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ABSTRACT

Markov Decision Process (MDP) is a kernel model for solving sequential decision making

problems, when the system behaviour is stochastic. Bayesian Markov Decision Process (BMDP)

can be applied in the special case in which the system model is uncertain. Both MDP and BMDP

must repeatedly conduct exhaustive search for a non-stationary policy, and thus entail exponential

computational complexity. This has hindered their practical application to date.

In this thesis, we develop several computation techniques to overcome the obstacle of the expo-

nential runtime complexity as well as the exponential memory requirement for both the MDP and

BMDP problems. To reduce the runtime complexity, we investigate acceleration techniques, using

the Graphic Processing Unit (GPU) platform, which allows massive parallelism. Our GPU-based

acceleration techniques are applied with two different MDP approaches: the Optimal Bayesian

Robust (OBR) policy and the Forward Search Sparse Sampling (FSSS) method. However, since

the GPU utilizes a Single Instruction Multiple Data (SMID) computation paradigm and (B)MDP

has an inherent issue of “curse of dimensionality”, the GPU-based solution has an exponential

memory complexity issue. To overcome the memory storage impediment, we first exploit the fact

that in many practical problems the system model is likely to be sparse. Exploiting this, we de-

velop a novel Duplex Sparse Storage (DSS) scheme in this thesis. Another approach we develop

to reduce the memory is a highly memory-efficient representation for the (B)MDP system model

using Binary Decision Diagram (BDD) based sampling. For both DSS and BDD-based sampling

approaches, we develop corresponding (B)MDP solvers on a heterogeneous CPU-GPU platform.

To further improve the efficiency of BMDP, we develop a new Scaled Population (SP) based

arithmetic computation approach that achieves considerable improvements over existing Stochastic

Computing (SC) techniques. Note that the SP arithmetic approach can be used in applications

other than BMDP as well. SP arithmetic introduces scaling operations that significantly reduce the

numerical errors as compared to SC. Besides, the SP arithmetic erases the inherent serialization

associated with stochastic computing, thereby significantly improving the computational delays.
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Our experiments show that the GPU-based parallel computation techniques reduce the run-

time of (BMDP) by two orders of magnitude over sequential implementations. The DSS and

BDD-based sampling approaches reduce the memory utilization by 4.1× and two orders of mag-

nitude compared with the use of floating point numbers, respectively. The SP arithmetic achieves

a 31.89% improvement over SC in terms of the accuracy for BMDP, and also improves the ac-

curacy and the utilization of hardware resources for other applications such as single multiplica-

tion/addition, matrix inner production and MNIST image classification.
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NOMENCLATURE

MDP Markov Decision Process

BMDP Bayesian Markov Decision Process

t Time step in the MDP/BMDP system

n Number of states

m Number of actions

zt The state of the MDP/BMDP system at time t

dt Action applied on the MDP/BMDP system at t

Z = {z1, d1, z2, d2..., dt−1, zt} State transition sequence

S = {s1, s2, ..., sn} The state set of the MDP/BMDP system

A = {a1, a2, ..., am} The action set of the MDP/BMDP system

P State transition probability matrix (TPM)

P Expected state transition probability matrix

P ′ Posterior expected state transition probability matrix

rak(si, sj) Reward function

gij(a) Immediate reward

λ Discount factor

π : S → A Policy of the MDP/BMDP system

Vsi Value function for state si

J Long-term accumulated reward

T Time horizon of the system

DSS Duplex sparse storage

SP Scaled population
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GRN Gene regulatory network

OBR Optimal bayesian robust

FSSS Forward search sparse sampling
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1. INTRODUCTION AND MOTIVATION

The Markov Decision Process (MDP) has been applied to many fundamental optimization

problems, such as gene regulatory network control [1], robotics [2, 3], inventory management [4],

finance [5, 6], etc. The theory of MDP is a natural framework for constructing optimal intervention

policies for a system in which the state transition behaviour of the system is stochastic. Due to the

dynamic characteristics of the system and the intervention of the decision maker, the state of the

system changes through a sequence of t state transitions. Systems that can be described as an MDP

usually obey the Markov property, which indicates that the probability distribution of the future

states of the system only depends on the present state and not on the state transition history. The

MDP is widely used to model the sequential decision making process in a dynamic environment.

Although the conventional MDP is able to model the decision making process in a dynamic

setting, it requires perfect knowledge of the system, which is rarely available due to the inherent

complexity and variability of the processes that govern the underlying system behaviour. The

system model is usually represented by a state transition probability matrix (TPM). In order to

handle the uncertainty of the system, a class of TPMs with a prior probability over this class is

assumed, in which the prior probability indicates the confidence level of how likely each TPM

might represent the underlying true TPM. As more observations are made, the prior probability

will be updated to the posterior probability by applying Bayes’ rule [7]. The MDP with such

an uncertainty framework is called a Bayesian MDP (BMDP), which implements model-based

reinforcement learning.

In the BMDP problem, an expected TPM derived from the probability over the class of TPMs

is used to represent the system model. To search for the optimal non-stationary policy, dynamic

programming is performed on the expected TPM across the uncertainty class. Throughout the

process of policy search, Bayes’ rule is applied to update the prior probability distribution of the

TPM class and generate the posterior distribution. Since the BMDP framework is able to deal

with the uncertainty of a system, it has a wide range of applications such as the Gene Regulatory
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Network control [1], robot navigation [8], dynamic pricing [9], etc.

Although the BMDP model is effective to overcome the difficulty arising from partial knowl-

edge of the system model, its computational complexity is exponential. The BMDP framework

also suffers from the “curse of dimensionality” [10] inherited from the MDP framework and dy-

namic programming. As a result, when the dimension of the BMDP problem increases, the CPU

runtime and memory required to compute a solution increases exponentially as a function of the

size of state space, the size of action space and the depth of horizon. This is because the prior

distribution of the TPMs is updated when there is a new observation, hence the corresponding ex-

pected TPM also changes. Therefore, we need to track the expected TPM throughout the entire

dynamic programming process. Also, in many real-world applications, the system environment

may change over time and therefore transition probabilities are dynamic. When the problem size

is large, the TPMs of the BMDP system would demand a large memory space, which is not always

available. For example, one application of BMDP is to model the autonomous systems in the real

world, where the computational platform is usually a microcontroller with limited memory. Many

autonomous navigation systems contain millions of states [11] and an autonomous planning sys-

tem can have more than 22 million states [12]. It is very difficult, if not impossible, for typical

microcontrollers to handle such large BMDP problems.

1.1 Parallel Computing for MDP/BMDP

Hardware acceleration techniques have been studied to improve the efficiency of BMDP com-

puting. One of our approaches is to use parallel computing based on Graphic Processing Units

(GPUs). The GPU is a high performance computing platform which employs massive multi-

threading, fast hardware-based context switching as well as high memory bandwidth. A GPU

has thousands of small processor cores, and when properly utilized, it can achieve impressive per-

formance gains for several applications compared to traditional multi-core CPUs. Compared to

parallel computing on a CPU, the speedup from GPU is often much greater, since a GPU has thou-

sands of simple processor cores while a CPU typically contains only a few cores. The GPU-based

approach is often much more cost-effective than parallel computing on a cloud or server farm.
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1.2 Memory Use Reduction Techniques for MDP/BMDP

Although a GPU-based implementation can greatly accelerate the BMDP computation, it faces

a key bottleneck on its scalability. That is, a single GPU has limited memory storage and operates

in a single instruction multiple data (SIMD) manner. Also in a modern GPU platform, the commu-

nication cost of transferring data between the GPU and the main memory is non-negligible. Hence

memory utilization often results in a performance bottleneck for GPU-based parallel computing.

Alleviating the memory bottleneck for large BMDP problems is a critical problem, and is one of

the key goals in this thesis.

In order to solve the memory problem, we develop three approaches. First, we explore the ap-

plicability of applying Forward Search Sparse Sampling (FSSS) [13] on the GPU platform. FSSS

is a heuristic for solving the MDP problem. Instead of using a value to evaluate the state-action

pair as the dynamic programming algorithms in MDP/BMDP does, FSSS calculates the upper and

lower bound values for each state-action pair. Also, FSSS samples only critical transitions, instead

of examining every state-action pair in the dynamic programming process, which becomes the key

reason for the speedup of FSSS. By implementing FSSS on a GPU, we are able to alleviate the

memory problem, while obtaining significant speedup.

For the second approach, we exploit the observation that the expected TPMs tend to be sparse

in many real life problems [14, 3]. This sparsity of the TPM motivates us to investigate sparse data

storage techniques to address the memory issue. Since both the prior and posterior distributions of

the TPM in BMDP are known, we can exploit the sparsity of the TPM. The Compressed Sparse

Row (CSR) format is an efficient approach to store a sparse matrix [15]. Compared to full matrix

storage, in which every single entry is stored in memory regardless of its value, CSR only stores

the non-zero entries of the matrix. The CSR format has some overhead to store the row/column

locations of the non-zero entries. We propose the Duplex Sparse Storage (DSS) scheme which

improves over CSR in both overhead and accuracy.

We also propose a compact model which represents the transition probabilities by sampling a

set of Boolean functions instead of using floating point numbers to represent the probability. If
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there are n states, a probability matrix in this model uses a constant number of Boolean functions,

each of which has O(log n) inputs, as opposed to O(n2) floating numbers in the conventional

representation. In our approach, the Boolean functions are stored as Binary Decision Diagrams

(BDDs), which facilitate sharing with in a Boolean function as well as among multiple Boolean

functions. We also developed a technique for performing Bayesian update on the BDD sampling-

based TPM representation.

1.3 MDP/BMDP Computation Techniques on New Arithmetic

Another approach proposed in this thesis to improve the efficiency of BMDP is based on ap-

proximation computing. Approximate computing is a non-conventional approach with an emphasis

on area and power efficiency, while sacrificing accuracy. For certain classes of applications which

has a tolerance to computational errors, approximate computing can achieve better area and power

characteristics compared with exact arithmetic. One popular technique for approximate computing

is stochastic computing (SC) [16]. SC is an arithmetic scheme for area-efficient implementation

of error-tolerant applications. Stochastic computing has received renewed interest due to, among

other reasons, the degrading reliability of recent VLSI fabrication processes, its purported decrease

in power, and its robustness to bit-flip errors. In stochastic computing, values are represented by

binary bit streams, and the arithmetic operations can be processed by simple logic circuits, such

as OR/AND gates for addition and multiplication, respectively. However, classical SC has its own

limitations. First, its accuracy depends heavily on the density and the randomness of the 1’s in

the binary bit-stream [17]. Second, since SC uses a population-based representation alone for all

numbers, it can only represent numbers in [0, 1]. The limitation can be problematic when overflow

occurs in the operations, especially in addition. The third limitation of SC is the runtime complex-

ity. Although the arithmetic operation units consist of only OR/AND logic gates, the supporting

units, e.g., the random number generator (RNG) and the shuffler, have a runtime complexity of

O(k), where k is the number of bits in the SC representation. These weaknesses limit the applica-

bility of SC.

In order to alleviate the above limitations of SC, we propose a new Scaled Population (SP)
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arithmetic based computing which achieves fast, approximate computing with a low area/power

overhead and improved accuracy. SP arithmetic uses some of the basic ideas of SC, but with

three key enhancements: a) the inherent serialization in SC is avoided; b) the errors of SC are

significantly reduced by providing a scaling (exponent) term in SP arithmetic; and c) the range of

numbers that can be represented by SP is much larger than what is possible in SC. The key design

goal of SP arithmetic is that each operation be computed using O(1) gate delays (as opposed to

clock cycles). Unlike SC, SP never allows any operation which requires a serial traversal of the

bits of the operand. The SP arithmetic achieves a dramatic speedup over SC on single addition and

multiplication operations, and it achieves better accuracy as well.

1.4 Goal and Contribution

In our research, we aim to develop both hardware acceleration techniques and model oriented

BMDP computing techniques such that the computation complexity and memory storage challenge

can be addressed. The novelty of this research lies in its emphasis on the interplay between hard-

ware platforms, and BMDP algorithms and scalable BMDP system model representation, which

have been largely neglected in the past. A variety of hardware-based approaches for efficiency im-

provement and memory reduction are investigated in this research. Note that our approaches can

also be applied to many other applications other than MDP/BMDP, which will be also discussed

in the dissertation.
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1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows:

In Chapter 2, we discuss the background of the classical and Bayesian MDP problems

In Chapter 3, we present the previous work of solving the MDP problems as well as improving

the efficiency.

This thesis has 3 parts, a) approaches to parallelize the MDP/BMDP, b) develop techniques to

reduce memory ultilization for MDP/BMDP, and c) approximate arithmetic to improve the effi-

ciency of the MDP/BMDP computation.

In Chapter 4, we present a parallel paradigm on a GPU platform to reduce the overcome the

runtime issue of the MDP/BMDP problem. We also discuss the parallelization on FSSS to further

improve the efficiency.

In Chapter 5, we present a Duplex Sparse Storage (DSS) representation to reduce the memory

utilization of the MDP/BMDP problem.

In Chapter 6, we present a BDD-based sampling representation to reduce the memory utiliza-

tion of the MDP/BMDP problem.

In Chapter 7, we analyze the upper error bound of the DSS and BDD-based representation

approaches.

In Chapter 8, we propose a scaled population arithmetic for efficient MDP/BMDP computation.

Finally, in Chapter 9, we conclude our work and discuss the possible future work.
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2. BACKGROUND

2.1 The Classical MDP Problem

The Markov Decision Process (MDP) is a framework for making a sequence of decisions over a

stochastic dynamic system. Due to the dynamic characteristics of the system and the intervention

of the decision maker, the state of the system changes through a sequence of t state transitions.

Formally, a sequence is denoted as Z = {z1, d1, z2, d2..., dt−1, zt}, where zt is the state of the

system at time t and dt is the action applied to the system at time t.

An MDP system [18] is described by the 5-tuple (S,A, P, r, λ), where S = {s1, s2, ..., sn}

describes the set of states. A = {a1, a2, ..., am} is a set of actions which can be applied to the

system. The system model in the MDP is usually represented by a state transition probability

matrix (TPM) P . Each entry of P is denoted as Pij(ak). Pij(ak) = Prob.(zt+1 = sj | zt =

si, dt = ak) describes the state transition probability of the system at time t, when the state of the

system at time t is si, the state of the system at time t+ 1 is sj , and the action applied to the system

at time t is ak. The reward function rak(si, sj) describes the reward that the system receives by

transitioning from state si to sj under action ak. The discount factor λ ∈ (0, 1] expresses the rate of

decrease of the importance between present rewards and future rewards. A rule representing which

action the agent selects at each possible state is defined as a mapping from past states observed to

the set of actions. Since the system is dynamic, after applying the action ak, the next state sj

obeys a certain probability distribution rather than being deterministically decided. A process is

Markovian if this distribution depends only on the last state of the observation sequence and the

action. A policy is called stationary if it does not change over time.

The fundamental MDP problem is to find a policy π : S → A to inform the decision maker

which action to take when the system is in a certain state, so that the cumulative reward of the
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system over horizon T , as defined in Eq. (2.1) is maximized.

T−1∑
t=1

(λtrdt(zt, zt+1)) (2.1)

Each state si is associated with a value function V(si), which defines the long term return and

defined as:

Vsi = max
ak∈A
{
∑
sj∈S

Pij(ak)(rak(si, sj) + λVsj)} (2.2)

Many approaches for solving an MDP problem are based on two dynamic programming algo-

rithms: value iteration [19] and policy iteration [20]. Value iteration begins with a value function

V 0
si

for each state si. At each iteration t, a new value function is generated by applying Eq. (2.2) to

the current value function, until Vsi converges. Policy iteration starts with an initial policy. At each

iteration, it evaluates the value function of the current policy, this process is referred to as policy

evaluation, and then a policy improvement step is performed, in which a new policy is generated as

a greedy policy with respect to the value of the current policy. Policy iteration is known to produce

a strictly monotonically improving sequence of policies.

2.2 The Bayesian MDP Problem

The classical MDP framework requires perfect knowledge of the system, particularly the TPM

P and the immediate reward r. In reality, the knowledge, especially of P , is usually not completely

available due to the complicated underlying dynamic characteristics of the system. Since only

partial prior knowledge of the TPM is known, it is assumed that there is a family of TPMs following

a certain distribution Ω(P ), which describes the degree of confidence we place on each TPM [21].

When a new observation is made in which the system transits from state si to sj under a certain

action a, the posterior probability distribution of the TPMs can be computed by following Bayes’

rule.
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In the special case where both the prior and posterior distributions belong to the same distri-

bution family, it can be assumed that the TPM family obeys the Dirichlet distribution. In order to

account for the uncertainty of the TPM in the classical MDP formulation, the state si of the MDP

is extended to a hyperstate (si,P), where P is the expected TPM over Ω(P ).

The policy of an MDP model with hyperstate (si,P) defines the action executed at a certain

state si, so that the long-term accumulated reward J∗(si,P) of the system starting from an initial

state with a prior expected TPM P is maximized. J∗(si,P) is defined in Eq. (2.3), where gij(a) is

the immediate reward obtained when the system transitions from state si to sj under action a, P is

the prior expected TPM, and P ′ is the posterior expected TPM.

J∗(si,P) = max
a∈A
{
∑
∀j∈S

P ij(a)[gij(a) + λJ∗(sj,P
′
)]} (2.3)

In Eq. (2.3), P ij(a) is the expected state transition probability from si to sj under action a. If the

TPM family follows the Dirichlet distribution with a parameter matrix α, P ij(a) is mathematically

defined as follows:

P ij(a) =
αij∑
∀m∈S αim

(2.4)

When a new state transition from si to sj is observed, the prior α is updated to the posterior α′ as

follows [22, 1]:

α′ = α + γ (2.5)

where γ is a matrix of zeros, except γij = 1. Then the corresponding P ′ matrix can be obtained

via Eq. (2.4) with the posterior α′.

A key issue of a sequential decision making problem is exploration, which determines how the

agent should choose actions while learning about the task. Another key issue is exploitation, in

which actions are selected so as to maximize expected reward with respect to the current value
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function estimate. In the BMDP, exploration and exploitation are naturally balanced in a coherent

mathematical framework[23]. Policies are expressed over the full information state (or belief),

including model uncertainty. In this framework, the optimal Bayesian policy will be to select

actions not only based on how much reward they give, but also based on how much information

they provide about the system model. In order to solve Eq. (2.3), an Optimal Bayesian Robust

(OBR) approach is proposed in by applying successive approximation [22]. In the OBR scheme,

J∗(si, α) is approximated recursively by Eq. (2.6), using K iterations with a set of predefined

J0(s,P).

Jk+1(si,P) = max
a∈A
{
∑
∀j∈S

P ij(a)[gij(a) + λJk(sj,P
′
)]} (2.6)

In [22], it is proved that Jk+1(si,P) will converge monotonically to the optimal solution J∗(si,P)

for a valid P under certain moderate conditions.
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3. PREVIOUS WORK

As discussed in Chapter 1, although the BMDP is a framework formulated to describe the un-

certainty of the system, and BMDP algorithms have been extensively studied, it still faces runtime

and memory challenges. There are many research efforts attempting to address these challenges.

In this chapter, we will give a general overview of these previous work. More detailed discussion

of the previous work corresponding to our approaches will be provided in later chapters.

3.1 Reinforcement Learning and MDP

Reinforcement learning is a class of learning problems in which an agent (or controller) inter-

acts with a dynamic, stochastic, and uncertain environment, with the goal of finding an optimal

action-selection policy, to maximize its rewards in long term. MDP is one of the key model for re-

inforcement learning. If the environment state is not always completely observable, then partially

observable Markov decision process (POMDP) [24] is usually applied.

As discussed in Chapter 2, in some cases, MDPs can be solved analytically, and in many cases

it can be solved iteratively by dynamic or linear programming [25]. However, in many real life

applications, these methods are not applicable, since either the state space is too large, or we don’t

have a prefect knowledge for the system model. In these cases, other techniques and algorithms

may be helpful. Sampling-based methods are widely used for solving MDPs. In many cases, an

explicit transition-probability model (TPM) is not available. In such cases, the goal would be to

find a reasonably good approximation for the policy, i.e., a policy leading to large enough value

function.

Generally speaking, reinforcement learning solutions for MDP problems can be categorized in

2 different ways [23].

• Model-based vs. Model-free Methods:

In model-based methods, reinforcement learning algorithms explicitly learn a system model

and use it to solve an MDP problem. In model-free methods, reinforcement learning al-

11



gorithms do not explicitly learn a system model and only use sample trajectories obtained

by direct interactions with the system. These methods include popular algorithms such as

Q-learning [26], SARSA [27], etc.

• Value Function vs. Policy Search Methods [23]:

In value function methods, we first find the optimal value function, and then compute the

optimal policy from the value function. Some examples include value iteration [25], policy

iteration [25], SARSA [27] etc.

Another approach for solving an MDP is to directly search in the space of policies. Meta-

heuristic search [28] or local greedy methods such as policy gradient algorithms are usually

used, since the number of policies is exponential with respect to the size of the state space.

The policy is taken to be an arbitrary differentiable function of a parameter vector in these

algorithms, and the search in the policy space is directed by the gradient of a performance

function with respect to the policy parameters [28].

There is a third class which combines the previous two. It uses policy gradient algorithm to

search in the policy space, while estimating a value function. These algorithms are called

actor-critic [29]. Actor-critic methods are based on the simultaneous online estimation of

the actor and the critic. The actor corresponds to conventional action-selection policy and

the critic corresponds to value function. These problems are separable, but are solved simul-

taneously to find an optimal policy.

Bayesian reinforcement learning leverages methods from Bayesian inference to incorporate

information into the learning process. It assumes the prior information about the problem in a

probabilistic distribution for the system is provided, and that new information can be incorporated

using standard rules of Bayesian inference. Usually, the information can be encoded by a para-

metric representation which describes the system dynamics. BMDP is a key model for Bayesian

reinforcement learning.

There are various classes of approximate algorithms for estimating the value function in the
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BMDP. The goal is to compute an optimal policy that maximizes the expected return over the

hyper-state of the BMDP. Since the state space in the BMDP is usually large, it is intractable

to compute the policy within a practical time or scale. One solution is to devise approximate

algorithms that leverage structural constraints to achieve computationally feasible solutions.

There are a couple of approaches to solve BMDP based on offline value approximation. Finite-

State Controllers (FSC), proposed in [30], compactly represents the optimal policy of a BMDP

problem, which reduces the size of the policy domain. Then the optimal FSC policy is computed

in the reduced domain. In general, this method is computationally practical only for small prob-

lems with limited number of states. For many real-world domains, the number of states needed

to achieve good performance is far too large. Another approximate offline algorithm to solve the

BMDP problem is BEETLE [31]. It was originally designed for partially observable Markov deci-

sion process (POMDP) planning. In BEETLE, hyper-states are sampled from random interactions

with the BMDP system, which will essentially convert a BMDP problem to a POMDP problem.

However, BEETLE requires that the parameter space of the system is small.

There are also a couple of approaches to solve BMDP based on online value approximation,

which interleave planning and execution on a step-by-step basis. One approach is Bayesian dy-

namic programming [32]. The idea is to sample a model from the posterior distribution over the

potential possible models, then solve a selected model using dynamic programming techniques.

Models are sampled periodically. However, this approach can be very slow.

Another class of approaches to solve the BMDP problem is based on online tree search approx-

imation. Generally speaking, instead of selecting actions using a complete characterization of the

uncertainty model, these methods perform a forward search in the space of hyper-states. In [33],

an online planning algorithm that estimates the optimal value function of a BMDP problem using

Monte-Carlo sampling is proposed. For a given current state, a forward-search tree is grown to a

fixed depth d. At each internal action node, a fixed number C of next states are sampled using a

certain distribution. The values at the internal states nodes are estimated using the Bellman equa-

tion based on the value of their child nodes. The sampling-based approaches achieve low error.
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However, this approach has an exponential computation complexity due to the tree structure, and

so far the approach has only been applied to small BMDPs.

3.2 Previous Work on Computational Efficiency

A set of techniques to improve the MDP computation speed is covered in Approximate Dy-

namic Programming (ADP) [34]. A key idea in ADP is to approximate the value functions by

sampling, e.g., Monte Carlo simulation. However, such sampling based approximation assumes

a specific probability distribution of the transitions, which may not always be valid. State ag-

gregation is one approximation technique, whose speedup is proportional to solution quality loss

[18, 34].

Another approach is to approximate the value function by neural networks, using so-called

neuro-dynamic programming [35]. However, it suffers from the inflexibility to goal changes or

generalizations, since the value functions need to be retrained if the goal changes. In [13, 36, 37],

the sampling technique is further applied in the BMDP. These techniques are based on the Monte-

Carlo tree search and make use of imperfect knowledge on transition probabilities and do not rely

on assumptions of the probability distributions.

In order to solve the runtime issue, hardware acceleration techniques have not received much

attention. A GPU-based parallel MDP technique is introduced in [38] and [39], but it is for the

conventional MDP without considering partial knowledge of transition probabilities.

3.2.1 Previous Work on Improving the Scalability

In order to improve the scalability, memory reduction is the key due to the exponential mem-

ory utilization of the MDP/BMDP problem and the limited memory size on modern computing

platform. Factored model [2] reduces the storage size of transition probabilities by exploiting the

independence among certain state variables. The state space can be encoded by the the combina-

tions of state variables. Hence the number of state variables is always smaller than the size of the

state space. An example of factored MDP is shown in Fig. 3.1. In Fig. 3.1, suppose there are 4

state variables, and each variable has binary values. Hence there are 24 = 16 states in total. The
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left side indicates the dependency among the variable. For example, the value of v2 at time t + 1

depends on the values of v1, v2 and v3 at time t. The table on the right side shows the transition

probability of v2 being 1 at time t + 1. If a TPM is used to represent the MDP model, then the

size of the TPM is 16 × 16. However, by using the factored model, the size of the table on the

right side for all the 4 variables is 23 × 4, which is smaller than TPM. However, the factored

Figure 3.1: An Example of Factored Model

model is restricted to cases where the dependence/independences among the states is known in

advance, which is quite restrictive for wide real-world applications. Moreover, it is not clear how

to perform Bayesian update for the factored model. Hence, it is very difficult, if not impossible,

to apply the factored model in BMDP. Algebraic Decision Diagram (ADD) [40] [41] and Multi-

valued Decision Diagram (MDD) [42] based approaches can also reduce the memory utilization of

P matrices in classical MDP, where ADDs and MDDs are used to directly store the unique entries

of the P matrices in the leaf nodes (without sampling, which our work does). The ADD-based

approaches also require a conditional probability table for the ADDs to represent the P matrix,

which is usually unavailable in the BMDP problem formulation.

In our approach, we also explore the sparsity of the TPM in the MDP/BMDP problems. Practi-
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cal MDP problems often have sparse TPMs [43], in which most of the elements are zero or close to

zero. The most widely used sparse matrix storage format is Compressed Sparse Row (CSR) [44].

Compared to full matrix storage, in which every single entry is stored in memory regardless of its

value, CSR only stores the non-zero entries of the matrix. The CSR format has some overhead to

store the row/column locations of the non-zero entries. Obviously the overall efficiency of the CSR

format depends heavily on the sparsity ratio SR (or the percentage of zero entries compared to the

matrix size) of the matrix. Another commonly used format is the Jagged Diagonal Storage (JDS)

format which is particularly suitable for iterative methods and sparse matrix vector multiplications

[45]. The main advantage of JDS is that it has a lower overhead when representing long vectors.

However since JDS uses the explicit positional information, its overhead still can’t be ignored and,

like CSR it suffers from the problem of indexed memory accesses.

16



4. PART 1: PARALLEL BMDP ON A GPU PLATFORM

In this chapter, we present a parallel BMDP computing approach on a GPU platform. We

use Markovian Genetic Regulatory Network (GRN) regulation as an application platform to de-

scribe our approach. A recently developed approach to precision medicine is the use of Bayesian

Markov Decision Processes (BMDPs) on Gene Regulatory Networks (GRNs). Due to very lim-

ited information on the system dynamics of GRNs, the BMDP must repeatedly conduct exhaustive

search for a non-stationary policy, and thus entails exponential computational complexity. This

has hindered its practical application to date. With the goal of overcoming this obstacle, we inves-

tigate acceleration techniques, using the Graphic Processing Unit (GPU) platform, which allows

massive parallelism. Our GPU-based acceleration techniques are applied with two different MDP

approaches: the Optimal Bayesian Robust (OBR) policy and the Forward Search Sparse Sampling

(FSSS) method. Simulation results demonstrate that our techniques achieve a speedup of two or-

ders of magnitude over sequential implementations. In addition, we present a study on the memory

utilization and error trends of these techniques.

4.1 Background and Introduction

Developing effective therapeutics is a fundamental issue in translational genomics and preci-

sion medicine, especially when faced with complex and individualized genetic diseases such as

cancer. The variability of genomic makeups between patients and even the cells within a patient

(caused by the randomness of genetic mutations) demands highly personalized treatment strategies.

Gene Regulatory Network (GRN) models play a crucial role in this context, as one can search for

optimal intervention within a model-based framework, and use these predictions to devise inter-

vention strategies in real scenarios. However, due to the inherent complexity and variability of the

biological processes involved in regulatory systems, in most cases, little precise knowledge regard-

c©2016 IEEE. Reprinted, with permission, from He Zhou, Jiang Hu, Sunil P. Khatri, Frank Liu, Cliff Sze, Moham-
madmahdi R. Yousefi, GPU Acceleration for Bayesian Control of Markovian Genetic Regulatory Networks, IEEE-
EMBS International Conference on Biomedical and Health Informatics (BHI), 2016
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ing the true underlying GRN is available. When such knowledge is available, it is in the form of

regulatory pathways that, for simplicity, ignore the dynamics and stochasticity of regulations. This

motivates us to introduce uncertainty into GRNs at different levels. By assuming a parameterized

reference model for gene regulation dynamics, we start at the highest level, by constructing an

uncertainty class on the parameters.

We use probabilistic Boolean networks (PBNs) as our reference model to represent GRNs,

where network state transitions are assumed to be stochastic [46]. Since the PBN state evolution

can be modeled by a Markov chain, the Markov Decision Process (MDP) theory is the natural

framework of choice for constructing optimal intervention policies for PBNs. The optimal in-

tervention policy dictates what action is optimal at every state of the network model. However,

conventional MDP requires exact knowledge of the state transition probabilities, represented by a

transition probability matrix (TPM), to find the optimal intervention. This is problematic in real

world scenarios, since this knowledge generally does not exist.

One approach to solving this problem is to assume that there is a class of TPMs, as well as

a prior probability distribution over this class, indicating the degree of belief in how much each

member might represent the true, but unknown, TPM [47]. Then, dynamic programming is re-

peatedly applied to search for the non-stationary policy that performs well on average across this

uncertainty class. Along with the policy search, the Bayes rule is applied to update the probabil-

ity distribution of TPMs. Such an approach has been applied in GRN control and is called the

Optimal Bayesian Robust (OBR) policy [1]. Although the OBR approach effectively addresses

the challenge of partial knowledge of the TPM, its computational complexity is exponential. Sev-

eral sampling-based techniques [33, 48, 36, 49, 37] are introduced to solve the similar problem of

Bayesian model learning, and can help reduce the complexity.

In this work, we strive to accelerate the GRN control through parallel computing, an approach,

to our best knowledge, that has not been explored before. In particular, we investigate acceleration

techniques using Graphic Processing Units (GPUs) [50]. GPU cores are relatively simple and the

GPU uses a single instruction multiple data (SIMD) architecture that requires careful paralleliza-
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tion. These issues are addressed in our study.

In this chapter, we describe parallel acceleration techniques for the OBR algorithm [1] and the

Forward Search Sparse Sampling (FSSS) method [13]. Simulations on one thousand test-cases

show that our GPU-OBR and GPU-FSSS achieve an average speedup of 498× and 378×, respec-

tively, compared to the sequential variants of these algorithms. Our simulation results also exhibit

significant improvement in scalability with respect to problem size. Additionally, we present a

comparison of memory utilization of these techniques and errors arising from the FSSS method.

4.2 Bayesian Control Of GRNs

4.2.1 Problem Formulation

A GRN is modeled as a PBN with a set of nodes V = {v1, v2, ..., vN}. Each vk ∈ V represents

a gene in the GRN, and it only has two expression values: on (1) or off (0). Any combination of

expression values of these N nodes is a gene state si. A PBN with N nodes will have 2N gene

states: S = {s1, s2, ..., s2N}. Due to the interaction among genes, the gene states of the PBN will

change stochastically over time as a Markov process. More specifically, the state zk at time step

k depends on only the state zk−1. If zk−1 = si ∈ S and zk = sj ∈ S, this dependence can be

described by the probability of transition from si to sj . We use a Transition Probability Matrix

(TPM) P whose size is 2N × 2N , to model these stochastic transitions among gene states.

The action ai applied on the GRN flips the expression value of a specific gene, at a specific

step i. It is modeled as a control action to the Markov process. Without loss of generality, we use

a simple action space A = {0, 1}, where action a = 1 means that the intervention is applied and

a = 0 implies no intervention. As such, the state transition also depends on action a. Assuming

a sequence of t state transitions Z = {z1, a1, z2, a2..., at−1, zt}, where zt is state at time t and at

is the action taken at time t, then state transition probability Pij(a) = Prob.(zk+1 = sj | zk =

si, ak = a), where 1 6 k 6 t.

With only a partial prior knowledge of the TPM, it is assumed that there is a family of TPMs

following probability distribution π(P), which is parameterized by a matrix [αij] with exactly the
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same size as the P matrix. To account for the uncertainty of the TPM, the state si is extended to a

hyperstate (si, π(P)), and can be also represented as (si, [αij]). In the Markov process with control

actions, the π(P) is updated to obtain the posterior distribution according to the Bayes rule. More

details about this model can be found in [32, 51]. This model can fit into the framework of the

BMDP as described in Section 2.2.

4.2.2 OBR Algorithm

To solve Eq. (2.3) described in Section 2.2, a robust method using successive approximation is

proposed in [22], which is referred as OBR. The main idea is to recursively approximate J∗(si, α),

and after finite K iterations, the approximation of J∗(si, α) is expected to converge. Suppose

we have some initially defined J0(sj, α) according to biological knowledge, then the recursive

relationship is defined as follows:

Jk+1(si, α) = max
a∈A
{
∑
∀j∈S
P ij(a)[gij(a) + λJk(sj , α

′)]} (4.1)

where k is the iteration index. Eq. (4.1) induces a decision tree structure. Suppose N = 2 and

K = 2 and we want to know which action to take when the current state of PBN is s1, then the

corresponding tree is shown in Fig. 4.1. Every circle node is a hyperstate node and every square

node is an action node. Our goal is to decide which action to take at the root node so that Eq. (2.3)

will be satisfied for the initial state at the root node. Since every node will have a unique transition

path from the initial state, the [α] matrix will also be different. This induces every node in this tree

to have a specific hyperstate. This also means our computational flow needs to traverse every node

inside the tree and calculate the J value for each node in order to get the J value of the root. Such

a computation is intractable since the size of the tree is (|S| × |A|)K , which is exponential with

respect to the problem size.

4.2.3 FSSS Algorithm

Forward Search Sparse Sampling (FSSS) [13] is a heuristic for solving the BMDP problem

defined in Eq. (2.3). Instead of using an approximate J(si, α) value as the OBR algorithm does,
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Figure 4.1: Computational Structure of OBR

FSSS calculates the upper and lower bounds of J(si, α) values for each node. FSSS samples only

critical transitions, which have relatively large P ij(a), instead of examining every node in the tree.

This is the key reason for the speedup of FSSS. Eventually, one action in the action space A will

have a lower bound larger than the upper bound of other actions. This action will be the optimal

action that we look for. Further details and theoretical proofs are described in [13].

4.3 GPU-based Acceleration

4.3.1 Parallelization of OBR

In order to accelerate the OBR method, we parallelize it on a GPU. From Fig. 4.1, one can see

that J value estimations of circled nodes at the same tree level are independent of each other, and

can be executed in parallel. One GPU thread with an identifier tid is assigned to one circled node.

We traverse the tree in Fig. 4.1 level by level from the level just above the bottom level to the root.

A tree index k with a smaller value is closer to the bottom level of the tree. Our parallelization

scheme for OBR implemented on the GPU is referred as GPU-OBR and is described in Algorithm

1, where steps 7-10 are executed in parallel. On the GPU, it is easy to assign an identifier to each

thread, which means GPU-OBR can be mapped cleanly on a GPU. Since the tree in Fig. 4.1 has a

exponential size with respect toN , it requires a large amount of memory, especially when updating

π(P). π(P) can be parameterized as an [α] matrix with a size of |S|2 as described in Section

4.2.1. We need to deal with the largest number of nodes when k = 1 (in particular, |S| × |A|K−1
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Algorithm 1 GPU-OBR
1: Initialize a PBN with N nodes, state space S = {s1, s2, ..., s2N }, action space A = {a0, a1}, ini-

tial node ninit with hyperstate (sinit, π(P)), reward function gij(a), J0 for each state in S space and
discount factor λ

2: Define K as the maximal horizon for the tree, k = 1
3: while k 6 K do
4: Get the number of state nodes numS on level k
5: Assign each node n with an ID tid
6: parfor tid← 1, numS do
7: Generate a transition path Ztid from ninit to Ntid

8: Based on Ztid, update π(P) [22]
9: Use Eq. (2.4) to calculate P matrix

10: Use Eq. (4.1) to calculate Jk(ntid)
11: end parfor
12: k=k+1
13: end while

nodes), and each node will have its own [α] matrix. As a result, we need memory for at least

|S| × |A|K−1 × |S|2 = 2(N+1)×(K−1)+2N floating numbers if we only consider 2 actions. GPUs

usually don’t have as much memory as CPUs do, which causes the algorithm to hit a memory

bottleneck even with a relatively small N . To address the memory issue of GPU-OBR, we discard

some rows of the [α] matrix. Although each node will have its own [α] matrix, when calculating J

for a fixed node, only one row in the [α] matrix is used.

4.3.2 GPU-Based Parallel Computing for FSSS

In GPU-FSSS, the memory requirement is further reduced by exploiting the relationship be-

tween probability values and the size of S. When |S| gets large, some transitions will have an

extremely small P ij(a) since
∑
∀j∈S P ij(a) = 1. Such transitions will contribute little to Jk(i),

because Jk(i) is the sum of Jk(j) and gij weighted by P ij(a). The key idea of FSSS is to explore

this fact.

Since the computation of FSSS has a similar tree structure as OBR, we borrow some ideas from

GPU-OBR to parallelize FSSS. First, a top-down process is added to select critical transition paths

starting from root to some hyperstate nodes with relatively large transition probability, denoted as

PZj . Suppose a transition path is Zj = {z1, a1, z2, ..., aj−1, zj} where z1 is the root node, then the

22



PZj is defined as:

PZj =

j−1∏
k=1

Pzkzk+1
(ak). (4.2)

Another modification is to calculate the upper and lower bound of J value for each node instead

of a specific J value. Given upper bound U0 and lower bound L0 for the leaf nodes in the tree, we

can adapt Eq. (4.1) to calculate the upper and lower bounds for all the hyperstate nodes which are

on the critical paths:

Uk+1(si, α) = max
a∈A
{
∑
∀j∈S
P ij(a)[gij(a) + λUk(sj , α

′)]} (4.3)

Lk+1(si, α) = max
a∈A
{
∑
∀j∈S
P ij(a)[gij(a) + λLk(sj , α

′)]} (4.4)

The modified algorithm is referred as GPU-FSSS and the top-down phase is described in Algorithm

2.

Algorithm 2 Top-down phase of GPU-FSSS
1: Same as Line 1 in GPU-OBR
2: Define a probability threshold Pth
3: Label all state nodes as expandable
4: Define K as the maximal horizon for the tree, k = K − 1
5: while k > 0 do
6: Get the number of expandable state nodes numS on level k
7: Assign each node n with an ID tid
8: parfor tid← 1, numS do
9: Generate a transition path Ztid from root to Ntid

10: Based on Ztid, update π(P) [22]
11: Use Eq. (4.2) to calculate PZtid
12: if PZtid < Pth then
13: Label child nodes of Ntid as not expandable
14: end if
15: end parfor
16: k=k-1
17: end while

Then a bottom-up phase is needed to update the bounds of the nodes on the paths we selected
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in the top-down phase. This phase is very similar to GPU-OBR, but Eq. (4.1) is replaced by Eq.

(4.3) and Eq. (4.4).

4.3.3 GPU Memory Utilization and Thread Organization

The GPU utilizes a single instruction multiple data (SIMD) paradigm. In this paradigm, the

same instruction is run on multiple datastreams, in different threads that contain the same code

(kernel). Threads run on one of several streaming multiprocessor (SM) on the GPU, each of which

has several SIMD processors in it. Each SM has a pool of R hardware registers for its threads. The

Nvidia GeForce GTX 760 GPU that we used has 6 SMs and 192 processors per multiprocessor,

with R = 256KB memory.

The GPU has a hierarchical memory structure. The registers have smallest latency and the

global memory has the largest latency since it is not cached. In practice, one should avoid to use

the global memory and use preferentially registers in order to speed up the algorithm. However,

the GPU has limited number of registers R. Generally, the usage of registers is proportional to the

number of operations. As a result, the computation needs to be decomposed into smaller parts.

In our algorithm, we decomposed Eq. (4.1) into small parts, such that for one small part, only

one binary operation is executed for each GPU kernel. Each kernel requires a certain number of

registers D. The total number of threads T that can be issued simultaneously is limited, and must

within the constraint T × D ≤ R. Thus, if large kernels are used, then potential parallelism is

reduced. Making the kernels too small, on the other hand, incurs a larger thread issue overhead.

Therefore, we partition the code into smaller kernels, experimenting with T until the speedup was

maximized. The efficient utilization of register files also affects the block size. The threads in the

GPU are grouped in multiple blocks, and each block will be assigned to a streaming multiprocessor

(SM) in the GPU. Threads in the same SM share resources such as registers and shared memory.

As a result, a very large block size will result in less resources for each thread. However, a very

small block size is also inefficient, since there will be some resources unused.

Although we try to avoid using global memory, it’s inevitable to use global memory when a

large amount of data is involved. Global memory access latencies can be hidden across accesses,
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which reduces the cost of global memory access. In our algorithm, the P matrices are stored in

global memory. Memory alignment will influence the performance of algorithms on GPU. Threads

in the GPU are further grouped as "warp" when accessing the global memory. A warp has 16 or 32

threads. Global memory is accessed via 32-, 64-, or 128-byte memory transactions. When a warp

access the global memory, the optimal case is that the threads of this warp are accessing memory

addresses within one segment of 32, 64 or 128 bytes. Suppose now each thread in a warp needs to

access a float (4 bytes) in global memory, then the size of these 32 floats will be 128 bytes. If these

32 floats are allocated in one segment, it only takes one transition to read these 32 floats from the

global memory. However, if one of these 32 floats is allocated in another segment, then it will take

two transitions to read these 32 floats from the global memory: it will first read the 31 floats in

one segment, second read the misaligned float from the other segment. This will introduce a high

latency. In our algorithm, the allocation of P matrices needs to be carefully designed so that when

an instruction is executed, there is no misalignment.

4.4 Result

We implemented the algorithms using Nvidia CUDA Toolkit 7.5, and compared them with

the OBR and FSSS algorithms on a single CPU core. We ran simulations on 1000 randomly

synthesized networks, generated by the process described in [1]. The main hardware features of

the machine are as follows:

• CPU: Intel Core i5-4670, 4 Cores, 3.4GHz.

• RAM: 8GB DDR2 Memory.

• GPU: Nvidia GTX 760, 980MHz Clock Rate, 2GB GDDR5 Memory, 6.0 Gbps Memory

Speed. [52]

In Fig. 4.2(a) and Fig. 4.2(b), we show how runtime is affected by the number of genes and

the horizon depth of the tree. For GPU-FSSS, all the nodes with a probability less than Pth will

not be expanded any more. Pth = PBL, where L ∈ [1, K] is distance from the current processing
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level to the root, and PB = 0.01. The term PB is used as the probability base, which is used for

constructing Pth. As shown in Fig. 4.2(a), our parallel implementations have a better scalability

with respect toN compared with OBR. Due to the computational overheads, when the problem size

N is small, the speedup of GPU-OBR and GPU-FSSS with respect to OBR is limited. However,

the speedup is better for larger problem sizes. The best speedup occurs for N = 8 in which GPU-

OBR has a 498× speedup and GPU-FSSS is 378× faster over OBR. GPU-FSSS needs to traverse

the tree twice, and hence GPU-FSSS is generally slower than GPU-OBR. For GPU-FSSS, both the

input size and the probability threshold influence the runtime, as shown in Fig. 4.3. The missing

data points in Fig. 4.3 could not be computed due to memory limitation.
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Figure 4.2: Runtime of different input size, Pth = 0.01L
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In Fig. 4.4(a), we report the memory usage and corresponding error. Since OBR has been

proved to yield a suboptimal J value in [1], here we will focus on the deviation (from OBR) of the

bounds at root node obtained by GPU-FSSS. The error of the bound is defined as

error =
1

2
(
|UB − JOBR|

JOBR
+
|JOBR − LB|

JOBR
)× 100%. (4.5)

where UB is upper bound and LB is lower bound. The performance of GPU-FSSS is naturally

sensitive to the probability threshold Pth, so we present several Pth schemes. These schemes vary

Pth for different levels of the tree. Fig. 4.4(b) presents the relationship between memory usage

and error under different type of Pth schemes, with varying PB. We observe that the error doesn’t

decrease as much as the increase of the memory usage for larger N . To fully utilize the limited

memory, a careful choice needs to be made on how to balance result quality and resource cost.

4.5 Conclusion

In this chapter, we alleviate the intractable computation complexity of the control problem on

GRNs with uncertainty of transition probability by parallelizing two MDP-based methods: OBR

and FSSS on the GPU. Our experimental results show a significant speedup. We also explore

the trade-off between result quality and resource cost. In the future, one could optimize memory

utilization by applying more efficient data structures to allow the approach to solve larger problem
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Figure 4.4: Memory and error performance of GPU-FSSS and GPU-OBR

in a reasonable time.
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5. PART 2: A DUPLEX SPARSE STORAGE (DSS) SCHEME FOR BMDP ON GPU

PLATFORM

In this chapter, we introduce a novel Duplex Sparse Storage (DSS) scheme to represent the

expected TPM in the BMDP framework, and develop a BMDP solver with the DSS scheme on

a heterogeneous GPU-based platform. By employing the Optimal Bayesian Robust (OBR) pol-

icy, Bayesian Markov Decision Process (BMDP) can be used to solve many practical problems.

However, due to the “curse of dimensionality”, the data storage limitation hinders the practical

applicability of the BMDP. To overcome this impediment, we propose a novel Duplex Sparse Stor-

age (DSS) scheme in this chapter. We applied DSS with OBR on the Graphic Processing Unit

(GPU) platform. The simulation results demonstrate that our approach achieves a 5× reduction in

memory utilization with a 2.4% "decision difference" and an average speedup of 4.1× compared

to the full matrix based storage scheme. Additionally, we present the tradeoff between the runtime

and result accuracy for our DSS techniques versus the full matrix approach. We also compare

our results with the well known Compressed Sparse Row (CSR) approach for reducing memory

utilization, and discuss the benefits of DSS over CSR.

5.1 Introduction and Background

In order to solve the memory problem, we exploit the observation that the expected TPMs tend

to be sparse. For example, in the GRN regulation problem, the expression of one gene usually de-

pends on only a few other genes [14]. This sparsity feature of the TPM motivates us to investigate

sparse data storage techniques to address the memory issue. Since both the prior and posterior

distributions of the TPM in BMDP are known, we can exploit the sparsity of the TPM. The Com-

pressed Sparse Row (CSR) format is an efficient approach to store a sparse matrix [15]. Obviously

the overall efficiency of the CSR format heavily depends on the sparsity ratio SR (or the percent-

c©2017 ACM. Reprinted, with permission, from He Zhou, Sunil P. Khatri, Jiang Hu, Frank Liu, Cliff Sze, Fast
and Highly Scalable Bayesian MDP on a GPU Platform, Proceedings of the 8th ACM International Conference on
Bioinformatics, Computational Biology,and Health Informatics, 2017
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age of zero entries compared to the matrix size) of the matrix. CSR is a general purpose model

to store elements with an arbitary data range. However, since the TPM has special properties, we

are motived to propose an enhanced storage scheme based on CSR to store the TPM in the BMDP

problem. When the sparsity ratio SR of the matrix is high, CSR can be expensive when the size of

the sparse matrix is large, since the lower bound of the CSR format is the number of rows of the

original sparse matrix. Our DSS scheme offers two improvements over CSR. To address potential

accuracy issues, we lump all trivial values (the smallest (1−R)× 100% of the entries, where R is

the percentage of entries the DSS stores) of the TPM into a single entry whose value is the average

of all the (1−R)×100% trivial values. Furthermore, we enhance the CSR to gain better efficiency,

by duplex use of the same words of storage.

We use “GPU-based OBR” (or GPU-OBR) to generically refer to the parallel OBR approach

for solving the BMDP problem on GPU. The GPU-based OBR using a full matrix to represent the

expected TPM in [53] is denoted as “G-Full”. We implemented the GPU-based OBR with CSR

and our proposed DSS method to represent the expected TPM (called “G-CSR” and “G-DSS”

respectively). We have simulated G-DSS on the BMDP-based gene regulatory network (GRNs)

control problem defined in [1, 54]. Simulations on 500 synthetic GRNs demonstrated that G-DSS

achieves a 5× reduction in memory utilization while introducing only 2.4% "decision difference"

in the largest GRN compared with G-Full. The corresponding memory reduction and "decision

difference" for G-CSR are 2.1× and 6.3% respectively. Our simulation results of DSS on the GPU

exhibit an average speedup of 4.1× compared with using full sparse matrix on the GPU.

The key contributions of this chapter is that we developed DSS which is used to alleviate the

memory issue in G-Full. Compared to CSR, the DSS scheme has a smaller memory utilization, a

better accuracy and a better L∞ norm. Compared to the full matrix storage scheme, DSS also has

a smaller memory utilization, and a better speedup. Moreover, the DSS is designed to enable effi-

cient Bayesian updates in GPU-based OBR, by eliminating the need to reallocate memory during

Bayesian updates.
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5.1.1 Preliminaries - CSR Storage Format

Compressed Sparse Row (CSR) is a storage format for sparse matrices and is widely used for

scientific and engineering computations [44]. Fig. 5.1 shows an example of CSR. The 4×4 matrix

M in Fig. 5.1 is sparse since most of the elements are zero. The bold italic elements are non-zero

elements, and are elements of interest. Clearly, there is no need to store the zero-valued entries.

M 21 3 1

10 3 3 4

8.1 8.6 9.8data 10.4

colIndex

rowPtr

1 2 3

0

1

2

3

8.6

9.8

0

0

0

0

8.1 0

000

0

00

0 0

10.4

Figure 5.1: CSR Example

The CSR format stores the sparse matrix using three vectors: the data vector, the colIndex

vector and the rowPtr vector. The data vector stores the non-zero elements in a row-major fashion.

In the colIndex vector, colIndex[i] stores the column position of data[i] in M . The rowPtr vector

is defined as follows:

rowPtr[0] = 0

rowPtr[i] = rowPtr[i− 1] +NZ(i− 1), i > 0

where NZ(i) is the number of non-zero elements in the ith row of the original M matrix. Algo-

rithm 3 shows how to look up Mij in the CSR storage format.

In most scientific and engineering computations, the information of interest in M is the value,

the row position index and the column position index of the non-zero elements. Although the

storage cost per element in CSR is higher, the total storage cost of CSR is significantly smaller
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Algorithm 3 Look Up Mij in the CSR Format

1: StartIndex = rowPtr[i];
2: EndIndex = rowPtr[i+1];
3: Found = 0;
4: for k = StartIndex; k < EndIndex; k++ do
5: if colIndex[k] == j then
6: Found = 1;
7: return data[k]
8: end if
9: end for

10: if Found == 0 then
11: return 0
12: end if

than the full matrix when M is sparse. If the size of the original matrix is N × N and the total

number of the non-zero elements is Nnz, then the memory utilization of the full matrix is O(N2).

However, in the CSR format, the memory utilization is O(2Nnz + N), which is less than that of

the full matrix if M is large and sufficiently sparse.

Although the CSR format alleviates the memory utilization compared to the full matrix, the

memory utilization can still be large when the original sparse matrix has many non-zero entries,

since rowPtr depends on the size of the matrix. Moreover, in BMDP problem settings, the matrix

may have many elements close to zero, but not exactly zero. We note that the P matrix in the

BMDP problem has the following properties:

 1 > P ij > 0∑
∀j∈S P ij = 1

(5.1)

In such a scenario, there could be a significant number of small values in each row. Storing such

small values using the CSR format can often increase the total memory requirement, and hence

negate the benefit of CSR. A naive approach is to discard elements that are smaller than a threshold

value and store them as zero. By doing so, we can artificially boost the sparsity of the matrix.

However such an approach can have a negative impact on the accuracy of the subsequent MDP
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computation steps. The approach we take in this paper is to use the Duplex Sparse Storage (DSS)

format, which is described next.

5.2 Our Approach - Duplex Sparse Storage (DSS)

5.2.1 Problems of Using Conventional Full Matrix

In general, the expected TPM (i.e., the P matrix) with each element defined in Eq. (2.4) can be

represented by a full floating-point matrix with the size of |S| × |S|. However, in the GPU-based

acceleration approach, each action node (the square nodes in Fig. 4.1) requires a row of the P

matrix to perform the computation of Eq. (2.6). Therefore, using an |S| × |S| matrix leads to a

(|S| × |A|)K memory utilization complexity. Such a prohibitively expensive memory complexity

limits the applicability of the GPU-based BMDP approach on large problems. In this chapter we

focus on how to improve the storage cost of the P matrix.

In many practical problems, the P matrix is likely to be sparse due to the natural sparsity

of the problem and its large state space. In the context of gene regulatory networks (GRNs) or

more general biochemical networks, the structure of the problem tends to be sparse [55, 56, 57,

58]. Hence the corresponding P matrix is also sparse. Generally speaking, for such problems,

most elements of each row of the P matrix are close to zero. However, OBR is oblivious to this

natural sparsity, and performs the computation in a brute force manner. Before we can employ

sparse storage techniques to this problem, we need to ensure that the sparsity is conserved after

K Bayesian updates during OBR. Fig. 5.2 shows the histogram of a randomly selected row in a

16 × 16 P matrix after 5 Bayesian updates by following 100 different random histories. In this

figure, each curve is associated with one Bayesian update history. Note that in Fig. 5.2, many

of these 100 curves overlap. Fig. 5.2 indicates that if the prior P matrix is sparse, then after K

Bayesian updates (usuallyK ≤ 5 in practical cases), the posterior P ′ matrix tends to remain sparse

as well. Due to this feature of property sparsity conservation, sparse matrix storage techniques can

be effective in alleviating the high memory complexity throughout the entire G-Full approach.
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Figure 5.2: Histogram of Pij after 5 Bayesian Updates

5.2.2 DSS Format in BMDP

In DSS, instead of using three vectors, we only use one vector data_col to store all the infor-

mation needed (in a row-major fashion). A DSS for an N × N matrix is a vector composed by

N components, where each component corresponds to one row in the matrix. Each component

contains three fields:

1. X words to save the top X significant entries of its corresponding row. Since we would like

to store the matrix elements with relatively large values, we store the top X largest values

from every row (such that R = X/N × 100%, where N is the size of one row of P).

2. K−1 words reserved for matrix entries that would change from a “trivial” value to significant

value in a future Bayesian update.

3. One word for storing the average value of the N −X “trivial” entries.

4. Each significant entry is stored in a duplex fashion, using a single word to store the value of

the entry (in 12-bit binary) and its column position (in 20-bit binary).

Suppose a sequence of state transitions ZT = (z1, d1, z2, d2..., zm, ..., zM−1, dM−1, zM) is ob-

served. Assume zm = si and zm+1 = sj , and from time step 0 to time step (m + 1), there are C

state transitions from si to other states in ZT . Then the ith row of the P ′ matrix at time step (m+1)
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can be obtained from the P matrix at time step m. The resulting P ′ can be derived from Eq. (2.4)

and Eq. (2.5), and is shown in Eq. (5.2). All the other rows of the P ′ matrix are unchanged by this

Bayesian update. 
P ′ik = C×Pik

C+1
, k 6= j

P ′ij =
C×Pij+1

C+1

(5.2)

Eq. (5.2) indicates that after the Bayesian update P ′ij becomes larger, which means that P ′ij may

qualify to be stored in the DSS format, even though P ij is close to zero. This increase in P ′ij

caused by the Bayesian update requires DSS to reserve “holes” in order to store the elements

which become larger due to Eq. (5.2). A BMDP problem with a horizon length of K needs to

preform K − 1 Bayesian updates in all. Hence the DSS approach needs to leave exactly K − 1

“holes” for each row of a N × N P matrix, and N × (K − 1) “holes” in total for the entire P

matrix. This guarantees that no array re-allocations are needed in the DSS approach, for the entire

BMDP computation.

Since the P matrix is sparse, with a reasonable choice of the storage ratio R, we are able to

represent all the “non-trivial” elements in the P matrix while maintaining a small memory foot-

print. However, since the size of the P matrix is usually large in practical BMDP problems, the

number of trivial elements in the P matrix can still be quite large. Even though we can neglect

the contribution of a single “trivial” element to the subsequent computation, we may not be able

to neglect the contribution of a large number of trivial elements. Therefore, in the DSS, we use a

special cell to store the average value of the trivial elements for each row in the data_col vector.

From Eq. (5.1), we can easily compute the sum for the trivial elements by subtracting the sum of

the non-trivial elements from 1. Hence the average of the trivial elements is also easy to compute.

An intuitive way to understand this approach is that each row represents the “mass” of the proba-

bility distribution in each state. Instead of throwing away the entries with small values (which is

equivalent to losing mass), we conserve the total “mass” by accumulating the small entries. Even

though we keep only an approximated value of each individual small element, we improve the
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memory efficiency of the BMDP method while not impacting error appreciably. The benefit is

clearly demonstrated in the experimental results.
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Figure 5.3: DSS Example

An example of DSS for a 5 × 5 P matrix is shown in Fig. 5.3 with R = 20%. Suppose the

DSS representation in Fig. 5.3 is used for a BMDP problem with K = 3. Then in the data_col

vector, there are 2 “holes” reserved for each row (for the Bayesian update). The average of the

trivial elements in each row is stored in the cell labeled “avg”. In the DSS, (1 − R) × 100% of

the entries are deemed as “trivial”. Since the number of elements to be stored in each row of the

P matrix is fixed, the starting position of the ith row of the P matrix in the data_col vector is

exactly (i × (X + K)). Hence the rowPtr vector in the CSR format is no longer needed. The

number of bits used to store the entry value and its column position is 12 and 20 respectively,

which don’t match any standard data type in popular programming languages. 12-bits provides a

good resolution for Pij in the TPM, and 20-bits can handle a large matrix (the largest matrix size
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that DSS can store is (220)2 = 240). The total number of bits used for every entry of data_col is

32, since the native word size of the architecture we used is 32. For other applications, the number

of bits used to store the value of the entries and their column position may be different.

We next discuss how a Bayesian update is performed on DSS. Once a state transition from

zm = si to zm+1 = sj is observed, we need to go through a component of the data_col vector

in which the ith row of the P matrix is stored. If P ij doesn’t exist in the non-trivial cells of this

component (i.e. P ij is not among theR×100% largest entries of row i), we need to use the average

value of the trivial elements as P ij . Then we compute P ′ij using Eq. (5.2), and store the P ′ij in the

first empty “hole” in this component. The average value of the trivial elements in the ith row of P ′

also needs to be updated.

5.2.3 Parallel DSS-based OBR

As discussed earlier, the G-Full approach presented in [53] is fast but has memory problems.

To alleviate the memory utilization issues, we use DSS to store the expected TPM data in GPU-

based OBR. To accomplish this, the following extra algorithms were implemented for DSS on the

GPU:

• Look up P ij

• Bayesian Update

5.2.3.1 Look Up P ij

Algorithm 4 shows how to look up P ij in the DSS format on the GPU. In step 8, a bitwise

AND operation is used to mask the contents of data_col[i] so that the value of the element and the

column position information can be separated. Since the value of the data is located in the most

significant 12 bits in data_col[i], a bitwise shift operation is needed to return the correct P ij . An

example of how look-up works in DSS on GPU is shown in Fig. 5.4.

The P matrix and the corresponding DSS are the same as Fig. 5.3, where X = 1 and K = 3.

Since some “holes” in DSS might be filled due to the Bayesian update, the (K − 1) “holes” also

need to be checked in the look-up. Hence a total of (X + K − 1) cells in the data_col vector
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Algorithm 4 Look Up P ij in the DSS Format

1: Found = 0
2: StartIndex = (X +K)× i;
3: EndIndex = (X +K)× (i+ 1)− 1
4: Assign (X +K − 1) threads;
5: for ALL the threads do
6: tid← getThreadID;
7: loc = StartIndex+tid;
8: if (data_col[loc] AND 0x000FFFFF ) == j then
9: Found = 1

10: return (data_col[loc] AND 0xFFF00000)>> 20
11: end if
12: end for
13: if Found == 0 then return data_col[EndIndex]
14: end if

"holes"

12 bits 20 bits

(0.89) (4)B B

0.91,0.9, 0.95,

0.89,0.92,

0 2 2

3 4

...

...

data_col
0.025 0.0225 0.0125

0.02 0.0275

(avg)

(avg) (avg)

(avg) (avg)

tid=0 tid=1 tid=2

Figure 5.4: Example of Looking Up P44 on GPU

need to be checked in parallel to find any P ij . Suppose we look up P44. In this case, 3 threads

are launched by the GPU in Fig. 5.4 with a tid starting from 0. Each thread checks a different

cell in the data_col vector, and the location of its cell is defined in step 7 in Algorithm 4. In step

8, a bitwise AND operation is used to mask the contents of data_col[loc] so that the value of the

element and its column position can be separated. Since the value of the data is located in the most

significant 12 bits of data_col[loc], a bitwise shift operation is needed to return the correct P ij .

If we neglect the overhead incurred by the thread launching on the GPU, the time complexity of

Algorithm 4 is O(1).
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5.2.3.2 Bayesian Update

The GPU-based OBR algorithm proposed in [53] yields a tree computation structure. Fig. 5.5

shows an example of how the Bayesian update works. For the BMDP in Fig. 5.5, assume that

S = {s0, s1, s2, s3} A = {a0, a1}, and K = 3. If we want to compute the J value of the black

circled node in Fig. 5.5 by following Eq. (2.6), we need to know the 0th row in P ′ after following

the transition Z3 = {s0, a0, s3, a0, s0}. By following Eq. (2.5) and Eq. (2.4), P03 needs to be

updated. Since for the GPU-based OBR algorithm, the problem is the memory issue instead of

runtime, we compute P ′ from P without storing the internal result of P at the circled node labeled

S3 in Fig. 5.5. Algorithm 5 describes how to do Bayesian update on the ith row of the P matrix in

a

P

P’

... ...

S0

S3

S0
...

......

... ...

...

...

...

...

...

...

Z
K−1

0

0

a

Figure 5.5: Bayesian Update Example

DSS when a sequence of state transitionZM is observed, whereZM = {z1, d1, z2, d2, ...dM−1, zM},

and si = zM . Similar to Algorithm 4, in Algorithm 5, (X +K) threads are launched to update the

ith row of the P matrix, and each thread processes one entry whose location in the data_col vector

is defined in step 7. Each thread goes through the state transition sequence and decides what to do

with its own data_col[loc]. There are 4 possible cases:

• The state transition from zm to zm+1 doesn’t contribute to the Bayesian update on the ith row
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Algorithm 5 Bayesian update on the ith row of P matrix when a sequence of state transition ZM
is observed.

1: StartIndex = (X +K)× zM ;
2: AvgIndex = StartIndex+ (X +K − 1)
3: set flag = 0 in global memory.
4: Assign (X +K) threads;
5: for ALL the (X +K) threads do
6: tid← getThreadID;
7: loc = StartIndex+tid;
8: C = 0; j = (data_col[loc] AND 0x000FFFFF );
9: for m=1; m<M; m++ do

10: if zm == zM then
11: C = C+1;
12: if zm+1 == j then
13: increase “P ij” in data_col[loc] using Eq. (5.2);
14: flag =1;
15: else
16: decrease “P ik” in data_col[loc] using Eq. (5.2);
17: end if
18: wait for all the threads to reach to here;
19: if (flag==0 && tid == (X +K)) then
20: Insert a new DSS element into the first empty hole in the data_col vector;
21: update data_col[AvgIndex];
22: end if
23: end if
24: end for
25: end for
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of the P matrix. In such case, Algorithm 5 does nothing.

• The state transition from zm = si to zm+1 = sj contributes to the Bayesian update on the

ith row of the P matrix. The current thread processes the DSS entry including P ij . In this

case, this thread executes step 13 and step 14 in Algorithm 5 to increase its P ij by following

Eq. (5.2).

• The state transition from zm = si to zm+1 = sj contributes to the Bayesian update on the ith

row of the P matrix. The current thread doesn’t process the DSS cell including P ij . In this

case, this thread executes step 16 in Algorithm 5 to decrease its P ik by following Eq. (5.2).

Note that the “average” of trivial elements also just needs to decrease as P ik in Eq. (5.2).

• The state transition from zm = si to zm+1 = sj contributes to the Bayesian update on the

ith row of the P matrix. However, P ij was a trivial element in time step m. In this case,

the (X + K)th thread executes from step 19 to step 21 in Algorithm 5 to insert a new DSS

element to the first available “hole” in data_col vector. The most significant 12-bits in this

new DSS element notated as P ′ij is defined as follows:

P ′ij =
C × data_col[AvgIndex] + 1

C + 1
(5.3)

And the least significant 20-bits in this new DSS is zm+1. The data_col[AvgIndex] also needs

to be updated in order to keep the sum of the ith row to be 1.

The time complexity of Algorithm 5 is O(M). Since M (which is bounded above by K) is

usually small in practical BMDP problems, the practical time complexity of Algorithm 5 is nearly

O(1). Since the G-Full method in [53] stores the full P matrix, the Bayesian update in G-Full

needs to traverse N elements for each black circled node in Fig. 5.5 (where N is the row length of

the matrix). This means the GPU has to launch N threads for each black circled node. However, in

the DSS method, only (X +K) elements need to be touched, which means the GPU has to launch

only (X + K) threads for each black circled node. This gives the G-DSS algorithm the potential
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to handle more black circled nodes (i.e. more hyperstates in the BMDP) simultaneously, which

increases the speedup of the G-DSS algorithm.

5.2.4 Comparison Between DSS and CSR

Table 5.1 shows a summary of the differences between DSS and CSR in the context of storing

P for the GPU-based OBR. Here we assume that the CSR treats all the trivial elements (smaller

Table 5.1: Differences Between CSR and DSS

CSR DSS

Elements Stored elements > the threshold X largest elements in each row
(where X/N × 100% = R)

How to deal with trivial elements Abandon (treat as 0) Use the average value
Data Structure 3 vectors 1 vector combines of P ij and j

Memory Complexity O(2Nth +N ) O(N(X +K))
L∞ Norm ≤ 1 1

than a threshold) as 0 in order to store the P matrix with a small memory utilization. Let Nth be

the number of such elements.

Let the J value computed in Eq. (2.6) using the full matrix be called Jm, the J value computed

using CSR be called JCSR, and the J value computed using DSS be denoted as JDSS . Then

Jm > JDSS > JCSR with an appropriate choice of X . This is because in Eq. (2.6), every variable

is positive and CSR abandons the trivial elements while DSS uses an average value for them. In

other words, DSS contains more accurate information about the P matrix compared to CSR.

In Table 5.1 we also show the L∞ norm of both CSR and DSS. The L∞ norm of the original

full P matrix is 1 due to Eq. (5.1). Suppose we reconstruct the P matrix from the DSS format

and the CSR format, and denote them as PDSS and PCSR respectively. Since DSS uses an average

value to represent the trivial elements, the sum of each row in PDSS is still 1. However, since

PCSR abandons some entries of the original full P matrix in order to maintain a small memory

utilization, the sum of each row in PCSR is often less than 1. If the CSR doesn’t abandon any
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entry in the full P matrix in extreme cases, then the sum of each row in PCSR will be equal to 1.

Therefore, we have the following relationship among the L∞ norms of P , PDSS and PCSR:

||PCSR||∞ ≤ ||PDSS||∞ = ||P||∞ = 1 (5.4)

In other words, the L∞ norm for PCSR is inaccurate, while that of PDSS matches ||P||∞. We

claim that this could be one of the reasons why the J and A values of DSS are more accurate

than those of CSR, as shown in our experiments. In addition, in DSS, since the upper-bound of the

number of new non-trivial elements introduced by Bayesian update is predefined and DSS reserves

“holes” for these new non-trivial elements, we don’t have to reallocate memory for the DSS while

performing Bayesian updates. In the special case where all the elements in the original P matrix

are identical, the DSS method can still handle such matrices without introducing any error for the

future computations.

Since the value of each element and its column position are combined in one 32-bit word in

DSS, we need to perform bit-wise operations to separate the value of the element from the column

position when needed. Although any contemporary computer architecture can perform this type of

operation very efficiently through bitwise manipulation instructions, these operations do take up

computation cycles. In some cases, when the row lengthN of the P matrix is small andK is large,

DSS may consume more memory than CSR. However, such cases are not of our interest when we

are considering large BMDP problem instances.

5.3 Experimental Results

The DSS approach is implemented to store the expected TPM data in the GPU-based OBR

algorithm by using Nvidia CUDA Toolkit 8.0 [59]. The element values in DSS are represented

using 12-bit fractions, while the full matrix and CSR methods use 32-bit floating point values. We

ran the simulations on 500 synthetic GRNs generated following the descriptions in [1]. The main

hardware specifications are listed as follows:

• CPU: Intel Core i5-4670, 3.4GHz
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• RAM: 8GB DDR2 Memory

• GPU: Nvidia GTX 780, 863MHz Clock Rate, 3GB GDDR5 Memory, 6.0 Gbps Memory

Speed [52]

In our experiments, we compare the performance among using three different storage methods

to store the P matrix in the GPU-based OBR algorithm: G-DSS, G-CSR and G-Full. Runtime and

memory utilization are used to quantify the effectiveness of these three methods. We also include

the sequential OBR algorithm using full matrix in the results for reference, which is denoted as

S-Full.

We used the differences of J values and final action decisions (denoted as JDSSFull and ADSSFull

respectively) between G-DSS and G-Full to assess the accuracy of DSS. JDSSFull and ADSSFull are

defined as follows:

JDSSFull =
|JDSS − JFull|

JFull
× 100%

ADSSFull =

 100%, ADSS 6= AFull

0%, ADSS = AFull

(5.5)

where JDSS andADSS are respectively the J value and action decision computed by G-DSS, while

JFull and AFull are respectively the J value and action decision computed by G-Full(or S-Full). In

some experiments, the G-Full algorithm ran out of memory and didn’t complete. In such a case,

we use the J value and action decision computed by S-Full as JFull and AFull respectively. JCSRFull

and ACSRFull are defined similarly. Table 5.2 summarizes the notations used from Fig. 5.6 to Fig. 5.9.

Fig. 5.6 compares the differences of the performance between G-CSR and G-DSS. Fig. 5.6(a)

shows that G-DSS uses less memory than G-CSR. When the number of states is larger than 32,

G-DSS uses about half the memory compared to G-CSR. This is mainly because DSS stores both

P ij and j in one word.
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Table 5.2: Summary of Notations Used From Fig. 5.6 to Fig. 5.9

Symbol Meaning

R the percentage of elements the DSS stores (i.e. X/N )
K Number of horizons in the OBR framework (i.e. number of the tree levels in

Fig. 4.1)
JCSRFull The difference of J values between using CSR and using full matrix
ACSRFull The difference of action decisions between using CSR and using full matrix
TG−DSS Runtime of GPU-based OBR using DSS
TG−CSR Runtime of GPU-based OBR using CSR
TG−Full Runtime of GPU-based OBR using full matrix
TS−Full Runtime of sequential OBR using full matrix

MEMG−DSS Peak memory utilization of GPU-based OBR using DSS
MEMG−CSR Peak memory utilization of GPU-based OBR using CSR
MEMG−Full Peak memory utilization of GPU-based OBR using full matrix

In Fig. 5.6(b), ∆JCSR−DSSFull and ∆ACSR−DSSFull are defined as follows:

∆JCSR−DSSFull = JCSRFull − JDSSFull (5.6)

∆ACSR−DSSFull = ACSRFull − ADSSFull (5.7)

When ∆JCSR−DSSFull (or ∆ACSR−DSSFull ) is larger than zero, it means that the J value (or the final

action decision result) computed by G-DSS is closer to that computed by G-Full, compared to

G-CSR. Fig. 5.6(b) shows that G-DSS has a better accuracy on J value and final action decision

compared to G-CSR for all the cases. DSS uses 12-bit fixed-point fractions to represent P ij (as

opposed to 32-bit floats for CSR). This might seem to sacrifice computation accuracy. However,

unlike CSR, DSS doesn’t abandon the trivial values but instead uses their average value to approx-

imately represent them. Hence its results are closer to the results of G-Full, for both the J value

and final action decision. In Fig. 5.6(b), the runtime of G-DSS is found to be 25.6% higher than

G-CSR on average. This is mainly because DSS needs to update the average value of all the triv-

ial entries during Bayesian update, which requires more computations than CSR. Based on these

results, we note that DSS is superior to CSR in terms of memory utilization and accuracy with a
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Figure 5.6: Performance of G-DSS and G-CSR

modest performance penalty.

In Fig. 5.6, we present the runtime, accuracy and the peak memory utilization of G-DSS and

compare these quantities with G-Full, while varying theR value. In some experiments, certain data

points of G-Full are missing, because the G-Full algorithm ran out of memory and didn’t terminate.

In Fig. 5.6, we focus on how the performance changes with respect to the number of states (the

size of the P matrix). Note that the runtime, peak memory utilization and the number of states

are represented on a logarithmic scale, with base value of 10, 2 and 2 respectively. From these

figures, we notice that the G-DSS is faster than G-Full. In particular, for R = 10%, the G-DSS

is faster by 5.7× on average, and this improvement reduces slightly as R increases. As discussed

in Section 5.2.3, the reason why G-DSS is faster is that DSS only stores (X + K) elements for

each row instead of G-Full which stores N elements. Hence, in G-DSS, the GPU only needs to

launch (X +K) threads for each node in the computation tree shown in Fig. 4.1 (versus N threads

for G-Full). Generally speaking, launching more threads on the GPU will require more hardware

resources. Since G-DSS requires less threads than G-Full for each node in the tree, it can process
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more nodes simultaneously. As R increases from 10% to 40%, the average runtime of G-DSS

increases by 47.2%. In general, JDSSFull and ADSSFull improve as the number of states increases and

R increases. Note that ADSSFull is not monotonic as the number of states increases. This is mainly

because the final decision ADSS depends on the accumulated rewards over multiple actions as

described in Eq. (2.6). The DSS scheme introduces an error to the rewards under different actions

in varying amounts, depending on the number and sparsity of the entries in the P matrix. Hence,

there is some noise in the trend of ADSSFull as the number of the states increases. The peak memory

utilization reduces by 6.3× on average when R = 10%. This improvement reduces as R increases

as expected. For R = 30%, the peak memory utilization is 2.4× better for G-DSS on average.

Considering both runtime and peak memory utilization, a practical choice of R could be 20%

or 30%. When R = 20%, the average speedup of DSS over full matrix from 4 states to 256 states

is about 4.1×. In the largest case (with 512 states), G-Full can’t handle such case because it runs

out of memory. Hence we use the J value and action decision computed by S-Full as JFull and

AFull respectively to calculate the JDSSFull and ADSSFull following Eq. (5.5). When the number of states

is 512, JDSSFull = 10.3% and ADSSFull = 2.4%.

Fig. 5.7 shows the runtime, accuracy and the peak memory utilization of G-DSS compared

with G-Full as K is varied. When K increases, the JDSSFull and ADSSFull also increase. This is mainly

because the error in the J value at level (k − 1) propagates to level k according to Eq. 2.6. Also,

even though TG−DSS < TG−Full for all the cases, the runtime of G-DSS increases at a faster

rate than G-Full as K increases in Fig. 5.7(i). A reason for this is that DSS needs to do more

computation for looking up a single P ij . Although look-ups are parallelized, the number of extra

look-up computations depends heavily on K. Hence when K increases, the total amount of extra

look-up work also increases, which means that the GPU needs more time to process these look-ups

with its fixed hardware resources. In Fig. 5.7(j), the peak memory utilization of G-DSS is 1.1×

lower than G-Full when K = 2. For K = 4, G-DSS uses 3.1× less memory than G-Full. When

K = 5, G-Full runs out of memory.

We also present the trade-off between K and the number of states for G-DSS with a fixed
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memory size of 2GB and R = 20%, as shown in Fig. 5.8. Fig. 5.8 shows the maximal number

of states that G-DSS and G-Full can handle when K varies from 2 to 9. When K is fixed, the

number of states that G-DSS can handle is more than or equal to that of G-Full, since DSS uses

less memory than full matrix. On average, G-DSS can handle 1.63× as many states as G-Full.

From Fig. 5.8, it’s indicated that DSS can handle larger problem size than full matrix.

Fig. 5.9 shows the split between the lookup and computation time of G-DSS. Note that both

horizontal and vertical axes are in logarithmic scale. We also include the total runtime of the full

matrix approach for reference. Since it’s quite difficult to separate the time consumed by accessing

global memory in GPU, we aren’t able to separate the runtime of look-up from the total runtime

for GPU-based OBR with full matrix. The purpose of look-up is to find P ij in DSS data structure

by following Algorithm 4. Since DSS requires more computation for lookup compared with full

matrix, it’s important to quantify the trend in the runtime for lookup operations as the number of

states increases. Fig. 5.9 shows that compared with G-Full, the runtime of G-DSS lookup isn’t the

dominant component of the total G-DSS runtime for 32 or fewer states. This is mainly because

the lookup time of DSS benefits from the parallel processing of GPU. As the number of states

increases beyond 32, the lookup becomes a noticeable fraction of the total G-DSS runtime.

5.4 Conclusion

In this chapter, we propose a Duplex Sparse Storage (DSS) format to alleviate the memory

growth of the GPU-based OBR algorithm in the context of the GRN control problem. By com-

bining the column position index and the entry value in the same word and using an average value

to represent all trivial elements (instead of abandoning them as in CSR), our method significantly

reduces the memory utilization compared with both full matrix and CSR. DSS also improves the

result accuracy of GPU-based OBR compared with CSR. Our DSS is faster than the full matrix

by 4.1× in the context of GPU-based OBR on the GRN control problem when R = 20%. With

a fixed memory limitation, our DSS can handle a larger state space and deeper horizons for the

GPU-based OBR algorithm.
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Figure 5.6: Performance of G-DSS and G-Full when K = 3
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6. PART 2: A NOVEL BINARY DECISION DIAGRAM (BDD) BASED SAMPLING FOR

BMDP

In this chapter we will describe a novel BDD-based approach to store data in the BMDP com-

putation. Due to the inherent “curse of dimensionality”, the practical applicability of the BMDP

is limited by data storage constraints. This is particularly true when a single instruction multi-

ple data (SIMD) platforms such as Graphic Processing Units (GPUs) are used to accelerate the

computation. To overcome this obstacle, in this chapter we propose a highly memory-efficient Bi-

nary Decision Diagram (BDD) based sampling representation for the BMDP model, and develop

a corresponding BMDP solver on a heterogeneous CPU-GPU platform. Our simulation results

demonstrate that our approach achieves significantly better memory scalability, reducing the mem-

ory utilization of the overall BMDP algorithm by 13.2×with an “error” of 3.4% compared with the

conventional floating point representation for a BMDP problem with 262, 144 transitions. For the

same BMDP problem, our BDD-based sampling approach reduces the memory required to store

the transition probability matrix (TPM) by three orders of magnitude compared to a conventional

floating point representation. Our scheme can handle BMDP problems with up to 4.19× 106 state

transitions on a desktop computer, which no other technique has been able to achieve.

6.1 Introduction and Background

As discussed in Chapter 4.3.1, the GPU-BMDP computing generally entails exponential mem-

ory complexity. To mitigate the memory bottleneck of both classical and Bayesian MDP com-

putations, we propose a compact model that represents a transition probabilities by sampling a

set of Boolean functions instead of using floating point numbers to represent the probability. If

there are N states, a probability matrix of this model uses a constant number of Boolean functions,

each of which has O(logN) inputs, as opposed to O(N2) floating numbers in the conventional

c©2019 IEEE. Reprinted, with permission, from He Zhou, Sunil P. Khatri, Jiang Hu, Frank Liu, A Memory-
Efficient Markov Decision Process Computation Framework Using BDD-based Sampling Representation, 2019 56th
ACM/IEEE Design Automation Conference (DAC), 2019
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representation. Instead of storing the expected TPM explicitly as floating point numbers, we store

it implicitly, and generate an entry by sampling a fixed number (M ) of Boolean functions. If an

entry in the expected TPM is pij , then exactly q = bM · pijc of the M Boolean functions evaluate

to “true” when the input to these functions is the concatenated binary code of i and j. There-

fore, by evaluating the M Boolean functions, any entry in the expected TPM can be generated.

The M Boolean functions can be represented by a Reduced Ordered Binary Decision Diagram

(ROBDD, henceforth abbreviated as BDD). A BDD is a compact Directed Acyclic Graph (DAG)

representation for Boolean functions [60, 61]. Since the BDD eliminates isomorphic subgraphs, it

is frequently more compact compared with other representations for a Boolean function [62]. We

have also developed an implicit technique for performing Bayesian update on the BDD sampling-

based probability representation.

Sample-based approaches in [13, 37, 36] can also reduce the memory utilization of P matrices

on the GPU platform if executed in parallel. One key idea of these sample-based approaches is

that instead of expanding the entire decision tree in Fig. 4.1, only parts of the tree are expanded

by using different sampling strategies. Therefore, the overall memory footprint of P matrices

can be reduced by decreasing the number of P matrices instead of decreasing the size of one

single P matrix as our BDD-based approach does. However, the sample-based approaches don’t

fundamentally change the memory scalability of a single P matrix. Also, if executed on GPU,

these approaches require a runtime overhead to determine which part of the decision tree should

be expanded. In summary, [13, 37, 36] use sampling to reduce the number of P matrices, while

our approach uses sampling to reduce the storage required for a single P matrix.

There are also some previous work using Decision Diagrams (DDs) to reduce the memory

footprint for MDP problems, such as FODD [63], SPUDD [41] and APRICODD [40]. However,

one fundamental difference of these methods from ours is that these methods are not based on

sampling. Instead, these methods utilize the Decision Diagram data structure to approximate the

model of MDP problems. Compared with our method, FODD doesn’t represent the P matrix and

there is no arithmetic function in the decision diagrams that FODD uses. SPUDD and APRICODD
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both use Algebraic Decision Diagrams (ADDs, which are DDs that represent numerical values) to

directly represent the reward function, value function, policy and the P in the MDP problems,

which in general will not have too much sharing among the internal edges of the diagrams. Both

SPUDD and APRICODD require a Conditional Probability Table (CPT) for the ADD variables

to represent the P matrix, while our sampling-based scheme does not require such information.

FODD, SPUDD and ARICODD focus on solving classical MDP, in which the model is static.

However, in our sampling-based approach, we support classical and Bayesian MDP, in which the

P matrix can be static or dynamic, since we present an efficient algorithm to perform the Bayesian

update.

The proposed model greatly improves the memory efficiency of MDP computations, but incurs

an increase in computing errors and runtime. The computing errors can be easily controlled by

using a sufficiently large number of BDDs for the representation. The runtime increase is not

critical for classical MDP, since its policy computation is performed offline. For Bayesian MDP,

the runtime overhead can be overcome by utilizing GPU computing. Simulation results show that

our approach can reduce memory utilization by 13× and 137× for Bayesian MDP with 512 states

and classical MDP with 32K states, respectively. In both scenarios, the computing errors are

within a few percent. Overall, our approach allows a single CPU/GPU to handle MDP problems

several times larger than conventional methods.

6.1.1 Preliminaries - Binary Decision Diagrams

The Reduced Ordered Binary Decision Diagram (ROBDD) [60, 64] is a canonical representa-

tion for a Boolean function. An ROBDD (often also referred to as a BDD) is essentially a Directed

Acyclic Graph (DAG) with one root vertex and two terminal vertices 0 and 1. Each vertex v

is associated with a variable xi, and has two children vertices representing fxi and fx̄i , where f

is the function corresponding to v. Semantically, the vertex function is expressed by Shannon’s

Expansion Theorem: f = xifxi + x̄ifx̄i . Here, fxi = f(x1, x2, · · · , xi = 1, · · · , xn−1, xn) and

fx̄i = f(x1, x2, · · · , xi = 0, · · · , xn−1, xn) are referred to as the cofactors of f with respect to xi

and x̄i respectively. The functions fxi and fx̄i are independent of the variable xi. In each path from
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the root to any terminal vertex of the ROBDD, the same variable ordering is encountered. Hence

the ROBDD is referred to as ordered. Also, isomorphic subgraphs are merged. As a result, the

ROBDD is referred to as reduced.

1

fa

a

b

c

f

0 1

0

0
0

1

1

1
fa

ga

0

Figure 6.1: An example of using BDD to represent 2 Boolean functions f and g. The left (right)
child of each vertex is its 0-cofactor (1-cofactor) with respect to vertex variable.

Fig. 6.1 illustrates the ROBDD of a function f(a, b, c) = āc̄+ācb̄+ab̄ and g(a, b, c) = ā+ b̄+ c̄.

The input variables of the Boolean function are also the variables of the corresponding BDD. The

Boolean function is obtained by tracing all paths in the BDD to the “1” vertex. The variable

ordering used in the BDD of Fig. 6.1 is a → c → b. Every vertex in a BDD is a logic function

given by the Shannon Expansion Theorem. For example, the root vertex of the BDD in Fig. 6.1

can be expressed as:

f(a, b, c) ≡ f = āfā + afa (6.1)

where fa = f(a = 1, b, c) = b̄, and fā = f(a = 0, b, c) = c̄ + cb̄. Hence f can be written as

f = ā(c̄+ cb̄) + a(b̄).

The process of getting fa or fā is called cofactor operation on a or ā respectively. Note that

the cofactor operation can be applied not only upon a single literal (a Boolean input variable or the

complement of a Boolean input variable), but also upon a minterm (which includes literals of all
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the Boolean input variables).

As mentioned previously, BDDs are a canonical representation, which means that the isomor-

phism of two BDDs implies that their corresponding Boolean functions are equivalent.

Note that sharing of vertices can happen within one BDD or across several different BDDs.

The BDD vertex labeled fa in Fig. 6.1 is shared by two paths in the BDD vertex of f , hence

resulting in a compact representation. Also, the vertex labeled fā is shared between the BDDs of

f and g, illustrating compactness due to vertex sharing between different functions. In software

implementations of an ROBDD package [65], all the vertices of the BDDs are stored in a special

structure called the unique table, which guarantees that every vertex is represented exactly once

in the BDD package. The unique table and auxiliary data structures are included in a manager,

which stores all the BDDs that have been created in the BDD package. The manager is also

responsible for garbage collection, which periodically deallocates unused BDD vertices, which in

turn enhances the storage efficiency.

In our approach, we use the sampled values of M Boolean functions (each represented as

BDDs) to represent the individual entries of the TPM. This results in a compact representation of

the TPM entries, since a) BDD vertices can be shared by multiple paths in the BDD representation

of any one of the M BDDs, and b) BDD vertices can be shared between different BDDs as well.

6.2 BDD-based Sampling Representation and Operations

6.2.1 Overview

In this section, we describe our Binary Decision Diagram (BDD) based sampling representation

for the P matrix in an MDP. We first describe the BDD-based sampling representation, along with

essential algorithms in the context of the classical MDP and BMDP problems. We next show how

we implement our BDD-based MDP on a heterogeneous platform consisting of a CPU and a GPU.

6.2.2 BDD-based Sampling Representation of TPM

As mentioned in Section 2.3, the memory required to store the expected TPM P using floating

point numbers grows quadratically in the size of the state space of the BMDP problem. We propose
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to represent every entry of the P matrix implicitly by sampling M Boolean functions. If the

entry corresponding to (si, sj)
th in the expected TPM is pij , then exactly q = bM · pijc of the M

Boolean functions evaluate to “true”. All the M functions share the same input variable values

indicating a transition from si to sj . The N states of a system can be encoded by log2(N) binary

variables. Then, a transition can be represented by a pair of log2(N) bit vectors, one for the current

state and the other for the next state. For transition from si to sj , if si and si are encoded by

Xi = {x1, x2, . . . , xlog2(N)} and Yj = {y1, y2, . . . , ylog2(N)}, respectively, then the transition is

represented by {x1, x2, . . . , xlog2(N), y1, y2, . . . , ylog2(N)}. One can see that each Boolean function

depends on O(log(N)) input variables. Note that M is a constant parameter that is chosen based

on the desired numerical precision. Since pij = q/M , the precision of pij by sampling M Boolean

functions is limited to 1/M . In practice, M is usually much smaller than N and thus its impact on

storage complexity is not critical.

In theory, like any other representation, the BDD size can be exponential with respect to the

number of variables. However, in practice its size is usually far less than exponential [61] for

many functions of interest. If the M Boolean functions are represented by a set of M BDDs

BDDM = {bdd1, bdd2, ..., bddM}, the theoretical storage complexity for a TPM is at most O(N),

which is much better than the O(N2) complexity of the floating point number representation.

Moreover, the multiple BDDs used in a BMDP can share many nodes and edges. To illustrate this,

consider Fig. 6.1, in which the BDDs f and g share the subgraph rooted at vertex fā, resulting in a

compact representation.

In order to use BDDM to represent the P matrix for BMDP, algorithms for the following three

operations should be defined:

• generating BDDM from the P matrix

• looking up pij from BDDM

• performing the Bayesian update on BDDM when a state transition from si to sj is observed

The first two apply both to classical MDP as well as Bayesian MDP, while the last operation applies
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to Bayesian MDP alone. We will discuss these algorithms in the next three sections.

6.2.2.1 Generating BDDM

The procedure of generating BDDM based on P is shown in Algorithm 6. Since the sum of

each row in matrix P is 1, the entries in the row are represented by disjoint subsets of BDDM .

Step 5 in Algorithm 6 specifies the range of the subset in BDDM that represents an entry P ij . In

order to “store” the value of P ij , we include the minterm sij , which is the concatenation of Xi and

Yj , from bddstart to bddend. Since each entry in matrix P has a unique combination of Xi and Yj ,

the corresponding minterm sij for each entry is also unique, and hence the ambiguity of different

P ij entries is avoided.

Algorithm 6 Generate BDDM

Require: TPM: P; the number of states: N ; the total number of bdds: M
Ensure: BDDM = {bdd1, bdd2, . . . , bddM}

1: Set all the bdds to logic 0
2: start = 1
3: for i = 1 to N do
4: for j = 1 to N do
5: end=start+P ij ×M -1
6: Xi = si expressed in binary format
7: Yj = sj expressed in binary format
8: sij = Xi · Yj /*’·’ indicates concatenation*/
9: for k = start to end do

10: bddk = bddk + sij /*sij is a minterm*/
11: end for
12: start = end+1
13: end for
14: start = 1
15: end for
16: return BDDM = {bdd1, bdd2, . . . , bddM}

For example, suppose there are 4 states in the BMDP and M = 10, and the first row of P is:

P00 = 0.1, P01 = 0.2, P02 = 0.3, and P03 = 0.4. After processing the first row, the functions for

BDDM are:
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bdd1 = x1x2y1y2,

bdd2 = bdd3 = x1x2y1y2,

bdd4 = bdd5 = bdd6 = x1x2y1y2

bdd7 = bdd8 = bdd9 = bdd10 = x1x2y1y2.

If the P matrix of N states is stored by a floating point matrix, the storage complexity is

O(N2), and there is no information sharing among different entries. Theoretically, if a BDD has

n = 2log2(N) variables, then size of the BDD in the worst case will beO(2n) = O(N2). However,

as discussed in Section 6.1.1, the size of BDDs is reduced because it combines isomorphic nodes

and eliminates redundant nodes. Therefore, many BDD nodes are shared across the minterms

in BDDM , which indicates information sharing across different entries in the P matrix. As a

result, the memory utilization of BDDM scales very well in practice, which will be shown in our

simulation results in Section 6.3.

6.2.2.2 Looking up P ij from BDDM

Once BDDM is generated to represent the expected TPM P , Algorithm 7 shows how to look

up P ij from BDDM . Similar to Algorithm 6, step 4 creates a minterm indicating the transition

from si to sj . In step 6, we sample each bddk with input sij using the cofactor operation. The result

of the cofactor operation is either 1 or 0, depending on whether bddk includes the minterm sij or

not. If the (si, sj)
th entry of P is P ij , then according to Algorithm 6, there will be q =

⌊
P ij ×M

⌋
bdds in BDDM including the minterm sij . In Algorithm 7, these q bdds will yield a “1” after

cofactoring with sij . After step 9 in Algorithm 7, P ij = q/M , which is consistent with the original

P ij .

If Algorithm 7 is executed on a serial platform, the computation complexity of step 5 isO(M).

In the worst case, the computation complexity of step 6 isO(log2(N)), because there are 2log2(N)

input variables in total. Since the number of lookups to compute Eq. (2.6) once is N , the overall

computation complexity for one J computation of the classical MDP/BMDP in the worst case is

O(MNlog2(N)). Considering the number of J computations (i.e. Eq. (2.6)) in the entire BDP pro-

cess, the lookup operations become the runtime bottleneck of the BDD-based sampling approach
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in the classical MDP/BMDP problem. We alleviate this bottleneck in Section 6.2.3 by exploiting

the parallelism of the GPU to implement Algorithm 7.

Algorithm 7 Look up P ij
Require: BDDM = {bdd1, bdd2, . . . , bddM}; the total number of bdds: M ; “from” state: si; “to”

state: sj
Ensure: P ij

1: P ij = 0
2: Xi = si expressed in binary format
3: Yj = sj expressed in binary format
4: sij = Xi · Yj
5: for k = 1 to M do
6: resultk = Cofactor(bddk, sij)
7: P ij = P ij + resultk
8: end for
9: P ij = P ij/M

10: return Pij

6.2.2.3 Bayesian Update on BDDM

To use BDDM in the BMDP problem, BDDM should be able to support the Bayesian update.

Consider timestep t, when the system state is si and the expected TPM is P . At time t + 1, the

state transitions to sj and the expected TPM needs to be updated to P ′ according to Bayes’ rule.

Among the t transitions from time step 1 to t+ 1, if C of them are from si to another state, the ith

row of the P ′ matrix can be computed as


P ′ik = C×Pik

C+1
, k 6= j

P ′ij =
C×Pij+1

C+1
, k = j

(6.2)

Eq. (6.2) is derived from Eq. (2.4) and Bayes’ rule. The other rows of matrix P ′ remain unchanged.

Algorithm 8 describes how to carry out the computation of Eq. (6.2) on BDDM .

60



Algorithm 8 Bayesian Update

Require: BDDM = {bdd1, bdd2, . . . , bddM}; the total number of bdds: M ; state transition from
zt = si to zt+1 = sj; the number of state transitions from si from time step 1 to t+ 1: C

Ensure: updated BDDM

1: Pij = 0
2: Xi = si expressed in binary format
3: Yj = sj expressed in binary format
4: sij=Xi · Yj
5: for m=1 to M do
6: resultm = Cofactor(bddm, sij)
7: if resultm == 0 then
8: generate a random number g ∈ [0, 1]
9: if g < 1

C+1
then

10: bddk = (bddk ∧Xi) ∨ sij
11: end if
12: end if
13: end for
14: return BDDM = {bdd1, bdd2, . . . , bddM}

According to Eq. (6.2), for each state sk where k 6= j, we reduce pik by 1/(C + 1) of its

original value, and add what we subtracted from pik into pij . Hence, whenever the “if” statement

condition in step 7 of Algorithm 8 is true, it means that bddm is contributing to some pik (k 6= j).

In steps 8 and 9, the minterm sik is eliminated from bddm with probability 1/(C + 1), hence we

can achieve the goal of reducing pik by 1/(C + 1) of its original value in one for loop without a

need to explicitly know the value of pik. However, it is not known which pik (k 6= j) that bddm

contributes to, but we do know the value of i. In step 10, we AND bddm with Xi, where Xi is the

complement of the binary representation of si. Therefore, it is guaranteed that no matter what the

value of k is, the minterm sik is removed in one step. Since we need to add what we subtracted

from P ik into P ij , in step 10, after the minterm sik is removed, we need to perform OR operation

on the bdd with the minterm sij .

6.2.3 G-BDD: A BMDP Solver Using BDD-based Sampling Representation on CPU-GPU

We have developed a BMDP solver on a heterogeneous CPU-GPU platform by using the BDD-

based sampling representation for the P matrix. As discussed in Section 6.2.2.2, the runtime
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bottleneck of using the BDD-based sampling representation for the BMDP problem arises from

looking up P ij from BDDM , due to the number of the lookup operations and the computation

complexity of Algorithm 7. Since the cofactor operations of all the M BDDs in BDDM are

independent, step 5 in Algorithm 7 can be performed in parallel for all the M BDDs.

There is yet another avenue of parallelism in Eq. (2.6) which we exploit. The independence

of the J(si,P) values of different state nodes at the same level in the computational tree of the

BDP approach (as shown in Fig. 6.3) can be exploited as well. Since the GPU works in a SIMD

fashion, before performing Eq. (2.6), all the P matrices of different state nodes at the same level

need to be pre-computed based on the state transition path from the root of the computation tree

and the Bayes’ rule. In other words, different BDDMs corresponding to different P matrices need

to be ready on the GPU before performing Eq. (2.6). As mentioned in Section 6.1.1, all the BDD

nodes are stored in the manager. Different BDD nodes can be distinguished by different point-

ers. We denote all the BDD nodes data at level k in the computation tree as DdChunkk. The data

in DdChunkk includes multiple BDDMs representing all the posterior P matrices after Bayesian

update following Algorithm 8. Fig. 6.2 shows the top-level framework on a heterogeneous com-

puting platform of the BMDP solver. In Fig. 6.2, the CPU is responsible for generating BDDM

from the prior P at the root of the computation tree, and generating DdChunkk to represent all

the posterior P matrices at each tree level. Then, DdChunkk is transferred from CPU to GPU.

k

CPU

DdChunk

Generate BDD    from P

Compute Eq. (4)

GPU
Generate DdChunk

k=k+1

M

k

Figure 6.2: The BMDP Framework on Heterogeneous Computing Platform

Eq. (2.6) is computed on the GPU. An example of the GPU computation is shown in Fig. 6.3,
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where N = 4 and K = 3. The J value computations of all state nodes at the same level are

performed by master threads in parallel. While each master thread performs the J computation,

it needs the values of P ij with a fixed i. The lookup operation is performed by the slave threads

following Algorithm 7. To look up one P ij , M slave threads are required per master thread, to

cofactor M BDDs in parallel. To avoid memory explosion, each P ij for a fixed i is immediately

consumed (and not stored) after being computed by Algorithm 7. Therefore, the lookup operations

of each P ij for a fixed i are executed serially for the same parent node at level k + 1. For a fixed

j, the lookup operations of each P ij are executed in parallel. The master and slave threads need to

be synchronized to avoid data race conditions.

M

... ...

...

......

...

...

...

...

......

...

1a

S3

a1

0

a0

a

S0

S0 S1 S2 S3 S0 S1 S2 S3

S0 S3 S0 S3

S3 S0S0

s s s s s s

m m m m

m: master thread

s : slave thread

M M M M s s MM M

Figure 6.3: An Example of the GPU Computation

6.3 Experiment Results

The BMDP solver using our BDD-based sampling representation (denoted as G-BDD) is im-

plemented using Nvidia CUDA Toolkit 8.0. The BMDP solver using floating point on GPU is

denoted as G-FP. The classical MDP solver using BDD on CPU is denoted as CMDP-BDD. We

implemented the BDDs using the CUDD package [65], and migrated the cofactor operation of
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CUDD from CPU to GPU. We ran our simulations on 1000 synthetic prior P matrices. The hard-

ware platforms are:

• CPU: Intel Xeon CPU E5-2680 v4 @ 2.40GHz, 128GB DDR4 Memory

• GPU: NVIDIA K40, 745MHz Clock Rate, 12 GB GDDR5 Memory, 288 GB/sec Memory

Bandwidth

We compare the peak memory utilization, the runtime as well as the result quality to evaluate

the proposed G-BDD engine. In our experiment setup, K is the horizon depth (the number of tree

levels explored) in the BMDP, and M is the number of BDDs used to represent one P matrix. We

assume that there are only 2 actions in the action space (i.e. |A| = 2).

We compare the BDD representation and the floating point (FP) representation in both classical

MDP (CMDP) and BMDP framework. The floating point representation stores the P matrix using

N2 floating point numbers, where N is the size of the state space. We first show the overall

memory performance of CMDP-BDD, shown in Fig. 6.4. We employ value iteration method to

solve classical MDP. Compared to floating point representation, the BDD approach achieves a

137× memory reduction for 32768 states.
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We then evaluate the memory usage of G-BDD and G-FP in the BMDP framework. If the

number of states is N , then there are (2N × |A|)(K−1) = 2(N+1)(K−1) nodes at level K − 1 in the

computation tree. Each node stores one row in one of the P matrices. In Fig. 6.5, we present the

raw memory utilization of storing only different P matrices. G-FP ran out of memory when the

number of states reaches 512, while G-BDD can process up to 2048 states with M = 36 on one

GPU. Compared to G-FP, G-BDD reduces the raw memory utilization by 460× on average, and

2225× for 512 states.

Next we compare the complete BMDP implementation by using G-BDD and G-FP. In Fig. 6.6(a),

the peak memory utilizations of G-FP and G-BDD are depicted over the entire BMDP computa-

tion. The peak memory utilization of G-FP is about 3.1× more than G-BDD on average from

8 states to 512 states. For N = 512 states (i.e. 262144 state transitions), G-BDD reduces the

memory utilization by 13.2× compared to G-FP. G-BDD is able to handle N = 2048 states (i.e.

4.19× 106 state transitions), while G-FP runs out of memory. The memory bottleneck of G-FP is

to store a row of P matrix for each state node, which takes O(N) space. At each state node, the

memory bottleneck of G-BDD is to store M Boolean values of cofactor results and M pointers to

BDDs, which are shared among all TPMs. Thus, the storage complexity of G-BDD at each node

is O(M). This dependence on M is confirmed in Fig. 6.6(b).

Fig. 6.6(c) shows the comparison of runtime T among G-BDD, G-FP and C-FP, which is

sequential implementation of G-FP on a CPU. We observe that G-BDD is faster than C-FP by

3.9× on average and 28.9× for N = 2048 states. For G-BDD, the price paid for the large memory

reduction is an average of 19× runtime compared to G-FP. The reason for this is as follows: to

query an entry in the P matrix, G-FP only needs one data access, while G-BDD needs to perform

the cofactor operations on M BDDs. Although we exploit the parallelism across M BDDs, the

cofactor operation on one BDD cannot be parallelized. Also, in G-BDD, the lookup operations

across different P ij for a fixed i are executed serially to avoid memory explosion as discussed at

the end of Section 5.2. Therefore, we are not able to divide the GPU computation of G-BDD into

fine-grained pieces as in G-FP, and as a consequence the GPU kernel function has a large size,
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Figure 6.6: Performance of Memory Utilization and Runtime

which hinders parallelism. Fig. 6.6(d) shows that the runtime of G-BDD is generally proportional

to M , but the runtime difference for different M values is not significant.

We next evaluate the result quality of different methods. Since the BDD representation uses

M BDDs to sample the P matrix, the precision of P ij is limited by 1/M and the results thus are

different compared to floating point representation. We evaluate the result quality by simulating

the actual reward received over a finite series of state transitions. We assume that there is a ground

truth TPM P , and generate the expected TPM P by adding a uniformly distributed noise δ to P:

P = (1− ε)P + εδ, where ε is the noise ranging from 0 to 1 indicating the deviation of the prior P

from the P . In our tests, we set ε = 0.1. In the simulation, we first solve the BMDP and classical
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MDP problem at state st to decide the action. Then, this action is applied to the simulated ground

truth system, and the system transitions to the next state st+1 with a reward. According to the

transition, Bayesian update is applied to compute the posterior P matrices, which will serve as the

prior for the next timestep. The procedure is repeated for 20 steps, and the relative average reward

error of using the BDD representation compared to using the floating point representation over the

20 steps is used to evaluate the result quality of G-BDD. Since G-FP is proved to converge to an

optimal solution in [22], its result is presumed to be the correct solution here. A smaller average

reward error ERR indicates the method being tested is more accurate. In the ideal case, if G-BDD

and G-FP give the same action decision for every time step, then the relative average reward error

should be 0. To obtain a better intuition, we also include a random decision-making strategy RD

as a reference. RD makes random decisions at every timestep.
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Figure 6.7: Result Accuracy

In Fig. 6.7(a), we compare the result quality (error) of G-BDD, CMDP-BDD and RD. Since

G-FP serves as the golden result and it can’t terminate after 512 states because of the memory

limitation,we only show the results from 8 to 512 states. For all the test cases, both G-BDD and

CMDP-BDD yield a much smaller average reward error compared with RD. The average reward

error of RD is 3.8× larger than that of G-BDD, and 6.1× larger than that of CMDP-BDD. Since

RD makes random decision for each time step, it neither exploits any knowledge of the system,
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nor explores the underlying system model. Therefore its decisions are very different from G-FP,

and in turn result in the largest error. DSS stores the non-trivial elements in P with a fixed bit

resolution, and lumps all the trivial entries to an average value as approximation. Although DSS is

able to capture the structure of the P matrix, especially for the non-trivial entries, it can’t capture

the structure of the trivial entries, since these entries get smoothed by the average value. On the

other hand, G-BDD is able to capture both the trivial and non-trivial values, but with a resolution

bounded by M . Therefore, G-BDD yields a smaller error than DSS. Since the precision of the

BDD representation is bounded by 1/M , a larger M leads to less error, as shown in Fig. 6.7(b) and

Fig. 6.7(c). A practical choice of M could be 36 since it achieves the smallest peak memory use

without sacrificing the result quality much.

We also compared our work with the the well-known Compressed Sparse Row (CSR) repre-

sentation and DSS representation [66]. DSS achieves better performance than CSR. However, DSS

doesn’t fundamentally improve the memory scalability. G-BDD is clearly superior to DSS in term

of memory efficiency. For a system with 1024 states, the memory utilization of DSS was 5.7×

higher than that of G-BDD, while for the same system, CSR uses 11.4× more memory than G-

BDD. The maximal problem size that can be handled by G-BDD is twice as large as that of DSS,

and four times as large as that of CSR. Moreover, the result quality of G-BDD was usually better

than DSS. The price paid for these benefits of G-BDD is increased runtime (by about two orders)

compared to DSS.

6.4 Conclusion

We propose a novel Binary Decision Diagram (BDD) based sampling representation for tran-

sition probability matrices to overcome the memory bottleneck in both classical and Bayesian

Markov Decision Process computations. By sampling a fixed number of BDDs, each entry in the

expected TPM can be expressed implicitly. We develop efficient Bayesian update and lookup algo-

rithms to make the BDD-based sampling representation applicable for the Bayesian/classical MDP

problem. We also design a heterogeneous CPU-GPU computation framework to achieve improved

performance. Our BDD-based approach on GPU reduces memory use by 137× for classical MDP
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with 32K states and 13× for Bayesian MDP with 512 states compared to conventional representa-

tion. Our BDD-based sampling approach is 2225× more compact in storing the TPMs, compared

to the full matrix. Our approach can process a classical MDP (or BMDP) problem with 1G tran-

sitions (4.19 × 106 transitions) on a desktop computer, which to our best knowledge no existing

technique has been able to accomplish.
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7. PART 2: ANALYSIS OF THE UPPER ERROR BOUND OF DSS AND BDD-BASED

APPROACHES

In this chapter, we will analysis the upper error bound of DSS and BDD-based sampling ap-

proach, which indicates the most error can be introduced by these two approaches. As discussed

in Chapter 5 and 6, both DSS and BDD-based sampling approaches sacrifice the result accuracy

to achieve a reduced memory utilization in the MDP/BMDP problems. Since the final policy of a

MDP/BMDP problem depends on Eq. 7.1 as described in Chapter 2, and in Eq. 7.1, only Pij(a)

is stored in the DSS or BDD-based format, therefore the error introduced by the approach comes

from the multiplication term “P ij(a)[gij(a) + λJ∗(sj,P
′
)]”.

J∗(si,P) = max
a∈A
{
∑
∀j∈S

P ij(a)[gij(a) + λJ∗(sj,P
′
)]} (7.1)

In order to simplify the analysis, instead of analyzing Eq. 7.1, we analyze the error bound of

“
∑
∀j∈S(P ij(a)wj)” instead, where wj is the element in a 1 × N vector W , and N is the number

of states. “
∑
∀j∈S(P ij(a)wj)” is essentially the inner product of two vectors, and each vector is

1×N . We first need to make some assumption on W .

Assumption 1. The N elements in vector W are all between 0 and 1, and the average value of the

N elements in W is 1
2
.

7.1 Upper Error Bound of DSS

In order to find the upper error bound of the DSS approach, we first make an assumption about

each row in the P matrix.

Assumption 2. If we sort the elements in the ith row of the P matrix (denoted as P i∗(a)) in

descending order, the elements in P i∗(a) can be expressed as a linear function on the element

index.
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Under Assumption 1 and Assumption 2, the elements in P i∗(a) and the W vector is shown in

Fig. 7.1. In the top figure of Fig. 7.1, P ij(a) are sorted in descending order. The blue solid line

is the original true P ij(a), and the red dash line is the value of the approximated P ij(a) using the

DSS representation. Note that since the sum of all the elements in one row of the P matrix should

be 1. Therefore, max(P ij(a)) under Assumption 2 should be 2
N

. The bottom figure shows the

corresponding wj value in order to maximize the error, in black solid line. R is the ratio of how

many elements in P i∗(a) are kept to be the original values.

1
2

NR N+NR

2

P  (a)

1 2 ... NR          ...        N

NR N

wj

1

N

2

ij

Figure 7.1: DSS Upper Error Bound: P i∗(a) and W
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Under these assumptions, the upper bound of the error E of
∑
∀j∈S(P ij(a)wj) is shown in

Eq. 7.2. The corresponding curve of E v.s. R is shown in Fig. 7.2. When R increases, E will

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R

0

5

10

15

20

25

30

35

E
(%

)

Figure 7.2: DSS Upper Error Bound Curve: Linear

decrease, since more entries are represented accurately.

E(%) =
(1−R)2

3− 2R
× 100% (7.2)

Another possible assumption about each row in the P matrix is described in Assumption 3.

Assumption 3. If we sort the elements in the ith row of the P matrix (denoted as P i∗(a)) in

descending order, the elements in P i∗(a) form a step function upon the element index.

Note that compared with Assumption 2, Assumption 3 is more likely to be applicable to the

problem studies in this thesis, where the elements in P matrix obey the Dirichlet distribution.

Similarly, under Assumption 3, the elements in P i∗(a) and the W vector are shown in Fig. 7.3, for

the upper error bound calculation. Assume that there are NR + Q non-trivial elements in P i∗(a).
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Note that since all the elements in one row of the P matrix should be 1. Therefore, max(P ij(a))

under Assumption 3 should be 1
NR+Q

. In Fig. 7.3, it doesn’t matter what the values of wj are

NR+Q

P  (a)

NR N

wj

1

1

1

NR+Q

NR+Q

1 2     NR                     N

avg=0.5

ij

Figure 7.3: DSS Upper Error Bound Curve: P i∗(a) and W

when the indices are out of [NR,NR + Q], as long as the average value of wj is 0.5. Under such

assumption, the upper error bound E of
∑
∀j∈S(P ij(a)wj) is shown in Eq. 7.3, where Q = k×N ,

k ∈ [0, 1] and 0 < k +R ≤ 1

E(%) =
(1−R− k)k
(1−R)(R+ k)

× 100% (7.3)

The corresponding curve of E v.s. R and k is shown in Fig. 7.4. When R increases, E will

decrease, since the ratio of P i∗(a) entries being represented accurately increases. However, when
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k increases, E can both increase or decrease, which actually follows the theoretical analysis from

Eq. 7.3. The error of the DSS approach come from using an average value to represent all the

“trivial” values in the P matrix.

7.2 Upper Error Bound of BDD-based Sampling Approach

The BDD-based sampling approach sacrifices result accuracy in order to reduce the memory

storage requirement. Unlike DSS, the error of the BDD-based sampling approach is caused by the

limited resolution. As with the DSS approach, in the BDD-based sampling approach, we also have

the same two different assumptions on the distribution of the elements in the P matrix.

When we follow Assumption 2, the elements in P i∗(a) and the W vector are shown in Fig. 7.5

for the error upper bound. In the top figure of Fig. 7.5, P ij(a) are sorted in descending order. The

blue solid line is the original true P ij(a), and the red dashed line is the value of the approximated

P ij(a) using BDD-based sampling representation. In the bottom figure of Fig. 7.5, for every N
M

elements in W , half of them are 1′s, and the other half are 0′s. By following Fig. 7.5, the upper

error bound E is:

E(%) =
3

(2M − 1 + 7
M )
× 100% (7.4)
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Figure 7.5: BDD Upper Error Bound: P i∗(a) and W

Usually M is greater than 100. From Eq. 7.5, when M increases, E decreases. As discussed in

Chapter 6, when M increased, the resolution increases. Hence, the upper error bound decreases.

The corresponding curve of E v.s. M is shown in Fig. 7.6.

When we follow Assumption 3, for the upper error bound analysis, the P i∗(a) and W vectors

are shown in Fig. 7.7. We assume that there are (N
2

+ Q) non-trivial values in P i∗(a), and −N
2
≤

M ≤ N
2

. Note that M can be negative. Again, since the sum of all the elements in P i∗(a) should

be 1, Pmax = 2
N+2Q

Pbdd is the numerical value of the approximated Pmax, using BDD-based

sampling representation. As discussed in Algorithm 6, Pbdd = bPmax×Mc
M

. Therefore, the error
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Figure 7.6: BDD Upper Error Bound Curve: Linear

upper bound E is as follows:

E(%) =
Pmax − Pbdd

Pmax
× 100% (7.5)

Generally speaking, if Q increases, E will increase as well. This is because more elements are

expressed approximately. When M increases, Pbdd will decrease. Hence E will increase accord-

ingly. Note that in this case, under the sameQ, E is ralated to bothN andM . This is because Pmax

is determined by N and Q, and Pbdd is the floor value of Pmax. Error comes from the difference

between Pmax and Pbdd. Therefore, N will determine E as well. In Fig. 7.8, we show the curve of

E v.s. N and M under different Q values.
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Figure 7.8: BDD Upper Error Bound Curve: Step
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8. PART 3: SCALED POPULATION ARITHMETIC FOR EFFICIENT BMDP

COMPUTATION

In this chapter, we will discuss a novel scaled population arithmetic scheme for stochastic com-

puting, which is illustrated using BMDP, matrix inner production and MNIST image classification

as application examples.

8.1 Background and Introduction

Approximate computing is an approach with an emphasis on area and power efficiency, while

sacrificing accuracy. For certain classes of applications that are tolerant to computational errors,

approximate computing can achieve better area and power characteristics compared with exact

arithmetic. Hence, it has shown promising application in scientific computing [67], machine learn-

ing [68], signal processing [69], and real-time systems [70].

Popular techniques for approximation computing include the following: precision scaling [71],

inexact or faulty hardware [72], voltage over-scaling [73], and skipping tasks and memory ac-

cesses [74]. Among these techniques, stochastic computing [16] is a non-conventional arithmetic

scheme for area-efficient implementation of error-tolerant applications. Stochastic computing has

received renewed interest due to, among other reasons, the degrading reliability of recent VLSI

fabrication processes, its purported decrease in power and energy, and its robustness to bit-flip er-

rors. In stochastic computation, values are represented by binary bit streams, and the arithmetic

operations can be processed by simple logic circuits, such as OR/AND gates for addition and

multiplication, respectively.

However, classical stochastic computing, which is abbreviated as SC in the sequal, has its

limitations. First, although it was claimed that SC has a high error tolerance to bit flips [75], its

accuracy depends heavily on the density and the randomness of the 1’s in the binary bit-stream [17].

To the best of our knowledge, the error of SC have not been quantified to date. This section presents

an error analysis for the proposed scaled population arithmetic as well as SC. Second, since SC
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uses a population-based representation alone for all numbers, it can only represent numbers in

[0, 1]. The limitation can be problematic when overflow occurs in the operations, especially in

addition. The third limitation of SC is the runtime complexity. Although the arithmetic operation

units consist of only OR/AND logic gates, the supporting units, e.g., the random number generator

(RNG) and the shuffler, have a runtime complexity of O(k), where k is the number of bits in SC

representation. These weaknesses limit the applicability of SC in real world applications.

In order to alleviate the above limitations, we propose a new Scaled Population (SP) arithmetic

based computation which achieves fast, approximate computing with a low area/power overhead

and improved accuracy. SP arithmetic uses some of the basic ideas of SC, but with three key

enhancements: a) the inherent serialization in SC is avoided; b) the errors of SC are significantly

reduced by providing a scaling (exponent) term in SP arithmetic; and c) the range of numbers that

can be represented by SP is much larger than what is possible in SC. The key design goal of SP

arithmetic is that each operation be computed usingO(1) gate delays (as opposed to clock cycles).

Unlike SC, SP never allows any operation to perform a serial traversal of the bits of the operand.

The SP arithmetic achieves a dramatic speedup over SC.

Our proposed SP computation greatly improves the accuracy of a single multiplication and

addition operation by 6.3× and 4.0×, compared with SC. Our experimental results show that for

addition and multiplication, our SP approach uses 7.13× and 3.75× fewer LUTs than conventional

floating point number based arithmetic circuit, respectively. We also test our approach in the

scenarios of BMDP problem, matrix inner product and image classification using MNIST dataset.

Our approach achieved a 31.89%, 2072.32% and 32.79% improvement over SC in terms of the

accuracy for the BMDP, matrix inner production and image classification problem, respectively.

The key contributions of the SP approach are:

• Introduction of SP, with larger range, better error and reduced delay than SC.

• Achieving O(1) delay for all operations, and design for speed and accuracy over SC.

• Quantifying the errors of SP arithmetic and SC.
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• Applying the SP approach on simple addition/multiplication, BMDP problem, matrix inner

product and MNIST classification.

8.2 Stochastic Computing and Previous Works

Stochastic computing is an approximate arithmetic approach that allows area-efficient circuit

implementation for some operations on fractional numbers. Consider a fractional number Px ∈

[0, 1). In conventional binary number representation, it is represented as X = x1x2...xk such that

Px =
∑k

i=1 2−ix. In stochastic computing, by contrast, it is represented by a Π−bit vector π,

where |π| ≤ Π bits are randomly chosen to be 1, so that Px = |π|
Π
∈ [0, 1].

In [16, 76], the key elements of stochastic computing, including circuit implementations and a

comparison with analog computing, are introduced. One prominent benefit of stochastic computing

is the very low area cost in implementing certain arithmetic operations. Fig. 8.1 and Fig. 8.2 show

examples of multiplication and addition operations, respectively. The area advantage is clearly

evident. The computing results depend on the number and the locations of 1’s in the bit-streams,

and therefore are usually inaccurate. Moreover, the 1’s are required to be randomly located in each

bit-stream.

Z=XY=01000001

X=01001011

Y=01100101

Figure 8.1: Multiplication: 4
8
× 4

8
= 2

8

Z=X+Y=11100011
Y=10100001

X=01000010

Figure 8.2: Addition: 2
8

+ 3
8

= 5
8

The work of [77] shows how to realize subtraction in stochastic computing by using a mul-

tiplexer (MUX) and a NOT gate. In [76], addition and subtraction approaches are introduced to

solve the overflow problem. Although this approach solved the problem of overflow, it is a serial

process, i.e., only one bit in π is processed at a time. Hence it can easily form a performance

bottleneck. A stochastic division circuit design, called CORDIV, is proposed in [78].
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In the basic form of stochastic computing, only numbers in [0, 1] are allowed. In [17], multiple

representation schemes are reported to overcome this limitation. The bipolar format increases

the operands’ range to [-1,1] [79]. In [80], the numerical value of a bit-stream representation is

no longer population-based, but interpreted as the ratio of 1’s to 0’s, which increases the range

to [0,+∞]. Although these approaches increase the range of the operands, they require a more

complicated design for the arithmetic operation circuits, while our SP arithmetic achieves a large

range for number representation while ensuring that all operations incur only O(1) gate delays.

Since the accuracy of stochastic computation relies highly on the randomness of the 1’s in the

bit-stream, data shuffling has been used in SC [81], through random number generators. However,

these approaches either introduce more overhead with respect to runtime, area and power, or are

not able to introduce enough randomness. By contrast, our SP approach makes use of several

multi-level Linear-Feedback Shift Register (LFSR) based shuffler, which improves both efficiency

and randomness.

In spite of the considerable studies on stochastic computing, the research attention on quanti-

fying its accuracy and error characteristics has been surprisingly light. In particular, there is a lack

of a systematic investigation on the errors due to the densities of 1’s in the bit-stream of the SC

number representation. A key contribution of our SP arithmetic is to fill this void and remarkably

improve the accuracy over SC.

8.3 Scaled Population Arithmetic

8.3.1 Number Representation

The number representation in Scaled Population (SP) arithmetic is an enhancement of that in

SC, with a scaling (exponent) term which allows SP to cover a range beyond [0, 1]. Specifically, the

SP representation of a number x is an M -bit tuple x = {σ, π}, where σ is a Σ-bit scaling term and

π is a Π-bit population vector such thatM = Σ+Π. The numerical value of x is |π|
Π
×2(σ−Σ0) ' x,

where |π| is the number of 1’s in the population vector π, and Σ0 is a constant, typically chosen to

be 2(Σ−1). The reason that we include the Σ0 constant is to allow the value of the scaling term in
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the SP representation (i.e. 2(σ−Σ0)) to be smaller than 1, so that we can have increased resolution,

allowing us to increase (or decrease) the density of the population vector without changing the

numerical value of x. We note that the 1’s in the population vector π are uniformly distributed,

which has the similar characteristic with SC [76]. The SP representation described above only

handles positive numbers. However, augmenting SP to handle signed computation can be easily

accomplished by adding a sign bit.

For example, if {σ, π} = {110, 1011010101} then |π| = 6, Π = 10, Σ = 3 and σ = 6. Hence

the numerical value of the SP number x is 6
10
× 22, which equals 2.4. Note that the inclusion of the

scaling term is something that SC does not have. The SP number representation not only covers

a much larger range of numbers, but also, and more importantly, facilitates arithmetic operations

that have improved computing accuracy, as will be elaborated in the sequal.

8.3.2 Arithmetic and Supporting Operations

In this section, we will describe two most commonly used arithmetic operations, multiplication

and addition, followed by a description to supporting operations such as shuffling, density checking

and scaling.

Fig. 8.3 is a top level block diagram of the proposed SP arithmetic system. The input operands

are represented as conventional binary numbers X and Y . The generators convert X and Y to the

SP format, e.g., x = {σ, π}. Then, the operands x and y in SP format are fed into the arithmetic

processing units, such as adder and multiplier, for computation.

z
Operations

Arithmetic
x

y

Generator

GeneratorY

X

Figure 8.3: The top level view of SP scheme.

In designing SP-based arithmetic circuits, we ensure that each operation incurs O(1) gate de-
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lays. In particular, any computation that requires us to iterate over the M bits of an SP vector

(which requires serialization) is avoided. Note that all the operations described below are approx-

imate in nature. Also, the computations on the scaling term are efficient, since Σ is a very small

value.

8.3.2.1 Multiplication

Multiplication uses an AND gate as the underlying function, as in SC. In [76], it was proved that

an AND gate is able to achieve multiplication when the operands are presented in population-based

vectors. In SP arithmetic, we propose a scaling operation, to be performed prior to each multiplica-

tion in order to improve the computation accuracy. This improvement is based on the observation

that the multiplication accuracy is higher when there are more 1’s in the population vectors of the

operands. Consider multiplication between x and y, with the result being z. The computational

error ε from the AND gate-based multiplication decreases when |πx|
Π

or |πy |
Π

increase.

Proof. Let px = |πx|
Π

, py = |πy |
Π

and pz = |πz |
Π

. Then each bit in πx, πy and πz is 1 with a probably

of px, py and pz, respectively. For the ith bit, ideally pz = px × py. Hence, the error of the ith

bit in πz occurs when the probability of it being 1 is not px × py, i.e., the error at the ith bit in πz

is εi = (1 − px × py). When px or py increases, εi decreases. Therefore, considering the entire

population vector, when px or py increases, ε will decrease as well.

Based on Lemma 8.3.2.1, the average error of multiplication with px and py varying over the

interval [0, 1] is
∫ 1

0

∫ 1

0
(1− pxpy)dpxdpy = 0.75.

The scaling term in the SP number representation allows us to control the density of population

vectors by scaling. A density checker unit and a scaling unit are needed together to perform the

density control. Also, the randomness of the distribution of 1’s in the population vectors affects

the accuracy as well. The more uniformly randomly the 1’s are distributed, the more accurate the

result is. Therefore, a shuffle unit is additionally needed in our design for achieving randomness.

The key elements for the SP multiplication are shown in Fig. 8.4.

Consider multiplication between x and y. We first check if the population vectors of the two

83



x

y

z

Scale

ScaleDensity Check

Density Check

Figure 8.4: The SP-based Multiplication

numbers are dense enough, i.e. |πx| ≥ T1 and |πy| ≥ T1, where T1 is a sufficiently high fraction.

Typically, T1 ∼ 0.7 × Π is a good value according to our experimental results. Such density

checking is performed by the density checker unit. If the numbers are not dense enough, the

population vectors are scaled to make them dense enough, and corresponding changes are made to

the scaling terms. Now we compute z = x× y as πz = πx&πy, and σz = σx + σy − Σ0.

8.3.2.2 Addition

In our approach, addition is approximately achieved by using an OR gate. Suppose we want to

add x and y. A high accuracy requires that the population vectors of both numbers have a density

lower than a threshold T2. Suppose we want to add x and y, with the result being z. The error ε of

the OR-based addition decreases when |πx|
Π

or |πy |
Π

decreases.

Proof. Let px = |πx|
Π

, py = |πy |
Π

and pz = |πz |
Π

. Then, each bit in πx, πy and πz is 1 with a

probably of px, py and pz, respectively. The OR operation performed on πx and πy leads to pz =

px + py − (px × py). For the ith bit in πx and πy, the error at the ith bit in πz is εi = px × py. In

other words, the error of the ith bit in πz occurs when the ith bits in πx and πy are both 1’s. From

the above equation, when px or py decrease, εi decreases. Thus, considering the entire population

vector, when px or py decreases, ε will decrease.

According to Lemma 8.3.2.2, the average error of addition with px and py varying over the

interval [0, 1] is
∫ 1

0

∫ 1

0
(pxpy)dpxdpy = 0.25.

However, unlike multiplication, as long as the 1’s in the population are uniformly distributed,

we don’t have to use a density check or scaling unit for addition. Instead, we perform skewed
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addition, where each operand occupies different halves of the π bits. Therefore, in skewed addition,

it is guaranteed that no matter what the density of the operands’ population vectors is, the 1’s in

the two operands will never be aligned at the same bit position. To perform the skewing, we

use 2 Π-bit masks mx and my, where mx has the left Π
2

bits set to 1, and my has the right Π
2

bits set to 1. The result will be πz = (πx&mx)|(πy&my), with σz = σx + 1 = σy + 1. If

σx 6= σy, then the scaling unit will be used to adjust the density of the population vectors of

x and y until σx = σy. Fig. 8.5 shows an example of how skewed addition is processed. In

Fig. 8.5, x = {01, 00111001} and y = {01, 10000010}. The numerical values of x and y are

2(1−2(2−1)) × 4
8

= 0.25 and 2(1−2(2−1)) × 2
8

= 0.125, respectively, assuming Σ0 = 2. After the

skewed addition, the numerical value of the result z = {10, 00110010} is 2(2−2(2−1)) × 3
8

= 0.375,

which matches the theoretical addition.

Note that skewed addition relies on the randomness of the distribution of 1’s in the population

vector. If the 1’s in the population vector are not uniformly distributed, πx&mx or πy&my will not

have half of the 1’s in πx or πy approximately, which will introduce an error into the final addition

result.

10

mx = 11110000 my = 00001111
&&

x = 00111001 y = 10000010

00110000

=

00000010

=

|

scaling term

01

01

z = 00110010

=

Figure 8.5: SP-based Skewed Addition
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8.3.2.3 Generator

The generate operation converts a conventional binary number to the SP format. The generators

used in SC have a computational complexity that is proportional to the bit stream length [82]. Our

approach generates a π population vector with O(1) gate delays, by replicating the bits of the

original number based on their bit position. Assuming the original binary number to be X =

{xn−1, xn−2, ...x1, x0}, where n is the number of bits. We convert it to the SP format by producing

2i copies of bit xi. The resulting bits are then fed to a shuffle unit, which randomizes the bits of π

and yields a SP representation of X . Note that in case this would result in a π vector with |π| > Π,

then we appropriately adjust the population vector by decimating or dropping the additional bits.

Since we assume the 1’s are uniformly distributed after shuffling, dropping the additional bits won’t

change the numerical value of the population vector.

0000

0100

adjust length

0100

shuffle

11 1

 1 10  0

  1

X=010

 0

Figure 8.6: An Example of Generate Operation, with X = 0.25, and Π = 4

An example of the generate operation is shown in Fig. 8.6. The numerical value of the binary

weighted number X = 0, 1, 0 is 0.25. Assume that the length of the population vector Π is 4,

Σ = 2 and Σ0 = 1. The initial scaling term is 1, since there is no scaling, initially.

Generating 2i copies of bit xi is accomplished by wires. Since the shuffle unit and the length

adjust unit are both done with O(1) gate delays (as will be discussed in the following sections),

the generator incurs O(1) gate delays as well.
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8.3.2.4 Shuffle Unit

In order to let the 1’s in the population vector π be uniformly randomly distributed, a 2-level

shuffle unit is designed in our SP arithmetic system. The bits in π are grouped into W chunks. The

first level of the shuffle unit generates W permutations of the chunks, and a particular permutation

is selected by an LFSR that randomly cycles through a count between 1 and W . Next, within

all the chunks, the second level generates w permutations of the bits within every chunk, and a

particular permutation is selected by an LFSR that randomly cycles through a count between 1 and

w. Note that wW = Π. In order to reduce the number of LFSRs, we select the same bit-level

permutation for all the chunks. Additionally, a third LFSR randomly selects a logical shift of the

resulting permuted number, performed by a barrel shifter. We choose between left and right shifts

randomly. Further, the number of positions V to shift is also chosen randomly.

4

LFSR

1 2F F F4F3

ShiftLFSR

2 bits

2 bits

4 bits

15 13 8 10 11 9 0 2 3 1 4 6 7 5 12 14

12 14 15 13 8 10 11 9 0 2 3 1 4 6 7 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 13 14 15 8 9 10 11 0 1 2 3 4 5 6 7

LFSR

1 ff f2 f 3

Figure 8.7: Shuffle Example (W = w = 4)

Fig. 8.7 shows an example of the shuffle unit operation. Since Π = 16, the position indices as

shown on the top position vector range from 0 to 15. F1, F2, F3, F4 are different permutations for
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4 chunks in π (i.e. W = 4), while f1, f2, f3, f4 are the bit-level permutation within the chunks (i.e.

w = 4). The⊗ symbol means applying the permutation on π, which essentially swaps bits around.

8.3.2.5 Density Checker Unit

In SP multiplication, we need to test if the population density |π|
Π

is greater than T1, which is

a threshold greater than 0.5. We convert the problem to check if |π|
Π
× 0.5

T1
> 0.5. Note that 0.5

T1
is

smaller than 1, and so we use a Π-bit mask with 0.5
T1
× Π 1’s, and bit-wise AND this mask with π

in order to get |π|
Π
× 0.5

T1
, which we denote as π2. Next, we check if π2 has a density greater than

0.5. Note that we need to do this approximately, with O(1) gate delays. Since the 1’s in π2 are

randomly distributed, we can do this approximately by checking π′ = (π2)|(π2 << 1)|(π2 << 2).

In other words, we perform the logical OR of π2 with its left-shifted counterparts (by 1 and 2 bit

positions respectively). If the result π′ is all 1’s, we conclude that the density of |π| is greater than

T1. The test of whether the number is all 1’s is done by using a hash function (HF) of Class 3 [83],

in order to ensure a O(1) gate delay. We hash π′, and perform a bit-wise comparison of the result

with the pre-computed hash of a population vector with Π 1’s.

8.3.2.6 Scaling Unit

According to Lemma 8.3.2.1, the density of the population vector needs to be adjusted by the

scaling unit to achieve an improved accuracy for SP multiplication. Along with a scaling operation,

the scaling term σ for each operand needs to be updated accordingly.

Suppose we would like to adjust the density of the population vector π by β, to yield the result

π · β. We will discuss how to process such an adjustment for different values of β.

1. When 0 < β < 1, we use a mask Mβ with Π bits, where there are βΠ 1’s in the mask

at arbitrary locations. Then we perform a bit-wise AND operation of the mask Mβ with

π, shuffle the result, and increase σ by 1
β

, in order to keep the numerical value of the SP

representation to be the same.

2. When 1 < β < 2, we solve the problem of computing β × |π| as follows. We first scale

down π by β
2

by using the mask Mβ
2

with density of 1’s being β/2, and resulting population
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vector is called π′.

π′ = π&Mβ
2

(8.1)

In Eq. 8.1, Mβ
2

is a mask with Π bits, where β
2
Π bits are 1’s. Since, β×|π| = 2×(|π|× β

2
) =

2× |π′|, we next double the density of π′ by using the following equation:

πd = (π′|π′s)|(π′&π′s) (8.2)

In Eq. 8.2, πd is the population vector after doubling, and π′s is the population vector after

shuffling π′. If the 1’s are uniformly randomly distributed in π′, π′|π′s will result in 2π′−π′2.

Therefore, another term of π′&π′s is added in Eq. 8.2 as a compensation for the numerical

loss of π′2. Due to the error of using bit-wise OR operation to perform addition, πd is only

an approximate version of 2π′. However, it is computed with O(1) gate delays.

3. When β > 2, we repeatedly double |π| until the remaining adjustment ratio is less than 2.

Then we can use the methods mentioned above to compute π · β.

8.4 Experiment Results

The proposed SP arithmetic scheme is evaluated for single multiplication/addition operations,

matrix inner product computation, and MNIST image classification, in terms of accuracy, power,

delay and area. It is implemented on a Zybo Zynq-7000 development board which uses a Xilinx

XC7Z010-1CLG400C FPGA device with 17,600 look-up tables (LUTs) and 35,200 flip-flops.

8.4.1 Single Arithmetic Operation

Table 8.1: Error Contribution of SP-based Multiplication (%)

T Perfect Generator Density Check Scale Shuffle Imperfect
50% 32.76(10.49) 32.91(10.87) 33.42(9.81) 35.02(12.66) 34.96(11.23) 35.12(13.98)
60% 16.39(4.33) 16.99(4.39) 17.73(5.91) 19.94(12.23) 18.30(7.92) 18.95(9.18)
70% 5.76(3.49) 5.91(3.50) 7.82(4.78) 9.94(11.28) 9.84(9.73) 10.26(11.02)
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(a) SP multiplication T =
70%
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(b) SC multiplication
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(c) SP addition
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(d) SC addition

Figure 8.8: Relative errors proportional to darkness.

We first show the results of evaluating accuracy. Our goal of SP arithmetic is to improve accu-

racy over SC. The accuracy is evaluated by comparing average relative errors (over a large number

of operations) with respect to the conventional SC using IEEE 32-bit floating point representation

as a baseline for comparison. The errors are depicted as heat maps in Fig. 8.8, where error is pro-

portional to darkness. The two axes indicate P1 = |π1|
Π

and P2 = |π2|
Π

, which are the densities of

1’s in the population vectors of the two operands. For multiplication, the density threshold which

we use to decide whether to scale or not is T = 70% for both operands. As expected, SC mul-

tiplication causes large errors for low densities, while SC addition results in large errors for high

densities. By contrast, the errors from the SP arithmetic are much smaller.

Since an operand of multiplication is scaled if the density of 1’s in its population vector is lower

than T , we analyze the errors for two different situations. Errors elo are for the case where either

operand has density less than T . Errors ehi are for the case where both operands have densities

greater than T . We report the separated error results in the format of elo(ehi). In this format, the

average errors from SP multiplications are 10.26%(11.02%) while those from SC multiplication

are 71.04%(3.19%). Please note that we categorize SC multiplication errors into the elo(ehi) format

for the ease of comparison. For addition, the average SP error is 5.83% while the error of SC is

23.43%.

We further show the errors from individual components of each SP arithmetic operation. In Ta-

ble 8.1, columns 3-6 display the errors from generator, density check, scaling unit and shuffle unit,

respectively, for SP multiplication. When estimate the error of one component, we compute the
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other components using software, which is regarded as perfect and contributes no error. Column

2 summarizes the errors when all components are perfect and the errors are from the SP number

representation alone, while Column 7 is for the cases where all components are realized in circuits.

Such decomposed error analysis is performed for different threshold levels. Note that the shuffle

operation has the highest error contribution. Note that Column 2 is the error we would like to have

for the circuit realization of Column 7.

Table 8.2: Error Contribution of SP-based Addition (%)

Perfect Generator Shuffle Imperfect

0.84 1.21 3.57 5.83

The errors from different components in SP addition are provided in Table 8.2. Please note that

SP addition does not need the density checker or scaling unit. One can see that most of the errors

are from the shuffle unit. The reason behind is that the shuffling results are not uniformly random

enough.

Table 8.3: Efficiency Comparison for Multiplication (Π = 32)

delay (ns) #LUTs

SP 1.92 20

SC 4.28 16

Floating point 14.53 956

Fixed point 6.12 84

Next, we show the FPGA resource utilization and performance in comparison with SC, Float-

ing point (conventional arithmetic using IEEE 32-bit floating point representation) and fixed point
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(conventional arithmetic using 32-bit fixed point representation). The results for multiplication are

summarized in Table 8.3. Note that for SP and SC, since the supporting units such as genera-

tor, shuffle unit, scaling unit, and density checker are shared among multiple operations, the area

and LUTs used by these operations are not counted in Table 8.3. For reference, if these units are

counted, SP-based addition and multiplication use 7.13× and 3.75× fewer LUTs than the conven-

tional floating point number based arithmetic circuit, respectively. One can see that SP arithmetic

is 2.2× faster than SC. On the other hand, SP arithmetic uses fewer LUTs as conventional floating

point arithmetic, and much fewer when not considering the supporting units. Thus, SP reaches

a compromise between SC and conventional arithmetic on performance and resource utilization.

Meanwhile, earlier results indicates its great accuracy improvement over SC. A similar trend can

be observed for addition, whose results are in Table 8.4.

Table 8.4: Efficiency Comparison for Addition (Π = 32)

delay (ns) #LUTs

SP 1.45 22

SC 3.24 18

Floating point 12.81 535

Fixed point 4.96 48

8.4.2 Application 1: BMDP Problem

The accuracy of SP arithmetic is evaluated for the BMDP problem and the results are shown

in Table 8.5. Note that in this experiment, the multiplication and addition in Eq. (2.6) are calcu-

lated using our population arithmetic. The max operation is performed with software. The table

includes the results of BDD-based sampling representation described in Chapter 6 with a total

number of BDDs M = 64, and a random decision maker which makes random decisions for every

state. The way we evaluate the error is the same as the way we described in Section 6.3. The SP ap-
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proach improves the accuracy by 31.89% on average compared to SC. Compared with BDD-based

sampling approach, SP introduces error not only from the limited resolution in the population part,

but also from the stochastic computation. Therefore, BDD-based sampling representation is more

accurate.

Table 8.5: Error of BMDP Problem (%) (Π = 64, M = 64)

Number of states SC SP BDD Random decision maker
4 9.25 5.26 4.67 17.01
8 8.22 6.37 5.12 17.62

16 7.23 5.77 5.01 17.90
32 9.98 5.69 4.11 16.45
64 8.87 6.81 4.39 15.57
128 7.05 4.56 3.67 17.51
Avg 8.43 5.74 4.50 17.01

8.4.3 Application 2: Matrix Inner Product

The accuracy of SP arithmetic is also evaluated for the matrix inner product computation and

the results are shown in Table 8.6. The table includes the results of Perfect SP, where all its compo-

nents are implemented with software and the only approximation is from the number representa-

tion. Errors from individual operations accumulate in an application that contains many arithmetic

operations. The errors increase with the vector size. The SP approach improves the accuracy by

20.72× on average compared to SC. The errors from perfect SP and fixed point only comes from

the limited resolution of the number representation. Therefore, they are more accurate.

Table 8.7 and Table 8.8 show the relative error of the matrix inner production when the bitwidth

is 64 and 128 correspondingly. When the bitwidth increases, the error of all the population-based

representations (SC, SP and perfect SP) and fixed point representation decrease. However, the

error of the population-based representations decreases more rapidly than fixed point. This is

because all the bits are weighted the same in the population-based approaches, while in fixed point

representation, the bits are binary weighted.
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Table 8.6: Error of Matrix Inner Production (%) (Π = 32)

Vector size SC SP Perfect SP Fixed point
32 172.50 16.55 1.00 0.21
64 283.52 18.92 1.11 0.38
128 420.15 21.03 1.19 0.46
256 589.39 24.59 1.29 0.49
512 797.42 28.02 1.38 0.52
Avg 452.21 21.82 1.19 0.41

Table 8.7: Error of Matrix Inner Production (%) (Π = 64)

Vector size SC SP Perfect SP Fixed point
32 143.71 9.38 0.68 0.20
64 251.42 11.92 0.74 0.37
128 391.05 13.63 0.78 0.44
256 459.19 14.88 0.83 0.48
512 582.21 17.14 0.87 0.52
Avg 365.52 13.39 0.78 0.40

Table 8.8: Error of Matrix Inner Production (%) (Π = 128)

Vector size SC SP Perfect SP Fixed point
32 115.97 5.73 0.41 0.20
64 213.72 6.29 0.48 0.37
128 342.81 7.30 0.54 0.43
256 399.31 10.17 0.62 0.47
512 439.07 12.42 0.69 0.50
Avg 302.18 8.38 0.55 0.39

8.4.4 Application 3: MNIST Digit Classification

The effect of SP approximation is also evaluated in a neural network application on MNIST

digit classification [84]. The neural network has two hidden layers, 784 input nodes and 200 hidden

layer nodes. The training set and test set have 60,000 samples and 10,000 samples, respectively.

The size of each image is 28 × 28 pixels. The multiplications and additions in the network are

implemented with SP, SC, conventional floating point and fixed point arithmetic. The classification

success rates from these arithmetic methods of different bitwidth are listed in Table 8.9. In SP and
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perfect SP, the desired density for multiplication is T = 70%.

On average, SP can reach accuracy of about 81%, which is a significant improvement over

the 60% accuracy by SC. When the length of the bits increases, the accuracy of IEEE-FP doesn’t

change appreciably. However the length of the bits influences the accuracy of perfect SP, SP

and SC, since these 3 approaches are population based. Generally speaking, SC has the worst

accuracy since first, it is not able to handle values greater than 1, and second, it is not able to adjust

the density of the population vector, so that it suffers from the inherent error of SC discussed in

Lemma. 8.3.2.1 and Lemma. 8.3.2.2. The accuracy of the perfect SP is the upper bound of the

accuracy of SP, since every component in perfect SP has no error. Binary-weighted representation

has a slightly better accuracy than perfect SP. This is because although the perfect SP eliminates the

error of the hardware implementation, it still suffers from the limited resolution. Compared with

classical SC, SP improves the accuracy by about 30%. Considering the hardware implementation

efficiency reported in Table. 8.3, for real-time image classification, SP can be a solution if the

application has a high error tolerance.

Table 8.9: MNIST Classification Success Rate (%)

SP Perfect SP SC Fixed point Floating point
32-bit 69.06 75.63 49.42 91.78 93.12
64-bit 78.41 84.72 60.07 92.62 93.68
128-bit 86.26 90.11 67.15 93.34 93.96
256-bit 90.86 92.74 70.26 93.99 94.11

Avg 81.15 85.81 61.72 92.93 93.71

8.5 Conclusion

A scaled population arithmetic is proposed to improve accuracy compared to classical stochas-

tic computation, by introducing a scaling (exponent) term, along with a population vector. Delays

of the scheme are kept low by ensuring each operation uses O(1) gate delays. The SP arithmetic

scheme improves the accuracy of multiplication and addition by 6.5× and 4.0×, respectively com-
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pared to classical stochastic computing. Its computation is also much faster than classical stochas-

tic computing. We also apply the SP arithmetic scheme on a BMDP problem and improve the

accuracy by 31.89% compared to SC. Note that the SP arithmetic scheme can be used as a general

purpose computation scheme and is not limited to the BMDP problem. We also apply it on matrix

inner production and the MNIST image classification application. In the future, more arithmetic

operations will be designed, including subtraction, division and logarithm. A quantified error anal-

ysis is provided to further support the theoretical foundation of the SP scheme. Our design incurs

O(1) gate delays, to ensure efficiency.
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9. CONCLUSION AND FUTURE WORK

Bayesian Markov Decision Process (BMDP) can be used to solve many practical sequential

decision making problems since it captures the uncertainty of the environment. However, due to its

exponential runtime and memory storage requirements, its practicability is limited. In this thesis,

we aim to solve both the runtime and memory issues of BMDP by developing hardware-oriented

acceleration algorithms and scalable compact BMDP model representations.

In our work, we present a GPU-based BMDP computation, a parallel Forward Search Sparse

Sampling (FSSS) BMDP algorithm in order to solve the runtime issue. Note that the parallel

FSSS-based BMDP can also alleviate the memory utilization. For the memory issue, we present

a Duplex Sparse Storage (DSS) scheme and a Binary Decision Diagram (BDD) scheme. We also

describe a new Scaled Population (SP) arithmetic to further improve the efficiency and accuracy

of the computation in BMDP algorithm. The SP arithmetic can also be used in many other ap-

plications in addition to BMDP. Our results show that these techniques can alleviate the runtime

and memory problems, which makes the potential of BMDP for solving practical problems more

readily realized.

In the future, we plan to expend our work by exploring the followings:

• A graph BMDP model. We also plan to develop a neuronal network like graph BMDP

model in order to further alleviate the memory requirement. In this graph BMDP model, the

data of the expected TPM will be represented underlying the weights of the edges.

• A ring-based MDP engine. We plan to design a ring-based MDP circuit engine. The

expected TPM data is transferred on a ring-based data bus, which feeds to the computation

module. The BMDP result computation will be preformed on levelized computation module.

Such hardware-based engine will significantly reduce the runtime.

• DSS/BDD with FSSS-BMDP. The DSS and BDD scheme can also be applied on the FSSS-

BMDP algorithms. In our current work, we only implement the DSS and BDD with the
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GPU-BMDP. However, embedding DSS or BDD with the FSSS-BMDP will help further

reduce the runtime and memory storage.

• Expand the SP operation set. More arithmetic operations can be supported by the SP

arithmetic. For example, division, logarithmic function, etc, need to be explored.

98



REFERENCES

[1] M. R. Yousefi and E. R. Dougherty, “A comparison study of optimal and suboptimal interven-

tion policies for gene regulatory networks in the presence of uncertainty,” EURASIP Journal

on Bioinformatics and Systems Biology, vol. 2014, no. 1, p. 6, 2014.

[2] O. Sigaud and O. Buffet, Markov decision processes in artificial intelligence. Hoboken, NJ:

John Wiley & Sons, 2013.

[3] A. Nilim and L. El Ghaoui, “Robust control of markov decision processes with uncertain

transition matrices,” Operations Research, vol. 53, no. 5, pp. 780–798, 2005.

[4] O. Berman and E. Kim, “Stochastic models for inventory management at service facilities,”

Stochastic Models, vol. 15, no. 4, pp. 695–718, 1999.

[5] N. Bäuerle and U. Rieder, Markov decision processes with applications to finance. New York,

NY: Springer Science & Business Media, 2011.

[6] N. Bäuerle and U. Rieder, “MDP algorithms for portfolio optimization problems in pure jump

markets,” Finance and Stochastics, vol. 13, no. 4, pp. 591–611, 2009.

[7] N. Friedman and Y. Singer, “Efficient Bayesian parameter estimation in large discrete do-

mains,” in Proceedings of the 11th International Conference on Neural Information Process-

ing Systems, pp. 417–423, MIT Press, 1998.

[8] S. Koenig and R. Simmons, “Xavier: A robot navigation architecture based on partially ob-

servable markov decision process models,” Artificial Intelligence Based Mobile Robotics:

Case Studies of Successful Robot Systems, pp. 91–122, 1998.

[9] Y. Aviv and A. Pazgal, “A partially observed markov decision process for dynamic pricing,”

Management Science, vol. 51, no. 9, pp. 1400–1416, 2005.

[10] R. E. Bellman and S. E. Dreyfus, Applied dynamic programming. Princeton, New Jersey:

Princeton university press, 2015.

99



[11] N. Roy and S. Thrun, “Coastal navigation with mobile robots,” in Proceedings of Advances

in Neural Information Processing Systems, pp. 1043–1049, 2000.

[12] J. Boger, J. Hoey, P. Poupart, C. Boutilier, G. Fernie, and A. Mihailidis, “A planning sys-

tem based on markov decision processes to guide people with dementia through activities of

daily living,” IEEE Transactions on Information Technology in Biomedicine, vol. 10, no. 2,

pp. 323–333, 2006.

[13] T. J. Walsh, S. Goschin, and M. L. Littman, “Integrating sample-based planning and model-

based reinforcement learning.,” in Association for the Advancement of Artificial Intelligence,

2010.

[14] M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren, and R. Guthke, “Gene regulatory net-

work inference: data integration in dynamic models - a review,” Biosystems, vol. 96, no. 1,

pp. 86–103, 2009.

[15] Y. Saad, Iterative methods for sparse linear systems. Philadelphia, PA: SIAM, 2003.

[16] B. R. Gaines, “Stochastic computing,” in Proceedings of the Joint Computer Conference,

pp. 149–156, ACM, 1967.

[17] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of stochastic comput-

ing,” The IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems,

vol. 37, no. 8, pp. 1515–1531, 2017.

[18] M. L. Puterman, Markov decision processes: discrete stochastic dynamic programming.

Hoboken, NJ: John Wiley & Sons, 2014.

[19] P. J. Schweitzer and A. Seidmann, “Generalized polynomial approximations in markovian

decision processes,” Journal of mathematical analysis and applications, vol. 110, no. 2,

pp. 568–582, 1985.

[20] S. P. Meyn, “The policy iteration algorithm for average reward markov decision processes

with general state space,” IEEE Transactions on Automatic Control, vol. 42, no. 12, pp. 1663–

1680, 1997.

100



[21] N. Friedman and Y. Singer, “Efficient Bayesian parameter estimation in large discrete do-

mains,” in Advances in neural information processing systems, pp. 417–423, 1999.

[22] J. J. Martin, Bayesian decision problems and Markov chains. Hoboken, NJ: John Wiley &

Sons, 1967.

[23] M. Ghavamzadeh, S. Mannor, J. Pineau, A. Tamar, et al., “Bayesian reinforcement learning:

A survey,” Foundations and Trends in Machine Learning, vol. 8, no. 5-6, pp. 359–483, 2015.

[24] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov Decision Processes,”

Mathematics of operations research, vol. 12, no. 3, pp. 441–450, 1987.

[25] R. Bellman et al., “The theory of dynamic programming,” Bulletin of the American Mathe-

matical Society, vol. 60, no. 6, pp. 503–515, 1954.

[26] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–

292, 1992.

[27] R. S. Sutton, “Generalization in reinforcement learning: Successful examples using sparse

coarse coding,” in Advances in neural information processing systems, pp. 1038–1044, 1996.

[28] H. S. Chang, W. J. Gutjahr, J. Yang, and S. Park, “An ant system approach to Markov Decision

Processes,” in Proceedings of the 2004 American Control Conference, vol. 4, pp. 3820–3825,

IEEE, 2004.

[29] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in neural information

processing systems, pp. 1008–1014, 2000.

[30] M. O. Duff, “Monte-carlo algorithms for the improvement of finite-state stochastic con-

trollers: Application to Bayes-adaptive markov decision processes.,” in The International

Conference on Artificial Intelligence and Statistics, 2001.

[31] P. Poupart, N. Vlassis, J. Hoey, and K. Regan, “An analytic solution to discrete bayesian

reinforcement learning,” in Proceedings of the 23rd international conference on Machine

learning, pp. 697–704, ACM, 2006.

101



[32] M. Strens, “A Bayesian framework for reinforcement learning,” in The International Confer-

ence on Machine Learning, pp. 943–950, 2000.

[33] T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans, “Bayesian sparse sampling for on-line

reward optimization,” in The International Conference on Machine Learning, pp. 956–963,

2005.

[34] W. B. Powell, Approximate Dynamic Programming: Solving the curses of dimensionality,

vol. 703. John Wiley & Sons, 2007.

[35] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an overview,” in Pro-

ceedings of the 34th IEEE Conference on Decision and Control, vol. 1, pp. 560–564, IEEE,

1995.

[36] A. Guez, D. Silver, and P. Dayan, “Efficient Bayes-adaptive reinforcement learning using

sample-based search,” in Proceedings of Advances in Neural Information Processing Sys-

tems, pp. 1025–1033, 2012.

[37] R. Fonteneau, L. Busoniu, and R. Munos, “Optimistic planning for belief-augmented markov

decision processes,” in 2013 IEEE Symposium on Adaptive Dynamic Programming And Re-

inforcement Learning, pp. 77–84, IEEE, 2013.

[38] A. P. Jóhannsson, “GPU-based markov decision process solver,” Master’s thesis, School of

Computer Science, Reykjavík University, 2009.

[39] P. Chen and L. Lu, “Markov decision process parallel value iteration algorithm on GPU,” in

2013 International Conference on Information Science and Computer Applications, Atlantis

Press, 2013.

[40] R. St-Aubin, J. Hoey, and C. Boutilier, “Apricodd: Approximate policy construction using

decision diagrams,” in Proceedings of Advances in Neural Information Processing Systems,

pp. 1089–1095, 2001.

102



[41] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, “SPUDD: Stochastic planning using decision

diagrams,” in Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence,

pp. 279–288, Morgan Kaufmann Publishers Inc., 1999.

[42] A. Miner and D. Parker, “Symbolic representations and analysis of large probabilistic sys-

tems,” in Validation of Stochastic Systems, pp. 296–338, Springer, 2004.

[43] M. L. Puterman and M. C. Shin, “Modified policy iteration algorithms for discounted markov

decision problems,” Management Science, vol. 24, no. 11, pp. 1127–1137, 1978.

[44] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. Van Der Vorst, Templates for the solution

of algebraic eigenvalue problems: a practical guide. Philadelphia, PA: SIAM, 2000.

[45] Y. Saad, “Krylov subspace methods on supercomputers,” Scientific and Statistical Comput-

ing, vol. 10, no. 6, pp. 1200–1232, 1989.

[46] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang, “Probabilistic Boolean networks: a

rule-based uncertainty model for gene regulatory networks,” Bioinformatics, vol. 18, no. 2,

pp. 261–274, 2002.

[47] N. F. Y. Singer, “Efficient Bayesian parameter estimation in large discrete domains,” in NIPS,

vol. 11, p. 417, MIT Press, 1999.

[48] J. Asmuth and M. L. Littman, “Approaching Bayes-optimalilty using Monte-carlo tree

search,” in Proceedings of the 21st International Conference on Automated Planning and

Scheduling, 2011.

[49] A. Guez, N. Heess, D. Silver, and P. Dayan, “Bayes-adaptive simulation-based search with

value function approximation,” in NIPS, pp. 451–459, 2014.

[50] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell,

“A survey of general-purpose computation on graphics hardware,” in Computer graphics

forum, vol. 26, pp. 80–113, Wiley Online Library, 2007.

103



[51] S. Ross, B. Chaib-draa, and J. Pineau, “Bayes-adaptive POMDPs,” in NIPS, pp. 1225–1232,

2007.

[52] “The Nvidia GeForce website,” 2015.

[53] H. Zhou, J. Hu, S. P. Khatri, F. Liu, C. Sze, and M. R. Yousefi, “GPU acceleration for

Bayesian control of Mrkovian genetic regulatory networks,” in Proceedings of the 3rd In-

ternational Conference on Biomedical and Health Informatic, pp. 304–307, IEEE, 2016.

[54] I. Shmulevich and E. R. Dougherty, Probabilistic Boolean networks: the modeling and con-

trol of gene regulatory networks. Philadelphia, PA: SIAM, 2010.

[55] X. Cai, J. A. Bazerque, and G. B. Giannakis, “Inference of gene regulatory networks with

sparse structural equation models exploiting genetic perturbations,” PLOS Computational

Biology, vol. 9, no. 5, p. e1003068, 2013.

[56] J. Tegner, M. K. S. Yeung, J. Hasty, and J. J. Collins, “Reverse engineering gene networks: in-

tegrating genetic perturbations with dynamical modeling,” the National Academy of Sciences,

vol. 100, no. 10, pp. 5944–5949, 2003.

[57] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and centrality in protein

networks,” Nature, vol. 411, no. 6833, pp. 41–42, 2001.

[58] D. Thieffry, A. M. Huerta, E. Pérez-Rueda, and J. Collado-Vides, “From specific gene reg-

ulation to genomic networks: a global analysis of transcriptional regulation in escherichia

coli,” Bioessays, vol. 20, no. 5, pp. 433–440, 1998.

[59] “CUDA toolkit documentation v8.0,” 2016.

[60] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on computers, no. 6, pp. 509–

516, 1978.

[61] R. E. Bryant, “Symbolic Boolean manipulation with ordered Binary Decision Diagrams,”

ACM Computing Surveys, vol. 24, no. 3, pp. 293–318, 1992.

104



[62] V. Lagoon and P. J. Stuckey, “Set domain propagation using ROBDDs,” in International

Conference on Principles and Practice of Constraint Programming, pp. 347–361, Springer,

2004.

[63] S. Joshi, K. Kersting, and R. Khardon, “Decision-theoretic planning with generalized first-

order decision diagrams,” Artificial Intelligence, vol. 175, no. 18, pp. 2198–2222, 2011.

[64] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” Computers, IEEE

Transactions on, vol. 100, no. 8, pp. 677–691, 1986.

[65] F. Somenzi, “CUDD: CU decision diagram package release 3.0. 0,” University of Colorado

at Boulder, 2015.

[66] H. Zhou, S. P. Khatri, J. Hu, F. Liu, and C. Sze, “Fast and highly scalable Bayesian MDP on a

GPU platform,” in Proceedings of the 8th ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics, pp. 158–167, 2017.

[67] B. Grigorian, N. Farahpour, and G. Reinman, “Brainiac: Bringing reliable accuracy into

neurally-implemented approximate computing,” in HPCA, pp. 615–626, 2015.

[68] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An online quality manage-

ment system for approximate computing,” in ISCA, pp. 554–566, 2015.

[69] R. St Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Hassibi, L. Ceze,

and D. Burger, “General-purpose code acceleration with limited-precision analog computa-

tion,” ACM SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 505–516, 2014.

[70] Y. Wang, H. Li, and X. Li, “Real-time meets approximate computing: An elastic CNN infer-

ence accelerator with adaptive trade-off between QOS and QOR,” in DAC, pp. 1–6, 2017.

[71] G. Keramidas, C. Kokkala, and I. Stamoulis, “Clumsy value cache: An approximate memo-

ization technique for mobile GPU fragment shaders,” in Workshop on Approximate Comput-

ing, 2015.

105



[72] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate arithmetic designs,”

in DAC, pp. 820–825, 2012.

[73] J. S. Vetter and S. Mittal, “Opportunities for nonvolatile memory systems in extreme-scale

high-performance computing,” Computing in Science & Engineering, vol. 17, no. 2, pp. 73–

82, 2015.

[74] M. Samadi and S. Mahlke, “CPU-GPU collaboration for output quality monitoring,” in 1st

Workshop on Approximate Computing Across the System Stack, pp. 1–3, 2014.

[75] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Transactions on Embed-

ded Computing Systems, vol. 12, no. 2s, p. 92, 2013.

[76] B. R. Gaines, “Stochastic computing systems,” in Advances in Information Systems Science,

pp. 37–172, Springer, 1969.

[77] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit design,” in ICCD,

pp. 39–46, 2013.

[78] T.-H. Chen and J. P. Hayes, “Design of division circuits for stochastic computing,” in ISVLSI,

pp. 116–121, 2016.

[79] A. Alaghi and J. P. Hayes, “A spectral transform approach to stochastic circuits,” in ICCD,

pp. 315–321, 2012.

[80] S.-J. Min, E.-W. Lee, and S.-I. Chae, “A study on the stochastic computation using the ratio

of one pulses and zero pulses,” in ISCAS, vol. 6, pp. 471–474, 1994.

[81] Z. Wang, S. Mohajer, and K. Bazargan, “Low latency parallel implementation of

traditionally-called stochastic circuits using deterministic shuffling networks,” in ASPDAC,

pp. 337–342, 2018.

[82] M. Van Daalen, P. Jeavons, J. Shawe-Taylor, and D. Cohen, “Device for generating binary

sequences for stochastic computing,” IEE Electronics Letters, vol. 29, pp. 80–80, 1993.

106



[83] M. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware hashing functions for high

performance computers,” IEEE Transactions on Computers, vol. 46, no. 12, pp. 1378–1381,

1997.

[84] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” AT&T Labs [On-

line]. Available: http://yann. lecun. com/exdb/mnist, vol. 2, p. 18, 2010.

107


	ABSTRACT
	DEDICATION
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and Motivation
	Parallel Computing for MDP/BMDP
	Memory Use Reduction Techniques for MDP/BMDP
	MDP/BMDP Computation Techniques on New Arithmetic
	Goal and Contribution
	Organization of the Dissertation

	Background
	The Classical MDP Problem
	The Bayesian MDP Problem

	previous work
	Reinforcement Learning and MDP
	Previous Work on Computational Efficiency
	Previous Work on Improving the Scalability


	PART 1: Parallel BMDP on a GPU platform
	Background and Introduction
	Bayesian Control Of GRNs
	Problem Formulation
	OBR Algorithm
	FSSS Algorithm

	GPU-based Acceleration
	Parallelization of OBR
	GPU-Based Parallel Computing for FSSS
	GPU Memory Utilization and Thread Organization

	Result
	Conclusion

	PART 2: A DUPLEX SPARSE STORAGE (DSS) SCHEME FOR BMDP ON GPU PLATFORM
	Introduction and Background
	Preliminaries - CSR Storage Format

	Our Approach - Duplex Sparse Storage (DSS)
	Problems of Using Conventional Full Matrix
	DSS Format in BMDP
	Parallel DSS-based OBR
	Look Up Pij
	Bayesian Update

	Comparison Between DSS and CSR

	Experimental Results
	Conclusion

	PART 2: A NOVEL BINARY DECISION DIAGRAM (BDD) BASED SAMPLING FOR BMDP
	Introduction and Background
	Preliminaries - Binary Decision Diagrams

	BDD-based Sampling Representation and Operations
	Overview
	BDD-based Sampling Representation of TPM
	Generating BDDM
	Looking up Pij from BDDM
	Bayesian Update on BDDM

	G-BDD: A BMDP Solver Using BDD-based Sampling Representation on CPU-GPU

	Experiment Results
	Conclusion

	PART 2: ANALYSIS OF THE UPPER ERROR BOUND OF DSS AND BDD-BASED APPROACHES
	Upper Error Bound of DSS
	Upper Error Bound of BDD-based Sampling Approach

	PART 3: SCALED POPULATION ARITHMETIC FOR EFFICIENT BMDP COMPUTATION
	Background and Introduction
	Stochastic Computing and Previous Works
	Scaled Population Arithmetic
	Number Representation
	Arithmetic and Supporting Operations
	Multiplication
	Addition
	Generator
	Shuffle Unit
	Density Checker Unit
	Scaling Unit


	Experiment Results
	Single Arithmetic Operation
	Application 1: BMDP Problem
	Application 2: Matrix Inner Product
	Application 3: MNIST Digit Classification

	Conclusion

	CONCLUSION AND FUTURE WORK
	REFERENCES

