that replica family is not well
defined when ICM updates are included. Therefore, we use ρf to characterize speed-up. Modest
speed-up is observed in 3D. Reprinted with permission from [52].

3.4.1 Isoenergetic Cluster Updates

Here, we study PAMC with ICM updates. In 3D, similar to the Wolff algorithm, there is an

effective temperature range where ICM (see Ref. [70] for more details) is efficient. In ICM, two

replicas are updated simultaneously. This process uses the detailed structure of the two replica

configurations, so it is natural to question if the family of a replica is still well defined. For ex-

ample, occasionally, two replicas may merely exchange their configurations. This is equivalent to

exchanging their family names, which potentially increases the diversity of the population at little

cost. To resolve and investigate this issue, we have, therefore, measured the computationally more
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expensive equilibration population size ρf as well, which unlike ρs, does not depend on the defi-

nition of the families. Our results are shown in Fig. 3.8 and Fig. 3.9 for 2D and 3D, respectively.

We find that ρs is, indeed, artificially reduced by the cluster updates. In both 2D and 3D, ρf has a

wide distribution, while ρs is almost identical for all instances. Furthermore, ρs and ρf are strongly

correlated for regular PAMC, but the correlation is poor when ICM is turned on. Therefore, we

conclude that ρs is no longer a good equilibration metric for PAMC when combined with ICM.

Using ρf , we find that similar to PT [70], there is a clear speed-up in 2D. In 3D, however, the

speed-up becomes marginal again. This is in contrast to the discernible speed-up for PT with the

inclusion of ICM in 3D. The results suggest that ICM is most efficient in 2D and likely quasi-2D

lattices, reducing both thermalization times (PT) and correlations (PAMC and PT). In 3D, ICM

merely reduces thermalization times, while marginally influencing correlations.

3.4.2 Wolff Cluster Updates

Wolff cluster updates are not effective in spin-glass simulations. We, nevertheless, have re-

visited this type of cluster update in the context of PAMC for the sake of completeness. For the

Wolff algorithm, we first measure the mean cluster size per spin, as shown in panels (a) and (c) of

Fig. 3.10 in 2D and 3D cases, respectively. Note the smooth transition of the mean cluster size from

0 to 1. We identify a temperature range where the mean cluster size is in the window [0.1, 0.9]. We

have also experimented with other ranges such as [0.2, 0.8] or [0.3, 0.7]. They consistently gave a

similar or slightly worse speed-up. We perform Wolff updates in this temperature range, i.e., we

perform 10 Wolff updates in addition to the 10 regular Metropolis lattice sweeps for each replica.

The comparison of ρs with regular PAMC is shown on the panels (b) and (d) of Fig. 3.10. While the

Wolff algorithm speeds up ferromagnetic Ising model simulations in 2D, the speed-up is marginal

for 2D spin glasses because of the zero-temperature phase transition.

In 3D, the Gaussian spin glass has a phase transition near Tc ≈ 0.96, but the temperature

window where the Wolff algorithm is effective is much higher than Tc. The speed-up is, therefore,

almost entirely eliminated, presumably because the Metropolis algorithm is already sufficient for
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Figure 3.10: Mean normalized cluster size as a function of β for the Wolff algorithm [panels (a)
and (c)] as well as the performance of the algorithm in both 2D and 3D. There is marginal speed-up
in 2D [panel (b)] and no discernible speed-up in 3D [panel (d)]. Reprinted with permission from
[52].

these high temperatures. The fact that the Wolff algorithm is more efficient in 2D than 3D is

because clusters percolate faster in 3D, again rendering the effective temperature range higher in

3D. Therefore, Wolff updates constitute unnecessary overhead in the simulations of spin glasses in

conjunction with PAMC. Even though PAMC with the Wolff algorithm does not appear to work

very well for spin glasses, this does not mean they cannot be used together. For example, in two-

dimensional spin glasses, adding the Wolff algorithm still has marginal benefits. The combination

of PAMC and the Wolff cluster updates can be used for ferromagnetic Ising models for the purpose
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of parallel computing because parallelizing the Wolff algorithm, while doable, is challenging. In

population annealing, however, this can be easily parallelized at the level of replicas and not within

the Wolff algorithm itself.

3.5 Parallel Implementation

Population annealing is especially well suited for parallel computing because operations on

the replicas can be carried out independently, and communication is minimal. Since OpenMP is

a shared-memory parallelization library, it is limited to the resources available on a single node

of a high-performance computing system. Although modern compute nodes have many cores and

large amounts of RAM, these are considerably smaller than the number of available nodes by often

several orders of magnitude. To benefit from machines with multiple compute nodes and therefore

simulate larger problem sizes, we now present an MPI implementation of PAMC which can utilize

resources up to the size of the cluster. While for typical problem sizes single-node OpenMP imple-

mentations might suffice for the bulk of the studied instances, hard-to-thermalize instances could

then be simulated using a massively-parallel MPI implementation with extremely large population

sizes. Although the exact run-time depends on many variables such as the simulation parameters,

architecture, code optimality, compiler, etc., here we show some example of typical simulation

time with the parameters listed in Table 3.1. On a 20-core node with Intel® Xeon® E5-2670 v2

2.50GHz processors, it takes approximately 1.3, 12, and 75 minutes to simulate an instance in 3D

with N = 216, 512, and 1000 spins, respectively.

3.5.1 Massively Parallel MPI Implementation

The performance and scaling of our MPI implementation for 3D Edwards-Anderson spin

glasses is shown in Fig. 3.11. Note that the wall time scales as 1/N with N the number of cores

for less than 1000 cores. In our implementation, the population is partitioned equally between MPI

processes (ranks). Each rank is assigned an index k with I/O operations occurring on the 0’th rank.

A rank has a local population on which the Monte Carlo sweeps and resampling are carried out.
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system sizes L = 8 and L = 12. Launching and initialization times are not included. Note that
the efficiency becomes better for larger and harder problems. For L = 12, the scaling remains
1/N up to about 1000 processors. The efficiency then decreases when the time for collecting
observables becomes dominant. Note that resampling still takes a relatively short time. Reprinted
with permission from [52].

We also define a global index G which is the index of a replica as if it were in a single continuous

array. In practice, the global index G of a replica j on a rank k is computed as the sum of the local

populations ri on the preceding ranks plus the local index j, i.e.,

G = j +
k−1∑
i=0

ri. (3.7)

The global index for a particular replica varies as its position in the global population changes.

Load balancing is carried out when a threshold percentage between the minimum and maxi-

mum local populations is exceeded. In our implementation, all members of a family must be in a

continuous range of global indices to allow for efficient computation of the family entropy and the

overlap function of the replicas. Therefore, load balancing must maintain adjacency. The destina-
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tion rank k of a replica is determined by evenly partitioning the global population such that each

rank has approximately the same number of replicas, i.e.,

k = ⌊G/
(
R
N

)
⌋, (3.8)

where N is the number of ranks (cores). Measurement of most observables is typically an efficient

accumulation operation, i.e.,

⟨A⟩ = 1

R

N∑
k

rk∑
j

Aj,k. (3.9)

On the other hand, measuring observables such as the spin-glass overlap is more difficult and only

done at select temperatures. Sets of replicas are randomly sampled from a rank’s local popula-

tion, and copies are sent to the range of ranks [(k +N/4)modN, (k + 3N/4)modN ] with peri-

odic boundary conditions to ensure that the overlap is not computed between correlated replicas.

The resulting histograms are merged in an accumulation operation similar to regular observables.

Improving scaling with process count will require a lower overhead implementation of the spin-

overlap measurements–a problem we intend to tackle in the near future.

3.6 Conclusions and Future Challenges

We have investigated various ways to optimize PAMC, ranging from optimizations in the im-

plementation to the addition of accelerators, as well as massively parallel implementations. Many

of these optimizations lead to often considerable speed-ups. We do emphasize that these ap-

proaches and even the ones that showed only marginal performance improvements for spin glasses

in 2D and 3D might used to simulate statistical physics problems, potentially generating sizable

performance boosts. The reduction in thermal error studied in this work can most directly be

applied to the study of spin glasses by providing more CPU time for disorder averaging.

For the study of spin glasses, our results show that the best performance for PAMC is obtained

by selecting the spins in a fixed order, i.e., sequentially or from a checkerboard pattern. Similarly,
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LBLT and TSPL schedules yield the best performance with LBLT having the least parameters to

tune, and thus easier to implement. The number of temperatures needed for annealing is remark-

ably robust for large system sizes. Hence, in order to tackle hard instances, it is often convenient to

increase the number of sweeps rather than merely using more temperatures. Dynamic population

sizes are desirable albeit at the cost of a larger memory footprint. However, this can be easily

mitigated via massively-parallel MPI implementations. In conjunction with Ref. [67], this study

represents the first analysis of PAMC from an implementation point of view.

It has been shown [86] that the equilibration population size ρf can be measured in a single

run using a blocking method. It would be interesting to investigate and test this idea thoroughly

in the future. With an optimized PAMC implementation, it would be interesting also to perform

large-scale spin-glass simulations to answer some of the unresolved problems in the field. In

particular, in the next chapter, we will study the phase diagram of the so-called “Coulomb glass”

model, where our developed PAMC algorithm will be crucial in allowing us to access extremely

low temperatures.
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4. NUMERICAL OBSERVATION OF A GLASSY PHASE IN THE THREE-DIMENSIONAL

COULOMB GLASS†

4.1 Introduction

The existence of disorder in strongly interacting electron systems–which can be realized by in-

troducing random impurities within the material, e.g., a strongly doped semiconductor–plays a sig-

nificant role in understanding transport phenomena in imperfect materials and bad metals, as well

as in condensed matter in general. When the density of impurities is sufficiently large, electrons

become localized via the Anderson localization mechanism [87], and the long-range Coulomb in-

teractions are no longer screened. This, in turn, leads to the depletion of the single-particle density

of states (DOS) near the Fermi level, as first proposed by Pollak [88] and Srinivasan [89], thus

forming a pseudogap. Later, Efros and Shklovskii [90] (ES) solidified this observation by describ-

ing the mechanisms involved in the formation of this pseudogap. The ES theory explains how

the hopping (DC conductivity) within a disordered insulating material is modified in the presence

of a pseudogap, also referred to as the “Coulomb gap”. Numerous analytic studies have predicted

[91–100] as well as experimental studies observed [101–115] the emergence of glassy properties in

such disordered insulators, leading to the so-called “Coulomb glass” (CG) phase. Experimentally,

to date, none of the aforementioned studies have observed a true thermodynamic transition into a

glass phase, but rather have found evidence of nonequilibrium glassy dynamics, i.e., dynamic phe-

nomena that are suggestive of a glass phase, such as slow relaxation, aging, memory effects, and

alterations in the noise characteristics. Theoretically, more recent seminal mean-field studies by

Pankov and Dobrosavljević [98] as well as Müller and Pankov [116] have shown that there exists

a marginally stable glass phase within the CG model, whose transition temperature Tc decreases

as Tc ∼ W−1/2 for large enough disorder strength W , and is closely related to the formation of

the Coulomb gap. Whether the results of the mean-field approach can be readily generalized to

lower space dimensions is still uncertain. However, as we show in this work, the mean-field re-

†Reprinted with permission from [66].
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Figure 4.1: Phase diagram of the three-dimensional Coulomb glass model. There is a charge-
ordered (CO) phase for W ≲ 0.131, where electrons and holes form a checkerboard-like crystal.
ForW ≳ 0.131 the system undergoes a glassy transition into the Coulomb glass (CG) phase, albeit
at considerably lower temperatures than in the CO phase. The dashed lines indicate extrapolations
where numerical simulations are not available. Reprinted with permission from [66].

sults of Ref. [98] quantitatively agree with our numerical simulations in the charge-ordered regime

(see Fig. 4.1) with similar values for the critical disorder Wc where the charge-ordered phase is

suppressed. The critical temperatures Tc for the glassy phase, on the other hand, are substantially

smaller than in the mean-field predictions. This, in turn, suggests that the mean-field approach

of Ref. [98] includes the fluctuations of the uniform charge order collective modes, but not of the

glassy collective modes. There have been multiple numerical studies that attempt to understand

the DOS as well as the nature of the transitions of the CG model. In fact, there has even been some

slight disagreement as to what the theoretical model to simulate should be, with some arguing for

lattice disorder to introduce randomness into the model [117, 118], and others suggesting that the

disorder should be introduced via random biases. Numerically, a Coulomb gap in agreement with

the ES theory, has been observed in multiple studies. However, there is no consensus in the vast nu-
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merical work [117, 119–138] on the existence of a thermodynamic transition into a glassy phase.

Nonequilibrium approaches suggest the existence of glassy behavior; however, thermodynamic

simulations have failed to detect a clear transition.

In this work we investigate the phase diagram of the CG model using Monte Carlo simulations

in three spatial dimensions. For the finite-temperature simulations, we make use of the population

annealing Monte Carlo (PAMC) algorithm [52, 58, 60, 61, 67], which enables us to thermalize for

a broad range of disorder values down to unprecedented low temperatures previously inaccessible.

In addition, we argue that the detection of a glass phase requires a four-replica correlation length,

as commonly used in spin-glass simulations in a field [139, 140]. Our main result is shown in

Fig. 4.1. Consistently with previous numerical and analytical studies [98, 133, 141], we find a

charge-ordered (CO) phase for disorders lower than Wc = 0.131(2), where electrons and holes

form a checkerboard-like crystal. This is in close analogy with the classical Wigner crystal [142]

that happens at low electron densities, where the potential energy dominates the kinetic energy,

resulting in an ordered arrangement of the charges. It should, however, be noted that at W = 0

the lattice model, unlike in the continuum case, is not a standard Wigner crystal [143] because

the system exhibits a pseudogap in the excitation spectrum (unrelated to the Coulomb gap) prior

to entering the charge-ordered phase. For disorders larger than Wc, we find strong evidence of a

thermodynamic glassy phase restricted to temperatures that are approximately one order of magni-

tude smaller compared to the CO temperature scales. This, in turn, suggests that a thermodynamic

glassy phase can, indeed, exist in experimental systems, where typically off-equilibrium measure-

ments are performed. It also resolves the long-standing controversy where numerical simulations

were unable to conclusively detect a thermodynamic glassy phase, while mean-field theory pre-

dicted such a phase. We note that for the disorder strength values studied, we are unable to discern

a monotonic decrease in the critical temperature, as suggested by mean-field theory.

This chapter is structured as follows. In Sec. 4.2, we introduce the CG model, followed by the

details of the simulation in Sec. 4.3. Section 4.5 is dedicated to the results of the study. Concluding

remarks are presented in Sec. 4.6.
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4.2 Model

The CG model in three spatial dimensions is described by the following Hamiltonian:

H =
e2

2κ

∑
i ̸=j

(ni − ν)
1

|rij|
(nj − ν) +

∑
i

niϕi, (4.1)

where κ = 4πϵ0, ni ∈ {0, 1}, and ν is the filling factor. The disorder ϕi is an on-site Gaussian

random potential, i.e., P(ϕi) = (2πW 2)
−1/2

exp (−ϕ2
i /2W

2). At half filling (ν = 1/2), the CG

model can conveniently be mapped to a long-range spin model via si = (2ni−1). The Hamiltonian

can be made dimensionless by choosing the units such that e2/κ = 1 and a = 1 in which a is the

lattice spacing. We thus simulate

H =
1

8

∑
i ̸=j

sisj
|rij|

+
1

2

∑
i

siϕi, (4.2)

where si ∈ {±1} represent Ising spins.

4.3 Simulation Details

In order to reduce the finite-size effects, we use periodic boundary conditions. Special care has

to be taken to deal with the long-range interactions. We make infinitely many periodic copies of

each spin in all spatial directions such that each spin interacts with all other spins infinitely many

times. We use the Ewald summation technique [144, 145] so the double summation in Eq. (4.2)

can be written in the following way:

1

2

N∑
i=1

N∑
j=1

sisj

[
f
(1)
ij + f

(2)
ij + f

(3)
ij + f

(4)
ij

]
, (4.3)
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where the terms fij are defined as:

f
(1)
ij =

1

4

∑′

n

erfc (α|rij + nL|)
|rij + nL|

, (4.4)

f
(2)
ij =

π

N

∑
k ̸=0

e−k2/4α2

k2
cos(krij), (4.5)

f
(3)
ij =

π

3N
ri.rj, (4.6)

f
(4)
ij = − α

2
√
π
δij. (4.7)

Here, erfc is the complimentary error function [146], α is a regularization parameter, and k =

2πn/L is the reciprocal lattice momentum. The vector index n in Eq. (4.4) runs over the lattice

copies in all spatial directions, and the prime indicates that n = 0 is not taken into account in the

sum when i = j. For numerical purposes, the real and reciprocal space summations, i.e., Eqs. (4.4)

and (4.5) are bounded by |rij + nL| < rc and k < 2πnc/L, respectively. The parameters α, rc,

and nc are tuned to ensure a stable convergence of the sum. We find that 2 < α < 4, nc ≳ 4L, and

rc = L/2 are sufficient for the above purpose.

We use Population Annealing Monte Carlo (PAMC) [52, 58, 60, 61, 67] to thermalize the

system down to extremely low temperatures. In PAMC, similarly to simulated annealing (SA)

[40], the system is equilibrated toward a target temperature, starting from a high temperature,

following an annealing schedule. PAMC, however, outperforms SA by introducing many replicas

of the same system and thermalizing them in parallel. Each replica is subjected to a series of Monte

Carlo moves, and the entire pool of replicas is resampled according to an appropriate Boltzmann

weight. This ensures that the system is equilibrated according to the Gibbs distribution at each

temperature. For the simulations, we use particle-conserving dynamics to ensure that the lattice

half-filling is kept constant, together with a hybrid temperature schedule linear in β and linear in

T [52]. We use the family entropy of population annealing [61] as an equilibration criterion. Hard

samples are resimulated with larger population size and number of sweeps until the equilibration

criterion is met. Note that we have independently examined the accuracy of the results as well
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Table 4.1: PAMC simulation parameters used for the finite-temperature simulations in the CO
phase (W ≤ 0.131). L is the linear system size, R0 is the initial population size, M is the number
of Metropolis sweeps, T0 is the lowest temperature simulated, NT is the number of temperatures,
and Nsa is the number of disorder realizations. Note that the the values in the table vary slightly
for different values of the disorder W . Reprinted with permission from [66].

L R0 M T0 NT Nsa

4 2× 104 10 0.05 401 5000
6 5× 104 10 0.05 601 5000
8 1× 105 20 0.05 801 2000
10 2× 105 20 0.05 1001 1000
12 5× 105 30 0.05 1201 500

Table 4.2: PAMC simulation parameters used for the finite-temperature simulations in the CG
phase (W > 0.131). For details see the caption of Table 4.1. Note that the the values in the table
vary slightly for different values of the disorder W . Reprinted with permission from [66].

L R0 M T0 NT Nsa

4 2× 104 20 0.004 401 100000
6 5× 104 30 0.004 601 50000
8 1× 105 40 0.004 801 30000
10 2× 105 60 0.004 1001 20000

as the quality of thermalization for system sizes up to L = 8, using parallel tempering Monte

Carlo [38]. Data from PAMC and parallel tempering Monte Carlo agrees within error bars. We

investigate the phase diagram of the CG model using fixed values of the disorder width, i.e., vertical

cuts on the W -T plane. Further details of the simulation parameters can be found in Tables 4.1

and 4.2 for the CO and CG phases, respectively.

4.4 Equilibration

In this section, we outline the steps taken to guarantee thermalization. The data for this work

is predominantly generated using population annealing Monte Carlo (PAMC). In order to ensure

that the states sampled by a Monte Carlo simulation are in fact in thermodynamic equilibrium, i.e.,

weighted according to the Boltzmann distribution, one needs to strive against bias by controlling

the systematic errors intrinsic to the algorithm due to finite population size.
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Figure 4.2: Equilibration of a PAMC simulation. (a): Equilibration population size ρf versus
entropic family size ρs for a CG simulations at W = 0.5. 100 instances have been studied for
each system size. Evidently, ρs is greatly correlated to ρf , which controls the systematic errors in
thermodynamic quantities. Because ρf is computationally expensive to measure, one may instead
use ρs as the measure of thermalization. (b)-(f): ρs versus the population size R for system size
L = 8 at various number of temperatures NT and Metropolis sweeps M . When ρs converges, the
system is guaranteed to be in thermal equilibrium. As seen from the plots, convergence is achieved
faster as the number of temperatures and sweeps is increased. However, for extremely large values
of NT and M , marginal improvement in equilibration is gained at the cost of extended run time of
the simulation. Reprinted with permission from [66].
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Fortunately, PAMC offers a convenient way to study and tune the systematic errors to a de-

sired accuracy. It can be shown [61] that the systematic errors in a PAMC simulation are directly

proportional to the equilibration population size ρf , which has the following definition:

ρf = lim
R→∞

R var(βF ). (4.8)

Here, R is the population size, and F is the free energy. ρf is an extensive quantity defined at the

thermodynamic limit although, in reality, it converges at a large but finite R. Because ρf is com-

putationally expensive to measure, as it requires multiple independent runs, one may alternatively

study the entropic family size ρs defined as:

ρs = lim
R→∞

Re−Sf , (4.9)

where Sf is the family entropy of PAMC. As shown in of Fig. 4.2(a), ρs is well correlated with ρf ,

which is why we can reliably use ρs as the measure of equilibration. ρs similarly to ρf converges at

a finite R. The population size at which the convergence is achieved is a function of the number of

temperaturesNT as well as the number of Metropolis sweepsM . Optimization of PAMC is studied

in great detail in the context of spin glasses [52, 67] much of which can be carried over to the CG

simulations. As an example, we show in Figs. 4.2(b)-4.2(f) how we choose the optimal values of

the PAMC parameters. We observe that the convergence of ρs is attained faster as the number of

temperatures and sweeps is increased. However, beyond a certain point, any further increase solely

prolongs the simulation time, while contributing negligibly to lowering the convergent value of ρs.

A good rule of thumb for checking thermalization, as seen in Fig. 4.2, is that ρs, and as a result ρf ,

converges when ρs/R = exp(−Sf) < 0.01. We ensure that the above criterion is met for every

instance that we have studied. This matter has been investigated thoroughly in Ref. [61].
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4.5 Results

4.5.1 Charge-Ordered Phase

To characterize the CO phase, we measure the specific heat capacity cv = Cv/N (only used to

extract critical exponents), staggered magnetization

ms =
1

N

N∑
i=1

σi, (4.10)

where σi = (−1)xi+yi+zisi and N = L3 the number of spins, as well as the disconnected and

connected susceptibility

χ̄ = N [⟨m2
s⟩], (4.11)

χ = N [⟨m2
s⟩ − ⟨|ms|⟩2]. (4.12)

In addition, we measure the Binder ratio g [78]

g =
1

2

(
3− [⟨m4

s⟩]
[⟨m2

s⟩]
2

)
, (4.13)

and the finite-size correlation length ξ/L [147–149] defined as:

ξ =
1

2 sin (|kmin|/2)

(
χ(0)

χ(kmin)
− 1

)1/2

, (4.14)

in which kmin = (2π/L, 0, 0) is the smallest nonzero wave vector, and

χ(k) =
1

N

∑
ij

[⟨σiσj⟩] exp(ik.rij) (4.15)

is the Fourier transform of the susceptibility. Furthermore, ⟨· · · ⟩ represents a thermal average and

[· · · ] is an average over disorder.

According to the scaling ansatz, in the vicinity of a second-order phase transition temperature

Tc, any dimensionless thermodynamic quantity such as the Binder ratio and the finite-size corre-
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Figure 4.3: Finite-size correlation length per system size ξ/L versus temperature T for various
disorder strengths. (a) no disorder, (b) small disorder (W = 0.05). In both cases we observe a
crossing of the data for different system sizes, suggesting a phase transition between a disordered
electron plasma and a CO phase. (c), (d): finite-size scaling analysis used to determine the best
estimates for the critical temperature Tc as well as the critical exponent ν at the aforementioned
disorder values. Note that the smallest system size is left out of the analysis for better accuracy.
The transition temperature Tc of the CO phase decreases as the disorder grows. Reprinted with
permission from [66].

lation length divided by linear system size will be a universal function of x = L1/ν(T − Tc), i.e.,

g = F̃g(x) and ξ/L = F̃ξ(x), where ν is a critical exponent. Therefore, an effective way of prob-

ing a phase transition is to search for a point where g or ξ/L data intersect. Given the universality

of the scaling functions F̃g and F̃ξ, if one plots g or ξ/L versus x = L1/ν(T − Tc), the data for

all system sizes must collapse onto a common curve. Because we are dealing with temperatures

close to Tc, we may approximate this universal curve by an appropriate mathematical function such

as a third-order polynomial f(x) = P3(x) in the case of ξ/L or a complimentary error function
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f(x) = 1
2
erfc(x) when studying the Binder cumulant. Hence, by fitting f(x) to the data with

Tc and ν as part of the fit parameters, we are able to determine their best estimates. The statisti-

cal error bars of the fit parameters are calculated by bootstrapping over the disorder realizations.

In Fig. 4.3, we show the simulation data as well as the finite-size scaling (FSS) plots for ξ/L at

two different disorder values. Crossings can clearly be observed, which signals a phase transition

into the CO phase. Simulating multiple values of W , we observe a phase transition between a

disordered electron plasma and a CO phase for W < 0.131(2), consistent with previous studies

[98, 133, 141]. The CO phase is a checkerboard-like crystal [142], where electrons and holes form

a regular lattice as the potential energy dominates the kinetic energy at low temperatures.

We have also conducted zero-temperature simulations using simulated annealing to determine

the zero-temperature critical disorder Wc that separates the CO from the CG phase. We average

over Nsa = 2048 different disorder realizations for disorders W > 0.10 and Nsa = 512 for W ≤

0.10. Each disorder realization is restarted at least at 20 different initial random spin configurations

and at each temperature step equilibrated Neq Monte Carlo steps. If at least 15% of the runs reach

the same minimal energy configuration, we assume that the chosen Neq was large enough, and that

the reached configuration is likely the ground state. If less than 15% of the configurations reach

the minimal state, we increase Neq and re-run the simulation until the 15% threshold is achieved.

For the largest simulated system size (L = 8) and large disorders, typical equilibration times are

Neq = 227 Monte Carlo sweeps.

To estimate Wc, we use the Binder ratio defined in Eq. (4.13) which, by definition, quickly

approaches 1 when T → 0 within the CO phase. Therefore, in order to retain a good resolution of

a putative transition, we use an alternative quantity Γ that is defined in the following way [135]:

Γ = − ln(1− g). (4.16)

Close to Wc, we may assume the following finite-size scaling behavior for Γ:

Γ = F̃Γ

[
L1/ν(W −Wc)

]
. (4.17)
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Figure 4.4: Zero-temperature simulation results for the plasma-CO phase transition. The quantity
Γ defined in Eq. (4.16) is used to perform a finite-size scaling analysis. We conclude that the CO
phase terminates at Wc = 0.131(2). The statistical error bars are estimates by bootstrapping over
disorder instances. erfc(x) is the complimentary error function, which is used to fit the Binder ratio
data (see the main text). Reprinted with permission from [66].

As g is restricted to 0 ≤ g ≤ 1 with a step-function like shape, we may use a complimentary error

function 1
2
erfc(x−µ

σ
) to represent the universal scaling function F̃Γ in which x = L1/ν(W−Wc) and

Wc, ν, µ, σ are the fit parameters. The fit is shown in Fig. 4.4 where we obtainWc = 0.131±0.002

and ν = 0.71± 0.05. Critical exponents such as α, γ, and β can be estimated by performing a FSS

analysis using the peak values of the specific heat cv = Cv/N , connected susceptibility χ, and the

disconnected susceptibility χ̄, as well as the inflection point value of the staggered magnetization

ms that scale as following:

cmax
v ∼ Lα/ν , minflect

s ∼ L−β/ν , (4.18)

χmax ∼ Lγ/ν , χ̄max ∼ Lγ̄/ν . (4.19)

As we can see in Fig. 4.5, the above scaling behaviors are satisfied very well. The best estimates

of the critical parameters for various values of the disorder are listed in Table 4.3. Note that with
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values of the specific heat capacity cv, connected and disconnected susceptibilities χ and χ̄, as
well as the inflection point value of the staggered magnetization are used to estimate the critical
exponents α, β, γ, and γ̄, respectively. According to Eqs. (4.18) and (4.19), the above quantities
scale as a power law in the linear system size L, as clearly seen from the figure. Reprinted with
permission from [66].

the exception of the universal exponent ν, other critical exponents vary with the disorder, which

can be due to the trade-off between large-scale thermal and random-field fluctuations. Because

at T = 0 the system has settled in the ground state, one cannot use thermal sampling to measure

the variance of energy and staggered magnetization that are proportional to the heat capacity and

susceptibility, respectively. Instead, we have used the techniques developed by Hartmann and

Young in Ref. [150]. An important observation one can promptly make is that the exponents–

except for ν that is universal–vary with the disorder. This can be attributed to the fact that the

perturbations at large length scales are contested between random field fluctuations, which have

static nature and dynamic thermal fluctuations [151–153]. At W = 0, the perturbations are purely

thermal, while at T = 0, the random field completely dominates. At such large length scales,

the interactions within the charge-ordered phase resemble the random-field Ising model (RFIM)

[154–157] with short-range bonds, namely, screening takes place. This can be understood by
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Table 4.3: Critical parameters of the plasma-CO phase transition at different disorder values. The
exponents, except for ν, change with the disorder. Note that at T = 0, the exponents α and γ have
been calculated in a different way (see text). Reprinted with permission from [66].

W Tc ν α/ν β/ν γ̄/ν γ/ν
0.000 0.1284(1) 0.76(4) 0.550(2) 0.42(1) 2.41(1) 2.05(2)
0.050 0.1187(3) 0.87(14) 0.418(25) 0.305(19) 2.67(2) 1.79(3)
0.131(2) 0.000 0.71(5) 0.006(31) 0.154(5) 2.88(1) 1.55(4)

remembering that the dynamics of the system is constrained by charge conservation. In the spin

language, excitations are no longer spin flips but spin-pair flip-flops, owing to the conservation

of total magnetization. For instance, one can create a local excitation while preserving charge

neutrality by moving a number of electrons out of a subdomain in the CO phase. The excess

energy of such a domain scales like its surface, similarly to the short-range ferromagnetic Ising

model. It is worth mentioning that the Imry-Ma [158] picture gives a lower critical dimension of

2 for discrete spins with short-range interactions. Hence three-dimensional Ising spins, such as in

the RFIM, are stable to small random fields as we also find here.

Returning to the discussion of the critical exponents, we note that scaling relations such as

γ = β(δ − 1) = (2− η)ν, (4.20)

as well as the modified hyperscaling relation

(d− θ)ν = 2− α = 2β + γ (4.21)

can be utilized to obtain estimates for the critical exponents η, θ, and δ. For instance, using the

values in Table 4.3, we see that η(W = 0.0) = −0.05(2) and η(W = 0.05) = 0.22(1). Near

criticality, the correlation functions decay as a power of distance, i.e., G(x) ∼ 1/|x|d−2+η. The

fact that the exponent η is slightly negative for W = 0.0 shows that correlation between the spins

remains in effect over a much longer distance in the absence of disorder. Physically this is plausible

as disorder tends to decorrelate the spins.
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4.5.2 Coulomb Glass Phase

To examine the existence of a glassy phase in the CG model, we measure the spin-glass corre-

lation length defined in Eq. (4.14), however, for a spin-glass order parameter, namely,

ξSG =
1

2 sin (|kmin|/2)

(
χSG(0)

χSG(kmin)
− 1

)1/2

. (4.22)

Here, the spin-glass susceptibility χSG has the following definition [149]:

χSG(k) =
1

N

N∑
i=1

N∑
j=1

[
(⟨sisj⟩−⟨si⟩⟨si⟩)2

]
eik.(ri−rj). (4.23)

It is important to note that ⟨si⟩ ̸= 0 because the Hamiltonian [Eq. (4.2)] is not symmetric under

global spin flips. Therefore, at least four replicas are needed to compute the connected correlation

function in Eq. (4.23). We start with the partition function of the system using Eq. (4.2):

Z =
∑
{si}

exp

[
−β

(
1

8

∑
i ̸=j

sisj
|rij|

+
1

2

∑
i

siϕi

)]
. (4.24)

We may now expresses any combination of the spin moments in terms of the replicated spin vari-

ables sαi in the following way:

⟨s11 . . . s1k1 ⟩
l1 . . . ⟨sm1 . . . smkm

⟩lm =
1

Zn

∑
{sαi }

e
−β

n∑
α=1

H[{sαi }]
s111 . . . s

1
1k1

· · · snm1
. . . snmkm

=
1

n!

n∑
α1...αn

⟨sα1
11
. . . sα1

1k1
· · · sαn

m1
. . . sαn

mkm
⟩, (4.25)

where n = l1 + · · · + lm is the total number of replicas, and replica indices α1, . . . αn are all

distinct. As a special case, one can show that

(⟨sisj⟩ − ⟨si⟩⟨sj⟩)2 =
2

4!

4∑
α,β

⟨sαi sαj s
β
i s

β
j ⟩ −

2

4!

4∑
α,β,γ

⟨sαi sαj s
β
i s

γ
j ⟩+

1

4!

4∑
α,β,γ,λ

⟨sαi s
β
i s

γ
j s

λ
j ⟩. (4.26)
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Figure 4.6: Spin-glass correlation length divided by system size ξSG/L calculated using two repli-
cas atW = 0.8 versus temperature T . No crossing is observed down to very low temperatures. The
inset shows the same quantity using four replicas, where a transition is clearly visible. Here, data
points for different system sizes cross approximately at the temperature indicated by the dashed
line. This suggests that in the presence of external fields four-replica quantities need to be used to
characterize phase transitions in glassy systems. Reprinted with permission from [66].

Using the above expression, the spin-glass susceptibility [Eq. (4.23)] can be written in terms of the

replica overlaps as follows:

χSG(k) =
N

6

4∑
α<β

[
⟨qαβ(k)q∗αβ(k)⟩

]
− N

6

4∑
α

4∑
β<γ

[
⟨qαβ(k)q∗αγ(k)⟩

]
+
N

3

4∑
α<β

4∑
γ<λ

[
⟨qαβ(k)q∗γλ(k)⟩

]
. (4.27)

Once again, the indices α, β, γ, and λ must be distinct. Here, q∗αβ(k) represents the complex

conjugate of qαβ(k), and qαβ(k) is the Fourier transformed spin overlap, i.e.,

qαβ(k) =
1

N

N∑
i=1

sαi s
β
i e

ik.ri . (4.28)
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Figure 4.7: Spin-glass finite-size correlation length ξSG/L as a function of temperature T at various
disorder strengths W . (a) W = 0.15, (b) W = 0.30, (c) W = 0.50, and (d) W = 1.20. For
W ≳ 0.15, the data for different system sizes cross, indicating a plasma-CG phase transition.
Corrections to scaling must be considered to reliably estimate the value of the critical temperature
Tc (see the main text for details). Reprinted with permission from [66].

To underline the significance of this matter, we have shown in Fig. 4.6 the spin-glass correlation

length calculated using two replicas, as has been done in some previous numerical studies of the

CG [117, 159]. The inset shows the same quantity computed using four replicas. While the two-

replica version of the finite-size correlation length shows no sign of a CG transition, the four-replica

expression captures the existence of a phase transition into a glassy phase.

We have performed equilibrium simulations for W ∈ {0.15, 0.30, 0.50, 0.80, 1.2}. In Fig. 4.7,

we plot the four-replica spin-glass correlation length as a function of temperature at select disorder

values. Our results strongly suggest that there is a transition to a glassy phase that persists for

relatively large values of the disorder. This is significant in the sense that it confirms the phase
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Figure 4.8: Importance of proper thermalization in observing a CG phase transition. Panel (a)
shows a simulation where some instances have not reached thermal equilibrium, whereas panel
(b) illustrates the same simulation in which all of the instances have been thoroughly thermalized.
Reprinted with permission from [66].

transition via replica symmetry breaking as predicted by mean-field theory. The nontriviality of

our findings can be better understood if one juxtaposes the CG case with that of finite-dimensional

spin glasses lacking time-reversal symmetry due to an arbitrarily small external field, where the

existence of de Almeida-Thouless [160] transition, except for a few rare cases [161, 162], has

been ruled out by numerous studies [139, 163–167]. For the random-field Ising model, the droplet

picture of Fisher and Huse [163, 164] can be invoked to show the instability of the glass phase

to infinitesimal random fields. Yet, the CG model is different in two significant ways: typical

compact domains are not charge-neutral, and therefore can not be flipped; and the long-range of

the interactions, while it does not affect the domain wall formation energy in the ordered phase,

may be significant in the more complex domain formation of the glass phase.

It is worth mentioning here that proper equilibration is crucial in observing phase transitions,

especially in subtle cases like the CG model. We have illustrated this matter in Fig. 4.8. Fig-

ure 4.8(a) shows a simulation where the system has been poorly thermalized in which ρs/R ∼ 0.1

on average across the studied instances. By contrast in Fig. 4.8(b), the same simulation is done

with careful equilibration; that is to say, the criterion ρs/R < 0.01 is strictly enforced for every
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instance. It is clear that the observation of a crossing is contingent upon ensuring that every in-

stance has reached thermal equilibrium. This, in turn, could explain why simulations using parallel

tempering Monte Carlo, e.g., Ref. [133], see no sign of a transition.

Some corrections to scaling must be considered in the analysis in order to estimate the position

of the critical temperature and the values of the critical exponents. In the vicinity of the critical

temperature Tc and to leading order in corrections to scaling, we may consider the following FSS

expressions for the spin-glass susceptibility χSG and the finite-size two-point correlation length

divided by the linear size of the system, ξSG/L:

χSG ∼ CχL
2−η
[
1 + AχL

−ω +BχL
1/ν(T − Tc)

]
, (4.29)

ξSG/L ∼ Cξ + AξL
−ω +BξL

1/ν(T − Tc), (4.30)

where Aχ, Bχ, Cχ, Aξ, Bξ, and Cξ are constants. In order to find the critical temperature Tc as well

as the critical exponents ν, η, ω, we perform the following procedure.

(i) Estimation of Tc: Given any pair of system sizes (L1, L2), we have

L1 = L̄−∆L/2, L2 = L̄+∆L/2, (4.31)

in which ∆L = L2 − L1 and L̄ = (L1 + L2)/2. Using Eq. (4.30), to the leading order in ∆L/L̄

we find

ξSG(Li, T )

Li

∼ ξSG(L̄, T )

L̄
− (−1)i

∆L

2L̄

[
ωAξL̄

−ω − Bξ

ν
L̄1/ν(T − Tc)

]
, (4.32)

where the index i can take values i = 1, 2. One can now use Eq. (4.32) to determine the temperature

T ∗(L1, L2) at which the curves of ξSG/L cross; in other words, ξSG(L1, T
∗)/L1 = ξSG(L2, T

∗)/L2

and

T ∗(L1, L2) ∼ Tc +ΘξL̄
−ω−1/ν = Tc +ΘξL̄

−ϕ. (4.33)
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Figure 4.9: Process of estimating the critical exponents, as well as the critical temperature Tc of
the plasma-CG phase transition for W = 0.5. Other values of W are analyzed using the same
procedure. (a): The temperatures where ξSG/L curves of different systems sizes cross are used to
determine the critical temperature Tc. The crossing temperatures decay toward the thermodynamic
limit Tc. (b): The cumulative distribution function (CDF) is constructed by minimizing χ2 with
respect to Θξ and ϕ while holding Tc constant. The shaded region shows the 68% confidence
interval and the green vertical line indicates the best estimate of Tc. (c): The value of Tc obtained
in the previous step is used to determine ω. At T = Tc and optimal ω, ξSG/L is linear as a
functions of L−ω; i.e., it has zero curvature as demonstrated in panel (d). (e): The critical exponent
ν is estimated using the derivative of ξSG/L with respect to temperature, which scales as L1/ν

when evaluated at Tc. Some deviations are evident for the smallest system size. (f): The spin-glass
susceptibility χSG at T = Tc which scales as L2−η is used to determine the best estimate of the
exponent η. Reprinted with permission from [66].

Here, Tc is the true critical temperature in the limit L → ∞, and Θξ is a constant. In Fig. 4.9(a),

we show the Tc estimate for the case W = 0.50. The best fit curve is obtained by minimizing the

sum of the square of the residuals, namely,

χ2 =
N∑
i=1

(
T ∗
i − Tc −ΘξL̄

−ϕ
i

)2
, (4.34)

where i runs over all pairs of linear system sizes. Now we vary Tc, minimizing χ2 along the

way with respect to the remaining parameters. Since Θξ appears linearly in the model, it can be
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eliminated [168] to reduce the optimization task to one free parameter, i.e., ϕ:

(
∂χ2

∂Θξ

)
Tc

= 0 ⇒ Θ̃ξ(Tc, ϕ) =

N∑
i=1

(T ∗
i − Tc)L̄

−ϕ
i

N∑
i=1

L̄−2ϕ
i

. (4.35)

Because there are five data points with three parameters in the original model, we have two de-

grees of freedom. Therefore, the probability density function (PDF) is proportional to e−χ2/2. To

determine the confidence intervals, we calculate the cumulative distribution function (CDF) [169]:

Q(Tc) =

∫ Tc

e−
1
2
χ2(T ′

c)dT ′
c. (4.36)

As an example, in Fig. 4.9(b) we have shown the 68% confidence interval as well as the best

estimate for the critical temperature.

(ii) Estimation of ω: From Eq. (4.30), we observe that

ξSG(Tc)/L ∼ Cξ + AξL
−ω. (4.37)

Thus, using the best estimate of Tc from the previous step, we expect the data points of ξSG(Tc)/L

as a function of L−ω to follow a straight line when ω is chosen correctly. We can therefore vary

ω and measure the curvature until it vanishes at the optimal value. We have demonstrated this in

Figs. 4.9(c) and 4.9(d). Note that the error bar for ω is calculated using the bootstrap method.

(iii) Estimation of ν and η: It is straightforward to show from Eqs. (4.29) and (4.30) that to the

leading order in corrections

χSG(Tc) = CχL
2−η(1 + AχL

−ω), (4.38)

d

dT
(ξSG/L)(Tc) = BξL

1/ν(1 +DξL
−ω), (4.39)

in which the best estimates obtained for Tc and ω are used. We see that the above quantities simply

scale as χSG(Tc) ∼ L2−η and d
dT
(ξSG/L)(Tc) ∼ L1/ν for large enough L. Therefore, a linear fit
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Table 4.4: Critical parameters of the plasma-CG phase transition for various values of the disorder
W . The exponent ν and ω are independent of W within error bars, highlighting their universality,
whereas the exponent η varies as the disorder strength increases. Reprinted with permission from
[66].

W Tc ν ω η
0.300 0.00446(25) 0.62(5) 1.26(7) 0.56(1)
0.500 0.00534(29) 0.74(5) 1.24(28) 0.82(5)
0.800 0.00590(56) 0.64(2) 1.28(20) 0.97(5)
1.200 0.00600(16) 0.65(3) 1.33(21) 1.09(1)

in the logarithmic scale will yield the exponents ν and ω. This is shown in Figs. 4.9(e) and 4.9(f),

respectively. The above procedure has been repeated for all other values of the disorder W . The

results are summarized in Table 4.4. We observe that within the error bars, the critical exponents

ν and ω are robust to the disorder, which underlines the universality of these exponents. Neverthe-

less, larger system sizes–currently not accessible via simulation–would be needed to determine the

universality class of the model conclusively. The fact that we observe stronger corrections to scal-

ing for smaller disorder shows that the energy landscape is rougher due to competing interactions

where finite-size effects are accentuated. For larger values of W , on the other hand, the system

becomes easier to thermalize as the disorder dominates the electrostatic interactions.

4.6 Conclusion

We have shown that, using the four-replica expressions for the commonly-used observables,

the CG model displays a transition into a glassy phase for the studied system sizes, provided that

large enough disorder and sufficiently low temperatures are used in the simulations (see Fig. 4.1 for

the complete phase diagram of the model). Previous numerical studies–including a work [134] by

a subset of us–have failed to observe the glassy phase. In this study, we are able to present strong

numerical evidence for the validity of the mean-field results in three space dimensions, which pre-

dicts transition to a glassy phase at large disorder via replica symmetry breaking. Moreover, we

corroborate the results of previous studies for the low-disorder regime where a CO phase, similar
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to the ferromagnetic phase in the RFIM, is observed. Interestingly for large disorder values, the

CG and the RFIM are different because the RFIM does not exhibit a transition into a glassy phase

(see, for example, Ref. [157] and references therein). A possible reason is the combination of the

constrained dynamics (magnetization-conserving dynamics) and the long-range Coulomb interac-

tions not present in the RFIM. These two factors can increase frustration such that a glassy phase

can emerge. Our findings open the possibility of describing electron glasses through an effective

CG model both theoretically and numerically. Because most of the electron glass experiments

are performed in two-dimensional materials, it would be desirable to investigate these results in

two-dimensional models. We intend to visit this problem in the near future.

73



5. DISTRIBUTION OF INTER-EVENT AVALANCHE TIMES IN DISORDERED AND

FRUSTRATED SPIN SYSTEMS†

5.1 Introduction

Many physical systems, when perturbed, respond in discrete jumps between metastable states.

The earth’s tectonic plates provide an example of such behavior in the form of earthquakes, which

release a large amount of energy before being pinned again [171]. Similarly, a sheet of paper

creases and tears in jerky movements, resulting in crackling sounds [172], the vortex lines of type-

II superconductors depin when the electric current becomes large enough [173], and the magnetic

dipoles of ferromagnets align with a changing external magnetic field in individual steps [174,

175].

In these situations and many others, the system waits in its new configuration until further

changes in a driving field induce the next jump. The history of the sample is of great importance.

The configuration of the system is not just a function of the instantaneous value of the drive, but

depends on the path followed. In this manuscript, we study this phenomenon from a relatively

new perspective which focuses on the distribution of inter-event times, and how that distribution

is affected by the introduction of a threshold in the definition of an event. Our goal is not only

to gain additional insight into the detailed mechanism of hysteresis, but also to examine the idea

of natural time [176] in a more simple context than the geophysical applications that have mainly

been considered up to now.

Klein et al. have suggested [171] that an alternate approach to the prediction of large earth-

quakes is to use as a clock the number of smaller earthquakes rather than quantifying intervals via

a traditional counting of days and years. Varotsos et al. first introduced the term natural time to

describe this procedure [177, 178]. Recent investigations have studied this concept in complex

stochastic nonlinear processes, including its use in characterizing the current state of a system as

it progresses between events [179]. Investigating natural time with geophysical data is difficult

†Reprinted with permission from [170].
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owing to the absence or incompleteness of historical, and even modern, data on small earthquakes;

large earthquakes are, fortunately, not excessively common. Additionally, controlled experiments

are out of the question.

Here we use numerical simulations to analyze hysteresis and natural time in the context of

several simple disordered and frustrated Ising spin models [5, 6, 25, 163, 180–182] exhibiting

magnetic hysteresis: the three-dimensional random-field Ising model, the Sherrington-Kirkpatrick

model, and the Viana-Bray model. Our key results are: (i) The distribution of inter-event times

between all avalanches scales with the number of lattice sites for the random-field Ising model and

the Viana-Bray model, but not for the Sherrington-Kirkpatrick model. (ii) The pseudo-gap expo-

nent θ, which characterizes the behavior of the inter-event distribution for vanishing inter-event

time is zero. (iii) The addition of long-range interactions decreases the number of small inter-event

times, but does not affect the statistics of the intervals between large events, nor do they alter θ. (iv)

Despite exploring various models and parameter regimes, we fail to find a situation where the pre-

dictive capability of the natural time method is strong for spin avalanches in magnetic hysteresis.

(v) By imposing a minimum avalanche size threshold, different models can be classified by their

inter-event distribution. (vi) Finally, at a sufficiently large minimum avalanche size threshold, the

inter-event time in the Sherrington-Kirkpatrick model follows a Weibull distribution with shape

factor k ∼ 1, i.e., a Poisson distribution.

The use of simulations allows us to generalize to higher dimensions a recent analytical study

by Nampoothiri et al. [183] on the inter-event time distribution of the one-dimensional random-

field Ising model. The central result of that work was the computation of the distribution of times

P (∆B) of the magnetic field change ∆B between spin avalanches. (If the magnetic field is in-

creased at a constant rate, ∆B is proportional to time.) It was found that P (∆B) ∼ (∆B)θ as

∆B → 0 [183], with θ = 0 for the short-range ferromagnetic random-field Ising model, whereas

θ = 0.95 for the long-range antiferromagnetic case. Other studies of the distribution of gaps be-

tween events have been conducted in the context of amorphous solids and hard frictionless spheres

[184–188]. There, when the strain γ is sufficiently increased, a corresponding stress drop follows.
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The distribution of gaps ∆γ highlights differences between the yielding and depinning processes,

and reveals information on mechanical stability.

The paper is structured as follows. Section 5.2 introduces the models studied, as well as the

algorithmic approach and analysis methods used. In Sec. 5.3 we present results on the statistics of

inter-event times for all avalanches and in Sec. 5.4 we repeat the analysis with the introduction of

an event threshold. Section 5.5 discusses the effects of additional small-world bonds between the

variables, followed by a study of return point memory and concluding remarks in Sec. 5.7.

5.2 Model and Methods

We first consider the random-field Ising model (RFIM) defined by the Hamiltonian

HRFIM = −J
∑
⟨ij⟩

sisj −
∑
i

hisi −B
∑
i

si. (5.1)

Here si = ±1 is a discrete degree of freedom at site i of a cubic lattice with N sites, and ⟨ij⟩

represents a sum over nearest neighbors. J is the exchange constant between nearest-neighbor

sites, and units are set so that J = 1. Each site i is assigned a random magnetic field hi, drawn

from a Gaussian distribution

P (hi) =
1√
πR

exp(−h2i /R2). (5.2)

R controls the width of the distribution, and thereby the strength of the disorder. A spatially

uniform field B is used to drive the hysteresis loop.

Unlike the ferromagnetic Ising model where hi = 0 ∀i, the RFIM does not exhibit ferromag-

netic order in d = 2 (or below). As the temperature is lowered in higher space dimensions, how-

ever, a freezing transition occurs. This is followed by a ferromagnetic transition [189–193]. Here

we are not concerned with these aspects of the equilibrium finite-temperature phase diagram, but

instead focus on the evolution of the magnetization as the external field B is sequentially changed,

with dynamics defined by each spin remaining parallel to its local environment at each step, that

is, effectively T = 0 (see below).
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Figure 5.1: Hysteresis loop of the random-field Ising model of size N = 1003 with a distribution
of fields of widths R = 3, 4, and 5. On a large scale, the curves appears to represent a smooth
evolution of the magnetization M(B). However, as can be seen in the inset, the magnetization
M(B) is composed of a series of discrete jumps. ∆M is the change in magnetization. ∆B is the
inter-event time. Reprinted with permission from [170].

Typical RFIM hysteresis curves are shown in Fig. 5.1. From them, we can extract the size of all

the individual magnetization jumps S and hence their distribution. It is well-known [194] that this

distribution has power-law behavior at low disorder, which we reproduce in Fig. 5.2. We can also

extract the distribution of time (as measured by the change in external field ∆B) between events.

The latter quantity has been much less studied than the former.

The Sherrington-Kirkpatrick model (SKM) [20] is given by the Hamiltonian

HSKM = −
∑
i<j

Jijsisj −B
∑
i

si. (5.3)

In the SKM, every site i ∈ {1, . . . , N} interacts with every other site j via Jij . That is, the

interaction is infinite range. The exchange constants Jij are disordered, and in our study are given

by a Gaussian distribution with zero mean and a standard deviation of J0. We set J0 = 1 as our
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Figure 5.2: Distribution of avalanche sizes for field width R = 3 and 5. The distribution is known
to have power-law behavior for R = Rc ≈ 2.16. A critical region, for which power law behavior
persists for several decades of avalanche size, occurs up to R ≈ 4. For details see Ref. [194].
Reprinted with permission from [170].

unit of energy. The SKM shows self-organized criticality (SOC) for all disorder [195, 196].

Finally, we also study the Viana-Bray model (VBM) [197] in which each spin is randomly

connected to z = 6 other spins. Thus, the VBM is still long-ranged, but with a finite coordination

number. Unlike the SKM, the VBM does not have SOC [195]. Note that the RFIM has an explicit

parameter R with which the disorder strength can be tuned, whereas the SKM and VBM do not.

In order to generate a hysteresis loop for the RFIM, we compute the local fields,

Bi = −hi − J
∑

j∈N (i)

sj , (5.4)

and for the SKM and VBM,

Bi = −
∑

j∈N (i)

Jijsj . (5.5)
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For the RFIM, N (i) includes the nearest neighbor spins, whereas N (i) for the SKM consists of all

spins, while the six randomly chosen neighbors define N (i) for the VBM.

A hysteresis loop is generated as follows: Starting at B = ∞ we reduce B to a value Bk =

max{Bi}. This is the external field at which the spin Sk becomes unstable. Sk is then reversed and

the re-configuration of the lattice and of the collection of local fields {Bi} is computed based on

greedy dynamics [198]. Once Sk flips, and the local fields are recomputed, the next most unstable

spin l is flipped, i.e., its (updated) local field is now greater than the external field: Bl > Sl · B.

This process is continued until all unstable spins are reversed. The total count of spins flipped

is recorded as the size of the associated avalanche. The avalanche size determines the change in

magnetization ∆M , which is twice the total fraction of spins that flip. At this point, the external

field B is reduced once again to the next largest {Bi}, and the process is repeated until all spins

are flipped and the system reaches saturation, but with the opposite sign of the magnetization.

The inter-event times are the values ∆B that the external field jumps between each completed

avalanche.

We begin, in Sec. 5.3, by analyzing the distribution of time intervals P (∆B), which results

from using the broadest definition of an avalanche, i.e., by including even the smallest possible

∆M = 2/N , resulting from a single spin flip. We also calculate the pseudo-gap exponent θ, given

by P (∆B) ∼ (∆B)θ as ∆B → 0. This follows the procedure described in recent literature [183]

on the one-dimensional RFIM.

Next, in Sec. 5.4 we use a minimal threshold ∆M , only above which a change in a spin config-

uration is considered an event. We analyze how the distribution in inter-event times is affected by

making ∆M > 2/N . The introduction of such a threshold ∆M allows us to consider alternative

measures of the interval between events. Specifically, we can define the natural time ∆A between

large avalanches by counting the number of small avalanches (those with ∆M less than the thresh-

old) which occur between large ones. We also define the total natural time ∆F between large

avalanches to be the total number of flipped spins (i.e., the change in magnetization) that has accu-

mulated. This latter procedure weights each small avalanche by the number of spins which turned
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over. These different approaches to the inter-event time are chosen to parallel analogous definitions

in the geophysics community [199] where natural time employs only earthquakes exceeding a cer-

tain size as events and the number of small earthquakes between the large ones is recorded. The

current state of an earthquake cycle is analyzed by constructing a cumulative distribution function

of inter-event times between large earthquakes, which shows a Weibull form [176],

f(t) = 1− e−(t/λ)k , (5.6)

Here λ is the scale parameter, and k is the shape parameter. For k < 1 the cumulative probability

function of the Weibull distribution has an initial rapid rise, while if k > 1 the initial slope is

small. If k = 1, Eq. (5.6) becomes the inter-event distribution of a Poisson process. The Weibull

distribution is commonly used in the materials science community to characterize the time to fail-

ure, where k < 1 corresponds to a failure rate which decreases with time. In contrast, k > 1

corresponds to a failure rate which increases with time. Motivated by the geophysics problem, we

perform a similar fit to the cumulative distribution of inter-event times in our spin model hysteresis

loops. By taking the natural logarithm of both sides twice, Eq. (5.6) becomes

log[−log(1− f(t))] = klog(t)− klog(λ), (5.7)

so that a plot of the data in the form log[−log(1 − f(t))] vs log(t) yields a linear relation if f(t)

has a Weibull form.

5.3 Statistics of All Avalanche Inter-event Times

We start by analyzing the distributions of time intervals that occur between every avalanche,

including avalanches of a single flip, i.e., ∆M = 2/N . When an avalanche occurs, we mark its

magnetic field value. Then, we can define ∆B as the difference between any two consecutive

avalanches and accumulate the distribution of inter-event times as P (∆B).

In order to compare distributions of different parameters properly, P (∆B) is normalized. This
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Figure 5.3: Scaling collapse of the distribution of inter-event times for the RFIM at field width
R = 2.3 and the VBM for various system sizes N . If the field interval axis is scaled by N , the
distributions for different N coincide. That is, P (N,∆B) ∼ P̃ (N∆B). The vanishing slope at
small ∆B indicates the pseudo-gap exponent defined by P (∆B) ∼ (∆B)θ as ∆B → 0 obeys θ =
0, in agreement with analytic results in one space dimension (d = 1). Reprinted with permission
from [170].

is done by dividing by the total number of intervals Nint. As R increases to large values, the spins

feel a wide range of random fields, and their local fieldsBi [Eq. (5.4)] become widely separated. In

the limit R → ∞, all events become single flips because the contribution to Bi from the exchange

interactions J is negligible in comparison. The total number of intervals Nint approaches the

number of lattice sites (spins) N . Similarly, as R decreases, the total number of intervals becomes

small. At R = 0, the hysteresis loop becomes completely square, Ni = 1, and the entire lattice

flips from up to down at the single external field value B = −2dJ , where d = 3 is the space

dimension. Normalizing P (∆B) to Nint eliminates this trivial effect. The sum of all avalanches in

the distribution equals unity, independent of the choice of parameters.

We begin by analyzing the RFIM, plotting the distribution of inter-event times in Fig. 5.3.

Distributions of varying lattice sizes N are seen to collapse if the event intervals ∆B are scaled by
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N , that is

P (N,∆B) ∼ P̃ (N∆B) . (5.8)

The inter-event distribution for the VBM is similar to the RFIM (see Fig. 5.3) and scales with the

number of variables N . Due to the fundamental difference between finite and diverging number of

neighbors [195], we expect the same scaling behavior for differing finite coordination numbers of

the VBM.

As can be seen in Fig. 5.4, the SKM distributions for different lattice sizes collapse with an

unscaled ∆B. Other than that, the shape of the inter-event distribution of all avalanches is similar

to the RFIM (Fig. 5.3). Because the VBM is long-ranged, and the RFIM is short-ranged, but both

have similar scaling forms for P (∆B), we conclude that the connections between distant spins do

not by themselves give rise to a change from the RFIM collapse with N∆B. Instead, the most

likely cause of scaling differences is the presence of SOC at all disorder strengths in the SKM due

to the fully-connected topology.
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Another way to gain insight into the scaling of inter-event times is to observe the behavior of

the hysteresis loops. While hysteresis loops have been extensively studied [195, 200–203], we

focus on the width of the loop in relation to the lattice size. For the RFIM and VBM, the loops are

the same width across all lattice sizes (see Fig. 5.5). This means that the total time T for traversal

of the loop is constant. In the limit where events are small and fairly isolated spatially, the number

of events grows linearly with lattice size N , and the time ∆B between events is proportional to

1/N . This picture offers a qualitative explanation of the dependence of P on N∆B.

The hysteresis loop for the SKM (Fig. 5.6) is different from the VBM and the RFIM. Its width

grows as the lattice size is increased – the total time across the loop increases with N . If we again

consider a limit where events are small and fairly isolated spatially, so that the number of events

grows linearly with lattice size N , the interval between individual events ∆B is expected to be

roughly independent of lattice size.
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text, this dependence on lattice size underlies the difference in scaling behavior from the RFIM
and VBM cases. Reprinted with permission from [170].

Returning to the RFIM, we consider the dependence of the limit of inter-event time distribution

at small ∆B on disorder width R. Figure 5.7 shows the distributions for different R values. The

quantity

C(R) = lim
N∆B→0

P̃ (N∆B), (5.9)

characterizes the value of the distribution at the smallest interval sizes. The inset to Fig. 5.7,

showing C(R), exhibits a peak for R ≈ 3.7. Note that for the analytical calculation of the one-

dimensional case, C(R) peaks at R ≈ 1 [183].

The flatness of P (∆B) as ∆B → 0 implies that the pseudo-gap exponent θ = 0 for all R in

the RFIM. It likewise vanishes for the SKM and VBM. This value for the exponent is the same

as the one-dimensional RFIM [183]. It has been argued that this is a consequence of the mapping

between the RFIM and a depinning process when the dimensionality is less than 5 [204]. The
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depinning process is known to have θ = 0 [184]. Thus our results confirm previous conjectures on

the nature of the gap statistics.

The inter-event time distributions P (∆B) of Figs. 5.3 and 5.4 illustrate the unpredictability of

avalanche occurrences. The distributions have significant weight over several orders of magnitude

of ∆B. The time between avalanches, as measured by the traditional definition ∆B (which is

proportional to the conventional time interval ∆t if B is swept at a constant rate), takes a very

wide range of values. In Sec. 5.4 we explore whether alternate definitions might yield a narrower

distribution, and hence more predictable intervals.
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5.4 Statistics of Above Threshold Inter-event Times

In Sec. 5.3, we have seen that the distribution of inter-event times P (∆B) is very broad when

all avalanches are considered as events. We now re-analyze the distribution but impose an event

threshold of LA. This both eliminates the small (and therefore presumably more random) magne-

tization jumps and opens the door to counting the number of jumps as an alternate definition of

inter-event time. This latter procedure follows suggestions in the geophysics community where

including an avalanche threshold was argued to help determine where a certain geographic region

is located in the earthquake cycle.

In geophysics studies, the imposition of a threshold was shown to lead to the inter-event distri-

bution following a Weibull process [176]. Here we use a similar approach and verify if the statistics

obey the same distribution. We examine several definitions of the inter-event time: ∆A character-
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Figure 5.9: Cumulative distribution of the inter-event times for the RFIM at R = 2.3 on a double-
logarithmic scale. For the distribution to be fit by a Weibull distribution, the data must be linear.
Instead, the curves show a significant downward concavity for all values of LA, The same trend is
found for ∆A (not shown). Reprinted with permission from [170].

izes the number of small avalanches, ∆F the total number of individual flips. This complements

the use of ∆B, the change in the magnetic field between events (see Sec. 5.3).

If large avalanches tended to occur after relatively constant numbers of small avalanches ∆A,

then a plot of the cumulative distribution function f(∆A) would take the form of an abrupt step,

reflecting a sharply peaked probability P (∆A), i.e., large events separated by one specific ∆A.

Figure 5.8 shows the cumulative distribution functions for different disorder strengths R and for

different choices of the threshold LA for counting small avalanches. We see no significant tendency

for the cumulative distribution to become more step-like than when plotted as a function of ∆B.

Although the continued broadness of the distributions of Fig. 5.8—despite the replacement of

∆B by ∆A and ∆F—suggests that natural time does not sharpen the distribution of inter-event

spacing, we can still ask whether the underlying distributions of inter-event times are similar to

those found in geophysics applications. Figure 5.8 shows the Weibull fits to the distributions f in

addition to the raw data.
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While naively it appears that the data of Fig. 5.8 might follow a Weibull inter-event distribution,

a more discerning check is made by plotting the data with modified axes: log[−log(1 − f(t))] vs

log(t). On these axes, the data should form a straight line, as discussed earlier [see Eq. (5.7)].

First, we analyze the RFIM, where the distributions do not appear to be well fit by a Weibull

distribution by any definition of time (see Figs. 5.9 and 5.10). We focus on R > Rc ∼ 2.16, the

critical value of R below which an infinite avalanche occurs in which a macroscopic fraction of

the spins all flip at once [194]. Above Rc, ∆A and ∆B yield a curve that is concave down, while

∆F yields a curve with an inflection point. The fact that the distribution is concave down implies

that there is a scarcity of large-time intervals for the distributions to be Weibull. The quality of

the fits of RFIM inter-event times ∆B to a Weibull distribution (Fig. 5.9) does not appear to be

very sensitive to the value of the avalanche threshold. In the case of natural time ∆F (Fig. 5.10)

smaller threshold gives a somewhat better fit. In either case, as LA increases, the average time

between events increases, which leads to a lower intercept with the vertical axis; this follows from
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Figure 5.11: Cumulative distribution of the inter-event times for the SKM with lattice size N =
10000. As LA is increased, the data become more linear, which shows that the distribution of ∆B
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implies that the Weibull distribution simplifies into a Poisson distribution. The same phenomenon
occurs in the VBM with a slope of k ∼ 0.8. Reprinted with permission from [170].

Eq. (5.7). The situation is rather different for the SKM when using the inter-event time ∆B. As LA

is increased, the Weibull fit improves significantly, as shown in Fig. 5.11. Interestingly, the shape

parameter k is close to unity, i.e., the distribution is Poissonian. The same fit improvement with

larger LA occurs for the VBM (not shown), but k ∼ 0.8 in that case. We are unable to determine if

this value of k varies with the VBM’s coordination number z, and we might perform simulations of

varying z in a future paper. The SKM also provides interesting results for the natural time methods.

f(∆A) is rather close to a Weibull distribution for all LA (Fig. 5.12). ∆F , however, provides a fit

that worsens as LA is increased. The VBM shows similar results in that both methods of natural

time provide the best fit at low LA.
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5.5 Effect of Longer-Range Couplings

On large lattices, small avalanches amongst clusters of spins which are far from each other are

likely to occur in a rather independent manner. This might be problematic for periodic large-event

intervals, because avalanches which are decoupled are unlikely to provide a predictive countdown

to an above-threshold event. In order to introduce a more collective behavior of the entire cubic

lattice, we introduce long-range couplings by dividing the entire cubic lattice into randomly se-

lected pairs of sites. At the algorithmic level, this is accomplished by starting with site 0, and then

randomly selecting one of the other sites p0 of the lattice as a partner to site 0. Note that p0 is not

allowed to be one of the existing six nearest neighbor sites. After this is done, both sites 0 and p0

are eliminated as potential partners and one proceeds to site 1 (assuming p0 ̸= 1) and randomly

assigns it a partner p1. This process is continued until all sites in the cubic lattice have a seventh

neighbor. When assigned in this way, the probability of a site being part of a pair is independent of

the geometric proximity between the two sites (as long as they are not nearest neighbors). These
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longer-range neighbors are coupled by an exchange constant J ′, so that in the computation of the

local field, and hence the determination of whether to flip si, Eq. (5.4) is generalized to include pi

as part of N (i). Setting J ′ = 0 recovers the original nearest neighbor only model, and increasing

J ′ allows us, in a smooth manner, to increase the long-range interactions across the lattice. Our

model Hamiltonian thus becomes

H = −J
∑
⟨ij⟩

sisj − J ′
∑
i

siSpi −
∑
i

hisi −B
∑
i

si, (5.10)

where pi is the long-range site connected to site i. A similar procedure has previously been intro-

duced in Ref. [205] to study finite-temperature phase transitions in Ising models with long-range

interactions (which prove to be of mean-field character) and, more generally, are considered in the

context of small-world networks [206].
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Figure 5.13 shows hysteresis loops for the Hamiltonian presented in Eq. (5.10). The loops

become steeper, and the width is increased with J ′. This occurs because different lattice sites

become correlated, which causes avalanches to combine. The distribution of inter-event times ∆B

is shown in Fig. 5.14. For all J ′ values, the distribution is monotonically decreasing, and larger

J ′ values suppress the frequency of small avalanches. The pseudo-gap exponent is zero for any

strength of the long-range connections.

C(R), given by Eq. (5.9), is shown in Fig. 5.15 for different values of J ′. C(R) is non-

monotonic; the value of R for which C(R) is largest grows with the strength of the long-range

connection. The overall curve is lowered when J ′ is increased. As is to be expected, once the ratio

of R to J ′ becomes large enough that the local fields dominate the system, the curves for C(R)

collapse. The lowering of C(R) with J ′ means there are fewer small inter-event times for larger J ′

values at a given disorder R. However, despite the shift in the distribution from smaller to larger

inter-event times, P (∆B) remains monotonically decreasing. These trends are present as well in
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Fig. 5.14, where the distribution becomes visibly flatter as J ′ is increased.

In order to explain this phenomenon, consider J ′ = 0 and two avalanches that occur separately

in space and nearly simultaneously in time, i.e., at a very similar global field value B. At this

moment, the two events are uncorrelated, and they have a very small inter-event time ∆B. If long-

range connections are included, it is plausible that the two avalanches might now be correlated

and occur simultaneously as J ′ grows. The probability of small avalanches decreases and of large

ones increases, as seen in Fig. 5.16. This also implies that the frequency of small inter-event times

is reduced. The long-range correlations do not ever result in a peak of P (∆A) or P (∆F ), which

would indicate specific most probable natural time spacings, which predict when a large avalanche

would be imminent.

Although J ′ affects the quantitative value of P (∆B), as well as P (∆F ) and P (∆A), it does not

significantly change their width. In short, the conjecture that J ′ might make avalanches constant

in natural time seems to be false.
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5.6 Return Point Memory

In the study of hysteresis loops, “return point memory” is a central concept [207–209]. Instead

of driving the system to saturation, the external field B is lowered from infinity until some inter-

mediate field B0 is reached. At this point, B is raised to B1 and then lowered back to B0, which

creates an “internal” hysteresis loop. If the system exhibits return point memory (RPM), then the

state (that is, the magnetization) of the system is the same at both instances of B0.

It is natural to ask how the inter-event times along an internal hysteresis loop are distributed.

It is known that both the RFIM and the SKM exhibit RPM [200, 207]. While the distribution of

inter-event times in the SKM has been shown to be well approximated by a Weibull distribution

for sufficiently large LA (see Fig. 5.11), the RFIM inter-event times are not as well described by a

Weibull distribution (see Fig. 5.9). Therefore, we simulate the RFIM for both R = 2.3 and R = 3

on a lattice size of N = 2003 to study the inter-event times for internal hysteresis loops. This helps
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Figure 5.17: Cumulative distribution of the inter-event times for the RFIM across an internal hys-
teresis loop. The loop exhibits return point memory for R = 2.3 and N = 2003. The data are more
linear in a log-log plot for LA = 0 than LA = 2. Both ∆A and ∆F are similar to the results for
the whole hysteresis loop. Reprinted with permission from [170].

identify whether RPM can help the RFIM inter-event distributions become Weibull-like, and the

results can be directly compared to Figs. 5.8 and 5.9.

The results for internal hysteresis loops are shown in Figs. 5.17 and 5.18. The data for LA = 0

approach a Weibull distribution even though the data are not Weibull distributed for the smallest

nonzero large avalanche. While the data in a log-log plot are not exactly linear for R = 2.3, there

is still a striking difference between LA = 0 and LA = 2. A more detailed analysis of RPM is

needed to fully understand the behavior of small LA. However, we expect the same trend to occur

with alternate choices of disorder and RPM turning points. Note that ∆A and ∆F are the same as

the previous case when the system is driven to saturation (see Fig. 5.10).

95



−8

−6

−4

−2

0

2

4

−18 −15 −12 −9 −6 −3

lo
g[
−
lo
g(
1
−

f
(∆

B
))
]

log(∆B)

LA = 0

LA = 2

LA = 20

LA = 100

LA = 200
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5.7 Conclusions

We have evaluated the distribution of inter-event times of the three-dimensional random-field

Ising, Sherrington-Kirkpatrick, and Viana-Bray models. Our motivation was two-fold: First, to

extend the analytic results for this distribution—which have been obtained in one space dimen-

sion [183]— to higher space dimensions, providing complementary numerical results to the well-

studied distributions of the avalanche amplitudes. Second, to explore the idea of natural time to

study if the distribution is more sharply peaked when measured by counting the number of small

avalanches rather than the change in the field itself.

Our conclusions regarding the first point are summarized in Figs. 5.3 and 5.4, which provide

explicit forms for P (∆B) for the different models. A central feature of our results is the scaling

relation, P (N,∆B) ∼ P̃ (N∆B) obeyed by both the RFIM and VBM, whose validity we trace to

a hysteresis loop width which is nearly independent of the lattice size N (Fig. 5.5). In contrast,

the SKM hysteresis loop width changes significantly with N (Fig. 5.6), and P (N,∆B) does not
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scale. We also observe a pseudo-gap exponent θ ≈ 0, which is the same as in the one-dimensional

case [183]. By examining the dependence of the inter-event distribution on the disorder, one finds

nonmonotonic behavior where C(R) [Eq. (5.9)] peaks at ∼ 3.7, similar to the one-dimensional

case.

Regarding the second point, we have added a large avalanche threshold, similar to the large

earthquake threshold used in geophysics [199]. This leads to a distribution of inter-event times

for several methods of counting time. Counting the number of individual spin flips, counting the

small avalanches, and the original measurement in terms of the change in the magnetic field. We

see no evidence for a sharpening of the inter-event time distribution function which would be a

confirmation that large events occur at a specific ∆A or ∆F . The clock-time fit to a Weibull

distribution, however, is improved by the introduction of an event threshold LA (Fig. 5.11) in the

SKM. The distribution of the natural time ∆A can also be fitted to a Weibull distribution in the

SKM (Fig. 5.12).

Finally, we applied the same analysis to inter-event distributions for a model system with added

small-world bonds, i.e., bonds between random pairs of lattice sites. As the strength of these small-

world bonds is increased, there are fewer small inter-event times and fewer small avalanches. This

is due to the increased correlation of lattice sites. As the correlation increases, avalanches coalesce

into large avalanches, which reduces the number of small inter-event times and avalanche sizes.

In some sense, the strength of the long-range bonds could be thought of as a tuning parameter

between the distribution of avalanche sizes and inter-event times.

By adding the long-range bonds to the lattice, the inter-event distributions of large avalanches

do not change. There is one main difference when long-range bonds are added. Namely, the value

of the critical disorder increases when the strength of the long-range interactions are increased.

As long as the disorder relative to the critical region is the same, the statistics of large avalanche

inter-event times is the same for any strength of the long-range Interactions. Thus this modification

of the model to make the natural time a more effective clock is seen not to be effective.

There are several possible objectives for a quantitative evaluation of inter-event times. One
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goal is the determination of their distribution function. In such an investigation, it is possible

that alternate definitions of time, ∆B, ∆A, or ∆F in the work reported here, might lead to more

simple or well-understood distributions. We have shown that in the SKM, the use of a finite event

threshold and ∆A simplifies the nature of P (∆A) to a Weibull distribution.

A second goal concerns the prediction of the next (large) event. That requires not only finding

the distribution function but also through the use of an appropriate redefinition of time, acquiring

a distribution function that is sharply peaked, so the separation between events is known. This

is, obviously, a holy grail for earthquake prediction. We have not succeeded in finding such a

transformation for interacting spin models. Nevertheless, we suggest that further exploring the

idea within simple models might be a useful, more controllable, complement to the analysis of

observational data.
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6. OPTIMIZATION AND BENCHMARKING OF THE THERMAL CYCLING

ALGORITHM

6.1 Introduction

As we discussed in Chapter 2, many combinatorial optimization problems are considered NP-

hard, often associated with rough energy landscapes, which consist of numerous metastable states.

Therefore, heuristics based on local search such as the greedy algorithm [210] tend to perform

poorly on these types of problems as they can easily get stuck in deep local minima [211]. One

way to circumvent this difficulty is to use a Markov-chain Monte Carlo method like simulated

annealing (SA) [40], where the system is cooled down from a high temperature, enabling the

system to visit many regions of the phase space. Since SA is stochastic in nature, running many

such processes in parallel can increase the chance of arriving at the true ground state. Nevertheless,

without establishing a way for the phase space information gathered by the random walkers to be

shared, mere replication of a simulated annealing process will not yield any meaningful speedup.

Multiple Morkov-chain algorithms such as path-integral Monte Carlo (PIMC) [44–46, 48–50],

parallel tempering (PT) [37, 38] and population annealing (PA) [52, 58, 60, 61, 67] take advantage

of such “collective knowledge” to efficiently probe the solution space of a problem.

Thermal cycling algorithm (TCA) [212] is another heuristic that integrates the power of parallel

annealing processes with the utility of local search methods. The annealing part of this algorithm

ensures that the phase space can be visited egodically, whereas the local search part biases the dy-

namics toward the lower-energy states. When introduced almost twenty years ago, thermal cycling

was shown to outperform simulated annealing in solving some limited instances of the traveling

salesman problem. Despite the early indications that TCA might be a useful tool in dealing with

such hard optimization problems, it has not been widely adopted by the community. As such,

in this chapter, we reintroduce the thermal cycling algorithm and explain it in clear terms. Ad-

ditionally, we conduct a comprehensive parameter optimization of TCA using synthetic planted

problems, where we compare the performance of TCA to several modern solvers, including sim-
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ulated quantum annealing (SQA). To quantify the efficiency of the aforementioned heuristics, we

study how their time to solution (TTS) [213, 214] scales with the problem size. Our results show

that when optimized properly, TCA can indeed be a serious contender.

6.2 Thermal Cycling Algorithm

The thermal cycling algorithm works by periodic heating and cooling of an ensemble of states,

while continuously reducing the temperature. The ensemble is prepared by selecting Np lowest

energy states among N0 quenched random configurations. Starting from a relatively high tempera-

ture Ti = 1/βi, the above pool of states is annealed toward a lower temperature of Tf = 1/βf in NT

steps. At a given temperature, the states in the pool are thermalized using Ns Metropolis updates

(heating) and immediately quenched via a greedy search (cooling). If any of the resulting states

are lower in energy than the original one, it is replaced in the pool. The heating-cooling cycle is

repeated Nc times at a fixed temperature. In practice, the above process steers the ensemble toward

the low-lying states, while ensuring that metastable configurations do not hinder the dynamics.

The temperate is then slightly reduced, and the cycles start over.

A potential pitfall of the cycling mechanism is that it might cause oscillatory transitions be-

tween a handful of configurations without ever allowing the pool states to approach the ground

state. As we mentioned earlier, this problem can be alleviated by establishing an interaction be-

tween the pool states. One way to do this is to freeze the variables that are common among all of the

states. We can justify this reduction by realizing that if the pool states have a feature in common, it

is very likely that the feature will also appear in the ground state configuration. Note that this step

is closely related to metaheuristics like tabu search [215, 216], search for backbones [217–220]–

often used in genetic type algorithms–and sample persistence [221, 222] which has been used in

conjunction with algorithms such as simulated annealing as well as simulated quantum annealing.

Below we present a concise outline of the thermal cycling algorithm.
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Algorithm 2 Thermal Cycling Algorithm
1: Randomly Initialize N0 configurations of the problem.
2: Quench each of the N0 states using the greedy algorithm.
3: Construct a pool of states by selecting Np states with the lowest energy from the above

quenched states.
4: Build a list of lattice sites by comparing the spins on a given site between all pool sates. If all

aligned, add the site to the list.
5: for NT steps starting from β = 0 until β = βf do
6: for Nc cycles do
7: Pick a random state from the pool.
8: Add heat to the pool state using Ns Metropolis sweeps at

β avoiding the spins in the site list.
9: Quench the selected state.

10: if lower energy is achieved then
11: Replace the old state in the pool with the new one.
12: Rebuild the site list by comparing the spins between all pool states.
13: end if
14: end for
15: Increase β → β +∆β in which the step size ∆β is usually

constant, i.e, linear schedule.
16: end for
17: Identify the pool state with the lowest energy as the solution of the problem.

6.3 Details of Analysis

As we saw in Sec. 6.2, the thermal cycling algorithm has many tunable parameters, which

include the final inverse temperature βf , pool size Np, number of anneal steps NT, number of

cycles Nc, and finally, the number of Metropolis sweeps Ns. For benchmarking, we use synthetic

problems whose ground state is unique and known beforehand. As the measure of performance,

we use time to solution (TTS) [213, 214], which is defined in the following way:

TTS(λ) = n(λ) τrun (6.1)
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in which n(λ) is the number of times that the algorithm must be repeated for a given parameter set

λ to find the ground state at least once with a desired probability of pd, and τrun is the average run

time conventionally measured in microseconds. If we assume that the success probability, i.e., the

chance of hitting the ground state in a single run of the algorithm is ps(λ), then it is straightforward

to show from the binomial distribution that

pd =
n∑

k≥1

(
n

k

)
pks (1− ps)

n−k = 1− (1− ps)
n. (6.2)

We may now use the above expression to find n(λ) in Eq. (6.1):

n(λ) =
log[1− pd]

log[1− ps(λ)]
. (6.3)

It is customary to set the desired probability in Eq. (6.2) to a high confidence value of pd = 0.99.

Since TTS is a function of the algorithm tunables, a thorough optimization of the parameters must

be performed in order to reliably compare heuristics based on TTS. Note that the optimization is

often multidimensional that makes the benchmarking a relatively laborious task.

For each set of parameters λ and each problem instance, we repeat the runs 100 times and

calculate the success probability ps(λ) as the percentage of the ground state hits. This process

is repeated for all instances, in this case 100, to calculate the median TTS, and the error bars

are estimated using the bootstrap method. The above procedure is carried out for many other

parameter set values, and the optimal parameters are identified as the global minimum point of

the TTS function. Having calculated the optimal TTS for all problem sizes (L), we can study the

scaling behavior of an algorithm which is often a power law, i.e.,

TTSopt ∼ 10aL+b. (6.4)

The scaling exponent a determines the performance of an algorithm for realistic problem sizes,

whereas b introduces a constant offset that depends on the elements nonintrinsic to the algorithm,
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Figure 6.1: Parameter tuning for various algorithms. (a): Thermal cycling algorithm for the prob-
lem size L = 11. Solution pool size Np versus annealing steps NT, with the rest of the parameters
fixed. The color map shows the TTS values. A global minimum corresponding to the optimal pa-
rameters is clearly observed. (b): Optimization of the number of sweeps for PT+ICM for various
systems sizes. The minimum points of the TTS curves mark the optimal sweep values.

such as hardware speed, code efficiency, etc. Therefore, a relatively unbiased way to compare

different algorithms in efficiency is to study their scaling exponents.

6.4 Results

In this study, we compare TCA to simulated annealing (SA), simulated quantum annealing

(SQA), parallel tempering (PT), and parallel tempering with isoenergetic cluster moves (PT+ICM)

[57]. SQA is the classical implementation of the quantum annealing process in which the system is

initialized in the ground state of a simple Hamiltonian and adiabatically [43] deformed into a target

Hamiltonian, whose ground state is difficult to find. PT is a Monte Carlo algorithm that efficiently

samples the equilibrium configurations of a system using the replica-exchange technique. The

ICM updates–which consist of rearranging large collection of variables by inspecting the overlap

between two replicas of a system–are extremely effective for low connectivity graphs, where the

cluster percolation threshold is small.

We use the deceptive cluster loop (DCL) problems [223] for benchmarking. The DCL problems
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Table 6.1: Optimal parameters of the thermal cycling algorithm for different problem sizes L. NT

is the number of anneal steps, Np is the pool size, Nc is the number of heating-cooling cycles
per temperature, Ns is the number of Metropolis sweeps, and βf is the target inverse temperature
(lowest temperature).

L NT Np Nc Ns βf
8 100 10 100 10 0.2
9 100 10 200 10 0.2
10 100 50 300 10 0.2
11 150 50 300 10 0.25
12 150 50 300 10 0.25
13 150 50 500 10 0.25
14 200 100 500 10 0.3
15 200 100 500 10 0.3
16 200 100 500 10 0.3

are inspired by the original frustrated cluster loop (FCL) problems [224, 225] that are specially de-

signed for testing the performance of D-Wave [11] quantum annealer against classical algorithms.

The FCL’s are planted problems with ferromagnetic ground states defined on the chimera graph

[14] which consists of a two-dimensional lattice of fully-connectedK4,4 cells inside which all qbits

are coupled together ferromagnetically–the entire K4,4 unit cell can, therefore, be viewed as one

virtual qbit. The cells are then connected via randomly chosen frustrated loops. By varying the

density of the loops, the hardness of the problem can be tuned. In the DCL problems, the inter-cell

couplers are multiplied by a real number of λ. Depending on the value of λ, the internal struc-

ture of the cells can be masked or accentuated, hence deceiving the annealers to spend more time

optimizing the local structures rather than finding the global minimum.

For each studied algorithm, we optimize the parameters via a grid search within its parameter

space. In Fig. 6.1 we show some examples of such optimization. Fig. 6.1(a) shows the optimization

of sweeps for PT+ICM for various system sizes. The minimum TTS values correspond to the

optimal sweep values. Fig. 6.1(b) illustrates the parameter optimization of TCA for the system

size L = 11 in which the color map shows the TTS values in the logarithmic scale, and the axes

are pool sizeNp and the annealing stepsNT. Note that this is only a two-dimensional cross-section

of the entire parameter space on which the rest of the parameters have fixed values of Nc = 100,
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Figure 6.2: Comparison of the scaling results for the studied algorithms. (a): Time to solution
(TTS) versus the problem size L for various algorithms. Note that TTS is given in a logarithmic
scale. The sizable offsets in PT and PT+ICM are due to the use of a highly optimized code. (b):
The scaling exponent a in Eq. (6.4) for various algorithms. TCA scales much better than SA and
comparable to PT, while far worse than SQA and PT+ICM. The latter is due to the special structure
of the DCL problems that makes them well-suited for SQA and ICM updates.

Ns = 10 and βf = 0.3. Once again, we observe that there is a global minimum point marking the

optimal parameters. This optimization has been done for all other algorithms as well.

In table. 6.1, we have listed the optimal parameters of the thermal cycling algorithm for the

studied system sizes. We observe that the algorithm is less sensitive to Ns and more so to Np, Nc,

and βf . In practice, the total effort in a TCA simulation is roughly proportional to NTNpNcNs

with some additional overhead caused by the greedy search. This being said, it is unlikely that any

combination of the above parameters can be lumped together to make a reduced set of parameters.

For instance, regardless of the number of annealing steps, we must perform a sufficient number of

heat-quench cycles such that the pool states can visit many local minima. Also, during each cycle,

there must be enough Metropolis updates to stop the local search from stalling the dynamics.

In Fig. 6.2, we show the scaling results. Fig. 6.2(a) demonstrates how the performance of dif-

ferent algorithms scale with the problem size. There is a considerable offset for PT and PT+ICM,

which is due to the use of a highly optimized code. Fig. 6.2(b) shows the scaling exponent a–the

105



slope of the linear fit in Fig. 6.2(a). We see that TCA scales much better than SA in agreement with

the previous studies. Another interesting finding is that TCA scales almost as well as PT, which

has been established as a powerful heuristic in many applications. However, SQA and PT+ICM

are still far more efficient than TCA. This can be attributed to the structure of the DCL problems

that involve tall but thin barriers that can be easily tunneled through using SQA. The Isoenergetic

cluster moves are also well suited for the DCL problems as they cause large rearrangements of

the variables, resulting in long leaps across the configuration space thus, efficiently avoiding deep

metastable states.

6.5 Conclusion

In this chapter, we reintroduced the thermal cycling algorithm and comprehensively optimized

it using the deceptive cluster loop problems for benchmarking and the time to solution as the mea-

sure of performance. Our results strongly suggest that TCA can indeed be a competitive heuristic

in solving problems with complex structures, as it takes advantage of the repeated heating and cool-

ing to push the system toward the lower energy states while ensuring that it does not get trapped in

false ground states. By carefully tuning the parameters, we showed that TCA could be as effective

as state-of-the-art algorithms such as PT, while overpowering SA by a great margin. We showed

that by reducing the variables among the TCA replicas, the stochastic process could be further

accelerated, and the system could be guided more effectively toward the global minimum using

the collective memory of the solution pool.

Due to the special structure of the DCL problems, which involve tall yet narrow barriers, SQA

and PT+ICM outperform TCA as they utilize quantum effects and cluster updates to bypass those

barriers. The true advantage of TCA might be revealed when using dense graphs with broad barri-

ers, where PT+ICM and SQA would naturally struggle. TCA also lends itself to being integrated

with the ICM updates because it involves annealing many replicas of the system simultaneously.

It has been shown by Ochoa et al. [226] that a lower energy state can be generated by overlapping

two excited states via an ICM update. Therefore, one interesting addition to TCA can be trying
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to push the pool states further down in energy by performing a few ICM updates at the end of the

algorithm. We hope that we can return to this matter in the future.
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7. QUANTUM MACHINE LEARNING USING BIOLOGICAL PROBLEMS

7.1 Introduction

In recent years, there has been great interest in the utility of adiabatic quantum computing

(AQC) [8–10] for solving hard optimization problems. One of the most paradigm-shifting devel-

opments in this direction is the advent of quantum annealers, such as D-Wave processors [11–14],

which attempt to pave the way towards the ultimate quantum computers that are conjectured to

solve certain important tasks, for example, factoring of integers [7] much more efficiently than any

classical computer using quantum entanglement and tunneling. Therefore, great attention has been

paid to problems where quantum advantage can be demonstrated [214, 224, 227–233] . One of

the offshoots of this endeavor has been quantum machine learning (QML) [234–247], an effort to

use quantum architecture to carry out various artificial intelligence (AI) practices hoping to sur-

pass the performance of their classical counterparts. In a recent study by Li et al., [248], machine

learning models have been compared to the D-Wave quantum annealer using small scale biological

problems. They show that in many cases, the quantum annealer performs as well as any classical

machine learning algorithm. The goal of this study is to verify the findings of Li et al., and in

some instances, challenge their claims regarding the performance of classical solvers such as par-

allel tempering. Moreover, we will propose new ideas to examine the true quantum advantage in

machine learning applications. First, we will review some preliminary concepts, followed by a

thorough description of our analysis. Lastly, we will present the findings of this study and discuss

their relevance.

7.2 Classical Machine Learning

Machine learning (ML) is the study of statistical models and algorithms that enables computers

to carry out specific tasks without being directly programmed [249]. The term machine learning

was first coined by Arthur Samuel [250] at IBM when he first designed an algorithm for playing the

108



game of checkers. Machine learning has come a long way ever since and is an indispensable part

of many modern applications such as computer vision, speech and text recognition, social network

filtering, medical diagnosis, etc. Succinctly, the holy grail of any machine learning algorithm is

to use data in order to build an appropriate mathematical model based on which future predictions

can be made. In the first part of a machine learning application, which is referred to as “training”,

the parameters of the model are tuned by showing many examples to the algorithm such that the

model “learns” to recognize patterns, symmetries, correlations, dependencies, etc., within the data.

Once the model has been properly trained, the algorithm is ‘tested” by performing a certain opera-

tion such as classification, using unseen instances of the same type of data. The critical part of the

above process is to judiciously choose an appropriate model that can effectively capture as much

information as possible from the data. Generally speaking, machine learning algorithms fall into

one of the following main categories:

1. Supervised learning: in this type of the ML algorithms, the data consists of labeled inputs,

and the goal is to train the algorithm such that it can predict the correct labels of the future in-

stances. In other words , supervised learning is where one has input variables {X1, . . . , XN} and

the corresponding output variables {Y1, . . . , YN} and we would like to find a mapping function

Yi = fω⃗(Xi), with parameters ω⃗, that can best predict the outputs when given new input variables.

Classification and regression are types of supervised learning which are used when the output la-

bels are restricted to a limited set of value, for instance, in speech recognition or when they belong

to a continuous range such as in signal processing applications.

2. Unsupervised learning: in unsupervised learning, one has only input data {X1, . . . , XN},

and no corresponding output variables, i.e., a set of unlabeled data. The task is to identify sym-

metries, structures, or distributions within the training data and make predictions based on such

commonalities. The most important unsupervised learning algorithm is clustering. Recommender

systems, image compression, and anomaly detection (for instance, bank fraud) are some applica-

tions that use clustering.

3. Reinforcement learning: these types of algorithms are used when exact models are not avail-
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able or impractical. In other words, instead of having a cost function, the “agent” is rewarded or

punished by the environment on the fly based upon the decisions that it makes, and in this way, the

algorithm learns to make adjustments. Reinforcement algorithms are usually used in autonomous

vehicles or computer games against a human.

7.3 Quantum Machine Learning

In many of the classical machine learning applications, one deals with extremely high dimen-

sional data, i.e., many features. This type of data is represented on a classical computer as vectors

in a multidimensional space. Due to the so-called curse of dimensionality caused by the expo-

nential increase in the accessible volume, the data quickly becomes sparse. Therefore, to achieve

a reasonable statistical significance, one would need to dd more data to the model, which will

eventually result in a memory overflow. The power of quantum computers for data processing is

revealed by inspecting the generic state of a qubit which can be written as a linear combinations of

the computational basis |0⟩ and |1⟩, namely |ψ⟩ = α|0⟩ + β|1⟩ with the normalization constraint

|α|2 + |β|2 = 1. Since α, β ∈ C are continuous variables, an infinite number of states can be

encoded to a single qubit. Therefore, we are, in principle, able to map any amount of data to a

handful of qubits, which is not possible in a classical computer due to the deterministic nature of

the classical memory.

With the above opportunity in hand, the challenge is to find ways to implement conventional

machine learning algorithms such as decision trees, neural networks, and support vector machines

on a quantum computer. One way is the quantum circuit approach in which one attempts to ma-

nipulate the data using a series of quantum gates, i.e., unitary transformations similar to the ampli-

tude amplification algorithms like Grover’s search [251]. Another possibility is adiabatic quantum

machine learning in which one uses quantum annealing, as discussed in Chapter 2, in order to

adiabatically deform an initial quantum state to a desired final state. As an example, we show how

the quantum version of the k-means clustering algorithm can be constructed [240]. The goal of

k-means clustering is to separate the data points into k distinct classes in which the data points
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Figure 7.1: Classical k-means clustering algorithm. The goal is to separate the data into k (in this
case 3) distinct classes. The spatial adjacency of the points is used as the measure of affinity. (a):
k centroids are placed at arbitrary positions. The data points are assigned to k clusters according
to their Euclidean distance from the corresponding centroids. (b): The centroids are moved the the
“center of mass” of the clusters. (c): The clusters are reconstructed using the new centroids. The
processes repeats until convergence.

are clustered based on their spatial adjacency within the feature space. The algorithm, as shown in

Fig. 7.1, starts by choosing k centroids at arbitrary positions. The points are then assigned to the

closest centroid in terms of their Euclidean distance. Next, the centroids are moved to the center

of mass, i.e., v⃗c = 1
Nc

∑
j∈c
v⃗j of each formed cluster c with Nc points. The cycles repeat until no

further improvement is possible. Lloyd, Mohseni and Rebentrost [236] first proposed the quan-

tum version of the above clustering algorithm. The idea is to use quantum annealing to perform

the following adiabatic reduction:

|ϕ⟩ = 1√
k

k∑
c

|c⟩ → |ψ⟩ = 1√
N

k∑
c

∑
j∈c

|c⟩|j⟩, (7.1)

where k is the number of clusters and N is the total number data points. |ϕ⟩ and |ψ⟩ are the ground

states of the driver Hamiltonian H1 and the target Hamiltonian H0, respectively The instantaneous

Hamiltonian H(λ) = λH0 + (1− λ)H1 is parameterized by λ which increases continuously from

111



λ = 0 to λ = 1. Lloyd et al., use the following Hamiltonians:

H1 = 1− 1

k

k∑
c,c′

|c⟩⟨c′|, (7.2)

H0 = −
∑
j1...jk

k∑
l,l′

|v⃗jl − v⃗jl′ |
2|j1⟩⟨j1| ⊗ . . .⊗ |jk⟩⟨jk|, (7.3)

in which the global minimum of Eq. (7.3) is reached when the points in each cluster are closest to

one another and farthest from the points in the adjacent clusters, what a clustering algorithms is

ideally supposed to do.

7.4 Details of Analysis

In this section, we lay out the details of our analysis. We use regression, which, as we alluded

to earlier, is a supervised learning method. The machine learning studies have been implemented

in the python library, Scikit-learn [252].

7.4.1 Data Preparation

The original data is from the Gene Expression Omnibus (GEO) repository of the National

Center for Biotechnology Information (NCBI) and can be downloaded under accession number

GSE59845 from https://www.ncbi.nlm.nih.gov/geo. The data consists of three genomic-context

protein binding microarray (gcPBM) experiments [253] of human transcription factors, namely

Myc, Max, and Mad. The DNA sequences such as GAGCTCGTGAC . . . are 36bp (base pair)

long and are quantified by fluorescence intensity as a measure of binding affinity. The data is

preprocessed as follows. First, the DNA sequences are trimmed to the central L = 10bp, and the

binding values of the duplicate sequences are averaged over. Next, the sequences are transformed

into a binary format using the following representation.

(A,C,G,T) = (1000, 0100, 0010, 0001) (7.4)
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Table 7.1: An example of the DNA sequencing data after preprocessing. The sequences are cut to
central 10bp and transformed into binary.

DNA Sequnce Binary Transform Max Mad Myc
CCCACGCGTG 0100010001001000010000100100001000010010 10991 4423 4359
TCCACGCGCC 0001010001001000010000100100001001000100 8469 2920 2617
TGCATGCGGA 0001001001001000000100100100001000101000 7625 2349 2419
GCCACGCGTC 0010010001001000010000100100001000010100 9033 3550 2776
CCCACATGCA 0100010001001000010010000001001001001000 12277 4458 4534

...
...

...
...

...

Therefore, after preprocessing, we will have a data set of {(X⃗n, yn)} with n = 1, 2, . . . , N in which

X⃗n is a binary array and yn is the corresponding binding value. Table. 7.1 shows an example of

such a data set. Now we split the preprocessed data into training set Dtrain with 90% of the original

data and the test set Dtest with the remaining 10%.

D =
{
(X⃗1, y1), (X⃗2, y2), (X⃗3, y4), . . .︸ ︷︷ ︸

Dtrain

, (X⃗N−1, yN−1), (X⃗N , yN)
}

︸ ︷︷ ︸
Dtest

. (7.5)

7.4.2 Cost Function

Assuming a linear model fω⃗ : X⃗ → X⃗.ω⃗ + ω0 the cost function can simply be the sum of

squares with a regularization term.

E =
M∑
n=1

(
yn − X⃗n.ω⃗ + ω0

)2
+ λ||ω⃗||qp, (7.6)

where M is the number of sequences picked from the total of N available sequences. The last term

in Eq. (7.6) is a penalty term that prevents overfitting or underfitting where ||ω⃗||qp =
(

N∑
i=1

|ωi|p
)q/p

.

The integers p and q are chosen based on the estimator used. The weights ω⃗ and the intercept term

ω0 must be determined such that the cost function is minimized. It is straightforward to find ω0
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first.

∂E

∂ω0

= 0 ⇒ ω0 =
1

M

M∑
n=1

yn −
1

M

M∑
n=1

X⃗n.ω⃗ = ȳ − ¯⃗
X.ω. (7.7)

Substituting Eq. (7.7) in Eq. (7.6) we arrive at the normalized cost function.

E =
M∑
n=1

[
(yn − ȳ)−

(
X⃗n −

¯⃗
X
)
.ω⃗
]2

+ λ||ω⃗||qp. (7.8)

We use continuous estimators such as Ridge regression and LASSO (least absolute shrinkage and

selection operator) in which the weights are real valued. Ridge and LASSO regressions are L2 and

L1, respectively meaning that

ERidge =
M∑
n=1

[
(yn − ȳ)−

(
X⃗n −

¯⃗
X
)
.ω⃗
]2

+ λ||ω⃗||22, (7.9)

ELASSO =
M∑
n=1

[
(yn − ȳ)−

(
X⃗n −

¯⃗
X
)
.ω⃗
]2

+ λ||ω⃗||1. (7.10)

We also use discrete solvers such as SA, SQA, PT, and PT+ICM where binary weights are assumed.

In this case, we may further transform the cost function into QUBO form:

E =
4L∑
i=1

4L∑
j=1

Jijωiωj +
4L∑
i=1

hiωi + E0, (7.11)

where the bonds Jij , the external fields hi and the constant offsetE0 have the following definitions.

Jij =
M∑
n=1

(
Xn,i − X̄i

) (
Xn,j − X̄j

)
,

hi = λ− 2
M∑
n=1

(yn − ȳ)
(
Xn,i − X̄i

)
,

E0 =
M∑
n=1

(yn − ȳ)2 . (7.12)
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Figure 7.2: Learning curves for the estimator LASSO. The AUPRC scoring is used for classifica-
tion. The shaded envelopes show the standard deviation. As more training data is used, the model
can not fit all the points perfectly; therefore, the training error increases. On the other hand, the
validation error decreases because the variation in features of the training and validation sets be-
comes smaller. The curves converge to a small error value meaning that the bias (underfitting) is
small. Also, the gap between the curves tends to close, suggesting small variance (overfitting).

By choosing M sequences randomly form the available N sequences, an instance is constructed

according to Eq. (7.12) . Note that when binary weights are used, the range of the linear model is

bounded by the length of the DNA sequences L. Therefore, the binding values must be normalized

in the following way:

yn → yn ×
L

ymax

. (7.13)

7.5 Learning Process

Here, we will go over the learning process; first, we determine the regularization parameter via

cross-validation, then we train the model over 50 randomly constructed instances, and finally, for

each of those instances, we make predictions using the test data set.
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Figure 7.3: The procedure of determining the regularization parameter λ by 100-fold Mote-Carlo
cross validation. For each fold, p% of Dtrain is selected randomly as the training and validation
data. At a given value of λ, the average score over all 100 folds is calculated. The optimal value
of the regularization parameter λ∗ will then correspond to the maximum score.

7.5.1 Calibration

As we mentioned earlier, the regularization parameter λ in Eq. (7.8) is introduced to prevent

the model from overfitting or underfitting the data. This is essentially done in order to control

the complexity of the model. If the model is too simplistic, it can merely capture the features or

patterns within the data partially. In this case, the model will be biased, and thus both training and

validation scores will suffer as more training samples are used. On the other hand, if the model is

too complex, it will seemingly fit the training data well, but in reality, it will be obscured by the

noise. As a result, the model will perform poorly when presented with new data during validation.

In Fig. 7.2, we show an example of the learning curves for LASSO. As we can see, the learning

and validation curves converge to a low error value showing that the model complexity is optimal.

To determine the regularization parameter λ, we use 100-fold Monte-Carlo cross-validation.

For each fold the model is trained on randomly chosen p% (p = 2, 5, 10, . . .) of the training set

and validated on another p%. In other words, M = p
100

× |Dtrain| in Eqs. (7.8) and (7.12). Each

fold gives a score (AUPRC or Kendall’s τ ), and the overall score is the average of all 100 folds.

This process is repeated for various values of λ. The value with the highest score is chosen as the

optimal. The schematic diagram in Fig. 7.5.1 shows the above calibration procedure.
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Figure 7.4: Schematic process of training and testing. Multiple instances are prepared from the
training data set at random. The resulting ground state weights are used to obtain the prediction
binding values y⃗ pred given the test sequences {X⃗ test}. Finally, the test scores are obtained by
comparing the predictions to the true binding values of the test set.

7.5.2 Evaluation

Having determined the optimal value of the regularization parameter, we now evaluate the

predicting performance of the model against the test data set Dtest, which has not been seen before.

To do the training, we split the training set 50 times with random chunks of size p
100

×|Dtrain| where

p = 2, 5, 10, . . .. For each resulting instance, the cost function is minimized to give the ground state

weights ω⃗∗. Next, the resulting ground state weights ω⃗∗ and the test sequences {X⃗ test} are used in

the linear model to predict the binding affinity values y⃗ pred. Lastly, the predictions are compared

to the true values y⃗ test using the scoring scheme (AUPRC or Kendall’s τ in this case) to yield

the test scores. One may now gain statistical insights into the predictive power of the model by

calculating the mean and the standard deviation of the test scores. The above procedure is shown

schematically in Fig. 7.4

7.5.3 Scoring

Two scoring schemes are used in this study: area under precision and recall curve (AUPRC)

and Kendall’s rank coefficient.

1. AUPRC: This is a classification score. Precision-Recall is a useful measure of success

of prediction when the classes are very imbalanced. Precision (P ) which is a measure of result
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Figure 7.5: Schematic diagram showing precision and recall.

relevancy is defined as the number of true positives (TP ) over the number of true positives plus the

number of false positives (FP ).

P =
TP

TP + FP

. (7.14)

Recall (R), on the other hand, is a measure of how many truly relevant results are returned and is

defined as the number of true positives (TP ) over the number of true positives plus the number of

false negatives (FN ).

R =
TP

TP + FN

. (7.15)

In Fig. 7.5 we have shown the above definitions in a schematic way. For binary classification,

we label the binding values in the test set as 0 or 1 according to the following criterion.

ỹ test
n =

 0 if y test
n < θ,

1 if y test
n ≥ θ

n = 1, 2, . . . , |Dtest|, (7.16)

118



in which θ is the binary classification threshold. Given the predictions ypredn = fω⃗∗(X⃗ test
n ) corre-

sponding to the ground state weights ω⃗∗ calculated in the training phase, one may perform a binary

classification similar to Eq. (7.16).

ỹ pred
n =

 0 if y pred
n < c,

1 if y pred
n ≥ c

n = 1, 2, . . . , |Dtest|. (7.17)

We may now construct the set
{
(ỹ pred

n , ỹ test
n )

}
and calculate precision and recall according to

Eq. (7.14) and Eq. (7.15). By varying the threshold c in Eq. (7.17) we obtain a set of points

{(R,P )} which are then used to form the precision-recall curve. The area under this curve will

give he AUPRC score.

2. Kendall’s τ : Kendall’s rank correlation coefficient, commonly referred to as Kendall’s τ

coefficient, is a statistic used to measure the ordinal association between two measured random

quantities. Let (p1, q1), (p2, q2), . . . , (pM , qM) be a set of M observations of the joint random

variables P and Q respectively, such that {pi} and {qi} are unique. Any pair of observations

(pi, qi) and (pj, qj) where i < j, are said to be concordant if both pi > pj and qi > qj or if both

pi < pj and qi < qj . More precisely, if the sort order by p and by q agree. They are said to be

discordant if pi > pj and qi < qj or if pi < pj and qi > qj . The Kendall’s τ coefficient is then

defined as following.

τ =
(number of concordat pairs)− (number of discordant pairs)

M(M − 1)/2
. (7.18)

Here we use Eq. (7.18) to calculate the Kendall’s rank coefficient for the set {(ypredn , ytestn )} in

which ypredn = fω⃗∗(X⃗ test
n ) for a given ground state solution ω⃗∗ obtained in the training phase.

7.6 Results

In this study, we have investigated the performance of different solvers for various training

data sizes. As shown in Fig. 7.6(a), discrete solvers such as SA and PT perform equally well and
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Figure 7.6: Classification performance of the classical and quantum-inspired estimators. (a):
Kendall’s τ coefficient versus training data size for different solvers. Discrete solvers perform
the best for the training data size of 10%. (b): Kendall’s τ coefficient for different solvers with a
training data size of 10%. All discrete solvers perform similarly and better than continuous ones.
(c): Kendall’s τ coefficient versus weight precision. Increasing weight precision shows marginal
improvement. (d): Kendall’s τ coefficient versus the transverse field Γ of the spin-vector Monte
Carlo for different training sizes. There is a region where the prediction score is greatest, showing
that soft weights are better than hard ones.

better than continuous solvers, for instance, Ridge regression when the training data size is around

10%, as demonstrated more clearly in Fig. 7.6(b). We have also studied the effect of increasing the

precision of the weights, which according to Fig. 7.6(c), yields no discernible improvement. We

can explain this by noting that spin Hamiltonians such as Eq. (7.11) are always minimized by hard
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spins. Additionally, we have used the spin-vector Monte Carlo (SVMC) as a solver in the learning

process. As we described in Chapter 2, in SVMC the weights are represented as a spin-vector, that

is ω⃗i = SO(d, R) with d ≥ 2. In two dimensions, the Hamiltonian simplifies to

HSVMC =
N∑

i, j=1

Jij cos θi cos θj +
N∑
i=1

hi cos θi + Γ
N∑
i=1

sin θi, (7.19)

in which the transverse field Γ determines the “softness” of the weights. When Γ = 0, the wights

simply take values of {0, 1} which means that HSVMC reduces to (7.11) with hard spins. When

Γ ̸= 0, the weights are soft, allowing for a better exploration of the energy landscape. As we

see in Fig. 7.6(d), the optimal prediction score happens for a non-zero transverse field, showing

that soft spins are favorable. In Ref. [248], it is argued that using the states produced by D-Wave,

one finds prediction scores comparable to those of the classical solvers. However, we contend that

since these states are taken at the end of the annealing when the system has settled in the ground

state of the classical Hamiltonian, the spins are necessarily hard, which is in contradiction with

our finding here. We showed in Chapter 2 that SVMC is the semiclassical approximation to a full

quantum Hamiltonian where entanglement effects are ignored. This indicates that the introduction

of some quantum fluctuations can indeed boost the performance, which can be a potential avenue

to demonstrate quantum advantage. Based on our SVMC results, we suggest that sampling must

be done during the quantum annealing process when quantum effects are still present.

7.7 Conclusion

In this study, we investigated have investigated the performance of classical as well as quantum-

inspired solvers in machine learning applications. We use simple biological data consisting of

DNA sequences of the human genome characterized by fluorescence intensity values. The machine

learning process was comprised of binary classification using various estimators, including Ridge

and LASSO regression, as well as discrete solvers such as SA, PT, and SQA. Our findings show

that the latter can indeed perform as well as if not better than conventional estimators like Ridge
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regression. This can be understood by noting that regression-based estimators often use stochastic

gradient descent methods for the optimization, which can become trapped in metastable states if

the problem has a rugged energy landscape. This is especially the case for intermediate training

data sizes of 10%− 20%, where the constructed instances are sufficiently hard to solve.

Another striking finding that we presented here was the improvement in performance using

spin-vector Monte Carlo (SVMC). We showed that the best prediction score is obtained for a

non-zero value of the transverse field, which shows that soft variables are more favorable. Since

SVMC inherits some quantum properties from the parent transverse Ising spin glass Hamiltonian,

we conclude that the learning process might, in fact, benefit from quantum fluctuations. The new

D-Wave processor has some novel features that allow the user to prematurely quench the anneal

and immediately carry out a readout. Therefore, in light of our SVMC findings here, we propose

that unlike the previous studies where sampling was done at the end of the anneal when the states

are essentially classical, one should instead use the above quench capabilities to sample from the

intermediate quantum states. We intend to do this experiment in the near future.
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8. SUMMARY AND CONCLUSIONS

8.1 Summary

This dissertation was dedicated to studying the quadratic unconstrained binary optimization

(QUBO) problems that have numerous scientific and industrial applications from finance and traf-

fic routing to drug discovery and artificial intelligence. Many of these problems are considered

computationally hard, often getting exponentially more difficult as the problem size grows. There-

fore, there is a great demand for heuristics that can solve such problems efficiently. In this work,

we have tried to design and optimize new algorithms alongside investigating novel cases of QUBO

problems. In chapter 2, we introduced the basic concepts necessary for this study, including com-

plexity, spin glasses, as well as various Monte Carlo techniques. The knowledge of spin-glass

physics is instrumental in studying hard QUBO problems since many such problems can be for-

mulated as a spin-glass Hamiltonian. Spin glasses have been scrutinized for over half a century,

producing valuable insight into the underlying structure of these deceptively simple yet profoundly

rich physical systems. We now know that competing interaction and frustration endow spin glasses

with enormously complex energy landscapes thronged with metastable states. Local search heuris-

tics, therefore, tend to spend a considerable amount of time wandering around this maze, rarely

ever succeeding in reaching the global minimum.

As we discussed above, it is imperative for any effective QUBO algorithm to explore the

phase space of these problems in a rather intelligent fashion. Population Annealing Monte Carlo

(PAMC), which we studied in Chapter 3, is an example of such algorithms in which an ensemble

of system replicas randomly and simultaneously visit different regions of the phase space, this way

increasing the likelihood of finding the true ground state. The crucial part of this algorithm comes

when the replicas are resampled according to their relative Boltzmann weight that favors the repli-

cas with lower energy states. This ensures that the average energy of the population is constantly

reduced, hence the replicas are collectively guided toward the low-lying states. We performed a

fairly comprehensive optimization of the PAMC parameters, where we showed that the annealing
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schedule equally linear in temperature T and inverse temperature β works better than all other

schedules. We also showed that considerable speedup could be obtained by dynamically reducing

the population size during the annealing process. Moreover, we developed a massively parallel

implementation of population annealing, which proved to be highly nontrivial due to continual

communication between the replicas. PAMC, in the fully optimized form that we constructed

here, can be a powerful tool in not only solving difficult QUBO problems but also in large-scale

simulations of physical systems.

In Chapter 4, we used the optimized population annealing algorithm that was developed in

the previous chapter to study an instance of QUBO problems, namely, the three dimensional elec-

tron glass, also known as the Coulomb glass (CG) model that is a concept of great interest to

condensed matter physics because despite its utter simplicity, elegantly describes many physical

properties of systems with quenched disorder. We conducted a comprehensive numerical study

of the phase diagram of the CG model. By careful equilibration of the system, we were able to

access unprecedented low temperatures, where we demonstrated the existence of a glass phase

that was long predicted by the mean-field calculations and observed by numerous experiments yet

elusive to numerical studies for many years. Using the four-replica formulation of the spin-glass

correlation length as well as novel finite-size scaling analysis techniques, we were able to pinpoint

the position of the critical temperature and estimate the critical exponents along the glass phase

boundary. Consistent with the previous studies, we also found a charge-ordered (CO) phase in

which electrons and holes form a regular antiferromagnetic lattice. This work was significant in

the sense that it will settle a long-standing disagreement between the analytical, experimental, and

numerical studies.

Next in Chapter 5, we investigated another interesting application of QUBO pertinent to an

important problem in seismology, namely, earthquake prediction. By studying the distribution of

spin-avalanche sizes in systems with quenched disorder, we showed that one could establish the

concept of natural time in such disordered systems similar to that in seismic events. Due to the

shortage of accurate measurements, the numerical study of earthquakes is not always possible.
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The findings of this work present an alternative way to gain physical insight into the underlying

mechanism of earthquakes.

In Chapter 6, we introduced and optimized an algorithm called thermal cycling, which uses re-

peated heating and cooling of a system to efficiently probe the energy landscape of an optimization

problem. We conducted careful benchmarking of this algorithm against state-of-the-art solvers us-

ing the deceptive cluster loop (DCL) problems that are specially designed to test the performance

of quantum annealers by misleading the classical solvers into metastable states. Our results show

that thermal cycling overpowers simulated annealing and performs as well as parallel tempering,

proving that it can be a competitive tool in solving hard QUBO problems.

Finally in Chapter 7, we studied another novel application of QUBO, i.e., quantum machine

learning (QML). QML is an effort to process data faster and find nontrivial patters in it using

the power of quantum architecture such as quantum annealers as a potential path to demonstrate

quantum advantage. We used biological samples obtained from the human genome experiment

and employed classical solvers such as SA and PT, as well as quantum-inspired algorithms such

as SQA in the learning process. Our results show that these algorithms, indeed, perform better

than conventional machine learning heuristics, for example Ridge regression, for binary classifi-

cation. We also used spin vector Monte Carlo (SVMC) in this study, where we showed that the

optimal prediction performance occurred for a finite value of the transverse field, meaning that soft

variables are more favorable. Since SVMC is the semi-classical approximation of a full quantum

Hamiltonian, we propose that it is likely that quantum advantage can be achieved if one samples

form the true quantum states of a quantum annealer by quenching the anneal, a feature which is

currently feasible on the D-Wave processors.

8.2 Impacts and Applications

In this work, we illustrated the broad utility of quadratic optimization; from electron glasses to

quantum machine learning. The algorithms that we developed, such as population annealing and

thermal cycling, are highly competitive implements not only in solving NP-hard problems with
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industry-wide applications but also for numerical simulations in scientific endeavors. By study-

ing the CG model, we numerically showed that glassy properties emerge in strongly interacting

electronic systems with a quenched disorder, which can be realized as doped semiconductors with

many technological applications. Studying spin avalanche distributions in spin glasses yielded a

striking correspondence to the concept of natural time commonly used in geological sciences as

a potential criterion for predicting large seismic events. The work on quantum machine learning

showed that QUBO solvers, such as the ones we developed here, can, in fact, be used to great

effect in artificial intelligence as they are less susceptible to break down when the problem has

an extremely complex structure. We also suggested a potential avenue to demonstrate quantum

advantage–a matter of strategic interest to industry leaders as well as great curiosity to the scien-

tific community–by using the intermediate states of a quantum annealer.

8.3 Future Directions

Our work on the Coulomb glass model was focused on three space dimensions in which the key

to the emergence of a glass phase, as opposed to the random field Ising model, was the presence of

long-range interactions and charge conservation. These constraints can also be applied to planar

charges, where the Coulomb inverse square law is still valid. It would be interesting to see whether

or not our findings can be extended to this case. We studied the thermal cycling algorithm using

the DCL problems with thin and tall energy barriers, where, as we showed, SQA and PT+ICM

were far more superior. Alternatively, one can use other problems such as four-dimensional spin-

glass instances, where the above algorithms struggle due to the increased barrier widths and cluster

percolation, respectively. With a benchmarking similar to what we did in this work, we propose

to investigate the scaling of the thermal cycling algorithm using the new problem set. As we

suggested in the last chapter, our SVMC results indicate that one might be able to observe improved

performance by implementing machine learning algorithms using the quench feature of the D-

wave quantum annealer. We plan to visit this conjecture in the near future. Should this prove to be

correct, a strong argument can be put forth for a verifiable case of quantum advantage.
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