# **Carters Creek Total Maximum Daily Load Implementation Project**

## **Intensive Water Quality Monitoring Report: Task 7**

Texas Water Resources Institute TR-486 January 2016





Lucas Gregory, Jason Murray, Cassian Schulz

# Carters Creek Total Maximum Daily Load Implementation Project

**Intensive Water Quality Monitoring Report: Task 7** 

Project Funded by: Texas Commission on Environmental Quality: Award: 582-13-30059

Cooperating Entities: Texas A&M AgriLife Research, Texas Water Resources Institute Texas A&M AgriLife Research, Department of Soil and Crop Sciences City of Bryan City of College Station Brazos County Health Department Brazos County Road and Bridge Department Texas A&M University - Environmental Health and Safety Texas Department of Transportation – Bryan District

> Prepared by: Lucas Gregory, Jason Murray, Cassian Schulz

## Texas Water Resources Institute Technical Report TR-486 January 2016

Funding support for this project was provided in part through a Clean Water Act §319(h) Nonpoint Source Grant from the Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency

## **Table of Contents**

| Intensive Water Quality Monitoring Report: Task 7                                     |
|---------------------------------------------------------------------------------------|
| List of Figuresii                                                                     |
| List of Tablesiii                                                                     |
| List of Acronymsiv                                                                    |
| Project Background 1                                                                  |
| Introduction                                                                          |
| Data Collection2                                                                      |
| Data Management3                                                                      |
| Exploratory Bacteria Loading Area Sampling                                            |
| Tributary Monitoring3                                                                 |
| Tributary Monitoring Assessment6                                                      |
| Investigative Sampling9                                                               |
| Data Analysis                                                                         |
| Discussion                                                                            |
| Appendix A: Bee Creek Sampling Sites and Results                                      |
| Appendix B: Burton Creek Sampling Sites and Results                                   |
| Appendix C: Carters Creek Tributary 15 Site Maps and Results                          |
| Appendix D: Carters Creek Tributary 17 Site Maps and Results                          |
| Appendix E: Hudson Creek Site Maps and Results                                        |
| Appendix F: Wolf Pen Creek Site Maps and Results                                      |
| Appendix G: Scatter Plots and Correlations of <i>E. coli</i> and Specific Conductance |
| Appendix H: Scatter Plots and Correlations of <i>E. coli</i> and Water Temperature    |

## List of Figures

| Figure 1. Targeted watersheds for intensive sampling                                                                                               | 4    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 2: <i>E. coli</i> concentrations by waterbody during July 2015 intensive sampling event                                                     | 8    |
| Figure 3: <i>E. coli</i> concentrations observed in Bee Creek and its tributaries during the second round of intensive sampling                    | 11   |
| Figure 4: <i>E. coli</i> concentrations observed in Burton and Wolf Pen Creeks and their tributaries during the second round of intensive sampling | . 12 |
| Figure 5. Section of Bee Creek from BeC14 through BeC11                                                                                            | . 15 |
| Figure 6. Bee Creek stream segment from BeC6d through BeC5                                                                                         | . 16 |
| Figure 8. Bee Creek intensive sampling sites for round 1                                                                                           | . 18 |
| Figure 9. Bee Creek intensive sampling sites for round 2                                                                                           | . 19 |
| Figure 10. Burton Creek intensive sampling sites for round 1                                                                                       | . 21 |
| Figure 11. Burton Creek intensive sampling sites for round 2                                                                                       | .22  |
| Figure 12. Carters Creek Tributary 15 intensive sampling sites for round 1                                                                         | .24  |
| Figure 13. Carters Creek Tributary 17 intensive sampling sites for round 1                                                                         | . 25 |
| Figure 14. Hudson Creek intensive sampling sites for round 1                                                                                       | .26  |
| Figure 15. Wolf Pen Creek intensive sampling sites for round 1                                                                                     | . 27 |
| Figure 16. Wolf Pen Creek intensive sampling sites for round 2                                                                                     | .28  |

## **List of Tables**

| Table 1. Site descriptions for Round 1 of sampling5                                                             | )      |
|-----------------------------------------------------------------------------------------------------------------|--------|
| Fable 2. Summary statistics for rates of increase and decrease between sites on the samestream during Round 1.7 |        |
| ۲able 3: Site descriptions for Round 2 of sampling۹                                                             | )      |
| Table 4: Correlations and relationships between <i>E. coli</i> , specific conductance, and watertemperature     |        |
| Table 5. Recommended inspection areas in the watershed       17                                                 | 1      |
| Гable 6. Bee Creek <i>E. coli</i> results20                                                                     | )      |
| Table 7. Burton Creek E. coli results                                                                           | }      |
| Table 8. Carters Creek Tributary 15 E. coli results    24                                                       | ł      |
| Table 9. Carters Creek Tributary 17 E. coli results    25                                                       | ;<br>; |
| Table 10. Hudson Creek <i>E. coli</i> results26                                                                 | ;      |
| Гable 11. Wolf Pen Creek <i>E. coli</i> results28                                                               | 3      |

## List of Acronyms

| CFU    | Colony forming units                      |
|--------|-------------------------------------------|
| COCS   | City of College Station                   |
| COB    | City of Bryan                             |
| GIS    | Geographic Information System             |
| I-Plan | Implementation plan                       |
| QAPP   | Quality Assurance Protection Plan         |
| SAML   | Soil and Aquatic Microbiology Lab         |
| SCSC   | Soil and Crop Sciences Department         |
| TAMU   | Texas A&M University                      |
| TCEQ   | Texas Commission on Environmental Quality |
| TMDL   | Total maximum daily load                  |
| TWRI   | Texas Water Resources Institute           |
| USEPA  | U.S. Environmental Protection Agency      |

## **Project Background**

All states are required to identify waters that either do not meet or are not expected to meet water quality standards. After identifying these waters the state must develop a Total Maximum Daily Load (TMDL) for each pollutant that impairs the uses of the water body. In Texas, the responsibility of ensuring TMDLs are developed is tasked to the Texas Commission on Environmental Quality (TCEQ).

In 2007, TCEQ's TMDL Team began the process of developing a TMDL and a TMDL Implementation Plan (I-Plan) for the Carters Creek watershed. Watershed stakeholders were engaged in the process to develop recommendations for management measures needed to restore water quality in the Carters Creek watershed. Through discussions with stakeholders, a recurring need expressed was for an improved understanding of the current state of the waterbodies through a watershed source survey and a monitoring effort that provides a spatially and temporally robust evaluation of water quality in Carters Creek and its tributaries.

This project was developed to fill that need through enhanced water quality monitoring and a watershed source survey. Specific project goals are to:

- 1. conduct extensive water quality monitoring throughout the watershed on a spatial and temporal scale that will provide additional data to identify sub-watersheds where bacteria and other pollutant contributions are problematic
- 2. conduct a multi-faceted watershed source survey utilizing geo-referenced field observations, and geographic information system (GIS) to identify potential sources of bacteria and other pollutant loading in the watershed
- 3. document watershed source survey results using GIS so that information can be integrated with available digital data on existing nonpoint and point source pollutants in the watershed
- 4. organize and establish a volunteer monitoring group through the Texas Stream Team program as a means to provide supplemental water quality data that will help local watershed managers further refine their knowledge of the spatial and temporal distribution of instream water quality variability

Throughout the course of the project, the need for a more spatially refined evaluation of *E. coli* concentrations across the watershed arose. Working with the City of Bryan (COB) and the City of College Station (COCS), a plan to intensively sample selected tributaries of Carters Creek was developed to identify reaches along the stream where *E. coli* contributions were considerably higher than surrounding areas and further investigate those areas.

This report focuses specifically on the outcomes of this effort - Task 7: Exploratory Loading Area Sampling.

## Introduction

Developing a clearer understanding of the spatial and temporal variability in *E. coli* concentrations monitored throughout the watershed and establishing a clear baseline of current *E. coli* loads at a sub-watershed scale were the goals for monitoring conducted through the project. Initially, these goals were to be achieved through routine monitoring (scheduled on a routine frequency) conducted at 13 locations across the watershed. This monitoring was carried monthly for two years and was completed in February 2015. While this approach provides valuable information, it did not provide the level of spatial detail needed to identify critical areas in the watershed where *E. coli* loading is more problematic than others.

After discussing initial monitoring findings with watershed stakeholders, an additional monitoring approach that utilized intensive sampling in selected areas of the watershed was developed. Tributaries of Carters and Burton Creeks that were commonly found to have the highest *E.coli* levels in the watershed or where no prior information had been collected were selected for this intensive sampling. The approach utilized a one-time sampling regime where numerous samples were taken along the stream on the same date to roughly identify potential problem areas within the stream. Following the initial sampling, the data were reviewed to further refine the understanding of *E. coli* loading areas across the watershed. Stream reaches found to have rapid increases in *E. coli* numbers were then sampled with a second intensive sampling event to further refine understanding of water quality within that reach.

### **Data Collection**

Data collection and sample analysis was conducted in accordance with the project Quality Assurance Protection Plan (QAPP) and TCEQ's most recently published *Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods.* These documents describe proper sampling locations within the stream, sample labeling, sample collection techniques, sample handling and transport techniques that were utilized by the sampling team. Briefly, the sampling approach was as follows:

- label sample container with date, time, location, sampler initials, preservative use prior to sample collection
- record temperature, pH, dissolved oxygen, and specific conductance from the centroid of flow
- collect *E. coli* sample from the centroid of flow (typically mid-point of the stream half way into the water column in the sampled creeks)
- place collected *E. coli* sample in a cooler on ice for storage until delivery to the lab
- record observational information on field data sheets including sampling depth, flow severity, present weather, water conditions, water color and clarity, water

odor, algae presence, condition of the water surface and notes on other observations

Water samples from each creek or segments within a creek were collected incrementally and delivered to Soil and Aquatic Microbiology Lab (SAML) at Texas A&M University within the 6 hour "regulatory" holding time for bacteria enumeration utilizing the USEPA 1603 method. In most cases, the time between sampling and delivery to the lab was 4 hours or less. Specific conductance, water temperature, pH, and dissolved oxygen was recorded in the field with a YSI EXO1 multi probe using the approach outlined in methods outlined in TCEQ's *Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods*.

## Data Management

Data collected through this intensive monitoring task was recorded in the field using automated instruments and personnel observations. Water quality readings collected using the YSI EXO1 multi probe were stored on the device and recorded on paper field data sheets. Data sheets also included the observations and notes mentioned previously in the Data Collection and Analysis section. Following sampling events, original data were inputted into a Microsoft Excel spreadsheet for easy access, interpretation and later sharing.

Once in electronic form, data were manually formatted by TWRI staff into the appropriate file types and structures for delivery to TCEQ and inclusion in their Surface Water Quality Management Information System. Data were uploaded to their database and attached to existing monitoring events in the Carters and Burton Creek watershed for future availability. These data were collected for a special monitoring project and will not be utilized by TCEQ for future water body assessment purposes. Instead, they will be utilized by local watershed managers for directing infrastructure inspections and repairs.

## **Exploratory Bacteria Loading Area Sampling**

## **Tributary Monitoring**

Texas Water Resources Institute (TWRI) cooperated with COB and COCS to plan targeted monitoring on 6 tributaries of Carters Creek. Initially, 69 sites were planned for monitoring (Table 1); however lack of access or lack of water prevented sampling at 5 of these sites. The tributaries sampled are illustrated in Figure 1 and maps provided in Appendix A illustrate the sites sampled.

Creeks were sampled by TWRI and Texas A&M University (TAMU) Soil and Crop Sciences (SCSC) Department staff. Sampling on each creek was conducted independently of each other; however, all samples collected within a particular stream were collected on the same day in a downstream to upstream order. The number of sampling sites was maximized for each waterbody but the ability to sample depended on ambient flow conditions on the sampling day. Of the 5 sites that were not sampled, 4 were due to unsafe conditions and 1 was due to no water being present in the stream.

Before sampling, all sites were surveyed for conditions and safety of sampling. Some sites were not sampled during the actual sampling event due to changes in conditions that resulted in unsafe sampling conditions or lack of water. The initial site surveys were conducted after an extensive period of heavy rainfall in the area that resulted in the sites predominantly having what was considered high flow conditions. Between the time site surveys were conducted and the first round of sampling, vegetation around the streams grew rapidly and flow conditions considerably decreased at many of the sites. During the initial Tributary Monitoring campaign conducted July 6, 7 and 8, 2015, 10 of the sampled sites had low flow, 9 had no apparent flow, and the rest had normal flow.

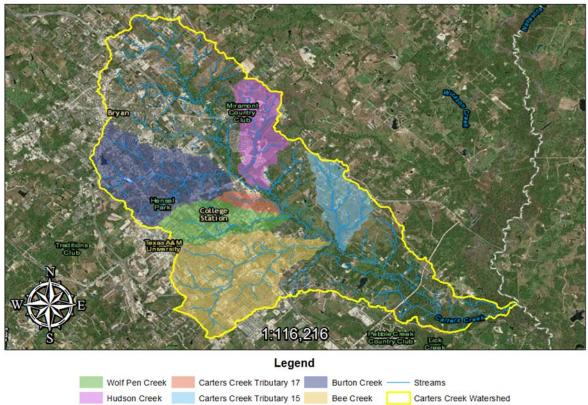





Figure 1. Targeted watersheds for intensive sampling

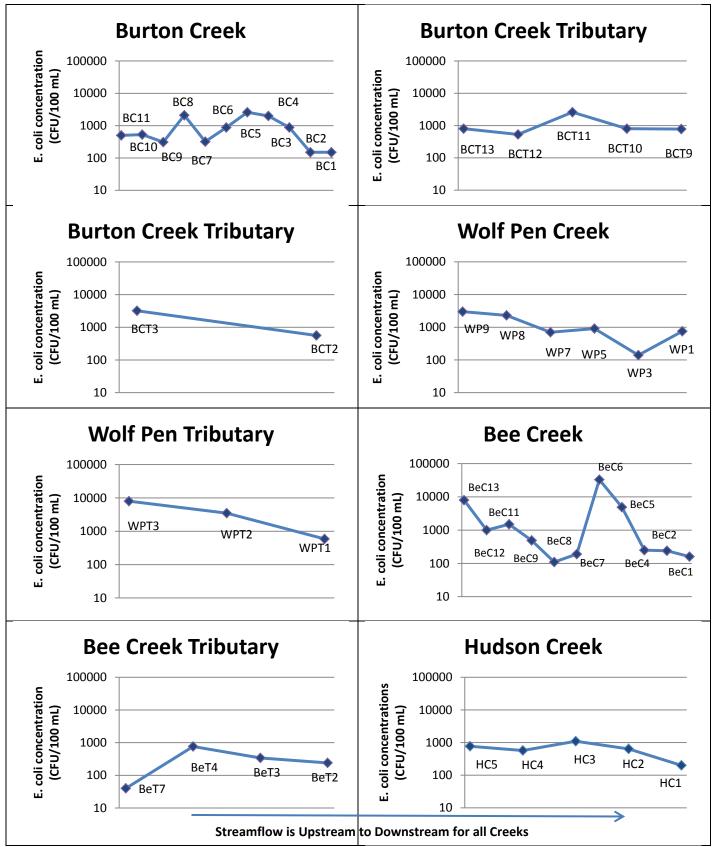
| Site_ID | Description of Location                                                 |
|---------|-------------------------------------------------------------------------|
| BC1     | Burton Creek upstream of E 29th St                                      |
| BC2     | Burton Creek downstream of N Rosemary                                   |
| BC3     | Burton Creek downstream of confluence with Burton Creek Tributary 3     |
| BC4     | Burton Creek downstream of Tanglewood Park                              |
| BC5     | Burton Creek at start of Tanglewood Park                                |
| BC6     | Burton Creek downstream side of Broadmoor Dr                            |
| BC7     | Burton Creek at confluence with Burton Creek Tributary D                |
| BC8     | Burton Creek upstream of E Villa Maria                                  |
| BC9     | Burton Creek @ Burton Dr                                                |
| BC10    | Burton Creek @ Esther                                                   |
| BC11    | Burton Creek @ Avondale Ave                                             |
| BCT1    | Unnamed Burton Creek Tributary upstream of confluence with Burton Creek |
| BCT2    | Burton Creek Tributary 1 downstream of University Park                  |
| BCT3    | Burton Creek Tributary 1 upstream of University Park                    |
| BCT4    | Burton Creek Tributary 2.1 upstream of confluence with Tributary 2      |
| BCT5    | Burton Creek Tributary 2 upstream of confluence with Tributary 2.1      |
| BCT6    | Burton Creek Tributary C @ confluence with Burton Creek                 |
| BCT7    | Burton Creek Tributary C @ Hensel Park                                  |
| BCT8    | Burton Creek Tributary 5 @ confluence with Burton Creek                 |
| BCT9    | Burton Creek Tributary C downstream of HEB shopping center              |
| BCT10   | Burton Creek Tributary D downstream Country Club Lake 4                 |
| BCT11   | Burton Creek Tributary D downstream Country Club Lake 3                 |
| BCT12   | Burton Creek Tributary D downstream Country Club Lake 2                 |
| BCT13   | Burton Creek Tributary D downstream Country Club Lake 1 (nearest)       |
| BeC1    | Bee Creek @ Appomattox Dr, downstream of Emerald Forest Park            |
| BeC2    | Bee Creek @ Frontage 6 Rd E (downstream)                                |
| BeC3    | Bee Creek @ Frontage 6 Rd W (upstream)                                  |
| BeC4    | Bee Creak upstream of confluence with Bee Creek Tributary 4             |
| BeC5    | Bee Creek downstream of confluence with Bee Creek Tributary 5           |
| BeC6    | Bee Creek @ Texas Ave S, downstream of Bee Creek Park                   |
| BeC7    | Bee Creek downstream of confluence with Bee Creek Tributary B           |
| BeC8    | Bee Creek upstream of confluence with Bee Creek Tributary B             |
| BeC9    | Bee Creek downstream of Lemon Tree Park @ start of Bee Creek Park       |
| BeC10   | Bee Creek @ Lemon Tree Park                                             |
| BeC11   | Bee Creek @ Glade St                                                    |
| BeC12   | Bee Creek downstream of Brison Park @ Thomas St                         |
| BeC13   | Bee Creek upstream of Brison Park @ Old Jersey Street                   |
| BeT1    | Bee Creek Tributary upstream of confluence at Emerald Forest Park       |

#### Table 1. Site descriptions for Round 1 of sampling.

| BeT2 | Bee Creek Tributary B upstream of confluence with Bee Creek                     |
|------|---------------------------------------------------------------------------------|
| BeT3 | Bee Creek Tributary B downstream of Georgie K Fitch Park                        |
| BeT4 | Bee Creek Tributary B upstream of confluence with Bee Creek Tributary B.3       |
| BeT5 | Bee Creek Tributary B.3 upstream of confluence with Bee Creek Tributary B       |
| BeT6 | Bee Creek Tributary B.3 @ Steeplechase Park                                     |
| BeT7 | Bee Creek Tributary upstream of Southwest Park @ Southwest Pkwy                 |
| BeTx | Bee Creek Tributary A @ intersection of Harvey Mitchell Pkwy S & Hwy 6          |
| ВеТу | Bee Creek Tributary A upstream of Longmire Park                                 |
| HC1  | Hudson Creek downstream of Veterans Park @ Harvey Rd                            |
| HC2  | Hudson Creek upstream of Veterans Park @ University Dr E                        |
| HC3  | Hudson Creek downstream of confluence with Tributary 2 @ Copperfield Dr         |
| HC4  | Hudson Creek downstream of confluences with Tributaries 3 & 4                   |
| HC5  | Hudson Creek upstream of confluences with Tributaries 3 & 4                     |
| HT1  | Hudson Creek Tributary 3 upstream of confluence with Hudson Creek               |
| HT2  | Hudson Creek Tributary 4.1 upstream of confluence with Hudson Creek Tributary 4 |
| UN1  | Carters Creek Tributary 15.1.1 upstream of confluence with Tributary 15.1       |
| UN2  | Carters Creek Tributary 15.1 upstream of confluences with 15.1.2 & 15.1.1       |
| UN3  | Carters Creek Tributary 17 @ Harvey Rd                                          |
| UN4  | Carters Creek Tributary 17 @ Merry Oaks Park & University Oaks Blvd             |
| WP1  | Wolf Pen Creek @ Raintree Park                                                  |
| WP2  | Wolf Pen Creek @ Frontage Rd 6 E                                                |
| WP3  | Wolf Pen Creek @ Holleman Dr E                                                  |
| WP4  | Wolf Pen Creek Tributary A @ confluence with Wolf Pen Creek                     |
| WP5  | Wolf Pen Creek @ George Bush Dr E                                               |
| WP6  | Wolf Pen Creek Tributary B before confluence                                    |
| WP7  | Wolf Pen Creek @ Texas Ave S                                                    |
| WP8  | Wolf Pen Creek @ Anderson St                                                    |
| WP9  | Wolf Pen Creek @ George Bush Dr                                                 |
| WPT1 | Wolf Pen Creek Tributary C @ Redmond Dr                                         |
| WPT2 | Wolf Pen Creek Tributary C @ George Bush Dr                                     |
| WPT3 | Wolf Pen Creek Tributary C.1 @ New Main Dr                                      |
|      |                                                                                 |

### **Tributary Monitoring Assessment**

Following data collection, *E. coli* enumeration results were reviewed to identify areas where spikes in *E. coli* levels occur. Areas found to have rapid increases in *E. coli* levels were further investigated. A rapid increase was considered to be a rate of change equal to 0.1 CFU/100 ml per foot of stream or more. GIS and watershed survey information produced in Task 3 was reviewed to provide information on potential *E. coli* sources and identify potential contributors within these areas that may have contributed to the increases observed. Table 2 lists the summary statistics for the incremental rates of *E.* 


*coli* increase and decrease observed between sites within each stream. Figure 2 illustrates the variations in *E. coli* concentrations observed during this sampling event in an upstream to downstream fashion within a single waterbody. Maps illustrating the location of specific sampling sites are located in Appendix A and are separated by subwatershed. Data for Carters Creek Tributaries 15 and 17 are not included in Figure 2 as observed *E. coli* concentrations at all four monitoring sites in each watershed were less than 150 colony forming units (CFU) per100 mL. All *E. coli* observations are included in Tables included in Appendices A - E.

Waterbodies exhibiting considerably larger increases in *E. coli* concentrations between sampling locations were noted during the first sampling event. Two reaches of Bee Creek and one of its tributaries; two reaches of Burton Creek and two of its tributaries; and two reaches of Wolf Pen Creek and two of its tributaries were found to have the highest rates of increase. These sites were further investigated during a second sampling event.

|                | Increases<br>(CFU/100 ml/ft) | Decreases (-)<br>(CFU/100 ml/ft) |
|----------------|------------------------------|----------------------------------|
| Mean           | 1.438                        | 2.675                            |
| Std Dev        | 4.168                        | 7.523                            |
| Ν              | 18                           | 22                               |
| Minimum        | 0.012                        | 0.004                            |
| Maximum        | 17.747                       | 35.921                           |
| Median         | 0.152                        | 0.634                            |
| Geometric Mean | 0.193                        | 0.518                            |
| Range          | 17.735                       | 35.918                           |

 Table 2. . Summary statistics for rates of increase and decrease between sites on the same stream during Round 1.

Two unnamed tributaries of Carters Creek (Carters Creek Tributary 15 & 17 in this report) did not produce *E. coli* concentrations that warranted further investigation as they did not exhibit rapid rates of increase nor were they at high levels ( $\leq 150$  cfu/100 mL). Hudson Creek did exhibit *E. coli* concentrations that were considerably higher than the State's primary contact recreation standard of 126 cfu/100 mL; however, observed levels were relatively consistent throughout the stream. These three waterbodies were not sampled further.





### **Investigative Sampling**

A second round of intensive sampling was planned for selected areas within the stream reaches monitored during the first round of sampling. Sampling sites for the second round were mostly selected to represent stream reaches found to have rapid increases in observed *E. coli* concentrations during the first round of sampling and/or elevated *E. coli* concentrations. Some segments that showed a rapid increase, but still displayed low *E. coli* counts were not resampled due to placing higher priority on investigating segments with more extreme *E. coli* counts. When selecting sampling locations, the presence of potential *E. coli* sources such as parks, stormwater outlets, and wastewater infrastructure in the immediate vicinity of the creek was also considered. Specific sampling locations were selected to capture water quality immediately downstream or upstream of potential influences where access was available.

| Site_ID | Description of Location                                                           |
|---------|-----------------------------------------------------------------------------------|
| BC4     | Burton Creek downstream of Tanglewood Park                                        |
| BC5     | Burton Creek at start of Tanglewood Park                                          |
| BC5a    | Burton Creek @ Edgewood                                                           |
| BC5b    | Burton Creek downstream of confluence with Burton Creek Tributary 4               |
| BC6     | Burton Creek downstream side of Broadmoor Dr                                      |
| BCT8    | Burton Creek Tributary 5 before confluence with Burton Creek                      |
| BC8     | Burton Creek upstream of E Villa Maria                                            |
| BC8a    | Burton Creek ~100 ft upstream of BC8                                              |
| BC8b    | Burton Creek ~100 ft upstream of BC8a                                             |
| BCT11   | Burton Creek Tributary D upstream of Maloney                                      |
| BCT11a  | Burton Creek Tirbutary D ~200 ft upstream of BCT11                                |
| BCT11b  | Burton Creek Tributary D downstream of E Villa Maria                              |
| BCT12   | Burton Creek Tributary D upstream of E Villa Maria                                |
| BCT2    | Burton Creek Tributary 1 downstream of University Park                            |
| BCT2a   | Burton Creek Tributary 1 at inlet of pond in University Park                      |
| BCT2b   | Burton Creek Tributary 1 ~125 feet upstream of BCT2a                              |
| BCT3    | Burton Creek Tributary 1 upstream of Autumn Circle                                |
| WP2     | Wolf Pen Creek upstream of Hwy 6                                                  |
| WP2b    | Wolf Pen Creek at bridge in Wolf Pen Creek Park, north of Eastmark Drive terminus |
| WP2a    | Wolf Pen Creek downstream of Wolf Pen Creek Park amphitheater                     |
| WP6     | Wolf Pen Creek Tributary B upstream of confluence with Wolf Pen Creek             |
| WP6a    | Wolf Pen Creek Tributary B downstream of Harvey Rd                                |
| WP8     | Wolf Pen Creek upstream of Anderson St                                            |
| WP9     | Wolf Pen Creek upstream of George Bush Dr                                         |

#### Table 3: Site descriptions for Round 2 of sampling

| WP9a   | Wolf Pen Creek downstream of golf course service road                          |
|--------|--------------------------------------------------------------------------------|
| WP9b   | Wolf Pen Creek ~100 ft upstream of WP9a                                        |
| WPT2   | Wolf Pen Creek Tributary C upstream of George Bush Dr                          |
| WPT3   | Wolf Pen Creek Tributary C.1 downstream of New Main Dr                         |
| WPT4   | Wolf Pen Creek Tributary C downstream of New Main Dr                           |
| WPT3a  | Wolf Pen Creek Tributary C.1 upstream of New Main Dr                           |
| BeC5   | Bee Creek downstream of confluence with Bee Creek Tributary 5                  |
| BeC5a  | Bee Creek Tributary 5 @ confluence with Bee Creek downstream of Cy Miller Park |
| BeC6   | Bee Creek upstream of Texas Ave S                                              |
| BeC6a  | Bee Creek 400 ft upstream of BeC6                                              |
| BeC6b  | Bee Creek 400 ft upstream of BeC6a                                             |
| BeC6c  | Bee Creek 400 ft upstream of BeC6b                                             |
| BeC6d  | Bee Creek 400 ft upstream of BeC6c                                             |
| BeT6   | Bee Creek Tributary B.3 downstream of Steeplechase Park                        |
| BeT6a  | Bee Creek Tributary B.3 near middle of Steeplechase Park                       |
| BeT6b  | Bee Creek Tributary B.3 downstream of Wellborn Rd                              |
| BeC11  | Bee Creek upstream of Glade St                                                 |
| BeC11a | Bee Creek upstream of Holleman Dr                                              |
| BeC12a | Bee Creek downstream of Dexter Dr S                                            |
| BeC13  | Bee Creek downstream of George Bush Dr                                         |
| BeC14  | Bee Creek upstream of George Bush Dr                                           |
|        |                                                                                |

Monitoring focused on portions of the Bee, Burton and Wolf Pen Creek watersheds. Collectively, 11 reaches within these watersheds were monitored during the second round of intensive sampling. TWRI and SCSC staff used the same sampling approach in Round 2 where samples were collected in a downstream to upstream manner. In total, 41 individual sampling points were monitored during the two-day sampling campaign that occurred on August 10 and 12, 2015. Three additional sites were planned for monitoring, but on the date of sampling one was dry and the other two were not safely accessible. *E. coli* concentrations observed are shown in Figures 3 and 4 as well as Appendices A - E.

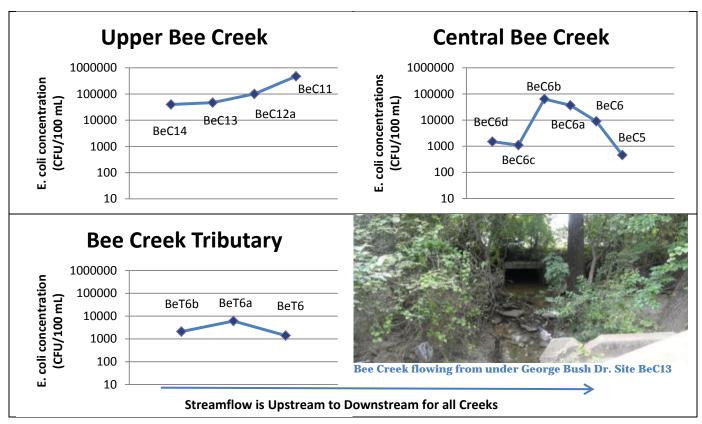



Figure 3: *E. coli* concentrations observed in Bee Creek and its tributaries during the second round of intensive sampling

The second round of intensive sampling provided additional insight into the specific loading areas within the sampled reaches. As in the first round of sampling, the portion of Bee Creek immediately upstream of Texas Ave. exhibited rapid increases and decreases of *E. coli* concentrations. The most upstream portion of the creek that drains from Spence Park on the TAMU campus also exhibited a considerable increase in E. coli concentrations that were 2 - 3 orders of magnitude higher than the primary contact recreation standard. Several reaches within the Burton Creek watershed also showed considerable changes in *E. coli* concentration within short distances. The unnamed tributary of Burton Creek that flows from Country Club Lake across Villa Maria and Texas Ave showed a rapid increase in *E. coli* immediately upstream and downstream of Villa Maria before levels declined to near the primary contact recreation standard. Downstream on Burton Creek between Broadmoor Ave. and the downstream end of Tanglewood Park, *E. coli* also increased steadily before beginning to decline. In the Wolf Pen Creek watershed, the two tributaries monitored contained the highest observed E. coli concentrations. These areas included the headwaters of a tributary that drain the Bonfire Memorial and an unnamed tributary that flows under Harvey Rd. from Thomas Park into the Wolf Pen Creek park greenway immediately upstream of George Bush Dr. East.

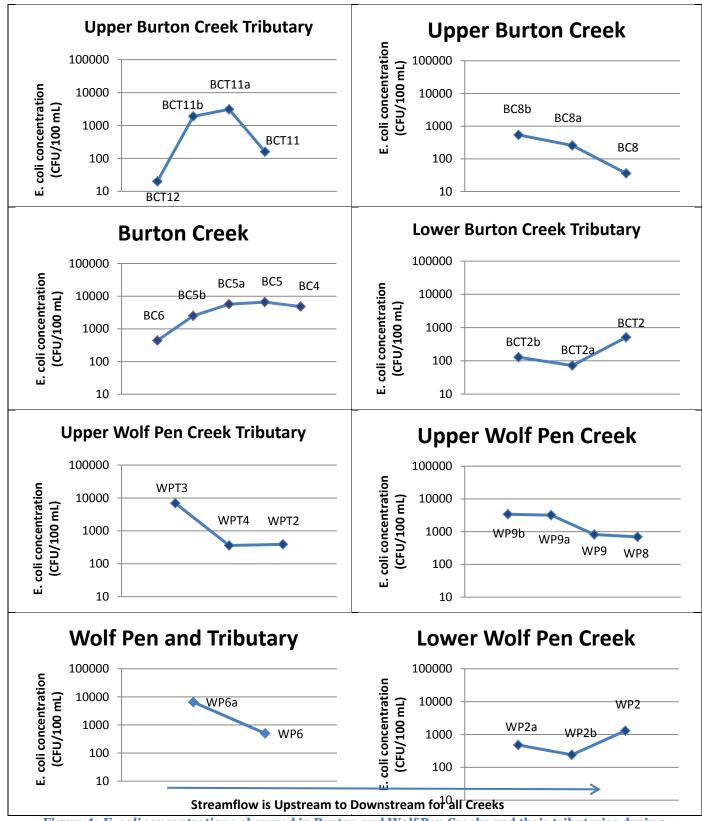



Figure 4: *E. coli* concentrations observed in Burton and Wolf Pen Creeks and their tributaries during the second round of intensive sampling

#### **Data Analysis**

In addition to determining the rates of increase between sampling sites as discussed earlier, relationships between observed water quality parameters were evaluated. Review of collected data revealed that high *E. coli* concentrations are sometimes associated with high recorded specific conductance or water temperature levels while low *E. coli* concentrations are occasionally associated with low specific conductance or water temperature levels. To evaluate the extent of this occurrence, the correlation between monitored parameters was evaluated using the Spearman Rho correlation coefficient. Spearman Rho was selected for defining correlations due to the inclusion of outliers within the data set as its results are not skewed due to their presence. Simple linear regression was also performed to describe the relationship between parameters.

Correlations were determined for all collected data and data collected within sampling rounds. Simple linear regressions were applied in identical fashion. Table 4. illustrates the Spearman Rho correlation coefficients, and the significance of the test (p-values) as well as the calculated regression equations, adjusted R-squared values and significance of the model (p-value). Appendices G and H contain scatter plots of evaluated scenarios.

In all tested scenarios, the correlation between *E. coli* and specific conductance concentrations was weak largely as a result of the variation of *E. coli* concentrations observed. Correlations between *E. coli*, specific conductance and water temperature were significant when Round 1 and Round 2 data were analyzed together. Simple linear regressions did not produce strong models for predicting *E. coli* concentrations from specific conductance or water temperature readings. Only the models for Round 1 & Round 2 combined were statistically significant; however, they only explained 11.96 and 4.08% of the variation observed in the data sets and are thus weak predictors of *E. coli* in this case.

| Data Set               | Spearma<br>n Rho                        | Rho<br>p-value | <b>Regression Equation</b>                   | Adjusted<br>R-square | Model p-<br>value |
|------------------------|-----------------------------------------|----------------|----------------------------------------------|----------------------|-------------------|
| <i>E. coli</i> vs. Spe | <i>E. coli</i> vs. Specific Conductance |                |                                              |                      |                   |
| Round 1                | 0.219                                   | p=0.081        | Log E. coli=2.486+0.000287*Spec. Conductance | 2.02%                | p=0.134           |
| Round 2                | 0.389                                   | p=0.013        | Log E. coli=2.399+0.00055*Spec. Conductance  | 7.04%                | p=0.054           |
| Rounds 1 & 2           | 0.410                                   | <i>p=0.000</i> | Log E. coli=2.331+0.000529*Spec. Conductance | 11.96%               | <i>p=0.000</i>    |
| <i>E. coli</i> vs. Wat | <i>E. coli</i> vs. Water Temperature    |                |                                              |                      |                   |
| Round 1                | 0.223                                   | p=0.077        | Log <i>E. coli</i> =1.19+0.0545*Temperature  | 1.35%                | p=0175            |
| Round 2                | 0.229                                   | p=0.154        | Log <i>E. coli</i> =-0.06+0.1125*Temperature | 2.64%                | p=0.160           |
| Rounds 1 & 2           | 0.255                                   | <i>p=0.009</i> | Log <i>E. coli</i> =0.29+0.0917*Temperature  | 4.08%                | <i>p=0.022</i>    |

| Table 4: Correlations and relation | nshins between <i>E. coli</i> , sp | ecific conductance, and y | vater temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------|------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tuble 1. contenutons and relation  | nompo between L. com, sp           | conductance, and          | attraction and a competition of the second s |

## Discussion

This intensive monitoring study was developed and implemented as an approach to potentially identify areas within the Carters and Burton Creek watershed that may be contributing larger concentrations of *E. coli* than surrounding areas. Through this process, several stream segments were identified where *E. coli* concentrations increased rapidly as compared to adjacent stream reaches. This enabled further refined sampling where additional samples were taken within selected reaches with rapid increases in *E. coli* concentrations.

No obvious contributors of *E. coli* to any creek were identified through the watershed survey or multiple rounds of monitoring. Observations made within these reaches and the presence of stormwater and wastewater infrastructure in the vicinity of these areas could potentially contribute to the observed increases; however, no concrete evidence to support this suggestion was found.

Stormwater infrastructure seemingly contributed to the observed *E. coli* load in several locations. Insignificant volumes of water were present in these locations at the time of sampling and no runoff had occurred in more than two weeks; however, the limited amount of water draining from these outlets are potential sources of *E. coli*. It is suspected that storm drains and the conveyance system may provide a suitable habitat for *E. coli* to survive in water or sediment here as they have been found to in other watersheds around the world. This infrastructure shields *E. coli* from direct sunlight and prevents the inactivation of cells through UV exposure. Additionally, stormwater infrastructure could also intercept wastewater leaking from a failing sewer line or from an illicit connection.

An example of stormwater infrastructure being the suspected source of *E. coli* in the watershed is the Wolf Pen Creek tributary that is formed near the Bonfire Memorial. Water collected from this stormwater outfall had a considerably higher *E. coli* concentration than the adjacent site and downstream sites. The headwaters of Bee Creek also showed very high levels of *E. coli* where the stream drains out of Spence Park on the Texas A&M University campus. In addition to storm water infrastructure, the ongoing renovations to Kyle Field (at the time of sampling) represents a potential influence on the elevated *E. coli* concentrations observed as well. Further sampling at this location now that the Kyle Field renovations are complete may illustrate different *E. coli* concentrations.

Shading of the waterbody is also suspected as a factor that could potentially influence *E. coli* concentrations observed along a stream segment. In some cases, increases were observed where the stream flowed through predominantly shaded areas. Subsequently, when stream flowed into areas where there is limited or no shade and the stream is shallow, the *E. coli* levels begin to fall again. An example of a segment with extensive

shade on the stream is shown in Figure 5. Within this reach, the *E. coli* concentration increased at a rate of 10.375 CFU/100 ml/ft from site BeC14 to BeC13, increased by 24.537 CFU/100 ml/ft from BeC13 to BeC12a, and by 137.837 CFU/100 ml/ft from BeC12a to BeC11. Other inputs of bacteria within this reach are possible as well and are likely given the drastic increase in observed *E. coli* concentrations.

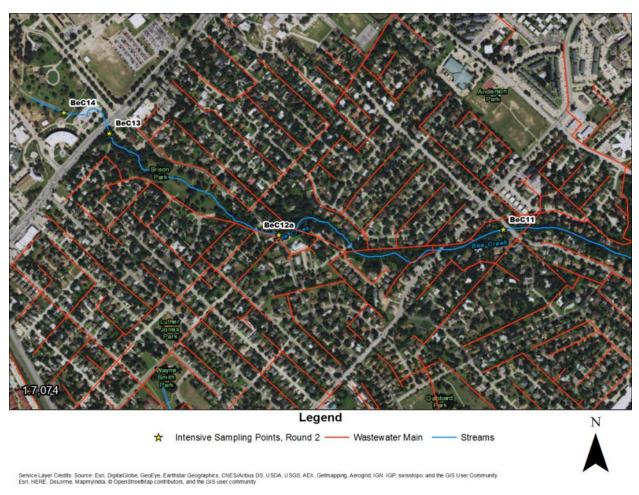


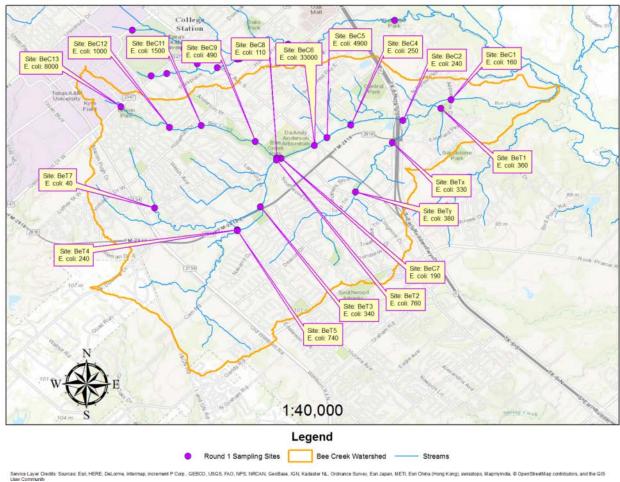

Figure 5. Section of Bee Creek from BeC14 through BeC11.

Wastewater infrastructure is also a potential source at many of the observed segments with spikes; however, there was no evidence of leakage when sampling or stream surveys were conducted. Several locations had unpleasant odors, but it is unknown whether the source of these smells came from wastewater infrastructure or another source. Inspection by the appropriate wastewater operators is recommended to further investigate potential sources *E. coli* sources in these segments. Segments with nearby wastewater mains are shown in Figures 5 & 6. In Figure 6, for example, the *E. coli* count increased from BeC6c to BeC6b at a rate of about 145 CFU/100 ml/ft over a distance of

about 430 ft. During sampling, no obvious source or evidence of wastewater leakage was observed.

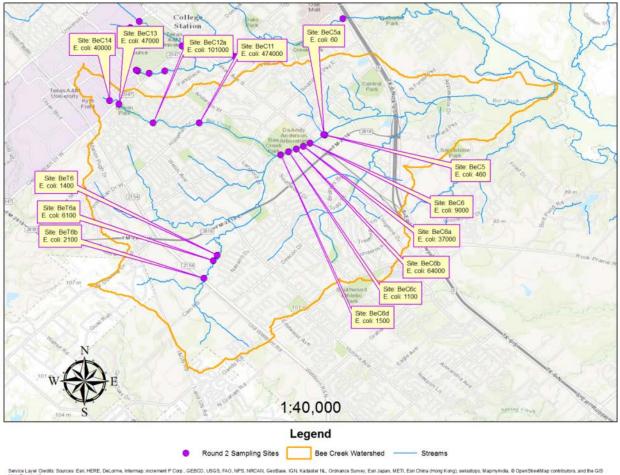



Figure 6. Bee Creek stream segment from BeC6d through BeC5


After sampling data assessment and review, several areas should be considered for further investigation. City or TAMU personnel with knowledge of the potential sources of *E. coli* in these areas (stormwater or wastewater infrastructure) would be the ideal persons to perform these inspections as they may be able to identify problems that can be readily addressed. Also, if infrastructure smoke testing or camera inspections that are currently underway in the watershed could be applied in these areas, they too may be able to identify the underlying cause of the observed *E. coli* loading in these areas. Table 5 includes the sites and descriptions of areas where inspections have the greatest potential to considerably reduce *E. coli* concentrations in stream if a specific issue can be found and subsequently corrected.

| Creek<br>Name     | Description of Area                                                                                                                                            | Area of Watershed                   |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|
| Bee Creek         | Tributary of Bee Creek beginning in Spence Park on TAMU campus to the Glade St. creek crossing                                                                 | TAMU and City of<br>College Station |  |  |  |
|                   | Bee Creek near Bee Creek park from the footbridge<br>connecting the park to the River Walk apartment<br>complex downstream to Texas Ave.City of College Static |                                     |  |  |  |
| Burton<br>Creek   | Segment of Burton Creek from Broadmoor Ave to approximately 500 ft downstream of Tanglewood Ave.                                                               | City of Bryan                       |  |  |  |
| Wolf Pen<br>Creek | Upstream of George Bush Dr. near Bizzell St. and the TAMU golf course                                                                                          | TAMU                                |  |  |  |
|                   | Tributary of Wolf Pen Creek forming at the detention<br>pond drain outlet near the Bonfire Memorial                                                            | TAMU                                |  |  |  |
|                   | Tributary of Wolf Pen Creek flowing from under<br>Harvey Rd between Wolf Creek Car Wash and Taco<br>Bell and into Wolf Pen Creek park                          | City of College Station             |  |  |  |

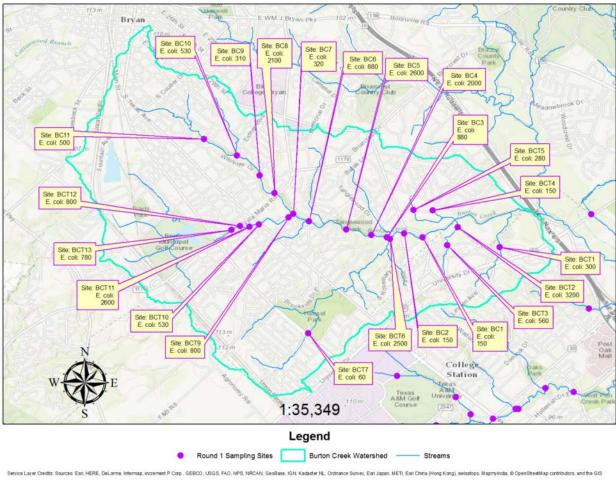





Recommended inspection area photos. Clockwise from top left: Bee Creek exiting from under George Bush Dr., Bee Creek upstream of Texas Ave., Wolf Pen Creek near George Bush Dr. and Bizzell St., Tributary of Wolf Pen Creek downstream of New Main Dr.



## **Appendix A: Bee Creek Sampling Sites and Results**


Figure 7. Bee Creek intensive sampling sites for round 1



Service Layer Credits: Sources: Est, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnan Liber Community Figure 8. Bee Creek intensive sampling sites for round 2

| First Round |             |                      | Second Round |           |                      |  |
|-------------|-------------|----------------------|--------------|-----------|----------------------|--|
| Site        | Date        | <i>E. coli</i> count | Site         | Date      | <i>E. coli</i> count |  |
| ID          | Sampled     | (CFU/100mL)          | ID           | Sampled   | (CFU/100mL)          |  |
| BeC1        | 7/6/2015    | 160                  | BeC5         | 8/12/2015 | 460                  |  |
| BeT1        | 7/6/2015    | 360                  | BeC5a        | 8/12/2015 | 60                   |  |
| BeC2        | 7/6/2015    | 240                  | BeC6         | 8/12/2015 | 9000                 |  |
| BeC3        | Not sampled | Unsafe               | BeC6a        | 8/12/2015 | 37000                |  |
| BeTx        | 7/6/2015    | 330                  | BeC6b        | 8/12/2015 | 64000                |  |
| ВеТу        | 7/6/2015    | 380                  | BeC6c        | 8/12/2015 | 1100                 |  |
| BeC4        | 7/6/2015    | 250                  | BeC6d        | 8/12/2015 | 1500                 |  |
| BeC5        | 7/6/2015    | 4900                 | BeT6         | 8/12/2015 | 1400                 |  |
| BeC6        | 7/6/2015    | 33000                | BeT6a        | 8/12/2015 | 6100                 |  |
| BeC7        | 7/6/2015    | 190                  | BeT6b        | 8/12/2015 | 2100                 |  |
| BeC8        | 7/6/2015    | 110                  | BeC11        | 8/12/2015 | 474000               |  |
| BeT2        | 7/6/2015    | 240                  | BeC12a       | 8/12/2015 | 101000               |  |
| BeT3        | 7/6/2015    | 340                  | BeC13        | 8/12/2015 | 47000                |  |
| BeT4        | 7/6/2015    | 760                  | BeC14        | 8/12/2015 | 40000                |  |
| BeT5        | 7/6/2015    | 740                  |              |           |                      |  |
| BeT6        | Not sampled | No access            |              |           |                      |  |
| BeT7        | 7/6/2015    | 40                   |              |           |                      |  |
| BeC9        | 7/6/2015    | 490                  |              |           |                      |  |
| BeC10       | Not sampled | Unsafe               |              |           |                      |  |
| BeC11       | 7/6/2015    | 1500                 |              |           |                      |  |
| BeC12       | 7/6/2015    | 1000                 |              |           |                      |  |
| BeC13       | 7/6/2015    | 8000                 |              |           |                      |  |

#### Table 6. Bee Creek E. coli results



## **Appendix B: Burton Creek Sampling Sites and Results**

Figure 9. Burton Creek intensive sampling sites for round 1

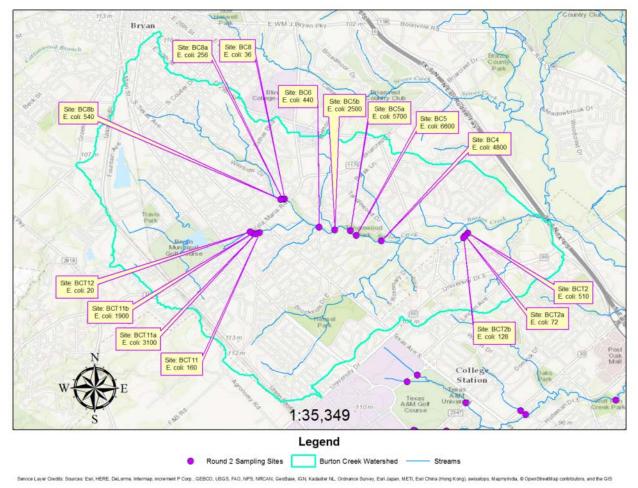
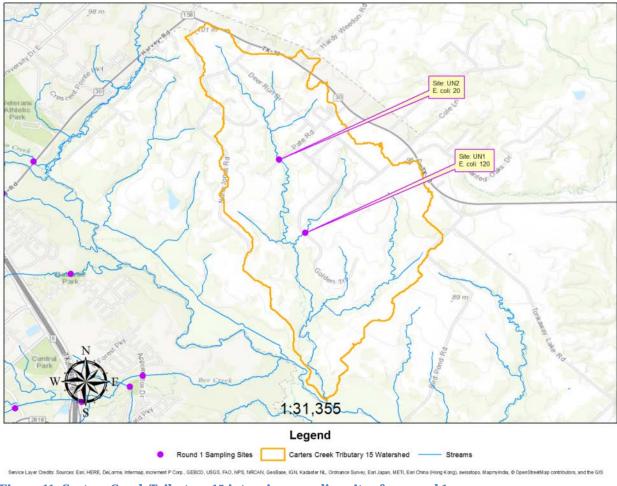
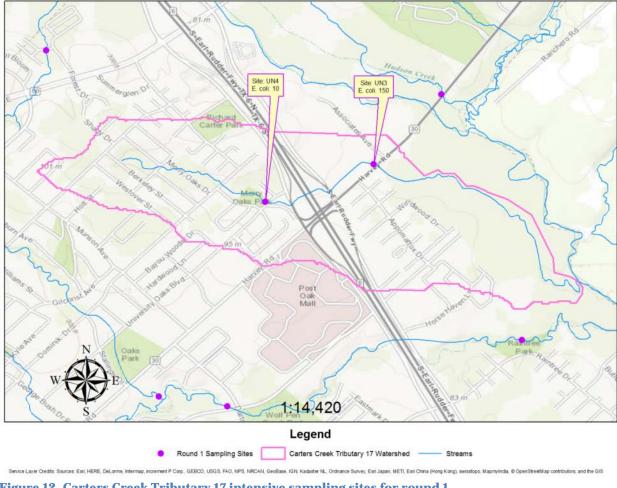




Figure 10. Burton Creek intensive sampling sites for round 2

| Table 7. Burton Creek E. coli results         First Round |             |                      | Second Round |             |                      |  |
|-----------------------------------------------------------|-------------|----------------------|--------------|-------------|----------------------|--|
| Site                                                      | Date        | <i>E. coli</i> count | Site         | Date        | <i>E. coli</i> count |  |
| ID                                                        | Sampled     | (CFU/100mL)          | ID           | Sampled     | (CFU/100mL)          |  |
| BCT1                                                      | 7/8/2015    | 300                  | BC4          | 8/10/2015   | 4800                 |  |
| BCT2                                                      | 7/8/2015    | 3200                 | BC5          | 8/10/2015   | 6600                 |  |
| BCT3                                                      | 7/8/2015    | 560                  | BC5a         | 8/10/2015   | 5700                 |  |
| BCT4                                                      | 7/8/2015    | 150                  | BC5b         | 8/10/2015   | 2500                 |  |
| BCT5                                                      | 7/8/2015    | 280                  | BC6          | 8/10/2015   | 440                  |  |
| BC1                                                       | 7/8/2015    | 150                  | BC8          | 8/10/2015   | 36                   |  |
| BC2                                                       | 7/8/2015    | 150                  | BC8a         | 8/10/2015   | 256                  |  |
| BC3                                                       | 7/8/2015    | 880                  | BC8a         | 8/10/2015   | 540                  |  |
| BCT6                                                      | 7/8/2015    | 2500                 | BCT11        | 8/10/2015   | 160                  |  |
| BC4                                                       | 7/8/2015    | 2000                 | BCT11a       | 8/10/2015   | 3100                 |  |
| BC5                                                       | 7/8/2015    | 2600                 | BCT11b       | 8/10/2015   | 1900                 |  |
| BCT7                                                      | 7/8/2015    | 60                   | BCT12        | 8/10/2015   | 20                   |  |
| BC6                                                       | 7/8/2015    | 880                  | BCT2         | 8/12/2015   | 510                  |  |
| BCT8                                                      | Not Sampled | Dry                  | BCT2a        | 8/12/2015   | 72                   |  |
| BC7                                                       | 7/8/2015    | 320                  | BCT2b        | 8/12/2015   | 128                  |  |
| BCT9                                                      | 7/8/2015    | 800                  | BCT3         | Sample lost | Sample lost          |  |
| BCT10                                                     | 7/8/2015    | 530                  |              |             |                      |  |
| BCT11                                                     | 7/8/2015    | 2600                 |              |             |                      |  |
| BCT12                                                     | 7/8/2015    | 800                  |              |             |                      |  |
| BCT13                                                     | 7/8/2015    | 780                  |              |             |                      |  |
| BC8                                                       | 7/8/2015    | 2100                 |              |             |                      |  |
| BC9                                                       | 7/8/2015    | 310                  |              |             |                      |  |
| BC10                                                      | 7/8/2015    | 530                  |              |             |                      |  |
| BC11                                                      | 7/8/2015    | 500                  |              |             |                      |  |

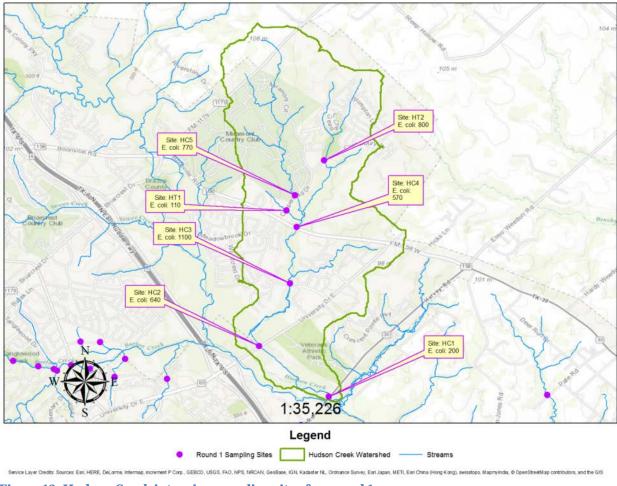
#### Table 7. Burton Creek E. coli results




## **Appendix C: Carters Creek Tributary 15 Site Maps and Results**

Figure 11. Carters Creek Tributary 15 intensive sampling sites for round 1

| Table 8. | Carters | Creek | Tributary | 15 | E. | <i>coli</i> results |
|----------|---------|-------|-----------|----|----|---------------------|
|          |         |       |           |    |    |                     |

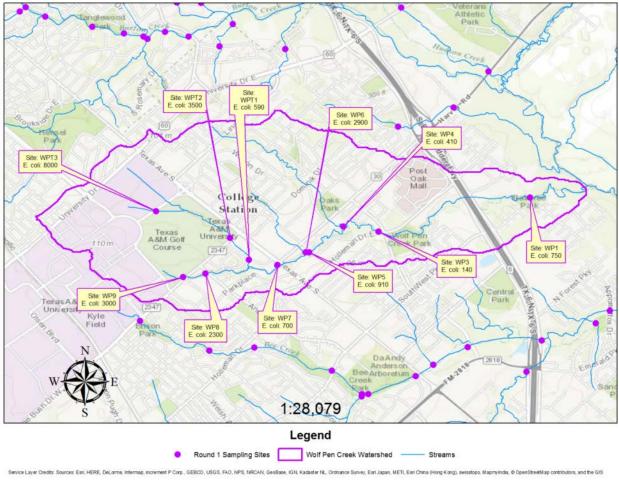

| Site ID | Date Sampled | E. coli count (CFU/100 mL) |  |  |
|---------|--------------|----------------------------|--|--|
| UN2     | 7/6/2015     | 20                         |  |  |
| UN1     | 7/6/2015     | 120                        |  |  |



## **Appendix D: Carters Creek Tributary 17 Site Maps and Results**

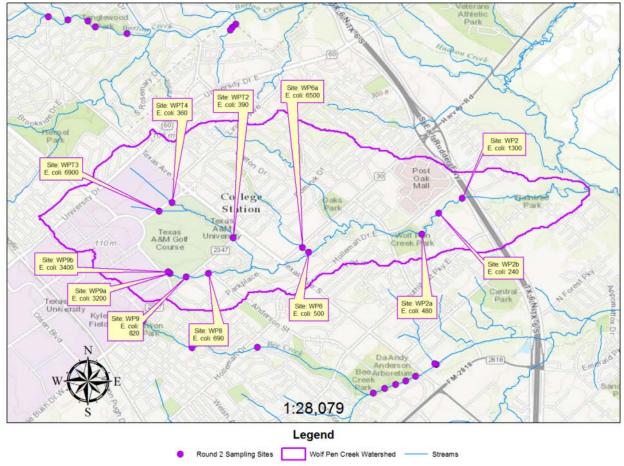
Figure 12. Carters Creek Tributary 17 intensive sampling sites for round 1

| Site ID | Date Sampled | E. coli count (CFU/100 mL) |  |  |
|---------|--------------|----------------------------|--|--|
| UN3     | 7/7/2015     | 150                        |  |  |
| UN4     | 7/7/2015     | 10                         |  |  |




## **Appendix E: Hudson Creek Site Maps and Results**

Figure 13. Hudson Creek intensive sampling sites for round 1

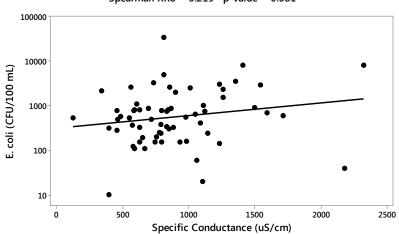

#### **Date Sampled** *E. coli* count (CFU/100 mL) Site ID HC1 7/7/2015 200 HC2 7/7/2015 640 HC3 7/7/2015 1100 HC4 7/7/2015 570 7/7/2015 HC5 770 HT1 7/7/2015 110 HT2 7/7/2015 800

#### Table 10. Hudson Creek E. coli results



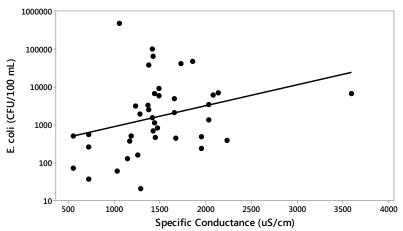
## **Appendix F: Wolf Pen Creek Site Maps and Results**

Figure 14. Wolf Pen Creek intensive sampling sites for round 1.

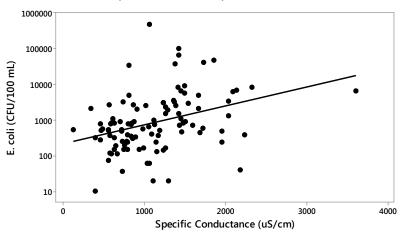



Service Layer Orests: Sources: Esri, HERE, DeLorme, Internap, Increment P Corp., GEBCO, USCS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NJ, Ordnance Survey, Esri Japan, METI, Eari China (Hong Kong), selestopp, MapmyIndia, @ OpenStreidNap contributors, and the GIS

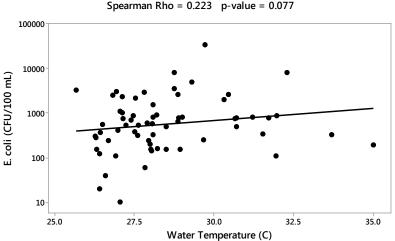
| Figure 15. Wolf Per | <b>Creek intensive</b> | sampling sites | for round 2. |
|---------------------|------------------------|----------------|--------------|
|---------------------|------------------------|----------------|--------------|


| First Round |              |                                     | Second Round |              |                                     |  |
|-------------|--------------|-------------------------------------|--------------|--------------|-------------------------------------|--|
| Site ID     | Date Sampled | <i>E. coli</i> count<br>(CFU/100mL) | Site ID      | Date Sampled | <i>E. coli</i> count<br>(CFU/100mL) |  |
| WP1         | 7/7/2015     | 750                                 | WP2          | 8/10/2015    | 1300                                |  |
| WP2         | Not Sampled  | No access                           | WP2a         | 8/10/2015    | 480                                 |  |
| WP3         | 7/7/2015     | 140                                 | WP2a         | 8/10/2015    | 240                                 |  |
| WP4*        | 7/7/2015     | 410                                 | WP6          | 8/10/2015    | 500                                 |  |
| WP5         | 7/7/2015     | 910                                 | WP6a         | 8/10/2015    | 6500                                |  |
| WP6*        | 7/7/2015     | 2900                                | WP8          | 8/10/2015    | 690                                 |  |
| WP7         | 7/7/2015     | 700                                 | WP9          | 8/10/2015    | 820                                 |  |
| WPT1        | 7/7/2015     | 590                                 | WP9a         | 8/10/2015    | 3200                                |  |
| WP8         | 7/7/2015     | 2300                                | WP9b         | 8/10/2015    | 3400                                |  |
| WP9         | 7/7/2015     | 3000                                | WPT2         | 8/10/2015    | 390                                 |  |
| WPT2        | 7/7/2015     | 3500                                | WPT4         | 8/10/2015    | 360                                 |  |
| WPT3        | 7/7/2015     | 8000                                | WPT3         | 8/10/2015    | 6900                                |  |
|             |              |                                     | WPT3a        | Not Sampled  | Dry                                 |  |

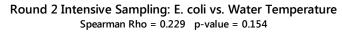
# Appendix G: Scatter Plots and Correlations of *E. coli* and Specific Conductance

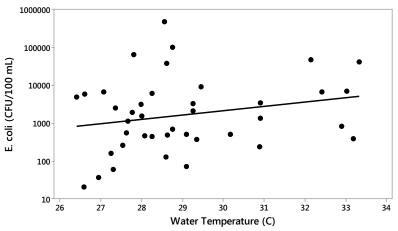



Round 1 Intensive Sampling: E. coli vs. Specific Conductance Spearman Rho = 0.219 p-value = 0.081

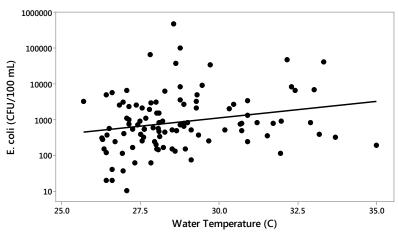

Round 2 Intensive Sampling: E. coli vs. Specific Conductance Spearman Rho = 0.389 p-value = 0.013




Rounds 1 & 2 Intensive Sampling: E. coli vs. Specific Conductance Spearman Rho = 0.41 p-value = 0.000




# Appendix H: Scatter Plots and Correlations of *E. coli* and Water Temperature




Round 1 Intensive Sampling: E. coli vs. Water Temperature Spearman Rho = 0.223 p-value = 0.077





Rounds 1 & 2 Intensive Sampling: E. coli vs. Water Temperature Spearman Rho = 0.255 p-value = 0.009

