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 ABSTRACT 

 

This study was aimed at finding genetic markers or genes that are associated with 

ear traits important to maize by genome-wide association study (GWAS) based on the 

USDA maize GWAS panel consisting of diverse inbred lines that represent the genetic 

variation and diversity of maize present at the world-wide maize public breeding 

programs.  This study phenotyped 263 diverse inbred lines of the GWAS panel for seven 

ear traits: grain weight per plant (GW), ear weight per plant (EW), ear length (EL), kernel-

row length (KL), ear diameter (ED), number of kernel rows (KR), and cob diameter (CD) 

in College Station, Texas from 2017 to 2019, and in Lubbock, Texas in 2018. These 263 

inbred lines were genotyped using the whole genome shotgun sequencing reads, having 

an average coverage of 7.0 x, with high performance computing clusters and the maize 

inbred line B73 genome as the reference genome. A total of 1,553,207 quality single 

nucleotide polymorphism (SNP markers were identified after filtering with a base-calling 

quality score of ≤ Q30, missing rate of ≥0.1, and minor allele frequency (MAF) of ≤0.1. 

Population structure was stratified by population structure analysis, principle component 

analysis, and phylogenetic tree, respectively, together indicating that the USDA GWAS 

panel consists of six subpopulations: stiff stalk (SS), non-stiff stalk (NSS), tropical-

subtropical (TS), popcorn, sweet corn, and mixed.  

By constructing a general linear model (GLM) with kinship matrix as covariate, 

three SNP markers were identified that were associated with ear traits at a significance 

level of -log10(P) = 7.0. Three candidate genes and three SNPs that were previously 
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characterized were identified near these SNPs. These results have provided the candidate 

genes controlling the traits and SNP markers necessary for enhanced breeding for these 

traits through marker-based breeding. 
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1. INTRODUCTION  

 

1.1. Importance of Global Maize Production 

Maize, Zea mays L., is the largest crop in the world for human food, animal feed, 

and biofuel. In 2018, global maize production yielded over 1,400M tons of maize grains, 

harvested from over 230M hectares across 169 countries (1). As one of the most important 

plant nutrition sources, maize, together with wheat and rice, accounts for 30% of the total 

food calories, feeding over 4.5 billion people in the world (2).  Not only the top maize 

producing countries, such as the United States, China, and Brazil that produce 63% of the 

global maize, the but also most middle- and lower-income countries heavily rely on maize 

(3). For instance,  in Ethiopia, agriculture is still the most important part of its economy, 

to which maize contributed more than 7.3 M tons in 2018 (4). Due to the increasing 

population and low productivity, the Ethiopian farmers have been struggling with the 

situation of food insecurity for many years. In addition to population growth, the global 

climate change, such as elevated temperature and increased drought frequency, is also 

negatively impacting maize productivity. In the United States, the world’s largest maize 

production belt,  including Nebraska, Minnesota, Iowa, and Illinois, is continuously 

subjected to drought stress (5). Moreover, as the world’s population will exceed 9 billion 

by 2050, the demand for maize production will double (6). Therefore, given the projected 

global population growth and the adverse impacts of the observed global climate change 

on crop production, it is apparently necessary to continuously improve maize production 

and farming efficiency to help feed the world. 
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 Furthermore, the usage of maize in livestock feeds and fuel production is also 

significantly increasing. It was estimated that approximately 63% of maize is globally 

consumed as livestock feed (2). This proportion can be higher in most developed countries 

where the percentage stands around 70%. Another primary use of maize is to generate 

ethanol fuel in industries. In the past decade, maize ethanol production used around 40% 

of the total maize production in the United States (7). The uses of maize in food, feed, and 

biofuel have had the global maize price fluctuate, showing an increasing trend. If the 

global maize supplies cannot match the increasing demand, global maize prices will be 

unaffordable for millions of consumers. 

 

1.2. Structure and Architecture of the Maize Genome 

Maize is important not only as a crop species, but also as a model species system 

for genetic and genomic research, due to its high level of genetic diversity. Millions of 

sequence polymorphisms have been identified in the low-copy genomic region of 27 

diverse maize inbred lines (8). The total number of 3.3 million single-nucleotide 

polymorphisms (SNPs) and nucleotide insertions/deletions (InDels) indicated that there 

will be 1 polymorphism detected in every 44 bp in the maize genome. Such abundant 

nucleotide sequence variation in in the maize genome makes maize possible to select 

nucleotide sequence polymorphisms associated with the variations of quantitative traits. 

However, the association mapping greatly relies on the linkage disequilibrium (LD), 

implying that only those tightly linked SNPs and/or InDels may significantly associate 

with phenotypic traits in a random population (9). 
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 LD is the core of association studies. In a natural maize population, if there were 

no genetic recombination, mutation, and selection, the alleles of genes at different loci 

would present in linkage (10). In contrast, because of genome evolution and genetic 

recombination, the LD level varies among populations, depending on the level of sequence 

polymorphisms and genetic recombination frequency. The higher correlation means the 

closer neighboring of two polymorphisms. The LD decay determined with102 maize 

inbred lines showed that the predicted R2 values declined rapidly within 2,000 bp(11). 

Compared to the LD decay determined in the human genome that exceeded 50 kb, the 

maize genome has a higher resolution for LD-based association studies (12). Therefore, 

many more DNA markers are needed for genome-wide association study (GWAS) in 

maize. It is necessary to calculate the LD decay to determine the density of markers for  

GWAS in a species (13). 

 

1.3. Development of Genetic Maps in Maize 

Most of that traits important to agriculture are quantitative traits that exhibit  

normal distribution, which is in contrast   to qualitative traits that are distributed in a 

discrete manner (14).  The studies of quantitative traits have  resulted in different 

molecular tools for enhanced plant genetic improvement , among which marker-assisted 

selection (MAS) became the most popular approach (15). 
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1.3.1. DNA marker technology 

Molecular genetic mapping is based on various DNA polymorphisms and their 

associations with the gene loci controlling morphological traits. The earliest maize genetic 

mapping was conducted  in 1980, in which the researchers used co-dominant hetero-

multimeric isozymes to position the alcohol dehydrogenase-I (Adh-I) locus (16). In 1986, 

RFLP (restriction fragment length polymorphism) markers were developed and used to 

build a molecular genetic map in maize (17). Nearly 900 loci were mapped with RFLPs 

in maize (18). RAPD (randomly amplified polymorphic DNA) is PCR-based DNA 

markers developed following RFLPs. By using single primers of 10- nucleotide arbitrary 

sequences to amplify random DNA segments with PCR, RAPD markers have the potential 

to rapidly and readily detect nucleotide sequence polymorphisms (19). SSR (simple 

sequence repeat) markers were then developed in maize from SSR enriched libraries and 

by identification of SSR-containing sequences in public and private databases (20). A total 

of 1,051 SRR markers were identified and 978 of them were used to construct a high-

resolution map. Since most SSRs are co-dominant markers, they can distinguish 

homozygotes from heterozygotes, thus providing more genotypic information for genetic 

mapping (21). AFLPs (amplified fragment length polymorphisms) are also PCR-based 

DNA markers that had been widely used for maize DNA fingerprinting. Using AFLPs, 

restriction fragments can be detected without the previous knowledge of the DNA 

sequences (22). In comparison among these DNA markers, SRRs have the largest number 

of alleles per locus while AFLPs have the highest assay efficiency index (23). 
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 The abundance of Single nucleotide polymorphisms (SNPs) and InDels was 

initially revealed in the human genome. It was discovered that about 90% of 

polymorphisms in the human genome are single nucleotide variations and they were most 

related to functional differences (24). In maize, the development of SNP markers was 

mainly led by construction of the three-generation haplotype map (25, 26). It was found 

that two randomly chosen maize lines have an average of one SNP per 100 bp (27). 

Compared to SSR markers, SNPs are much more abundant and have higher 

heterozygosity, lower missing data rates, and higher repeatability (28). Thus, by 

leveraging the SNP technology, researchers could obtain increased marker quality and 

quantity for genetic mapping. Analysis of 632 maize inbred lines using 1,536 SNPs from 

582 loci revealed that the LD decay ranged from 1 to 10 kb (29). From the 632 inbred 

lines, 60 core lines were identified that cover approximately 90% of the total variation. 

Therefore, broad and deep research of the maize SNPs would offer a great opportunity to 

improve the accuracy and efficiency of discovering new genes to enhance maize breeding. 

 

1.3.2. QTL Mapping 

Quantitative trait loci (QTLs) are the genomic regions that are tightly associated 

with the variation of quantitative traits. The rapid development of the DNA marker 

technology has broken the bottleneck of traditional genetic mapping, thus allowing the 

construction of a high-density genetic map for QTL mapping (30). The first QTL mapping 

study in crop species was completed in tomato using RFLPs to narrow the mapping 

resolution within 3 cM (31). RFLP-based QTL mapping in maize revealed that QTL 
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mapping with DNA markers had several advantages over the traditional QTL mapping, 

such as  improved accuracy of QTL localization, increased mapping resolution, and 

detection of new QTLs (32). However, QTL mapping heavily relies on manpower and 

resources. The population size is emphasized in most QTL studies since either thousands 

of markers or thousands of experimental individuals are needed for QTL mapping (33). In 

this case, association mapping or QTL mapping with SNP markers provides a substantially 

improved method that can deal with this resource- and time-consuming processes. 

 

1.3.3. Genome-wide Association Study (GWAS) 

Genome-wide association study (GWAS) based on LD is a powerful approach to 

explore the genetic variation in a large population with higher mapping resolution (13). 

GWAS has been widely used in the genetic dissection of human diseases (34). The 

successful application of GWAS in humans has provided a great opportunity of using 

GWAS for genetic dissection of agronomic traits in crop species. A major obstacle of 

GWAS in plants probably is the structural population in plants that may lead to spurious 

associations (35). By estimating the population structure using SSRs, the first GWAS in 

maize successfully identified a set of polymorphisms in the Dwarf8 sequence that was 

associated with flowering time (36). GWAS in maize has recently proliferated, due to the 

release of the maize B73 reference genome and the development of NGS (next-generation 

sequencing) technology (37). A variety of agronomic and economic traits have been 

studied with GWAS in maize and these advances suggested that GWAS is an efficient and 

reliable approach to explore QTLs controlling different agronomic traits (38). 
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2. MATERILS AND METHODS 

 

2.1. Plant Materials 

Two hundred eighty-two diverse inbred lines of the USDA maize GWAS panel were 

used for this study. This panel of inbred lines was constructed from all six subpopulations 

of maize, including stiff stalk (SS), non-stiff stalk (NSS), tropical-subtropical (TS), 

popcorn, sweet corn, and mixed, and represent the genetic variation and diversity of 

maize inbred lines present in the public maize breeding programs around the world (39). 

 

2.2. Genotyping 

The whole genomes of the 282 inbred lines of the USDA maize GWAS panel have 

been previously re-sequenced, with an average depth of 7x, using the Illumina HiSeq 

2000platform. The original reads are deposited at NCBI under BioProject accession 

number PRJNA389800 in the BioProject database 

(https://www.ncbi.nlm.nih.gov/bioproject/389800). We downloaded the sequence read 

archive (SRA) data from the database site and split them into the paired-end fasta format 

using the SRAtoolkit (40). The BWA aligner was then used to map the sequencing reads 

to the maize B73 reference genome (AGPv3) (41). Genome-wide SNPs were scanned with 

the BCFtools and sorted by chromosome positions (42). Among the 282 inbred lines 

analyzed, 263 were genotyped. The SNPs were filtered with minor allele frequency (MAF) 

≤ 0.1, missing data ≥ 0.1, and base calling Phred quality score < Q30. 
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2.3. Phenotyping 

The 263 maize inbred lines of the USDA maize GWAS panel were grown at the 

Experimental Farms of Texas A&M AgriLife Research near College Station, Texas from 

2017 to 2019 and in Lubbock, Texas in 2018 for phenotyping. The Field trials were 

designed and carried out as described by Zhang(43). Randomized complete block design 

(RCBD) was employed with two replicates. Each plot contained one or two rows of 6.1 m 

spacing by 76.2 cm, with each row having 35 plants, making 33,500 plants per acre. The 

field practices, including weed control, irrigation, and fertilization, followed those used 

locally for maize field trials and production. When the ears ripened, the number of plants 

and number of ears were counted per plot, a section of five plants was randomly selected 

from the middle of each plot. Therefore, a total of ten plants were sampled from each 

inbred line for phenotyping. The ears of the selected plants were hand-harvested and 

naturally dried in a seed drying house. Seven ear traits were measured or counted, 

including Grain Weight per plant (GW), Ear Weight per plant (EW), Ear Length (EL), 

Kernel Row Length (KL), Ear Diameter (ED), number of Kernel Rows (KR), and Cob 

Diameter (CD). GW and EW were measured with an electronic balance; EL and KL were 

measured with an electronic ruler reader; ED and CD were measured with an electronic 

caliper, and KR was counted. The mean of each trait over two replicates was used for this 

study. 
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2.4. Phenotypic Data Analysis 

Heritability (H2) for each trait was calculated using a linear random effect model. 

Best linear unbiased prediction (BLUP) has been widely used for selection in plant and 

animal breeding to predict the average performance of a trait across multiple 

environments(44, 45). The value of a trait predicted by BLUP has also been used for QTL 

mapping and GWAS recently(46). Therefore, the value of each of the ear traits predicted 

by BLUP was used for GWAS in this study.  Lines, years, and locations were defined as 

random effects to construct the linear model in R package “lme4” function (R 3.6.1): 

 

where Y is the normalized mean value of the targeted trait; Line represents the 263 inbred 

lines; Loc is the two locations where the field trials were performed; Year is for the three 

planting years of the field trials from 2017 to 2018; and “:” indicates the interaction 

between two random effects. Based on the fitted linear model, the broad-sense heritability 

(H2) was calculated by: 

H" = VG/(VG+ VGL/L+ VGY/Y + Ve/YL) 

 The correlation between two traits was calculated with the R package (R 3.6.1). 

 

2.5. Population Structure Analysis 

SNPs were further pruned with the variance inflation factor (VIF) 1.5 that was 

calculated on PLINK v1.07(47). After pruning, 720,651 SNPs with VIF larger than 1.5 

remained, since a larger VIF indicates a higher level of LD (48). The population Q matrix 

was calculated based on this subset of 720,651 SNPs using ADMIXTURE (49). The 

Y	=	(1	|	Line)	+	(1	|	Loc)	+(1|	Year)	+	(1	|	Line:Year)	+(1	|	Line:Loc) 
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mixed, popcorn, and sweet corn groups were extracted before determining the number of 

K because previous studies revealed the estimation bias from the mixed population (50). 

The structure plot is drawn in R packages (R3.6.1). Principle component analysis (PCA) 

was calculated with GCTA (51). Phylogenetic tree was constructed by MEGAX. Kinship 

matrix was constructed with the GAPIT software to stratify the population pedigree(52). 

 

2.6. Association Analysis 

Both general linear model (GLM) and mixed linear model (MLM) were used for 

GWAS. We used both GAPIT and GEMMA to model MLM and only used GAPIT for 

GLM(53-55). Markers (S) and population structure (PCs) were set to fixed effects: 

y = µ + αS + νPCs + ϵ 

 In MLM, markers (S) and first 3 principle components (PCs) were served as the 

fixed effects, while kinship matrix (K) was set to random effect: 

y = µ + αS + νPCs + K + ϵ 

 The Q-Q plot was generated in R to evaluate the fitness of the linear models. The 

best performing model was used for GWAS. Bonferroni correction methods are used for 

correcting false discoveries in multiple hypothesis testing(56). 
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3. OBJECTIVES 

 

The objectives of this study were four-fold: 

1. Genotype the 263 diverse inbred lines of the USDA maize GWAS panel with 

genome-wide SNPs using the reads of their re-sequenced genomes (7x); 

2. Phenotype the 263 inbred lines of the USDA maize GWAS panel for seven ear 

traits through field trials across multiple years and locations in Texas; 

3. Estimate the population structure and re-construct the phylogenetic tree of the 

maize GWAS panel; and 

4. Dissect the genetic basis of maize ear traits by GWAS using genome-wide high-

density SNPs. 
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4. RESULTS 

 

4.1. Analysis of Phenotypic Data 

The 263 inbred lines of the USDA maize GWAS panel were phenotyped across four 

environments for seven ear traits, Grain Weight per plant (GW), Ear Weight per plant (EW), 

Ear Length (EL), Kernel-row Length (KL), Ear Diameter (ED), number of Kernel Rows (KR), 

and Cob Diameter (CD). 

The phenotypic data of the ear traits collected from the four environments were 

normalized to their average values with BLUP. The prediction accuracy of the traits with 

BLUP R2, the square of correlation coefficient between the means of the observed traits across 

environments and the estimated values of the traits with BLUP ranged from 0.8512 to 0.9875 

(Fig. 1), indicating that BLUP model properly predicted the average values of the traits across 

the four environments.  
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Figure 1 Prediction accuracy of the ear traits with BLUP. GW, grain weight per plant (g); 
EW, ear weight per plant (g); EL, ear length (cm); KL, kernel-row length (cm); ED, ear 
diameter (mm); KR, number of kernel rows (n); CD, cob diameter (mm). 
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The average grain weight per plant (GW) was 23.04 g, with a range from 11.02 g to 43.95g 

and the largest CV of 28.19% = 6.496, while the mean number of kernel rows (KR) was 11.40, 

with a range from 9.50 to 13.60 and the smallest CV of 6.14% (Table 1). The broad-sense 

heritability (H2) was calculated based on the BLUP values of the traits. It ranged from 0.50 

for the number of kernel rows (KR) to 0.87 for cob diameter (CD). In comparison, ear length 

(EL), ear diameter (ED), and cob diameter (CD) had a higher heritability (H2 > 0.8), while 

kernel-row length (KL), and the number of kernel rows (KR) had a lower heritability (H2 

<0.6).  

 
Table 1 Ear traits predicted with BLUP and their heritability. GW, grain weight per plant 
(g); EW, ear weight per plant (g); EL, ear length (cm); KL, kernel-row length (cm); ED, ear 
diameter (mm); KR, number of kernel rows (n); CD, cob diameter (mm). 

 

The seven ear traits studied, with a total of 21 pairs of the traits, were all significantly 

and positively correlated (P ≤ 0.05), except for the trait pairs between KL and KR, and 

between KL and CD. Of the 19 trait pairs that were significantly correlated, GW and EW were 

Trait Unit Min Mean Max SD CV (%) Heritability (H2) 

GW g 11.02 23.04 43.95 6.50 28.19 0.66 

EW g 15.40 33.32 58.14 8.06 24.19 0.65 

EL cm 8.14 11.87 16.06 1.31 11.04 0.81 

KL cm 7.01 8.94 11.40 0.76 8.50 0.54 

ED mm 21.31 33.16 39.74 2.91 8.76 0.84 

KR n 9.50 11.40 13.60 0.70 6.14 0.50 

CD mm 16.03 23.67 30.28 2.25 9.50 0.87 
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most correlated, with R2 = 0.930 (Table 2). The second group of ear trait pairs that were most 

correlated were between ED and CD, EW and ED, EL and KL, GW and ED, and EW and KL, 

with r = 0.7 - 0.8.  The remaining 13 trait pairs had a significant correlation ranging from r = 

0.680 down to r = 0.141. 

 

Table 2 Pairwise correlations between the seven ear traits. GW, grain weight per plant (g); 
EW, ear weight per plant (g); EL, ear length (cm); KL, kernel-row length (cm); ED, ear 
diameter (mm); KR, number of kernel rows (n); CD, cob diameter (mm). 

** P-value < 0.0001 
*   P-value < 0.05 
 

Due to the existence of missing data for some inbred lines in one or more of the four 

environments, some distribution skewness of the phenotypic BLUP data were observed for 

the ear traits. However, the histogram of the traits showed that the normality assumptions 

could be satisfied for GWAS (Fig. 2). 

 GW EW EL KL ED KR CD 

GW 1.000** 0.930** 0.358** 0.680** 0.726** 0.510** 0.383** 

EW 0.930** 1.000** 0.454** 0.702** 0.774** 0.562** 0.485** 

EL 0.358** 0.454** 1.000** 0.766** 0.154* 0.107 0.108 

KL 0.680** 0.702** 0.766** 1.000** 0.365** 0.342** 0.141* 

ED 0.726** 0.774** 0.154* 0.365** 1.000** 0.629** 0.784** 

KR 0.510** 0.562** 0.107 0.342** 0.629** 1.000** 0.458** 

CD 0.383** 0.485** 0.108 0.141* 0.784** 0.458** 1.000** 
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Figure 2 Distribution histogram of the ear traits predicted with BLUP. 
 

4.2. Genotypic Data Quality control and filtering 

The total of 7,518,820 SNPs was called for the 263 inbred lines studied for this study, 

after their sequencing reads were mapped to the maize B73 reference genome. Then, the SNPs 

were filtered by Phred quality score, missing rate per location, missing rate per individual, 

and minor allele frequency (MAF), As a result, a total number of 1,537,073 quality SNPs were 

identified, which well covered all 10 maize chromosomes (Fig. 3). The majority of SNPs were 

filtered out because of high missing rates, which could result from the low read mapping rate 

of different inbred lines to the B73 reference genome. 
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Figure 3 (A) Phred quality score after filtering through Q30; (B-C) Missingness after 
filtering through missing rate ≥ 0.1; (D) Minor allele frequency (MAF) after filtering 
through MAF ≤ 0.1. 
 

4.3. Population Structure 

We examined the population structure and phylogeny of the 263 inbred lines used in 

this study based on the 1,537,073 quality SNPs using different methods.  When the SNP data 

were used in population structure analysis of the inbred lines and the popcorn, sweet corn, and 

mixed inbred lines were excluded from the analysis, the number of subpopulations, K = 3, 

was had the smallest cross-validation error rate 0.45276 (Fig. 4A), suggesting that the 
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showed a clustering pattern of six subpopulations. According to these analysis results, we 

initially concluded that the 263 maize inbred lines consisted of subpopulations: non-stiff stalk 

(NSS), stiff stalk (SS), tropical/subtropical (TS), popcorn, sweet corn, and mixed (Fig. 4B). 

 

 

Figure 4 (A) Population structure plot of the 263 inbred lines with k = 3; (B) PCA with six 
subpopulations; (C) Phylogenetic tree of the six subpopulations; (D) Kinship heat map. 

 

Furthermore, we re-constructed the phylogenetic tree of the 263 inbred lines. The 

result validated the population structure of the inbred lines achieved above that the 263 maize 

inbred lines consisted of six subpopulations (Fig. 4C). Finally, the heat map of the kinship 
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matrix suggested that the genetic backgrounds of the inbred lines were not uniformly 

distributed (Fig. 4D). Therefore, it is included that the population structure and kinship matrix 

should be included in the GWAS to false positives. 

 

4.4. Genome-wide Association Study (GWAS) 

We first estimated the LD decay. According to the coefficient square of correlation 

(R2) between each marker pairs, we found that the density of SNP markers was highly enriched 

within 100,000 bp (Fig. 5 Upper) and that the genome-wide LD decayed rapidly within 5,000 

base pairs (Fig. 5 Lower). The LD-decay distances are usually affected by the domestication 

level and population structure of plant lines used. Since the inbred population we used are 

highly diverse, it is possible that the LD decay distance is relatively small. Maize has an 

average genome size of 2.5 Gb. As maize has an average genome size of 2.5 Gb, its genome 

likely contains approximately 500,000 LD decay segments (2.5 Gb/5kb = 500,000). Thus, the 

1,553,207 SNP marker density should be enough to capture genes or loci controlling the ear 

traits.  
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Figure 5 (A) Marker Density Plot; (B) Linkage Disequilibrium decay plot. 
 

The GLM are constructed in GAPIT. The MLM are generated both in GAPIT and 

GEMMA. We further evaluated the fitness of each model based on Q-Q plot. The fitness of 

GLM shows a quite great pattern with observed P-value deviate above the expected values 

(Fig. 6). However, in MLM, the observed P-values are distributed below our expectations 

(Fig. 7) According to that, the MLM is suspected to be over-corrected and thus not suitable 

for our data. To see if this pattern only exists in GAPIT, MLM was also constructed using 
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GEMMA. Same over-corrected patterns were observed from the new MLM (Fig. 8). Since 

GLM shows a better fit, QTLs are screened based on this model. 

 

 

Figure 6 Manhattan plots and Q-Q plots of GWAS GLM model generated by GAPIT. 
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Figure 7 Manhattan plots and Q-Q plots of GWAS MLM model generated by GAPIT. 



 

23 

 

 
Figure 8 Manhattan plots and Q-Q plots of GWAS MLM model generated by GEMMA. 
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With the GLM, two SNPs were identified to be associated with KR at -log(P-value) = 

7.04 and 6.80, respectively, or FDR-adjusted P-value = 0.123 (Table 3). One SNP was 

identified to be associated with ED at -log(P-value) = 7.06 or FDR-adjusted P-value = 0.134. 

The two SNPs associated with KR were located at Positions 103416743 and 103416737 of 

Chromosome 3 (Fig. 9). The SNP associated with ED was located at Position 116703054 of 

Chromosome 4. 

 
Table 3 Summary of SNPs that are associated with ear traits. 

 

 

 

 

 

 

Figure 9 Manhattan plot on chromosome 4 and chromosome3. Red circled showing 
significant SNPs. 

 
 

SNP Chr Position  P-value maf nobs FDR P-values Trait 

3.103416743 3 103416743 9.16E-08 0.14 225 0.123096369 KR 

3.103416737 3 103416737 1.60E-07 0.14 225 0.123096369 KR 

4.116703054 4 116703054 8.71E-08 0.46 225 0.133687704 ED 

4.11670
3.10341

3.10341
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Near the SNP 3.103416743 and 3.103416737, two unannotated genes were detected 

within 20kb (Table 4). One SNP related to Plant Height were found to be previously observed 

in the same population. 3 unannotated genes were identified near the SNP 4.116703054. Two 

SNPs were also called near this SNP in the same population. 

 

Table 4 Genes and SNPs that are located near the QTLs. 

 
 
 

 

SNP Name Type Position Distance 

3.103416743 Zm00001e017879 gene chr3:103383572..103400198  16545 

3.103416743 Zm00001e017880 gene chr3:103617774..103618178 201031 

3.103416743 Height_per_day SNP chr3:103387298..103387397  29346 

4.116703054 Zm00001e022679 gene chr4:116640546..116642544 62508 

4.116703054 Zm00001e022680 gene chr4:116640546..116642544 62508 

4.116703054 Zm00001e022681 gene chr4:116854247..116856347  151193 

4.116703054 Nodes_to_ear SNP chr4:116792354..116792453  89300 

4.116703054 Sucrose SNP chr4:116967543..116967642  264489 
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5. DISCUSSION 

 

5.1. Phenotypic Data 

Among seven ear traits, ear length, ear diameter and cob diameter have a relatively 

high broad-sense heritability as 0.81, 0.84 and 0.87 respectively. The results are in accordance 

with the previous studies where broad-sense heritability (Hm2) was calculated as 0.87, 0.78, 

and 0.82(39). It further proved that the performance of these three traits are quite stable and 

mainly affected by genotypic variance. In contrast, the other traits with low heritability are 

largely affected by the environmental factors as well as the measurement approaches. In this 

study, two environmental factors are counted toward the total variance of phenotypic data. In 

the BLUP model, we observed that the effect of multiple locations is much bigger than that of 

the years. In grain weight data, variation explained by the locations are about 8-fold larger 

than the variation explained by years (Table 5). Similar fractions are also observed in other 

traits. It should have implied that our two experimental fields College Station and Lubbock 

have quite large environmental differences that caused the large variation through different 

locations. 
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Table 5 Variance of random effects in GW BLUP model. 
 

 

 

 

 

 

 

 

 

5.2. Population Structure 

The phylogenetic tree of 263 maize inbred lines showed similar patterns with previous 

studies(50). The figure was derived from DNA microsatellites or simple sequence repeats 

(SSRs) on 260 inbred lines. Non-Stiff Stalk, Stiff Stalk and Tropical-Subtropical constitute 

the majority subtypes of the whole population, in which Non-Stiff Stalk has a mixed pattern 

with popcorn and sweetcorn. Besides that, the PCA and Structure results also indicate the 

above clustering subtypes. Such good agreement of pedigree information of maize inbred lines 

provides the solid foundation for downstream association analysis. 

 

5.3. Mapping Quality 

The missing data rate in the mapped sequences are quite high. This can be due to the 

low coverage of the sequencing depth or to the low representative of mono-reference. A 

definition of pangenome was previously put out that all strains of a species only share a certain 

Groups Variance SD 

SRR:Year 43.28 6.578 

SRR:Loc 31.4 5.604 

SRR 79.89 8.938 

Year 20.74 4.555 

Loc 114.65 10.707 

Residual 66.90 8.179 
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amount of genome(57). The genes appeared in all strains are considered as core genome, while 

those only exist in some strains are called dispensable genome. The feature of pangenome has 

been revealed in various crops including maize, rice, soybean and wheat. In plants, the core 

genome represents only 40 to 80% of the total pangenome. Evidence from maize further 

showed that only half of the genomic structure of B73 and Mo17 was conserved between two 

individuals(58). Single reference may neglect many information that can be captured by 

dispensable genome(59). Thus, the B73 assembly reference we used in this study may be 

insufficient to cover all the genes shared with multiple subtypes, thereby producing high 

missingness after mapping. It can be optimized if we get access to the de novo assembly 

pangenome reference to identify variations across different strains. 

 

5.4. Selection of Candidate Genes 

The FDR and Bonferroni corrections are the two widely used approaches for 

correcting false positive rates in the multiple hypothesis testing. However, relevant studies 

have shown that the thresholds for GWAS should be flexible and depend on many factors 

such as LD and MAF (60). The traditional Bonferroni correction methods 0.05/n are 

considered to be too conservative for GWAS and may abandon true positive results by 

assuming all the individuals are independent(61). In the cases of having large data set, many 

people prefer to use FDR for correcting multiple hypothesis testing. In this study, we used a 

threshold of -log10(P-value) = 7 to identify the top associated genes. This value was set 

according to a looser Bonferroni Threshold 0.1/n (n=1,553,207). 
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In the above threshold, we captured 5 candidate genes that are in the LD distances of 

QTLs. However, the functions of those genes haven’t been characterized yet. By using 

sequence information to conduct nucleotide blast, I still haven’t been able to find homolog 

genes. Thus, particular experimental analysis is further required to identify the function of the 

candidate genes, and validate their associations. 
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6. CONCLUSION 

 

In this study, we phenotyped seven ear traits in 225 maize core association panels 

across three years and two locations. Set the B73 assembly as single reference, we successfully 

genotyped 263 inbred lines. After filtering, we totally got 1,553,207 SNPs. Population 

structure analysis based on the SNP data indicated a clear clustering pedigree information of 

U.S. core maize germplasms with six subtypes: NSS, SS, TS, Sweet corn, popcorn and mixed. 

Using a General Linear Model with kinship matrix as covariates, we identified 3 associated 

QTLs at significance level -log10(P-value) = 7: two associated with KR and one with ED. 5 

candidate genes were found near the three QTLs. The function of specific genes can be further 

validated by experimental approaches. These genetic markers in the core maize inbred lines 

can be further utilized in genomic prediction and molecular breeding, thereby facilitate the 

breeding process. 
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