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ABSTRACT 

 

Background: Air pollution is a leading contributor to the burden of disease globally. 

Recent systematic reviews suggested that air pollution may cause diabetes mellitus among 

adults. However, the number of studies included in these reviews were small and the confidence 

intervals were wide. Leading health practitioners have called on studies to quantify the burden of 

disease due to air pollution and examine health disparities associated with such burden. In 

response, our study aims to update previous reviews with recent studies and to quantify the 

burden of diabetes due to air pollution in the United States (US) while examining health 

disparities. 

Method: We conducted a systematic review and meta-analysis of studies examining 

exposure to air pollution in the form of  Nitrogen dioxide (NO2), Black Carbon (BC), and Ultra 

Fine Particles (UFP) and the risk of developing diabetes mellitus among adults. Using joined the 

concentration-response function of the pooled estimate with air pollution, census, and diabetes 

prevalence and incidence across the US to produce burden estimates. We explored health 

disparities across geographical and social stratum. Finally, we developed accessible interactive 

maps and tables to visualize and explore the burden of disease across counties. 

Results: Our search yielded 21 studies included in our analysis. We found that exposure 

to NO2 increased the risk of developing diabetes among adults OR = 1.05 [1.04-1.05, I2 = 95%] 

per 10 µg/m3 unit increase. For BC and UFP, we could not reach a similar conclusion since the 

number of included studies was small. We estimated that around 5,978,048 prevalent and 213, 

641 incident diabetes cases may be attributable to air pollution exposure representing 28.1% and 

11.0% of all diabetes prevalent and incident cases, respectively. The fraction of attributable cases 
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were higher in urban areas compared to rural areas, and in census blocks with a predominantly 

Asian population and lower-income groups. 

Conclusion: This study updates the current knowledge of exposure to air pollution and 

the risk of developing diabetes mellitus, quantifies the burden of disease to air pollution 

exposure, explores the health disparity associated with the burden of disease, and presents 

interactive tools that make our results accessible. 
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NOMENCLATURE 

DM  Diabetes Mellitus 

IDF International Diabetes Federations 

US  United States 

CDC Centers for Disease Control and Prevention 

BMI Body mass index 

ROS Reaction oxygen species 

TRAP  Traffic-related air pollution 

NOx Nitrogen oxides 

NO2 Nitrogen dioxide 

O2  Oxygen 

CO2 Carbon dioxide 

CO  Carbon monoxide 

HC  Hydrocarbons 

PM  Particulate matter 

BC  Black carbon 

UFP Ultra-fine particles 

GBD Global burden of disease 

SES Socioeconomic status 

RR  Relative risk 

OR Odds ratio 

HbA1C  Hemoglobin A1C 

LUR Land use regression  
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USDSS  United States Diabetes Surveillance System  

BRFSS  Behavioral Risk Factor Surveillance System  

EPA Environmental Protection Agency  

GIS Geographical information systems  

CRF Concentration-response function 

AF Attributable fraction 

AC Attributable cases 
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1.  INTRODUCTION 

1.1 Background 

 Diabetes Mellitus  

Diabetes mellites (DM) are a group of metabolic disorders characterized by elevated 

blood glucose levels (hyperglycemia) over prolonged periods that occurs due to a defect in 

insulin secretion, action or both (WHO, 2019). Diabetes presents with multiple signs and 

symptoms including excessive thirst, excessive urination, excessive hunger, weight loss, and 

blurred vision. In many cases, the diagnosis goes undetected for several years. Diabetes increases 

the risk of all-cause mortality and the development of adverse health outcomes spanning multiple 

organ systems. Adverse outcomes of the cardiovascular system include coronary artery disease, 

myocardial infarctions, stroke, atherosclerosis, and loss of limbs (ADA, 2003; Fox et al., 2004; 

Lotufo et al., 2001; Lundberg et al., 1997; Miettinen et al., 1998; Murabito et al., 1997). Adverse 

outcomes of the neurological system include peripheral neuropathy, depression, dementia, and 

Alzheimer’s disease (R. J. Anderson et al., 2001; Biessels et al., 2006; Boulton et al., 2005). 

Diabetes is also a leading cause of renal damage, end-stage renal disease, retinopathy, and 

blindness (Brancati et al., 1997; Fong et al., 2004). Diabetes causes immunosuppression 

increasing the risk of contracting infectious diseases including tuberculosis. Around 15% of 

tuberculosis infections globally are linked to diabetes (Kim et al., 1995; Stevenson et al., 2007; 

WHO, 2019). 

 Epidemiology 

Diabetes is increasing globally. The International Diabetes Federation (IDF) estimated 

451 million people (18-99 years) were living with diabetes in 2017 (Cho et al., 2018). Half of the 
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451 million cases aren’t aware they have diabetes. The prevalence of diabetes varies across 

regions. In Africa, it is around 4.4%, while in North America and the Caribbean it reaches 11%. 

With current trends, it is expected the number of cases will reach 693 million by 2045. 

Moreover, the IDF estimated that in 2017, 374 million people were living with prediabetes, also 

known as impaired glucose tolerance (Cho et al., 2018). In the United States (US), the Centers 

for Disease Control and Prevention (CDC) estimated that in 2017, 30.3 million people were 

living with diabetes and 84.1 with prediabetes. One in every four individuals with diabetes in the 

US is not aware that they are diabetics, while nine out of every 10 do not know they have 

prediabetes (CDC, 2017b).  

 Burden 

The health impact and cost of diabetes is a growing burden. In 2017, around 5 million 

global deaths among adults (20-99 years) were attributable to diabetes, representing 9.9% of the 

global all-cause mortality among the same age range (Cho et al., 2018). In terms of health care 

expenditure, the IDF estimates that around $850 billion has been spent globally in 2017 due to 

diabetes among those aged 18-99, while expenditure is expected to increase to $958 billion by 

2045 (Cho et al., 2018). In the US, the estimated total cost due to diabetes increased from $248 

billion in 2012 to $327 billion in 2017. Of the total US cost due to diabetes, direct medical cost 

increased from $176 billion (2012) to $237 billion (2017) which includes hospital inpatient care, 

prescription medication, diabetes supplies, and healthcare office visits. The cost of lost work 

time and wages increased from $69 billion (2012) to $90 billion (2017)(ADA, 2018; CDC, 

2017b).  
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 Pathophysiology 

The body maintains blood glucose levels by regulating several hormones, most notably 

insulin which lowers the blood glucose, and glucagon which increases blood glucose levels. 

When blood glucose levels increase, the β-cells in the islets of Langerhans in the pancreas are 

triggered to secrete insulin in the blood. Insulin lowers blood glucose levels by promoting the 

transfer of glucose from the blood into fat and muscle cells. Diabetes occurs when there is either 

a deficiency of insulin secretion, or the body becomes insensitive to secreted insulin. Multiple 

mechanisms can lead to diabetes including genetic predisposition, auto-immune diseases, 

inflammation, and environmental factors (WHO, 2019).  

 Diagnosis and Classification 

Diabetes is diagnosed using either of the following methods: a) random blood glucose ≥ 

200 mg/dl (≥ 11.1 mmol/L) with the presence of signs and symptoms of diabetes, b) fasting 

blood glucose ≥ 126 mg/dl (≥ 7.0 mmol/L), c) two-hour postprandial blood glucose ≥ 200 mg/dl 

(≥11.1 mmol/L), or d) Hemoglobin A1C ≥ 6.5%. If blood glucose levels are elevated without 

signs and symptoms of diabetes, repeated testing is warranted to confirm the diagnosis (ADA, 

2019b; WHO, 2019).  

Diabetes is a heterogeneous disease with hyperglycemia as a common feature. There are 

multiple subtypes of diabetes with different etiology, natural history, pathophysiology, disease 

consequences, and treatment (Leslie et al., 2016). However, due to resource limitations, a simple 

system for classifying diabetes takes into account the clinical and management setting only 

(ADA, 2019a; WHO, 2019). The main classifications of diabetes are a) type 1 diabetes, b) type 2 

diabetes, c) other or special types of diabetes, and d) gestational diabetes. Type 1 diabetes is 

caused by an autoimmune reaction leading to the destruction of insulin-secreting β-cells in the 
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pancreas. Insulin secretion eventually drops until glucose control becomes impaired(Atkinson et 

al., 2014). The degree of insulin secretion depletion can happen progressively over time or 

abruptly. In many cases, diabetes is first identified when patients present with ketoacidosis which 

is a life-threatening condition due to insufficient levels of insulin in the body (Wolfsdorf et al., 

2009). Patients with type 1 diabetes are insulin-dependent and need daily insulin intake to 

maintain normal blood glucose levels for survivability(Daneman, 2006).  The incidence and 

prevalence of type 1 diabetes are generally not known. However, studies have shown the 

prevalence is increasing worldwide due to the increase in survivability of patients with type 1 

diabetes because of the wide availability and accessibility of treatment (Dabelea et al., 2014; You 

et al., 2016). Although type 1 can develop at any age, it occurs more frequently among children 

and adolescents (Dabelea et al., 2014). Type 2 diabetes occurs when the body becomes 

insensitive to insulin due to a dysfunction in β-cells. In many cases, this is followed by a drop-in 

insulin secretion over time. Although patients with type 2 diabetes initially do not require insulin 

treatment to survive, it is often the case that insulin secretion becomes increasingly deficient 

making exogenous insulin intake necessary (Weyer et al., 1999). Type 2 diabetes accounts for 

more than 90% of diabetes cases globally (WHO, 2019). Type 2 diabetes is more common in 

adults, however, it is becoming increasingly diagnosed among children (WHO, 2016b). Special 

and other types of diabetes are rare and include the following: monogenic diabetes syndrome, 

diabetes initiated due to illnesses affecting the function of the pancreas, chemical-induced 

diabetes, and other types (ADA, 2019b; WHO, 2019). Finally, gestational diabetes is defined as 

diabetes first diagnosed during the second or third trimester of pregnancy.  
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 Etiology 

Diabetes can be caused by both modifiable and non-modifiable risk factors (Baker et al., 

2011; Forouzanfar et al., 2016; Howells et al., 2016; Vazquez et al., 2007). Non-modifiable risk 

factors include genetic predispositions, family history, age, and gender. Modifiable risk factors 

include lifestyle (eating habits, physical activity), increased body mass index (BMI), and 

smoking. Recently, there has been emerging evidence that indicates exposure to air pollution 

might increase the risk of developing diabetes (Eze et al., 2015; Landrigan et al., 2018; Wang et 

al., 2014). The mechanism in which air pollution impacts human health is by oxidative 

stress(Health Effects Institute, 2010). Oxidative stress occurs when an imbalance between pro-

oxidants and anti-oxidants occurs, leading to the release of reaction oxygen species (ROS) also 

known as "free radicals". ROS alter the biological structure of the body and cells through the 

activation of signaling pathways that trigger inflammation leading to target cells and organ 

damage (Sies, 1997). In-vitro and In-vivo studies show that exposure to air pollutants promotes 

the release of ROS (Olefsky et al., 2010; Shoelson et al., 2006). Oxidative stress also damages 

systems linked to glycemic control, possibly leading to diabetes. Mice exposed to PM2.5 develop 

several body changes including visceral inflammation (Sun et al., 2009), altered energy 

metabolism (C. Liu et al., 2014), and increased hippocampal inflammation which may lead to 

dysregulation of metabolic control and insulin resistance (Fonken et al., 2011) (Table 1-1) 

 Traffic-Related Air Pollution and Exposure Assessment 

Ambient air pollution is sourced from industry, mining, agriculture, electric generation, 

and motor vehicle combustion (Forouzanfar et al., 2016; Prüss-Üstün et al., 2016). It is a major 

source of the burden of health. A more specific type of ambient air pollution is Traffic-related air 

pollution (TRAP). TRAP is primarily sourced from motor vehicles in areas with a high 



 

6 

 

aggregation of motor vehicles and people. TRAP is a major source of ambient air pollution 

(Health Effects Institute, 2010). Motor vehicles emit large quantities of chemicals from 

combustion and non-combustion processes. Combustion processes result from the burning of a 

fuel source. Chemicals emitted include carbon dioxide (CO2), carbon monoxide (CO), nitrogen 

oxides (NOx), hydrocarbons (HC), particulate matter (PM), and other chemicals. non-combustion 

emissions are from wear and tear of the vehicle, tires, brakes, road, oil spills, and resuspension of 

air particles from the ground by moving vehicles. Emissions of non-combustion sources include 

heavy metals, organic materials, PM, among other chemicals (Health Effects Institute, 2010). 

Epidemiological studies use several methods to measure TRAP exposure including a) assigning 

exposure status through buffer zones using a distance to road and/or traffic volume metric, and b) 

measuring or modeling concentrations of chemicals emitted by traffic as surrogates or indicators 

of exposure. Several chemicals are frequently used as indicators of exposure including CO, NO2, 

Ozone, elemental or black carbon (BC), PM, and ultra-fine particles (UFP). Chemicals have 

different characteristics with varying degrees of specificity to TRAP as a competing source of air 

pollution. Of these chemicals, NO2 and black carbon are more specific compared to others like 

PM (Health Effects Institute, 2010).  

1.2 Study Rational 

 Systematic Review and Meta-Analysis 

Air pollution is a leading cause of mortality and morbidity around the globe (Landrigan et 

al., 2018). Multiple studies indicate that exposure to air pollution causes multiple 

noncommunicable diseases and increases all-cause mortality (Bateson et al., 2004; Beelen et al., 

2009a; Beelen et al., 2007). Non-communicable diseases include cardiovascular diseases (Brook 

et al., 2004), respiratory diseases (H. Anderson et al., 2011, 2013; Brauer et al., 2002; Gowers et 
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al., 2012; Khreis et al., 2017), renal (Bowe et al., 2018b), and other non-communicable diseases 

(Health Effects Institute, 2010). Studies examining exposure to air pollution and the development 

of diabetes mellitus have increased recently (Balti et al., 2014; Eze et al., 2015; Wang et al., 

2014). Wang et al. (2014) conducted a review of 10 cohort studies examining the effect of long-

term exposure to particulate matter <2.5 PM2.5, PM10, and NO2 and the risk of developing type 2 

diabetes before 2014. The studies included controlled for important risk factors including age, 

gender, BMI, smoking status, physical activity, and socioeconomic status. The review concluded 

that there was positive evidence of the adverse effect of long-term exposure to air pollution and 

the risk of developing type 2 diabetes. Balti et al. (2014) conducted a review examining exposure 

to NO2, PM2.5, and PM10 and the risk of type 2 diabetes. The review included 10 studies 

concluding that there was a positive association between pollutants and diabetes. Eze et al. 

(2015) conducted a review examining only studies conducted in North America or Europe. The 

review included 7 studies and concluded that there is a positive association between exposure to 

NO2 and PM2.5  and the risk of developing diabetes. However, the number of studies included in 

all the previous reviews for each pollutant was limited in number and confidence intervals of the 

effect measures were relatively wide with a high level of heterogeneity. Since 2014, several 

studies have been published examining the association between air pollution exposure and the 

risk of developing diabetes. The rationale for our study is to incorporating recently published 

data by conducting a systematic review and meta-analysis thus updating the current state of 

knowledge regarding exposure to air pollution and the risk of developing diabetes. 

 The Burden of Diseases Assessment and Health Disparity 

 According to the global burden of disease (GBD) report, there were an estimated 6.5 

million deaths in 2015 attributable to air pollution exposure. Of these deaths, 4.2 million were 
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attributable to ambient air pollution (Forouzanfar et al., 2016). The trend of mortality due to 

ambient air pollution is projected to increase by more than 50% by 2050 without the necessary 

intervention (Lelieveld et al., 2015). The costs associated with adverse health outcomes due to 

air pollution are growing and burdening economic systems around the world. However, air 

pollution prevention can reverse the impact on the economic system. In the US it was estimated 

that for every dollar spent on preventing and mitigating air pollution a return of $30 was realized 

(Environmental Protection Agency, 2011). The burden of disease from air pollution affects 

individuals and countries of lower socio-economic indexes to a greater magnitude compared to 

individuals and countries of a higher socio-economic index. It is estimated that more than 89% of 

deaths due to ambient air pollution occurred in low-income and middle-income countries in 2015 

(Forouzanfar et al., 2016).  

The literature on the burden of air pollution on human health is limited. A recent 

commission by health experts “The Lancet Commission on pollution and health” has called on 

studies to quantify the burden of air pollution on health (Landrigan et al., 2018). Recent advances 

in air pollution monitoring techniques and the availability of easily accessible air pollution and 

health data at fine geographical levels make assessing the burden of disease possible on a large 

scale. Our rationale for conducting a burden of diabetes due to air pollution is to fill the 

knowledge gap on the magnitude of the burden of diseases due to air pollution and to assess 

whether health disparities exist. We also believe that the burden of disease data should be easily 

accessible and thus we aim to create interactive tools that are easy to use and are accessible for 

researchers and the general population to explore the burden of air pollution.  
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1.3 Aims and Objective 

Aim 1: Assess whether exposure to air pollution increases the risk of developing diabetes 

mellitus among an adult population. 

Objective 1.1: Conduct a systematic review and meta-analysis on studies examining 

exposure air pollution measured in the form of NO2, BC, or UFP and the risk of developing 

diabetes mellitus among adults. 

Aim 2: Quantify the burden of disease of diabetes mellitus due to air pollution exposure 

in the United States. 

Objective 2.1: Estimate the number of prevalent and incident diabetes cases attributable 

to air pollution exposure in the United States. 

Objective 2.2: Estimate the fraction of prevalent and incident diabetes cases attributable 

to air pollution exposure in the United States. 

Objective 2.3: Compare the burden of diabetes attributable to air pollution exposure by 

state, county, and urban vs rural areas. 

Aim 3: Evaluate the health disparities of the burden of diabetes due to air pollution in the 

United States. 

Objective 3.1: Compare the burden of diabetes attributable to air pollution exposure by 

median household income and race. 

Aim 4: Create accessible interactive tools to visualize and explore the health burden 

across the United States. 

Objective 4.1: Create an interactive map showing the burden of disease by county. 

Objective 4.2: Create an interactive lookup table summarizing the burden of disease by county.  
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Table 1-1: Toxicological mechanism 

 

  

Pollutant 

Exposure 
Effect 

Oxidative stress.  

Black carbon and 

diesel-exhaust 

PM 

Increased expression of heme-oxygenase (oxidative-stress-response gene) 

(Koike et al., 2006). 

PM2.5 
Curbside PM2.5 had a higher ROS generation than PM2.5 from an urban 

background location (Baulig et al., 2004). 

Gasoline exhaust 
Increased expression of mRNA for proteins related to oxidative stress 

(Lund et al., 2006). 

Immune 

Air pollution  
Potentiated inflammation might lead to insulin resistance in mice (Sun et 

al., 2009). 

Liver 

PM2.5 

Mice exposed to PM2.5 developed non-alcoholic steatohepatitis (NASH) - 

like phenotype, hepatic steatosis, inflammation, and fibrosis. Also, 

impaired glycogen storage, glucose intolerance, and insulin resistance 

(Zheng et al., 2013). 

Adipose and metabolism 

PM2.5 

Mice exposed to PM2.5 had altered energy metabolism, O2 consumption, 

CO2 production, and thermogenesis. These changes were accompanied by 

insulin resistance, visceral adipose tissue, and inflammation. Also, the 

expression of inflammatory genes leading to decrease expression of 

brown adipose tissue (C. Liu et al., 2014). 

CNS 

PM2.5 
Increased hippocampal inflammation which is hypothesized to result in 

dysregulation of metabolic control (Fonken et al., 2011). 

PM2.5 
Increased sympathetic activation may involve hypothalamic inflammation 

(Ying et al., 2013). 

Other 

Ozone 
Increased plasma endothelin-1 resulting in endothelial dysfunction and 

vasoconstriction (Vincent et al., 2001). 

Diesel  
Impaired blood flow and systemic regulation of vascular dilatation 

responses (Mills et al., 2005). 

CO 
Competes with O2 resulting in tissue hypoxemia and impaired cellular 

function (Allred et al., 1989). 
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2. SYSTEMATIC REVIEW AND META-ANALYSIS 

2.1 Introduction 

Diabetes is a group of chronic metabolic diseases characterized by elevated blood glucose 

levels caused by defective insulin secretion from the pancreases, insensitivity to secreted insulin, 

or both (WHO, 2019). Diabetes has several modifiable non-modifiable risk factors including 

genetic predisposition, an increase in body mass index, smoking, and a sedentary lifestyle to 

name a few. Recent studies have linked diabetes with exposure to air pollution (Brook et al., 

2008b). The mechanism believed to be responsible for such a link is oxidative stress, in which air 

pollution causes the release of free radicles which then trigger inflammation of organs that are 

involved in the glycemic control within the body including altering the energy metabolism, 

hippocampal damage, liver changes, and nervous system alterations (Table 1-1). Systematic 

reviews and meta-analysis have shown that air pollution exposure in the form of NO2, PM2.5, and 

PM10 are possibly associated with an increased risk of developing diabetes among adults (Balti et 

al., 2014; Eze et al., 2015; Wang et al., 2014). However, the number of included studies were 

small, and the confidence intervals were wide. We aim to update previously published meta-

analysis by including more recent literature on air pollution exposure and the risk of developing 

diabetes mellitus in the form of NO2. We will also search for other pollutants not examined in 

previous reviews including UFP and BC.  
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2.2 Methods 

 Study Question and Eligibility Criteria 

The objective of the study is to answer the following question: “Does exposure to air 

pollution in the form of NO2, UFP, or BC increase the risk of type 2 diabetes mellitus among 

adults?”. We used the following eligibility criteria:  

• Population: Studies that included a non-institutionalized adult population ≥18 years of age. 

• Exposure: Studies investigating exposure to air pollution in the form of NO2, BC, or UFP 

measured as a continuous exposure.  

• Type of study: Observational studies including cohort, case-control, or cross-sectional 

studies. 

• Outcome: Studies that report or assume type 2 diabetes mellitus as the outcome will be 

included. Diagnosis of diabetes can either be self-reported, lab-based, or using secondary 

data sources. 

 Search Method 

We searched the electronic databases MEDLINE, EMBASE, Transportation Research 

Information Services (TRIS) Database and the OECD's Joint Transport Research Centre's 

International Transport Research Documentation (ITRD) for literature published up to Oct 30, 

2019, using the following terms: “nitrous oxide”, “nitrogen dioxide”, “NO2”, “black carbon”, 

“carbon black”, “soot”, ultrafine particles”, “ultrafine particulate”, “UFP”, “UFPS”, “diabetes”, 

and “diabetes mellitus” (see Appendix). Reference lists of included studies were hand-searched 

for additional eligible studies.  
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 Study Selection 

We conducted a title/abstract screening for duplication and eligibility using Rayyan – a 

software to organizing and working with systematic reviews (Ouzzani et al., 2016). Studies 

measuring human exposure to NO2, BC, and UFP and risk of diabetes mellitus were eligible for a 

full-text review. We excluded studies for the following reasons: 

• Not observational (i.e. reviews, reports, or letters). 

• Only examined childhood or maternal exposure (i.e. pregnancy), institutionalized populations 

(i.e. nursing homes and prisons), industrial, agricultural, or indoor-only exposures.  

• Conducted on non-human subjects (i.e. animals, or tissue). 

• Exposure to NO2, BC, UFP was not measured, or estimated, for the individual (i.e. using 

national mean levels of exposure). 

• Diabetes status was not assessed. 

 Data Extraction 

We extracted detailed information on study design, population characteristics, exposure 

assessment, outcome assessment, and risk of bias information from each included study (see 

below for a description of each criterion). Study authors were contacted in case data were 

missing for the analysis.  

• Study design: years of study, location, type of study, study objective, funding source, source 

population. 

• Population characteristics: age of the population, female (%), total participants, number of 

cases.  

• Exposure assessment: pollutants, exposure definition, exposure assessment method, exposure 

summary. 
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• Outcome assessment: type of diabetes examined, source, outcome definition, outcome 

measure reported.  

 Risk of Bias Assessment 

We adapted the navigation guide methodology (Johnson et al., 2014) for the following; a) 

assessing the risk of bias, b) rating the quality of evidence, and c) measuring the strength of 

evidence. The risk of bias of each included study was assessed individually across eight 

domains; recruitment, blinding, exposure assessment, confounding, incomplete outcome data, 

selective outcome reporting, conflict of interest, and other sources of bias. The rating of each 

domain was assigned as either “low risk”, “uncertain”, or “high risk” using a predetermined form 

(see Appendix). To assess the overall quality of the body of evidence an initial rating of 

“moderate” was assigned (Balshem et al., 2011; Viswanathan et al., 2012) then either upgraded 

or downgraded based on several considerations including:  

• Downgrading: risk of bias across studies, indirectness, inconsistency, imprecision, 

publication bias. 

• Upgrade: the large magnitude of the effect, dose-response, confounding minimizes effect, 

overall quality of evidence. 

Finally, the overall strength of the body of evidence was evaluated based on the following four 

factors: a) quality of the body of evidence; b) direction of effect estimate; c) confidence in effect 

estimate; and d) other attributes of the data that may influence certainty (IARC, 2006; Sawaya et 

al., 2007). 

 Statistical Methods 

We used a fixed-effects model as the main pooling method for the effect estimates. The 

null hypothesis was as follows:  
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Ho: The common effect size =  1. 

We also reported the pooled estimates using a random-effects model as a sensitivity measure, in 

which the null hypothesis was as follows: 

Ho: The mean effect size =  1 

The fixed-effect model assumes only one source of variation, variation between the 

observed mean and a true mean shared by all studies. The random effect model has two sources 

of variation; a) variation between the observed mean and a true mean for each study, and b) 

variation between the true mean of a study and a grand mean (Borenstein et al., 2010). We 

reported heterogeneity with the I2 metric and the between-study variance with the Tau2 using the 

DerSimonian and Laird method (DerSimonian et al., 1986). 

 The Combined Effect, Weighting Scheme, and Uncertainty Measure 

The combined effects were estimated by taking the weighted mean effect across all 

studies (𝑌) using the following formula (Borenstein et al., 2010): 

Y =  
∑ WiYi 

k
i=1

∑ Wi
k
i=1

 

Where  

• Wi = inverse variance weight for study i  

• Yi = Observed effect of study i 

• k = the number of studies 

The inverse variance weight (Wi) has two sources of variation; the within-study variance 

(Vi), and the between-study variance (T2) using the following formula: 

Wi =  
1

Vi +  T2
 

The within-study variances (Vi) is estimated as follows:  
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Vi =  
σ2

n
 

• σ2 = variance of individual observations in the sample 

• n = sample size 

The between-study variance (T2) is estimated as follows: 

T2 =  
Q − df

C
 

In which (Q) is the weighted squared difference between the observed effect (Yi) and the 

weighted mean effect (Y): 

Q =  ∑ Wi(Yi − Y)2 =

k

i=1

∑
(Yi − Y)2

Vi

k

i=1

 

The degrees of freedom (df) is as follows: 

df = k − 1 

While the denominator (C) is as follows: 

C =  ∑ Wi −
∑ Wi

2

∑ Wi
 

We estimate a 95% lower and upper confidence intervals using the standard error (SEY) of the 

weighted mean effect (Y) as follows: 

SEY = √VY 

where (VY) is the meta-analysis error variance: 

VY =
1

∑ Wi
k
i=1

 

and lower and upper 95% confidence intervals:  

Lower and Upper 95% CI = Y ± 1.95 ∗ SEY 
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 Effect Measure Selection 

We considered the reported odds ratios as equivalent to risk ratios. In our main analysis 

when studies reported more than one effect measure, we selected the “main model” or “fully 

adjusted model”. If these were not reported than the choice of the model was as follows: 

• If more than one exposure model was reported, we chose the land-use regression model 

followed by the dispersion model. 

• If multiple exposure durations were reported then longer exposure durations were chosen 

over shorter exposure durations. 

• The most restrictive model in terms of adjustments was selected. 

• The most inclusive in terms of population (i.e. both genders vs one gender, all age groups vs 

limited age group). 

• Single pollutant model over multipollutant models. 

NO2 concentrations reported in “ppb” were converted to “µg/m3” using the following 

formula (WHO, 2016a): 

Concentration (μ/m3) = 0.0409 ∗ concentration(ppb) ∗ molecular weight 

≈ concentration(ppb) ∗ 1.88 

Further, reported effect measures were standardized by converting the reported exposure 

increments to standardized increments as follows: 

• NO2;  Per 10 ug/m3 

• BC; Per 10-5/m 

• UFP; Per 104 count/cm3 

Using the following formula: 

OR(standardized) = reported OR(standardized increment/reported increment) 
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 Subgroup and Sensitivity Analysis 

We conducted subgroup analysis for the following variables; minimum age of inclusion 

in the study, gender, location of the study, exposure model used, incidence vs prevalence, and 

diabetes ascertainment source. In case studies reported more than one effect measure that 

includes subgroups (i.e. reported effect measure by gender and an effect estimate by separate 

exposure models) we extracted the reported effect measure for each subgroup separately. 

Sensitivity analysis was conducted using a funnel plot and a linear regression test of funnel plot 

asymmetry also known as Egger’s test (Egger et al., 1997). We also tested whether adding a new 

study would potentially shift the combined effect estimate to a) overlap the confidence interval, 

and b) cross the null value (Johnson et al., 2014). All analysis was conducted using R (R Core 

Team, 2019) and the “meta-package” (Schwarzer et al., 2012).  

2.3 Results 

 Search Results and Study Characteristics 

The database search yielded 243 articles of which 9 were duplicates (Figure 2-1). 193 

articles were excluded after the title and abstract screening. Full-text review of 41 articles 

returned 22 studies that met our inclusion criteria and 21 included in the quantitative analysis. Of 

the 22 included studies, 10 reported a longitudinal design (Andersen et al., 2012b; Bai et al., 

2018; C. Clark et al., 2017; Coogan et al., 2016; Eze et al., 2017; Hansen et al., 2016; Honda et 

al., 2017; Krämer et al., 2010; Lazarevic et al., 2015; Renzi et al., 2018), 11 cross-sectional 

(Dijkema et al., 2011; Eze et al., 2014a; Howell et al., 2019; Li et al., 2017; F. Liu et al., 2019; 

O'Donovan et al., 2017; Orioli et al., 2018; Riant et al., 2018; Shin et al., 2019; Yang et al., 

2018), and 1 case-control (Brook et al., 2008b) (Table 2-1). Regarding the location of studies, 7 

of the studies were conducted in North America (4 in Canada; 3 in the US), 11 studies in Europe 
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(1 in Germany, 2 in the Netherlands, 2 in Italy, 2 in Denmark, 2 in Switzerland, 2 in the United 

Kingdom, and 1 in France), 3 studies in Asia (2 in China, and 1 in Korea), and 1 study in 

Australia. The earliest study was available in 2008 (Brook et al., 2008b), and the latest in 

October-2019 (F. Liu et al., 2019). Study exposure measurement periods started from as early as 

1990 (Krämer et al., 2010) to 2017 (F. Liu et al., 2019). The total sample size of all included 

studies was 6,357,054 ranging from 704 (Li et al., 2017) up to 2,496,458 (Howell et al., 2019). 

The total number of reported diabetes cases was 748,812 ranging from 73 reported cases (Li et 

al., 2017) up to 292,086 (Howell et al., 2019). Also, 4 studies only recruited female participants 

(Coogan et al., 2016; Hansen et al., 2016; Krämer et al., 2010; Lazarevic et al., 2015) while the 

remaining studies recruited both males and females (Table 2-1). 

Diabetes was defined using several criteria including self-report, physician diagnosis, 

hospital admission/discharge, anti-diabetic medication prescription and/or intake, and lab testing 

(Table 2-2). The lab testing included the following criteria: Non-fasting blood glucose > 11.1 

mmol/L (≥2 g/L); Fasting glucose ≥7.0 mmol·L−1 (≥1.26 g/L); Two-hour glucose ≥11.0 

mmol·L−1 (≥2 g/L); HbA1c of ≥ 6.5% (48 mmol/mol). 7 studies indicated that type-2 diabetes 

was the main outcome of interest while the remaining studies either did not indicate the type or 

did not differentiate between type-1 & 2 (Table 2-2).  

Regarding exposure of interest, 21 studies examined exposure to NO2 (Andersen et al., 

2012b; Bai et al., 2018; Brook et al., 2008b; C. Clark et al., 2017; Coogan et al., 2016; Dijkema 

et al., 2011; Eze et al., 2017; Eze et al., 2014a; Hansen et al., 2016; Honda et al., 2017; Howell et 

al., 2019; Krämer et al., 2010; Lazarevic et al., 2015; F. Liu et al., 2019; O'Donovan et al., 2017; 

Orioli et al., 2018; Renzi et al., 2018; Riant et al., 2018; Shin et al., 2019; Strak et al., 2012; 

Yang et al., 2018), 4 studies reported exposure to BC or Soot (Bai et al., 2018; C. Clark et al., 
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2017; Krämer et al., 2010; Strak et al., 2012), and 2 studies examined exposure to UFP (Bai et 

al., 2018; Li et al., 2017). Exposure was assessed using multiple modeling methods including 

LUR, monitoring station, dispersion models, distance to road, emission inventories, traffic flow 

at the nearest road, hybrid models, and others (Table 2-2). 

 Risk of Bias Assessment 

The risk of bias was generally low across the 22 included studies (Figure 2-2). We found 

that incomplete outcome data was the most common type of bias followed by exposure 

assessment. Studies that relied only on self-reporting of diabetes or secondary data sources were 

assigned a high risk of bias compared to studies that actively ascertained diabetes diagnosis 

through testing. Studies that used exposure assignment through air quality monitors only were 

assigned a high risk of bias compared to studies that used a validated air pollution model. 

 Statistical Analysis 

We included 49 effect measures in our pooled analysis from the 21 studies across all 

pollutants (Table 2-3). The summary effect in odds ratios (OR) of studies reporting exposure to 

NO2 and risk of diabetes mellitus (n = 20 studies) using a fixed-effect model was 1.05 [1.04-

1.05, I2 = 95%] per 10 µg/m3 increase (Figure 2-3). By study design, the pooled effect of incident 

diabetes as the outcome (n = 8) was 1.02[1.01-1.02, I2=95%] per 10 µg/m3
 increase, and for 

prevalent diabetes (n = 13) was 1.05[1.04-1.05, I2=95%] per 10 µg/m3 (Figure 2-4). By gender, 

the OR for females (n = 14) was 1.02[1.01-1.03, I2=90%] per 10 µg/m3, and for males (n = 10) 

1.03[1.02-1.04, I2=90%] per 10 µg/m3 (Figure 2-5). By minimal age of inclusion, studies that 

included a population of >=18 years (n = 11) had a pooled OR of 1.03[1.03-1.04, I2=95%] per 10 

µg/m3, >=40 years (n = 6) reported an 1.06[1.05-1.06, I2=96%] per 10 µg/m3, and >=50 years (n 

= 3) reported an OR of 1.13[1.07-1.19, I2=44%] per 10 µg/m3 (Figure 2-6). By location, studies 
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conducted in North America (n = 6) reported an OR of 1.06[1.06-1.07, I2=97%] per 10 µg/m3, in 

Europe (n = 10) an OR of 1.01[1.01-1.02, I2=86%] per 10 µg/m3, and in Asia (n = 3) an OR of 

1.10[1.07-1.12, I2=93%] per 10 µg/m3 (Figure 2-7). By exposure model, studies using LUR 

models (n = 9) had a pooled effect of 1.05[1.04-1.05, I2=97%] per 10 µg/m3, dispersion models 

(n = 3) an OR of 1.02[1.01-1.04, I2=67%] per 10 µg/m3, air monitors (n = 4) an OR of 1.07[1.05-

1.10, I2= 71%] per 10 µg/m3, and other models (n = 7) an OR of 1.14[1.10-1.18, I2=81%] per 10 

µg/m3 (Figure 2-8). By outcome definition, studies using self-reported diabetes (n = 6) reported 

an OR of 1.05 [1.03-1.06, I2=84%] per 10 µg/m3, using lab results (n = 7) reported an OR of 1.20 

[1.16-1.25, I2=73%] per 10 µg/m3, and studies using secondary data sources (n = 7) reported an 

OR of 1.05 [1.04-1.05, I2=98%] per 10 µg/m3
 (Figure 2-9). 

The summary effect (OR) of studies reporting exposure to BC and risk of diabetes 

mellitus (n = 4 studies) using a fixed-effect model was 1.02 [1.01-1.03, I2 = 87%] Per 1 (10-5/m) 

increase (Figure 2-10). Not enough studies were available to warrant subgroup analysis using BC 

as the outcome of interest. 

The summary effect (OR) of studies reporting exposure to UFP and risk of diabetes 

mellitus (n = 2 studies) using a fixed-effect model was 1.06 [1.04-1.07, I2 = 78%] Per 10,000 

count/cm3 (Figure 2-11). Not enough studies were available to warrant a subgroup analysis using 

UFP as the outcome of interest. 

 Quality of the Body of Evidence 

We tested the effect size needed to shift the confidence interval to a) overlap the null 

value, and b) move below the null value. We assumed a study with a standard error of (0.0038) 

equal to the smallest standard error in our metanalysis (Howell et al., 2019). To overlap the null 

value, a study with an effect estimate of 0.87 and a 95% CI of [0.86-0.88] is needed. To mover 
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below the null value, a study with an effect size of 0.84 and a 95% CI of [0.83-0.85] is needed. 

We did not find signs of publication bias (asymmetry) on the funnel plot (Figure 2-12). 

Furthermore, the Egger’s test (Egger et al., 1997) was insignificant (t = 0.629, df = 19, p-value = 

0.537), indicating no evidence of asymmetry. In conclusion, we assigned an overall rating of 

“moderate” for the quality of the body of evidence (Table 2-4). We did not upgrade or 

downgrade the rating based on any of the criteria.  

 Strength of the Body of Evidence 

We assigned a “Sufficient” rating for the overall strength of the body of evidence-based 

on the following considerations (Table 2-4): 

• Quality of body of evidence: moderate 

• The direction of effect estimate: Increasing exposure to NO2 resulted in an increased risk of 

diabetes. 

• Confidence in the effect estimate: an introduction of a new study is unlikely to change the 

confidence interval of the pooled estimate towards a null value or beyond. 

• Other compelling attributes of the data: none. 

2.4 Discussion 

 Main Results 

We utilized an adapted version of the navigation guide (Johnson et al., 2014) to 

determine whether exposure to air pollution in the form of NO2, BC, and UFP increases the risk 

of diabetes among adults. Our search yielded 20 studies that examined exposure to NO2, 4 

studies examining exposure to BC, and only two examining exposure to UFP. We have 

concluded that there is sufficient evidence of an association between exposure to NO2 and risk of 
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diabetes among adults based on several considerations (Table 2-4); moderate quality of the body 

of evidence that included several well designed and conducted studies with a low risk of bias, an 

effect estimate with a positive direction where the risk of diabetes is increasing with increasing 

exposure to NO2, a pooled effect with a narrow confidence interval with a direction of effect that 

is unlikely to reverse or reach the null value with an addition of a new study, and a consistent 

direction of effect estimates among smaller studies except for a few. We were not confident in 

making the same conclusion regarding exposure to BC nor UFP on the risk of diabetes due to the 

small number of studies included in the analysis. 

When assessing causality an important factor to consider is consistency in effect under 

similar circumstances. Although most of the included studies had an effect estimate in the 

positive direction, the magnitude was variable with a high level of heterogeneity. In the next part 

of the discussion, we will discuss where the heterogeneity could be coming from including 

confounding, subgroup analysis, and bias in measurement. 

 Confounding 

The most controlled variable across included studies was socioeconomic status (Figure 

2-13). However, the definition and criteria for choosing socioeconomic factors varied across 

studies. Marshall et al. (2014) conducted a literature search of peer-reviewed articles examining 

exposure to air pollution and environmental injustice and found 307 articles of which (88%) of 

those conducted in the US showed a higher than average risk or exposure to air pollution among 

racial minorities and/or groups of lower socioeconomic status defined as poor, lower education, 

or a combination of both. Hajat et al. (2015) conducted a meta-analysis of studies addressing 

unequal exposure of environmental hazards on a certain population and concluded that most 

North American studies have shown that areas where populations of a lower SES dwelling 
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experienced a higher concentration of criteria pollutants. However, the results were mixed for the 

European region, while other parts of the world showed a similar trend to north America. When 

examining the risk of diabetes across social strata Agardh et al. (2011) conducted a systematic 

review and meta-analysis of 23 studies with 41 effect estimates (16 cohort and 7 cross-sectional) 

which were conducted across the US (n=10), EU (n=7) and other regions (n = 5). The outcomes 

measured were across educational attainment, occupation, and income. Results of the pooled 

effect showed a positive association across all the outcomes of education, occupation and income 

and risk of diabetes with an RR of 1.41(1.28-1.55, I2= 65.5%) for education, 1.31(1.09-1.57, 

I2=52.8%) for occupation, and 1.40(1.04-1.88, I2 = 71.9%) for Income. The effect was also 

positive and statistically significant for education across the different regions (US, Europe, Asia, 

Latin America, Africa).  

When comparing the pooled effect estimate of the fully adjusted models with the 

unadjusted (crude) models and found a smaller effect size for the adjusted models with a 

narrower confidence interval, and less heterogeneous than the crude models (Figure 2-14). 

Although residual confounding likely remains due to the nature of observational studies, we 

concluded that we could rule out confounding as an explanation of the effect found between 

exposure to NO2 and the risk of developing diabetes with reasonable confidence. 

 Comparison with Previous Studies and Subgroup Analysis 

The positive association between exposure to air pollution and the risk of diabetes was 

consistent with previous studies. Wang et al. (2014) performed a meta-analysis of 6 studies 

exploring exposure to NO2 and risk of diabetes and reported a RR of 1.12[1.02-1.23, I2 = 63.5%] 

per 10ug/m3 increment. The pooled estimate was higher with a wider confidence interval. This 

can be attributed to a smaller number of studies included compared to our analysis (6 vs 21 
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studies). Eze et al. (2015) also conducted a meta-analysis that included 4 studies examining 

exposure to NO2 and risk of diabetes and reported an elevated RR of 1.08[1.00-1.17] per 10 

ug/m3 increment. 

Our results showed a positive and significant association between exposure to NO2 and 

the risk of diabetes for both males and females. For females, the results were consistent with Eze 

et al. (2015) who reported an effect estimate of 1.15[1.05-1.27] and Wang et al. (2014) who 

reported an effect estimate of 1.09[1.02-1.15]. However, for males, Eze et al. (2015) and Wang 

et al. (2014) did not find a significant association. We found a positive association for studies 

reporting prevalence and incidence using a fixed-effect model. Eze et al. (2015) and Balti et al. 

(2014) reported a positive association of 1.12[1.05-1.19] and 1.13[1.04-1.22], respectively, 

across longitudinal studies. However, the results were based on a small number of studies. Balti 

et al. (2014) also reported a positive association across two cross-sectional studies 1.16[1.00-

1.35]. By location, The pooled effect was positive across all locations. Studies conducted in 

Europe were less heterogenous compared to other locations. By exposure assessment methods, 

the pooled effect was positive across all studies using different methods. Stratifying by exposure 

assessment did explain part of the heterogeneity across the studies. By outcome ascertainment, 

the pooled effects were all positive across all methods. However, the effects for studies using an 

active ascertainment method to detect cases showed a larger magnitude of effect compared to 

studies using secondary sourced for case ascertainment. Studies with active ascertainment on 

average had fewer samples and used a case definition that is likely to be more sensitive 

compared to studies using secondary ascertainment which were more likely to include a larger 

number of samples and use a more specific definition of diabetes (Table 2-1 & Table 2-2). 

Studies recruiting older age groups reported a larger magnitude of effect compared to studies that 
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included younger age groups. One possible explanation is increasing risk with age due to 

cumulative exposure if individuals remained in higher exposure areas throughout their life 

compared to individuals who lived in less exposed areas throughout their life.  

 Limitations 

The statistical methods used in a pooled analysis assumes that no measurement error 

occurs, and the only source of error is a random error only (i.e. sampling and randomization 

error) (Carroll et al., 2006). However, observational studies are known to contain non-random 

errors (systematic error or bias) that occur from various sources including selection bias, 

information bias, and residual confounding. Although pooling the effect reduces the random 

error it increases the magnitude of systematic error as a proportion of the total error, thus 

statistical significance, in this case, might not imply a cause and effect but indicates the need to 

investigate the sources of the systematic error (Rothman et al., 2008).   

Across the pooled estimates there was high heterogeneity which persisted across the 

subgroup analysis despite some reduction. We expect that variation of the effect estimate among 

observational studies to occur due to the different methods used in the design of such studies. 

Sources of heterogeneity can be explained partially by differences in population sources, 

characteristics, the number of variables and methods of adjustment across models, exposure 

assessment methods, and finally how the outcome was defined and ascertained.  

There were several limitations in exposure assessment. First, studies varied in their air 

pollution measurements including using different instruments, varying duration of 

measurements, and modeling techniques. For example, some studies used air monitor readings, 

while others used statistical models like land-use regression and dispersion which also vary in 

how they model air pollution concentrations. Studies also varied in their methods of assigning air 
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pollution concentration levels with some using mean concentration levels while others used 

median levels and whether a lag time between exposure and outcome was considered or not 

(Table 2-2). Second, it is not clear whether assigning an exposure level based on residential 

location reflects well with personal exposure levels. Individuals might not spend most of their 

time at the residence location or might spend more time in areas of higher air pollution 

concentrations (e.g. occupational settings). Finally, not all studies considered a cumulative 

exposure effect of air pollution on the risk of developing diabetes. Bias from the stratifying of 

confounders may also occur with an unknown direction of effect. For example, collapsing 

income levels from a continuous variable into categories can introduce differential 

misclassification even if the measurement error was nondifferential with an unknown direction 

of effect (Flegal et al., 1991).  

There were several limitations in outcome assessment. First, a few studies differentiated 

between type I and II DM. However, type I diabetes represents a small fraction of cases among 

adults and most studies assumed type II. Second, studies varied in their assessment of diabetes 

outcomes. For example, some studies used a fasting glucose measurement while others included 

an HbA1C. Third, studies assessing diabetes using self-report and secondary data sources might 

suffer from outcome misclassification. The degree and direction of misclassification would 

depend on how prevalent undiagnosed diabetes in a population is and whether undiagnosed 

diabetes is differential or not across the population and confounder strata. For example, 

according to the national diabetes statistical report in 2020, undiagnosed diabetes represented 

21.5% of total diabetes cases in the US (CDC, 2020). The undiagnosed diabetes percentage 

varied in magnitude across race, age, and educational level. Finally, differences in background 
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rates of diabetes between two populations can produce a variation on the effect measure even if 

exposure to air pollution added a constant amount of risk (Greenland, 1987). 

2.5 Summary and Conclusion 

In summary, we have conducted a systematic review and meta-analysis of studies 

examining exposure to NO2, BC, or UFP and the risk of developing diabetes mellitus among 

adults. We have concluded that there is sufficient evidence of an association between exposure to 

NO2 and risk of diabetes among adults based on a moderate quality of evidence, an effect 

estimate with a positive direction, a pooled effect with a narrow confidence interval with a 

direction of effect that is unlikely to reverse or overlap the null value with an additional study, 

and a consistent direction of effect estimates among smaller studies. Our pooled effect suffered 

from a high level of heterogeneity despite stratifying across multiple variables. However, the 

direction and significance of the pooled effect remained positive throughout the subgroup 

analysis. We were not able to reach a similar conclusion for the other pollutants BC and UFP 

because of the limited number of studies for each. Future studies of the effect of exposure to 

other pollutants are needed to assess the effect of air pollution exposure across different sources 

on the risk of developing diabetes mellitus. 
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Table 2-1: Source and population 

Author location 
Years of study 

and follow-up 
Study objective 

Population (n), age 

(years), and gender 

(%) of participants 

Kramer et al. (2010) 
Ruhr district, 

Germany 

1990-2006 

(16 years) 

Longitudinal: Examine the association between traffic-

related air pollution and incident type 2 diabetes. 

• n = 1,775,  

• 54-55 years,  

• Female 

(100%) 

Dijkema et al. (2011) 
Westfriesland, 

Netherlands 

1998-2000 

 

Cross-sectional: Examine the relation between long-term 

exposure to traffic-related air pollution and type 2 diabetes 

prevalence among 50 to 75-year-old subjects living in 

Westfriesland, the Netherlands. 

• n = 8,018,  

• 50-75 years 

• Female (51%) 

Brook et al. (2008a) 

Hamilton and 

Toronto, 

Canada 

1992-1999 

Case-control: Investigate the association between DM 

prevalence and exposure to traffic-related air pollution 

(nitrogen dioxide). 

• Hamilton (n) 

= 5,228 

• Toronto (n) = 

1,260 

• ≥40 years 

• Female 

(54.8%) 

Renzi et al. (2018) 
Rome, 

Italy 

2008-2014 

(6 years) 

Longitudinal: Evaluate the association of long-term 

exposure to particulate matter (PM), nitrogen oxides 

(NOx) and ozone (O3), with baseline prevalence and 

incidence of type 2 diabetes in a large administrative 

cohort in Rome, Italy. 

• n = 1,425,580 

• ≥35 years  

• Female 

(54.6%) 

Andersen et al. (2012a) Denmark 
1993-2006 

(9.7 years) 

Longitudinal: Study the association between long-term 

exposure to traffic-related air pollution and the incidence 

of diabetes. 

• n = 51,818 

• 50-65 years 

• Female 

(52.6%) 

 

Eze et al. (2014b) Switzerland  

Cross-sectional: Explore the association between air 

pollution and prevalent diabetes, in a population-based 

Swiss cohort. 

• n = 6,392  

• 29-73 years 

• Female 

(51.3%) 

Lazarevic et al. (2015) Australia 
2006-2011 

(5 years) 

Longitudinal: Assess the effect of long-term exposure to 

ambient air pollution on the prevalence of self-reported 

health outcomes in Australian women. 

• n = 14,563 

• 31-90 years 

• Female 

(100%) 

Coogan et al. (2016) US 
1995-2011 

 

Longitudinal: Assess the association of the traffic-related 

nitrogen dioxide (NO2) with the incidence of diabetes in a 

longitudinal cohort study of African American women. 

• n = 43,003,  

• ≥30 years 

• Female 

(100%) 

 

Hansen et al. (2016) Denmark 1993-2013 
Longitudinal: Examine the association between long-term 

exposure to PM2.5 and diabetes incidence 

• n = 24,174  

• ≥44 years 

• Female 

(100%) 

C. Clark et al. (2017) 
British Columbia, 

Canada 

1994-1998 

 

Longitudinal: Examine the influence of long-term 

residential transportation noise exposure and traffic-related 

air pollution on the incidence of diabetes using a 

population-based cohort in British Columbia, Canada. 

• n = 380,738 

• 45-85 years 

• Female (54%) 

Li et al. (2017) 
Boston, 

US 

2009-2012 

 

Cross-sectional: We hypothesized that high UFP exposure 

near busy 

roadways may be associated with cardiovascular disease 

and its risk factors 

• n = 704 

• >40 years 

• Female (58%)  

Honda et al. (2017) US 2004 

Longitudinal: Investigate the associations between 

airborne fine particulate matter (PM2.5) and nitrogen 

dioxide (NO2) and HbA1c levels in both diabetic and non-

diabetic older Americans. We also examined the impact of 

PM2.5 and NO2 on prevalent diabetes mellitus (DM) in 

this cohort. 

• n = 4,121 

• ≥57 years 

• Female 

(53.7%) 

Strak et al. (2017) Netherlands 2012 

Cross-sectional: Investigate associations between long-

term exposure to multiple air pollutants and diabetes 

prevalence in a large national survey in the Netherlands. 

• n = 289,703  

• ≥19 years 

• Female 

(52.6%) 

Eze et al. (2017) Switzerland 
2002-2011 

 

Longitudinal: Investigate the independent effects of noise 

(road, aircraft, and railway noise and specific noise 

characteristics like the number and temporal variation of 

noise events), and NO2 on diabetes incidence. 

• ≥18 years 

• Female 

(52.7%) 

O'Donovan et al. (2017) 
Leicestershire, 

UK 
2004-2011 

Cross-sectional: Investigate the association between air 

pollution and type 2 diabetes, while reducing bias due to 

exposure assessment, outcome assessment, and confounder 

assessment 

• n = 10,443  

• 25-75 years 

• Female 

(47.1%) 
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Table 2 1: Source and population (cont.) 

Author location 
Years of study 

and follow-up 
Study objective 

Population (n), age 

(years), and gender 

(%) of participants 

Yang et al. (2018) 

Liaoning 

province, 

China 

2009 

Cross-sectional: Explore the associations of long-term 

exposure to ambient particulate matter (PM) and gaseous 

pollutants with diabetes prevalence and glucose-

homeostasis markers in China. 

• n = 15,477  

• 18-74 years 

• Female 

(47.3%) 

Orioli et al. (2018) Italy 1999-2013 

Cross-sectional: Evaluate the association between area-

level ambient air pollution and self-reported DM in a large 

population sample in Italy. 

• n = 376,157  

• >45 years 

• Female 

(53.7%) 

Riant et al. (2018) 
Lille and Dunkirk, 

France 
2011-2013 

Cross-sectional: Investigate the relationships between long 

term exposure to air pollution at the place of residence, 

diabetes biomarkers, and prevalent diabetes in two cities 

with a relatively low level of pollution. 

• Lille (n) = 

1,403  

• Dunkirk (n) = 

1,338 

• 40-65 years 

• Female 

(52.2%) 

Bai et al. (2018) 
Toronto, 

Canada 
1996-2012 

Longitudinal: Investigate the associations between 

exposures to ultrafine particles and nitrogen dioxide (NO2) 

and the incidence of diabetes and hypertension in a 

population-based cohort 

• n = 1,056,012  

• 30-100 years 

• Female (53%) 

Shin et al. (2019) Korea 2003-2012 

Cross-sectional: Examine the associations between PM10, 

NO2, CO, SO2, and O3 and CMD using data collected 

from the Korean Community Health Survey. 

• n = 100,867  

• ≥19 years 

• Female 

(50.1%) 

F. Liu et al. (2019) 
Henan province, 

China 
2015-2017 

Cross-sectional: Evaluate the associations between long-

term exposure to particulate matter with an aerodynamic 

diameter ≤1.0 μm and ≤2.5 μm (PM1 and PM2.5), nitrogen 

dioxide (NO2), and type 2 diabetes prevalence and fasting 

blood glucose levels in Chinese rural populations. 

• n = 39,191  

• 18-79 years 

• Female 

(60.6%) 

Howell et al. (2019) 
Ontario, 

Canada 

2008 

 

Cross-sectional: Assess how walkability and traffic-related 

air pollution jointly affect the risk of hypertension and 

diabetes. 

• n = 2,496,458 

• 40-74 years 

• Female 

(51.8%) 
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Table 2-2: Exposure and outcome 

Author 
Diabetes type and 

source 

Summary of outcome 

definition 
Pollutants Exposure definition Exposure summary 

Kramer et al. 

(2010) 

Unspecified-

Incidence; 

Questionnaire 

• Self-report of 

physician-diagnosed 

diabetes after 1990. 

NO2, Soot, 

PM10, PM2.5 

5 year mean levels (1986-

1990) using monitoring 

stations nearest to the 

residence with an 8-km 

grid. 

• Annual mass of PM 

and NO2 emission 

inventories (1994) 

with a 1-km grid. 

• LUR modeling of 

NO2 and soot 

concentration using 

1-year measurement 

in 2002. 

Distance from a home 

address at baseline to the 

next major road with 

>10,000 cars per day 

Median (25th-75th percentile) 

Monitoring stations (μg/m3): 

• PM10 46.9 (44.0–

54.1) 

• NO2 41.7 (23.3–48.2) 

Traffic emission inventory 

(tons/year/km2): 

• PM 0.54 (0.22–1.09) 

• NO2 12.0 (5.4–24.4) 

Land-use regression: 

• Soot 1.89 (1.67–2.06) 

(10–5 m) 

• NO2 34.5 (23.8–38.8) 

(μg/m3) 

Distance < 100 m from the 

busy road: 

• No diabetes (15.6%) 

Incident diabetes (17.7%)  

Dijkema et al. 

(2011) 

Type 2-Prevalence; 

Questionnaire, blood 

test 

• Self-report of the 

previous physician-

diagnosed diabetes; 

and 

• If the risk of diabetes 

was high, further 

testing based on 

1999 WHO 

guidelines for the 

diagnosis of type 2 

diabetes. 

NO2 

• LUR modeling of 

NO2 concentrations 

in 2007 

• Distance to the 

nearest road with 

≥5,000 vehicles/24 

hrs. 

• Traffic flow at the 

nearest main road 

(vehicles per 24 hrs.) 

Total traffic per 24 hrs. on 

all roads within 250 m 

buffer 

Median (25th-75th percentile) 

• NO2 (µg*m-3): 15.2 

(14.2-16.5) 

• Distance nearest main 

road (m): 140 (74-220) 

• Traffic flow nearest 

main road 

(vehicle/24hrs): 7,306 

(5,871-9,670) 

Traffic within 250 m buffer 

(103/24hrs): 680 (516-882) 

Brook et al. 

(2008a) 

Unspecified-

Prevalence;  

Health databases 

Diagnosis of diabetes made 

by: 

• two or more claims 

by a general 

practitioner; or 

• one claim by a 

specialist; or 

• hospitalization  

NO2 

LUR modeling of NO2 

using field measurement 

between 2002 and 2004.  

 

Median (25th-75th percentile) 

NO2 (ppb): 

• Hamilton: [Male] 15.2 

(13.9-17.1); [Female] 

15.3 (14.0-17.0) 

Toronto: [Male] 23.0 (20.8-

25.0); [Female] 22.9 (20.8-

24.7) 

Renzi et al. 

(2018) 

T2DM-Incidence; 

Health databases 

• Qualified for health 

care for diabetes 

• Hospital admission 

with a diabetes 

diagnosis (ICD-9) 

• Prescribed 

hypoglycemic 

medication at least 

twice in one year 

NO2, PM2.5 

absorbance, 

PM10, PM2.5-

10, PM2.5, NOx, 

O3, Traffic noise 

• LUR modeling of 

NO2, PM2.5 

absorbance, PM10, 

PM2.5-10, PM2.5, 

and NOx using 

annual mean levels 

at baseline, 2008, 

and 2010. 

Dispersion model of O3 

using summer daily (8h) 

and seasonal (2005) levels 

in a 1-km grid [the Flexible 

Air Quality Regional 

Model (FARM)]. 

Mean (SD) 

Average annual air pollution 

level at baseline 

• PM10 (μg/m3): 36.6 

(5.2) 

• PM2.5–10 (μg/m3): 

16.9 (3.4)  

• PM2.5 (μg/m3): 19.6 

(1.9)  

• PM2.5 absorbance 

(10−5/m): 2.7 (0.5)  

• NO2 (μg/m3): 42.4 

(10.4)  

• NOx (μg/m3): 83.9 

(24.4)  

O3 (μg/m3): 97.4 (6.5)  
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Table 2 2: Exposure and outcome (cont.) 

Author 
Diabetes type and 

source 

Summary of outcome 

definition 
Pollutants Exposure definition Exposure summary 

Andersen et al. 

(2012a) 

Unspecified-

Incidence; 

Health databases 

Through NDR inclusion 

with: 

• Hospital discharge 

(ICD-10 or ICD-9; or 

• Chiropody; or 

• Five blood glucose 

readings within one 

year; or 

• Two blood glucose 

readings per year for 

5 consecutive years; 

or 

• Purchase of diabetes 

medication within 6 

months. 

Also, including only 

confirmed cases by 

excluding those in the NDR 

solely for a blood glucose 

test. 

NO2, NOx 

• Danish AirGIS 

human exposure 

modeling system: 

o Mean NO2 

and NOx since 

1971. 

o Mean NO2 

since 1991. 

• 1-year mean NO2 at 

baseline. 

• 1-year mean NO2 at 

follow-up. 

• Traffic proximity to 

a major road 

(≥10,000 

vehicles/day) within 

a 50-m radius. 

Traffic load (total 

kilometers driven by 

vehicles) within a 100-m 

radius. 

Median (IQR) 

NO2 (mg/m3) 

• 1971 to end of follow-

up: 14.5 (4.9) 

• 1991 to end of follow-

up: 15.3 (5.6)  

• Baseline (1 year): 15.4 

(5.6)  

• End of follow-up (1 

year) [median (IQR)] 

15.2 (5.7)  

Traffic load within 100 m at 

baseline (103 vehicle 

km/day): 0.34 (1.3) 

Major road within 50 m at 

baseline [n (%)]: 4,184 (8.1)  

Eze et al. (2014b) 

T2DM-Prevalence; 

Health assessment, 

blood test 

• intake of any anti-

diabetic medication; 

or 

• Self-report of 

physician-diagnosis; 

or  

• Non-fasting blood 

glucose of >11.1 

mmol/L; or 

• HbA1c of >6.5% or 

48 mmol/mol. 

NO2, PM10  

• The dispersion 

model of PM10 and 

NO2 using mean 

ambient levels in 

1990 and 2000. 

Hybrid model (dispersion 

and LUR) of NO2 over 10 

years preceding follow-up 

survey. 

Mean (SD) 

• 10-year mean PM10 

[μg/m3]: 22.3 (7.4) 

10-year mean NO2 [μg/m3]: 

26.8 (11.0) 

Lazarevic et al. 

(2015) 

Unspecified-

Prevalence; 

Questionnaire 

• Self-report of 

diabetes diagnosis 

within the previous 3 

years. 

NO2 

• LUR model of NO2 

using 3-year mean 

annual levels (2 

years before the 

survey and during 

survey year) 

• Distance to major 

road 

Distance to minor roads  

Mean (range) 

3-year mean NO2 (ppb): 5.7 

(2.4-11.3 

Coogan et al. 

(2016) 

T2DM-Incidence; 

Questionnaire 

• Self-report of 

physician-diagnosed 

diabetes at age 30 or 

older. 

NO2, Ozone 

• LUR model of NO2 

using annual levels 

for 2000-2010 at the 

block group level (56 

cities). 

Dispersion model of NO2 

levels for 2000-2010 (27 

cities). 

Mean (SD) 

NO2 at baseline (ppb):  

• LUR Model (56 

cities): 18.6 (6.5) 

Dispersion Model (27 cities): 

19.2 (5.5) 

Hansen et al. 

(2016) 

Unspecified-

Incidence; 

Health databases 

NDR inclusion with the 

following: 

• Hospital discharge 

(ICD-10 or ICD-9; or 

• Chiropody; or 

• Five blood glucose 

readings within one 

year; or 

• Two blood glucose 

readings per year for 

5 consecutive years; 

or 

• Purchase of diabetes 

medication within 6 

months. 

Also, nurses who had either 

(ii) or (iv) as the sole 

inclusion criteria were not 

considered diabetic in the 

study. 

NO2, PM10, 

PM2.5, NOx 

Danish AirGIS human 

exposure modeling system: 

• 5-year mean PM2.5, 

PM10, NO2, and 

NOx (1990-1995) 

24-year mean NO2 and 

NOx 

Mean (SD) 

Annual air pollution at 

baseline address (μg/m3) 

• PM2.5:  18.1 (2.8) 

• PM10: 21.7 (2.9) 

• NO2: 12.5 (7.9) 

NOx: 18.4 (22.7) 
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Table 2 2: Exposure and outcome (cont.) 

Author Diabetes type and 

source 

Summary of outcome 

definition 

Pollutants Exposure definition Exposure summary 

C. Clark et al. 

(2017) 

Unspecified-

Incidence; 

Health databases 

Using the ICD-9 and ICD-

10 codes for diabetes: 

• One hospitalization 

for diabetes; or 

• Two physician 

diagnosis of diabetes; 

or 

• Two health care 

provider visits for 

diabetes within 1-

year. 

 

NO2, BC, NOx, 

PM2.5 

LUR model of NO2, NO, 

PM2.5, BC using 5-year 

monthly average levels in 

2003. 

Mean (IQR) 

Average air exposure at 

residential address 

• NO2 (μg/m3): 32.1 

(8.4)  

• NO (μg/m3): 32.0 

(13.13)  

• PM2:5 (μg/m3): 4.1 

(1.6)  

Black carbon(10−5/m): 1.5 

(0.9)  

Li et al. (2017) 

Unspecified-

Prevalence; 

Questionnaire 

• Self-report of 

physician-diagnosed 

diabetes; or  

• Taking diabetes 

medication as 

determined by two 

physicians 

UFP  

Mean (SD) 

Annual average particle 

number concentrations of 

UFP (103/cm3) 

• Diabetes (Yes): 20 

(6.6) 

Diabetes (No): 21 (6.4) 

Honda et al. 

(2017) 

Unspecified-

Prevalence; 

Questionnaire, blood 

test 

• HbA1c ≥ 6.5%; or 

• Self-report of taking 

anti-diabetic 

medication. 

NO2, PM10 

• PM2.5 levels 

obtained using 

Spatio-temporal 

generalized additive 

mixed models 

(GAMMS) for 1-5 

year mean levels 

from 1999 to 2007 

on a 6-km grid. 

NO2 levels obtained using 

the nearest AQS monitor 

within an 80-km radius for 

1-5 year mean levels.  

Mean (SD) 

• PM2.5 (μg/m3) 10.4 

(3.0)  

NO2 (ppb) 13.7 (6.6) 

Strak et al. (2017) 

Unspecified-

Prevalence; 

Questionnaire, Health 

databases 

• Self-report of 

physician-diagnosed 

diabetes; or  

• Diabetes medication 

prescription                  

NO2, PM2.5 

absorbance (BC), 

PM10, PM2.5, 

PM10 − 2.5, 

NOx 

LUR model of NO2, 

PM2.5, BC, PM10, PM2.5, 

PM10 − 2.5, and NOx 

using annual average levels 

in 2009. 

 

Mean (SD) 

• PM10 (μg/m3): 24.76 

(1.11) 

• PM2.5 (μg/m3): 16.72 

(0.69)  

• PM10 − 2.5 (μg/m3): 

8.30 (0.75)  

• Absorbance (10−5/m): 

1.28 (0.22)  

NO2 (μg/m3): 23.88 (6.06) 

Eze et al. (2017) 

Unspecified-

Incidence; 

Questionnaire, blood 

test 

• Self-report of 

physician-diagnosed 

diabetes; or 

• Self-report of taking 

anti-diabetic 

medication; or 

• HbA1c ≥ 6.5%. 

NO2, PM2.5 

• Dispersion model of 

NO2 and PM2.5 

using annual mean 

levels in 2001. 

• LUR model as above 

Hybrid model as above 

Median (IQR) 

PM2.5 (μg/m3)  

• Incident diabetes: 15.2 

(4.5)  

• No Incident diabetes: 

14.6 (3.5)  

NO2 (μg/m3)  

• Incident diabetes: 20.4 

(15) 

No Incident diabetes: 21.1 

(15.4) 

O'Donovan et al. 

(2017) 

T2DM-Prevalence; 

Questionnaire, blood 

test 

• Fasting glucose ≥7.0 

mmol·L−1; or  

• Two-hour glucose 

≥11.0 mmol·L−1 

NO2, PM10, 

PM2.5 

DEFRA Pollution Climate 

Mapping (PCM) model 

using 3-year annual 

average levels of NO2, 

PM10, and PM2.5 on a 1x1 

km grid. 

Mean (SD) 

• NO2 (μg/m3):  21.4 

(5.8) 

• PM2.5 (μg/m3): 12.0 

(0.8) 

PM10 (μg/m3): 16.4 (1.0) 
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Table 2 2: Exposure and outcome (cont.) 

Author Diabetes type and 

source 

Summary of outcome 

definition 

Pollutants Exposure definition Exposure summary 

Yang et al. (2018) 

T2DM-Prevalence; 

Questionnaire, blood 

test 

• Fasting glucose ≥ 7·0 

mmol/L; or  

• 2-h glucose ≥ 11·1 

mmol/L; or  

• Intake of antidiabetic 

medication.  

NO2, PM10, 

PM2.5, PM1, 

SO2, O3 

• Air monitoring 

stations within 1-km 

distance using 3-year 

(2006-08) average 

levels of NO2, 

PM10, SO2, and O3. 

The spatial statistical 

model of PM1 and PM2.5 

levels during (2006-08) 

Mean (SD) 

• PM1 (μg/m³): 66·0 

(10·7) 

• PM2·5 (μg/m³): 82·0 

(14·8) 

• PM10 (μg/m³): 123·1 

(14·6) 

• SO2 (μg/m³): 54·4 

(14·3) 

• NO2 (μg/m³): 35·3 

(4·5) 

O3 (μg/m³): 49·4 (14·1) 

Orioli et al. 

(2018) 

Unspecified-

Prevalence; 

Questionnaire 

• Self-report of 

physician-diagnosed 

diabetes. 

NO2, PM10, 

PM2.5, O3 

AMS-MINNI national 

integrated dispersion model 

using 4-year annual 

average NO2, PM10, 

PM2.5, and O3 levels for 

the years 2003, 2005, 2007, 

and 2010. 

Mean (SD) 

• PM10 (μg/m³): 16.9 

(7,4) 

• PM2.5 (μg/m³): 15.9 

(7.1) 

• NO2 (μg/m³): 15.9 

(11.3) 

O3 (μg/m³): 103.2 (5.1) 

Riant et al. (2018) 

Unspecified-

Prevalence; 

Questionnaire, blood 

test 

• Intake of antidiabetic 

medication; or  

• HbA1c ≥6.5%; or 

• Fasting blood 

glucose level ≥1.26 

g/L; or   

• Non-fasting blood 

glucose level ≥2 g/L. 

NO2, PM10, 

SO2 

• Dispersion model for 

NO2 and PM10 

using annual mean 

concentrations 

between 2010 and 

2013 in Lille, and 

between 2012 and 

2013 in Dunkirk. 

The dispersion model (like 

the above) for SO2 was 

available only for Dunkirk. 

Median (25th-75th percentile) 

NO2 (μg/m3)  

• Lille: 25.96 [22.52; 

28.59] 

• Dunkirk: 20.35 

[18.23;21.46] 

PM10 (μg/m3)  

• Lille: 26.96 [25.65; 

28.18] 

• Dunkirk: 26.54 [25.85; 

27.19] 

SO2 (μg/m3)  

• Lille: _ _  

Dunkirk: 3.07 [2.15; 3.89] 

Bai et al. (2018) 

Unspecified-

Incidence; 

Health databases 

Using a health database 

with ICD-9 and ICD-10 

definitions: 

• Hospital admission 

with a diagnosis of 

diabetes; or  

• Two physician 

claims over 2 years. 

NO2, UFP 

LUR model of NO2 and 

UFP using 3-year moving 

averages of estimates of 

concentrations beginning 

from 1996. 

 

 Mean (SD) 

• UFP (Count/cm3): 

28,383.1 (9,090.9) 

• PM2.5 (μg/m3): 10.7 

(1.6) 

NO2 (ppb): 21.4 (3.5) 

Shin et al. (2019) 

Unspecified-

Prevalence; 

Questionnaire 

• Self-report of 

physician-diagnosed 

diabetes. 

NO2, PM10, CO, 

SO2, O3 

Air monitoring stations of 

NO2, PM10, CO, SO2, and 

O3 using 10-year average 

concentrations during 

2003-2012. 

 Mean (SD) 

• PM10 (mg/m3): 52.7 

(8.6) 

• SO2 (ppb): 5.6 (1.7) 

• NO2 (ppb): 24.2 (7.9) 

• CO (10 ppm): 5.7 (1.3) 

O3 (ppb): 23.4 (4.5) 

F. Liu et al. 

(2019) 

T2DM-Prevalence; 

Questionnaire, blood 

test 

• Self-report of type 2 

diabetes diagnosis; or 

• Intake of antidiabetic 

medication; or  

• Fasting glucose ≥ 7·0 

mmol/L 

NO2, PM1, 

PM2.5 

Spatiotemporal model of 

NO2, PM1, and PM2.5 

using 3-year average 

concentrations. 

Mean (SD) 

• PM1 (μg/m3): 57.4 

(2.7)  

• PM2.5 (μg/m3): 73.4 

(2.6)  

NO2 (μg/m3): 39.9 (3.6) 

Howell et al. 

(2019) 

Unspecified-

Prevalence; Health 

databases 

Using a health database: 

• Hospital admission 

with a diagnosis of 

diabetes; or  

• Two physician 

claims over 2 years. 

NO2 

LUR model of NO2 using 

annual average 

concentration predicted for 

2006. 

 Mean (SD) 

NO2 (ppb): 18.0 (5.3) 
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Table 2-3: Effect measure included in the analysis 

Citation Pollutant Outcome Model Gender reported Converted 

Brook et al. 2008 NO2 Prevalence LUR All 1.01 (0.98, 1.05) Per 1 ppb 1.08 (0.90, 1.29) Per 10 ug/m3 

Brook et al. 2008 NO2 Prevalence LUR Female 1.04 (1.00, 1.08) Per 1 ppb 1.23 (1.00, 1.51) Per 10 ug/m3 

Brook et al. 2008 NO2 Prevalence LUR Male 0.99 (0.95, 1.03) Per 1 ppb 0.95 (0.76, 1.17) Per 10 ug/m3 

Kramer et al. 2010 NO2 Incidence Emission Female 1.15 (1.04, 1.27) Per 15 ug/m3 1.1 (1.03, 1.170) Per 10 ug/m3 

Kramer et al. 2010 NO2 Incidence LUR Female 1.42 (1.16, 1.73) Per 15 ug/m3 1.26 (1.10, 1.44) Per 10 ug/m3 

Kramer et al. 2010 NO2 Incidence Air monitor Female 1.34 (1.02, 1.76) Per 15 ug/m3 1.22 (1.01, 1.46) Per 10 ug/m3 

Anderson et al. 2011 NO2 Incidence AirGIS All 1.04 (1.00, 1.08) Per 4.9 ug/m3 1.08 (1.00, 1.17) Per 10 ug/m3 

Anderson et al. 2011 NO2 Incidence AirGIS Female 1.07 (1.01, 1.13) Per 4.9 ug/m3 1.15 (1.02, 1.28) Per 10 ug/m3 

Anderson et al. 2011 NO2 Incidence AirGIS Male 1.01 (0.97, 1.07) Per 4.9 ug/m3 1.02 (0.94, 1.15) Per 10 ug/m3 

Eze et al. 2014 NO2 Prevalence Hybrid All 1.21 (1.04, 1.4) Per 10 ug/m3 1.21 (1.04, 1.40) Per 10 ug/m3 

Eze et al. 2014 NO2 Prevalence Hybrid Female 1.11 (0.91, 1.36) Per 10 ug/m3 1.11 (0.91, 1.36) Per 10 ug/m3 

Eze et al. 2014 NO2 Prevalence Hybrid Male 1.25 (1.06, 1.48) Per 10 ug/m3 1.25 (1.06, 1.48) Per 10 ug/m3 

Lazarevic et al. 2015 NO2 Prevalence LUR Female 1.04 (0.90, 1.20) Per 3.7 ppb 1.06 (0.86, 1.30) Per 10 ug/m3 

Coogan et al. 2016 NO2 Incidence Dispersion Female 0.85 (0.71, 1.02) Per 9.7 ppb 0.91 (0.83, 1.01) Per 10 ug/m3 

Coogan et al. 2016 NO2 Incidence LUR Female 0.88 (0.79, 0.98) Per 9.7 ppb 0.93 (0.88, 0.99) Per 10 ug/m3 

Hansen et al. 2016 NO2 Incidence AirGIS Female 1.05 (0.98, 1.12) Per 7.53 ug/m3 1.07 (0.97, 1.16) Per 10 ug/m3 

Clark et al. 2017 NO2 Incidence LUR All 1.00 (0.98, 1.02) Per 8.4 ug/m3 1.00 (0.99, 1.01) Per 10 ug/m3 

Eze et al. 2017 NO2 Incidence Hybrid All 0.92 (0.67, 1.26) Per 15 ug/m3 0.95 (0.77, 1.17) Per 10 ug/m3 

Honda et al. 2017 NO2 Prevalence Air monitor All 1.22 (1.07, 1.39) Per 8.3 ppb 1.14 (1.04, 1.23) Per 10 ug/m3 

O'Donovan et al. 2017 NO2 Prevalence DEFRA-PCM All 0.91 (0.72, 1.16) Per 10 ug/m3 0.91 (0.72, 1.16) Per 10 ug/m3 

Renzi et al. 2017 NO2 Incidence LUR All 1.00 (0.988, 1.01) Per 10ug/m3 1.00 (0.99, 1.01) Per 10 ug/m3 

Renzi et al. 2017 NO2 Incidence LUR Female 1.00 (0.992, 1.01) Per 10ug/m3 1.00 (0.99, 1.01) Per 10 ug/m3 

Renzi et al. 2017 NO2 Incidence LUR Male 1.00 (0.993, 1.01) Per 10ug/m3 1.00 (0.99, 1.01) Per 10 ug/m3 

Renzi et al. 2017 NO2 Prevalence LUR All 1.01 (1.002, 1.02) Per 10ug/m3 1.01 (1.00, 1.02) Per 10 ug/m3 

Strak et al. 2017 NO2 Prevalence LUR All 1.07 (1.05, 1.09) Per 7.76 ug/m3 1.09 (1.06, 1.12) Per 10 ug/m3 

Bai et al. 2018 NO2 Incidence LUR All 1.06 (1.05, 1.07) Per 4 ppb 1.08 (1.07, 1.09) Per 10 ug/m3 

Bai et al. 2018 NO2 Incidence LUR Female 1.07 (1.05, 1.08) Per 4 ppb 1.09 (1.07, 1.11) Per 10 ug/m3 

Bai et al. 2018 NO2 Incidence LUR Male 1.05 (1.03, 1.06) Per 4 ppb 1.07 (1.04, 1.08) Per 10 ug/m3 

Orioli et al. 2018 NO2 Prevalence Dispersion All 1.03 (1.01, 1.05) Per 10 ug/m3 1.03 (1.01, 1.05) Per 10 ug/m3 

Orioli et al. 2018 NO2 Prevalence Dispersion Female 1.00 (0.99, 1.02) Per 10 ug/m3 1 .00(0.99, 1.02) Per 10 ug/m3 

Orioli et al. 2018 NO2 Prevalence Dispersion Male 1.06 (1.04, 1.08) Per 10 ug/m3 1.06 (1.04, 1.08) Per 10 ug/m3 

Riant et al. 2018 NO2 Prevalence Dispersion All 1.06 (0.9, 1.25) Per 5 ug/m3 1.12 (0.81, 1.56) Per 10 ug/m3 

Yang et al. 2018 NO2 Prevalence Air monitor All 1.22 (1.12, 1.33) Per 9 ug/m3 1.25 (1.13, 1.37) Per 10 ug/m3 

Yang et al. 2018 NO2 Prevalence Air monitor Female 1.10 (0.94, 1.3) Per 9 ug/m3 1.11 (0.93, 1.34) Per 10 ug/m3 

Yang et al. 2018 NO2 Prevalence Air monitor Male 1.28 (1.11, 1.47) Per 9 ug/m3 1.32 (1.12, 1.53) Per 10 ug/m3 

Howell et al. 2019 NO2 Prevalence LUR All 1.16 (1.14, 1.17) Per 10 ppb 1.08 (1.07, 1.09) Per 10 ug/m3 

Liu et al. 2019 NO2 Prevalence Satellite All 1.05 (1.039, 1.06) Per 1 ug/m3 1.30 (1.23, 1.37) Per 10 ug/m3 

Liu et al. 2019 NO2 Prevalence Satellite Female 1.04 (1.026, 1.05) Per 1 ug/m3 1.47 (1.29, 1.66) Per 10 ug/m3 

Liu et al. 2019 NO2 Prevalence Satellite Male 1.07 (1.052, 1.09) Per 1 ug/m3 1.95 (1.66, 2.30) Per 10 ug/m3 

Shin et al. 2019 NO2 Prevalence Air monitor Female 1.19 (1.07, 1.33) Per 13.6 ppb 1.07 (1.03, 1.12) Per 10 ug/m3 

Shin et al. 2019 NO2 Prevalence Air monitor Female 1.19 (1.07, 1.33) Per 13.6 ppb 1.07 (1.03, 1.12) Per 10 ug/m3 

Shin et al. 2019 NO2 Prevalence Air monitor Male 1.12 (1.02, 1.22) Per 13.6 ppb 1.05 (1.01, 1.08) Per 10 ug/m3 

Shin et al. 2019 NO2 Prevalence Air monitor Male 1.12 (1.02, 1.22) Per 13.6 ppb 1.05 (1.01, 1.08) Per 10 ug/m3 

Li et al. 2017 UFP Prevalence TAA-PNC All 0.71 (0.46, 1.10) Per 10112 count/cm3 0.71 (0.46, 1.10) Per 104count/cm3 

Bai et al. 2018 UFP Incidence LUR All 1.06 (1.05, 1.08) Per 9948 count/cm3 1.06 (1.05, 1.08) Per 104 count/cm3 

Kramer et al. 2010 BC Incidence LUR Female 1.27 (1.09, 1.48) Per 0.39 (10-5/m) 1.85 (1.25, 2.73) Per 10-5/m 

Clark et al. 2017 BC Incidence LUR All 1.03 (1.01, 1.04) Per 0.90 (10-5/m) 1.03 (1.01, 1.04) Per 10-5/m 

Renzi et al. 2017 BC Incidence LUR All 1.00 (0.981, 1.02) Per 1.0 (10-5/m) 1.00 (0.98, 1.02) Per 10-5/m 

Strak et al. 2017 BC Prevalence LUR All 1.04 (1.02, 1.06) Per 0.24 (10-5/m) 1.18 (1.09, 1.27) Per 10-5/m 
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Table 2-4: Quality of evidence 

Quality factor Rating Basis 

Downgrade 

Risk of bias across studies 0 No evidence of substantial risk of bias across included studies 

Indirectness 0 The studies assessed the population, exposure, and outcome of interest 

Inconsistency 0 Except for three studies (Coogan et al., 2016; Egger et al., 1997; Eze et al., 2017; O'Donovan 

et al., 2017), study results were generally consistent in direction with the summary effect 

with varying degrees of magnitudes. 

Imprecision 0 The CI of the pooled effect for exposure to NO2 and DM was narrow. 

Publication Bias 0 No evidence of publication bias.  

Upgrade 

Large magnitude of effect 0 The effect estimate was not large 

Dose-response 0 Several studies reported dose-response curves, but the evidence was not compelling enough 

to change the rating. 

Confounding minimizes 

effect 

0 No evidence was found that residual confounding would reduce the effect estimate. 

Overall quality of evidence Moderate Moderate. The initial rating for human studies was moderate with no downgrade/upgrade of 

the rating 

Summary of findings from 

the meta-analysis 

NA There is a positive association between the risk of DM and exposure to NO2 

Summary of qualitative 

findings 

NA Dijkema et al. (not included in the quantitative analysis) showed a positive association 

between NO2 exposure and DM. 

Strength of considerations 

Quality of body of evidence NA Moderate 

The direction of the effect 

estimate 

NA Risk of DM increased with increasing exposure o NO2 

Confidence in the effect 

estimate 

NA It is unlikely that a new study would have an effect estimate that would make the results null. 

Other compelling attributes 

of the data that may 

influence certainty 

NA None 

Overall strength of evidence Sufficient We conclude that there is a positive association between NO2 exposure and risk of DM with 

sufficient evidence while reasonably ruling out chance, bias, and confounding as an 

explanation.    
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Figure 2-1: Flow chart 
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Figure 2-2: Risk of bias 
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Brook et al. (2008b) L L L L H L L L 

Krämer et al. (2010) L L L L L L L L 

Dijkema et al. (2011) L L L L L L L L 

Andersen et al. (2012b) L L L L L L L L 

Eze et al. (2014a) L L L L L L L L 

Lazarevic et al. (2015) L L L L H L L L 

Coogan et al. (2016) H H L L H L L L 

Hansen et al. (2016) L L L L H L L L 

Renzi et al. (2018) L L L L L L L L 

C. Clark et al. (2017) L L L H H L L L 

Li et al. (2017) L L L L H L L L 

Honda et al. (2017) L L H L L L L L 

Strak et al. (2012) L L L L H L L L 

Eze et al. (2017) L L L L L L L L 

O'Donovan et al. (2017) L L L L L L L L 

Yang et al. (2018) L L H L L L L L 

Orioli et al. (2018) L L U L H L L L 

Riant et al. (2018) L L L L L L L L 

Bai et al. (2018) L L L L H L L L 

Shin et al. (2019) L L H L H L L L 

Howell et al. (2019) L L L L H L L L 

F. Liu et al. (2019) L L L L L L L L 
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Figure 2-3: NO2 and diabetes 
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Figure 2-4: NO2 and diabetes by study design 
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Figure 2-5: NO2 and diabetes by gender 
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Figure 2-6: NO2 and diabetes by minimum age of inclusion 
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Figure 2-7: NO2 and diabetes by location 
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Figure 2-8: NO2 and diabetes by exposure model 
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Figure 2-9: NO2 and diabetes by outcome definition 
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Figure 2-10: Black carbon and diabetes 

 

Figure 2-11: Ultrafine particles and diabetes 
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Figure 2-12: Funnel plot 
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Figure 2-13: Adjustment factors 
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Figure 2-14: NO2 and diabetes crude vs adjusted 
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3. BURDEN OF DISEASE ASSESSMENT 

3.1 Introduction 

Air pollution is a growing contributor to the global burden of disease. An estimated 4.2 

million premature deaths are due to ambient air pollution in 2015 (Forouzanfar et al., 2016; 

Prüss-Üstün et al., 2016). Moreover, air pollution is a leading risk factor for multiple non-

communicable diseases including cardiovascular, respiratory, renal, and other diseases 

(Landrigan et al., 2018). Recent toxicological and epidemiological evidence link air pollution 

exposure to the development of diabetes mellitus (Table 1-1) (Eze et al., 2015; Wang et al., 

2014). There have been several calls from leading health professionals to examine the burden air 

pollution had on multiple health outcomes including diabetes, and to examine the health 

disparities associated with such burden (Landrigan et al., 2018). Recent advances in air pollution 

modeling techniques have made air pollution measurement at fine geographical levels possible. 

The availability of such measurements makes it possible for public health professionals to model 

the burden of air pollution on large scales by combining air pollution measurements with 

multiple publicly available data. This study aims to quantify the burden of diabetes among adults 

due to air pollution exposure in the United States and compare the burden across several 

geographic levels. 

3.2 Methods 

 Study Area and Timeline 

We combined data from multiple sources for the 2010 contiguous United States (48 states 

plus the District of Columbia) at the finest geographical level available. Data included the 2010 

US Census, air pollution concentration using a land-use regression model, diabetes incidence rate 



 

51 

 

at the county level, and concentration-response functions for the incident and prevalent diabetes 

due to NO2 exposure.  

 Census Data 

The United States 2010 decennial census data was obtained from the National Historical 

Geographic Information System (NHGIS) (Manson et al., 2019). The NHGIS provides easy 

access to US census data. Population counts for adults >= 18 years of age and race and ethnicity 

were obtained at the census block levels. A census block level is the finest geographical level 

used to tabulate census data. Census blocks are not consistent in size and are usually defined by 

physically visible boundaries like roads, rivers, railroads, or land lots (US Census Bureau, 1994). 

Census blocks are designated as either urban or rural based on population thresholds, 

nonresidential lad use, and distance from other urban areas. Urban blocks are subdivided into 

two categories based on population size; urbanized areas (>= 50,000 people) and urban clusters 

(>= 2,500 to <50,000 people) (Ratcliffe et al., 2016).  

 Diabetes Incidence and Prevalence 

County-level diabetes prevalence and incidence rates were readily available and obtained 

from the United States Diabetes Surveillance System (USDSS) (CDC, 2017b). The USDSS uses 

data from the Behavioral Risk Factor Surveillance System (BRFSS) to calculate population 

estimates. The BRFSS is a continuous state-based telephone-based health survey of the adult 

population (CDC, 2009). The following questions were considered: 

• "Has a doctor ever told you that you have diabetes?" – if "yes" and the respondent was not 

"pregnant" the respondent is considered to have "diagnosed diabetes".  

• "How old were you when you were told you have diabetes?" – if the respondent has 

“diagnosed diabetes” and the difference between their age at the time of the survey and the 
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age of diagnosis was less than one year the respondent is considered a “newly diagnosed 

case”, however, if the time difference is between one and two years the respondent is 

weighted as “half a newly diagnosed case”.  

The precision of estimates was increased using three years of data, the year before and 

after. For example, the 2010 estimates used data from 2009, 2010, and 2011 to increase 

precision. Bayesian multilevel modeling techniques for small area estimates were used to obtain 

county-specific rates. The model makes a county estimate by borrowing BRFSS data from other 

counties (Barker et al., 2013; Cadwell et al., 2010; Malec et al., 1997; Rao, 2003). 

 Exposure Assessment Model 

Exposure levels were assigned as a function of the annual average NO2 concentration at 

each census block. NO2 concentrations were obtained using a satellite-based land-use regression 

model (Bechle et al., 2015). The model predicts concentrations at unmeasured areas by 

combining monthly average readings of NO2 using Environmental Protection Agency (EPA) air 

quality monitors, remote sensing (satellite) readings, and geographical information systems 

(GIS) covariates (e.g. major roads, elevation, impervious surfaces, and forests). The developers 

validated the model using hold-out cross-validation to test the predictive power for NO2 at 

unmeasured locations (Bechle et al., 2015). The validation showed an (R2
 = 0.82) which is 

relatively good compared to similar LUR models (Beelen et al., 2009b; Hystad et al., 2011; 

Novotny et al., 2011; Vienneau et al., 2013) 

 Concentration-Response Function 

Concentration-response functions (CRF) of incidence and prevalence were obtained from 

the meta-analytic effect size of the systematic review. The CRF is a measure of how each unit 
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change in NO2 exposure translates into a change in prevalence or incidence of diabetes mellitus 

among exposed individuals.  

 The Burden of Disease Model 

We calculated the attributable number of incident and prevalent cases of diabetes due to 

NO2 exposure by combining census data, NO2 concentration, diabetes incidence, and prevalence 

rates, and the concentration-response function. The attributable number of incidence cases 

(ACIR) for each census block is calculated by multiplying the attributable fraction (AFb) with the 

incident cases (ICb) within a census block.  

ACIR =  ∑(AFb ∗ ICb)

b

i=1

 

The attributable fraction (AFb) is the relative risk rate difference for each exposure 

increase in a unit of NO2 (RRdiff). The ICb is estimated by multiplying the diabetes mellitus 

incidence rate, with the number of the at-risk population within a census block. The at-risk 

population is the number of individuals who either don’t have the outcome of interests (diabetes) 

or were incident cases and is estimated by subtracting the prevalent cases from the total adult 

population within a census block (Adultb).  

ACIR = ∑ [
(RR diffb ‒  1)

RR diffb
∗ IR ∗ (Adultb − ( Adultb ∗ PR))]

b

i=1

 

The attributable number of prevalent cases (ACPR) for each census block is calculated by 

multiplying the RRdiff with prevalent diabetes cases (PCb) within a census block.  

𝐴𝐶𝑃𝑅 =  ∑(𝐴𝐹𝑏 ∗ 𝑃𝐶𝑏)

𝑏

𝑖=1
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= ∑ [
(𝑅𝑅 𝑑𝑖𝑓𝑓𝑏  ‒  1)

𝑅𝑅 𝑑𝑖𝑓𝑓𝑏
∗ 𝑃𝑅 ∗ Adultb]

𝑏

𝑖=1

 

The relative risk rate difference is the difference in risk for each unit increase in exposure. 

𝑅𝑅 𝑑𝑖𝑓𝑓𝑏 = 𝑒
((

𝑙𝑛(𝑅𝑅)
𝑅𝑅𝑢

)∗𝑁𝑂2𝑏)
 

Where 

𝑏 = Represents populated census blocks. 

𝑅𝑅𝑢= Exposure unit for the concentration-response (per 4 µg/m3). 

𝐴𝐹𝑏= Attributable fraction of diabetes due to NO2 exposure in census block 𝑏 

𝑁𝑂2𝑏
= Mean concentration of NO2  in census block 𝑏. 

 Alternative Scenarios 

We modeled and compared the number of attributable cases using an alternative scenario 

in which NO2 concentrations at any given census block did not exceed the lowest NO2 

concentration detected for each corresponding living location category it lies within. This was 

achieved by replacing NO2 concentrations for each census block with the corresponding 

concentration: 

• Rural  areas = 1.48 μg/m3 

• Urban clusters = 1.57 μg/m3 

• Urbanized areas = 2.59 μg/m3 

3.3 Results 

 Census Data 

There was a total of 6,182,882 populated census blocks in the contiguous US in 2010, of 

which (58%) were designated as urban areas. The total number of adults was 223,953,591 (73% 
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of the total adult population in the US). By living location, more than 80% of adults lived in an 

urban area. A summary of the population characteristics is summarized in Table 3-1. 

  NO2 Concentration 

The mean NO2 concentration across populated blocks in the US was 13.2 μg/m3 ranging 

between 1.5 μg/m3 
 to 58.3 μg/m3 (Table 3-2). Urban designated blocks had a higher average air 

pollution concentration then rural blocks. The state with the highest and lowest mean NO2 

concentrations was District of Columbia (26.3 μg/m3) and South Dakota (5.2 μg/m3), 

respectively (Table A 1).  

 Diabetes Prevalent and Incident Cases 

Using the county diabetes prevalence and incidence rates, the estimated total number of 

diabetes prevalent and incident cases among adults was 21,299,056 and 1,938,813 respectively 

(Table 3-1). More than 75% of both prevalent and incident cases lived in an urban designated 

census block. A summary of the total diabetes cases by the state is provided in (Table A 1). 

 Attributable Number of Diabetes Cases 

The total number of diabetes prevalent and incident cases attributable to air pollution 

exposure (and fraction) among adults were estimated to be around 5,978,048 (28.1%)  and 

213,641 (11%) respectively (Table 3-3).  The state with the highest attributable prevalent and 

incident cases was California with 2,106,691 and 197,425 cases respectively (Table A 1). The 

state with the highest attributable fraction of prevalent and incident cases was the District of 

Columbia (43.5% and 17.8%) respectively, while the state with the lowest levels were South 

Dakota (13% and 4.7%). Figure 3-1provides a summary of the distribution of attributable 

fraction by census block across each state.  
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 Attributable Number of Diabetes Cases by Living Location 

By living area, the total number of prevalent and incident attributable cases in urban 

designated areas was 5,212,792(87%) and 188,464 (88%) respectively (Table 3-3). The 

attributable fractions were highest in blocks designated as urbanized areas (32.8% and 13.0%) 

compared to urban clusters and rural areas for both the prevalent and incident cases respectively. 

Table A 2 provides a summary of the attributable fraction of prevalent and incident cases by 

living locations across each state. 

 Alternative Scenarios 

Table 3-4 presents a summary of the change in the number and original estimates using 

air pollution concentrations reduced to the lowest modeled concentration among each living 

location. The total reduction was 83% for prevalent cases and 85% for incident cases.  

3.4 Discussion 

 Main Results 

In this study, we modeled the burden of diabetes due to exposure to air pollution across 

the contingent US using NO2 concentrations at the census block level, diabetes prevalence and 

incidence rates at the county level, and concentration-response functions derived from a 

metanalysis. Based on the model we estimated that a large proportion of diabetes cases among 

adults in the US can be attributable to air pollution exposure. Overall, we found that the total 

number of attributable cases of prevalent and incident diabetes due to air pollution exposure 

reached 5,978,048 and 213,641, respectively, among the adult US population (Table 3-3). Adults 

living in census blocks designated as urbanized areas had a higher attributable fraction compared 

to other census designations for both prevalent and incident cases. This can be explained by 
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higher NO2 concentrations found in urbanized areas compared to other census designations 

(Table 3-2). We present a summary of our findings across states (Table A 1-A4 & Figure 3-1). 

Finally, reducing air pollution levels to the lowest detectable levels may have the potential to 

reduce the attributable number of cases by 89% (Table 3-4).  

 Comparison with Similar Studies 

Bowe et al. (2018a) examined the burden of diabetes due to PM2.5 exposure. The study 

estimated the number of attributable incident cases globally was at 3.2 million (2.2-3.8) while the 

three largest countries in terms of total cases (in the thousands) were China with 600.3 (447·2–

757·3), India 590·5 (447·0–737·1) followed by the US 149·5 (85·2–210·3). The number of 

attributable cases per population count varied across countries. Pakistan had an ABD per 100 

000 population of 58·8 (44·1–74·3), followed by the US 46·3 (26·4–65·1), and India with 44·9 

(34·0–56·0). In comparison to our study, Bowe et al. (2018a) examined PM2.5 as the exposure of 

interest using satellite-based data while we examine NO2. , Bowe et al. (2018a) used a theoretical 

minimum risk exposure level (TMREL) in which exposure values between the minimum and 

fifth percentile of the exposure distribution did not contribute to the risk of developing diabetes, 

while we assumed all exposure levels attributed to the risk of developing diabetes.  

 Strengths and Sources of Error 

We used a satellite-based model with a relatively high predictive power at unmeasured 

locations (Bechle et al., 2015). The model provides very fine local level exposure estimates. 

Despite the high precision of air pollution concentration at the residential location, this model 

had several limitations described next. First, we used NO2 as a marker of exposure. However, air 

pollution exposure occurs as a mixture of pollutants (Leaderer et al., 1993). NO2 is a more 

specific marker of urban sources of air pollution (i.e. vehicle emissions) compared to other 
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pollutants like PM. Studies examining the concentrations of pollutants near motorways show that 

NO2 levels decline with distance to roadside while PM10 and PM2.5 do not show a concentration 

gradient (Roorda-Knape et al., 1998). Second, the LUR model measures air pollutions levels as 

an indirect method of exposure as opposed to a direct method (i.e. internal dose or personal 

measurements) (Ott, 1982). However, we believe this method is feasible in our study for the 

following reasons: First, a direct measurement becomes infeasible to apply to large populations 

as the cost of would outweigh the benefit. Second, indoor and outdoor air pollution mixtures 

differ. The main sources of indoor NO2 levels are smoking and gas stoves while the main sources 

of outdoor NO2 levels in an urban setting are combustion, and in the absence of indoor sources 

the major source of NO2 levels are outdoor sources (Monn, 2001). Third, although the model 

estimates exposure of individuals at residential locations, it does not consider spatiotemporal 

variation (i.e. exposure at work or during grocery shopping). However, the concentration-

response function used in the analysis was derived from studies that examined exposure at the 

residential location (Table 2-2). Fourth, studies using longitudinal repeated measurements found 

a stronger correlation between outdoor and personal values compared to a single measurement 

(Monn, 2001). Finally, our exposure model does not consider indoor sources of NO2, studies 

showed that outdoor values were strongly associated with mortality and morbidity indicating that 

the health effects are more likely form outdoor sources (Dockery et al., 1993; Schwartz et al., 

1996). 

 Concentration Response Function 

We used concentration-response functions derived from meta-analytic methods where 

multiple studies exploring the risk of developing diabetes due to exposure air pollution are 

pooled together to produce a single effect estimate. Although pooled effect estimates have higher 
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precision, one limitation is that it also aggregates existing bias across included studies (Rothman 

et al., 2008). Our estimates assume a causative association between exposure to air pollution and 

diabetes based on a positive concentration-response function,  however, several limitations exist. 

First, the pooled estimate suffered from a high level of heterogeneity. However, the pooled 

estimates remained positive across the various strata in the analysis. Second, while the included 

studies controlled for important confounders of diabetes there remains the possibility of residual 

confounding which could explain the association. Third, interaction with other pollutants was not 

considered in all the included studies which also might explain the association. Fourth, the 

definition of diabetes varied across studies. For example, some studies defined diabetes as self-

reported while others used lab-based methods. Finally, the exposure assessment methods varied 

across included studies, for example, some studies used LUR models, others used dispersion 

models and air monitors. 

 Incidence and Prevalence Rate 

A Bayesian multilevel model was used to estimate the incidence and prevalence rates at 

the county level. The model had a couple of limitations, though. First, the data used to estimate 

the county level incidence and prevalence rates were obtained from the BRFSS.which is 

designed to provide state-level health estimates since not all county estimates (CDC, 2009). The 

Bayesian model makes indirect estimates by allowing the effect of age, gender, and 

race/ethnicity of prevalence and incidence to vary by county (Barker et al., 2013; Cadwell et al., 

2010). Although we used modeled rates as opposed to direct estimates, we believe the modeled 

estimates are good estimates that are validated by comparing the modeled to direct estimates of 

available counties. Secondly, stratified estimates (i.e. age or race/ethnicity) were not possible 

since sample sizes from the BRFSS at the county level do not support finer level estimates. 
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Third, the burden estimates are for one year of available data. These estimates might have 

considerable variation due to changing incidence and prevalence rates and air pollution levels by 

year. Finally, the incidence and prevalence rates are based on self-reported diabetes and do not 

account for undiagnosed diabetes. Undiagnosed diabetes could be up to 34% of all diabetes cases 

in the US (Demmer et al., 2013). 

3.5 Summary and Conclusion 

In summary, our study quantified the burden of diabetes due to air pollution exposure in 

the United States by combining census data with NO2 concentrations obtained at the census 

block level from a satellite-based land-use regression model, diabetes prevalence and incidence 

rates at the county level, and a concentration-response function from a meta-analysis. The study 

contributes to the limited number of literature estimating the burden of diabetes due to air 

pollution and answers a call from leading health professionals in this regard. We found that 

around 28% and 11% of diabetes cases among adults in the United States may be attributable to 

air pollution exposure. A reduction in air pollution concentrations to the lowest measured 

concentrations by living location may considerably reduce the number of attributable cases by up 

to 89%.  
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Table 3-1: Census data 

  ADULT (%) CASESPR (%) CASESIR (%) 

Total 223,953,591 21,299,056 1,938,813 

Rural 43,927,049 19.6%      4,682,345  22.0%       420,371  21.7% 

Urban cluster 20,901,097 9.3%      2,153,411  10.1%       194,655  10.0% 

Urbanized area 159,125,445 71.1%    14,463,299  67.9%    1,323,788  68.3% 

 

Table 3-2: Air pollution summary 

  Mean Min first Median third Max 

Total 13.2 1.5 7.9 11.4 16.6 58.3 

Rural 8.0 1.5 6.0 7.8 9.8 37.7 

Urban cluster 12.0 1.6 9.6 11.9 14.2 35.6 

Urbanized area 18.4 2.6 13.0 17.0 22.1 58.3 

<$20,000 16.1 2.0 10.4 14.9 20.1 56.8 

$20,000 to <$35,000 13.2 1.6 8.1 11.7 16.7 58.3 

$35,000 to <$50,000 11.8 1.5 7.0 10.0 14.5 58.0 

$50,000 to <$75,000 12.8 1.6 7.6 10.8 15.7 55.7 

>=$75,000 16.5 2.1 10.9 14.9 20.6 55.5 

Not defined 16.0 1.8 9.2 13.6 20.2 56.3 

African American 16.9 1.8 10.1 15.7 22.0 56.2 

Asian 22.5 2.0 14.7 21.3 29.4 55.2 

Hispanic 18.6 1.6 10.8 16.1 23.9 58.3 

Other 11.5 1.6 6.9 9.5 14.1 56.7 

White 12.3 1.5 7.7 10.8 15.3 56.3 

 

Table 3-3: Burden estimates 

  ACPR AFPR ACIR AFIR 

Total   5,978,048   (% of total)  28.1%   213,641   (% of total)  11.0% 

Rural      765,256  13% 16.3%     25,177  12% 6.0% 

Urban cluster      466,119  8% 21.6%     15,743  7% 8.1% 

Urbanized area   4,746,673  79% 32.8%   172,721  81% 13.0% 

 

Table 3-4: Alternative scenario estimates 

  ACPR (change %) ACIR (change %) 

Total 1,003,937 -83% 31,927 -85% 

Rural 146,718 -81% 4,565 -82% 

Urban cluster 71,527 -85% 2,242 -86% 

Urbanized area 785,692 -83% 25,120 -85% 
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Figure 3-1: Attributable fraction by state 
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4. HEALTH DISPARITY 

4.1 Introduction 

Air pollution is a risk factor for multiple non-communicable diseases and all-cause 

mortality (Forouzanfar et al., 2016; Landrigan et al., 2018; Prüss-Üstün et al., 2016). 

Communities of lower and middle socioeconomic status are disproportionally burdened by air 

pollution (WHO, 2016a). In the US, lower socioeconomic communities are disproportionally 

exposed to air pollution and health disparities among social strata are known to exist (C. Clark et 

al., 2017). However, whether the disproportionate air pollution exposure in the US is relevant to 

public health needs to be examined further. This study aims to explore the health disparities 

across racial and income strata associated with the burden of diabetes due to air pollution 

exposure and create easily accessible interactive tools to visualize and explore the burden of 

disease in the United States. 

4.2 Methods 

We estimated the burden of diabetes due to air pollution for the contiguous United States 

for the year 2010 using the following data sets; a) decennial census data at the block and block 

groups level, b) air pollution concentration at the block level, c) diabetes incidence rates at the 

county level, and d) concentration-response function from a pooled effect estimate of 

longitudinal studies. 

 Census Data  

The 2010 decennial census data for the United States were obtained from the National 

Historical Geographic Information System (NHGIS) (Manson et al., 2019) which provides easy 

access to US census data. We categorized census blocks by race/ethnicity as either white, 
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African American, Asian, Hispanic, or other, based on the predominant race and ethnicity 

residing within the census block. For example, if the largest number of individuals residing 

within a census block were Hispanic, we would categorize the census block as predominantly 

Hispanic. If more than one predominant race (i.e. equal number of individuals) resided within the 

census block we assigned the block as an “other” category.  

Median household income was available at the census block group level (one level higher 

than the census block). Each census block was assigned the median household income of its 

respective block group. We stratified the income groups using two methods, a) dollar amount 

and b) centiles of the income distribution. The first methods used the following categories;  

<$20,000, $20,000 to <$35,000, $35,000 to <$50,000, $50,000 to <$75,000 and ≥$75,000 (L. P. 

Clark et al., 2014). The second method was defined by dividing the median household income 

into ten equal categories (centiles) based on the income distribution at a) the national level and b) 

the county level. Census block groups with missing income data were assigned as “unknown”.  

Census blocks are designated as either urban or rural based on population thresholds, 

nonresidential lad use, and distance from other urban areas. Urban blocks are subdivided into 

two categories based on population size; urbanized areas (>= 50,000 people) and urban clusters 

(>= 2,500 to <50,000 people)  (Ratcliffe et al., 2016).  

 Air Pollution Concentration 

Air pollution concentrations of NO2 for each census block were obtained using a land-use 

regression model developed by Bechle et al. (2015). The model predicts air pollution 

concentrations by incorporates data from satellite-based readings, EPA air quality monitors, and 

GIS covariates including major roads, elevation, impervious surfaces, and forests. The model has 
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a relatively good validation compared to similar models of R2 = 0.82 (Beelen et al., 2009b; 

Hystad et al., 2011; Novotny et al., 2011; Vienneau et al., 2013). 

 Concentration-Response Function and Diabetes Incidence Rate 

We used a concentration-response function from a pooled effect estimate of longitudinal 

studies examining the risk of exposure to air pollution in the form of NO2 and incident diabetes 

mellitus among adults. The OR was 1.02 per 10 ug/m3
 increase in NO2 exposure. Diabetes 

incidence rates for 2010 by county was obtained from the USDSS  (Barker et al., 2013; Cadwell 

et al., 2010; CDC, 2017a; Malec et al., 1997; Rao, 2003). 

 The Burden of Disease Model  

We estimated the attributable fraction of incident diabetes cases due to NO2 exposure 

across each census block by combining the previous data sets (census, NO2 concentration, CRF, 

and diabetes incidence rates) using a burden of disease model described previously (see 3.2.6 

The Burden of Disease Model). To examine the health disparities, we compared the attributable 

fraction of diabetes cases due to air pollution across median household income, predominant 

race, and living location.  

 Interactive Tools 

Lookup tables and maps summarizing the burden across each county were created. The 

table presents the total population, adults, incident cases, overall attributable fraction, the 

attributable fraction stratified by race and income. The maps present the attributable fraction by 

county. 
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4.3 Results 

 Census  

Of the 223,953,591 adults living in the US in 2010, 75.1% were white, 12.6% were 

Hispanic, 9.6% where African American, and 2.1% were Asian. The largest percent lived within 

a block with a median income of  “$50,000 to <$75,000” (Table 4-1). Population counts by 

centiles of income are summarized in (Table 4-1). 

 Burden  

The number of incident attributable cases was highest among census blocks with a 

predominantly white race (146,414 cases), and attributable fraction among predominantly Asians 

(17.8%) (Table 4-1). By median household income, the highest attributable cases were among 

“$50,000 to <$75,000”, and the attributable fractions among “<$20,000” (12.7%). Table 4-1 

summarizes incident cases, attributable cases, and fractions and by centiles. 

The distribution of attributable fraction by race showed that predominantly Asian blocks 

had the highest mean value (Figure 4-1). Mean values by race were more variable in urbanized 

areas compared to rural and urban clusters (Figure 4-2). By median household income, census 

block showed a U shaped distribution, higher in the “<$20,000”  and  “>=$75,000” groups 

(Figure 4-3). The U shaped distribution was more apparent in urbanized areas, compared to rural 

and urban clusters (Figure 4-4). Predominantly Asian blocks had the highest mean value 

regardless of income level (Figure 4-5). 

Centiles using the national distribution of income showed that across living locations 

higher centile groups had a larger mean value in rural areas, while in urbanized areas there was a 

U shaped distribution. When allowing the income distribution to vary across counties the burden 

becomes higher in lower centiles groups within urban clusters and urbanized areas (Figure 4-6). 
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By race, the mean values of centile groups showed a U shaped with an upward trend. When 

allowing the centile distribution to vary across counties the trend becomes downward for 

predominantly African American, Asian, and Hispanic blocks (Figure 4-7). Table A 4 provides a 

summary of the attributable fraction of prevalent and incident cases by race across each state and 

Table A 2 provides a summary of the attributable fraction of prevalent and incident cases by 

median household income across each state 

 Interactive Tools 

Using the data, we developed two tools 1) an interactive map by county, and  2) an 

interactive lookup table by county (see attached HTML files). The interactive map shows each 

county within a color scheme from green (lower attributable fractions of incident diabetes cases) 

to dark red (higher attributable fraction). When hovering over a county with the mouse 

information for the county is presented including the name of the county, state, total adult 

population, mean NO2 concentration, the estimated attributable diabetes incident cases due to 

NO2 exposure, and attributable fraction. The interactive lookup table presents each row as a 

county with the following columns: the state, county name, the total population within the 

county, total adult population, the estimated number of incident diabetes cases, the estimated 

attributable number of incident cases, the attributable fraction for the county, and the attributable 

fraction stratified by predominant race within a census block, and the attributable fraction of 

census block groups by median household income. Empty cells indicate that the county does not 

have a corresponding stratum (for example some counties do not have census blocks with some 

types of predominant race or median household income group). The lookup table also supports 

multiple features including a search bar, the ability to reorder rows by specific columns, the 

ability to copy and transfer the data to CSV, excel, pdf, or print. Using the interactive tools we 
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can see that the burden of the disease becomes higher among counties around urbanized areas 

(northeast regions around New, York, norther regions around Illinois, southwestern in California 

around Los Angeles) while the burden was lower rural areas (mid-US), we can also hover over 

any county with the mouse and look up the counties by name using the lookup table for more 

information within the county. Table A 5 & A6 were built using the interactive lookup table and 

show the top 20 counties in terms of the attributable number of incident cases and their fractions. 

4.4 Discussion 

 Health Disparity 

We examined the burden of diabetes due to air pollution in the US across racial and 

income strata. We found the burden was highest among blocks with a predominantly Asian 

population and lowest income groups. The burden was higher among predominantly Asian 

blocks across each income group. The burden was more variable within urbanized areas 

compared to rural and urban clusters. We examined the health disparity within counties of lower 

vs higher income groups by dividing the income distribution within a county into centiles and 

found that lower-income centiles had a larger burden compared to higher centiles of income 

among predominantly non-white blocks.  Bowe et al. (2018a) examined the burden of diabetes 

due to air pollution exposure in the form of PM2.5 and found substantial variability among 

geographies with low-income and low-to-mid-income countries having a higher burden. We 

examined the burden of diabetes due to exposure to NO2 within the US and found that the burden 

was highest among the lowest income groups and higher among minority populations.  

Our study had several limitations. First, our concentration-response function did not vary 

by race or income group. Second, when grouping by predominant race for a census we are 

misclassifying individuals living within a block of a different race. Third, the resolution of air 
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pollution data is a limitation since it does not take me into effect temporal or spatial variation of 

the individuals exposed nor does it measure indoor air pollution levels. 

 Interactive Tools 

We developed an online interactive map and a lookup table to visualize and explore the 

burden of diabetes due to air pollution at the county level. The interactive map illustrates by 

color intensity the attributable fraction of diabetes cases due to air pollution exposure with the 

green color being low and darker red color being a higher value. The map also provides county-

level information including the county name, state, the total population of adults, the estimated 

attributable number of cases, the estimated attributable fraction, and the mean NO2 concentration 

of all included census blocks within the county. This information is presented when hovering 

over the county by mouse. We also presented static maps to visualize the attributable fraction of 

counties stratified by median household income and predominant race (Figure A 1- A3). The 

interactive lookup table provides more detailed information for each county and includes the 

state, county name, total population, total adult population, total estimated incident cases, 

attributable number of incident cases, the attributable fraction of incident cases, and the 

attributable fraction stratified by predominant race and median household income. The table 

provides the ability to search each column through the search bar, re-ordering any column by 

descending or ascending order, and to copy and export the data within the table. For example, 

Table A 5 & A6 were extracted from the lookup tables and show the burden by county ordered 

by attributable cases and fractions respectively.  
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4.5 Summary and Conclusion 

In summary, we found that the burden of diabetes due to air pollution varied across and 

race and income levels within the US, the variability was more prominent in urbanized areas. we 

also developed and made publicly available easy access interactive tools for interested 

researchers, health professionals, and the general public. 

Table 4-1: Health Disparity 

  Category Adults Incident Cases ACIR AFIR 

R
ac

e
 

White         168,087,741           1,461,053         146,414  10.0% 

African American           21,446,944              205,290            25,979  12.7% 

Asian             4,621,359                 34,390              6,115  17.8% 

Hispanic           28,214,484              222,904            33,741  15.1% 

Other             1,583,063                 15,177              1,391  9.2% 

In
co

m
e 

G
ro

u
p
 <$20,000             7,694,460                 71,692              9,135  12.7% 

$20,000 to <$35,000           36,737,336              341,799            37,944  11.1% 

$35,000 to <$50,000           57,649,537              520,385            53,932  10.4% 

$50,000 to <$75,000           69,371,589              592,241            63,586  10.7% 

>=$75,000           51,758,988              406,266            48,419  11.9% 

Not defined                741,681                   6,430                 625  9.7% 

C
en

ti
le

 b
y
 N

at
io

n
al

 

D
is

tr
ib

u
ti

o
n

 

1st           17,565,690              164,083            19,909  12.1% 

2nd           19,479,462              181,240            19,937  11.0% 

3rd           20,578,249              189,492            19,902  10.5% 

4th           21,313,834              193,003            20,041  10.4% 

5th           22,067,756              196,589            20,209  10.3% 

6th           22,910,490              200,212            21,079  10.5% 

7th           23,800,891              203,857            21,751  10.7% 

8th           24,944,059              207,396            22,843  11.0% 

9th           25,717,092              206,729            23,882  11.6% 

10th           24,738,905              188,971            23,367  12.4% 

C
en

ti
le

 b
y
 C

o
u
n
ty

  

D
is

tr
ib

u
ti

o
n

 

1st           26,221,869              223,043            27,942  12.5% 

2nd           22,876,194              194,860            23,939  12.3% 

3rd           22,155,299              190,457            22,577  11.9% 

4th           21,732,490              187,719            21,620  11.5% 

5th           21,577,946              187,070            20,740  11.1% 

6th           21,476,600              186,495            20,073  10.8% 

7th           21,580,627              187,864            19,628  10.4% 

8th           21,671,843              189,458            19,080  10.1% 

9th           22,293,006              195,649            19,126  9.8% 

10th           21,625,520              189,764            18,292  9.6% 
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Figure 4-1: Attributable fraction by predominant race 

 
 

Figure 4-2: Attributable fraction of predominant race by living location 
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Figure 4-3: Attributable fraction by income 

 
 

Figure 4-4: Attributable fraction of income by living location 
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Figure 4-5: Attributable fraction of income by predominant race 
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Figure 4-6: Attributable fraction of centile of income by living location 

 
 The upper figure shows centile groups based on the national distribution of income while the 

lower figure shows centile groups based on the county-level distribution of income  



 

75 

 

Figure 4-7: Attributable fraction of centiles of income by predominant race 

 
The upper figure shows centile groups based on the national distribution of income while the 

lower figure shows centile groups based on the county-level distribution of incom 
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5. SUMMARY 

The purpose of the dissertation was to assess whether exposure to air pollution increases 

the risk of developing diabetes mellitus among adults, quantify the burden of diabetes due to air 

pollution in the United States, and explore the health disparities associated with the burden. We 

first conducted a systematic review and meta-analysis of studies examine the exposure to air 

pollution and the risk of developing diabetes mellitus. Secondly, we conducted a burden 

assessment of diabetes mellitus due to air pollution exposure by combing several data sets for the 

census, air pollution, prevalence, and incidence rates. Third, we explored how the burden of the 

disease varies across geographical and social strata including state, county, urban vs rural, 

predominant race,  and income. Fourth, we created interactive tools to visualize and lookup the 

burden data at the county level. A summary of our findings is presented in the following 

sections. 

5.1 Systematic Review and Meta-Analysis 

Air pollution is an emerging global health risk that has been linked to an increase in all-

cause mortality and as a cause of multiple non-communicable diseases including cardiovascular 

diseases, respiratory diseases, neurological and developmental among others. There have been 

several studies exploring the link between air pollution and the risk of development of air 

pollution including toxicological and epidemiological studies. Previously published systematic 

reviews have shown a positive association between air pollution exposure and the risk of 

developing diabetes mellitus. However, the number of include studies was small and the results 

showed a wide confidence interval. The number of studies published studies since then has 

increased, and we aimed to conduct a systematic review and meta-analysis to update the current 

state of knowledge. 
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We conducted a review of the literature for studies examining exposure to air pollution in 

the form of either NO2, BC, or UFP and the risk of developing diabetes mellitus among adults. 

We included 21 studies in the quantitative analysis. Of these, 20 studies examined the association 

between exposure to NO2 and the risk of developing diabetes mellitus, 4 examining the exposure 

to BC, and 2 examined the exposure to UFP. We have concluded that there is sufficient evidence 

of an association between exposure to NO2 and risk of diabetes among adults based on a 

moderate quality of evidence, an effect estimate with a positive direction, a pooled effect with a 

narrow confidence interval with a direction of effect that is unlikely to reverse or reach the null 

value with an addition of a new study, and a consistent direction of effect estimates among 

smaller studies. We were not able to reach a similar conclusion for the other pollutants BC and 

UFP because of the limited number of studies for each.  

5.2 The Burden of Disease Assessment and Health Disparity 

Air pollution is increasingly being recognized as a leading contributor to the global health 

burden in terms of mortality and morbidity. There have been recent calls to explore and quantify 

the health burden air pollution is having on society. Therefore, with the advent of technology that 

measures air pollution at a very fine level, we aimed to quantify the burden of disease from 

diabetes due to air pollution exposure in the United States utilizing several publicly available 

data sets and to compare the health disparity in burden among different social strata while 

creating publicly available and easily accessible interactive tools to visualize and explore the 

burden of disease. 

We joined census data at the census block level, NO2 concentrations from a satellite-

based land-use regression model, county-level prevalence and incidence rates, and concentration-

response functions from poled effect estimates using a meta-analysis study. We found that many 
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diabetes cases across the United States may be attributable to air pollution exposure and that the 

burden varied across states, counties, urban vs rural, predominant race within a census block, and 

median household income. Using the joined data, we were able to create an interactive map and 

lookup table that easily accessible. The interactive maps help visualize the distribution of burden 

geographically across counties, while the lookup table can be used hand in hand with the maps to 

search for more information regarding a specific county. The data is also easily accessible to the 

general public with the ability to transfer the data in multiple commonly used formats. 
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APPENDIX – A 

SUPPLEMENTARY TABLES AND FIGURES 

Table A 1: Burden of disease by state 

STATE 
NO2 

Mean 
ADULT CASESPR ACPR AFPR CASESIR ACIR AFIR 

Alabama 10.3     3,503,424         443,339         86,596  19.5%        38,756            2,814  7.3% 

Arizona 17.0     4,572,376         390,685       129,933  33.3%        36,922            4,883  13.2% 

Arkansas 9.3     2,119,988         243,761         46,237  19.0%        22,613            1,600  7.1% 

California 21.1   26,801,914     2,106,691       832,573  39.5%     197,425         31,964  16.2% 

Colorado 18.1     3,664,504         214,637         80,000  37.3%        20,459            3,145  15.4% 

Connecticut 15.6     2,658,321         220,773         64,946  29.4%        19,424            2,204  11.3% 

Delaware 13.2        664,131           64,592         16,378  25.4%          5,181               506  9.8% 

D.C. 26.3        478,003           38,718         16,854  43.5%          3,163               564  17.8% 

Florida 10.7   14,288,320     1,486,399       306,616  20.6%     133,841         10,365  7.7% 

Georgia 10.8     6,906,024         724,122       166,470  23.0%        64,319            5,640  8.8% 

Idaho 9.8     1,092,301           95,665         20,214  21.1%          8,263               656  7.9% 

Illinois 19.0     9,334,110         842,843       325,042  38.6%        76,793         12,182  15.9% 

Indiana 15.4     4,677,220         492,231       146,023  29.7%        43,746            5,053  11.6% 

Iowa 9.1     2,225,845         192,282         39,784  20.7%        18,241            1,412  7.7% 

Kansas 9.7     2,042,474         192,709         43,070  22.3%        18,243            1,536  8.4% 

Kentucky 12.4     3,193,163         381,375         93,953  24.6%        35,375            3,321  9.4% 

Louisiana 9.6     3,279,135         390,125         77,112  19.8%        36,238            2,688  7.4% 

Maine 6.3     1,017,402           97,604         12,967  13.3%          9,242               446  4.8% 

Maryland 16.1     4,256,926         412,495       129,744  31.5%        38,432            4,733  12.3% 

Massachusetts 14.1     4,926,486         437,751       122,232  27.9%        35,723            3,856  10.8% 

Michigan 12.9     7,234,755         776,164       211,546  27.3%        69,533            7,322  10.5% 

Minnesota 9.9     3,872,714         288,585         70,870  24.6%        23,699            2,254  9.5% 

Mississippi 8.3     2,117,802         280,115         47,356  16.9%        25,994            1,620  6.2% 

Missouri 9.3     4,387,516         443,897         90,215  20.3%        41,632            3,148  7.6% 

Montana 6.2        738,379           55,437           7,662  13.8%          4,847               243  5.0% 

Nebraska 8.6     1,313,869         111,293         24,050  21.6%          9,404               767  8.2% 

Nevada 15.9     1,964,223         163,182         52,555  32.2%        16,337            2,069  12.7% 

N. Hampshire 9.1        990,668           85,619         15,850  18.5%          7,803               531  6.8% 

New Jersey 21.0     6,500,690         575,430       218,150  37.9%        51,439            7,918  15.4% 

New Mexico 12.1     1,479,338         111,017         27,823  25.1%        10,734            1,031  9.6% 

New York 16.6   14,480,591     1,342,342       527,222  39.3%     114,397         18,835  16.5% 

North Carolina 11.0     6,976,803         739,441       155,795  21.1%        68,506            5,422  7.9% 

North Dakota 5.4        500,656           41,260           6,142  14.9%          3,845               211  5.5% 

Ohio 14.3     8,469,378         917,587       258,341  28.2%        82,852            8,951  10.8% 

Oklahoma 10.4     2,709,741         305,974         66,966  21.9%        28,907            2,382  8.2% 

Oregon 11.1     2,858,891         240,685         54,276  22.6%        24,651            2,114  8.6% 

Pennsylvania 16.6     9,522,989         960,661       308,994  32.2%        89,978         11,319  12.6% 

Rhode Island 13.8        790,809           66,597         17,368  26.1%          6,155               610  9.9% 

South Carolina 9.4     3,400,939         401,904         73,780  18.4%        35,471            2,414  6.8% 

South Dakota 5.2        587,440           51,862           6,758  13.0%          4,450               210  4.7% 

Tennessee 12.7     4,669,984         536,163       135,392  25.3%        49,115            4,721  9.6% 

Texas 11.5   17,523,847     1,604,168       379,517  23.7%     145,816         13,155  9.0% 

Utah 17.0     1,801,348         123,060         42,373  34.4%        11,456            1,583  13.8% 

Vermont 8.3        475,486           34,909           5,912  16.9%          2,857               177  6.2% 

Virginia 13.5     5,917,339         574,533       157,289  27.4%        53,592            5,678  10.6% 

Washington 14.9     4,954,645         422,099       122,946  29.1%        43,383            4,938  11.4% 

West Virginia 12.7     1,413,781         182,729         44,038  24.1%        15,434            1,400  9.1% 

Wisconsin 10.6     4,184,790         362,316         86,932  24.0%        31,128            2,867  9.2% 

Wyoming 7.6        412,113           31,228           5,186  16.6%          2,999               184  6.1% 

 



 

99 

 

 

Table A 2: Attributable fractions by state and living location 
  AFPR AFIR 

STATE 
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Alabama 15% 19% 24% 5% 7% 9% 

Arizona 18% 23% 37% 7% 9% 15% 

Arkansas 14% 21% 25% 5% 8% 9% 

California 20% 24% 42% 7% 9% 17% 

Colorado 19% 23% 43% 7% 9% 18% 

Connecticut 21% 25% 31% 8% 9% 12% 

Delaware 18% 19% 29% 7% 7% 11% 

District of Columbia N/A N/A 44% N/A N/A 18% 

Florida 11% 15% 22% 4% 5% 8% 

Georgia 15% 18% 28% 5% 7% 11% 

Idaho 14% 22% 25% 5% 8% 10% 

Illinois 18% 25% 43% 7% 10% 18% 

Indiana 21% 28% 34% 8% 11% 13% 

Iowa 15% 22% 25% 6% 8% 9% 

Kansas 16% 23% 26% 6% 8% 10% 

Kentucky 18% 25% 32% 7% 9% 12% 

Louisiana 11% 16% 25% 4% 6% 9% 

Maine 11% 16% 19% 4% 6% 7% 

Maryland 22% 21% 34% 8% 8% 13% 

Massachusetts 18% 20% 29% 6% 7% 11% 

Michigan 16% 20% 32% 6% 7% 13% 

Minnesota 13% 20% 32% 5% 7% 13% 

Mississippi 13% 21% 22% 5% 8% 8% 

Missouri 15% 18% 24% 5% 6% 9% 

Montana 10% 16% 18% 4% 6% 6% 

Nebraska 14% 21% 26% 5% 8% 10% 

Nevada 18% 22% 34% 7% 8% 14% 

New Hampshire 15% 20% 21% 6% 7% 8% 

New Jersey 24% 27% 39% 9% 10% 16% 

New Mexico 18% 23% 31% 6% 9% 12% 

New York 16% 21% 44% 6% 8% 19% 

North Carolina 16% 20% 25% 6% 8% 10% 

North Dakota 10% 16% 20% 4% 6% 7% 

Ohio 21% 26% 31% 8% 10% 12% 

Oklahoma 16% 22% 27% 6% 8% 10% 

Oregon 14% 19% 27% 5% 7% 10% 

Pennsylvania 22% 26% 36% 8% 10% 14% 

Rhode Island 18% 21% 27% 6% 8% 10% 

South Carolina 14% 19% 21% 5% 7% 8% 

South Dakota 9% 15% 17% 3% 6% 6% 

Tennessee 19% 24% 30% 7% 9% 12% 

Texas 13% 19% 27% 5% 7% 10% 

Utah 18% 23% 38% 7% 9% 15% 

Vermont 15% 21% 20% 5% 8% 7% 

Virginia 19% 25% 32% 7% 9% 12% 

Washington 18% 22% 33% 7% 8% 13% 

West Virginia 21% 26% 28% 8% 10% 11% 

Wisconsin 15% 22% 30% 5% 8% 12% 

Wyoming 11% 18% 22% 4% 7% 8% 
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Table A 3: Attributable fraction by state and median income 
  AFPR AFIR 

STATE 
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Alabama 23% 20% 18% 19% 21% 9% 7% 7% 7% 8% 

Arizona 33% 35% 33% 33% 32% 13% 14% 13% 13% 13% 

Arkansas 25% 19% 18% 18% 20% 9% 7% 7% 7% 8% 

California 45% 43% 41% 40% 37% 19% 18% 17% 16% 15% 

Colorado 43% 42% 38% 36% 36% 18% 18% 16% 15% 14% 

Connecticut 35% 34% 33% 29% 27% 14% 13% 13% 11% 10% 

Delaware 36% 30% 24% 24% 27% 14% 12% 9% 9% 10% 

D.C. 45% 42% 44% 43% 44% 18% 17% 18% 18% 18% 

Florida 27% 23% 21% 19% 19% 10% 9% 8% 7% 7% 

Georgia 24% 22% 21% 23% 26% 9% 8% 8% 9% 10% 

Idaho 24% 24% 21% 20% 22% 9% 9% 8% 7% 8% 

Illinois 42% 40% 38% 38% 39% 18% 17% 16% 15% 16% 

Indiana 37% 34% 30% 27% 29% 15% 13% 12% 10% 11% 

Iowa 28% 24% 21% 19% 20% 11% 9% 8% 7% 7% 

Kansas 28% 25% 22% 21% 22% 11% 9% 8% 8% 8% 

Kentucky 26% 24% 24% 25% 27% 10% 9% 9% 10% 10% 

Louisiana 24% 20% 18% 19% 21% 9% 8% 7% 7% 8% 

Maine 20% 14% 12% 13% 14% 8% 5% 5% 5% 5% 

Maryland 40% 35% 34% 32% 30% 16% 14% 13% 12% 11% 

Massachusetts 37% 33% 31% 27% 26% 15% 13% 12% 11% 10% 

Michigan 34% 30% 25% 26% 28% 14% 12% 10% 10% 11% 

Minnesota 36% 27% 22% 23% 27% 15% 11% 9% 9% 10% 

Mississippi 20% 17% 16% 16% 19% 8% 6% 6% 6% 7% 

Missouri 24% 21% 19% 20% 21% 9% 8% 7% 7% 8% 

Montana 18% 16% 13% 13% 12% 7% 6% 5% 5% 4% 

Nebraska 30% 24% 21% 20% 21% 12% 9% 8% 8% 8% 

Nevada 43% 38% 35% 31% 28% 17% 15% 14% 12% 11% 

N. Hampshire 22% 23% 19% 18% 17% 8% 9% 7% 7% 6% 

New Jersey 45% 42% 41% 38% 36% 19% 17% 17% 16% 14% 

New Mexico 26% 25% 25% 25% 25% 10% 10% 10% 10% 10% 

New York 46% 43% 37% 37% 41% 20% 18% 16% 15% 17% 

N. Carolina 25% 21% 20% 21% 23% 9% 8% 8% 8% 9% 

North Dakota 22% 17% 15% 13% 14% 8% 6% 5% 5% 5% 

Ohio 34% 31% 28% 27% 27% 13% 12% 11% 10% 10% 

Oklahoma 26% 23% 21% 21% 22% 10% 9% 8% 8% 8% 

Oregon 27% 23% 22% 22% 24% 10% 9% 8% 8% 9% 

Pennsylvania 42% 36% 30% 31% 32% 17% 14% 12% 12% 12% 

Rhode Island 33% 30% 28% 25% 22% 13% 12% 11% 10% 8% 

South Carolina 22% 19% 18% 18% 18% 8% 7% 7% 7% 7% 

South Dakota 14% 14% 13% 12% 13% 5% 5% 5% 4% 5% 

Tennessee 33% 26% 24% 25% 26% 13% 10% 9% 9% 10% 

Texas 26% 25% 23% 22% 24% 10% 10% 9% 8% 9% 

Utah 43% 39% 35% 33% 34% 18% 16% 14% 13% 14% 

Vermont 24% 21% 17% 16% 15% 9% 8% 6% 6% 6% 

Virginia 31% 26% 26% 27% 29% 12% 10% 10% 10% 11% 

Washington 34% 30% 29% 28% 30% 14% 12% 11% 11% 12% 

West Virginia 28% 23% 24% 25% 25% 11% 9% 9% 9% 10% 

Wisconsin 35% 29% 23% 22% 24% 14% 11% 9% 8% 9% 

Wyoming 28% 21% 17% 15% 16% 11% 8% 6% 6% 6% 
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Table A 4: Attributable fraction by state, race, and ethnicity 
  AFPR AFIR 

STATE 
African 

American 
Asian Hispanic Other White 

African 
American 

Asian Hispanic Other White 

Alabama 22% 19% 24% 19% 19% 8% 7% 9% 7% 7% 

Arizona 41% 43% 38% 20% 32% 17% 18% 16% 7% 13% 

Arkansas 24% 22% 23% 20% 18% 9% 8% 9% 8% 7% 

California 47% 44% 44% 36% 35% 20% 18% 19% 15% 14% 

Colorado 51% 48% 45% 36% 36% 22% 20% 19% 15% 15% 

Connecticut 35% 34% 36% 33% 28% 14% 13% 14% 13% 11% 

Delaware 29% 31% 28% 27% 25% 11% 12% 11% 10% 9% 

D.C. 43% 47% 43% 46% 44% 18% 20% 18% 19% 18% 

Florida 25% 22% 26% 22% 19% 10% 8% 10% 8% 7% 

Georgia 26% 33% 29% 23% 21% 10% 13% 12% 9% 8% 

Idaho 28% 22% 22% 17% 21% 11% 8% 8% 6% 8% 

Illinois 49% 48% 50% 40% 35% 21% 20% 22% 17% 14% 

Indiana 40% 32% 40% 35% 29% 16% 13% 17% 14% 11% 

Iowa 29% 21% 25% 21% 21% 11% 8% 9% 8% 8% 

Kansas 30% 24% 29% 22% 22% 12% 9% 11% 8% 8% 

Kentucky 35% 33% 31% 27% 24% 14% 13% 12% 10% 9% 

Louisiana 23% 25% 27% 17% 18% 9% 10% 11% 6% 7% 

Maine 24% 16% 11% 9% 13% 9% 6% 4% 3% 5% 

Maryland 35% 32% 37% 32% 29% 14% 13% 15% 13% 11% 

Massachusetts 36% 36% 35% 32% 27% 14% 15% 14% 13% 10% 

Michigan 38% 34% 36% 24% 26% 15% 13% 14% 9% 10% 

Minnesota 40% 37% 33% 17% 24% 16% 15% 13% 6% 9% 

Mississippi 19% 18% 18% 16% 16% 7% 7% 7% 6% 6% 

Missouri 27% 26% 24% 21% 20% 10% 10% 9% 8% 7% 

Montana 12% 13% 14% 11% 14% 4% 5% 5% 4% 5% 

Nebraska 32% 30% 26% 19% 21% 12% 12% 10% 7% 8% 

Nevada 33% 32% 39% 27% 30% 13% 13% 16% 11% 12% 

N Hampshire 24% 21% 28% 17% 19% 9% 8% 11% 6% 7% 

New Jersey 43% 43% 46% 40% 35% 18% 18% 19% 16% 14% 

New Mexico 23% 28% 25% 23% 25% 9% 11% 10% 9% 10% 

New York 49% 54% 52% 42% 34% 21% 23% 23% 18% 14% 

N. Carolina 23% 26% 24% 16% 21% 9% 10% 9% 6% 8% 

North Dakota 16% 20% 12% 9% 15% 6% 8% 4% 3% 6% 

Ohio 35% 34% 34% 31% 27% 14% 13% 13% 12% 11% 

Oklahoma 28% 25% 29% 19% 22% 11% 10% 11% 7% 8% 

Oregon 35% 27% 24% 19% 22% 14% 10% 9% 7% 9% 

Pennsylvania 45% 45% 42% 37% 31% 18% 19% 17% 15% 12% 

Rhode Island 33% 35% 32% 32% 25% 13% 14% 12% 13% 10% 

South Carolina 18% 23% 22% 18% 18% 7% 9% 8% 7% 7% 

South Dakota 22% 16% 15% 9% 13% 8% 6% 5% 3% 5% 

Tennessee 34% 29% 32% 28% 24% 13% 11% 13% 11% 9% 

Texas 28% 28% 26% 23% 22% 11% 11% 10% 9% 8% 

Utah 45% 40% 43% 23% 34% 19% 17% 18% 9% 14% 

Vermont 16% 18% 14% 17% 17% 6% 6% 5% 6% 6% 

Virginia 30% 35% 36% 27% 27% 12% 14% 14% 11% 10% 

Washington 44% 41% 29% 24% 29% 18% 17% 11% 10% 11% 

West Virginia 26% 28% 27% 25% 24% 10% 11% 10% 9% 9% 

Wisconsin 38% 29% 36% 17% 23% 15% 11% 14% 6% 9% 

Wyoming 19% 20% 19% 10% 17% 7% 7% 7% 4% 6% 
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Table A 5: Top 20 counties ordered by attributable number of incident cases 

    AFIR 

STATE COUNTY CASES AC All 
African 

American 
Asian Hispanic Other White 

$20,000 

to 

<$35,000 

$35,000 

to 

<$50,000 

$50,000 

to 

<$75,000 

>=$75,000 <$20,000 

California Los Angeles County 48,540 11,313 23% 24% 25% 25% 22% 21% 25% 24% 23% 21% 27% 

Illinois Cook County 31,256 7,086 23% 23% 23% 24% 23% 22% 24% 23% 22% 21% 25% 

New York Kings County 16,862 3,745 22% 23% 21% 23% 23% 21% 22% 22% 22% 22% 23% 

Arizona Maricopa County 20,350 3,321 16% 18% 19% 19% 15% 15% 19% 18% 16% 14% 20% 

New York Queens County 13,509 3,226 24% 23% 25% 25% 24% 23% 24% 24% 24% 23% 21% 

California Orange County 15,759 2,744 17% 22% 19% 20% 19% 16% 19% 19% 18% 16% 19% 

California San Diego County 16,618 2,643 16% 19% 16% 18% 15% 15% 19% 17% 16% 14% 19% 

Texas Harris County 20,558 2,460 12% 13% 12% 13% 12% 11% 14% 13% 11% 10% 15% 

California San Bernardino County 11,413 2,335 20% 20% 22% 22% 17% 17% 20% 20% 20% 21% 22% 

Pennsylvania Philadelphia County 11,452 2,332 20% 20% 22% 21% 21% 20% 21% 20% 19% 20% 21% 

Michigan Wayne County 15,257 2,262 15% 17% 15% 17% 15% 14% 16% 15% 14% 12% 17% 

New York New York County 8,272 2,183 26% 26% 27% 26% 25% 27% 26% 26% 26% 27% 26% 

New York Bronx County 8,948 2,102 23% 23% 24% 24% 24% 22% 24% 23% 23% 22% 24% 

California Riverside County 14,074 1,998 14% 16% 18% 15% 14% 13% 14% 14% 15% 14% 16% 

Texas Dallas County 13,926 1,923 14% 13% 13% 14% 13% 14% 14% 14% 13% 14% 14% 

Florida Miami-Dade County 15,090 1,672 11% 13% 9% 11% 10% 9% 12% 11% 11% 9% 13% 

Washington King County 10,134 1,642 16% 19% 18% 17% 17% 16% 19% 18% 17% 15% 23% 

Nevada Clark County 12,014 1,635 14% 13% 13% 16% 13% 13% 17% 15% 13% 11% 18% 

California Santa Clara County 9,300 1,441 15% 18% 16% 16% 16% 15% 16% 17% 16% 15% 19% 

New York Nassau County 6,992 1,391 20% 21% 21% 21% 21% 20% 20% 20% 20% 20% 21% 
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Table A 6: Top 20 counties by the attributable fraction of incident cases 

    Attributable fraction of incident cases 

STATE COUNTY CASES AC All 
African 

American 
Asian Hispanic Other White 

$20,000 
to 

<$35,000 

$35,000 
to 

<$50,000 

$50,000 
to 

<$75,000 
>=$75,000 <$20,000 

New York New York County 8,272 2,183 26% 26% 27% 26% 25% 27% 26% 26% 26% 27% 26% 

New York Queens County 13,509 3,226 24% 23% 25% 25% 24% 23% 24% 24% 24% 23% 21% 

New Jersey Hudson County 3,645 858 24% 24% 24% 24% 23% 22% 24% 24% 23% 23% 24% 

Colorado Denver County 2,621 640 24% 23% 24% 24% 24% 25% 25% 24% 24% 24% 25% 

California Los Angeles County 48,540 11,313 23% 24% 25% 25% 22% 21% 25% 24% 23% 21% 27% 

Illinois Cook County 31,256 7,086 23% 23% 23% 24% 23% 22% 24% 23% 22% 21% 25% 

New York Bronx County 8,948 2,102 23% 23% 24% 24% 24% 22% 24% 23% 23% 22% 24% 

New York Kings County 16,862 3,745 22% 23% 21% 23% 23% 21% 22% 22% 22% 22% 23% 

California San Bernardino County 11,413 2,335 20% 20% 22% 22% 17% 17% 20% 20% 20% 21% 22% 

Pennsylvania Philadelphia County 11,452 2,332 20% 20% 22% 21% 21% 20% 21% 20% 19% 20% 21% 

New York Nassau County 6,992 1,391 20% 21% 21% 21% 21% 20% 20% 20% 20% 20% 21% 

Colorado Arapahoe County 2,398 486 20% 23% 20% 23% 22% 20% 23% 22% 21% 18% 23% 

Colorado Adams County 2,014 407 20% 23% 22% 23% 21% 19% 23% 23% 20% 17% 24% 

New Jersey Essex County 4,870 934 19% 20% 19% 21% 20% 17% 21% 20% 20% 17% 21% 

New York Richmond County 2,964 550 19% 18% 20% 18% 18% 19% 19% 18% 19% 19% 18% 

New Jersey Union County 2,914 544 19% 19% 19% 20% 19% 18% 20% 20% 19% 17% 20% 

Colorado Jefferson County 2,087 396 19% 16% 19% 23% 22% 19% 23% 21% 20% 16% 22% 

Virginia Arlington County 913 172 19% 19% 19% 17% 19% 19% 16% 18% 19% 19% 16% 

Illinois DuPage County 4,556 813 18% 17% 17% 18% 18% 18% 19% 18% 18% 18% 16% 

Utah Salt Lake County 4,505 810 18% 20% 18% 20% 19% 18% 21% 20% 18% 16% 21% 
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Figure A 1: Attributable fraction of diabetes due to NO2 
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Figure A 2: Burden by median household income 

 

 
*Counties with empty spaces do not have census blocks with the corresponding median household income 
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Figure A 3: Burden by race 

 
*Counties with empty spaces do not have census blocks with the corresponding predominant race
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APPENDIX – B 

SEARCH STRATEGY 

EMBASE Ovid  

Searched on Oct-31-2019 [39 cards] 

1. diabet*.ti,ab.  

2. exp diabetes mellitus/  

3. 1 or 2  

4. exp cohort analysis/ or exp longitudinal study/ or exp prospective study/ or exp follow up/ or 

cohort$.tw. or exp case control study/ or (case$ and control$).tw.  

5. (cohort or longitudinal or prospective or retrospective).ti,ab,kw.  

6. (cross-sectional or prevalence or transversal).ti,ab,kw.  

7. ((case* adj5 control*) or (case adj3 comparison*) or control group*).ti,ab,kw.  

8. incidence.ti,ab,kw.  

9. or/4-8  

10. exp nitrous oxide/  

11. (nitrogen ?oxide or NOx or NO2).ti,ab.  

12. exp black carbon/  

13. (black carbon or carbon black or soot).ti,ab.  

14. exp ultrafine particles/  

15. (ultrafine or Ultra fine particles or ultrafine particles or ultra fine particulate or ultrafine 

particulate or UFP or UFPS).ti,ab,kf.  

16. or/10-15  

17. 3 and 9 and 16  

18. limit 17 to english language 

Medline Ovid  

Searched on Oct-31-2019  [206 cards] 

1. exp Diabetes Mellitus/  

2. diabet*.ti,ab.  

3. or/1-2  

4. epidemiological methods/  
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5. limit 4 to yr=1971-1988  

6. exp cohort studies/ or controlled clinical trial.pt. or exp case-control studies/ or (case adj2 

control*).tw. or Epidemiologic Studies/ or Cohort studies/ or Longitudinal studies/ or Follow-up 

studies/ or Prospective studies/ or Retrospective studies/  

7. (cohort or longitudinal or prospective or retrospective).ti,ab,kw.  

8. Case-Control Studies/ or Control Groups/ or Matched-Pair Analysis/ or retrospective studies/  

9. Cross-Sectional Studies/ or Prevalence/ or (cross-sectional or prevalence or 

transversal).ti,ab,kw.  

10. Incidence/ or incidence.ti,ab,kw.  

11. or/4-10  

12. (nitrogen adj2 dioxide).ti,ab.  

13. Nitrogen Dioxide/ or (nitrogen ?oxide or NOx or NO2).ti,ab,kf.  

14. (black adj2 carbon).ti,ab.  

15. Black Carbon/ or carbon black.mp. or soot.ti,ab,kf. [mp=title, abstract, original title, name of 

substance word, subject heading word, floating sub-heading word, keyword heading word, 

organism supplementary concept word, protocol supplementary concept word, rare disease 

supplementary concept word, unique identifier, synonyms]  

16. Ultra fine particles/ or (ultrafine or ultrafine particles or ultra fine particulate or ultrafine 

particulate or UFP or UFPS).ti,ab,kf.  

17. or/12-16  

18. 3 and 11 and 17  

19. limit 18 to english language 

Transportation Research Information Services (TRIS) Database and the OECD's Joint 

Transport Research Centre's International Transport Research Documentation (ITRD) 

Database 

Searched on Oct 30 2019 [7 cards] 

(diabetes) AND (no2 or nitrous oxide or nitrogen dioxide or black carbon or carbon black or soot 

or ultrafine particles or ultrafine particulate or ultra fine particles or ultra fine particulate or 

ultrafine) 
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Risk of Bias From 

Instructions for Making Risk of Bias Determinations 

[Note: These questions have been modified from previous applications of the Navigation Guide.] 

Please answer LOW RISK, UNCERTAIN, HIGH RISK, or NOT APPLICABLE and provide 

details/justification. The following answers pertain to the risk assignment: 

• “Yes” → “Low risk of bias.” 

• “Uncertain” 

•  “No” → “High risk of bias” 

 

1. Was the strategy for recruiting participants consistent across study groups? 

LOW risk of bias (i.e., answer: “YES”): 

Protocols for recruitment and inclusion/exclusion criteria were applied similarly across the study 

groups, and any one of the following: 

• Study participants were recruited from the same population at the same time frame; or 

• Study participants were not all recruited from the same population, but the proportions of 

participants from each population in each study group are uniform 

 

Uncertain: 

There is insufficient information to permit a judgment of ‘LOW’ or ‘HIGH’ risk of bias  

 

HIGH risk of bias (i.e., answer: “No”): 

Any of the following: 

• Protocols for recruitment or inclusion/exclusion criteria were applied differently across study 

groups; or 

• Study participants were recruited at different time frames; or 

• Study participants were recruited from different populations and proportions of participants 

from each population in each study group are not uniform 

• A differential loss to follow‐up between groups 

• Reported refusal/non‐response is uniform between groups 

 

NOT APPLICABLE (risk of bias domain is not applicable to study): 

There is evidence that participant selection is not an element of study design capable of 

introducing risk of bias in the study. 

 

2. Was knowledge of the exposure adequately prevented during the study? 

LOW risk of bias (i.e., answer: “YES”): 

Any of the following: 

• No blinding, but the review authors judge that the outcome and the outcome measurement, as 

well as the exposure and exposure measurement, are not likely to be influenced by lack of 

blinding (such as differential outcome assessment where the outcome is assessed using 
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different measurement or estimation metrics across exposure groups, or differential exposure 

assessment where exposure is assessed using different measurement or estimation metrics 

across diagnostic or outcome groups); or 

• Blinding of key study personnel was ensured, and it is unlikely that the blinding could have 

been broken; or 

• Study personnel was not blinded, but exposure and outcome assessment was blinded and the 

non‐blinding of others is unlikely to introduce bias. For example, investigators were 

effectively blinded to the exposure and/or outcome groups, or, if the exposure was measured 

by a separate entity and the outcome was obtained from a hospital record. 

 

Uncertain: 

There is insufficient information to permit a judgment of ‘LOW’ or ‘HIGH’ risk of bias  

 

HIGH risk of bias (i.e., answer: “No”): 

Any of the following: 

• No blinding or incomplete blinding, and the outcome or outcome measurement or exposure 

and exposure measurement is likely to be influenced by lack of blinding (i.e., differential 

outcome or exposure assessment); or 

• Blinding of key study personnel attempted, but likely that the blinding could have been 

broken introducing bias; or 

• Study personnel was not blinded, and the non‐blinding of others was likely to introduce bias. 

 

NOT APPLICABLE (risk of bias domain is not applicable to study): 

There is evidence that blinding is not an element of study design capable of introducing a risk of 

bias in the study. 

 

3. Were exposure assessment methods robust? 

The overall considerations include: 

1. What is the quality of the metric being used? 

2. Has the metric been validated for the scenario for which it is being used? 

3. Did the analysis account for prediction uncertainty? 

4. How was missing data accounted for, and any data imputations incorporated? 

5. Were sensitivity analyses performed? 

 

For exposure assessment models consider the following: 

1. Were the input data in the study suspected to systematically under-or over‐estimate 

exposure? 

2. What type of model was used (geostatistical interpolation, land‐use regression, dispersion 

models, personal air sampling models, hybrid models, etc.)? 

3. Were data on land use, topography, traffic, monitoring data, emission rates, etc. incorporated 

and justified by authors in their selection? 

4. What were the spatial variation (e.g., distance from the source) and geographic/spatial 

accuracy (county, census tract, individual residence)? 
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5. What was the address completeness (e.g., only home address at one point in time, or more 

complete address history throughout pregnancy/postnatal life and other locations such as 

work)? 

6. What was the space‐time coverage of the model? 

7. Were time‐activity patterns accounted for?  

LOW risk of bias (i.e., answer: “Yes”): 

The reviewers judge that there is a low risk of exposure misclassification, i.e.: 

• There is high confidence in the accuracy of the exposure assessment methods (i.e. tested for 

validity and reliability) in measuring the targeted exposure; or 

• Less‐established or less direct exposure measurements are validated against well-established 

or direct methods AND if applicable (e.g. for laboratory measurements), appropriate QA/QC 

for methods are described and are satisfactory, with at least three of the following items 

reported, or at least two of the following items reported plus evidence of satisfactory 

performance in a high-quality inter‐laboratory comparison: 

• a measure of repeatability; 

 

Uncertain: 

There is insufficient information to permit a judgment of ‘LOW’ or ‘HIGH’ risk of bias  

 

HIGH risk of bias (i.e., answer: “No”): 

The reviewers judge that there is a high risk of exposure misclassification and any one of the 

following: 

• There is low confidence in the accuracy of the exposure assessment methods; or 

• Less‐established or less direct exposure measurements are not validated and are suspected to 

introduce bias that impacts the outcome assessment (example: participants are asked to report 

exposure status retrospectively, subject to recall bias); or 

• Uncertain how exposure information was obtained; or: 

A) Monitoring: Information from databases or otherwise was gathered that indirectly 

assessed exposure without considering variables noted in the List of Considerations 

above, such as spatial variability, land-use regression, etc., or there is sufficient evidence 

that relevant factors from the List of Considerations above would imply a risk of bias in 

the exposure assessment. 

B) Modeling: the air pollution model used has been demonstrated not to pertain to area‐

based or person‐based measures or has otherwise been previously demonstrated to be 

unable to describe air levels of exposure for assigning exposure in a research situation, or 

there is sufficient evidence that relevant factors from the List of Considerations above 

would imply a risk of bias in the exposure assessment. 

 

NOT APPLICABLE (risk of bias domain is not applicable to study): 

There is evidence that exposure assessment methods are not capable of introducing a risk of bias 

in the study. 

4. Was confounding adequately addressed? 

The following are a list of confounders we considered “important” to the outcome of interest: 
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• Age 

• Comorbidity ; may include any of the following; hypertension, dyslipidemia, myocardial 

infarction, or metabolic syndrome. 

• Obesity; measured using either weight, BMI, hip to waist ratio or any other method 

indicating that the investigators controlled for obesity 

• Family History 

• Lifestyle variables; in the form of physical activity, exercise, or diet. 

• Gender 

• Socioeconomic status; ascertained using several metrics including the level of income, 

education, or neighborhood status.  

• Smoking; includes active or passive smoking (also known as environmental smoking or 

secondhand smoking) 

 

LOW risk of bias (i.e., answer: “Yes”): 

The study accounted for (i.e., matched, stratified, multivariate analysis or otherwise statistically 

controlled for) four or more confounders or reported that potential confounders were evaluated 

and omitted because inclusion did not substantially affect the results.  

 

Uncertain: 

There is insufficient information to permit a judgment of ‘LOW’ or ‘HIGH’ risk of bias  

 

HIGH risk of bias (i.e., answer: “No”): 

The study accounted for less than four of the listed potential confounders. 

 

5. Was incomplete outcome data adequately addressed? 

LOW risk of bias (i.e., answer: “Yes”): 

Participants were followed long enough to obtain outcome measurements; OR any one of the 

following: 

• No missing outcome data; or 

• Reasons for missing outcome data unlikely to be related to true outcome (for survival data, 

censoring unlikely to introduce bias); or 

• Attrition or missing outcome data balanced in numbers across exposure groups, with similar 

reasons for missing data across groups; or 

• For dichotomous outcome data, the proportion of missing outcomes compared with observed 

event risk not enough to have a relevant impact on the intervention effect estimate; or 

• For continuous outcome data, plausible effect size (difference in means or standardized 

difference in means) among missing outcomes not enough to have a relevant impact on the 

observed effect size; or 

• Missing data have been imputed using appropriate methods 

 

Uncertain: 

There is insufficient information to permit a judgment of ‘LOW’ or ‘HIGH’ risk of bias  

 

HIGH risk of bias (i.e., answer: “No”): 
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Participants were not followed long enough to obtain outcome measurements; OR any one of the 

following: 

• Reason for missing outcome data likely to be related to true outcome, with either imbalance 

in numbers or reasons for missing data across exposure groups; or 

• For dichotomous outcome data, the proportion of missing outcomes compared with observed 

event risk enough to induce biologically relevant bias in intervention effect estimate; or 

• For continuous outcome data, plausible effect size (difference in means or standardized 

difference in means) among missing outcomes enough to induce biologically relevant bias in 

observed effect size; or 

• Potentially inappropriate application of imputation. 

 

NOT APPLICABLE (risk of bias domain is not applicable to study): 

There is evidence that incomplete outcome data is not capable of introducing a risk of bias in the 

study. 

 

6. Does the study report appear to have been comprehensive in its outcome reporting? 

LOW risk of bias (i.e., answer: “Yes”): 

All the study’s pre‐specified (primary and secondary) outcomes outlined in the protocol, 

methods, abstract, and/or introduction that are of interest in the review have been reported in the 

pre‐specified way. 

 

Uncertain: 

There is insufficient information to permit a judgment of ‘LOW’ or ‘HIGH’ risk of bias  

 

HIGH risk of bias (i.e., answer: “No”): 

Anyone of the following: 

• Not all the study’s pre‐specified primary outcomes (as outlined in the protocol, methods, 

abstract, and/or introduction) have been reported; or 

• One or more primary outcomes is reported using measurements, analysis methods or subsets 

of the data (e.g. subscales) that were not pre‐specified; or 

• One or more reported primary outcomes were not pre‐specified (unless a clear justification 

for their reporting is provided, such as an unexpected effect); or 

• One or more outcomes of interest are reported incompletely 

 

NOT APPLICABLE (risk of bias domain is not applicable to study): 

There is evidence that selective outcome reporting is not capable of introducing a risk of bias in 

the study. 

 

 

7. Is the study free of financial conflict of interest in any of the exposures studied? 

LOW risk of bias (i.e., answer: “Yes”): 
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The study did not receive support from a company, study author, or other entity having a 

financial interest in the outcome of the study. Examples include the following: 

• The funding source is limited to government, non‐profit organizations, or academic grants 

funded by the government, foundations and/or non‐profit organizations; 

• Chemicals or other treatment used in the study were purchased from a supplier; 

• Company affiliated staff are not mentioned in the acknowledgments section; 

• Authors were not employees of a company with a financial interest in the outcome of the 

study; 

• A company with a financial interest in the outcome of the study was not involved in the 

design, conduct, analysis, or reporting of the study and authors had complete access to the 

data; 

• Study authors make a claim denying conflicts of interest; 

• Study authors are unaffiliated with companies with a financial interest, and there is no reason 

to believe a conflict of interest exists; 

• All study authors are affiliated with a government agency (are prohibited from involvement 

in projects for which there is a conflict of interest or an appearance of a conflict of interest). 

 

Uncertain: 

There is insufficient information to permit a judgment of ‘LOW’ or ‘HIGH’ risk of bias  

 

HIGH risk of bias (i.e., answer: “No”): 

The study received support from a company, study author, or other entity having a financial 

interest in the outcome of the study. Examples of support include: 

• Research funds; 

• Chemicals, equipment or testing provided at no cost; 

• Writing services; 

• Author/staff from the study was an employee or otherwise affiliated with a company that has 

a financial interest; 

• Company limited author access to the data; 

• The company was involved in the design, conduct, analysis, or reporting of the study; 

• Study authors claim a conflict of interest 

 

NOT APPLICABLE (risk of bias domain is not applicable to study): 

There is evidence that conflicts of interest are not capable of introducing a risk of bias in the 

study. 

 

8. Did the study appear to be free of other problems that could put it at risk of bias? 

LOW risk of bias (i.e., answer: “Yes”): 

The study appears to be free of other sources of bias. 

 

Uncertain: 

There is insufficient information to permit a judgment of ‘LOW’ or ‘HIGH’ risk of bias  

 

HIGH risk of bias (i.e., answer: “No”): 
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There is at least one important risk of bias. For example, the study: 

•  Had a potential source of bias related to the specific study design used; or 

• Stopped early due to some data‐dependent process (including a formal‐stopping rule); or 

• The conduct of the study is affected by interim results (e.g. recruiting additional participants 

from a subgroup showing greater or lesser effect); or 

• Has been claimed to have been fraudulent; or 

• Had some other problem 


