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ABSTRACT

Classical Gončarov polynomials arose in numerical analysis as a basis for the solutions of

the Gončarov interpolation problem. These polynomials provide a natural algebraic tool in the

enumerative theory of parking functions. By replacing the differentiation operator with a delta

operator and using the theory of finite operator calculus, Lorentz, Tringali and Yan introduced

the sequence of generalized Gončarov polynomials associated to a pair (∆,Z) of a delta operator

∆ and an interpolation grid Z . Generalized Gončarov polynomials share many nice algebraic

properties and have a connection with the theories of binomial enumeration and order statistics.

Parking functions are combinatorial objects which were introduced in 1966 by Konheim and

Weiss. They have been well-studied in the literature due to their numerous connections and have

several generalizations and extensions. Ehrenborg and Happ recently introduced a generalization

of parking functions called parking sequences in which the n cars have different sizes, and each

takes up a number of adjacent parking spaces after a trailer T parked on the first z − 1 spots.

Consequently, this dissertation is divided into two major parts. In the first part, we give a com-

plete combinatorial interpretation for any sequence of generalized Gončarov polynomials. First we

show that they can be realized as weight enumerators in partition lattices. Then, we give a more

concrete realization in exponential families and show that these polynomials enumerate various

enriched structures of vector parking functions.

In the second part, we study increasing parking sequences and their representation via a special

class of lattice paths. We also study two notions of invariance in parking sequences and prove some

interesting results for a number of cases where the sequence of car sizes have special properties.
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NOMENCLATURE

[n] {1, 2, . . . , n}

[x, y] {x, x+ 1, ..., y}

Z+ The set {1, 2, 3, ...}

N0 The set {0, 1, 2, 3, ...}

C The set of complex numbers

K An algebraically closed field

Z An interpolation K-grid

S(n, k) The Stirling numbers of the second kind

Sn The symmetric group on n elements

(x(1), x(2), ..., x(n)) The order statistics of the sequence (x1, x2, ..., xn)

Π(E) The poset of all partitions π of E

Πn The poset of all partitions π of [n]

LPp,q(b1, b2, ..., bq) The set of lattice paths from (0, 0) to (p, q) with strict right
boundary (b1, b2, ..., bq)

PFn(~u) The set of ~u-parking functions of length n

PFn The set of classical parking functions of length n

PS(~y; z) The set of parking sequences for (~y; z)

IPS(~y; z) The set of increasing parking sequences for (~y; z)

PSinv(~y; z) The set of invariant parking sequences for (~y; z)

SPS{y1, ..., yn; z} The set of strong parking sequences for the length set
{y1, ..., yn; z}

SPSk(n; z) The set of all k-strong parking sequences for n
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2.2.1 Gončarov interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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1. INTRODUCTION

This chapter gives an introduction to the problems that we consider in this dissertation. First,

we give an introduction to our study of Gončarov polynomials in partition lattices and exponential

families. Then we present an introduction to the study of parking sequences and the motivation for

the associated problems we study in this regard.

1.1 Gončarov polynomials in partition lattices and exponential families

The classical Gončarov interpolation problem in numerical analysis was introduced by Gončarov

[10, 11] and Whittaker[32]. It asks for a polynomial f(x) of degree n such that the ith derivative of

f(x) at a given point ai has value bi for i = 0, 1, 2, ..., n. The solution is obtained by taking linear

combinations of the (classical) Gončarov polynomials, or the Abel-Gončarov polynomials, which

have been studied extensively by analysts; see e.g. [9, 10, 12, 21]. Gončarov polynomials also play

a crucial role in Combinatorics due to their close relations to parking functions. The set of parking

functions is central in algebraic and enumerative combinatorics, with many generalizations and

connections to other research areas.

The connection between Gončarov polynomials and combinatorics was first found by Joseph

Kung, who in a short note [18] of 1981 proved that classical Gončarov polynomials give the prob-

ability distribution of the order statistics of n independent uniform random variables, and its differ-

ence analog describes the order statistics of discrete, injective functions. These results were further

developed in [19] to an explicit correspondence between classical Gončarov polynomials and vec-

tor parking functions. Inspired by the rich theory on delta operators and finite operator calculus,

which is a unified theory on linear operators analogous to the differentiation operatorD and special

polynomials, Lorentz, Tringali, and Yan introduced the generalized Gončarov polynomials [22] as

a basis for the solutions to the Gončarov interpolation problem with respect to a delta operator.

Many algebraic and analytic properties of classical Gončarov polynomials have been extended to

the generalized version.
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A natural question that follows is to find the combinatorial interpretations for the generalized

Gončarov polynomials. To answer this question we need to understand the combinatorial signif-

icance of delta operators. In the third paper of the seminal series On the Foundations of Combi-

natorial Theory III, Mullin and Rota [24] developed the basic theory of delta operators and their

associated sequence of polynomials. Such sequences of polynomials are of binomial type and oc-

cur in many combinatorial problems when objects can be pieced together out of small, connected

objects. Mullin and Rota’s work provides a realization of binomial sequences in combinatorial

problems. However, this realization is only valid for binomial sequences whose coefficients are

non-negative integers, and so excludes many basic counting polynomials, for example, the falling

factorial x(n) = x(x−1) · · · (x−n+ 1). Mullin and Rota hint at a generalization of their theory to

incorporate such cases. Using the language of partitions, partition types and partition categories,

Ray [25] proved that every polynomial sequence of binomial type can be realized as a weighted

enumerator in partition lattices.

At the end of their paper [22], Lorentz, Tringali and Yan remarked, among other things, that it

would be interesting to investigate the role of generalized Gončarov polynomials in such weighted

counting. This remark serves as the motivation for our study in order to answer the question posed

earlier.

1.2 Parking Sequences

Parking sequences are objects in combinatorics whose study originates from the well-studied

concept of parking functions. Parking functions were first introduced in 1966 by Konheim and

Weiss [17] when they investigated the probability that a random hashing function would fill a

hash table when linear probing was used to resolve collisions. One-by-one n drivers, each with a

preferred parking spot attempt to park on a one-way street. If their preferred spot is unavailable,

the drivers park in the first available space after their preferred one. If all drivers are able to park,

the sequence of their preferences is called a parking function.

Parking functions have been well-studied in the literature. As stated earlier, they have numer-

ous connections and have appeared in many places in algebraic and enumerative combinatorics:

2



chambers in Shi and braid arrangements, maximal chains in the lattice of non-crossing partitions,

symmetric functions, polytope theory etc (see [29, 31, 36] and the references within). They have

various specializations, applications and generalizations in other research areas such as storage

problems in computer science, graph theory, interpolation theory, diagonal harmonics, representa-

tion theory, and cellular automaton. See the comprehensive survey [36] for more on the combina-

torial theory of parking functions.

Some generalizations include vector parking functions, rational parking functions, parking dis-

tributions, parking on trees, subset parking functions and parking functions allowing backward

movement among several others (see [4, 5, 6, 15, 16, 20, 28, 34]). The particular generalization

we study in this dissertation arises from a situation where cars of various lengths attempt to park

along a one-way street. These objects, called parking sequences, were introduced by Ehrenborg

and Happ (see [7, 8]).

It is not difficult to see that any permutation of a parking function is also a parking function.

This is however not true in the case of parking sequences. Thus, it is natural to ask how many

parking sequences remain invariant under permutation. Another question is which sequence re-

mains a parking sequence when the cars enter the street in different orders. In other words, we

want to study which parking sequences remain valid when the length vector ~y = (y1, ..., yn) (yi is

the length of car Ci for each i ∈ [n]) is permuted to (yσ(1), yσ(2), ..., yσ(n)) for some σ ∈ Sn. There

are several interesting notions and variations associated with parking functions and their general-

izations. Usually, these notions lead to a study of special classes of parking functions that have

some interesting property. One such special class is the set of increasing parking functions which

are counted by the ubiquitous Catalan numbers. It is only natural to ask for a generalization of this

class in the set of parking sequences. This dissertation presents an initial foray into these subjects.

3



2. PRELIMINARIES

This chapter discusses the definitions and previous theorems appearing in the literature neces-

sary for the following sections.

2.1 Delta Operators and Binomial Enumeration

We recall the basic theory of delta operators and their associated sequence of basic polynomials

as developed by Rota, Kahaner, and Odlyzko [27]. Let K be a field of characteristic zero and K[x]

the vector space of all polynomials in the variable x over K. For each a ∈ K, let Ea denote the

shift operator K[x]→ K[x] : f(x) 7→ f(x + a). A linear operator s : K[x]→ K[x] is called shift-

invariant if sEa = Eas for all a ∈ K, where the multiplication is the composition of operators.

Definition 1. A delta operator ∆ is a shift-invariant operator satisfying ∆(x) = a for some nonzero

constant a.

Definition 2. A polynomial sequence of binomial type (or binomial sequence) is a sequence

{pn(x)}n≥0 of polynomials such that pn(x) is of degree n and satisfies the equation

pn(u+ v) =
∑
i≥0

(
n

i

)
pi(u)pn−i(v), (2.1)

for all n ≥ 0.

Definition 3. Let ∆ be a delta operator. A polynomial sequence {pn(x)}n≥0 is called the sequence

of basic polynomials, or the associated basic sequence of ∆ if

(i) p0(x) = 1;

(ii) Degree of pn(x) is n and pn(0) = 0 for each n ≥ 1;

(iii) ∆(pn(x)) = npn−1(x).

The following is a result due to Mullin and Rota [24].

4



Delta operators Basic Polynomials
D The standard power polynomials xn

E1 − I lower factorial x(x− 1)(x− 2) · · · (x− n+ 1)
I − E−1 rising factorial x(x+ 1)(x+ 2) · · · (x+ n− 1)

Ea − Eb Gould polynomials x
∏n−1

i=1 (x− ia− (n− i)b)
EaD Abel Polynomials x(x− na)n−1

log(I +D) Bell Polynomials bn(x) =
∑n

k=1 S(n, k)xk

D(D − I)−1 Laguerre Polynomials Ln(x) =
∑

k≥0
n!
k!

(
n−1
k−1

)
(−x)k

Table 2.1: Some delta operators and their associated basic polynomials

Theorem 1 ([24]). Every delta operator has a unique sequence of basic polynomials, which is a se-

quence of binomial type. Conversely, every polynomial sequence of binomial type is the associated

basic sequence of some delta operator.

In Table 2.1, we show some examples of delta operators and their associated basic polynomials.

Let s be a shift-invariant operator, and ∆ a delta operator. Then s can be expanded uniquely as

a formal power series of ∆. If

s =
∑
k≥0

ak
k!

∆k,

we say that f(t) =
∑

k≥0
ak
k!
tk is the ∆-indicator of s. In fact, the correspondence

f(t) =
∑
k≥0

ak
k!
tk ←→

∑
k≥0

ak
k!

∆k

is an isomorphism from the ring K[[t]] of formal power series in t onto the ring of shift-invariant

operators. Under this isomorphism, a shift-invariant operator is invertible if and only if its ∆-

indicator f(t) satisfies f(0) 6= 0, and it is a delta operator if and only if f(0) = 0 and f ′(0) 6= 0,

i.e., f(t) has a compositional inverse g(t) satisfying f(g(t)) = g(f(t)) = t.

Another important result is the generating function for the sequence of basic polynomials

{pn(x)}n≥0 associated to a delta operator ∆. Let f(t) be the D-indicator of ∆, where D = d/dx
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is the differentiation operator. Let g(t) be the compositional inverse of f(t). Then,

∑
n≥0

pn(x)
tn

n!
= exp (xg(t)) . (2.2)

The operator Λ = g(D) is called the conjugate delta operator of ∆, and {pn(x)}n≥0 is the conju-

gate sequence of Λ. It is easy to see that if pn(x) =
∑
k≥1

pn,kx
k, then g(t) =

∑
k≥1

pk,1
tk

k!
.

For example, when pn(x) = xn (the power polynomials), the corresponding delta operator

∆ = D has f(t) = t as itsD-indicator and Λ = D as the conjugate delta operator. The exponential

generating function given by (2.2) is

∑
n≥0

xn
tn

n!
= exp (xt) .

Another example is when pn(x) = x(n) (the rising factorials). In this case, the corresponding delta

operator is ∆ = I − E−1 where I is the identity operator. The D-indicator is f(t) = 1− exp(−t)

and Λ = ln(I − D)−1 is the conjugate delta operator of ∆. The exponential generating function

given by (2.2) is ∑
n≥0

x(n) t
n

n!
= (1− t)−x.

Polynomial sequences of binomial type are closely related to the theory of binomial enumera-

tion. Consider the following model. Assume B is a family of discrete structures. For a finite set E,

let Π(E) be the poset of all partitions π of E, ordered by refinement, and write |π| for the number

of blocks of π.

Definition 4. A k-assembly of B-structures on E is a partition π of the set E into |π| = k blocks

such that each block of π is endowed with a B-structure.

Let Bk(E) denote the set of all such k-assemblies. For example, when B is a set of rooted

trees, a k-assembly of B-structures on E is a forest of k rooted trees with vertex set E. We can

also take B to be other structures, such as permutations, complete graphs, posets, etc. Assume that

the cardinality of Bk(E) depends only on the cardinality of E, but not its content. In other words,

6



there is a bijection between Bk(E) and Bk([n]) where [n] = {1, 2, ..., n} and |E| = n.

Definition 5. Let

bn,k =

 |Bk([n])|, if k ≤ n

0, if k > n,

where b0,0 = 1 and bn,0 = 0 for n ≥ 1.

Theorem 2 ([24]). Assume b1,1 6= 0. If bn(x) =
∑n

k=1 bn,kx
k is the enumerator for assemblies of

B-structures on [n], then (bn(x))n≥0 is a sequence of polynomials of binomial type.

Theorem 2 provides a realization of binomial sequences in combinatorial problems. If we

think of x as a positive integer such that |X| = x for some set X , then we can interpret bn(x) as

the number of assemblies of B-structures on [n], where each block carries a label from X . From

this viewpoint, it is easy to see that (bn(x))n≥0 is of binomial type.

This realization is only valid for binomial sequences whose coefficients are non-negative in-

tegers, and so excludes many polynomial sequences naturally appearing in combinatorics, for ex-

ample, the falling factorials x(n). Mullin and Rota [24] expanded their construction slightly by

considering the monomorphic classes, in which different blocks receive different labels from X ,

and hence the counting polynomial becomes b̃n(x) =
∑n

k=1 bn,kx(k). Ray [25] extended Mullin-

Rota’s theory and developed the concept of partition categories, and he proved that any binomial

sequence can be realized as a weight enumerator in partition lattices. We will use Ray’s model

later on in Section 3.

2.2 Numerical Interpolation

We define the concept of interpolation in numerical analysis and specifically discuss the Gončarov

interpolation theory and its generalization which is mentioned later on in this dissertation.

Numerical interpolation is a type of estimation. It is a method of constructing new numerical

data points within the range of a discrete set of given data points. A well known interpolation

method which yields Newton polynomials is called Newton interpolation. Hermite interpolation

is another method of interpolating data points as a polynomial function. However,unlike Newton
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interpolation, Hermite interpolation matches an unknown function both in observed value, and the

observed value of its first n derivatives.

2.2.1 Gončarov interpolation

The following interpolation problem is a special case of Hermite interpolation.

Gončarov interpolation problem: Given two sequences of real or complex numbers a0, a1, ..., an

and d0, d1, ..., dn, find a polynomial p(x) of degree n such that for each i, 0 ≤ i ≤ n, the i-th

derivative p(i)(x) evaluated at ai equals di.

Gončarov polynomials arise as a natural basis for solving this interpolation problem. A special

case of this is Abel interpolation, where the point ai is the integer i. The Gončarov polynomials in

this case are the Abel polynomials. One of the motivations for the paper [19] was the appearance

of Abel polynomials in both the enumeration of parking functions and in Abel interpolation.

2.2.2 Generalized Gončarov Polynomials

Let Z = (zi)i≥0 be a fixed sequence with values in K, where K is a scalar field. For our

purpose, it suffices to take K to be Q, R, or C. We call Z the interpolation grid and zi ∈ Z the i-th

interpolation node. Let T = (tn(x; ∆,Z))n≥0 be the unique sequence of polynomials that satisfies

εzi∆
i(tn(x; ∆,Z)) = n!δi,n, (2.3)

where εzi is evaluation at zi.

Definition 6. The polynomial sequence T = (tn(x; ∆,Z))n≥0 determined by (2.3) is called the

sequence of generalized Gončarov polynomials associated with the pair (∆,Z) and tn(x; ∆,Z) is

the n-th generalized Gončarov polynomial relative to the same pair.
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For example, in the classical case where ∆ = D, we have

t0(x;D,Z) = 1,

t1(x;D,Z) = x− a0,

t2(x;D,Z) = x2 − 2a1x+ 2a0a1 − a2
0,

t3(x;D,Z) = x3 − 3a2x
2 + (6a1a2 − 3a2

1)x− a3
0 + 3a2

0a2 − 6a0a1a2 + 3a0a
2
1.

In general, this sequence T has a number of interesting algebraic properties. One of them is

a recurrence formula described as follows: Let tn(x) = tn(x; ∆,Z) and {pn(x)}n≥0 be the basic

sequence associated to ∆. Then

pn(x) =
n∑
i=0

(
n

i

)
pn−i(zi) ti(x). (2.4)

We remark that by definition, to compute the generalized Gončarov polynomials given the basic

sequence, one would find the conjugate operator Λ via (2.2), compute ∆ by solving for the compo-

sitional inverse of theD-indicator of Λ, and then find the n-th polynomial tn(x) of the sequence by

using (2.3). The computation required in this process can be quite involved. However, (2.4) gives

a recursive formula which can be used as an alternative definition for tn(x), which is much more

convenient in combinatorial problems. For other algebraic properties of generalized Gončarov

polynomials, see [22].

2.3 Parking Functions

Here we discuss both classical parking functions as well as vector parking functions, which are

a well-studied generalization of the former.

2.3.1 Classical Parking Functions

Parking functions may be described as a sequence of drivers, each with a preferred parking

space, searching for a place to park along a one-way street. Let s = (s1, ..., sn) ∈ [n]n be a

sequence of preferences and consider a street with n spots.
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Parking Process: The drivers attempt to park according to the following process.

1) Beginning with i = 1, driver i begins at vertex si.

2) If the current spot is unoccupied, the driver parks there. If it is occupied and not the last spot

on the street, the driver drives to the next spot ahead of the current one and repeats Step 2.

3) If driver i parks, the process continues with driver i + 1 attempting to park at vertex si+1.

Otherwise, the process terminates.

If all n drivers parks, the sequence s is called a parking function. A more formal definition for

parking functions can be stated as follows.

Definition 7. Let s = (s1, s2, ..., sn) be a sequence of positive integers, and let b1 ≤ b2 ≤ · · · ≤ bn

be the increasing rearrangement of s . Then the sequence s is a parking function if and only if

bi ≤ i for all indices i. Equivalently, s is a parking function if and only if, for all i ∈ [n], we have

#{j : aj ≤ i} ≥ i. (2.5)

For example, the preferences (1, 2, 3, 4), (2, 1, 3, 4) or (1, 2, 4, 1) all correspond to parking

functions, while (2, 2, 4, 2) will have one car leave un-parked so is not a parking function. It is

well-known that the number of classical parking functions is (n + 1)n−1. An elegant proof by

Pollak (see [26]) uses a circle with (n + 1) spots where the parking functions are the preferences

that could park all n cars without using the (n+ 1)-th spot.

2.3.2 Vector parking functions

As earlier stated, parking functions have several generalizations. A well-known generalization

are the vector parking functions (or ~u-parking functions). Here the street is of length x ≥ n, and

we want to park n cars on this street with specified constraints. Let ~u be a non-decreasing sequence

(u1, u2, u3, ...) of positive integers. We have the following definition.
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Definition 8. A ~u-parking function of length n is a sequence (x1, x2, ..., xn) of positive integers

satisfying

#{j : xj ≤ ui} ≥ i. (2.6)

Classical parking functions correspond to the case that ui = i. We denote the set of all ~u-

parking functions of length n by PFn(~u). In the special case where ui = a + b(i − 1) for some

a, b ∈ Z+, it is known that the number of such ~u-parking functions is a(a + bn)n−1; see e.g. [19].

We denote the set of all ~u-parking functions of length n by PFn(~u).

2.4 Lattice Paths

A North-East (NE) lattice path is a lattice path in Z2 with steps (0, 1) and (1, 0). The (0, 1)

steps are called North steps and denoted by N ; the (1, 0) steps are called East steps and denoted by

E. In this section, we discuss some lattice paths closely associated with parking functions called

Dyck paths and lattice paths with strict right boundary.

2.4.1 Dyck Paths

A Dyck path of semilength n is a lattice path in Z2 with steps N = (0, 1) and E= (1, 0) starting

from (0, 0) and ending at (n, n) such that the path never dips below the line y = x. We can also

represent a Dyck path as a word of length 2n with letters {N,E}. Figure 2.1 gives an example of

a Dyck path.

Figure 2.1: The Dyck path NNENENEE
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The number of Dyck paths of semi-length n is well-known to be Cn = 1
n+1

(
2n
n

)
. The num-

bers {Cn}n≥0 are called the Catalan numbers and appear throughout combinatorics. One way to

generalize the definition of Dyck path is to change the end point of a Dyck path. In this context,

a generalized Dyck path is a lattice path from (0, 0) to (kn, n) in Z2 which is below the diagonal

line x = ky. The number of such paths is the Fuss-Catalan number 1
kn+1

(
(k+1)n
n

)
.

We will also consider a special class of parking functions.

Definition 9 (Increasing Parking Functions). A parking function s = (s1, ..., sn) ∈ [n]n is increas-

ing if si ≤ si+1 for 1 ≤ i ≤ n− 1.

There are Cn increasing parking functions of length n(see [30], problem 5.49).

Parking functions are closely connected to Dyck paths. As their count suggests, increasing

parking functions are in bijection with Dyck paths. One bijection is, given a Dyck path, the number

of drivers preferring i is the number of N-steps immediately before the ith E-step. For example,

the Dyck path in Figure 2.1 corresponds to the parking function s = (1, 1, 2, 3). Classical parking

functions are in bijection with Dyck paths whose runs of N-steps are labeled by subsets of [n] .

Given a parking function s′, the corresponding Dyck path has a run of #{i : s′i = j} N-steps

labeled with the set {i : s′i = j} immediately before the j th E-step. For example, Figure 2.2

corresponds to the parking function s′ = (2, 1, 3, 1).

2

4

1

3

Figure 2.2: The labeled Dyck path (2, 1, 3, 1)
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2.4.2 Lattice Paths with strict right boundary

A lattice path with strict right boundary is a more general lattice path. A lattice path with strict

right boundary (b1, b2, ..., bq) from (0, 0) to (p, q) can be represented by a sequence (x1, x2, ..., xq)

of p east steps and q north steps on the integer lattice such that 0 ≤ xi < bi for all 1 ≤ i ≤ q. The

north steps are at (xi, i − 1) → (xi, i), for i = 1, ..., q. Figure 2.3 shows an example of a lattice

path (2,3,3,7) from (0,0) to (8,4) with strict right boundary ~b = (3, 4, 5, 8) (the strict boundary is

indicated by the blue dots).

(0, 0)

(8, 4)

Figure 2.3: A lattice path (2, 3, 3, 7) with strict right boundary at (3, 4, 5, 8).

2.5 Parking Sequences

Ehrenborg and Happ [7, 8] recently introduced this generalization of parking functions. This

time the car Ci has length yi ∈ Z+ for each i = 1, 2, ..., n. Call ~y = (y1, y2, ..., yn) the length

vector. There is a trailer of length z− 1 parked at the beginning of the street after which the n cars

park with each car taking up a number of adjacent parking spaces.

Definition 10 (Parking Process). The drivers attempt to park according to the following process:

Given a sequence c = (c1, ..., cn) ∈ Zn+,

1) Beginning with i = 1, car Ci begins at vertex ci, looking for the first empty spot j ≥ ci.
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2) If the spaces j through j + yi − 1 are empty, then the car parks in these spots. If any of the

spots j + 1 through j + yi − 1 is already occupied, then there will be a collision and the car

cannot park and has to leave the street. In this case, we say the parking fails.

3) If carCi parks, the process continues with carCi+1 attempting to park at vertex ci+1 repeating

steps 1 and 2. Otherwise, the process terminates.

Thus, we have the following definition.

Definition 11. Assume there are z − 1 +
∑n

i=1 yi parking spots along a street, with the first z − 1

occupied by a trailer. The sequence c = (c1, ..., cn) is called a parking sequence for (~y, z) where

~y = (y1, ..., yn) if all n cars can park without any collisions. We denote the set of all such parking

sequences by PS(~y; z).

As given in [8], the number of parking sequences in PS(~y; z) is:

z · (z + y1 + n− 1) · (z + y1 + y2 + n− 2) · · · (z + y1 + · · ·+ yn−1 + 1). (2.7)

In the special case where there is no trailer i.e. when z = 1, (2.7) yields the number

(y1 + n) · (y1 + y2 + n− 1) · · · (y1 + · · ·+ yn−1 + 2). (2.8)

We will write PS(~y; 1) = PS(~y). It is clear that this is a generalization of parking functions, since

when we set the size of all cars equal to 1 i.e. yi = 1 for all i = 1, 2, ..., n, we obtain the number

(n+ 1)n−1 which is the number of classical parking functions.

2.6 Partition Lattices

For any finite set S, let Π(S) denote the set of all partitions of S, and write Πn for Π([n]).

Elements of Π(S) are partially ordered by refinement: that is, define π ≤ σ if every block of π is

contained in a block of σ. In particular, Π(E) has a unique maximal element 1̂ that has only one

block and a unique minimal element 0̂ for which every block is a singleton. Let |π| be the number
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of blocks of π and Π(π) be the partitions of the set that consists of blocks of π. When π ≤ σ, the

induced partition σ/π is the partition σ viewed as an element of Π(π). Define the class of (π, σ)

as the sequence λ = (λ1, λ2, ...) of non-negative integers such that λi is the number of blocks of

size i in the partition σ/π, for 1 ≤ i ≤ |π|. It follows that

∑
i≥1

iλi = |π| and
∑
i≥1

λi = |σ|.

Example 1. Let E = [8], π = {1}, {2}, {345}, {67}, {8}, σ = {1345}, {2}, {678} ∈ Π8. Then,

σ/π = {(1), (345)}, {(2)}, {(67), (8)} ∈ Π(π). The class of (π, σ) is λ = (1, 2, 0, 0, ...), where

we have
∑

i≥1 iλi = |π| = 5 and
∑

i≥1 λi = |σ| = 3.

2.7 Incidence algebra

We recall the basic notation in incidence algebra. Let P be a finite poset and A a commutative

ring with unity. Denote by Int(P ) the set of all intervals of P , i.e., the set {(x, y) : x ≤ y}. The

incidence algebra I(P,A) of P over A is the A-algebra of all functions

f : Int(P )→ A,

where multiplication is defined via the convolution

fg(x, y) =
∑
x≤z≤y

f(x, z)g(z, y).

The algebra I(P,A) is associative with identity δ, where

δ(x, y) =

 1, if x = y,

0, if x 6= y.

An element f ∈ I(P,A) is invertible under the multiplication if and only if f(x, x) is invertible in

A for every x ∈ P .
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In this dissertation, our focus will be the case P = Πn, the partition lattice of [n].

2.8 Formal Power Series

For a function f : N0 → C we associate the formal power series F (x) =
∑
n≥0

f(n)xn, called

the ordinary generating function of f . Rather than using the functional notation, we may write

f(n) = fn = [xn]F (x), depending on which is convenient. If we use generating functions to

count an object, sometimes adjustment in the generating function proves useful. We say F̂ (x) =∑
n≥0

fn
xn

n!
is the exponential generating function of f . While factors other than 1/n! appear, they

are significantly less common.

2.9 Exponential Families

Exponential families are combinatorial models based on the partition lattices where the enu-

meration is captured by the exponential generating functions. The description of exponential fam-

ilies and their relation to the incidence algebra of Πn can be found in standard textbooks, e.g.,

[30, Section 5.1]. Here we adopt Wilf’s description of exponential families [33] in the context of

‘playing cards’ and ‘hands’.

Suppose that there is given an abstract set P of ‘pictures’, which typically are the connected

structures. A card C(S, p) is a pair consisting of a finite label set S of positive integers and a picture

p ∈ P . The weight of C is |S|. If S = [n], the card is called standard. A hand H is a set of cards

whose label sets form a partition of [n] for some n. The weight of a hand is the sum of the weights

of the cards in the hand. The n-th deck Dn is the set of all standard cards of weights n. We require

that Dn is always finite. An exponential family F is the collection of decks D1,D2, . . . .

In an exponential family, let di = |Di| and hn,k be the number of hands H of weight n that

consist of k cards. Let h0(x) = 1 and for n ≥ 1,

hn(x) =
n∑
k=1

hn,kx
k. (2.9)

Then the main counting theorem, the exponential formula, states that these polynomials satisfy the
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generating relation (alternatively, {hn(x)}n≥0 has the exponential generating function):

exD(t) =
∑
n≥0

hn(x)
tn

n!
, (2.10)

where D(t) =
∑

k≥1 dkt
k/k!. In other words, if d1 = h1,1 6= 0, {hn(x)}n≥0 is a sequence of

binomial type that is conjugate to the delta operator
∑

k≥1 dkD
k/k!.

Example 2. Set Partitions: Here, a card is a label set [n] with a ‘picture’ of n dots. Each deck Dn

consists of the single card of weight n, and a hand is just a partition of the set [n]. Thus, hn,k is

the number of partitions of the set [n] into k classes, which is S(n, k), the Stirling number of the

second kind.

Example 3. Permutations and their Cycles: Each card is a cyclic permutation on a label set S.

The deck Dn consists of all distinct cyclic permutations on [n] so dn = (n − 1)! and a hand is a

permutation of [n] consisting of k cycles. Thus, hn,k is the number of permutations on [n] that have

k cycles, that is, the signless Stirling number of the first kind c(n, k).

Note that we can interpret xk in hn(x) as the number of maps from the set of cards in a hand

to the set X = {1, . . . , x} for some positive integer x. Hence hn(x) counts the number of hands

of weight n in which each card is labeled by an element of X . This set-up gives a natural combi-

natorial interpretation for binomial polynomial sequences whose coefficients are positive integers.

In [24], Mullin and Rota introduced a structure called reluctant functions, which can be used

to give a combinatorial interpretation for some generalized Gončarov polynomials; see [22].

Definition 12. Let S and X be finite disjoint sets. A reluctant function from S to X is a function

f : S → S ∪X , such that for every s ∈ S there is a positive integer k = k(s) with fk(s) ∈ X .

The resulting partition that arises from this construction has a natural combinatorial structure of

a rooted forest with its rooted trees belonging to some binomial classB. The concept of exponential

families generalizes reluctant functions since for each such binomial class B, a card consists of all

s ∈ S such that fk(s) = xi (k > 0) for some fixed xi ∈ X . The picture on a card is the underlying

17



tree structure of B. The deck Dn consists all trees on n nodes of the particular family B, and a

hand is a forest of rooted trees, where each such tree is in B. Thus, h(n, k) is the number of forests

on n vertices consisting of k rooted trees, each of type B.
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3. GONČAROV POLYNOMIALS IN PARTITION LATTICES1

This chapter is an expansion of Section 3 of [3]. As earlier stated, we are concerned with the

case P = Πn, the partition lattice of [n], and A = K[w2, w3, . . .], where w2, w3, ... are independent

variables. In addition, we set w1 = 1.

Definition 13. Assume π ≤ σ in Πn and the class of (π, σ) is λ = (λ1, λ2, . . .). Define the

zeta-type function w(π, σ) ∈ I(Πn, A) by letting

w(π, σ) = wλ11 w
λ2
2 . . . w

λ|π|
|π| . (3.1)

Note that w(π, π) = 1 for all π. Hence w is invertible. The inverse of w is called the Möbius-

type function and denoted by µw. Explicitly, µw(π, π) = 1 and for π < σ,

µw(π, σ) = −
∑
π≤τ<σ

µw(π, τ)w(τ, σ).

When all wi = 1, the zeta-type function and the Möbius-type function become the zeta function

and the Möbius function of Πn respectively.

Example 4. Consider the lattice Π3. Then for all π < σ, w(π, σ) = w2 except that w(0̂, 1̂) = w3.

Consequently, µw(π, σ) = −w2 if π < σ except that µw(0̂, 1̂) = 3w2
2 − w3.

Define the zeta-type enumerator {an(x;w)}n≥0 and Möbius-type enumerator {bn(x;w)}n≥0 as

follows. Let a0(x;w) = b0(x;w) = 1 and for n ≥ 1,

an(x;w) =
∑
π∈Πn

w(0̂, π) x|π|, (3.2)

bn(x;w) =
∑
π∈Πn

µw(0̂, π) x|π|. (3.3)

1Reprinted with permission from “Gončarov Polynomials in Partition Lattices and Exponential families” by
A. Adeniran and C. H. Yan, 2020. Advances in Applied Mathematics, https://doi.org/10.1016/j.aam.2020.102045,
Copyright 2020 by Elsevier. This version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Theorem 3 ([25]). 1. The polynomial sequences {an(x;w)}n≥0 and {bn(x;w)}n≥0 are of bi-

nomial type.

2. Let Λ be the delta operator whose D-indicator is given by g(t) = t +
∑

i≥2wit
i/i!. Then

{an(x;w)}n≥0 is the conjugate sequence of Λ and {bn(x;w)}n≥0 is the basic sequence of Λ.

For n = 0, 1, . . . , 4, the polynomials an(w, x) and bn(w, x) are

a0(x;w) = 1,

a1(x;w) = x,

a2(x;w) = x2 + w2x,

a3(x;w) = x3 + 3w2x
2 + w3x,

a4(x;w) = x4 + 6w2x
3 + (4w3 + 3w2

2)x2 + w4x,

and

b0(x;w) = 1,

b1(x;w) = x,

b2(x;w) = x2 − w2x,

b3(x;w) = x3 − 3w2x
2 + (3w2

2 − w3)x,

b4(x;w) = x4 − 6w2x
3 + (15w2

2 − 4w3)x2 + (10w2w3 − w4 − 15w3
2)x.

The linear coefficient in bn(w;x) is µwn = µw(0̂, 1̂) in Πn. Assume ∆ is the conjugate delta

operator of Λ. Then {an(x;w)}n≥0 is the basic sequence of ∆ and {bn(x;w)}n≥0 is the conjugate

sequence of ∆. The operator ∆ can be written as ∆ =
∑

n≥1 µ
w
nD

n/n!. Since w1 = 1, each

µwn is a polynomial of w2, w3, . . . . If we take w1 to be a variable, µwn would be a polynomial in

w−1
1 , w2, w3, . . . .

The condition w1 = 1 is equivalent to the equation a1(x;w) = x. Since the weight variables
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w2, w3, . . . can take arbitrary values, Theorem 3 implies that any polynomial sequence {pn(x)}n≥0

of binomial type with p1(x) = x can be realized as the zeta-type weight enumerator or the Möbius-

type weight enumerator over partition lattices. Note that for any scalar k 6= 0, if a sequence

{pn(x)}n≥0 is the basic sequence of ∆ and the conjugate sequence of Λ, then {pn/kn}n≥0 is the

basic sequence of k∆ and the conjugate sequence of g(D/k) where g(t) is the D-indicator of Λ.

Hence, Theorem 3 covers all polynomial sequences of binomial type up to a scaling.

In the problem of counting assemblies of B-structures outlined in Section 2.1, the enumerator∑
k bn,kx

k in Theorem 2 is a specialization of the polynomial an(x;w), where wn is the number of

B-structures on a block of size n. For example, when B is the set of rooted trees, wn = nn−1 and

hence an(x;w) = x(x+ n)n−1, the n-th Abel polynomial.

3.1 Gončarov polynomials in partition lattices

Our objective is to fit the generalized Gončarov polynomials into this model and present a

combinatorial interpretation in terms of weight-enumeration in partition lattices. Following the

notation of Theorem 3, let ∆ be the conjugate delta operator of Λ. Given an interpolation grid Z ,

we denote by tn(x;w,Z) the n-th generalized Gončarov polynomial relative to the pair (∆,Z).

We use this notation to emphasize the role of the zeta-type function w(π, σ).

To get a formula for the polynomial tn(x;w,Z), we use the recurrence (2.4) in Section 2.2.2.

Since an(x;w) is the basic sequence of ∆, {tn(x;w,Z)}n≥0 is the unique sequence of polynomials

that satisfies the recurrence

an(x;w) =
n∑
i=0

(
n

i

)
an−i(zi;w) ti(x;w,Z). (3.4)

In other words,

tn(x;w,Z) = an(x;w)−
n−1∑
i=0

(
n

i

)
an−i(zi;w) ti(x;w,Z). (3.5)

In particular, t0(x;w,Z) = 1 and t1(x;w,Z) = a1(x;w)− a1(z0;w) = x− z0. Here we again as-
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sume w1 = 1 and hence a1(x;w) = x. Since if ∆ is changed to k∆, the corresponding tn(x;w,Z)

just changes to tn(x;w,Z)/kn, again we cover all the cases up to a scaling.

Assume x is a positive integer and X = {1, 2, . . . , x}. Then an(x;w) is the zeta-type weight

enumerator of all the block-labeled partitions, where each block of the partition carries a label from

X . In symbols,

an(x;w) =
∑
π∈Πn

w(0̂, π) · |{f : Block(π)→ X}|,

where Block(π) is the set of blocks of π. For a partition π with a block-labeling f , we record the

labeling by the list fπ = (x1, x2, . . . , xn), where xi = f(Bj) whenever i is in the block Bj of π.

Let ~z = (z0, z1, · · · , zn−1) be the initial segment of the grid Z . Furthermore, assume that

z0 ≤ z1 · · · ≤ zn−1 are positive integers with zn−1 < x.

Define the set PFπ(Z) as the set of all block-labelings of π that are also ~z-parking functions,

i.e.,

PFπ(Z) = {f : Block(π)→ X | fπ is a ~z-parking function}. (3.6)

More precisely, PFπ(Z) is the set of block-labelings of π such that the order statistics of fπ =

(x1, x2, . . . , xn) satisfies x(i) ≤ zi−1 for i = 1, . . . , n. Let PFπ(Z) be the cardinality of PFπ(Z).

Our main result of this section is the following theorem.

Theorem 4. Assume tn(x;w,Z) is the n-th generalized Gončarov polynomial defined by (3.4)

with a positive increasing integer sequence Z = (z0, z1, ...). Let x be an integer larger than zn−1.

Then,

tn(0;ω,−Z) = tn(x;ω, x−Z) =
∑
π∈Πn

w(0̂, π) · PFπ(Z), (3.7)

where x−Z = (x− z0, x− z1, x− z2, . . . ) and −Z = (−z0,−z1,−z2, . . . ).

The first equality follows from [22, Prop.3.5] that was proved by verifying the defining equation

(2.3), and the second equality follows from the recurrence (3.4) and Lemma 1 proved next. Note

that all three parts of (3.7) are polynomials of z0, z1, . . . , zn−1, hence (3.7) is a polynomial identity.
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Lemma 1. For every n ≥ 0, it holds that

an(x;w) =
n∑
i=0

(
n

i

)
an−i(x− zi;w)

∑
π∈Πi

w(0̂, π) · PFπ(Z) (3.8)

Proof. Again we assume that x and zi are positive integers and z0 < z1 < · · · < zn−1 < x. For a

finite set E and P , let S(E,P ) be the set of pairs (π, f) where π is a partition of the set E and f

is a function from Block(π) to P . Then the left-hand side of (3.8) counts the set S([n], X) by the

zeta-type weight function w(0̂, π). Note that if π has blocks B1, B2, . . . , Bk, then

w(0̂, π) =
k∏
j=1

w|Bj |.

For a pair (π, f) ∈ S([n], X) with fπ = (x1, x2, . . . , xn), let inc(fπ) = (x(1), x(2), . . . , x(n)) 

be the non-decreasing rearrangement of the terms of fπ. Set

i(f) = max{k : x(j) ≤ zj−1 ∀j ≤ k}.

Thus, the maximality of i = i(f) means that

x(1) ≤ z0, x(2) ≤ z1, ... , x(i) ≤ zi−1

and

zi < x(i+1) ≤ x(i+2) ≤ · · · ≤ x(n) ≤ x.

In the case that x(j) > zj−1 for all j, we have i(f) = 0.

Assume (xr1 , ..., xri ) is the subsequence of fπ from which the non-decreasing sequence

(x(1), x(2), ..., x(i)) is obtained. Let R1 = {r1, r2, . . . , ri} ⊆ [n]. Then it is easy to see that R1 must 

be a union of some blocks of π, while R2 = [n] \ R1 is the union of the remaining blocks of π. Let 

π1 be the restriction of π on R1 and π2 the restriction of π on R2. Thus π is a disjoint union of π1 

and π2. Furthermore, let fi  be the restriction of f on Ri.   Then f1 is a map from the blocks
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of π1 to {1, . . . , zi} that is also a ~z-parking function, and f2 is a map from blocks of π2 to the set

X \ [zi] = {zi + 1, . . . , x}.

Let SP (E,X) be the subset of S(E,X) such that for each pair (π, f), the sequence fπ is a

~z-parking function. Then the above argument defines a decomposition of (π, f) ∈ S([n], X) into

pairs (π1, f1) ∈ SP (R1, X) and (π2, f2) ∈ S(R2, X \ [zi]). Conversely, any pairs of (π1, f1) and

(π2, f2) described above can be reassembled into a partition π of [n] with labels in X . In other

words, the set S([n], X) can be written as a disjoint union of Cartesian products as

S([n], X) =
⊔

i;R1⊆[n]
|R1|=i

SP (R1, X)× S(R2, X \ [zi]). (3.9)

In addition, if π is the disjoint union of π1 and π2, then

w(0̂, π) = w(0̂, π1)w(0̂, π2).

Putting the above results together, we have

an(x;w) =
∑

(π,f)∈S([n],X)

w(0̂, π)

=
n∑
i=0

∑
R1:|R1|=i

 ∑
(π1,f1)∈Sp(R1,X)

w(0̂, π1) ·
∑

(π2,f2)∈S(R2,X\[zi])

w(0̂, π2)


=

n∑
i=0

(
n

i

)
an−i(x− zi;w)

∑
(π1,f1)∈Sp(R1,X)

w(0̂, π1)

=
n∑
i=0

(
n

i

)
an−i(x− zi;w)

∑
π∈Πi

w(0̂, π)PFπ(Z).

The last equation follows from the definition of PFπ(Z).

Example 5. From the recurrence (3.4) we get

t2(x;w,Z) = x2 + (w2 − 2z1)x+ (2z0z1 − z2
0 − w2z0).
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Hence t2(0;w,−Z) = 2z0z1−z2
0 +w2z0. On the other hand, there are two partitions in Π2. For π =

{12}, clearly w(0̂, {12}) = w2 and PF{12}(Z) = z0. For π = {1}{2}, w(0̂, π) = 1 and PFπ(Z)

is the number of pairs of positive integers (x, y) such that min(x, y) ≤ z0 and max(x, y) ≤ z1. It

is easy to check that there are 2z0z1 − z2
0 such pairs.

Since {an(x;w)} gives a generic form of the sequence of polynomials of binomial type, then

{tn(x;w,Z)} is the generic form of the generalized Gončarov polynomials. In particular, from

Theorem 4 we see that when w2 = w3 = · · · = 0, tn(0;w,−Z) gives the number of ~z-parking

functions of length n.
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4. GONČAROV POLYNOMIALS IN EXPONENTIAL FAMILIES1

This chapter is an expansion of Section 4 of [3]. As described earlier in Section 2.9, exponential

families are combinatorial models based on the partition lattices where the enumeration is captured

by the exponential generating functions.

We will show that by taking the type enumerator, an exponential family actually provides a

combinatorial model for all generalized Gončarov polynomials.

4.1 Type Enumerator in Exponential Families

In a given exponential family F , we have seen that

hn(x) =
n∑
k=1

hn,kx
k =

∑
H

|{f : cards in H → X}| (4.1)

where H ranges over all hands of weight n. For a hand H consisting of cards C1, C2, . . . , Ck of

weights t1, t2, . . . , tk, define the type of H as

type(H) = yt1yt2 · · · ytk ,

where y1, y2, . . . , are free variables.

Let

hn(x;y) =
∑

H: weight n

type(H) · |{f : cards in H → X}|. (4.2)

Then we have the following form of the exponential formula.

Proposition 1. The sequence of type enumerators {hn(x;y)}n≥0, viewed as a polynomial in x, is

1Reprinted with permission from “Gončarov Polynomials in Partition Lattices and Exponential families” by
A. Adeniran and C. H. Yan, 2020. Advances in Applied Mathematics, https://doi.org/10.1016/j.aam.2020.102045,
Copyright 2020 by Elsevier. This version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
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a sequence of polynomials of binomial type satisfying the equation

∑
n≥0

hn(x;y)
tn

n!
= exp

(
x
∑
k≥1

dkyk
tk

k!

)
. (4.3)

Proof. We compare the formula of hn(x;y) with that of hn(x). Note for n ≥ 1, hn(x) can be

computed by

hn(x) =
∑
k≥1

∑
H={C1,...,Ck}

dt1dt2 · · · dtkxk, (4.4)

where {C1, · · · , Ck} is a hand of weight n and ti is the weight of card Ci, while

hn(x;y) =
∑
k≥1

∑
H={C1,...,Ck}

dt1dt2 · · · dtkyt1yt2 · · · ytkxk. (4.5)

The exponential formula for hn(x) then implies Proposition 1.

Remark 1. Comparing to the generic form an(x;w) in the previous section, we see that hn(x;y)

corresponds to the case where the variables in the zeta-type function are determined bywn = dnyn.

As far as d1 6= 0, we can obtain arbitrary polynomial sequences of binomial type by taking suitable

values for the yi-variables.

4.2 Sequence of Generalized Goncarov Polynomials

Let Z = (zi)i≥0 be an interpolation grid. For the binomial sequence {hn(x;y)}n≥0 defined in

an exponential family F , we can consider the associated generalized Gončarov polynomials given

by (2.4) with pn(x) replaced by hn(x;y). Denote this Gončarov polynomial by tn(x;y,F ,Z) to

emphasize that it has variables yi and is defined in F . Explicitly, tn(x;y,F ,Z) is obtained by the

recurrence

tn(x;y,F ,Z) = hn(x; y)−
n−1∑
i=0

(
n

i

)
hn−i(zi; y)ti(x;y,F ,Z). (4.6)

Suppose X = {1, 2, ..., x} and assume that z0 ≤ z1 ≤ · · · ≤ zn−1 are integers in X . Let

~z = (z0, z1, . . . , zn−1). For a hand H = {C1, C2, . . . , Ck} of weight n with a function f from

{C1, C2, . . . , Ck} to X , denote by fH the list (x1, x2, . . . , xn), where xi = f(Cj) if i is in the label
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set of Cj . Let

PFH(Z) = {f : {C1, C2, . . . , Ck} → X | fH is a ~z-parking function},

and PFH(Z) the cardinality of PFH(Z). Then we have the following analog of Theorem 4.

Theorem 5. For n ≥ 0,

tn(0;y,F ,−Z) = tn(x;y,F , x−Z) =
∑

H: of weight n

type(H) · PFH(Z). (4.7)

Here by convention, the third term of (4.7) equals 1 when n = 0.

Theorem 5 follows from (4.6) and the following recurrence relation

hn(x;y) =
n∑
i=0

(
n

i

)
hn−i(x− zi;y)

∑
H: of weight i

type(H) · PFH(Z), (4.8)

whose proof is similar to that of Lemma 1. In an exponential family F , let A(S,X) be the set of

pairs (H, f) such that H is a hand whose label sets form a partition of S and f is a function from

the cards in H to X . Then the basic ingredients of the proof are that

1. type(H) is a multiplicative function only depending on the weights of cards in H , and

2. The setA([n], X) can be decomposed into a disjoint union of Cartesian products of the form

AP (R,X)×A([n] \R,X \ [zi]),

where AP (R,X) = {(H, f) ∈ A(R,X) : fH is a ~z-parking function}, and the disjoint

union is taken over all the subsets R of [n].

We skip the details of the proof of Eq. (4.8).

We illustrate the above results and some connections to combinatorics in the exponential fam-

ilies given in Examples 2 and 3. There are many other exponential families in which the type
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enumerator and associated Gončarov polynomials have interesting combinatorial significance.

1. Let F1 be the exponential family of set partitions described in Example 2. In this family,

di = 1 for all i and hn(x) =
n∑
k=0

S(n, k)xk. In the type enumerator, if we substitute y1 = 1

and yi = wi for i ≥ 2, then hn(x;y) is exactly the same as the generic sequence an(x;w)

in (3.2), and consequently tn(x;y,F1,Z) is the same as the generic Gončarov polynomial

tn(x;w,Z) defined by (3.5). In particular, if all yi = 1, tn(0;y,F1,−Z) gives a formula

for the number of ~z-parking functions with the additional structure that cars arrive in disjoint

groups, and drivers in the same group always prefer the same parking spot.

When yi = 1 and zi = 1 + i for all i, the first few terms of the Gončarov polynomials

tn(x) = tn(x;y,F1,−Z) are

t0(x) = 1

t1(x) = x+ 1

t2(x) = x2 + 5x+ 4

t3(x) = x3 + 12x2 + 40x+ 29

t4(x) = x4 + 22x3 + 163x2 + 453x+ 311

In particular, for x = 0 we get the sequence 1, 1, 4, 29, 311, .... This is sequence A030019

in the On-Line Encyclopedia of Integer Sequences (OEIS) [1], where it is interpreted as the

number of labeled spanning trees in the complete hypergraph on n vertices (all hyper-edges

having cardinality 2 or greater). It would be interesting to find a direct bijection between the

hyper-trees and the parking-function interpretation.

2. Let F2 be the exponential family of the permutations and their cycles, as described in Exam-

ple 3. Here dn = (n− 1)! and hn(x) =
n∑
k=0

c(n, k)xk = x(n), where the c(n, k) are the sign-

less Stirling numbers of the first kind and x(n) is the rising factorial x(x+ 1) · · · (x+n− 1).

When y1 = 1, the Gončarov polynomial tn(x;y,F2,Z) can be obtained from the generic
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form tn(x;w,Z) by replacing wn with (n − 1)!yn for n ≥ 2. When all yi = 1, i.e. y = 1,

tn(0;1,F2,−Z) gives a formula for the number of ~z-parking functions with the additional

requirement that cars are formed in disjoint cycles, and drivers in the same cycle prefer the

same parking spot.

In addition, when y = 1, and Z is the arithmetic progression zi = a + bi, the Goncarov

polynomial is

tn(x;1,F2;−Z) = (x+ a)(x+ a+ nb+ 1)(n−1). (4.9)

Another combinatorial interpretation of tn(0;1,F2,−Z) is given in [22, Section 6.7], where

it shows that tn(0;1,F ,−Z) is n! times the number of lattice paths from (0, 0) to (x− 1, n)

with strict right boundary Z . For example, when zi = a + bi for some positive integers a

and b, 1
n!
tn(0;1,F2,−Z) is the number of lattice paths from (0, 0) to (x − 1, n) which stay

strictly to the left of the points (a + ib, i) for i = 0, 1, . . . , n. In particular for a = 1 and

b = k, it counts the number of labeled lattice paths from the origin to (kn, n) that never

pass below the line x = yk. In that case (4.9) gives 1
1+kn

(
(k+1)n
n

)
, the n-th k-Fuss-Catalan

number.

We can also consider the injective functions in the definition of hn(x) and hn(x; y) in (4.1) and

(4.2), where the term xk is replaced by the lower factorial x(k) = x(x − 1) · · · (x − k + 1). In

other words, cards of a hand are labeled by X with the additional property that different cards get

different labels. Some examples are given in [22, Section 6] and called monomorphic classes. A

result analogous to Theorem 5 still holds for the momomorphic classes of an exponential family.

As a final result we point out an explicit formula to compute the constant coefficient of the

generalized Gončarov polynomial whenever we know the basic sequence {pn(x)}n≥0. It is proved

in [22] and only depends on the recurrence (2.4) and the fact that pn(0) = 0 for n > 0. The proof

does not need an explicit formula for the delta operator ∆ and hence the result is easier to use when

we need to compute the value of tn(0;y,F ,−Z) in a given exponential family.

Let {pn(x)}n≥0 be a sequence of binomial type and Z = (z0, z1, . . . ) be a given grid. Assume
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{tn(0;−Z)}n≥0 is defined by the recurrence relation

tn(0;−Z) = −
n−1∑
i=0

(
n

i

)
pn−i(−zi)ti(0),

for n ≥ 1 and t0(0;−Z) = 1. Then for n ≥ 1, tn(0;−Z) can be expressed as a summation over

ordered partitions.

Given a finite set S with n elements, an ordered partition of S is an ordered list (B1, ..., Bk)

of disjoint nonempty subsets of S such that B1 ∪ · · · ∪ Bk = S. If ρ = (B1, ..., Bk) is an ordered

partition of S, then we set |ρ| = k. For each i = 1, 2, ..., k, we let bi = bi(ρ) = |Bi|, and

si := si(ρ) :=
∑i

j=1 bj . In particular, set s0(p) = 0. Let Rn be the set of all ordered partitions of

the set [n].

Theorem 6 ([22]). For n ≥ 1,

tn(0;−Z) =
∑
ρ∈Rn

(−1)|ρ|
k−1∏
i=0

pbi+1
(−zsi)

=
∑
ρ∈Rn

(−1)|ρ|pb1(−z0), · · · pbk(−zsk−1
). (4.10)

The following list gives the formulas for the first several Gončarov polynomials.

t0(0;−Z) = 1

t1(0;−Z) = −p1(−z0)

t2(0;−Z) = 2p1(−z0)p1(−z1)− p2(−z0)

t3(0;−Z) = −p3(−z0) + 3p2(−z0)p1(−z2) + 3p1(−z0)p2(−z1)− 6p1(−z0)p1(−z1)p1(−z2).

4.3 Degenerate Cases

In an exponential family, the polynomial hn(x) or hn(x;y) may not always have degree n, e.g.,

when d1 = h1,1 = 0. We say that such polynomial sequences and the corresponding exponential

families are degenerate. For a degenerate sequence of polynomials, there is no delta operator for
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which the sequence is the basic or the conjugate sequence. Nevertheless, the exponential formulas

(2.10) and (4.3) are still true. Hence the sequences {hn(x)}n≥0 and {hn(x;y)}n≥0 still satisfy the

binomial-type identity (2.1).

Without a delta operator, we cannot define the generalized Gončarov interpolation problems.

However, we can still introduce the generalized Gončarov polynomials via the recurrence (2.4).

Furthermore, we will prove in Theorem 7 that the shift invariance of Gončarov polynomials can

also be derived from (2.4). Therefore, Theorems 5 and 6 still hold true for the degenerate expo-

nential families since all the proofs follow from the binomial-type identity (2.1) and the recurrence

(2.4).

Theorem 7. Assume {pn(x)}n≥0 is a polynomial sequence of binomial type with p0(x) = 1, but

the degree of pn(x) is not necessarily n. Let tn(x;Z) be defined by the recurrence relation

tn(x;Z) = pn(x)−
n−1∑
i=0

(
n

i

)
pn−i(zi)ti(x;Z). (4.11)

For any scalar η and the interpolation grid Z = {z0, z1, z2, . . . ), let Z + η be the sequence

(z0 + η, z1 + η, z2 + η, · · · ). Then we have

tn(x+ η;Z + η) = tn(x;Z) (4.12)

for all n ≥ 0.

Proof. We prove Theorem 7 by induction on n. The initial case n = 0 is trivial since t0(x;Z) = 1

for all x and any grid Z . Assume Eq. (4.12) is true for all indices less than n. We compute

tn(x+ η;Z + η). By definition

tn(x+ η;Z + η) = pn(x+ η)−
n−1∑
i=0

(
n

i

)
pn−i(zi + η)ti(x+ η;Z + η). (4.13)

By the inductive hypothesis ti(x + η;Z + η) = ti(x;Z) for i < n and the binomial identity of
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pn(x), the right-hand side of (4.13) can be written as

n∑
k=0

(
n

k

)
pk(x)pn−k(η)−

n−1∑
i=0

(
n

i

)(n−i∑
j=0

(
n− i
j

)
pn−i−j(zi)pj(η)

)
ti(x;Z)

=
n∑
k=0

(
n

k

)
pk(x)pn−k(η)−

∑
i+j≤n

except (i,j)=(n,0)

(
n

i

)(
n− i
j

)
pj(η)pn−i−j(zi)ti(x;Z) (4.14)

Since (
n

i

)(
n− i
j

)
=

n!

i!j!(n− i− j)!
=

(
n

j

)(
n− j
i

)
,

then (4.14) can be expressed as

n∑
k=0

(
n

k

)
pk(x)pn−k(η)−

∑
i+j≤n

except (i,j)=(n,0)

(
n

j

)(
n− j
i

)
pj(η)pn−i−j(zi)ti(x;Z)

=
n∑
k=0

(
n

k

)
pk(x)pn−k(η)−

n∑
j=1

(
n

j

)
pj(η)

n−j∑
i=0

(
n− j
i

)
pn−i−j(zi)ti(x;Z)

−
n−1∑
i=0

(
n

i

)
pn−i(zi)ti(x;Z). (4.15)

The last summation in (4.15) corresponds to the terms with j = 0. Note that

n−j∑
i=0

(
n− j
i

)
pn−i−j(zi)ti(x;Z) = pn−j(x).

Hence For. (4.15) is equal to

n∑
k=0

(
n

k

)
pk(x)pn−k(η)−

n∑
j=1

(
n

j

)
pj(η)pn−j(x)−

n−1∑
i=0

(
n

i

)
pn−i(zi)ti(x;Z)

= pn(x)−
n−1∑
i=0

(
n

i

)
pn−i(zi)ti(x;Z)

= tn(x;Z).

This finishes the proof.
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The next example shows a degenerate exponential family.

Example 6. 2-Regular simple graphs. In this exponential family a card is an undirected cycle on

a label set [m] (where m ≥ 3). The deck Dn consists of all undirected circular arrangements of

n letters so dn = 1
2
(n − 1)! for n ≥ 3 and d1 = d2 = 0. A hand is then a undirected simple

graph on the vertex set [n], which is 2-regular, that is, every vertex has degree 2. Thus, hn,k is the

number of undirected 2-regular simple graphs on n vertices consisting of k cycles. Denote by F3

this exponential family.

For F3, the type enumerators are h0(x,y) = 1, h1(x;y) = h2(x;y) = 0, h3(x;y) = y3x,

h4(x;y) = 2y4x, h5(x,y) = 12y5x, and h6(x;y) = 60y6x + 10y2
3x

2, etc. Although the degree of

hn(x;y) is not n, the exponential formula still holds:

n∑
k=0

hn(x;y)
tk

k!
= exp

(
x
∑
k≥3

yk
tk

2k

)
.

We compute by the recurrence (4.6) that

t0(x;y,F3,Z) = 1

t1(x;y,F3,Z) = t2(x; y,F3,Z) = 0

t3(x;y,F3,Z) = y3(x− z0),

t4(x;y,F3,Z) = 3y3(x− z0),

t5(x;y,F3,Z) = 12y5(x− z0),

t6(x;y,F3,Z) = 10y2
3x

2 + 60y6x− 20y2
3z3x− 60y6z0 − 10y2

3z
2
0 + 20y2

3z0z3.

The equation

tn(0;y,F3,−Z) =
∑

H: of weight n

type(H) · PFH(Z)

is still true. For example, for n = 6, t6(0; y,F3,−Z) = 60y6z0 + 20y2
3z0z3 − 10y2

3z
2
0 . The term

60y6z0 comes from the 5!/2 = 60 6-cycles, and the terms 10y2
3(2z0z3 − z2

0) comes from the 10
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hands each with two 3-cycles.
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5. INCREASING AND INVARIANT PARKING SEQUENCES

This chapter covers work done on special classes of parking sequences. First, we study in-

creasing parking sequences for any given length vector and then we study two different concepts

of invariance in parking sequences. Parking sequences were first studied by Ehrenborg and Happ

[7, 8] and serve as the entry point for our investigation into these classes of parking sequences.

In section 5.1, we discuss increasing parking sequences and their connection to lattice paths.

Then, in section 5.2, we fix the length vector ~y and characterize all permutation-invariant parking

sequences when ~y has some special characteristics. Lastly, in section 5.3, we characterize all park-

ing sequences that remain invariant under all permutations of ~y for any given length set {y1, ..., yn}

as well as all possible invariant parking sequences on a given street with fixed length n.

5.1 Increasing Parking Sequences

In this section, we consider all non-decreasing parking sequences for any given pair (~y; z). By

convention, we write [x] = {1, 2, ..., x} and the interval [x, y] = {x, x+ 1, ..., y}, where x, y ∈ Z+

and x < y. Given any sequence b = (b1, ..., bn) ∈ Zn+, let binc = (b(1), ..., b(n)) be the non-

decreasing rearrangement of the entries of b and the ith entry b(i) of binc is called the i-th order

statistic of b. Next, we define the final parking configuration for any given parking sequence.

Definition 14. The final parking configuration of a parking sequence c is the arrangement of cars

C1, C2, ..., Cn following the trailer T encoding their relative order on the street after they are done

parking under the preference sequence c.

For example, in Figure 2.3, the final parking configuration for c = (3, 7, 5, 3) is T,C1, C3, C2, C4.

First, we prove a necessary condition for parking sequences, which is analogous to inequality

(2.5).

Lemma 2. Suppose c = (c1, ..., cn) ∈ PS(~y; z) where ~y = (y1, ..., yn). Then, #{j ∈ [n] : cj ≤
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z} ≥ 1 and for each 1 ≤ t ≤ n− 1,

#{j : cj ≤ z +
t−1∑
i=0

y(n−i)} ≥ t+ 1. (5.1)

Proof. Clearly, #{j : cj ≤ z} ≥ 1. Otherwise, there is no car whose preference is less or equal to

z, thus no car parks on spot z and we obtain a contradiction. Suppose for some t ∈ [2, n−1], #{j :

cj ≤ z +
∑t−1

i=0 y(n−i)} ≤ t. Then, in the final parking configuration on spots [1, z +
∑t−1

i=0 y(n−i)],

there are at most 1 trailer and t cars occupying a total of at most z−1+y(n) +y(n−1) +· · ·+y(n−t+1)

spots. Thus, not all spots are used in the final parking configuration and this contradicts the fact

that c ∈ PS(~y; z).

The following result is immediate from Lemma 2.

Corollary 1. Let c = (c1, ..., cn) ∈ PS(~y; z) where (~y; z) = (y1, ..., yn; z). Let ~yinc = (y(1), ..., y(n))

be the non-decreasing rearrangement of the length vector ~y. Then, c can be rearranged to give an

increasing sequence c′ = (c(1), ..., c(n)) with c(1) ≤ z and

c(2) ≤ z + y(n), c(3) ≤ z + y(n) + y(n−1), ..., c(n) ≤ z + y(n) + y(n−1) + · · ·+ y(3) + y(2). (5.2)

It is important to note that the converse implication of Lemma 2 is not true. Using the same

example as before, even though c = (1, 2) and c′ = (2, 1) both satisfy (5.1) for ~y = (2, 2),

c′ 6∈ PS(~y).

Definition 15. A sequence c = (c1, ..., cn) ∈ PS(~y; z) is an increasing parking sequence for (~y; z)

if c1 ≤ c2 ≤ · · · ≤ cn. We denote the set of all increasing parking sequences for (~y; z) by IPS(~y; z).

When ~y = (1, 1, ..., 1) and z = 1 (i.e. the trailer of length 0), we get the increasing classical

parking functions, which are counted by the Catalan numbers.

We remark that for a parking sequence c ∈ PS(~y; z), its rearrangement cinc is not necessar-

ily a parking sequence. Consider the following example: c = (5, 6, 1) ∈ PS(1, 1, 4) yields the

increasing sequence cinc = (1, 5, 6), which is not a parking sequence for ~y = (1, 1, 4).
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We have the following characterization for increasing parking sequences.

Proposition 2. Let (~y; z) = (y1, ..., yn; z).Then, c = (c1, ..., cn) ∈ IPS(~y; z) if and only if c1 ≤

c2 ≤ · · · ≤ cn and for all i ∈ [n],

ci ≤ z +
i−1∑
j=1

yj. (5.3)

Proof. First observe that if c is a preference sequence satisfying (5.3), then the cars will park in

the final configuration T,C1, . . . , Cn. Hence such a sequence c is in IPS(~y; z).

Conversely, for a non-decreasing sequence c that allows all the cars to park, we need to prove

that it satisfies (5.3). First by Corollary 1, c1 ≤ z. Thus, car C1 parks right after the trailer leaving

no gaps. By the rules of the parking process, if ci ≤ ci+1, then car Ci+1 will park after Ci if both

are able to park. Hence for a non-decreasing c ∈ PS(~y; z), the final parking configuration must be

T,C1, C2, . . . , Cn. It follows that the first spot occupied by car Ci is z + y1 + · · · + yi−1, which

must be larger than or equal to ci.

Proposition 2 allows us to enumerate increasing parking sequences for any given length vector

~y and z ∈ Z+ using results in lattice path counting. Recall that a lattice path from (0, 0) to (p, q) is

a sequence of p east steps and q north steps. It can be represented by a sequence of non-decreasing

integers (x1, x2, . . . , xq) such that the north steps are at (xi, i − 1) → (xi, i), for i = 1, ..., q. The

lattice path is with strict right boundary (b1, b2, ..., bq) if 0 ≤ xi < bi for all 1 ≤ i ≤ q. Let

LPp,q(b1, b2, ..., bq) denote the set of all lattice paths from (0, 0) to (p, q) with strict right boundary

(b1, b2, . . . , bq).

We can represent increasing parking sequences in terms of lattice paths with strict right bound-

ary as follows: Let (~y; z) = (y1, ..., yn; z) and M = z − 1 + y1 + y2 + · · · + yn−1 + yn. Then

by Proposition 2 there is a bijection from IPS(~y; z) to the set of lattice paths from (0, 0) to (M,n)

with strict right boundary (z, z+ y1, z+ y1 + y2, ..., z+ y1 + y2 + · · ·+ yn−1). (Here we have strict

right boundary because in the lattice path, xi can be 0 while in c ∈ IPS(~y, z), ci ≥ 1. ) There are

well-known determinant formulas to count the number of lattice paths with general boundaries,
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see, for example, Theorem 1 of [23, p.32], which leads to the following determinant formula.

Corollary 2. Suppose M = z − 1 + y1 + y2 + · · ·+ yn−1 + yn. Then,

#IPS(~y; z) = #LPM,n(z, z + y1, z + y1 + y2, ..., z + y1 + y2 + · · ·+ yn−1)

= det

[(
bi

j − i+ 1

)]
1≤i,j≤n

where b1 = z and bi = z + y1 + y2 + · · ·+ yi−1 for i = 2, ..., n.

For the special case that the length vector has constant entries, there are nicer closed formulae

for the determinant. Specifically, when ~y = (k, k, . . . , k) and M = z+kn−1, LPM,n(z, z+k, z+

2k, ..., z + (n− 1)k) is the set of lattice paths from (0, 0) to (z + kn− 1, n) which never touch the

line x = z + ky. Using the formula (1.11) (or Theorem 3) of [23, p.9], we have

Corollary 3. Suppose (~y, z) = (k, k, ..., k; z) and M = z + kn− 1, then

#IPS(~y; z) = #LPM,n(z, z + k, z + 2k, ..., z + (n− 1)k) =
z

z + n(k + 1)

(
z + n(k + 1)

n

)
.

This specializes to the Fuss-Catalan numbers when we set z = 1.

Corollary 4. Suppose ~y = (k, k, ..., k), then

#IPS(~y; 1) =
1

kn+ 1

(
(k + 1)n

n

)
.

When ~y = (1, 1, ..., 1) and z = 1, the increasing parking sequences are exactly the classical

increasing parking functions, which are counted by the Catalan numbers. It is well-known that

classical increasing parking functions of length n are in one-to-one correspondence with Dyck

paths of semi-length n, which are lattice paths from (0, 0) to (n, n) with strict right boundary

(1, 2, ..., n). Hence Corollaries 2–4 generalize the result in the classical case.
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5.2 Invariant Parking Sequences

In this section, we study the first of two types of invariance in parking sequences. Recall that a

permutation of a (classical) parking function is also a parking function but it is not true for parking

sequences in general. This gives rise to the question of which parking sequences are invariant for

a given length vector.

5.2.1 Invariant Parking Sequences for fixed length-vector

Fixing the length vector ~y ∈ Zn+ and a positive integer z, we investigate which parking sequence

remains in the set PS(~y; z) after an arbitrary rearrangement of its terms.

Definition 16 (Permutation-invariant parking sequences). Fix ~y = (y1, ..., yn) and z ∈ Z+. Let

c = (c1, ..., cn) be a parking sequence for (~y; z). Then, c is a permutation-invariant parking

sequence for (~y; z) if for any rearrangement c′ of c, we have c′ ∈ PSn(~y; z). We denote the set of

all permutation-invariant parking sequences for (~y; z) by PSinv(~y; z).

For example, for ~y = (1, 2) and z = 1, PS(~y) = {(1, 1), (1, 2), (2, 1), (3, 1)}where PSinv(~y; z) =

{(1, 1), (1, 2), (2, 1)} since (1, 3) 6∈ PS(~y). First, we prove a result that describes a minimal subset

of the invariant parking sequences.

Proposition 3. For any c = (c1, ..., cn) with ci ∈ [z] for all i = 1, ..., n, we have c ∈ PSinv(~y; z).

Proof. Clearly, for any such sequence c, no matter what the value of ci is for any i ∈ [n], we obtain

the final parking configuration T,C1, C2, ..., Cn, which means c ∈ PS(~y; z). Since this is true for

any rearrangement of the c, it follows that c is invariant.

In general, PSinv(~y; z) is larger than the set [z]n, and the situation can be more complicated.

The following two examples show that PSinv(~y; z) depends not only on the relative order of the

yi’s, but also on the exact value of yi.

Example 7. Let ~y = (y1, y2) and z = 1. There are two possible cases. If y1 < y2, then

PSinv(~y; 1) = {(1, 1)}. However, if y1 ≥ y2, we have PSinv(~y; 1) = {(1, 1), (1, y2+1), (y2+1, 1)}.
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Example 8. Suppose ~y = (4, 3, 2) and ~y′ = (4, 3, 1). It is easy to see that

PSinv(~y; 1) = {(1, 1, 1), (1, 1, 4), (1, 4, 1), (4, 1, 1)}

and

PSinv(~y
′; 1) = {(1, 1, 1), (1, 1, 4), (1, 4, 1), (4, 1, 1), (1, 1, 5), (1, 5, 1), (5, 1, 1)}.

Note that the relative orders for the vectors ~y and ~y′ are the same (y1 > y2 > y3), but the invariant

sets are not similar.

In this section we characterize the invariant set for some families of ~y. First, we consider the

case where the length vector is strictly increasing. Next, we look at the case where ~y is a constant

sequence. Lastly, given a, b ∈ Z+, we consider two cases where the length vector is of the form (i)

~y = (a, ..., a, b, ..., b) where a < b and (ii) ~y = (a, ..., a, b, ..., b) where b = 1 and a > b.

5.2.2 Strictly increasing length vector

When ~y is a strictly increasing sequence, we show that Proposition 3 gives all the invariant

parking sequences.

Theorem 8. Let (~y; z) = (y1, y2, ..., yn; z) where y1 < y2 < · · · < yn. Then,

PSinv(~y; z) = [z]n.

Proof. By Proposition 3, [z]n ⊆ PSinv(~y; z). Conversely, suppose c = (c1, c2, ..., cn) is a parking

sequence for (~y; z) with some ci 6∈ [z]. We claim that c is not invariant. To see this, let x =

min{ci ∈ c |ci > z}. Then, we can consider the order statistics of c and the preference sequence

associated with it i.e.

c′ = (c(1), c(2), ..., c(r), x, c(r+2), . . . , c(n))

where c(1) ≤ c(2) ≤ · · · ≤ c(r) ≤ z < x ≤ c(r+2) ≤ · · · ≤ c(n) and r ≥ 1 by Corollary 1. Then, by

(5.2), x satisfies the inequality: z < x ≤ z +
∑r

i=1 yi. Thus, we can choose the maximum s such
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that x > z +
∑s

i=1 yi. (s may be 0). Clearly, s < r. Consider the preference

c′′ = (c(1), c(2), ..., c(s), x, c(s+1), . . . , c(r), c(r+2), . . . , c(n))

We try to park according to c′′. Clearly, the first s cars park in order after the trailer T without

any gaps in between them. Then, the car Cs+1 has preference x and parks after car Cs with h

unoccupied spots in between Cs and Cs+1, where h = x − (z +
∑s

i=1 yi) ≥ 1, and h ≤ ys+1 by

the maximality of s. Among the un-parked cars Cs+2, . . . , Cn, the minimal length is ys+2, where

ys+2 > ys+1 ≥ h. Hence no car can fill in these h unoccupied spots. It follows that c′′ 6∈ PS(~y; z),

and thus c 6∈ PSinv(~y; z).

Corollary 5. Let (~y; z) = (y1, y2, ..., yn; z) where y1 < y2 < · · · < yn. Then,

#PSinv(~y; z) = zn.

5.2.3 Constant length vector

In this subsection, we investigate the case where ~y is of the form (k, k, ..., k). The following

result gives a characterization for permutation-invariant parking sequences for such length vectors.

Theorem 9. Suppose (~y; z) = (k, k, ..., k; z) where k ∈ Z+ and k > 1. Then, PSinv(~y; z) is the set

of all sequences (c1, ..., cn) whose order statistics satisfy (5.2) and such that for each 1 ≤ i ≤ n,

ci ∈ {1, 2, ..., z, z + k, z + 2k, ..., z + (n− 1)k} (5.4)

Proof. Let c = (c1, ..., cn) be a sequence that satisfies (5.2) and (5.4). That is, for each 1 ≤ i ≤ k,

c(i) ≤ z + (i − 1)k, and ci ≤ z or ci = z + sk for some s = 0, 1, ...n − 1. We claim that

c ∈ PS(~y; z). Since conditions (5.2) and (5.4) are independent of the arrangement of the terms

ci’s, the claim implies c is permutation-invariant.
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We attempt to park using c. First, C1 either parks right after the trailer (if c1 ≤ z) or on spots

[c1, c1 + k − 1]. We assume for our inductive hypothesis, that the first r cars are parked already,

(where 2 ≤ r ≤ n − 1), and the following observations hold true at this stage in the parking

process:

1. any car already parked on the street occupies spots of the form [z + ks, z + k(s + 1) − 1]

where s ∈ {0, 1, ..., n− 1}

2. any block of unoccupied spots is a multiple of k starting with z + km (for some m ∈

{0, 1, ..., n− 1}.

Thus, for any car Cr+1 with preference cr+1 = z + kl coming in at a later stage, there are two

possibilities:

• if spot (z + kl) is empty, then Cr+1 parks on spots [z + kl, z + k(l + 1)− 1].

• if spot (z + kl) is non-empty, then Cr+1 drives forward to park in the first open block ahead.

By the first observation we made earlier, the last car (say Cj) parked before the open spot

parks on some interval [k(s0 − 1) + z, ks0 + z − 1]. Clearly, this cannot be the last spot on

the street otherwise this contradicts (5.2). Thus, there is some open spot that is unoccupied

in [z + kl, z + nk − 1]. Indeed, there are at least k consecutive unoccupied spots on this

portion of the street by observation 2. Hence, Cr+1 parks in this case.

This exhausts all possible cases for Cr+1. Thus, by induction, all cars can park and c ∈ PS(~y; z).

Conversely, suppose for a contradiction that there is a parking sequence c ∈ PSinv(~y; z)

not satisfying (5.4). Then, there is some j ∈ [n] such that cj = z + sk + t for some s ∈

{0, 1, ...n − 1} and 1 ≤ t < k. Consider the following rearrangement of c given by: c′ =

(cj, c1, c2, ..., cj−1, cj+1, ..., cn). By our assumption, c′ ∈ PS(~y; z). We attempt to park using this

preference. First, C1 parks on [z + sk+ t, z + (s+ 1)k+ t− 1]. However, between the trailer and

C1, there is now a continuous block of (z+ sk+ t)− z = sk+ t spots, which is clearly nonempty

and not a multiple of k. Thus, no matter what preferences the remaining cars have, it is impossible

to park all cars on this street. This yields a contradiction to our assumption and we are done.
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Recall that a ~u-parking function of length n is a sequence (x1, x2, ..., xn) satisfying 1 ≤ x(i) ≤

ui. We can use the results of vector parking functions to enumerate the number of sequences as

described in Theorem 9.

Corollary 6. Let (~y; z) = (k, k, ..., k; z). Then,

#PSinv(~y; z) = z(n+ z)n−1.

Proof. By Theorem 9, any permutation-invariant parking sequence is of the form (5.4). Thus, for

any b = (b1, ..., bn) ∈ PSinv(~y; z) we define the map f : PSinv(~y; z) → PFn(~u) by letting f(b) =

b′, where b′ is the vector parking function associated to the vector ~u = (z, z + 1, ..., z + n − 1)

with entries given by

b′i =


bi, if 1 ≤ bi ≤ z

z + s, if bi = z + sk.

f is clearly a bijection since the map can be easily inverted. By [19, Corollary 5.5], the number of

~u-parking functions is z(z + n)n−1.

REMARK. Note that Theorem 9 and Corollary 6 are also valid for k = 1, in which case

PSinv(1, . . . , 1; z) = PS(1, . . . , 1; z) are exactly ~u-parking functions associated to ~u = (z, z +

1, . . . , z + n− 1).

5.2.4 Length vector ~y = (a, ..., a, b, ..., b) where a < b

Let n ≥ 2 and z, a, b, r be positive integers with a < b and 1 ≤ r < n. In this section fix

~y = (a, a, ..., a︸ ︷︷ ︸
r

, b, ..., b︸ ︷︷ ︸
n−r

) = (ar, bn−r), i.e. the first r cars are of size a and the remaining n− r cars

are of size b. Next we prove a couple of Lemmas that characterize the set of permutation-invariant

parking sequences for (~y; z). In the following, we will refer to any car of size a (respectively, size

b) as an A-car (respectively, B-car).

Lemma 3. Assume c ∈ PSinv(~y; z). Then in the final parking configuration of c, all A-cars park

in [z, z + ra− 1].
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Proof. Suppose not. Then, there is some c ∈ PSinv(~y; z) with at least one A-car not parked in

[z, z+ ra− 1] in its final parking configuration F . In F , between the trailer T and all A-cars there

are blocks L1, . . . , Lm of consecutive spots occupied by B-cars. Assume the block Li consists of

lib spots, where l1 + l2 + · · ·+ lm = n− r. Let Cj be the last A-car in the configuration F . Then

Cj occupies some spots in [z+ra, z+ra+(n−r)b−1], and no other A-car has checked the spots

Cj occupies in the parking process. In addition, let Ck be the first B-car in F . Then j ≤ r < k

and Ck parks before Cj in F . Two possible cases arise:

1. Assume in F there are some other A-cars parked between Ck and Cj . Consider the re-

arrangement c′ = (c1, ..., cj−1, ck, cj+1, ..., ck−1, cj, ck+1, ..., cn) obtained by exchanging the

j-th and k-th terms in c. Let the cars park according to the preference c′. It is easy to see

that all A-cars occupy the same spots as in F except that Cj now parks on a of the b spots

originally occupied by car Ck in F , leaving (b−a) of these spots unused. Hence after all the

A-cars are parked, the first block of consecutive open spots has size l1b − a, which is not a

multiple of b. Hence it is impossible for the remaining B-cars to park. Thus c′ 6∈ PS(~y; z).

2. There is no A-car parked between Ck and Cj in F . Then F is of the form

A · · ·AB · · ·BAB · · ·B, where there are r − 1 A-cars before the first B-car Ck, and cj =

z − 1 + (r − 1)a + l1b. Let c′′ be the following rearrangement of c: the first r entries of c′′

are c1, . . . , cj−1, ck, cj+1, . . . , cr, obtained from the first entries of c by replacing cj with ck;

the preferences for B-cars are cj, cr+1, . . . , ck−1, ck+1, . . . , cn. Let the cars park according to

the preference c′′. Then the A-cars will occupy the spots [z, z + ra− 1], and the first B-car

occupies spots [cj, cj+b−1]. Now there are cj−(z−1+ra) = l1b−a spots between the last

A-car and the first B-car; these spots cannot be filled by other B-cars. Hence c′′ 6∈ PS(~y; z).

In both cases we have a permutation of c that is not in PS(~y; z), contradicting the assumption

that c ∈ PSinv(~y; z).

Lemma 4. If (c1, c2, ..., cn) ∈ PSinv(~y; z), then ci ≤ z + (r − 1)a for each 1 ≤ i ≤ n.
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Proof. Suppose not. Take any permutation of c starting with max{ci : i ∈ [n]} and we contradict

the conclusion of Lemma 3.

Lemma 5. For c ∈ PSinv(~y; z), let c(1) ≤ c(2) ≤ · · · ≤ c(n) be the order statistics of c. Then,

c(i) ≤ z for each 1 ≤ i ≤ n − r + 1 and c(n−r+j) ∈ {1, ...z, z + a, z + 2a, ..., z + (j − 1)a} for

each 2 ≤ j ≤ r.

Proof. By Lemmas 3 and 4, if c ∈ PSinv(~y; z), then any r-term subsequence of c, say (ci1 , ci2 , ..., cir)

parks all r A-cars in [z, z + ra− 1] and hence ci ≤ z + (r − 1)a for all i = 1, ..., n. Furthermore,

if we consider the last r terms of the order statistics of c, this means (c(n−r+1), c(n−r+2), ..., c(n)) ∈

PSinv((a, a, ..., a); z). Thus, by Theorem 9, we obtain c(n−r+j) ∈ {1, ...z, z + a, z + 2a, ..., z +

(j − 1)a} for each 2 ≤ j ≤ r. Again, by the order statistics, c(i) ≤ c(n−r+1) ≤ z for each

1 ≤ i ≤ n− r.

Combining Lemmas 3, 4 and 5, we prove the following result.

Theorem 10. Let n ≥ 2 and z, a, b, r be positive integers with a < b and 1 ≤ r < n. Assume

~y = (ar, bn−r). Let PFn(~u) be the set of ~u-parking functions of length n where ~u = (z, z, ..., z︸ ︷︷ ︸
n−r+1

, z +

1, z + 2, ..., z + r − 1). Then, there is a bijection between the sets PSinv(~y; z) and PFn(~u).

Proof. First, we claim that any c satisfying the inequalities in Lemma 5 is in PSinv(~y; z). To see

this, consider first the A-cars with preferences (c1, . . . , cr). we have ci ∈ {1, 2, ..., z, z + a, z +

2a, ..., z + (r − 1)a} for all 1 ≤ i ≤ r, and the order statistics of these r terms are no more than

(z, z + a, · · · , z + (r − 1)a) (coordinate-wise). By Theorem 9, (c1, . . . , cr) is a parking sequence

for (ar; z). Hence all A-cars must park on [z, z + ra − 1]. Next, consider the B-cars. Since

ci ≤ z + (r − 1)a and all A-cars are parked without any unoccupied spots on [z, z + ra− 1], then

all B-cars park in increasing order after the A-cars. In other words, the final parking configuration

is T,C ′1, ..., C
′
r, Cr+1, ..., Cn where C ′1, ..., C

′
r is some rearrangement of the A-cars. This proves the

claim.

Now, by the above claim and Lemma 5, we have shown that PSinv(~y; z) is exactly the set of

all sequences c whose order statistics satisfy c(i) ≤ z for each 1 ≤ i ≤ n − r + 1 and c(n−r+j) ∈
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{1, ...z, z+a, z+2a, ..., z+(j−1)a} for each 2 ≤ j ≤ r. Let ~u = (u1, u2, . . . , un) = (z, z, ..., z, z+

1, z + 2, ..., z + r − 1). Consider the map γa : PSinv(~y; z)→ PFn(~u) defined as follows.

γa : (c1, ..., cn) 7→ (c′1, ..., c
′
n) = c′

where for all 1 ≤ j ≤ n

c′j =


cj, if cj ≤ z

z + s, if cj = z + sa.

The map γa is well-defined since the sequence c′ has order statistics satisfying 1 ≤ c′(i) ≤ ui for

each i = 1, 2, ..., n. Thus c′ ∈ PFn(~u). Clearly the map γa is invertible, hence γa is a bijection.

Corollary 7. Let ~y and ~u be as in Theorem 10. Then,

#PSinv(~y; z) = #PFn(~u)

=
r−1∑
j=0

(
n

j

)
(r − j) rj−1zn−j.

In particular, when r = 1, #PSinv(a, b, b, ..., b; z) = zn.

Proof. The result follows from Theorem 10 and [[35], Theorem 3].

5.2.5 Length vector ~y = (a, 1, 1, . . . , 1) where a > 1

A natural question that follows the previous subsection is the case that ~y = (ar, bn−r) with

a > b. Unlike the preceding case, the number of sequences in PSinv(~y; z) depends on the value of

a and b. Table 5.1 shows the initial values for PSinv(~y; z) where z = b = 1 and a = 2, 3.

A quick search in the On-Line Encyclopedia of Integer Sequences (OEIS) reveals that both

these sequences do not seem to correspond to any known sequences. While we do not have a

solution for the general case, in the following we present a small result for the special case where

there is one A-car and n− 1 cars each of size b = 1.
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Some Initial Values
Length ~y (2, 2) (2, 2, 1) (2, 2, 1, 1) (2, 2, 1, 1, 1)

a = 2:
#PSinv(~y; 1) 3 7 31 81

Length ~y (3, 3) (3, 3, 1) (3, 3, 1, 1) (3, 3, 1, 1, 1)
a = 3:

#PSinv(~y; 1) 3 7 13 51

Table 5.1: #PSinv((a, a, 1, ..., 1); z) where a > 1.

Proposition 4. Suppose z, a ∈ Z+ with a > 1. Let PFn(~u) be the set of ~u-parking functions, where

~u = (z, z + 1, ..., z + n− 1). Then

PSinv((a, 1
n−1); z) = PFn(~u).

Proof. Let c = (c1, c2, ..., cn) ∈ PSinv(~y; z) and c(1) ≤ c(2) ≤ · · · ≤ c(n) be its order statistics. If

c(i) > z + i − 1, consider the preference sequence c′ = (c(n), c(n−1), . . . , , c(1)). Under c′ the first

n− i+ 1 cars all prefer spots in [z + i, z + a+ n− 2]. There are only a+ n− i− 1 spots in this

interval yet the total length of the first n− i + 1 cars is a + n− i. It is impossible to park. Hence

we must have c(i) ≤ z + i− 1 for all i and c ∈ PFn(~u).

Conversely, given x ∈ PFn(~u), we know PFn(~u) is permutation-invariant, thus we only needs

to show that x ∈ PS(~y; z) where ~y = (a, 1n−1). First, x1 ≤ z + n − 1 hence C1 parks. We claim

that all the remaining cars can park with the preference sequence x. Assume not, then after all the

cars have attempted parking, there are some cars that fail to park and there are empty spots left

unoccupied. Let k be such an empty spot. Note that all the remaining cars are of length 1. A car

Ci cannot park if and only if all the spots from xi to the end are occupied when Ci enters. Since

xi ≤ z+ n− 1, it follows that z ≤ k ≤ z+ n− 1. From x ∈ PFn(~u) and condition (2.6), we have

#{j : xj ≤ k} ≥ k − (z − 1).

It means that there are at least k − (z − 1) cars that attempted to park in the spots [z, k], which
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has exactly k − (z − 1) spots. Therefore the spot k must be checked and cannot be left empty, a

contradiction.

Again using the counting formulas for ~u-parking functions, we have

Corollary 8. #PSinv(y; z) = z(n+ z)n−1.

5.3 Invariance with respect to the set of car sizes

5.3.1 Strong parking sequences

In this section, we study another type of invariance. Given a fixed set of cars of various lengths

and a one-way street (whose length is equal to the sum of the car lengths and a trailer of length

z− 1), we consider all parking sequences for which all n cars can park on the street irrespective of

the order in which they enter the street. We will refer to this as strong invariance. Denote by Sn

the set of all permutations on n letters. For a vector ~y and σ in Sn, let σ(~y) = (yσ(1), ... , yσ(n)).

Definition 17. Let c = (c1, ..., cn) and ~y = (y1, ..., yn). Then, c is a strong parking sequence for

(~y; z) if and only if

c ∈
⋂
σ∈Sn

PS(σ(~y); z).

We will denote the set of all strong parking sequences for (y1, ..., yn; z) by SPS{y1, ..., yn; z} or

SPS(~y; z). Note that SPS{y1, y2, ..., yn; z} does not depend on the order of the yi’s.

Example 9. Consider the case n = 2. Let ~y = (a, b) with a < b. It is easy to see that

PS(a, b; z) = {(c1, c2) : 1 ≤ c1 ≤ z, 1 ≤ c2 ≤ z + a} ∪ {(c1, c2) : c1 = z + b, 1 ≤ c2 ≤ z},

PS(b, a; z) = {(c1, c2) : 1 ≤ c1 ≤ z, 1 ≤ c2 ≤ z + b} ∪ {(c1, c2) : c1 = z + a, 1 ≤ c2 ≤ z}.

This gives

SPS{a, b; z} = PS(a, b; z) ∩ PS(b, a; z) = {(c1, c2) : 1 ≤ c1 ≤ z, 1 ≤ c2 ≤ z + a}.
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Note that SPS{a, b; z} is exactly the set of all preferences c ∈ PS(~y; z) that yields the final parking

configuration T,C1, C2.

By Ehrenborg and Happ’s result (2.7), it is clear that if ~y = (s, s, ..., s), then

#SPS{~y; z} = #PS(~y; z) = z ·
n−1∏
i=1

(z + is+ n− i).

In the following we consider the case that ~y does not have identical entries.

Definition 18. We say that c ∈ PS(~y; z) parks ~y in the standard order if the final parking configu-

ration of c is given by T,C1, C2, ..., Cn.

For example, in the case where (~y; z) = (2, 3, 1, 2, 1, 4; 3), the standard order is shown in

Figure 5.1.

T C1 C2 C3 C4 C5 C6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.1: Standard order for ~y = (2, 3, 1, 2, 1, 4) and z = 3.

The following lemma is easily proved by induction.

Lemma 6. Let c = (c1, c2, ..., cn) ∈ PS(~y; z). Then, c parks ~y in the standard order if and only if

ck ≤ z + y1 + · · ·+ yk−1 for all k ∈ [n].

The following result characterizes strong invariance for any set of n ≥ 2 cars with a given

multi-set of lengths {y1, y2, ..., yn} and a trailer T of length z − 1.

Theorem 11. Let n ≥ 2. Assume that ~y = (y1, ..., yn) is not a constant sequence. Then c is a

strong parking sequence for {y1, y2, ..., yn; z} if and only if c parks ~yinc = (y(1), y(2), ..., y(n)) in

standard order.
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Proof. Suppose c parks ~yinc in the standard order. We need to check that c is a preference sequence

for (σ(~yinc); z) for every σ ∈ Sn. This follows from Lemma 6 and the fact that y(1) + y(2) + · · ·+

y(i) ≤ yσ(1) + yσ(2) + · · ·+ yσ(i) for any σ ∈ Sn and i ∈ [n].

Conversely, let c be a parking sequence for (~yinc; z) that parks ~yinc in a final configuration F

which is not the standard order. We will construct a permutation σ such that for a sequence of cars

with length vector σ(~yinc), c 6∈ PS(σ(~yinc; z).

In the following, let Ci represent a car of length y(i), as shown in the table below. Hence

F is the final parking configuration of c when we park the cars C1, . . . , Cn. In c, let k1 be the

minimal index k such that ck > z + y(1) + y(2) + · · ·+ y(k−1). Then in F the trailer is followed by

C1, . . . , Ck1−1 with no gap, and there is a gap between Ck1−1 and Ck1 . Let Ct be the last car that

parks right before car Ck1 in F . Clearly t > k1. There are two possibilities: either y(k1) < y(t) or

y(k1) = y(t).

Car C1 C2 · · · Ck1 · · · Ct · · · Cn−1 Cn

Car Length y(1) y(2) · · · y(k1) · · · y(t) · · · y(n−1) y(n)

1. Assume y(k1) < y(t). Let σ1 be the transposition (k1 ←→ t). Let Di represent a car of length

yσ1(i), as shown in the table below.

σ1

Car D1 D2 · · · Dk1 · · · Dt · · · Dn−1 Dn

Car Length y(1) y(2) · · · y(t) · · · y(k1) · · · y(n−1) y(n)

We park carsD1, ..., Dn using the preference sequence c. If c ∈ PS(σ1(~y); z), thenD1, ..., Dt

can be parked and

(a) D1, D2, ..., Dk1−1 have the same lengths and preferences as C1, C2, ..., Ck1−1 and park

in order right after the trailer.

(b) Dk1 is longer than Ck1 and occupies spots in [ck1 , ck1 + y(t) − 1]

(c) Any car Di for i ∈ {k1 + 1, ..., t − 1} has the same preference as Ci so it parks either

before Dk1 and in the same spots as Ci in F , or parks after Dk1 .
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(d) Dt takes the first yk1 spots of the ones occupied by Ct in F .

After parking D1, ..., Dt, there are y(t) − y(k1) unused spots between cars Dt and Dk1 . Any

car trying to park after Dt has length ≥ y(t) > y(t) − y(k1). So the spots between Dt and Dk1

cannot be filled and hence c 6∈ PS(σ1(~yinc), z).

2. Assume y(k1) = y(t). Then, since ~yinc is not a constant sequence, either y(1) < y(k1) or

y(t) < y(n).

2a. Assume y(t) < y(n). Let σ2 be the transposition (t ←→ n) shown below and Ei be a

car of length σ2(i).

σ2

Car E1 E2 · · · Ek1 · · · Et · · · En−1 En

Car Length y(1) y(2) · · · y(k1) · · · y(n) · · · y(n−1) y(t)

We park the cars E1, . . . , En using the preference sequence c. The cars E1, ..., Et−1

take the same spots as C1, . . . , Ct−1 in F . Next, car Et tries to park in the spots Ct

occupies, at the interval [ck1−y(t), ck1−1]. But Et has length y(n) which is greater than

y(t) and thus cannot fit. Hence, c 6∈ PS(σ2(~y); z).

2b. If y(k1) = ... = y(t) = ... = y(n) = b, then we must have k1 > 1 and y(1) < y(k1). Let σ3

be the transposition (1←→ k1) and Fi be a car of length σ3(i).

σ3

Car F1 F2 · · · Fk1 · · · Ft · · · Fn−1 Fn

Car Length y(k1) y(2) · · · y(1) · · · y(t) · · · y(n−1) y(n)

In the final configuration F , at the time car Ck1 is parked, the lengths of all the

blocks of consecutive empty spots left are multiples of b. Now for the cars F1, ..., Fn,

the cars F1, . . . , Fk1−1 will take the spaces right after the trailer. The total length of

F1, . . . , Fk1−1 is no more than the total length of C1, . . . , Ck1−1, and Ct, since y(1) +

y(2) + · · ·+ y(k1−1) + y(t) > y(2) + · · ·+ y(k1−1) + y(k1). So car Fk1 will park at the spots

starting at ck, just as Ck1 . But, as y(1) < y(k1), after Fk1 is parked, the available space

after car Fk1 is nonempty and not a multiple of b, while all the remaining cars are of

length b. Hence, it is not possible to park all of them.
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Combining Lemma 6 and Theorem 11, we obtain the following counting formula.

Corollary 9. Let z ∈ Z+ and ~y = (y1, y2, . . . , yn) ∈ Zn+. If ~y 6= (sn) for any integer s, then

#SPS{y1, y2, ..., yn; z} = z ·
n−1∏
i=1

(z + y(1) + · · ·+ y(i)).

where y(1) ≤ y(2) ≤ · · · ≤ y(n) is the order statistics of ~y.

5.3.2 Parking on a street with fixed length

Suppose instead of fixing the set of cars, we fix the total street length. Let Cn = {~y =

(n1, n2, ..., nk) ∈ Zk+ : n1 + n2 + · · · + nk = n} i.e. Cn is the set of all compositions of n

into k parts. We consider all possible sequences that can park any set of k cars on the street of

fixed length z + n− 1. More formally, we have the following definition.

Definition 19. Let n, z ∈ Z+ and ~y = (n1, n2, ..., nk) be a composition of n into k parts. Then,

c = (c1, ..., ck) is a k-strong parking sequence for n if and only if

c ∈
⋂
~y∈Cn

SPS{n1, ..., nk; z}.

We will denote the set of all k-strong parking sequences for n by SPSk(n; z) (or SPSk(n) when

z = 1). For example, when n = 3, we have the following sets:

SPS1(n) = {(1)}

SPS2(n) = {(1, 1), (1, 2)}

SPS3(n) = {(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1), (1, 3, 2),

(2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 1), (2, 3, 1), (3, 1, 1), (3, 1, 2), (3, 2, 1)}

We remark that in general, for any n ∈ N, SPS1(n) = {(1)} and SPSn(n) = PFn where PFn is the
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set of all parking functions of length n. The following proposition helps characterize SPSk(n; z)

for any 1 ≤ k ≤ n and z ∈ Z+.

Proposition 5. Suppose n, z ∈ Z+ and let ~y0 = (1k−1, n − k + 1) be the composition of n into k

parts with n1 = n2 = · · · = nk−1 = 1 and nk = n− k + 1. Then,

SPSk(n; z) = SPS{
k−1︷ ︸︸ ︷

1, 1, ..., 1, n− k + 1; z} =
⋂
σ∈Sn

PS(σ(~y0); z). (5.5)

In other words, SPSk(n; z) is the set of all sequences in PS(~y0; z) that yield the standard order.

Proof. Follows from Lemma 6 and the fact that for any ~y = (n1, ..., nk) with n1 + · · · + nk = n,

we have for each i ∈ [k − 1],

i︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = i ≤ n1 + · · ·+ ni.

Corollary 10.

#SPSk(n; z) =


z(k), if k 6= n

z(n+ z)n−1, if k = n.

where z(k) = z(z + 1) · · · (z + n− 1). In particular, when z = 1,

#SPSk(n) =


k!, if k 6= n

(n+ 1)n−1, if k = n.

Proof. Follows from Proposition 5 and Corollary 9.
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6. CONCLUSION AND FINAL REMARKS

This dissertation gives a new combinatorial interpretation to Gončarov polynomials. It also

studies some special classes of parking sequences that opens many new avenues for research. In

this section, we expand on several of these possibilities.

In chapters 3 and 4, we present the combinatorial interpretation of an arbitrary sequence of

Gončarov polynomials associated with a polynomial sequence of binomial type. There are many

other combinatorial problems that provide a formal framework of coalgebras, bialgebras, or Hopf

algebras [14]. In those problems the counting sequences satisfy an identity that is analogous to

the binomial-type identity (2.1), with the binomial coefficients
(
n
i

)
replaced by some other section

coefficients. For example, the theory of binomial enumeration proposed by Mullin and Rota [24]

was generalized to an abstract context and applied to dissecting schemes by Henle [13]. It would

be an interesting project to investigate the role of generalized Gončarov polynomials in these other

dissecting schemes and discrete structures. As suggested by Henle, this research may lead to

connections to rook polynomials, order invariants of posets, Tutte invariants of combinatorial ge-

ometries, cycle indices and symmetric functions, and many others.

We discussed increasing and invariant parking sequences in chapter 5. We looked at increasing

parking sequences and their representations via lattice paths. We have also studied permutation-

invariant parking sequences and length-invariant parking sequences. Specifically, we characterized

all permutation-invariant parking sequences for some specific length vectors. While it may not be

easy to find a general formula for all cases, a natural direction to go would be to study other special

cases of car lengths. Furthermore, in the study of parking functions we encounter quite a number of

other mathematical structures including trees, non-crossing partitions, hyperplane arrangements,

polytopes etc. It will be interesting to find any connections between notions of invariance in park-

ing sequences and other combinatorial structures. Recently in [2], parking sequences of [8] was

extended to the case in which one or more trailers are placed anywhere on the street alongside n

cars with length vector ~y = (1, 1, ..., 1). A natural generalization is to consider a similar scenario
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where ~y is any length vector with yi ≥ 1 for each i ∈ [n].

One other class of parking functions that has been studied are the so-called prime parking

functions. These are parking functions that satisfy only the strict part of the inequality (2.5). It is

known that there are (n−1)n−1 many prime parking functions. In section 5.1, we gave an analog for

(2.5) in Lemma 2. Although it is necessary, the inequality (5.1) is not sufficient to characterize all

parking functions. However, if we define prime parking sequences as all sequences that satisfy the

strict inequality in (2.5), we believe it would be a worthwhile endeavor to study these sequences.

Finally, there are several statistics that have been considered in the set of parking functions

e.g. the “lucky drivers” statistic (the number of drivers who park in their preferred spot), the sum

statistic, the reversed sum or total displacement statistic, the number of distinct driver preferences

and the number of spots the most unlucky driver had to check before parking. Studying any of

these statistics on parking sequences may yield interesting results.
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