LEWIS ACIDIC BEHAVIOR OF ANTIMONY: APPLICATIONS IN CATALYSIS AND

ANION BINDING

A Dissertation

by

DI YOU

Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee,	François P. Gabbaï
Committee Members,	Michael B. Hall
	Hong-Cai Joe Zhou
	Xiaofeng Qian
Head of Department,	Simon W. North

December 2019

Major Subject: Chemistry

Copyright 2019 Di You

ABSTRACT

Over the past decade, the chemistry of σ -accepting or Z-type ligands based on main group elements has drawn renewed attention because of the realization that their interaction with a transition metal (M) could be used to control the reactivity of the metal center. In this dissertation, I will describe my efforts to modulate the reactivity of platinum complexes in which the Z-type ligand is an antimony unit and more specifically a halostiborane unit. The work described here shows that these complexes are prone to antimony-centered anion abstraction making the coordinated platinum center more oxidized and thus more electrophilic. Another strategy involves the use of weakly coordinating anion which, in the presence of a basic substrate, readily dissociate from the dinuclear core, resulting once again in an increased electrophilic character at the platinum center. These changes favorably impact the activity of the complexes as catalysts for enyne cycloisomerization reactions and hydroarylation reactions. The results obtained in these studies underscore the favorable role of these anion abstraction reactions which notably increase the carbophilic reactivity of the platinum center.

The strong Lewis acidity of antimony can also become an asset in the area of anion binding. Distiboranes designed to chelate small anions have shown advantageous anion chelating properties, including in protic media. To further improve these properties, this dissertation has explored the synthesis and properties of distiboranes based on the electron deficient perfluoro-*ortho*-phenylene backbone. Experimental and computational results indicate that perfluorination of the *ortho*-phenylene backbone affords fluoride anion chelators whose fluoride ion affinity exceeds that of its non-fluorinated analogues.

DEDICATION

This dissertation work is dedicated to my husband, Congzhi Zhu, who has been a constant source of support and encouragement during the challenges of graduate school and life. I am truly thankful for having you in my life. This work is also dedicated to my parents, Baoxian You and Shuying Deng, who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve.

ACKNOWLEDGEMENTS

First and foremost, I thank my advisor Professor François Gabbaï for guiding, encouraging, and supporting me through my entire graduate study. He taught me the way to be a professional researcher.

I would also like to thank Professors Michael B. Hall, Hong-Cai Zhou and Xiaofeng Qian who served on my committees, for providing important feedbacks and constructive criticism on my research projects. I am also grateful to all the staff in the Department of Chemistry and Material Characterization Facility at Texas A&M University for their kind support. Particularly, I am most grateful to Dr. Nattamai Bhuvanesh. His excellency in single crystal analysis is essential to my graduate research. I would also like to thank Dr. Lisa Perez in the Laboratory for Molecular Simulation at Texas A&M University for her help in the computational works.

I also thank and acknowledge the past and present group members in the Gabbaï group for being a constant source of encouragement. They are Dr. Kewei Huang, Dr. Boris Vabre, Dr. Daniel Tofan, Dr. Guillaume Bélanger-Chabot, Dr. Sumit Sahu, Dr. Rosmita Borthakur, Dr. Rajendra Kumar George, Dr. Lewis Wilkins, Dr. Kantapat Chansaenpak, Dr. Masato Hirai, Dr. Haifeng Yang, Dr. James (Stuart) Jones, Dr. Anna Marie Christianson, Ahmed Ali, Dr. Srobona Sen, Dr. Mengxi (Moncy) Yang, Dr. Chang-Hong(Eric) Chen, Elham Tabei, Dr. Ying-Hao (Russell) Lo, Mohammadjavad Karimi, Elishua Litle, Gyeong-Jin Park, Jesse Smith, and Benyu Zhou. These people always provide generous help and support when I am in need. Thanks also go to undergraduate students and visiting scholars. They are Dr. Sikun Cheng, Dr. Min-Hyung Lee, Minji Kim, Dr. Mohamed R. Saber and You Jiang.

I would like to thank my parents Baoxian You and Shuying Deng, who supported my decisions no matter what. Last but not the least, my heartfelt thanks go to my husband Dr. Congzhi Zhu, who has been by my side for most of my PhD life. His unconditional love and support have been with me through ups and downs. His love and company are never to forgotten by me, and I look forward to spending the rest of my life with him.

NOMENCLATURE

AIM	Atom in Molecules
MeCN	Acetonitrile
DFT	Density Functional Theory
DMSO	Dimethylsulfoxide
FIA	Fluoride Ion Affinity
LUMO	Lowest Occupied Molecular Orbital
NBO	Natural Bond Analysis
NLMO	Natural Localized Molecular Orbital
NMR	Nuclear Magnetic Resonance
Ph	Phenyl
TBA	Tetrabutylammonium
TBAF	Tetrabutylammonium Fluoride
TBAT	Tetrabutylammonium Difluorotriphenylsilicate
THF	Tetrahydrofuran

TABLE OF CONTENTS

ABSTRACTii
DEDICATION iii
ACKNOWLEDGEMENTSiv
NOMENCLATUREvi
TABLE OF CONTENTS
LIST OF FIGURESix
LIST OF TABLES
CHAPTER I INTRODUCTION TO ANTIMONY: APPLICATIONS IN FLUORIDE BINDING AND CATALYSIS1
 1.1 Lewis acidity of antimony compounds
CHAPTER II MODULATING THE σ-ACCEPTING PROPERTIES OF AN ANTIMONY Z-TYPE LIGAND VIA ANION ABSTRACTION: REMOTE- CONTROLLED REACTIVITY OF THE COORDINATED PLATINUM ATOM31
2.1 Introduction312.2 Previous results342.3 Neutral trifluorostiborane platinum complex352.4 Cationic trifluorostiborane platinum complex412.5 Conclusion482.6 Experimental49

CHAPTER III UNMASKING THE CATALYTIC ACTIVITY OF A PLATINUM COMPLEX WITH A LEWIS ACIDIC, NON-INNOCENT ANTIMONY LIGAND....61

3.1 Introduction	61
3.2 Investigating dichlorostiboranyl platinum complex	64
3.3 Synthesis of bis(triflate)stiboranyl platinum complex	66
3.4 Chloride migration mechanism	71
3.5 Conclusion	75
3.6 Experimental	76
CHAPTER IV ACTIVATION OF ANTIMONY_PI ATINIM COMPLEX A	8
CARBOPHII IC CATALYST THROUGH PERIPHERAL LIGAND	5
SUBSTITUTION	
4.1 Introduction	85
4.2 Synthesis and structures of the Sb-Pt complexes	
4.3 Study of the catalytic reactivity	91
4.4 Carboxylic acids as additives	97
4.5 Conclusion	101
4.6 Experimental	
CHAPTER V BIFUNCTIONAL DISTIBORANE(V) COMPOUNDS BASE	DON
ORTHO-PHENYLENE BACKBONES	
5.1 Introduction	113
5.2 Previous results	115
5.3 Synthesis of the distiboranes	117
5.4 Synthesis and properties of a distiborane obtained by oxidation of the disti	bine 59
with octafluorophenanthra-9,10-quinone	124
5.5 Synthesis and properties of a distiboranes obtained by oxidation of the dist	tibines
56 and 59 with phenanthrenequinone	131
5.6 Conclusion	
5.7 Experimental	
CHAPTER VI SUMMARY	152
REFERENCES	

LIST OF FIGURES

Figure 1. Lewis acidic antimony (III) containing species
Figure 2. p orbital of B (left) and σ^* orbitals of the Sb–X bond (right)
Figure 3. Monofunctional (top) and bifunctional (bottom) Sb(V) containing species6
Figure 4. Dimerization of 1,1–diphenlyethylene catalyzed by [Ph ₃ SbCl][SbCl ₆]7
Figure 5. Cycloaddition of isocyanates and oxiranes catalyzed by [ArSbPh ₃] ⁺ 7
Figure 6. Transfer hydrogenation of N-benzylideneaniline and quinoline reactions8
Figure 7. Molecular orbital diagram for the interaction of d ¹⁰ metal with Z-type ligand
Figure 8. Example molecules containing $M \rightarrow Z$ interaction interaction
Figure 9. Group 13 and 14 elements as Z-type ligands
Figure 10. Modulation of the $M \rightarrow Z$ interaction by changing the group 13 Lewis acid14
Figure 11. Diagram showing how the Lewis acidity of a main group element is affected by the electron-withdrawing properties of the substituent trans from the coordination site
Figure 12. Modulation of the $M \rightarrow Z$ interaction by varying the substituents
Figure 13. Modulation of the M→Z interaction by changing the substituents on the Lewis acid
Figure 14. Modulation of the M→Z interaction by changing the substituents on the Lewis acid
Figure 15. Diagram showing how the Lewis acidity of a main group element is affected by oxidation
Figure 16. Oxidation impacts the magnitude of the $M \rightarrow Z$ interaction
Figure 17. Modulation of the e $M \rightarrow Z$ interaction via redox chemisty21
Figure 18. (Top) Illustration showing how anion abstraction from a main group element can be used to enhance its Lewis acidity. (Bottom) Structure of

complexes and relevant metrical parameters showing how anion removal from the main group element impacts the magnitude of the $M \rightarrow Z$
interaction
Figure 19. Styrene hydrogenation catalyzed by 22 ^{Ni/E} 25
Figure 20. CO ₂ hydrosilylation reactions catalyzed by 23^{E} and $[36^{E}]^{n+}$ 26
Figure 21. Substituent effects in the M–Z interaction in the cyclization of yne–diols27
Figure 22. Catalytic activity of [38] ⁺ in an enyne cyclization reaction underscoring the role of the Au→B interaction
Figure 23. Example showing how oxidation of the main group element acting as a Z- ligand enhances the catalytic activity of the adjacent transition metal center29
Figure 24. Idealized orbital interaction diagram for a linearly coordinated d ¹⁰ metal complex and a Z-type ligand
Figure 25. Modulation of the electrophilic character of platinum in dinuclear Sb–Pt complexes by an anion coordination /decoordination events at antimony34
Figure 26. Synthesis of 44 and 45
Figure 27. Alternative synthesis of 44
 Figure 28. Solid-state structure of ([46]OTf)₂•(HOTf). Thermal ellipsoids are drawn at the 30% probability level. Phenyl groups are drawn in wireframe. Hydrogen atoms, triflate anions and triflic acid are omitted for clarity. Only the antimony and bridging oxygen atom of the second symmetry equivalent unit of [46]⁺ are shown.
Figure 29. DFT-optimized structures of 44 (left) and 45 (right) with hydrogen atoms and anions omitted for clarity. NBO plots of the major Sb–Pt bonding interactions (isodensity value = 0.04)
Figure 30. Structure of 44 and 45 represented using the dative formalism (left) and the Lewis formalism (right)
Figure 31. DFT-optimized structures of 44 (left) and 45 (right) with hydrogen atoms and anions omitted for clarity. Results of the QTAIM analysis showing selected bond paths and bond critical points with $\rho(BCP) > 0.02$ e bohr ⁻³ (blue dots)

Figure 32. Similarity between the structures of 44 and 45 and those of the recently reported gold catalysts [38] ⁺ and [40] ⁺ 4	2
Figure 33. 1,6-Enyne cyclization catalysis4	2
Figure 34. Synthesis of $[47][BF(C_6F_5)_3]$ and $[48][BF(C_6F_5)_3]$ 4	3
Figure 35. Solid-state structure of $[47][BF(C_6F_5)_3] \cdot (C_2H_6O)$ and $[48][BF(C_6F_5)_3] \cdot (CH_2Cl_2)_2$. Thermal ellipsoids are drawn at the 50% probability level. Phenyl groups are drawn in wireframe. Only the cationic component of the salts is shown. Hydrogen atoms, solvent molecules and anions are omitted for clarity. Relevant metrical parameters can be found in the text or the SI. Only the antimony and fluorine atoms of the second, symmetry equivalent unit of $[47]^+$ and $[48]^+$, respectively are shown	4
Figure 36. DFT-optimized structures of [47] ⁺ and of [48] ⁺ with hydrogen atoms and anions omitted for clarity. NLMO plots of the major Sb–Pt bonding interactions (isodensity value = 0.04)	6
Figure 37. DFT-optimized structures of [47] ⁺ and of [48] ⁺ with hydrogen atoms and anions omitted for clarity. Results of the QTAIM analysis showing selected bond paths and bond critical points with $\rho(BCP) > 0.02$ e bohr ⁻³ (blue dots)4	7
Figure 38. ¹ H NMR spectrum of [46]OTf in CD ₃ CN. The CD ₃ CN solvent residue peak has been truncated and marked by an asterisk (*)	4
Figure 39. ¹³ C NMR spectrum of [46]OTf in CD ₃ CN. The CD ₃ CN solvent residue peak has been truncated and marked by an asterisk (*)	4
Figure 40. ³¹ P NMR spectrum of [46]OTf in CD ₃ CN	5
Figure 41. ¹ H NMR (top) and ¹⁹ F NMR (bottom) spectrum of [46]OTf in CD ₃ CN with pentafluoroacetophenone as an internal standard for the determination of the HOTf content. The CD ₃ CN solvent residue peak has been truncated and marked by an asterisk (*)	6
Figure 42. In situ ³¹ P NMR spectrum of [47][BF(C ₆ F ₅) ₃] in CH ₂ Cl ₂ 5	7
Figure 43. In situ ¹⁹ F NMR spectrum of [47][BF(C ₆ F ₅) ₃] in CH ₂ Cl ₂ 5	7
Figure 44. ¹ H NMR spectrum [48][BF(C ₆ F ₅) ₃] in CDCl ₃ . The CDCl ₃ solvent residue is marked by an asterisk (*)	8
Figure 45. ¹³ C NMR spectrum of [48][BF(C ₆ F ₅) ₃] in CDCl ₃ . The CDCl ₃ solvent residue peak has been truncated and marked by an asterisk (*)	8

Figure 46. ³¹ P NMR spectrum of $[48][BF(C_6F_5)_3]$ in CDCl ₃
Figure 47. ¹⁹ F NMR spectrum of [48][BF(C_6F_5) ₃] in CDCl ₃
Figure 48. Solid-state structure of [47][BF(C ₆ F ₅) ₃] (top) and [48][BF(C ₆ F ₅) ₃] (bottom). Thermal ellipsoids are drawn at the 50% probability level. Phenyl groups are drawn in wireframe. Hydrogen atoms, solvent molecules are omitted for clarity
Figure 49. Lewis acidic behavior of antimony ligands
Figure 50. Synthesis of 4965
Figure 51. Solid-state structure of 49. Thermal ellipsoids are drawn at the 50% probability level. Phenyl groups are drawn in wireframe. Hydrogen atoms and solvent molecules are omitted for clarity
Figure 52. Synthesis of complex 50
Figure 53. Structure of 50 in the crystal. Thermal ellipsoids are drawn at the 50% probability level. Phenyl groups are drawn in wireframe. Hydrogen atoms and solvent molecules are omitted for clarity. Relevant metrical parameters can be found in the text
Figure 54. NLMO (top) and NBO (bottom) plots (isovalue = 0.05) of the C–Sb and Sb–Pt bonds in 50. Hydrogen atoms are omitted for clarity
Figure 55. Illustration underscoring the structural similarity of 50 (left) and Ph ₃ Sb(OTf) ₂ (right)69
Figure 56. Synthesis of complex [51](OTf) ₂ 71
Figure 57. Structure of $[51]OTf_2$ in the crystal. Thermal ellipsoids are drawn at the 50% probability level. Phenyl groups are drawn in wireframe. The hydrogen atoms and the triflate anions are omitted for clarity. Relevant metrical parameters can be found in the text or the SI. Right: NLMO and NBO plots (isovalue = 0.05) of the C–Sb and Sb–Pt bonds in $[51]^{2+}$. Hydrogen atoms are omitted for clarity
Figure 58. NLMO (left) and NBO (right) plots (isovalue = 0.05) of the C–Sb covalent and Sb–Pt dative bonds in $[51]^{2+}$. Hydrogen atoms are omitted for clarity72
Figure 59. Examples of cationic phosphine and arsine complexes used as pre-catalysts in alkyne activation reactions73
Figure 60. Reactions catalyzed by 5074

Figure 61. Proposed working model for substrate activation	75
Figure 62. ¹ H NMR spectrum of 50 in CDCl ₃	79
Figure 63. ¹³ C NMR spectrum of 50 in CDCl ₃	79
Figure 64. ¹³ P NMR spectrum of 50 in CDCl ₃	80
Figure 65. ¹ H NMR spectrum of [51]OTf ₂ in CDCl ₃	80
Figure 66. ¹³ C NMR spectrum of of [51]OTf ₂ in CDCl ₃	80
Figure 67. ³¹ P NMR spectrum of of [51]OTf ₂ in CDCl ₃	81
Figure 68. ¹ H NMR spectra collected during the cycloisomerization reaction of substrate a (top) and upon completion of the reaction after product isolation/purification (bottom). CDCl ₃ solvent residues (*) are marked on the spectrum.	82
Figure 69. ³¹ P NMR spectra collected upon completion of the cycloisomerization reaction substrate a.	82
Figure 70. ¹ H NMR spectra collected during the hydroarylation reaction of substrate b	83
Figure 71. ³¹ P NMR spectra collected upon completion of the hydroarylation reaction of substrate b	84
Figure 72. Lewis acidic behavior of antimony ligands.	86
Figure 73. Synthesis of complex 52.	87
Figure 74. Solid-state structure 52 (right). Thermal ellipsoids are drawn at the 50% probability level. Methyl groups are drawn in wireframe. Hydrogen atoms are omitted for clarity.	88
Figure 75. Synthesis of 53 and 54.	89
Figure 76. Examples of complexes containing a Pt center stabilized by a triflate anion.	90
Figure 77. Left: Solid-state structure of 54. Thermal ellipsoids are drawn at the 50% probability level. Methyl groups are drawn in wireframe. Hydrogen atoms are omitted for clarity. Right: NLMO plot of the major Sb–Pt bonding interactions.	91

Figure 78. Topographic steric maps of the phosphino-antimony ligands in 53 (69.1%) and 54 (72.2%). The red and blue zones indicate the more- and less- hindered zones in the catalytic pocket, respectively.
mindered zones in the catalytic pocket, respectively
Figure 79. Hydroarylation of alkynes with indole catalysis
Figure 80. Chemical structure of complex 55
Figure 81. Top: Hypothesized reaction of 53 with carboxylic acid. Bottom: chemical structures of carboxylic acids
Figure 82. Top: Variable temperature ³¹ P NMR spectrum of a 1:1 mixture of complex 53 and <i>N</i> -phthaloyl-phenylalanine. Bottom: In situ ³¹ P NMR spectrum of carboxylate adduct with complex 53
Figure 83. Catalysis of conia-ene reaction101
Figure 84. ¹ H NMR spectrum of 52 in CDCl ₃ 105
Figure 85. ¹³ C NMR spectrum of 52 in CDCl ₃ 105
Figure 86. ³¹ P NMR spectrum of 52 in CDCl ₃ 106
Figure 87. ¹ H NMR spectrum of 53 in CDCl ₃ 106
Figure 88. ¹³ C NMR spectrum of 53 in CDCl ₃ 107
Figure 89. ³¹ P NMR spectrum of 53 in CDCl ₃ 107
Figure 90. ¹⁹ F NMR spectrum of 53 in CDCl _{3.}
Figure 91. ¹ H NMR spectrum and ¹⁹ F NMR spectrum of 53 in CDCl ₃ with pentafluoroacetophenone as an internal standard. (400M Hz)
Figure 92. ¹ H NMR spectrum of 54 in CDCl ₃ 109
Figure 93. ¹³ C NMR spectrum of 54 in CDCl ₃ . The CDCl ₃ solvent residual peak is truncated
Figure 94. ³¹ P NMR spectrum of 54 in CDCl ₃ 110
Figure 95. ¹⁹ F NMR spectrum of 54 in CDCl _{3.} 110
Figure 96. Top: ¹ H NMR spectrum of the starting material of thiophene and ethyl propiolate. Middle: In situ ¹ H NMR spectrum recorded during the catalytic reaction after 7h. Bottom: Isolated products

Figure 97. Top: ¹ H NMR spectrum of the starting material of pyrrole and phenylacetylene. Bottom: In situ ¹ H NMR spectrum recorded during the catalytic reaction after 10 min
Figure 98. Top: ¹ H NMR spectrum of the starting material of the Conia–ene reaction. Bottom: In situ ¹ H NMR spectrum recorded during the catalytic reaction after 1 h
Figure 99. Examples of bifunctional Sb(V) containing species113
Figure 100. Examples of naphthalene and <i>ortho</i> -phenylene bidentate Lewis acids containing boranes and hybrid elements114
Figure 101. Previously synthesized distiboranes with the <i>ortho</i> -phenylene backbone and the synthesis of fluoride adducts of complexes 56 and 57115
Figure 102. The competition experiment of 56 and [58] ⁻ in CDCl ₃ 116
Figure 103. Synthesis of complex 59
Figure 104. Synthesis of complex 60
Figure 105. Solid-state structure of 60. Thermal ellipsoids are drawn at the 50 % probability level. The hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Sb1–Sb2 3.8176(8), Sb1–O1 2.0369(2), Sb1–O2 2.086(2), Sb1–O4 2.841(2), Sb2–O2 2.841(2), O1–Sb1–O2 79.91(8), Sb1–C1–C2 124.22(2).
Figure 106. Contour plot of the LUMO of 60 (isovalue = 0.05)120
Figure 107. Synthesis of TBA[60–F]121
Figure 108. Crystal structure of TBA[60–F]. Thermal ellipsoids are drawn at the 50 % probability level. The hydrogen atoms and tetrabutylammonium cation are omitted for clarity. Selected bond lengths (Å) and angles (deg) of TBA[60–F]: Sb1–Sb2 3.8643(2), Sb1–F1 2.2903(7), Sb2–F1 2.1069(7), Sb1–F1–Sb2 122.943(3), F1–Sb2–O1 162.959(3), F1–Sb2–C25 169.25(8), O1–Sb1–O2 76.253(3), O3–Sb2–O4 78.76(7)
Figure 109. Reverse competition experiment of TBA[56–F] and TBA[60–F] with Al(NO ₃) ₃
Figure 110. Synthesis of complex 61
Figure 111.Structure of one of the two independent molecules in the solid-state

structure of 1. Thermal ellipsoids are drawn at the 50 % probability level.

Sb2–O2 2.448(4), O1–Sb1–O2 80.77(17), O3–Sb2–O4 80.16(17), Sb1–C2 C1 119.3(5), Sb2–C1–C2 119.7(5).	_ .134
Figure 119. ¹ H NMR spectra of 59 in CDCl ₃	.142
Figure 120. ¹³ C NMR spectra of 59 in CDCl ₃	.142
Figure 121. ¹⁹ F NMR spectra of 59 in CDCl ₃	.143
Figure 122. ¹⁹ F NMR spectra of 60 in CDCl ₃	.143
Figure 123. ¹ H NMR spectra of TBA[60–F] in CDCl ₃	.144
Figure 124. ¹³ C NMR spectra of TBA[60–F] in CDCl ₃	.144
Figure 125. ¹⁹ F NMR spectra of TBA[60–F] in CDCl _{3.}	.145
Figure 126. ¹ H NMR spectra of 61 in CDCl _{3.}	.145
Figure 127. ¹³ C NMR spectra of 61 in CDCl ₃	.145
Figure 128. ¹⁹ F NMR spectra of 61 in CH ₂ Cl ₂ (top) and in CDCl ₃ (bottom)	.146
Figure 129. ¹ H NMR spectra of 61 in CDCl _{3.}	.147
Figure 130. ¹³ C NMR spectra of 61 in CDCl ₃	.147
Figure 131. ¹⁹ F NMR spectra of 61 in CDCl _{3.}	.148
Figure 132. ¹ H NMR spectra of 63 in CDCl _{3.}	.148
Figure 133. ¹³ C NMR spectra of 63 in CDCl ₃	.149
Figure 134. ¹⁹ F NMR spectra of 63 in CDCl ₃	.149
Figure 135. ¹ H NMR spectra of TBA[63–F] in CDCl ₃	.150
Figure 136. ¹³ C NMR spectra of TBA[63–F] in CDCl _{3.}	.150
Figure 137. ¹⁹ F NMR spectra of TBA[63–F] in CDCl ₃	.151
Figure 138. Modulating the σ-accepting properties of an antimony Z-type ligand via anion abstraction as presented in Chapter II	.153
Figure 139. Idealized representation of the self-activating properties of the antimony bis(triflate) platinum complex investigated in Chapter III.	.154

Figure 140. Illustration of the higher catalytic activity displayed by the tris(triflate) derivative described in Chapter IV.	155
Figure 1/1 Increase in fluoride anion affinity resulting from the use of fluorinated	
substituents for the bifunctional antimony(V) Lewis acids described in	
Chapter V	156

LIST OF TABLES

Table 1. Selected bond lengths (Å) and angles (°) for complexes 44 and 45 as determined crystallographically and optimized computationally	38
Table 2. Selected bond lengths (Å) and angles (°) for complexes $[47][BF(C_6F_5)_3]$ a $[48][BF(C_6F_5)_3]$ as determined crystallographically and optimized	ind
computationally	46
Table 3. 1, 6–Enyne cyclization catalysis.	92
Table 4. Hydroarylation of alkynes with pyrrole and thiophene catalysis	96

CHAPTER I

INTRODUCTION TO ANTIMONY: APPLICATIONS IN FLUORIDE BINDING AND CATALYSIS^{*}

1.1 Lewis acidity of antimony compounds

1.1.1 Lewis acidity of antimony (III) compounds

A Lewis acid is defined as a chemical species that contains an empty orbital, which is capable of accepting an electron pair from a Lewis base. Prototypical Lewis acids are group 13 elements which contain an empty p orbital. For example, BF₃ forms Lewis adducts with a number of species. It is also known as an important reagent in organic synthesis where it can be used to catalyze Friedel-Crafts alkylation reactions^{1,2}, acylation reactions^{2,3} and Diels-Alder reactions.⁴ Its heavier congener, AlCl₃, is often used as a Lewis acid catalyst for Friedel-Crafts type reactions.⁵ Moreover, by replacing the group 13-bound halides, the hydrolytic stability of the Lewis acids can be significantly increased as in the case of $B(C_6F_5)_3$ which has been used in the field of organic catalysis,⁶⁻¹¹ anionsensing,¹²⁻¹⁷ polymerizations,¹⁸⁻²¹ and small molecule activations.²²⁻²⁹

While group 13 elements dominate the field of Lewis acid chemistry, heavier main-group elements such as those from the group 15 may also display elevated Lewis

^{*}Reprinted with permission from "Tunable σ -Accepting, Z-Type Ligands for Organometallic Catalysis" You, D.; Gabbaï, F. P. *Trends. Chem.* **2019**, *1*, 485. Copyright 2019 Elsevier Inc.

acidity. This group, also known as the pnictogen group, comprises nitrogen, phosphorous, arsenic, antimony and bismuth. These elements carry five s/p valence electrons and are typically found in their III and V oxidation states. Among this group, nitrogen and phosphorus are nonmetals that are widely used as nucleophiles or Lewis bases in their III oxidation state because of the presence of lone pair electrons.³⁰ Going down the group the emergence of Lewis acidic properties reveal, even in the III oxidation state, at least when electron-withdrawing substituents are present. This is for example the case of the antimony derivatives 1 and 2 shown in Figure 1. In these compounds, the antimony (III) centers act as a Lewis acid and accept an electron pair from the nitrogen lone pair.^{31,32} A more detailed study on the coordination chemistry of antimony (III) complexes has been conducted by the Reid group who studied complexes of type 3^{33} This group found that the bonding between complexes of SbMe_nBr_{3-n} and transition metal carbonyls varies significantly with different number of bromide substituents on the antimony. As the number of bromide group increases, the σ -donating ability of the Sb fragment decreases. This is accompanied by an increase in its π -accepting ability, indicating an increase in the Lewis acidity of the antimony fragment. These results demonstrate that when properly designed, antimony (III) centers can display Lewis acidic properties, the magnitude of which can be increased by installing electron withdrawing ligands. Based on these findings, recent efforts have explored the design of organoantimony (III) derivatives that are sufficiently Lewis acidic to bind halide anions. Examples of such compounds include **4** and **5**, both of which readily interact with chloride anions.^{34,35}

Figure 1. Lewis acidic antimony (III) containing species

1.1.2 Lewis acidity of antimony(V) compounds

Unlike antimony(III) which only displays Lewis acidity when substituted with electron withdrawing groups, antimony(V) compounds have long been known as some of the strongest Lewis acids.³⁶⁻³⁹ SbF₅ is the major component of magic acid, FSO₃H-SbF₅, which was developed in the 1960's.⁴⁰ Sb(V) halides possess a higher Lewis acidity that the more commonly employed group 13 Lewis acid. This is supported by the computational work done by Krossing, who showed that the gas phase fluoride ion affinity (FIA) of SbF₅ exceeds that of BF₃ by around 150 kJ/mol.⁴¹ The high Lewis acidity of Sb(V) has also been confirmed experimentally by Gutmann, who measured the binding

constant of a number of acids including SnCl₄, AlCl₃, BCl₃, PCl₅, SbCl₅ and SbCl₃ using tris(4–(dimethylamino)phenyl)methylium chloride.⁴²⁻⁴⁴ He confirmed that, among these acids, SbCl₅ possesses the highest Lewis acidity.

Figure 2. p orbital of B (left) and σ^* orbitals of the Sb–X bond (right).

Unlike the more widely studied group 13 Lewis acids, whose Lewis acidity is known to derive from the presence of a vacant p orbital, the acidity of group 15 compounds is attributed to low-lying σ^* orbitals of the central atom-ligand bonds as shown in Figure 2. Compared with group 13 elements, group 15 Lewis acids are intrinsically interesting to study due to their high Lewis acidity,⁴⁵⁻⁴⁷ redox active properties,⁴⁸⁻⁵² and larger atomic size that can display rich coordination chemistry.⁵³⁻⁶³ This atypical properties have stimulated a number of studies which are detailed in the next section and in which antimony (V) Lewis acids are used for anion complexation⁶⁴⁻⁶⁸ and for organic reaction catalysis.⁶⁹⁻⁷²

1.1.3 Applications of antimony(V) in fluoride sensing and catalysis

In the past, our group has synthesized the stibonium derivative $[6]^+$, which incorporates a fluorescence reporter. This cation complexes fluoride ions in organic

solvents as well as in water to afford the corresponding fluorostiborane complex. This process is accompanied by a drastic fluorescence turn-on response, which can be used to report the fluoride binding event.⁷³ Similarly, the Gabbaï group has synthesized the neutral stiborane complex **7** that also complexes fluoride in the presence of water.⁶⁶ Both complexes [**6**]⁺ and **7** can be used for fluoride sensing purposes as they show high fluoride binding affinities. More importantly, they exhibit a distinct increase in fluorescence intensity upon fluoride complexation.

To further increase the fluoride affinity of antimony-based Lewis acids, the Gabbaï group have developed bifunctional stiboranes **8** and **9** (Figure 3). Both of these complexes possess high fluoride anion affinities. For example, complex **8** readily binds fluoride between the two antimony centers via chelation in aqueous solution containing 95% of water.⁶⁵ Complex **9** shows an even higher fluoride affinity which was correlated to the structure of the 1,8–triptycenediyl backbone and the formation of a C–H···F hydrogen bond involving the triptycene bridgehead methine unit.⁷⁴ In addition, comparison of both bifunctional stiboranes with their monofunctional analogue Ph₃Sb(O₂C₆Cl₄) shows that the bidentate distiborane is more acidic, indicating the importance of the bifunctionality. Altogether, these results document the high fluoridophilic properties of neutral Sb(V) species; they also show that the fluoride ion affinity can be effectively increased via chelation.

Figure 3. Monofunctional (top) and bifunctional (bottom) Sb(V) containing species.

Apart from exploring the fluoride binding properties of antimony Lewis acids, the Gabbaï group has also studied their role in the field of Lewis acidic catalysts.⁶⁹⁻⁷¹ The simple cationic complex [Ph₃SbCl][SbCl₆] (**10**) can be synthesized by reaction of Ph₃SbCl₂ with SbCl₅ in CH₂Cl₂.⁷⁵ The high electrophilic character of the antimony center is reflected by the tendency of the stibonium cations to interact with the [SbCl₆]⁻ anion via a long Sb–Cl bond of 3.231(6) Å. This complex is very active as a catalyst in the Friedel-Crafts dimerization of 1,1–diphenylethylene leading to conversion into 1–methyl–1, 3, 3–triphenyl–2, 3–dihydro–1H–indene in a 99% yield after 20 min (Figure 4). This reaction

is also catalyzed by electrophilic phosphoniums⁷⁶ and fluorosulfoxonium cations.⁷⁷ Yet, the use of a stibonium catalyst for this reaction has not been previously documented.

In addition, the Gabbaï group has also studied a number of stibonium cations of the general formula $[ArSbPh_3]^+$ with Ar = Ph (**11a**), naphthalene (**11b**), anthracene (**11c**), Mes (**11d**), *o*–(dimethylamino)phenyl (**11e**), and *o*–((dimethylamino)methyl)phenyl (**11f**) and compared their catalytic activity in the cycloaddition reaction of isocyanates and oxiranes (Figure 5). It was found that all stibonium cations catalyze the formation of 3,4– oxazolidinone products, although the reactivities of **11e** and **11f** are less pronounced due to the presence of ancillary amino donors which quench the Lewis acidity of the antimony centers.

Figure 4. Dimerization of 1,1–diphenlyethylene catalyzed by [Ph₃SbCl][SbCl₆].

Figure 5. Cycloaddition of isocyanates and oxiranes catalyzed by [ArSbPh₃]⁺.

Figure 6. Transfer hydrogenation of N-benzylideneaniline and quinoline reactions.

A recent study by our group focused on comparing the Lewis acidic properties of SbPh₃ (**12a**), Sb(C₆F₅)₃ (**12b**), and SbArF₃ (ArF = 3,5–(CF₃)₂C₆H₃) (**12c**) with those in their oxidized forms SbPh₃Cat (**12d**), Sb(C₆F₅)₃Cat (**12e**), and SbArF₃Cat (Cat = o– O₂C₆Cl₄) (**12f**).⁷⁰ While SbPh₃, Sb(C₆F₅)₃, and SbArF₃ do not interact with Ph₃P=O in CDCl₃ to any measurable extent, their stiborane analogues SbPh₃Cat, Sb(C₆F₅)₃Cat, and SbArF₃Cat readily interact with Ph₃P=O in solution. Computational results show that the σ^* orbital of Sb(C₆F₅)₃Cat (-2.65 eV) is significantly lower in energy than that of Sb(C₆F₅)₃ (-1.76 eV), in line with the higher Lewis acidity of Sb(C₆F₅)₃Cat. The higher Lewis acidity of Sb(C₆F₅)₃Cat and SbArF₃Cat also comes to light when these compounds are used as catalysts for organic transformations. For transfer hydrogenation reactions of *N*–benzylideneaniline and quinoline, Sb(C₆F₅)₃Cat and SbArF₃Cat performed as the

best catalysts (Figure 6). The results show that the catalytic reactivity of organoantimony is notably enhanced when increasing the Lewis acidity of the antimony center.

1.2 Antimony as non-innocent Z-type ligands

1.2.1 Orbital diagram of the linearly coordinated metal complex and Z-type ligand

Controlling the reactivity of transition metal catalysts by secondary coordination sphere effects is an active area of investigation which has drawn considerable interest owing to the benefits it presents in the area of molecular catalysis.⁷⁸⁻⁸⁴ Advancing this general area necessitates the elucidation of cooperative effects that may occur between the catalytic center, the reactants, and the surrounding environment. Such cooperative mechanisms, which usually involve non-covalent interactions, may serve to not only guide reacting molecules but also lower activation barriers which impede the catalytic reaction. Tailoring these cooperative effects necessitates the incorporation of specific functionalities positioned beyond the reactive metal center. Such functionalities can be Lewis basic, in which case it will serve to engage electrophilic reaction substrates.⁸⁵ They may also consist of hydrogen-bond donor groups which can help with the stabilization of anionic intermediates, such as those generated during a reduction reaction.⁸⁶⁻⁸⁹ A less explored area of research concerns the use of Lewis acidic functionalities which, in principle, could serve in a capacity similar to those of hydrogen-bond donor groups.⁹⁰⁻⁹²

Lewis acidic functionalities, when positioned sufficiently close to the metal center, can sometimes enter its primary coordination sphere leading to a direct metal–Lewis acid interaction. In such instances, the Lewis acid behaves as a Z-type or σ -accepting ligand and draws on the electron density of the metal center.⁹³⁻¹⁰² The formation of this interaction provides a handle whereby Z-type ligands can be used to effectively perturb and also control the electronic characteristics of the metal.^{97,100,102} Such effects, which are becoming increasingly important in the context of catalysis¹⁰³⁻¹¹⁰, can be explained by considering the interaction between a σ -accepting orbital on the Z-type ligand and the metal centered orbitals. Through this interaction, the Z-type ligand draws electron density from a filled d-orbital while also stabilizing a metal-centered vacant p orbital (Figure 7). As a result of this stabilization, the Lewis acidity displayed by the late transition metal is notably increased.¹¹¹

Figure 7. Molecular orbital diagram for the interaction of d¹⁰ metal with Z-type ligand.

It is shown in the recent work of Figueroa¹¹¹ that the d¹⁰ metal complexes stabilized by two isocyanide ligands Pt(CNAr^{Dipp2})₂ (**13**) could form unsupported metal–metal linkages with Ag(I), which is described as dative σ -interactions from Pt to Ag(I) (Figure 8). Such an interaction readily activates the group 10 metals towards the binding of Lewis bases trans to the Ag acceptor; thus, illustration the ability of Z-type ligands to tune the electronic profiles of d¹⁰ transition metals from electron-rich and Lewis basic to electron-poor and Lewis acidic. A similar set of observations in the case of mercury–antimony complexes such as **14** featuring a Hg→Sb bond has been reported.¹¹² The more important lesson one can derive from these observations is that varying the strength of the M→Z interaction could in principle be used to precisely adjust the electrophilicity and thus the reactivity of the late transition metal center present in such complexes. This idea is an emerging paradigm in late transition metal chemistry and one that is gaining increasing validation. In the next sections, I will describe the possibility of precise control of the M→Z interaction by modification on the Z-type ligand. More importantly, I will focus on the unique opportunities offered by Z-type ligands for controlling the reactivity of the adjoining metal especially in the realm of organometallic catalysis.

Figure 8. Example molecules containing $M \rightarrow Z$ interaction interaction.

1.2.2 Approaches to tune the $M \rightarrow Z$ interaction

Varying the nature of the main group element acting as the Z-type ligand

The study of periodic trends teaches us that the Lewis acidity of p-block elements

varies as the group is descended. Within the group 13, the computed stability of the water-

 EX_3 (EX_3 = group 13 trihalide) adducts indicate an irregular trend, with the aluminum and indium as the most Lewis acidic elements, followed by gallium and then boron.¹¹³ When the accepting orbital of the Lewis acid is a σ^* orbital, as in the case of tetravalent group 14 elements, a more progressive increase in Lewis acidity is observed.¹¹⁴ It follows that the magnitude of an $M \rightarrow Z$ interaction could in principle be varied by simply changing the nature of the atom fulfilling the role of the Z-type ligand. Although conceptually straightforward, implementation of this idea can be complicated by anion migration induced by the high Lewis acidity of the main group element. Such a behavior is, for example, observed upon coordination of the trisphosphino-group 13 ligands¹¹⁵⁻¹¹⁸ (B for 15, Al for , Ga for , In for 18) to gold(I) chloride (Figure 9). Indeed, rather than inducing a strengthening of the Au–E interaction (E = group 13 element), the more Lewis acidic group 13 elements in **16**AuCl–**18**AuCl engage with the chloride anion thus interfering with the projected intensification of the Au \rightarrow E interaction.¹¹⁹ Related group 14-based ligands of general formula ($(Ph_2P)C_6H_4$)_3EF (E = Si for 19, Ge for 20, Sn for 21) provide a more reliable platform that resists anion migration as indicated by the structure of the corresponding gold chloride complexes **19**AuCl–**21**AuCl. Despite the larger size of tin, the Au–E bond is shorter in 21AuCl (Au–Sn = 2.9686(3) Å) than in 20AuCl (Au–Ge = 3.148(1) Å) and **19**AuCl (Au–Si = 3.223(2) Å). Expressing these metrical parameter as covalent ratios^{120,121} (Si-Au:1.30; Ge-Au:1.23; Sn-Au:1.08) indicates that the more acidic tin atom exerts a stronger attractive force on the gold atom and its electron density

(Figure 9). These effects are supported by Natural Bond Orbital (NBO) calculations which also predict a strengthening of the Au \rightarrow E interaction as the group is descended.

Figure 9. Group 13 and 14 elements as Z-type ligands.

The results obtained from ligands **15-18** show that identifying a platform in which the strength of the $M \rightarrow Z$ interaction can be adjusted predictably is non-trivial. Complexes based on 'double-decker' ligands (**22**^{M/E} and **23**^E, E = group 13 element) provide a more recent and possibly more practical incarnation of this possibility whereby a group 13 element can be pre-introduced at the lower deck, followed by coordination of a transition metal ion (M) at the upper deck (Figure 10).^{104,105,122} This approach is characterized by a high level of structural fidelity, with the only change being that of the group 13 element. The study of the Ni(0) (**22**^{Ni/E}) and Co(-1) (**22**^{Co/E}) complexes show that the $M \rightarrow E$ interaction increases in the order Al < Ga < In (Figure 10). For both families of complexes, this conclusion is corroborated by the stability of the corresponding H₂ complexes which indicates that H₂ \rightarrow M and M \rightarrow E interactions mutually enhance each other. For the nickel complexes, additional evidence for the strengthening of the M \rightarrow E interaction can be derived from the Ni (0/1) redox couple which undergoes a significant anodic shift as the group 13 element becomes heavier, with structural analyses cementing this conclusion. The covalent ratio calculated for complexes $22^{Ni/E}$ and $22^{Co/E}$ markedly decreases as the size of the group 13 element increases. A related trend can be established for complexes of type 23^E based on an examination of the covalent ratios which also decrease in the order Al < Ga < In (Figure). Interestingly, the Pd–Cl bond length is the shortest in 23^{In} . In the extreme of the dative formalism, this shortening speaks to the strength of the Pd→In bond in 23^{In} and its stabilizing impact on the Cl⁻→Pd bond.

Figure 10. Modulation of the $M \rightarrow Z$ interaction by changing the group 13 Lewis acid.

It is interesting to note that the trend observed in the strength of the $M \rightarrow E$ bonds in $22^{M/E}$ and $23^{M/E}$ does not follow that suggested by the stability of classical Lewis adducts.¹¹³ Indeed, calculations carried out for the conversion of EX₃ into adducts of general formula LB \rightarrow EX₃ (LB = Lewis base) indicate that Lewis acidity increases in the following order Ga < In < Al for hard Lewis bases and Ga<Al < In for soft Lewis bases.¹²³ The fact that the M \rightarrow E bond strength decreases in the order Al < Ga < In in compounds of type $22^{M/E}$ indicates that other factors must be at play.

Varying the nature of the substituents bound the main group element acting as the Z-type ligand

The magnitude of an $M\rightarrow Z$ interaction could, in principle, be adjusted by simple variation of the substituent bound to the atom acting as the Z-type ligand. This approach needs to be applied with some nuance for main group elements which become hypervalent upon formation of the $M\rightarrow Z$ interaction. Indeed, since the formation of the $M\rightarrow Z$ interaction involves donation of a metal-based lone pair into a σ^* orbital centered on the main group element, the nature of the ligand positioned trans from the metal atom will play a defining influence as illustrated in Figure 11.

decrease of the σ * orbital energy

E: main group element EWG: electron withdrawing group

Figure 11. Diagram showing how the Lewis acidity of a main group element is affected by the electron-withdrawing properties of the substituent trans from the coordination site.

The above-mentioned effects are manifested in the chemistry of complex 24, which is proposed to isomerize into 24' when in solution.¹²⁴ In 24, the silicon-bound unit trans from the metal is an electron withdrawing fluorine ligand, a situation predicted to lower the energy of the accepting σ^* orbital while also increasing the contribution from the silicon atom. In 24', the phenyl group occupies the trans position. Given the lower electronegativity of phenyl *vs.* fluorine, the accepting σ^* orbital raises in energy while also becoming less developed on the silicon atom. The anticipated consequence is a weakening of the Au \rightarrow Si interaction in 24'. Accordingly, DFT calculations of these two isomers show a significant lengthening of the Au–Si distance from 3.13 Å in 24 to 3.45 Å in 24'.

Figure 12. Modulation of the $M \rightarrow Z$ interaction by varying the substituents.

Definitive structural evidence for these substituent effects have been obtained for the antimony complexes 25 and 26.^{125,126} The Au–Sb separation increases from 2.698(1) Å in 25 to 2.865(1) Å in 26, as a consequence of the lower electron-withdrawing properties of the phenyl group when compared to chlorine (Figure 12). Conceptually, these changes can also be assigned to the perturbation in the energy and spatial distribution of the σ^* orbital resulting from this Ph/Cl ligand permutation.

The substituent effects described above can also be manifested in complexes featuring $M \rightarrow Pn$ interaction (Pn = pnictogen or group 15 element) in which the Pn element is in the trivalent state. Such effects have been established not only for antimony^{125,127} but also bismuth-based complexes,^{128,129} such as **27**^X (Figure 13).¹³⁰ In this family of
bismuth–platinum compounds, the nature of the X substituent has a marked influence on the length of the Pt→Bi interaction. Consistent with the prediction that an electronwithdrawing substituent will enhance the Lewis acidity of the bismuth center trans from the Bi–X bond, the Pt→Bi bond length increases in the order of $27^{Me} < 27^{C6F5} < 27^{C1} < 27^{OTf}$. These results also serve as a reminder that Pn elements in the +3 state can display notable Lewis acidity, especially in the presence of electron withdrawing substituents.^{71,131}

Figure 13. Modulation of the $M \rightarrow Z$ interaction by changing the substituents on the Lewis acid.

A last situation that illustrates substituent effects without involving hypervalence is provided by a comparison of complexes 28 and 29 which both feature an Au \rightarrow B interaction (Figure 14).¹³² Swapping the bis(*cyclo*-hexyl)boryl moiety of 28 with a borafluorenyl moiety in 29 leads to an enhanced Au \rightarrow B interaction, reflected by a significant shortening from 2.90 Å in 28 in to 2.66 Å in 29. This change is accompanied by a notable decrease of the natural charge for the boryl unit from 0.29 to 0.14, which supports the transfer of electron density to the boron center. NBO calculations reveal that the second-order perturbation energy for the Au \rightarrow B interaction is also higher in 29 (16.8 kcal/mol) than in 28 (12.8 kcal/mol). The differences existing between 28 and 29 provide another illustration of the role played by the main group substituent and in which the boron center Lewis acidity is enhanced by antiaromatic and ring-strain effects.¹³³

Figure 14. Modulation of the $M \rightarrow Z$ interaction by changing the substituents on the Lewis acid.

Varying the redox state of the main group elements acting as the Z-type ligand

The Lewis acidity of main group elements shows an important correlation with their redox state. Taking the pnictogen elements as an example, the pentahalides are notably more Lewis acidic than the corresponding trihalides.⁶⁴ This increase can be correlated to an oxidation-induced lowering of the energy of the σ^* orbital as illustrated in Figure 15.⁷¹

Figure 15. Diagram showing how the Lewis acidity of a main group element is affected by oxidation.

These σ^* orbital energy changes can also be used to convert Lewis basic stibines into Lewis acidic stiboranes as illustrated by the response of complex **30** to oxidation.¹³⁴ Indeed, oxidation of this complex at antimony using PhICl₂ triggers an umpolung of the Sb–Au bond from Sb→Au in **30** to Au→Sb in **31** (Figure 16). The dinuclear core of the structure shows a clear response to oxidation of the antimony center. In particular, the Au– Sb distance of 2.709(1) Å in **31** is shorter than that measured for the reduced complexes (2.837(1) Å in **30**). Changes are also observed in the coordination geometry of the gold center, which shifts from distorted trigonal pyramidal in **30** to square planar in **31**. These changes, in particular the square planar geometry of the gold atom, indicate that the latter is affected by oxidation as it transitions from a monovalent form in **30** to a trivalent form in **31**. NBO analysis of **31** confirms this view and shows that the gold d_{x2-y2} orbital acts as a donor toward a σ^* (Sb–Cl) orbital (Figure 16).

Figure 16. Oxidation impacts the magnitude of the $M \rightarrow Z$ interaction.

The chemistry of the chlorostibine–gold complex **32** provides another noteworthy manifestation of this effect (Figure 17). The Au \rightarrow Sb donor-acceptor bond in **32** shortens by ~0.15 Å in **25**. NBO analysis offers a supporting picture, with the strength of the Au \rightarrow Sb donor-acceptor interaction increasing from 70.8 kcal/mol in **32** to 148.5 kcal/mol in **25**. We will note in passing that examples exist where the reduction of group 13-based Z-type ligands can interfere and weaken the M \rightarrow group 13 interaction,¹³⁵ provided that the group 13 element is the primary site of reduction.^{136,137}

Figure 17. Modulation of the $e M \rightarrow Z$ interaction via redox chemisty.

Varying the coordination environment of the main group element acting as the Z-type ligand

We¹³⁸⁻¹⁴² and others^{33,143-146} have demonstrated that stibine ligands are susceptible to the addition of anions when bound to a metal. This process, which can occur without dissociation of the antimony ligand from the metal center, reflects the coordination noninnocence of antimony ligands and their ability to adopt hypervalent electronic configurations.¹⁰⁰ Furthermore, the variable coordination environment of the antimony center directly impacts the electron deficiency of the metal, thus providing another strategy for modulating the properties of such Z-type ligands. As illustrated in Figure 18, conversion of a dihalostiborane into the corresponding mono and dication by halide anion abstraction is expected to greatly stabilize the antimony-based LUMO, leading to an increase in Lewis acidity. This effect is illustrated by a comparison of **33**, [**34** $]^+$ and [**35** $]^{2+}$, with [**35** $]^{2+}$ possessing the strongest and shortest Pt–Sb bond (Figure 18).

Figure 18. (Top) Illustration showing how anion abstraction from a main group element can be used to enhance its Lewis acidity. (Bottom) Structure of complexes and relevant metrical parameters showing how anion removal from the main group element impacts the magnitude of the $M \rightarrow Z$ interaction.

1.2.3 Using the $M \rightarrow Z$ interaction as a handle for controlling catalysis

As detailed above, several strategies have been developed for adjusting the strength of $M \rightarrow Z$ interactions. Given the donor-acceptor nature of this interaction, these strategies should provide control over the electrophilicity and thus the reactivity of the transition metal center present in these complexes. The series of recent results discussed in the following paragraphs validates this emerging paradigm. While a growing list of catalysts incorporating Z-type ligands exist,^{102,108,109,147,148} I will limit the discussion to cases that speak to the importance of the M \rightarrow Z interaction and its tunable nature.

Lewis acid-controlled catalysis

The double decker architecture present in complexes of type $22^{M/E}$ (Figure 10) provides control over the transition metal environment and its electron richness via variation of the group 13 element installed at the lower deck. Along this line, the Lu group has correlated the magnitude of the $M \rightarrow E$ interaction with the catalytic activity of the complexes. A systematic survey of compounds 22^{Ni/Al}, 22^{Ni/Ga}, and 22^{Ni/In} reveals some distinctive features.¹⁰⁴ Out of these three, only 22^{Ni/Ga} and 22^{Ni/In} are catalytically active in the hydrogenation of olefins leading to the proposal that a strong $M \rightarrow E$ interaction is needed for catalysis (Figure 19). They also observed a direct correlation between the strength of the Ni \rightarrow E interactions and the ability of the nickel center to bind H₂ and N₂, with the strongest binding occurring with the indium complex. A more contrasted picture emerges from a comparison of the catalytic properties, with 22^{Ni/Ga} displaying a higher activity in the hydrogenation of styrene than 22^{Ni/In}. Complex 22^{Ni/In} also promotes the hydrogenation of 1-octene, 1-hexene and cis-cylco-octene but again the reaction rate is significantly lower than that of $22^{Ni/Ga}$. The activity of the former is likely affected by the fact that the electron richness of the Ni(0) is depleted by the strong Ni→In interaction impeding the oxidative cleavage of the H₂ molecule prior to migratory insertion of the alkene.¹⁴⁹ Another factor to consider is the need of phosphine dissociation followed by alkene coordination. While dissociation may be more facile in $22^{Ni/In}$, the affinity for the olefin may be accordingly decreased.

Figure 19. Styrene hydrogenation catalyzed by $22^{Ni/E}$.

The notion that a strong $M \rightarrow E$ interaction does not correlate proportionally with catalytic activity also emerges in the work of Takaya and Iwasawa¹²² who investigated complexes 23^{E} as catalyst for the hydrosilylation of CO₂ (Figure 20). Indeed, the aluminum complex 23^{Al} , which appears to possess a weaker Pd \rightarrow E interaction than 23^{Ga} and 23^{In} , is by far the most active with a turnover frequency (TOF) of 19300 h⁻¹. Related results by Tauchert and co-workers on complexes of type $[36^{E}]^{n+}$ (E = Li, n = 1; Cu, n = 2; Zn, n = 2) as CO₂ hydrosilylation catalysts further illustrate this point. In this case, the highest activity is observed for $[36^{Zn}]^{2+}$ which is proposed to possess the strongest Pd \rightarrow E based on crystallographic and computational data.¹⁵⁰ The greater accepting properties of the zinc metalloligand in this system is corroborated by a study of related rhodium(I) carbonyl complexes which also display an intense $Rh \rightarrow Zn$ interaction.¹⁵¹ These fascinating results underscore the benefits that a precisely adjustable $M \rightarrow Z$ interaction presents in the context of catalysis although the activities of complexes 23^{E} and $[36^{E}]^{n+}$ do show a consistent picture regarding the role played by the magnitude of the $M \rightarrow E$ interaction.

Figure 20. CO₂ hydrosilylation reactions catalyzed by 23^{E} and $[36^{E}]^{n+}$.

This strategy also achieved some with of has success the use bis(phosphino)phenylborane ligand in complex 37^H to increase the reactivity of cationic gold by σ -inductive effects (Figure 21).¹⁵² A continuum study to tune the electrophilic character of the neighboring gold center was carried out further by substitution of the phenyl ring on the boron center to more electron-withdrawing groups such as pfluorophenyl in **37**^F or *p*-chlorophenyl in **37**^{Cl}.¹⁵³ The Au–B distances in these complexes show very little differences. However, as the electron-withdrawing properties of the boron phenyl substituent increase (σ_p : H[0] < F[0.06] < Cl[0.22]), a decrease in the C1–Au distance is observed (**37**^H: 3.041(3) Å; **37**^F: 3.016(4) Å; **37**^{Cl}: 2.983(3) Å). This contraction is accompanied with a decrease in the C1-Au-B angle (37^H: 99.31(3)°; 37^F: 98.39(3)°; **37**^{Cl}: 97.14(14)°), which indicated a direct interaction between the gold atom and the C1 carbon atom. **37**^F shows significant increase in reactivity than **37**^H towards the cyclization of yne–diols. On the other hand, **37**^{Cl} exhibits only a slight increase in reactivity compared with **37**^H.

Figure 21. Substituent effects in the M–Z interaction in the cyclization of yne–diols.

Redox-controlled catalysis

Inagaki and coworkers have recently investigated cationic complexes of type $[38]^+$ for the carbophilic activation of alkynes (Figure 22).¹⁵²⁻¹⁵⁴ This team found that these complexes are much more efficient catalysts for enyne cyclizations than simple model cations such as $[Ph_3PAuPPh_3]^+$, supporting the notion the enhanced catalytic activity of $[38]^+$ results from the strong σ -accepting properties of the Lewis acidic boron atom trans from the catalytically active site.

cat. = $[38]^+$, yield: 99%, a/b ratio 6:1 in less than 5 min cat. = $[Ph_3PAuPh_3][SbF_6]$, yield: 9%, a/b ratio 6:1 after 24 h

Figure 22. Catalytic activity of $[38]^+$ in an enyne cyclization reaction underscoring the role of the Au \rightarrow B interaction

It occurred to us that substitution of boron by antimony in such species may afford complexes whose catalytic properties are controlled by the redox state of the antimony Z-ligand. This possibility has been tested by first investigating the properties of $[39]^+$, a cationic complex derived from 32 (Figure 23).^{74,125} When used as a catalyst for the hydroamination of phenylacetylene with *p*-toluidine, $[39]^+$ showed sluggish activity. Based on the realization that the σ -accepting properties of the antimony center could be enhanced by oxidation as illustrated in Figure 15, we targeted the pentavalent antimony complex $[40]^+$, which could also be derived from 32. Both structural and computational results suggest that $[40]^+$ possesses a stronger Au \rightarrow Sb interaction than $[39]^+$. This stronger interaction translates into a more electrophilic gold center, as evidenced by its ability to readily bind Lewis bases such as water at the coordination site trans from antimony. More importantly, the increased Lewis acidity of the gold center in $[40]^+$ is also reflected in its

enhanced catalytic activity. Under the same conditions as those used for $[39]^+$, $[40]^+$ catalyzes the hydroamination of phenylacetylene with *p*-toluidine, achieving greater than 95% conversion after one hour. This reactivity enhancement validates the concept that the redox state of non-innocent Z-ligands may be used to control the catalytic activity of the adjoining metal center. While we showed that various amines and alkynes can be used in these reactions, no hydroamination product was observed when aliphatic amines where employed. In fact, the use of such amines appeared to induce reduction of the antimony center.

Figure 23. Example showing how oxidation of the main group element acting as a Z-ligand enhances the catalytic activity of the adjacent transition metal center.

1.3 Objectives

As explained in the preceding sections, Z-type, Lewis acidic ligands can be used to precisely tune the electron density of a metal by establishing an the $M \rightarrow Z$ interaction. Tuning can be achieved by changing the nature of the Lewis acid, by switching the substituents on the Lewis acids, or by taking advantage of the redox active properties of heavier main group Lewis acids. In most cases, the $M \rightarrow Z$ interaction is associated with the Lewis acidity of the Z-type ligand. With increasing Lewis acidity at the Z-type ligand, an enhanced $M \rightarrow Z$ interaction is observed. This provides a handle on the electron density of the transition metal center and thus over its catalytic properties. To further advance this research field, we have become interested in exploiting the coordination non-innocence properties of antimony in order to tune the reactivity of as coordinated transition metal. The objective of this dissertation is to test this idea by investigating the formation of cationic platinum-antimony species by abstraction of anionic ligands bound to antimony. A second objective is to access related complexes by incorporation of weakly coordinating anions at antimony, with the expectation that these anions would dissociate to generate reactive cationic complexes. Finally, a last aspect of this work has been the development of bidentate antimony based Lewis acids for anion chelation.

CHAPTER II

MODULATING THE σ -ACCEPTING PROPERTIES OF AN ANTIMONY Z-TYPE LIGAND VIA ANION ABSTRACTION: REMOTE-CONTROLLED REACTIVITY OF THE COORDINATED PLATINUM ATOM^{*}

2.1 Introduction

The interaction of Z-type ligands with late transition metal complexes is emerging as a new paradigm for controlling the electronic characteristics, and thus reactivity of transition metals.⁹³⁻¹⁰² This approach, which is meeting increasing validation in the realm of catalysis,¹⁰³⁻¹¹⁰ can be traced back to the σ -accepting properties of Z-type ligands which can effectively stabilize a vacant p-orbital of the late transition metal center while also drawing density from the filled d-orbitals (Figure 24). These effects, first formulated by Alvarez for d⁸ metal complexes,¹⁵⁵ have been recently invoked in the case of d¹⁰ metal complexes to explain the enhanced Lewis acidity of the coordination site directly *trans* from the Z-type ligand.^{111,112,156} The same effects are manifested in the chemistry of linearly coordinated bis-phosphine gold(I) complexes which can be rendered catalytically

^{*}Reprinted with permission from "Modulating the σ-Accepting Properties of an Antimony Z-type Ligand via Anion Abstraction: Remote-Controlled Reactivity of the Coordinated Platinum Atom" You, D.; Yang, H.; Sen, S.; Gabbaï, F. P. *J. Am. Chem. Soc.* **2018**, *140*, 9644. Copyright 2018 American Chemical Society

active via coordination of a Z-type ligand along a direction perpendicular to the P–Au–P vector.^{152,153}

Figure 24. Idealized orbital interaction diagram for a linearly coordinated d¹⁰ metal complex and a Z-type ligand.

The orbital interaction diagram shown in Figure 24 suggests that the reactivity of the transition metal could be precisely adjusted by varying the strength of the $M\rightarrow Z$ interaction. Such a possibility is illustrated by the contributions of Lu,^{104,105} Takaya and Iwasawa¹²² who showed that the nature of the group 13 element installed at the lower deck of heterobimetallic complexes of $22^{M/E}$ and 23^E modulates the electron richness of the neighboring transition metal center and controls its reactivity including during catalysis^{104,105,122} (Figure 19, Figure 20). As part of our contribution to this research topic, we have shown that the magnitude of the $M\rightarrow Z$ interaction can also be adjusted by changing the oxidation state of the Lewis acidic element. For example, oxidation of the antimony center in complexes of type [39]⁺ to the pentavalent state in type for [40]⁺ strengthens the magnitude of the Au–Sb interaction, making the gold center competent for the activation of alkynyl substrates (Figure 23).^{125,157} These results highlight the unique

opportunities offered by redox non-innocent Z-ligands for controlling the reactivity of an adjacent metal.

We, and others, have also showcased how antimony-based Z-type ligands display coordination non-innocence and can readily engage in the coordination of anionic ligands, without dissociation from the metal center.^{33,100,138,139,142,143,158} Our work on this topic has also explored how these anion coordination events at antimony affect the electronic properties of the adjacent metal center. In the case of $[41]^{2+}$ and 42, we showed that coordination of anionic fluoride ligands to antimony reduces the Lewis acidity of antimony while also inducing a shift of the Sb–Pt bonding electron pair toward platinum (Figure 25, left).¹⁴⁴ It occurred to us that such effects could be exploited to tune the magnitude of $M \rightarrow Z$ interaction, thus offering precise control over the accumulation of electron density of the platinum center (Figure 25, right). In this chapter I will provide a series of results which show that such processes, taken in reverse, form the basis of a new strategy to increase the electrophilic character of the platinum center and render it catalytically active.

Figure 25. Modulation of the electrophilic character of platinum in dinuclear Sb–Pt complexes by an anion coordination /decoordination events at antimony.

2.2 Previous results

A former student in the Gabbaï group, Haifeng Yang, treated the dichlorostiboranyl platinum complex 43^{159} with three equiv of thallium fluoride (TIF) in the presence of a donor ligand L (L = acetonitrile or cyclohexyl isocyanide) and obtained 44 and 45 (Figure 26). This student found that the ³¹P NMR spectra of complexes 44 and 45 feature a resonance at 71.8 and 75.9 ppm, respectively, coupled to the ¹⁹⁵Pt nuclei by $J_{Pt-P} = 3462$ Hz and 3131 Hz, respectively. The magnitude of the J_{Pt-P} coupling constant indicates that the electron density at the platinum center is elevated. In fact, these high J_{Pt-P} coupling constants are comparable to those reported for a series of $(Cy_3P)_2Pt \rightarrow MX_n$ adducts which have been described as containing a Pt(0) center.¹⁶⁰⁻¹⁶⁴ Moreover, these

coupling constants are significantly higher than those in **43** (δ (³¹P) 50.9, $J_{Pt-P} = 2566$ Hz) indicating a drastic electronic property change at the platinum center.

Figure 26. Synthesis of 44 and 45.

2.3 Neutral trifluorostiborane platinum complex

Even though **44** was obtained, isolating reliable yields of the acetonitrile complex **44** has proved to be challenging, making an exploration of the chemistry of this complex complicated. For this reason, I decided to explore an alternative synthetic approach. Based on the assumption that chloride anion removal may be a problematic step, I decided to first proceed by replacing the three chloride ligands of **43** with three triflate anions (Figure 27). To this end, **43** was treated with MeCN and a slight excess of AgOTf in CH₂Cl₂.

Figure 27. Alternative synthesis of 44.

Recrystallization from MeCN/Et₂O did not afford the anticipated tris-triflate complex but rather [**46**]OTf, a complex which crystallizes with half an equiv. of HOTf (Figure 28). This cation forms a centrosymmetrical dimer featuring a central Sb₂O₂ fourmembered ring. A careful inspection of the asymmetric unit indicates that the oxygen atom is protonated by half an equivalent of HOTf. The platinum center of this complex is again in a square planar geometry with the acetonitrile ligand trans to the antimony atom. The Sb–Pt distance of 2.5312(7) Å is close to that in **43**, indicating a strengthening of the Pt–Sb bonding when compared to **44** and **45** which possess longer Pt–Sb linkages (2.5797(2) Å for **44** and 2.6215(11) Å for **45**). The asymmetric unit contains an additional triflate anion that does not form any short contacts with the antimony center. As a result, the antimony atom adopts a distorted trigonal bipyramidal geometry, with two of its ligands being the bridging oxygen atoms. The Sb–O bond involving the axial oxygen atom O1' (Sb–O1' 2.253(5) Å) is distinctly longer than that involving the equatorial oxygen atom O1 (Sb–O1 1.942(4) Å). The ³¹P NMR spectrum of [**46**]OTf features a resonance at 60.8 ppm coupled to the ¹⁹⁵Pt nuclei by $J_{Pt-P} = 2832$ Hz. Gratifyingly, I found that [**46**]OTf reacted cleanly with excess potassium bifluoride (KHF₂) in MeCN to afford **44** quantitatively (Figure 27). This route proved to be much more reliable than that described in Figure 26.

Figure 28. Solid-state structure of $([46]OTf)_2 \cdot (HOTf)$. Thermal ellipsoids are drawn at the 30% probability level. Phenyl groups are drawn in wireframe. Hydrogen atoms, triflate anions and triflic acid are omitted for clarity. Only the antimony and bridging oxygen atom of the second symmetry equivalent unit of $[46]^+$ are shown.

To gain a better understanding of the bonding in complexes **44** and **45**, I optimized their structures computationally using Density Functional Theory (DFT) methods (Gaussian program, functional: MPW1PW91; mixed basis set: Sb/Pt: cc-pVTZ-PP; P: 6- $311++g^{**}$; N/F: 6–31+g(d'); C/H: 6–31g). Optimization of the geometry of these two complexes reproduced the trend in Sb–Pt distances observed experimentally, although

increased values were found for both complexes, with computed Sb–Pt distance being larger for **45** (**44**: 2.643 Å; **45**: 2.696 Å).

Parameter	44		45	
	X–ray	DFT	X–ray	DFT
Sb–Pt	2.580 (2)	2.6431	2.621(1)	2.6964
Pt-N1 (C37)	2.125(2)	2.1378	2.005(5)	1.9889
Sb–F1	1.970(1)	1.9831	1.981(3)	1.9877
Sb–F2	1.992(1)	1.9960	1.991(3)	2.0077
Sb–F3	1.981(1)	1.9852	1.987(3)	1.9947
Pt-P1	2.292(6)	2.2986	2.288(1)	2.3007
Pt–P2	2.282(6)	2.2972	2.292(1)	2.3072
F(1)–Sb–F(2)	178.7(6)°	177.33°	172.7(9)°	176.22°
Sb–Pt–N1	176.4(6)°	175.47°	171.4(1)°	173.64°
P(1)-Pt-P(2)	170.5(2)°	171.20°	172.3(4)°	167.33°

Table 1. Selected bond lengths (Å) and angles (°) for complexes **44** and **45** as determined crystallographically and optimized computationally.

Analyses of both structures using the natural bond orbital method (NBO) suggest that the Pt–Sb interactions are best described as donor–acceptor interactions, as the NBO analysis shows that **44** and **45** possesses a Pt→Sb interaction. This interaction involves donation from the filled platinum $4dx^2-y^2$ and $4dz^2$ orbitals into the vacant antimony 5px orbital. The same antimony orbital also accepts donation from a lone pair located on the fluorine atom trans to platinum. Further analysis of the NBO calculation results also indicate that second order perturbation energy $E^{(2)}$ corresponding to the strength of the Pt→Sb interaction is larger in **44** (89 kcal/mol) than in **45** (58 kcal/mol) (Figure 29). The larger $E^{(2)}$ found for **44** is in agreement with its shorter Sb–Pt distance. It also suggests that the σ -acidic isocyanide ligand in **45** drains electron density from the platinum center and reduces its Lewis basicity. These NBO calculations also identify the other three filled d orbital on the platinum center. The emerging structure is one in which the platinum is in a d¹⁰ electronic configuration but engaged in dative interaction with the neighboring pentavalent antimony atom (Figure 30). This bonding situation can also be captured by considering the two resonance structures also shown in Figure 30.

Figure 29. DFT-optimized structures of **44** (left) and **45** (right) with hydrogen atoms and anions omitted for clarity. NBO plots of the major Sb–Pt bonding interactions (isodensity value = 0.04).

Figure 30. Structure of **44** and **45** represented using the dative formalism (left) and the Lewis formalism (right).

The bonding situation in **44** and **45** were also investigated by a quantum theory of atoms in molecules (QTAIM) analysis, which identifies a bond path between the antimony and platinum atoms in both structures (Figure 31). The value of the electron density at the Sb–Pt bond critical point (BCP) is higher for **44** (ρ (BCP) = 0.081 e bohr⁻³) than for **45** (ρ (BCP) = 0.069 e bohr⁻³). Similarly, the delocalization index (δ (A,B)), which corresponds to the number of electrons delocalized between two atoms, is higher in **44** (δ (Sb,Pt): 0.70 for **44** and 0.63 for **45**). These results agree with those obtained by NBO analysis. Finally, I note that the delocalization index calculated for complex **43** (δ (Sb,Pt): 0.97) is consistent for that expected for a covalent bond and is significantly higher than that in **44** and **45**. It follows that the antimony ligand switches from X-type in **43** to Z-type in **44** and **45**.¹⁴⁰

Figure 31. DFT-optimized structures of **44** (left) and **45** (right) with hydrogen atoms and anions omitted for clarity. Results of the QTAIM analysis showing selected bond paths and bond critical points with $\rho(BCP) > 0.02$ e bohr⁻³ (blue dots).

2.4 Cationic trifluorostiborane platinum complex

The platinum center in complexes **44** and **45** is isoelectronic with the gold centers of the recently reported gold catalysts [**38**]⁺ and [**40**]⁺ (Figure 32).^{125,152,153,157} Given this relationship, I questioned whether complexes **44** and **45** would mirror the carbophilic properties of [**40**]⁺ and act as effective catalysts for the activation of alkynes.

To put this question to the test, I decided to benchmark the reactivity of these complexes against their ability to promote the cycloisomerization of dimethyl 2–allyl–2– (2–propynyl)malonate, a reaction that we have used to assess the reactivity of related antimony–platinum complexes (Figure 33).¹⁶⁵ Although such enyne cyclization reactions are known to be catalyzed by late transition metal complexes including those containing

platinum,^{166,167} I found complexes **44** and **45** to be inactive when the reaction was carried out in CDCl₃ at room temperature.

Figure 32. Similarity between the structures of 44 and 45 and those of the recently reported gold catalysts $[38]^+$ and $[40]^+$.

Figure 33. 1,6-Enyne cyclization catalysis.

I concluded from these experiments that the platinum center of these complexes may be too electron rich and not sufficiently electrophilic to efficiently activate alkynes. It occurred to us that this situation could be remediated by adopting the approach presented in Figure 25. Indeed, I speculated that fluoride anion abstraction from the antimony center would effectively increase the acidity of the latter, leading to a stronger $Pt \rightarrow Sb$ interaction, and consequently a more electrophilic platinum center.

To test this possibility, I treated complexes **44** and **45** in CH_2Cl_2 with 1 equiv. of $B(C_6F_5)_3$, a strong Lewis acid with a high affinity for fluoride anions (Figure 34). These

reactions proceeded cleanly to afford the cationic complexes $[47]^+$ and $[48]^+$, respectively. The ³¹P NMR resonance recorded in situ for these new complexes appear as broad singlets at 51.8 ppm (J_{Pt-P} = 2404 Hz) for $[47]^+$ and 56.7 ppm (J_{Pt-P} = 2530 Hz) for $[48]^+$. The lower J_{Pt-P} coupling constants measured for $[47]^+$ and $[48]^+$ are consistent with a decrease in electron density at the platinum center. Although no signals could be observed corresponding to the antimony-bound fluoride, abstraction of a fluoride anion was confirmed by the appearance of new signals in the ¹⁹F NMR spectrum at -134.7, -161.7, -166.1 ppm and a broad singlet -191.4 ppm corresponding to the [BF(C₆F₅)₃]⁻ anion.¹⁶⁸

Figure 34. Synthesis of [47][BF(C₆F₅)₃] and [48][BF(C₆F₅)₃].

Crystals of complexes [47][BF(C₆F₅)₃] and [48][BF(C₆F₅)₃] were obtained and subjected to X–ray diffraction which indicated that both [47]⁺ and [48]⁺ form centrosymmetrical dimers connected by an Sb₂F₂ four-membered ring in the solid-state (Figure 35). This Sb₂F₂ is asymmetric; the fluorine atom trans from platinum forms a long Sb---F contact of 2.482(5) Å while the two fluorine atoms trans from each other form Sb– F1 and Sb–F2 bond distances of 1.977(6) Å and 2.08(6) Å. The coordination geometry of the platinum centers in these two dimeric complexes remains square planar while that of antimony is distorted octahedral if one considers the bridging fluorine atom as occupying the coordination site trans to platinum. The Sb–Pt distances (2.5044(9) Å in [47]⁺ and 2.5275(6) Å in [48]⁺) are significantly shorter compared to those in complexes 44 (2.5797(2) Å) and 45 (2.6215(11) Å). This shortening of the Sb–Pt bond signals a more complete transfer of electron density from the platinum atom to the highly Lewis acidic difluorostibonium cation present in these complexes (*vide infra*). These structural changes validate the proposal that fluoride anion abstraction from antimony is an effective means for increasing the extent of electron density transfer from platinum to antimony.

Figure 35. Solid-state structure of $[47][BF(C_6F_5)_3] \cdot (C_2H_6O)$ and $[48][BF(C_6F_5)_3] \cdot (CH_2Cl_2)_2$. Thermal ellipsoids are drawn at the 50% probability level. Phenyl groups are drawn in wireframe. Only the cationic component of the salts is shown. Hydrogen atoms, solvent molecules and anions are omitted for clarity. Relevant metrical parameters can be found in the text or the SI. Only the antimony and fluorine atoms of the second, symmetry equivalent unit of $[47]^+$ and $[48]^+$, respectively are shown.

IR analysis of [48][BF(C₆F₅)₃] offers a consistent picture with the vibration energy of the isocyanide ($v_{CN} = 2214 \text{ cm}^{-1}$) being at higher energy than that in 45 ($v_{CN} = 2198 \text{ cm}^{-1}$). Dissolving these crystals in CH₂Cl₂ resulted in single ³¹P NMR signals that correspond to those observed during the *in situ* reactions described above.

The computed Sb–Pt separations ($[47]^+$: 2.4860 Å; $[48]^+$: 2.5240 Å) are close to those measured by X-ray diffraction. It is interesting to note that an NBO analysis carried out on the optimized geometry describes the Sb–Pt bond as covalent and not as a donoracceptor interaction as in 44 and 45 (Figure 36). The covalent nature of this bond is consistent with the existence of a more extensive transfer of electron density from platinum to antimony. The covalent Sb–Pt bonds in $[47]^+$ and $[48]^+$ give rise to natural localized molecular orbitals (NLMOs) that span the two heavy atoms. Inspection of these NLMOs show that the two heavy atoms contribute almost equally although the orbital contribution from platinum is slightly larger than that of antimony (Sb: 44.7%; Pt: 49.3% for $[47]^+$; Sb: 44.8%/Pt: 48.8% for $[48]^+$).

Parameter	[47][B F(C ₆ F ₅) ₃]		[48][BF(C ₆ F ₅) ₃]	
	X-ray	DFT	X-ray	DFT
Sb–Pt	2.504(9)	2.4860	2.527(6)	2.5240
Pt-N1 (C37)	2.149(1)	2.0634	2.005(6)	1.9875
Sb–F1	1.977(6)	1.9927	1.982(3)	1.9930
Sb–F2	2.086(5)	1.9945	2.084(2)	1.9954
Sb-F2'axial	2.482(5)	n/a	2.475(3)	n/a
Pt–P1	2.304(3)	2.3356	2.288(1)	2.3369
Pt–P2	2.302(3)	2.3356	2.287(2)	2.3360
F(1)-Sb-F(2)	162.6(2)°	159.20°	162.9(1)°	157.14°
Sb-Pt-N1(C37)	178.0(3)°	174.40°	169.9(2) ^o	173.65°
P(1)-Pt-P(2)	172.8(9)°	166.97°	171.5(5)°	165.19°

Table 2. Selected bond lengths (Å) and angles (°) for complexes $[47][BF(C_6F_5)_3]$ and $[48][BF(C_6F_5)_3]$ as determined crystallographically and optimized computationally.

Figure 36. DFT-optimized structures of $[47]^+$ and of $[48]^+$ with hydrogen atoms and anions omitted for clarity. NLMO plots of the major Sb–Pt bonding interactions (isodensity value = 0.04).

These NBO results are supported by a AIM analysis of these two complexes which show that the density at the Sb–Pt bond critical points ($\rho(BCP)$) of [**47**]⁺ (0.102 e bohr⁻³) and [**48**]⁺ (0.096 e bohr⁻³) are significantly higher than those in **44** (0.081 e bohr⁻³) and **45** (0.069 e bohr⁻³) (Figure 37). The same is true about the delocalization indices $\sigma(Sb,Pt)$ which are higher in [**47**]⁺ (0.92) and [**48**]⁺ (0.87) than in **44** (0.70) and **45** (0.63). The computational results reinforce the notion that fluoride anion abstraction from antimony promotes electron depletion at platinum.

Figure 37. DFT-optimized structures of $[47]^+$ and of $[48]^+$ with hydrogen atoms and anions omitted for clarity. Results of the QTAIM analysis showing selected bond paths and bond critical points with $\rho(BCP) > 0.02$ e bohr⁻³ (blue dots).

With the view to assess the impact of these electronic structure changes on the reactivity of the platinum center, I decided to again benchmark the carbophilic character of the latter using the cycloisomerization of dimethyl 2–allyl–2–(2–propynyl)malonate. Like compounds **44** and **45**, I found that $[48]^+$, generated in situ by addition of B(C₆F₅)₃,

fails to promote the reaction. Bearing in mind that dissociation of the L ligand is a prerequisite for catalysis, I became eager to test [47]⁺ which contains a more labile acetonitrile ligand. Gratifyingly, I found that [47]⁺ promoted quantitative formation of vinylcyclopentene which was completed after 4 h when a 2% catalyst loading was employed.

2.5 Conclusion

The first important outcome of this work is the demonstration that simple chloridefor-fluoride anion exchange reactions at the $[Cl_2Sb-PtCl]^{2+}$ core of 1 can be used to induce a reorganization of the halide ligands about the dinuclear core leading to formation of a [F₃Sb–PtL]²⁺ unit. These changes have a profound effect on the nature of the Pt–Sb bond which switches from being covalent and apolar in 43 to polar covalent in the case of 44 and 45. In the extreme of the dative formalism, 44 and 45 can be described as possessing a $Pt(0) \rightarrow Sb(V)$ interaction. It follows that the platinum center of 44 and 45 is rather electron rich, leading to low electrophilic characteristics. A second outcome of this work is the observation that a fluoride anion can be readily abstracted from the newly formed diaryltrifluorostiborane moiety present 44 and 45, leading to formation of $[47]^+$ and $[48]^+$ respectively. Formation of these new complexes is accompanied by conversion of the diaryltrifluorostiborane unit of 44 and **45** into a highly Lewis acidic diaryldifluorostibonium moiety. In turn, the antimony center of $[47]^+$ and $[48]^+$ displays increased σ -accepting properties leading to a strengthening of the Pt \rightarrow Sb interaction. The stronger electron donation from platinum to antimony impacts the reactivity of the platinum center which becomes sufficiently electrophilic in the case of $[47]^+$ to catalyze enyne cyclization reactions. As a whole, this work highlights a new strategy for controlling the catalytic reactivity of transition metals via ligand-centered anion abstraction reaction. This work complements existing approaches for the modulation of the Z-type ligand strength by substituent effects,¹⁵³ by replacement of the Lewis acidic atom^{104,105,122} or by a change of its oxidation state.^{125,157} It also reveals a functional facet of the coordination non-innocence of antimony ligand which can be manipulated to enhance catalysis at a nearby transition metal site.

2.6 Experimental

General considerations: Cis–PtCl₂(Et₂S)₂, [(*o*–(Ph₂P)C₆H₄)₂SbCl] and complex **43** were prepared according to the reported procedures.^{159,169} Solvents were dried by passing through an alumina column (*n*–pentane and CH₂Cl₂) or by reflux under N₂ over Na/K (Et₂O). All other solvents were used as received. Commercially available chemicals were purchased and used as provided (Commercial sources: Acros Organics for thallium fluoride; Strem chemicals for cyclohexyl isocyanide). Ambient temperature NMR spectra were recorded on a Varian Unity Inova 500 FT NMR (499.42 MHz for ¹H, 125.58 MHz for ¹³C, 469.89 MHz for ¹⁹F, 202.16 MHz for ³¹P), a Varian Unity Inova 400 FT NMR (161.74 MHz for ³¹P) and an Inova 300 FT NMR (121.49 MHz for ³¹P, 282.40 MHz for ¹⁹F). ¹H and ¹³C NMR chemical shifts are given in ppm and are referenced against SiMe₄ using residual solvent signals used as secondary standards. ¹⁹F NMR chemical shifts are given in ppm and are referenced against CFCl₃ using BF₃–Et₂O as an external secondary standard with δ -153.0 ppm. ³¹P NMR chemical shifts are given in ppm and are referenced against H₃PO₄ as an external standard. Elemental analyses (EA) were performed at Atlantic Microlab (Norcross, GA).

Computational Details: Density functional theory (DFT) structural optimizations were performed on the solid-state structures using Gaussian 09 suite of programs with effectivecore potentials on all heavy atoms (functional: BP86; mixed basis set: Sb/Pt: cc-pVTZ-PP; P: 6-31g(d); H/C/O: 6-31g, F: 6-31+g(d'). Frequency calculations were used to confirm convergence of thecalculations. The optimized structures, which are in excellent agreement with the solid-state structures,were subjected to a NBO analysis and were visualized and plotted using the Jimp 2 program.¹⁷⁰

Crystallographic Measurements: The crystallographic measurements were performed at 110(2) K using a Bruker APEX–II CCD area detector diffractometer (Mo-K α radiation, $\kappa = 0.71069$ A). In each case, a specimen of suitable size and quality was selected and mounted onto a nylon loop. The structures were solved by direct methods, which successfully located most of the non-hydrogen atoms. Semi-empirical absorption corrections were applied. Subsequent refinement on F2 using the SHELXTL/PC package (version 6.1) allowed location of the remaining non-hydrogen atom.

Synthesis of 44: Method 1: This method was inspired from the work of Haifeng Yang but with reaction conditions and reagent amounts that are different from what she used.¹⁷¹ A CH₂Cl₂ solution (8 mL) of complex 43 (80 mg, 0.085 mmol) was combined with CH₃CN (4 mL), stirred for 30 min, and treated with solid TIF (96 mg, 0.43 mmol). The resulting mixture was stirred for 16 h, filtered and brought to dryness to afford an oily residue. This residue was treated with Et₂O (10 mL) and sonicated, leading to the

formation of **44** as a pale-yellow solid. This method only afforded 15 mg of a solid, the NMR spectra of which showed the presence of **44**. However, elemental analysis indicated that this solid also contained inorganic impurities. For this reason, no reliable yield could be determined.

Method 2: A MeCN solution (6 mL) of [46]OTf (57.5 mg, 0.027 mmol) was treated with KHF₂ (12.9 mg, 0.17 mmol). The reaction mixture was stirred for 2 h, which afforded a colorless solution. After evaporation of the solvents under vacuum, the resulting white solid was extracted with CHCl₃ (20 mL) and filtered over a plug of Celite. The resulting solution was brought to dryness to afford a residue which was dissolved in a 1:1 CH₂Cl₂ (1 mL) / CHCl₃ (1 mL) solution. Slow evaporation of the solvents inside a nitrogen-filled glove box afforded 44•0.6 (CHCl₃) (see EA results below) as a pale yellow solid (17.9 mg, 29 % yield). ¹H NMR (499.42 MHz; CD₂Cl₂): δ 8.59 (d, ³*J*_{H-H} = 7.5 Hz, 2H, o–P(Sb)C₆H₄), 7.71-7.39 (m, 24H), 7.35 (t, ${}^{3}J_{H-H} = 7.6$ Hz, 2H), 1.59 (s, 3H, CH₃CN). ¹³C{¹H}NMR (125.58 MHz; CD₂Cl₂): δ 134.10 (s), 131.68 (s), 131.27 (brs), 129.60 (brs), 129.03 (t, $J_{C-P} = 5.1$ Hz), 105.43 (s), 2.67 (s, CH₃CN). ³¹P{¹H} NMR (202.16 MHz; CD₂Cl₂): δ 71.8 (d, $J_{\text{Fax}-P} = 11.7$ Hz, $J_{\text{Pt}-P} = 3462$ Hz). ¹⁹F{¹H} NMR (469.89 MHz; CD₂Cl₂): δ -83.8 (d, 2Feq, $J_{Fa-Feq} = 40.1$ Hz, $J_{Pt-Feq} = 171$ Hz), -113.3 (m, 1Fa). Elemental analysis calcd (%) for C₃₈H₃₁F₃NP₂PtSb•0.6 (CHCl₃): C 45.94, H 3.16, N 1.39; found: C 45.98, H 3.16, N 1.23. These EA results are consistent with partial loss of the two interstitial CHCl₃ molecules observed in the crystal structure of this compound. Single crystals of 44•(CHCl₃)₂ were obtained by slow evaporation of a CDCl₃ solution of 44 at ambient temperature.

Synthesis of [46]OTf: To a stirred solution of 43 (245 mg, 0.26 mmol) in CH₂Cl₂ (8 mL) was added solid AgOTf (266 mg, 1.04 mmol). The resulting mixture was stirred for 16 h, filtered and brought to dryness to afford a white solid. Recrystallization of this solid from a 1:1 MeCN (2 mL) / Et₂O (2 mL) solution afforded white solid of [46]OTf \cdot 0.6 (HOTf) (222 mg, 76% yield). ¹H NMR (499.42 MHz; CD₃CN): δ 7.79 (t, 2H, C₆H₅, ³J_H- $_{\rm H} = 6.5 \, \text{Hz}$, 7.75-7.63 (m, 10H, $o - P(\text{Sb})C_6\text{H}_4 + PC_6\text{H}_5$), 7.62-7.57 (m, 2H, $o - P(\text{Sb})C_6\text{H}_4$), 7.54 (t, 2H, ${}^{3}J_{H-H} = 7.3$ Hz, PC₆H₅), 7.50 (t, 2H, ${}^{3}J_{H-H} = 7.1$ Hz, $o-P(Sb)C_{6}H_{4}$), 7.45 (t, 4H, ${}^{3}J_{H-H} = 7.6$ Hz, PC₆H₅), 7.23 (dt, 4H, ${}^{3}J_{H-H} = 6.9$ Hz, ${}^{3}J_{H-H} = 6.2$ Hz, PC₆H₅), 7.11 (t, 2H, ${}^{3}J_{H-H} = 7.7$ Hz, $o-P(Sb)C_{6}H_{4}$), 1.96 (s, 3H). ${}^{13}C\{{}^{1}H\}$ NMR (125.58 MHz; CD₃CN): δ 128.60 (t, J_{C-P} = 28.7 Hz), 129.64 (t, J_{C-P} = 28.7 Hz), 129.64 (t, J_{C-P} = 6.9 Hz), 131.00 (t, $J_{C-P} = 5.7 \text{ Hz}$), 133.13 (s), 133.72 (t, $J_{C-P} = 6.7 \text{ Hz}$), 134.08 (s), 134.24 (s), 135.28 (t, $J_{C-P} = 7.7$ Hz), 135.48 (t, $J_{C-P} = 8.9$ Hz). ³¹P{¹H} NMR (202.16 MHz; CD₃CN): δ 60.8 $(^{1}J_{Pt-P} = 2832 \text{ Hz})$. Elemental analysis calcd (%) for C₃₉H₃₁F₃NO₄P₂PtSSb•0.6 (HSO₃CF₃): C, 41.88; H, 2.80; N, 1.23. Found: C, 41.52; H, 2.67; N, 1.17. These EA results are consistent, within error, with the crystal structure of [46]OTf which showed the presence 0.5 equiv. of HOTf. As further evidence for the presence of HOTf, the ¹H and ¹⁹F NMR spectrum of [46]OTf was recorded in the presence of pentafluoroacetophenone as a combined ¹H/¹⁹F integration standard. This NMR method suggested the presence of 0.67 equiv. of HOTf which is consistent, within error, with the X-ray and crystallographic results. Single crystals of [46]OTf•0.5 (HOTf) were obtained by slow diffusion of Et₂O into a MeCN solution at ambient temperature.

Generation of [47][BF(C₆H₅)₃]: B(C₆H₅)₃ (12.6 mg, 0.03 mmol) was added to a stirred CH₂Cl₂ (2 mL) solution of complex 44 (25 mg, 0.03 mmol). This solution turned from pale yellow to colorless over the course of 30 min. The reaction mixture was analyzed using NMR spectroscopy. ³¹P{¹H} NMR (121.49 MHz; CH₂Cl₂): δ 51.8 (brs, $J_{Pt-P} = 2404$ Hz). ¹⁹F{¹H} NMR (282.40 MHz; CH₂Cl₂): δ -134.1 (s, 6F), -160.9 (s, 3F), -165.4 (s, 6F), -186.4 (brs, 1F). A resonance for the Sb-bound fluorine atoms was not observed. A unique single crystal of [47][BF(C₆H₅)₃]•Et₂O was obtained by slow diffusion of Et₂O into a CH₂Cl₂ solution of [47][BF(C₆H₅)₃] at room temperature inside a glovebox.

Synthesis of [48][BF(C₆H₅)₃]: B(C₆H₅)₃ (27.0 mg, 0.05 mmol) was added to a stirred CH₂Cl₂ (2 mL) solution of complex **45** (53 mg, 0.05 mmol). The solution turned from pale yellow to colorless over the course of 30 min. The solution was treated with Et₂O (2 mL), leading to the precipitation of [**48**][BF(C₆H₅)₃] as an off-white solid. Compound [**48**][BF(C₆H₅)₃] was subsequently dried under vacuum (62 mg, 77% yield). 1H NMR (499.42 MHz; CDCl₃): δ 8.20 (brs, 2H, *o*–P(Sb)C₆H₄), 7.68-7.28 (m, 22H), 7.18 (brs, 3H), 1.53-1.37 (brs, 2H, Cy–CH), 1.35-1.22 (brs, 2H, Cy–CH), 1.22-0.99 (brs, 5H, Cy–CH), 0.98-0.77 (brs, 2H, Cy–CH). ¹³C{¹H} NMR (125.58 MHz; CDCl₃): δ 21.83 (s), 22.32 (s), 24.06 (s, Cy–CH), 30.96 (s, Cy–CH), 55.57 (s, Cy–CH), 129.52 (s), 131.40 (s), 132.21 (s), 132.52 (s), 133.08 (brs), 134.08 (s), 135.37 (m), 137.50 (m), 139.52 (brs), 146.89 (brs), 148.80 (brs). ³¹P{¹H} NMR (161.74 MHz; CD₂Cl₂): δ 56.7 (brs, *J*_{Pt-P} = 2530 Hz). ¹⁹F{¹H} NMR (469.89 MHz; CDCl₃): δ -134.7 (s, 6F), -161.7 (s, 3F), -166.1 (s, 6F), -191.4 (brs, 1F). A resonance for the Sb-bound fluorine atoms was not observed. Elemental analysis calcd (%) for C₆₁H₃₉NBF₁₈P₂PtSb: C, 48.28; H, 2.59. Found: C, 48.49;
H, 2.79. Single crystals of $[48][BF(C_6F_5)_3] \cdot (CH_2Cl_2)_2$ were obtained from a 1:1 hexane (2 mL) / CH₂Cl₂ (2 mL) solution, upon slow evaporation (2 days) of the solvents inside a nitrogen-filled glovebox.

Figure 38. ¹H NMR spectrum of [**46**]OTf in CD₃CN. The CD₃CN solvent residue peak has been truncated and marked by an asterisk (*).

Figure 39. ¹³C NMR spectrum of [**46**]OTf in CD₃CN. The CD₃CN solvent residue peak has been truncated and marked by an asterisk (*).

Figure 40. ³¹P NMR spectrum of [46]OTf in CD₃CN.

Figure 41. ¹H NMR (top) and ¹⁹F NMR (bottom) spectrum of [**46**]OTf in CD₃CN with pentafluoroacetophenone as an internal standard for the determination of the HOTf content. The CD₃CN solvent residue peak has been truncated and marked by an asterisk (*).

Figure 42. In situ ³¹P NMR spectrum of $[47][BF(C_6F_5)_3]$ in CH₂Cl₂.

Figure 43. In situ ¹⁹F NMR spectrum of $[47][BF(C_6F_5)_3]$ in CH₂Cl₂.

Figure 44. ¹H NMR spectrum [**48**][BF(C_6F_5)₃] in CDCl₃. The CDCl₃ solvent residue is marked by an asterisk (*).

Figure 45. ¹³C NMR spectrum of $[48][BF(C_6F_5)_3]$ in CDCl₃. The CDCl₃ solvent residue peak has been truncated and marked by an asterisk (*)

Figure 46. ³¹P NMR spectrum of $[48][BF(C_6F_5)_3]$ in CDCl₃.

Figure 47.¹⁹F NMR spectrum of $[48][BF(C_6F_5)_3]$ in CDCl₃.

Figure 48. Solid-state structure of $[47][BF(C_6F_5)_3]$ (top) and $[48][BF(C_6F_5)_3]$ (bottom). Thermal ellipsoids are drawn at the 50% probability level. Phenyl groups are drawn in wireframe. Hydrogen atoms, solvent molecules are omitted for clarity.

CHAPTER III

UNMASKING THE CATALYTIC ACTIVITY OF A PLATINUM COMPLEX WITH A LEWIS ACIDIC, NON-INNOCENT ANTIMONY LIGAND^{*}

3.1 Introduction

The activation of transition metal catalyst by anionic ligand abstraction is a strategy that has met considerable success in various areas of organometallic catalysis.^{172,173} Such reactions typically necessitate the use of a Lewis acid activator which sequesters the anionic ligand. Over the past few years, efforts to introduce the Lewis acid within the ligand architecture have led to complexes that activate a variety of bonds^{92,174-178} or catalyze hydrogenation^{91,148} and alkyne activation reactions¹⁷⁹ among others.¹⁰² In most cases, these systems employ boron or a heavier group 13 element as the Lewis acid.¹⁰² Given the inherent water and oxygen sensitivity of organo-group 13 compounds, efforts to design catalysts in which the Lewis acid is a more chemically resistant moiety could become advantageous. Motivated by this possibility, we have decided to consider complexes in which the role of the Lewis acid is fulfilled by antimony.¹⁴²

While it is often assumed that antimony ligands¹⁸⁰ display ligative properties related to those of their lighter congeners, these ligands possess a number of atypical features, including redox activity.^{100,138,181} Another unusual trait of these ligands pertains

^{*}Reprinted with permission from "Unmasking the Catalytic Activity of a Platinum Complex with a Lewis Acidic, Non-innocent Antimony Ligand" You, D.; Gabbaï, F. P. J. *Am. Chem. Soc.* **2017**, *139*, 6843. Copyright 2017 American Chemical Society

to the Lewis acidic behavior they sometime display when bound to metals and which allow them to adopt variable coordination numbers.^{33,138,143,158} This property, which we refer to as coordination non-innocence, is illustrated by a series of recent accounts showing that stibines, even when bound to transition metals, are able to coordinate anions.^{101,141,144} This behavior also comes to light in the chemistry of the platinum complex **A** whose stiboranyl moiety is readily converted into a fluorostiborane (**B**) upon reaction with fluoride.¹³⁹ This fluoride-induced reaction affects the platinum center, which switches from a tetravalent state in **A** to a divalent state in **B**.

Figure 49. Lewis acidic behavior of antimony ligands.

It occurred to us that such an internal halide transfer reaction could be exploited as a means to increase the reactivity of the metal center with possible applications in the domain electrophilic catalysis. Stimulated by this prospect, I have decided to focus on antimony platinum platforms of type C^{159} and test whether a spontaneous halide migration reaction could lead to the unmasking of an exposed^{111,160,182-184} and thus potentially reactive platinum center¹⁷⁶ as in **D** (Figure 49).

The activation of transition metal catalyst by anionic ligand abstraction is a strategy that has met considerable success in various areas of organometallic catalysis.^{172,173} Such reactions typically necessitate the use of a Lewis acid activator which sequesters the anionic ligand. Over the past few years, efforts to introduce the Lewis acid within the ligand architecture have led to complexes that activate a variety of bonds^{92,174-178} or catalyze hydrogenation^{91,148} and alkyne activation reactions¹⁷⁹ among others.¹⁰² In most cases, these systems employ boron or a heavier group 13 element as the Lewis acid.¹⁰² Given the inherent water and oxygen sensitivity of organo-group 13 compounds, efforts to design catalysts in which the Lewis acid is a more chemically resistant moiety could become advantageous. Motivated by this possibility, I have decided to consider complexes in which the role of the Lewis acid is fulfilled by antimony.¹⁴¹

While it is often assumed that antimony ligands¹⁸⁰ display ligative properties related to those of their lighter congeners, these ligands possess a number of atypical features, including redox activity.^{100,134,181} Another unusual trait of these ligands pertains to the Lewis acidic behavior they sometime display when bound to metals and which allow them to adopt variable coordination numbers.^{33,138,143,158} This property, which we refer to as coordination non-innocence, is illustrated by a series of recent accounts showing that stibines, even when bound to transition metals, are able to coordinate anions.^{100,141,144} This

behavior also comes to light in the chemistry of the platinum complex **A** whose stiboranyl moiety is readily converted into a fluorostiborane (**B**) upon reaction with fluoride.¹³⁹ This fluoride-induced reaction affects the platinum center, which switches from a tetravalent state in **A** to a divalent state in **B**. It occurred to us that such an internal halide transfer reaction could be exploited as a means to increase the reactivity of the metal center with possible applications in the domain electrophilic catalysis. Stimulated by this prospect, we have decided to focus on antimony platinum platforms of type C^{159} and test whether a spontaneous halide migration reaction could lead to the unmasking of an exposed^{111,160,182-184} and thus potentially reactive platinum center¹⁷⁶ as in **D** (Figure 49).

3.2 Investigating dichlorostiboranyl platinum complex

To test the hypothesis articulated in Figure 49, I decided to investigate whether the addition of a donor ligand could be used to promote the proposed bimetallic core rearrangement (Figure 50). While complex **43** has poor solubility in dichloromethane, I observed that addition of CyNC results in the formation of a clear solution from which crystals could be grown by simple evaporation of pentane to a dichloromethane solution. I found that these crystals correspond to **49**, a complex in which the three chloride ligands are now coordinated to the antimony atom. This complex has been characterized by X-ray diffraction and solid-state ³¹P NMR spectroscopy. The higher ³¹P NMR resonance of 67.82 ppm than that in **43** indicates more reduced platinum center in **49**. In solution, however, the complex assumes a different form whose structure is not yet known. This form is

characterized by a ³¹P NMR resonance at 9.36 ppm in dichloromethane solution, while the magnitude of the ${}^{1}J_{Pt-P}$ is 1997Hz.

Figure 50. Synthesis of 49

The structure of 49 confirms migration of a chloride ligand from platinum to antimony, leading to formation of a trichlorodiarylstiborane unit (Figure 51). This unit acts as a Z-ligand which becomes engaged in a Pt \rightarrow Sb interaction of 2.6006(5) Å. The Pt–Sb bond is significantly longer than that in 43 (2.4407(5) Å), in agreement with a change from a covalent Pt–Sb linkage in 43 to a Pt \rightarrow Sb dative interaction in 49. The isocyanides ligand is coordinated trans from the antimony center as indicated by the C(14)–Pt–Sb angle of 179.73(11)°. This angle along with P1–Pt–P2 angle of 171.73(3) indicate that the platinum atom adopts a square planar structure. The antimony center adopts a distorted octahedral geometry, as shown by Cl3-Sb-Pt, Cl1-Sb-Cl2 and C10-Sb1-C1 angles close to linearity. It is interesting to note that the bond distance of 2.6464(10) Å separating the antimony atom and the chlorine atom (Cl(3)) trans from the platinum atom is longer than the Sb-Cl bond distances involving the chlorine atoms trans from each other (Sb–Cl(2) = 2.4673(10) Å, Sb–Cl(4) = 2.4868(10) Å). These features document the high metallobasicity of the platinum atom and the trans-influence it exerts on the antimony center.

Figure 51. Solid-state structure of **49.** Thermal ellipsoids are drawn at the 50% probability level. Phenyl groups are drawn in wireframe. Hydrogen atoms and solvent molecules are omitted for clarity.

3.3 Synthesis of bis(triflate)stiboranyl platinum complex

Realizing that the halide migration reaction in Figure 49 connecting **C** to **D** would be facilitated by a highly electrophilic antimony center, I decided to investigate a complex of type **C** in which the Lewis acidity of the antimony atom is enhanced through the use of labile anionic substituents. Based on the knowledge that species such as Ph₃Sb(OTf)₂ possess unique Lewis acidic properties, the bis(triflate)antimony complex **50** was targeted (Figure 52). ^{61,63,72,185} This complex could be easily obtained by reaction of the known complex **43** with 2 equivalents of AgOTf in CH₂Cl₂. Complex **50** was characterized by ³¹P NMR spectroscopy, which showed a resonance at 48.1 ppm with ¹⁹⁵Pt satellites (¹*J*_{Pt-} $_{\rm P}$ =2396 Hz). When compared to **43** which features a ³¹P NMR resonance at 50.9 ppm coupled to the ¹⁹⁵Pt nucleus by 2566 Hz, the ¹ J_{Pt-P} coupling constant of **50** is notably reduced which is consistent with a depletion of electron density at the platinum center.¹⁴¹

Figure 52. Synthesis of complex 50.

Figure 53. Structure of **50** in the crystal. Thermal ellipsoids are drawn at the 50% probability level. Phenyl groups are drawn in wireframe. Hydrogen atoms and solvent molecules are omitted for clarity. Relevant metrical parameters can be found in the text.

Single crystals suitable for X-ray diffraction analysis were obtained by pentane diffusion into a CH_2Cl_2 solution of complex **50**. The crystal structure confirms the coordination of two triflate anions to the antimony center. The Sb–Pt distance is shorter (2.4204(4) Å) than that in complex **43** (2.4407 (5) Å) indicating a contraction of the Pt–

Sb core triggered by electron depletion. The platinum atom displays a square-planar geometry as indicated by the value of P1–Pt–P2 (170.15(4)°) and Cl–Pt–Sb (176.62(3)°) angles. As for the antimony atom, it adopts a distorted trigonal bipyramidal geometry in which the two triflate anions sit at the axial positions, as indicated by the O1–Sb–O4 angle of 168.42(11)°. The equatorial positions are occupied by the platinum center and the two phenylene groups whose antimony-bound carbon atoms form an angle (146.53(16)°) notably larger than the ideal value of 120°. It remains that the two antimony-bound carbon atoms and the platinum atom lie in the same plane as indicated by the sum of the C1–Sb–Pt, C7–Sb–Pt and C1–Sb–C7 angles of 359.14°. The Sb1–O1 (2.189(3) Å) and Sb1–O4 (2.219(3) Å) distances involving the triflate anions are, on average, very close to those in Ph₃Sb(OTf)₂ (2.172 Å).⁶¹ In turn, complex **50** can be viewed as an analog of Ph₃Sb(OTf)₂ where one of the phenyl group has been replaced by a divalent platinum moiety (Figure 53).

Figure 54. NLMO (top) and NBO (bottom) plots (isovalue = 0.05) of the C–Sb and Sb–Pt bonds in **50**. Hydrogen atoms are omitted for clarity.

Figure 55. Illustration underscoring the structural similarity of **50** (left) and Ph₃Sb(OTf)₂ (right).

This analogy seems to be limited to a structural one, as the air stability of **50** greatly exceeds that of Ph₃Sb(OTf)₂. Indeed, while Ph₃Sb(OTf)₂ quickly hydrolyzes in air,¹⁸⁵ compound 50 can be handled and crystallized on the bench top, without specific precautions. It can also be stored in air for several days without decomposition. To identify the origin of this unusual stability, the structure of 50 and Ph₃Sb(OTf)₂ was optimized computationally using DFT methods (Gaussian program, functional BP86; mixed basis set Sb/Pt cc-pVTZ-pp; P/S/Cl 6-31g(d'); F 6-31+g(d'); C/O/H 6-31g) and subsequently analyzed using the Natural Bond Orbital (NBO) method (Figure 54). Examination of the Natural Localized Molecular Orbitals (NLMO) shows that the C_{Ar}-Sb σ-bonds in both compounds are polarized toward the phenyl ipso aryl carbon atom (av. orbital contribution: 60.8% C_{Ar}/36.7% Sb in **50**, 59.1% C_{Ar}/38.4% Sb in Ph₃Sb(OTf)₂). However, compound 50 possesses a Pt–Sb σ -bond that is polarized toward antimony (44.4% Pt/ 49.3% Sb) showing that the platinum metalloligand is more electron-releasing than a phenyl ligand. As a result, when compared to Ph₃Sb(OTf)₂, the antimony center of 50 is more electron rich. π -back-bonding interactions involving donation from Pt(5d) orbitals into the Sb(5p) orbital oriented toward the triflate anions may also be viewed as a possible contributor to this increase in electron density as suggested by an inspection of the relevant NBOs (Figure 54). I propose that these electronic effects attenuate the electron deficiency of the antimony(V) center and contribute to its unexpected stability. This conclusion is supported by the fact that the Natural Population Analysis (NPA) charge at the antimony center of 50 (1.69) is lower than that of $Ph_3Sb(OTf)_2$ (2.12) (Figure 55).

3.4 Chloride migration mechanism

Given the above, I became eager to verify if the halide migration process pictured in Chart 1 would be possible. To this end, complex **50** was treated with CyNC, which I chose as a surrogate for a possible reaction substrate (Figure 56). This reaction proceeded swiftly in CH₂Cl₂ to produce a new species characterized by a ³¹P NMR resonance at 46.1 ppm with ¹⁹⁵Pt satellites (¹*J*_{Pt-P}=2273 Hz).

Figure 56. Synthesis of complex [51](OTf)₂.

This new compound was obtained in a crystalline form through pentane diffusion into a dichloromethane solution. Determination of the structure of this complex revealed the surprising formation of the dicationic complex $[51]^{2+}$ (Figure 57). Formation of this cation can be viewed as resulting from coordination of the isocyanide ligand to the platinum center concomitant with migration of the chloride anion to antimony and decoordination of the two triflate anions. The isocyanide ligand in $[51]^{2+}$ is positioned trans from the antimony center as indicated by the C19–Pt–Sb angle of 176.4(2)°. This chloride transfer process is accompanied by a lengthening of the Pt–Sb bond from 2.4204(4) Å in 50 to 2.4805(11) Å in $[51]^{2+}$. The Sb–Cl bond of 2.326(2) Å in $[51]^{2+}$ is noticeably shortened compared to those in **49** (2.494(3) Å (av.)), consistent with the dicationic and thus more Lewis acidic nature of the bimetallic core. One of the two triflates counter anions approaches the antimony center trans from the chlorine atom (O1–Sb–Cl1 = $172.43(13)^{\circ}$), forming a long Sb–O1 interaction of 2.565(5) Å. The four primary ligands bound to antimony form a distorted tetrahedral geometry suggesting that the antimony ligand acts as an L-type stibine ligand toward the platinum center.

Figure 57. Structure of [**51**]OTf₂ in the crystal. Thermal ellipsoids are drawn at the 50% probability level. Phenyl groups are drawn in wireframe. The hydrogen atoms and the triflate anions are omitted for clarity. Relevant metrical parameters can be found in the text or the SI. Right: NLMO and NBO plots (isovalue = 0.05) of the C–Sb and Sb–Pt bonds in [**51**]²⁺. Hydrogen atoms are omitted for clarity.

Figure 58. NLMO (left) and NBO (right) plots (isovalue = 0.05) of the C–Sb covalent and Sb–Pt dative bonds in $[51]^{2+}$. Hydrogen atoms are omitted for clarity.

However, the long contact formed by the triflate anion serves as a reminder that the antimony ligand is Lewis acidic. DFT calculations on $[51]^{2+}$ and NBO analysis support the acidic nature of the antimony atom which again acts as a π acceptor of d-electron density from the platinum center through Pt(5d) \rightarrow Sb(5p) π interactions while the C–Sb and Pt–Sb σ -bond retain a polarization analogous to that in 50 (C–Sb: 61.2% C/ 36.4% Sb; Pt–Sb: 46.5% Pt/ 49.6% Sb) (Figure 58). The P–Sb π interaction in $[51]^{2+}$ evokes some of the unique features of cationic phosphine and arsine platinum complexes such as E and F (Figure 59)^{186,187} in which the strong π -accepting character of the cationic ligands render the platinum uniquely active in reactions that proceed through the carbophilic activation of alkynes.¹²⁶

Figure 59. Examples of cationic phosphine and arsine complexes used as pre-catalysts in alkyne activation reactions.

The possibility of accessing a structure such as that of $[51]^{2+}$ by simple addition of a basic substrate to 50 prompted us to investigate the catalytic activity of the latter. In particular, I became eager to determine if the electron deficient platinum center would be sufficiently electrophilic to participate in the carbophilic activation of alkynes,^{188,189} a reactivity that has been observed for related gold–boron and gold–antimony complexes.^{125,152} Gratifyingly, I observed that **50** serves as a self-activating catalyst for the cyclization of enyne \mathbf{a}^{167} as well as for the intramolecular hydroarylation reaction of the propargyl aryl ether \mathbf{b} ,¹²⁶ two model reactions that I chose for the purpose of this study (Figure 60). These reactions proceeded smoothly at room temperature over the course of 3-4 hours to complete conversion when catalyst **50** was used in 5 mol% ratio, without an external chloride anion abstracting agent. For the two reactions investigated, catalyst **50** operates under much milder conditions than PtCl₂ which requires heating in toluene.^{167,190} It is also important to point out that catalyst **50** shows no sign of decomposition in the the enyne cyclisation of **a** and can be detected by ³¹P NMR spectroscopy, even at the end of the reaction.

Figure 60. Reactions catalyzed by 50.

I propose that the activity of **50** in these reactions originates from the intramolecular migration of the chloride ligand to antimony generating an unmasked and catalytically active platinum center (Figure 61). Complex **43**, [**51**]OTf₂ and Ph₃Sb(OTf)₂ show no activity in these reactions. The lack of activity observed for **43** and [**51**]OTf₂ indicate that the Lewis acidity of the antimony center in **43** is not sufficient to induce an

activation of the platinum center by halide migration while the presence of the isocyanide ligand in $[51]^{2+}$ effectively poison the active platinum center. The absence of activity observed for Ph₃Sb(OTf)₂ supports the notion that catalysis takes place at the platinum center rather than at the antimony center.

Figure 61. Proposed working model for substrate activation.

3.5 Conclusion

In conclusion, I describe an air stable platinum compound which converts into an active electrophilic catalyst in the presence of the substrate. While typical electrophilic platinum catalysts such as **E** and **F** necessitate activation using a silver salt, complex **50** spontaneously turns on, without addition of any activator. Activation is proposed to occur via the intramolecular migration of a platinum-bound chloride ligand to an adjacent Lewis acidic antimony center. This conclusion is supported by the observed activity of complex **50** in reactions involving the carbophilic activation of alkynes. It is also supported by the isolation of the dicationic complex [**51** $]^{2+}$ in which the isocyanide ligand plays the role of a substrate surrogate. These results demonstrate that the coordination non-innocence and

Lewis acidity of antimony ligands can be exploited for the purpose of electrophilic catalysis.

3.6 Experimental

General experimental considerations: [(*o*–(Ph₂P)C₆H₄)₂SbCl], *cis*–PtCl₂(Et₂S)₂ were prepared according to the reported procedures. All air and moisture sensitive experiments were carried out under an atmosphere of dry N₂ employing either a glove box or standard Schlenk techniques. Solvents were dried by passing through an alumina column (n – pentane and CH₂Cl₂) or by reflux under N₂ over Na/K (Et₂O). All other solvents were used as received. Commercially available chemicals were purchased and used as provided (Commercial sources: Aldrich for SbCl₃; Matrix scientific for AgOTf. Ambient temperature NMR spectra were recorded on a Varian Unity Inova 500 FT NMR (499.42 MHz for ¹H,125.58 MHz for ¹³C, 469.89 MHz for ¹⁹F, 202.16 MHz for ³¹P). ¹H and ¹³C NMR chemical shifts are given in ppm and are referenced against SiMe₄ using residual solvent signals used as secondary standards. ¹⁹F NMR chemical shifts are given in ppm and are referenced against CFCl₃ using BF₃-Et₂O as an external secondary standard with δ -153.0 ppm. ³¹P NMR chemical shifts are given in ppm and are referenced against H₃PO₄ as an external standard. Elemental analyses (EA) were performed at Atlantic Microlab (Norcross, GA).

Computational Details: Density functional theory (DFT) structural optimizations were performed on the solid state structures of complexes **43**,**49**, **50**, [**51**]²⁺ using Gaussian 09 suite of programs with effective core potentials on all heavy atoms (functional: BP86;

mixed basis set: Sb/Pt: cc-pVTZ-PP; P/S/Cl: 6-31g(d); H/C/O: 6-31g, F: 6-31+g(d'). Frequency calculations were used to confirm convergence of the calculations. The optimized structures, which are in excellent agreement with the solid-state structures, were subjected to a NBO analysis and were visualized and plotted using the Jimp 2 program.¹⁷⁰

Crystallographic Measurements: The crystallographic measurements were performed at 110(2) K using a Bruker APEX – II CCD area detector diffractometer (Mo-K α radiation, $\kappa = 0.71069$ A). In each case, a specimen of suitable size and quality was selected and mounted onto a nylon loop. The structures were solved by direct methods, which successfully located most of the non-hydrogen atoms. Semi-empirical absorption corrections were applied. Subsequent refinement on F₂ using the SHELXTL/PC package (version 6.1) allowed location of the remaining non-hydrogen atom. Disordered interstitial solvents in the structure of **50** and [**51**](OTf)₂ were dealt with using the SQUEEZE subroutine as implemented in Platon.

Synthesis of 50: A CH₂Cl₂ solution (2 mL) of complex 43 (240 mg, 0.25mmol) was slowly added to a CH₂Cl₂ solution (5mL) of AgOTf (130mg, 0.50 mmol) at ambient temperature. After 1 h, the solution was filtered, and the product was precipitated with pentane (5 mL). This precipitate was isolated by filtration, washed with pentane (3 × 5 mL) and dried under vacuum, affording compound 50 as a white, air stable solid 86% yield (256 mg). Crystals of 50 (containing disordered interstitial solvents) suitable for X-ray diffraction were obtained by slow diffusion of pentane into a concentrated CH₂Cl₂ solution of 50 at room temperature. ¹H NMR (499.42 MHz; CDCl₃): δ 7.45 (t, 8 H, ³*J*_{H-H} = 7.43 Hz), 7.52 (t, 4 H, ³*J*_{H-H} = 7.22 Hz), 7.58–7.62 (m, 8 H), 7.69 (m, 4 H), 7.88 (m, 2)

H, o-P(Sb)C₆H₄), 8.85 (d, 2 H, o-P(Sb)C₆H₄, ${}^{3}J_{H-H} = 7.81$ Hz). ${}^{13}C\{1H\}$ NMR (125.58 MHz; CDCl₃): δ 127.4 (q, -C₆H₅, $J_{C-P} = 30.9$ Hz), 129.0 (t, -C₆H₅, $J_{C-P} = 5.9$ Hz), 132.0(s), 133.1(s), 133.8 (t, -C₆H₅, $J_{C-P} = 6.6$ Hz), 134.1(s), 135.3(brs), 135.7(s). ${}^{31}P\{{}^{1}H\}$ NMR (202.16 MHz; CDCl₃): δ 48.41 (t, $J_{Pt-P} = 2396$ Hz). Anal. Calcd for 2: C, 38.91; H, 2.41. Found: C, 39.15; H, 2.54.

Synthesis of [51]OTf2: One equivalent of cyclohexyl isocyanide (CNCy) was slowly added to a CH₂Cl₂ solution (2 mL) of 50 (38 mg, 0.03 mmol) at ambient temperature. After 30 min, pentane was added to the reaction mixture, leading to formation of a precipitate. This precipitate was isolated by filtration, washed with pentane (3×5) mL) and dried under vacuum, affording compound [51]OTf₂ as a pale yellow, air stable solid 65% yield (27 mg). Crystals of [51]OTf₂ (containing disordered interstitial solvents) suitable for X-ray diffraction were obtained by slow diffusion of pentane into a concentrated CH₂Cl₂ solution of [**51**]OTf₂ at room temperature. ¹H NMR (499.42 MHz; CDCl₃): δ 0.85-1.05 (br, 5H), 1.07-1.20 (br, 3H), 1.21-1.33 (br, 1H), 1.43-1.55 (br, 2H), 7.46-7.63 (m, 18H), 7.66 (t, 4 H, ${}^{3}J_{H-H} = 7.5$ Hz), 7.74 (t, 2H, ${}^{3}J_{H-H} = 7.6$ Hz), 7.94 (t, 2H, ${}^{3}J_{H-H} = 7.8 \text{ Hz}, o-P(\text{Sb})\text{C6H4}, 8.50 \text{ (d, 2H, } o-P(\text{Sb})\text{C}_{6}\text{H}_{4}, {}^{3}J_{H-H} = 7.8 \text{ Hz}). {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR}$ (100.45 MHz, CDCl₃): δ 22.20 (s, Cy-CH2), 24.50 (s, Cy-CH2), 31.07 (s, Cy-CH2), 56.38 (s, Cy–CH), 116.24-123.88 (q, –CF3, ${}^{1}J_{C-F}$ = 320 Hz), 128.9 (t, –C6H5, J_{C-P} = 5.5 Hz), 129.3 (t, $-C_6H_5$, $J_{C-P} = 5.1$ Hz), 129.93 (s), 130.1 (s), 133.06 (m), 133.3 (s), 133.70 (s), 134.15 (m), 135.25 (s), 135.83 (s). ³¹P{1H} NMR (202.16 MHz; CDCl₃): δ 46.4 (t, $J_{Pt-P} = 2273$ Hz). Anal. Calcd for [**51**]OTf₂: C, 42.16; H, 3.07. Found: C, 41.96; H, 3.08.

Figure 62. ¹H NMR spectrum of 50 in CDCl₃.

Figure 63. ¹³C NMR spectrum of 50 in CDCl₃.

Figure 64. ¹³P NMR spectrum of 50 in CDCl₃.

Figure 65. ¹H NMR spectrum of [51]OTf₂ in CDCl₃.

Figure 66. ¹³C NMR spectrum of of [51]OTf₂ in CDCl₃.

Figure 67. ³¹P NMR spectrum of of [51]OTf₂ in CDCl₃.

General procedure for the catalytic cycloisomerization and hydroarylation reactions: Catalytic reactions were carried out under N₂. In a typical reaction, the alkynecontaining substrate (**a** or **b**) was mixed with 5 mol% complex **50** in CH₂Cl₂ or CHCl₃. Conversion was estimated using ¹H NMR spectroscopy with 1,2,4,5–tetramethylbenzene as internal standard. Amounts used in a typical experiment are provided hereafter.

Cycloisomerization of a:

Loading: Dimethyl 2–allyl–2–(2–propynyl)malonate (146.1 mg, 0.69 mmol), catalyst (38.8 mg, 5 mol%). Conversion 96 %. Isolation: The product was isolated as a colorless oil via column chromatography. Isolated yield 88%.

Figure 68. ¹H NMR spectra collected during the cycloisomerization reaction of substrate a (top) and upon completion of the reaction after product isolation/purification (bottom). CDCl₃ solvent residues (*) are marked on the spectrum.

Figure 69. ³¹P NMR spectra collected upon completion of the cycloisomerization reaction substrate **a**.

Hydroarylation of b:

Loading: 1–(2–Butyn–1–yloxy)–3,5–dimethylbenzene (110.7 mg, 0.63 mmol), catalyst (37 mg, 5 mol%).

Conversion: 80% (46% conversion was achieved in the first 10 min). Formation of the product is accompanied by appearance of a side product in less than 5% yield; the identity of this product has not been established.

Figure 70. ¹H NMR spectra collected during the hydroarylation reaction of substrate **b**.

Figure 71. ³¹P NMR spectra collected upon completion of the hydroarylation reaction of substrate **b**.

CHAPTER IV

ACTIVATION OF ANTIMONY–PLATINUM COMPLEX AS CARBOPHILIC CATALYST THROUGH PERIPHERAL LIGAND SUBSTITUTION

4.1 Introduction

Antimony(V) derivatives are powerful Lewis acids which have been used for the generation of super acids^{40,191} or as catalysts for transformations that necessitate strong electrophilic activation.¹⁹²⁻¹⁹⁴ While antimony(V) halides have been at the forefront of this chemistry for much of the past 6 decades, recent efforts have shown that organoantimony compounds can also display appealing Lewis acidic properties while also being more convenient to handle than their halide counterparts.^{63,65,66,68,74,195-197} These advantageous properties of antimony have come to light in the development of applications in organic reaction catalysis^{45,131,192,198-200} and anion sensing.^{67,74,138,201} With the view of transferring the electrophilic qualities of antimony(V) compounds to transition metals, we have recently launched a synthetic effort toward the synthesis of complexes that combine a high-valent antimony center and a late transition metal.^{125,202,203} Examples of such complexes include G and H, two compounds in which the high Lewis acidity of the antimony center defines the catalytic properties of the late transition metal center (Figure 72). In complexes of type **G** and **H**, we proposed that the σ -accepting properties of the antimony moiety served to activate the late transition metal center via formation of a $M \rightarrow Sb$ interaction, leading to an enhancement in the carbophilic reactivity of the metal center. In a separate investigation, we reported an antimony platinum complex (50) in which the Lewis acidity of the stiboranyl moiety is accentuated by the presence of two triflate anion.¹⁶⁵ Despite the apparent coordinative saturation of the platinum center, we observed that this compound is a self-activating catalyst for enyne cyclization and hydroarylation reactions (Figure 60). We speculated that this complex owes its catalytic activity to the presence of a Lewis acidic antimony center which helps activate the Pt–Cl bond intramolecularly, allowing for substrate activation. With the view of further enhancing the properties of such platforms, we have now targeted an analog of **50** in which the chloride ligand bound to platinum is also replaced by a more weakly coordinating triflate anion. Given the lability of the triflate anions, we speculated that such a complex might generate an exposed platinum species, the reactivity of which would be further enhanced by the presence of an adjacent electrophilic antimony triflate unit.

Figure 72. Lewis acidic behavior of antimony ligands.

4.2 Synthesis and structures of the Sb–Pt complexes

We have previously described $[(o-(Ph_2P)C_6H_4)_2SbCl_2]PtCl (43)$, a complex with diphenylphosphino groups as anciallry ligands.¹⁵⁹ In this work, I decided to synthesize the di–*iso*–propylphosphino derivative $[(o-(^iPr_2P)C_6H_4)_2SbCl_2]PtCl. (52)$, with a view of testing how substitution of the phosphorus atom influences the chemistry of these complexes. Reaction of the previously reported chlorostibine $(o-(^iPr_2P)C_6H_4)_2SbCl$ ligand with $PtCl_2(SEt_2)_2$ in CH_2Cl_2 at reflux temperature under N₂ for 16 h afforded a yellow homogenous solution (Figure 73). The ³¹P NMR spectrum of this solution shows a single resonance at 72.6 ppm, coupled to the ¹⁹⁵Pt nuclei by $^1J_{Pt-P}$ = 2473 Hz. These spectroscopic features provided initial confirmation for the formation of **52**.

Figure 73. Synthesis of complex 52.

Single crystals of **52** suitable for X-ray diffraction were obtained by vapor diffusion of pentane into a solution of the compound in CH₂Cl₂. The structure shows that the platinum center adopts square planer geometry (P1–Pt–P2: 170.70(2)°; Cl3–Pt–Sb1 172.16(2)°), with the antimony center being trigonal bipyramidal (Pt–Sb–Cl1: 99.57(3)°; Pt–Sb–Cl2: 100.68(3)°; C1–Sb–Pt: 106.20(8)°; C13–Sb–Pt 105.67(8)°) as in complex **43** (Figure 74). ¹⁵⁹ The Sb–Pt separation of 2.4467(10) Å is almost identical to that found in **43** (2.4407(5) Å). The Pt–Cl3 distances found for **52** (Pt–Cl3: 2.376(1) Å) is a little longer

than that found for **43** (Pt–Cl3: 2.349(1) Å), which is likely due to the larger steric repulsion imposed by the *iso*–propyl ligands as well as by their more electron releasing properties.

A close look at the Sb–Pt bond in **52** with Natural Localized Molecular Orbital (NLMO) shows that like **43**, the Sb–Pt σ -bond is largely covalent. The orbital contributions from antimony and platinum are almost identical in both complexes (**43**: Sb, 48.79%; Pt, 45.39%; **52**: 48.58%; Pt, 45.60%). This result indicates that the R (R = Ph or ^{*i*}Pr) groups on the phosphino substituents has little impact on the Sb–Pt interaction.

Figure 74. Solid-state structure **52** (right). Thermal ellipsoids are drawn at the 50% probability level. Methyl groups are drawn in wireframe. Hydrogen atoms are omitted for clarity.

While I anticipated that exchange of the platinum-bound chloride anion of **50** may be difficult, I observed that reaction of complex $[(o-(Ph_2P)C_6H_4)_2SbCl_2]PtCl$ (**43**) with three equivalents of AgOTf proceeded smoothly to afford the target complex $[(o-(Ph_2P)C_6H_4)_2SbOTf_2]PtOTf$ (**54**) (Figure 75). The same reaction was also carried out with $[(o-(Pr_2P)C_6H_4)_2SbCl_2]PtCl$ (**52**). Again, I observed facile substitution of the three chloride anions when 3 equivalents of AgOTf were employed, leading to the formation of $[(o-({}^{1}\text{Pr}_{2}\text{P})\text{C}_{6}\text{H}_{4})_{2}\text{SbOTf}_{2}]\text{PtOTf}$ (54). The triflate derivatives 53 and 54 have been isolated as moisture sensitive solids. Their ${}^{31}\text{P}$ NMR spectra feature a single resonance at 49.4 ppm and 73.9 ppm coupled to the ${}^{195}\text{Pt}$ nuclei by ${}^{1}J_{\text{Pt-P}} = 2450$ Hz and 2383 Hz, respectively. These values are close to those measured for 43 ($J_{\text{Pt-P}} = 2566$ Hz) and 52 ($J_{\text{Pt-P}} = 2473$ Hz). Despite several attempts, I failed to obtain single crystals of 54 and I therefore resorted to NMR spectroscopy as a means to confirm the full replacement of the three chloride ligands. To this end, I used pentafluoroacetophenone as a dual ${}^{1}\text{H}/{}^{19}\text{F}$ internal standard. Using the intensities of the ${}^{1}\text{H}$ and ${}^{19}\text{F}$ signals of pentafluoroacetophenone, I found a proton/fluoride ratio of 28/9 for 54, in agreement with the presence of three triflate anions.

Figure 75. Synthesis of 53 and 54.

Single crystals of **54** could be easily obtained by diffusion of pentane into a CH_2Cl_2 solution of **54**. An examination of the structure of this complex confirms the presence of three triflate anions bound to the dinuclear core of the complex. The Sb1–O1 (2.199(2) Å) and Sb1–O4 (2.211(2) Å) distances, which are comparable to those measured in complex
50, indicate that the triflate anions are tightly coordinated to the antimony atom. As in complex **50**, the antimony atom adopts a distorted trigonal bipyramidal geometry in which the two triflate anions occupy axial positions as indicated by the O1–Sb–O4 angle of 176.41(6)°. The largest distortion occurs in the equatorial plane where the C1–Sb–C7 angle of 143.52(10)° is notably larger than the ideal value of 120°. The Sb–Pt distance is shorter (2.4237(12) Å) than that in complex **52** (2.4467(10) Å) indicating a contraction of the Pt–Sb core triggered by electron depletion. Finally, the triflate anion bound to the platinum center is held by a Pt–O bond of 2.168(2) Å. This bond distance is comparable to that found in other platinum triflate complexes such as **I** (2.097(2) Å) and [**J**]⁺ (2.102(9) Å) (Figure 76).^{204,205}

Figure 76. Examples of complexes containing a Pt center stabilized by a triflate anion.

The structures of **53** and **54** have been studied computationally and some of their bonding features examined using the Natural Bond Orbital method (NBO). Examination of the NBO output indicates that the Sb–Pt bonds in **53** and **54** are covalent (Figure 77). Indeed, the corresponding Natural Localized Molecular Orbitals (NLMO) show that both the antimony and platinum atoms contribute equally to the bond that connects them (Sb, 48.85%, Pt, 45.01% for **53**; Sb, 49.11%, Pt, 44.64% for **54**). The lack of polarization of the Sb–Pt bond is a feature that these new complexes share with the trichloride precursors **43** and **52** as well as with complex **50**. Another relevant parameter to assess is the Natural Population Analysis (NPA) which reveals that the charge at the platinum atom (0.085 for **53** and 0.065 for **54**) is higher than those values found for **43** (-0.0135) and **52** (-0.0142).

Figure 77. Left: Solid-state structure of **54**. Thermal ellipsoids are drawn at the 50% probability level. Methyl groups are drawn in wireframe. Hydrogen atoms are omitted for clarity. Right: NLMO plot of the major Sb–Pt bonding interactions.

4.3 Study of the catalytic reactivity

Given the known lability of the triflate ligand, we speculated that **53** and **54** might behave as electrophilic platinum catalysts.^{126,206-210} To test this possibility, we became eager to investigate their use in the cycloisomerization of 2-allyl-2-(2-propynyl)malonate, reaction often used to benchmark the activity of late transition metal catalysts. Complex **53** proved to be remarkably active. Indeed, when used in a 5 mol% loading, the cycloisomerization reached completion within 10 min when carried out at room temperature (Table 3, entry 2). The same reaction took 3.5 hours to complete when **50** was

employed as a catalyst (Table 3, entry 1). The contrasting activity of these two catalysts underscores the benefit of substituting the platinum-bound chloride ligand of **43** with a more weakly coordinating triflate anion in **53**. I propose that the increased lability of the triflate anion increases accessibility of the platinum center by the reaction substrate, leading to more efficient catalyst.

	X	R 5 mol% <u>rt - 80°</u> CDCl	cat <u>C</u>	$X \longrightarrow R + X$			
		Ň		а	b		
Entry	Cat	Х	R	Time	Product	Conversion ^b (%)	
1	50	C(COOMe) ₂	Н	3.5 h	b	96	
2	53	C(COOMe) ₂	Н	10 min	b	96	
3	54	C(COOMe) ₂	Н	3 h	b	0	
4	53	NTs	Н	1 h	b ^a	30	
5	53	NTs	Me	1 h	a	58	
6	53	NTs	Ph	1 h	а	47	

Table 3. 1, 6–Enyne cyclization catalysis.

^a Trace amount of **a** (R = H) was observed

^b Conversion determined by ¹H NMR

To our surprise, we found that **53** was inactive for this reaction. We examined the NPA charge of platinum centers in both complexes and found that this value is actually

lower in 54 (0.065) than in 53 (0.085). This lower charge suggests that the platinum center of 54 is less electrophilic, presumably because of the more electron releasing properties of the iso-propyl-substituted phosphino groups. The lack of reactivity for 54 may also originates from steric effect imposed by the bulkier iso-propyl groups, which lead to a less accessible platinum center. To support this argument, we inspected the steric maps of the ligands in both complexes as is shown in Figure 78. Comparison of the topographic steric maps identifies some important differences in the shapes of the catalytic pockets of the two complexes. Consistently, the %VBur (percent buried volume) at Pt in 54 (72.2%) is clearly larger than that in 53 (69.1%), suggesting greater accessibility in the latter. Such steric effects have been previously discussed in the case of the related gold anti-mony complexes $[((o-({}^{i}Pr_{2}P)C_{6}H_{4})_{2}(o-C_{6}Cl_{4}O_{2})SbPh]Au]^{+}$ and $[((o-(Ph_2P)C_6H_4)_2(o-$ C₆Cl₄O₂)SbPh]Au]⁺.¹⁵⁷ Indeed while the former displayed no carbophilic reactivity, the latter readily promoted the cycloisomerization of N-(prop-2-yn-1-yl)benzamide or the addition reaction of *p*-toluidine to phenylacetylene. No further attempts to use 54 as a catalyst were considered.

Figure 78. Topographic steric maps of the phosphino-antimony ligands in **53** (69.1%) and **54** (72.2%). The red and blue zones indicate the more- and less-hindered zones in the catalytic pocket, respectively.

Having shown that **53** is a much more reactive catalyst than **50**, I set out to investigate if it could catalyze more challenging reactions such as the cycloisomerization of nitrogen tethered 1,6–enynes. These reactions have been largely studied and applied to total synthesis.^{167,211} The reactions were carried out at 80 °C with a 6 mol% catalyst loading for 1 h at which point the yield and product distribution were determined by ¹H NMR spectroscopy (Table 3, entry 4-5). I observed that high temperature leads to decomposition of catalyst **53** such that the reaction ceases to proceed. For this reason, all conversions are recorded exactly after 1 h. The platinum catalyzed cycloisomerization reaction in entry 4 (Table 3) mainly afforded product of type **b** with a 30 % conversion. Trace amount of the product of type **a** were however observed. Such a selectivity for the diene product of type B has been reported before when cis–Pt(TMP)₂Cl₂ (TMP: 1–phenyl–2,3,4,5–tetramethylphosphole) was used as a precatalyst and AgBF₄ as an activator in 1,2–dichloroethane. Entries 5 and 6 (Table 3) show that substitution of the alkyne by a methyl

or phenyl group changes the fate of the reaction, with the main product being that of type **a**. These results show that although complex **53** can catalyze cycloisomerisation reactions of *N*-tethered 1,6–enynes, the reactivity is largely limited due to the concomitant decomposition of the catalyst. For this reason, this reaction is not explored further.

I have also probed the reactivity of **53** towards intermolecular hydroarylation reactions involving alkynes and heteroaryls such as pyrrole. These reactions were carried out in CDCl₃ with a 5 mol% catalyst loading. The conversions of these reactions were analyzed by ¹H NMR spectroscopy. The results are summarized in Table 4. As anticipated from the reactivity pattern observed in the enyne cyclization reactions, complex **53** showed higher reactivity than **50** in these hydroarylation reactions. When pyrrole was reacted with phenylene in the presence of catalyst **53** (5 mol%), rapid conversion was observed, leading to the formation of the double-addition product in 89 % in just 10 min (Table 4, entry 2) In comparison, catalyst **50** was much less active and necessitated 12 h to reach of 68 % yield of the double addition product(Table 4, entry 1). The reaction of simple indole with phenylacetylene in the presence of catalyst **53** also proceeded to give the bisindole complex, with 71% conversion in 2 h (Figure 79).

Finally, in order to benchmark the activity of **53** against challenging substrates, we have also tested reactions involving thiophene as the heteroaryl. Thiophenes are among one of the most difficult class of substrates to activate as the free electron pair at sulfur can coordinate to the platinum center.^{212,213} Because no reaction was observed with phenylacetylene, we decided to use ethyl propiolate, which owing to its greater electron deficiency, shows a higher reactivity. In line with the activity observed in the

aforementioned reactions, complex **53** displayed a much higher activity than **50**. Both catalysts afforded the mono-addition product **7** which was isolated in 87 % yield after 16 h when **53** was employed (Table 4, entry 4). The same reaction with **50** afforded less than a 10% conversion after 19 h (Table 4, entry 3). Interestingly, when the more electron rich 2-methylthiophene was used as the heteroaryl, the double addition product was formed (Table 4, entry 5 and 6). This difference highlights the greater electron-richness and reactivity of 2-methylthiophene as a nucleophile.

X R ₁	+ ==	— R ₂ —	5mol% cat CDCl₃		or	$\begin{array}{c} \begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	R ₂ H
Entry	Cat	Х	R_1/R_2	Time	Product	Conversion ^a (%)	
1	50	NH	H/Ph	12 h	с	68	
2	53	NH	H/Ph	10 min	с	89	
3	50	S	H/COOEt	19 h	d	< 10	
4	53	S	H/COOEt	16 h	d	87	
5	50	S	Me/COOEt	7 h	e	19	
6	53	S	Me/COOEt	7 h	e	76	

Table 4. Hydroarylation of alkynes with pyrrole and thiophene catalysis.

a. Conversion determined by ¹H NMR with durene as internal standard.

3 h, 71 % conversion

Figure 79. Hydroarylation of alkynes with indole catalysis.

4.4 Carboxylic acids as additives

Srobona Sen, a previous group member, synthesized complex **55** by treatment of the trifluorostiborane–platinum complex **44** with excess trifluoroacetic acid (Figure 80). ²¹⁴ The structure shows three trifluoroacetate anions coordinated to the SbPt core, a feature reminiscent of the structure of the tristriflate complex **53**. Despite this structural similarity, complex **55** is not catalytically active in enyne cyclization reactions. This lack of reactivity is presumably due to the strong coordination nature of the trifluoroacetate anions. Nevertheless, this structure demonstrates the possibility of replacing a weekly coordinating anion such as triflate by a more coordinating carboxylate. I anticipated that addition of one equivalent of a weak acid such as a carboxylic acid to complex **53** should lead to the displacement of a triflate ligand and coordination of the carboxylate as is shown in Figure 81. Such reactions should be favored since carboxylates (pKa(RCOOH) = 12.3 (R = Me), 11.1 (R = Ph) in DMSO) are more basic than trifalte (pKa(HOTf) = 0.3 in DMSO). It occurred to us that the use of chiral carboxylic acids may afford asymmetric catalysts.

Figure 80. Chemical structure of complex 55.

Figure 81. Top: Hypothesized reaction of 53 with carboxylic acid. Bottom: chemical structures of carboxylic acids.

Figure 82. Top: Variable temperature ³¹P NMR spectrum of a 1:1 mixture of complex **53** and *N*–phthaloyl–phenylalanine. Bottom: In situ ³¹P NMR spectrum of carboxylate adduct with complex **53**.

Stimulated by this perspective, I decided to use acids such as *N*-phthaloyl-phenylalanine²¹⁵ (racemic) and L-*N*-tetrachlorophthaloyl-valine²¹⁶ as additives. These acids were added to a CH₂Cl₂ solution of **53** in 1:1 ratio. The ³¹P NMR spectrum showed

two major resonances at 53.17 and 49.51 ppm for *N*–phthaloyl–phenylalanine in 1:1 ratio. The same observation was made for L–*N* tetrachlorophthaloyl–valine, which displayed two resonances at 53.17 and 49.51 ppm. Next, I performed a variable temperature NMR study to understate the fate of this reaction. The ³¹P NMR spectrum of a 1:1 mixture of complex **53** and *N*–phthaloyl–phenylalanine was recorded at 25 °C, 40 °C, 50 °C, 60 °C, 25 °C respectively, as is shown in Figure 82. The NMR resonance at 53 ppm decreases in height as the temperature increases. At the same time, the resonance at 49 ppm, it is safe to assume that this reaction takes place reversibly, resulting in a mixture of unreacted **53** and the desired carboxylate adduct.

Next, I decided to treat **53** with the sodium salt of the corresponding carboxylic acid. With this in mind, the sodium salt of L–*N*-tetrachlorophthaloyl–valine was generated by treating the carboxylic acid with Na₂CO₃ in methanol. Removal of the solvent led to a white solid which was used as is. Fortunately, reaction of this sodium salt with **53** led to the complete transformation to the desired carboxylate adduct as indicated by ³¹P NMR spectroscopy. With this complex in hand, I became eager to test its catalytic properties. To test the validity of this approach, I studied the cyclization of methyl 2–(pent–4– ynyl)acetoacetate²¹⁷ (Conia–ene reaction) with 5 mol% of **53** and 5 mol% of the sodium salt additive (Figure 83). Gratifyingly, the cyclization reaction was completed in 20 min. No further efforts were dedicated to this project.

Figure 83. Catalysis of conia–ene reaction.

4.5 Conclusion

In summary, I describe a new highly electrophilic antimony-platinum complex (53) featuring three triflate ligands connected to the dinuclear core. This complex is readily isolable but yet it behaves as a highly active catalyst for reactions involving alkynes. Based on a comparison with other catalysts, we assign the unusual catalytic activity of this complex to the weakly coordinating nature of the triflate ligands which, we propose, facilitates access to a reactive platinum center.

4.6 Experimental

General experimental considerations: *Cis*–PtCl₂(Et₂S)₂ was prepared according to the reported procedures. Solvents were dried by passing through an alumina column (*n*–pentane and CH₂Cl₂) or by reflux under N over Na/K (Et₂O and THF). All other solvents were used as received. Commercially available chemicals were purchased and used as provided (Commercial sources: Aldrich for SbCl₃ and Bu₄NF; Strem chemicals for AgSbF₆). Ambient temperature NMR spectra were recorded on a Varian Unity Inova 500 FT NMR (499.42 MHz for ¹H, 125.62 MHz for ¹³C, 469.89 MHz for ¹⁹F, 202.16 MHz for ³¹P). ¹H and ¹³C NMR chemical shifts are given in ppm and are referenced against

SiMe₄ using residual solvent signals used as secondary standards. ¹⁹F NMR chemical shifts are given in ppm and are referenced against CFCl₃ using BF₃–Et₂O as an external secondary standard with δ -153.0 ppm. Elemental analyses (EA) were performed at Atlantic Microlab (Norcross, GA).

General procedure for catalytic enyne cyclization reactions: Catalytic reactions were carried out at ambient temperature under air. To a solution of the appropriate enyne in CH_2Cl_2 (1 mL), catalytic amount of catalyst (5 %) in 1 mL of CH_2Cl_2 was added. The reaction mixture was stirred and monitored by ¹H NMR. When the reaction was completed, the conversion was determined by ¹H NMR.

Computational Details: Density functional theory (DFT) structural optimizations were performed on the solid state structures of complexes **53** and **54** using Gaussian 09 suite of programs with effective core potentials on all heavy atoms (functional: BP86; mixed basis set: Sb/Pt: cc-pVTZ-PP; P/S/Cl: 6-31g(d); H/C/O: 6-31g, F: 6-31+g(d'). Frequency calculations were used to confirm convergence of the calculations. The optimized structures, which are in excellent agreement with the solid-state structures were subjected to a NBO analysis and were visualized and plotted using the Jimp 2 program.¹⁷⁰

Crystallographic Measurements: The crystallographic measurements were performed at 110(2) K using a Bruker APEX–II CCD area detector diffractometer (Mo-K_{α} radiation, $\lambda = 0.71069$ Å). In each case, a specimen of suitable size and quality was selected and mounted onto a nylon loop. The structures were solved by direct methods, which successfully located most of the non-hydrogen atoms. Semi-empirical absorption

corrections were applied. Subsequent refinement on F^2 using the SHELXTL/PC package (version 6.1) allowed location of the remaining non-hydrogen atoms.

Synthesis of 52: A solution of $PtCl_2(Et_2S)_2$ (50.3 mg, 0.13 mmol) in CH_2Cl_2 was added to a solution of (o-(ⁱPr₂P)C₆H₄)₂SbCl (70.4 mg, 0.13 mmol) in CH₂Cl₂ under N₂ and reflux for 16 h. The resulting yellow reaction mixture was concentrated to 2 mL in vacuo, and the product was precipitated by addition of Et₂O. The product was filtered and washed with pentane to afford 52 (86 mg, 83% yield) as yellow solids. Single crystals of 52 suitable for X-ray diffraction were obtained by vapor diffusion of pentane into a solution of the compound in CH₂Cl₂. ¹H NMR (499.43 MHz; CDCl₃): δ 8.26 (d, 2H, o- $P(Sb)C_6H_4$, ${}^{3}J_{H-H} = 7.6 Hz$), 7.75 (m, 4H), 7.52 (t, 2H, *m*-P(Sb)C_6H_4, ${}^{3}J_{H-H} = 6.9 Hz$), 3.22 (m, 4H, CHCH₃), 1.43 (t, 6H, J = 7.5 Hz), 1.41 (t, 6H, J = 8.0 Hz), 1.25 (t, 6H, J = 7.5Hz), 1.24 (t, 6H, J = 7.5 Hz). ¹³C{¹H} NMR (125.62 MHz; CDCl₃): δ 167.88 (t, $J_{C-P} =$ 15.6 Hz), 134.41 (s), 131.89 (t, $J_{C-P} = 3.1$ Hz), 131.64 (t, $J_{C-P} = 7.0$ Hz), 129.88 3.5 Hz), 125.48 (t, $J_{C-P} = 25.0$ Hz), 27.98 (t, $J_{C-P} = 14.6$ Hz, $C(CH_3)_2$), 19.19 (s, CH_3), 19.09 (s, CH₃). ³¹P{1H} NMR (161.74 MHz; CDCl₃): δ 72.63 (s, ¹J_{Pt-P} = 2473 Hz). Elemental analysis calcd (%) for C24H36Cl3P2PtSb: C, 35.60; H, 4.48. Found: C, 35.38; H, 4.39.

Synthesis of 53: Complex **43** (208 mg, 0.22 mmol) was dissolved in CH₂Cl₂ (2 mL) and treated with AgOTf (169 mg, 0.66 mmol) under an N₂ atmosphere. The reaction mixture was allowed to stir for 16 h, resulting in white suspension, which is filtered over Celite. The filtrate was treated with hexane (2 mL), leading to precipitation of the product (**53**) as a white solid. The product was isolated by filtration and dried in vacuo (220 mg,

78% yield). ¹H NMR (399.43 MHz; CDCl₃): δ 8.72 (d, 2H, *o*–P(Sb)C₆H₄, ³*J*_{H–H} = 8.0 Hz), 7.90 (t, 2H, ³*J*_{H–H} = 7.6 Hz), 7.76 -7.61 (m, 12H), 7.59 -7.45 (m, 12H). ¹³C{¹H} NMR (125.62 MHz; CDCl₃): δ 135.28 (s), 134.82 (brs), 134.49 (s), 134.12 (t, *J*_{C–P} = 6.9 Hz), 133.87 (brs), 132.82 (s), 129.62 (t, *J*_{C–P} = 5.8 Hz), 126.34 (t, *J*_{C–P} = 29.5 Hz). ³¹P{1H} NMR (161.74 MHz; CDCl₃): δ 49.41 (s, ¹*J*_{Pt–P} = 2450 Hz). ¹⁹F{¹H} NMR (469.89 MHz; CD₂Cl₂): δ -80.4 (brs), -80.85 (s). Elemental analysis calcd (%) for C₃₉H₂₈F₉O₉P₂PtS₃Sb: C, 36.41; H, 2.19. Found: C, 35.08; H, 2.30.

Synthesis of 54: Complex 52 (80 mg, 0.10 mmol) was dissolved in CH₂Cl₂ (2 mL) and treated with AgOTf (77 mg, 0.30 mmol) under an N₂ atmosphere. The reaction mixture was allowed to stir for 16 h, resulting in yellow suspension, which is filtered over Celite. The filtrate was treated with hexane (2 mL) leading to precipitation of the product (54) as a yellow solid. The product was isolated by filtration and dried in vacuo (84 mg, 73% yield). ¹H NMR (399.43 MHz; CDCl₃): δ 8.74 (d, 2H, *o*–P(Sb)C₆H₄, ³*J*_{H-H}= 7.9 Hz), 8.01-7.88 (m, 4H), 7.85 (t, 2H, *m*–P(Sb)C₆H₄, ³*J*_{H-H}= 7.4 Hz), 3.44 (m, 4H, CHCH₃), 1.36 (t, 6H, *J* = 7.3 Hz), 1.32 (t, 6H, *J* = 8.3 Hz), 1,26 (t, 6H, *J* = 7.5 Hz), 1.24 (t, 6H, *J* = 7.3 Hz). ¹³C{¹H} NMR (125.62 MHz; CDCl₃): 152.04 (t, *J*_{C-P}= 11.6 Hz), 135.14 (t, *J*_{C-P}= 5.5 Hz), 134.64 (s), 133.47 (s), 133.19 (t, *J*_{C-P}= 3.5 Hz), 131.39 (t, *J*_{C-P}= 23.9 Hz), 27.95 (t, *J*_{C-P} = 13.9 Hz, *C*(CH₃)₂), 18.69 (s, *C*H₃), 18.58 (s, *C*H₃). ³¹P{1H} NMR (161.74 MHz; CDCl₃): δ 73.94 (s, ¹*J*_{Pt-P} = 2383 Hz). ¹⁹F{¹H} NMR (469.89 MHz; CD₂Cl₂): δ -79.2 (s, 3F), -81.5 (s, 9F). Elemental analysis calcd (%) for C₂₇H₃₆F₉O₉P₂PtS₃Sb: C, 28.19; H, 3.15. Found: C, 28.19; H, 2.99.

Figure 84. ¹H NMR spectrum of 52 in CDCl_{3.}

Figure 85. ¹³C NMR spectrum of 52 in CDCl₃

Figure 86. ³¹P NMR spectrum of 52 in CDCl₃

Figure 87. ¹H NMR spectrum of 53 in CDCl₃

Figure 88. ¹³C NMR spectrum of 53 in CDCl₃

Figure 89. ³¹P NMR spectrum of 53 in CDCl₃

Figure 90.¹⁹F NMR spectrum of 53 in CDCl_{3.}

Figure 91. ¹H NMR spectrum and ¹⁹F NMR spectrum of **53** in CDCl₃ with pentafluoroacetophenone as an internal standard. (400M Hz)

Figure 92. ¹H NMR spectrum of 54 in CDCl₃.

Figure 93. 13 C NMR spectrum of 54 in CDCl₃. The CDCl₃ solvent residual peak is truncated.

Figure 94. ³¹P NMR spectrum of 54 in CDCl₃

Figure 95.¹⁹F NMR spectrum of 54 in CDCl₃.

Figure 96. Top: ¹H NMR spectrum of the starting material of thiophene and ethyl propiolate. Middle: In situ ¹H NMR spectrum recorded during the catalytic reaction after 7h. Bottom: Isolated products.

Figure 97. Top: ¹H NMR spectrum of the starting material of pyrrole and phenylacetylene. Bottom: In situ ¹H NMR spectrum recorded during the catalytic reaction after 10 min.

Figure 98. Top: ¹H NMR spectrum of the starting material of the Conia–ene reaction. Bottom: In situ ¹H NMR spectrum recorded during the catalytic reaction after 1 h.

CHAPTER V

BIFUNCTIONAL DISTIBORANE(V) COMPOUNDS BASED ON ORTHO-PHENYLENE BACKBONES

5.1 Introduction

Previous efforts in our group have shown that stiborane derivatives such as **8** can be used for the complexation of fluoride anions in various media. For example, compound **8** readily binds fluoride in the presence of 95% water while its monofunctional analog Ph₃Sb(O₂C₆Cl₄) shows no measurable fluoride anion binding under the same conditions. This demonstrates that the fluoride affinity is drastically increased as a result of chelation. Similar properties are displayed by bifunctional stiborane **9**, which bears the 1,8– triptycenediyl backbone (Figure 99).⁷⁴

Figure 99. Examples of bifunctional Sb(V) containing species.

The scope of backbones supporting multidentate Lewis acids is not limited to 9,9– dimethylxanthene or 1,8–triptycene backbones. Other platforms such as naphthalene^{218,219} and *ortho*-phenlyene^{68,220,221} have also been used to support multiple Lewis acidic functionalities (Figure 100). All of these molecules display higher anion affinities than their monofunctional analogue, indicating the generality of this bifunctionality strategy.

Figure 100. Examples of naphthalene and *ortho*-phenylene bidentate Lewis acids containing boranes and hybrid elements.

As part of our ongoing interest in organoantimony(V) chemistry, we decided to investigate bifunctional distiboranes based on the *ortho*–phenylene backbones. We have previously synthesized complexes **56** and **57** and studied their fluoride binding abilities (Figure 101). In this chapter, I will target distiboranes based on perfluoro–*ortho*– phenylene backbone. Although this backbone has been employed before in boron²²²⁻²²⁴ and mercury²²⁵⁻²²⁷ chemistry, its use in antimony chemistry is underexplored. The perfluoro–*ortho*–phenylene backbone is electron withdrawing which should increase the Lewis acidity of the compounds.

5.2 Previous results

Masato Hirai, a former student in the Gabbaï group, synthesized and fully characterized derivatives **56** and **57**. Both molecules have C₂ symmetry with a cavity in between the two antimony(V) centers that could accommodate incoming anions. The fluoride adducts of both complexes, TBA[**56**–F] and TBA[**57**–F], have also been obtained by reaction with tetrabutylammonium difluorotriphenylsilicate (TBAT),which is a fluoride source, and the corresponding crystal structures were determined.

Figure 101. Previously synthesized distiboranes with the *ortho*-phenylene backbone and the synthesis of fluoride adducts of complexes 56 and 57.

More importantly, the gas phase fluoride ion affinity (FIA) of **56** has been estimated using computational methods. These calculations show that the FIA of **56** is $378.4 \text{ kJ mol}^{-1}$, which is 18.5 kJ mol^{-1} higher than that of the 9,9–dimethylxanthene analog **8** (FIA = $359.9 \text{ kJ mol}^{-1}$). The fluoride affinity of those complexes was also compared by

conducting a competition experiment. For example, reaction of **56** with equimolar amount of $[58]^-$ in CDCl₃ led to a quantitative formation of $[56-F]^-$ and **8**, thus indicating that **56** is more fluoridophilic than **8**. (Figure 102).

Figure 102. The competition experiment of 56 and [58]⁻ in CDCl₃.

With these complexes in hand, we became eager to test whether the fluoride ion affinity could be further enhanced by a more electron withdrawing backbone. In the next sections, I will discuss the synthesis and anion binding properties of a series of related complexes based on the perfluoro–*ortho*–phenylene backbone.

5.3 Synthesis of the distiboranes

The distibine **59** was prepared by treating the 1,2–dibromo–3,4,5,6– tetrafluorobenzene with *n*–BuLi (2.4 equiv) in THF at -65 °C (Figure 103). After stirring this reaction at low temperature for 1 h, diphenylantimony chloride (2.4 equiv) in THF solution was added to quench the dilithium salt. Compound **59** was separated using column chromatography and isolated as a white crystalline solid. This reaction can be easily monitored by ¹⁹F NMR spectroscopy, which shows two resonances at -113.99 and -153.42 ppm in a 1:1 ratio corresponding to the fluorine on the tetrafluorobenzene backbone. The ¹H NMR shows that the four phenyl rings on antimony are equivalent in solution.

Figure 103. Synthesis of complex 59.

With this compound in hand, we decided to oxidize the antimony center with ochloranil. Complex **59** underwent a clean oxidation with two equivalents of o-chloranil to afford **60** as a bright yellow solids in 93% yield (Figure 104). Unfortunately, **60** is insoluble in common organic solvents preventing its characterization by NMR spectroscopy. However, the formation of **60** could be monitored by ¹⁹F NMR during the reaction, before precipitation occurred. Upon mixing **59** with *o*–chloranil, the solution turned yellow immediately. *In situ* ¹⁹F NMR spectroscopy reveals two new resonances at -120 and -150 ppm. These two signals diminished in intensity over time as **60** precipitated out of solution.

Figure 104. Synthesis of complex 60.

Single crystals of **60** were obtained by layering a diethyl ether solution of *o*chloranil with a CH₂Cl₂ solution of **59** at ambient temperature. The structure was determined by X-ray diffraction analysis (Figure 105). The distiborane units adopt a distorted square-pyramidal geometry with an average τ -value of 0.14, which could be the result of repulsions between the distiborane moieties. Such a repulsive interaction is also supported by the values of the Sb2–C2–C1 (123.982(2)°) and Sb1–C1–C2 (124.219(2)°) angles, which are larger than the ideal value of 120°. Comparisons of the structure of **60** with that of **56** reveals a larger Sb–Sb separation in **60** (**56**: 3.7773(5) Å; **60**: 3.8176(8) Å). The average Sb1–O4 and Sb2–O2 distances in both **56** (2.816 Å) and **60** (2.8409 Å) are within the sum of the van der Waals radii of antimony and oxygen (3.05 Å), indicating weak interactions between the antimony and the neighboring oxygen atom.

Figure 105. Solid-state structure of **60**. Thermal ellipsoids are drawn at the 50 % probability level. The hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Sb1–Sb2 3.8176(8), Sb1–O1 2.0369(2), Sb1–O2 2.086(2), Sb1–O4 2.841(2), Sb2–O2 2.841(2), O1–Sb1–O2 79.91(8), Sb1–C1–C2 124.22(2).

To better understand the nature of these differences, **60** has also been investigated computationally using density functional theory (DFT) methods (B3LYP functional with the mixed basis sets: aug-cc-pVTZ-pp for Sb, 6-311g(d) for Cl, 6-31g(d') for F, 6-31g for C, O, and H. The calculations show that the LUMO is concentrated on both antimony(V) centers and has a high Sb–C_{Ph} σ^* character (Figure 106).

Figure 106. Contour plot of the LUMO of 60 (isovalue = 0.05).

Next, we decided to study the fluoride anion binding properties of **60**. Complex **60** was treated with TBAT in CH₂Cl₂. Despite the poor solubility of **60**, addition of TBAT to a yellow suspension of the compound led to a clear and colorless solution (Figure 107). Evaporation of the solvent followed by washing of the residue with Et₂O afforded TBA[**60**–F] as a white solid. The ¹⁹F NMR spectrum shows three resonances at -68.04, - 119.59, and -154.43 ppm, respectively in a 1 : 2 : 2 ratio. The ¹⁹F NMR resonance at -68.04 ppm is very close to the resonance of the bridging fluoride anion in TBA[**60**–F] (-73.3 ppm in CDCl₃). These values are slightly downfield from the fluorine resonance signal in TBA[Ph₃Sb(cat)F] (-84.6ppm in CDCl₃).⁶⁵ They are also comparable with that in Ph₄SbF (-81.4 ppm), which contains a covalent Sb–F bond. In comparison, these values are notably different from the fluorine signals of complex [**58**]⁻, which appears at -26.5 ppm in CDCl₃.

Figure 107. Synthesis of TBA[60–F].

To obtain structural insights into TBA[60–F], crystals of TBA[60–F] were grown by slow diffusion of pentane vapors into a CH₂Cl₂ solution of the salt. The solid-state structure, which was determined by X-ray crystallography, confirmed fluoride anion chelation. In the solid-state, the antimony centers adopt a distorted octahedral geometry. Comparison of the crystal structure of TBA[60-F] with TBA[56-F] reveals some interesting features. While TBA[56–F] still retains C2 symmetry with the fluoride anion positioned trans to two phenyl rings, TBA[60-F] crystallizes in a structure of lower symmetry. The fluoride anion is positioned trans to a phenyl ring on one side and trans to a oxygen atom on the other side. This geometry could be the result of crystal packing forces since the ¹⁹F NMR spectrum of TBA[60-F] in solution is consistent with a symmetrical structure with only two resonances corresponding to the tetrafluorobenzene backbone. In TBA[56-F], the fluoride anion sits close to the plane containing the orthosubstituted benzene backbone. The Sb1–Sb2 separations are 3.8569(5) Å in TBA[56–F] and 3.8643(24) Å in TBA[60–F]. These values are slightly increased when compared with the compounds in their fluoride-free form (56: 3.7773(5) Å; 60: 3.8176(8) Å). This slight increased separation may be the result of increased steric as a result of fluoride anion addition. The Sb–F bond lengths (2.1213(14) Å for Sb1–F1 and 2.2356(14) Å for Sb2–F1

in TBA[**56**–F]; 2.2903(65) Å for Sb1–F1, and 2.1069(72) Å for Sb2–F1 in TBA[**60**–F]) are comparable to the Sb-F separations in the fluoride adduct of 9,9–dimethylxanthene. On the other hand, the Sb1–F1–Sb2 angles $(124.54(7)^{\circ} \text{ in TBA}[\mathbf{56}-F], 122.943(31)^{\circ} \text{ in TBA}[\mathbf{60}-F])$ (Figure 108) indicated significant bending of the Sb-F-Sb motif. The same motif in [**58**][–] was significantly more linear (Sb-F-Sb angle 165.45(9)°). These differences are assigned to the structure of the distiboranes.

Figure 108. Crystal structure of TBA[**60**–F]. Thermal ellipsoids are drawn at the 50 % probability level. The hydrogen atoms and tetrabutylammonium cation are omitted for clarity. Selected bond lengths (Å) and angles (deg) of TBA[**60**–F]: Sb1–Sb2 3.8643(2), Sb1–F1 2.2903(7), Sb2–F1 2.1069(7), Sb1–F1–Sb2 122.943(3), F1–Sb2–O1 162.959(3), F1–Sb2–C25 169.25(8), O1–Sb1–O2 76.253(3), O3–Sb2–O4 78.76(7).

Having confirmed the bidentate nature of complex TBA[**60**–F], we wanted to compare the Lewis acidity of **60** to that of the previously synthesized derivatives **8** and **56**. We first computed the fluoride ion affinity (FIA) of **60** and found it to be equal to 388.3 kJ mol⁻¹. This FIA is 9.9 kJ mol⁻¹ higher than that of **56** (378.4 kJ mol⁻¹) and 28.42 kJ mol⁻¹

¹ than that of **8** (359.88 kJ mol⁻¹). These calculations support the notion that fluorination of the *o*-phenylene backbone enhances the Lewis acidity of the Sb(V) centers.

Next, we decided to carry out a competition experiments in order to compare the fluoride anion affinity of **56** and **60** (Figure 109). However, the low solubility of **60** prevented us from testing the reaction of **60** with TBA[**56**–F]. Faced with this difficulty, we decided to add 1 equivalent of Al(NO₃)₃ to a 1:1 mixture of TBA[**56**–F] and TBA[**60**–F] in THF. This reaction afforded complete decomplexation of TBA[**56**–F], while TBA[**60**–F] remained intact. This result supports the notion that **60** indeed has a higher fluoride affinity than **56**. Addition of more of Al(NO₃)₃ led to decomplexation of TBA[**60**–F].

Figure 109. Reverse competition experiment of TBA[56-F] and TBA[60-F] with $Al(NO_3)_3$

5.4 Synthesis and properties of a distiborane obtained by oxidation of the distibine59 with octafluorophenanthra-9,10-quinone

Contemplating strategies that would ameliorate the solubility of these compounds, we considered octafluorophenanthra–9,10–quinone as an oxidant.^{228,229} Complex **61** could be easily generated by treatment of **59** with 2 equivalents of octafluorophenthra–9,10–quinone (Figure 111). After stirring the solution for 30 min, solvents were evaporated, and the remaining solid was washed with Et₂O, affording **61** as a yellow solid. This compound is very soluble in THF and CH₂Cl₂. While the ¹⁹F NMR spectrum of the octafluorophenanthra–9,10–quinone exhibits four distinct resonances, the ¹⁹F NMR spectrum of **61** shows ten peaks in CDCl₃, consistent with the formation of a compound of *C*₂ symmetry.

Figure 110. Synthesis of complex 61.

Figure 111.Structure of one of the two independent molecules in the solid-state structure of 1. Thermal ellipsoids are drawn at the 50 % probability level. The hydrogen atoms and toluene molecules are omitted for clarity. Selected bond lengths (Å) and angles (deg): isomer 61. Sb1–Sb2 3.5690(7), Sb1–O3 2.4291(4), Sb2–O1 2.5725(5), O1–Sb1–O2 78.449(2), O3–Sb2–O4 78.374(2), Sb1–C1–C2 120.031(5), Sb2–C2–C1 120.055(6). Isomer 2: Sb1–Sb2 3.5969(7), Sb1–O3 2.4727(5), Sb2–O1 2.6432(5), O1–Sb1–O2 78.551(2), O3–Sb2–O4 78.479(2), Sb1–C1–C2 120.790(5), Sb2–C2–C1 120.696(6).

The solid-state structure of **61**, which contains two independent molecules in the asymmetric unit, confirms this view and is discussed hereafter, in direct comparison with that of **57**, its perprotio-*ortho*-phenylene analog, which was isolated and characterized by Masato Hirai. In both compounds, the Sb1–Sb2 separations are small with a value of 3.568(3) Å in **57**, and 3.5690(7) Å/3.5969(7) Å in **61**. These values are significantly smaller compared with those values in **56** and **60** (**56**: 3.7773(5) Å; **60**: 3.8176(8) Å), despite that the fact that fluorophenanthrene ligand is bulkier. We propose that this is due to π - π interaction between the fluorophenanthrene ligands as they are clearly bent towards each other. This attraction also induces some bending in the phenanthrene ligands. These
distortions result in short Sb-O separations, across the bidentate pocket. Indeed, **61** features short Sb1–O3 and Sb2–O1 distances of 2.4291(4) Å and 2.5725(5) Å, respectively, leading to an average value of 2.520 Å. This average value is slightly shorter than that in **57** (2.541 Å), suggesting that the antimony centers of **61** are more Lewis acidic. It is also interesting to note that these values are shorter than those in **60** (av. Sb····O = 2.8409 Å).

The geometry of **61** has been investigated computationally using DFT methods (B3LYP functional with the mixed basis sets: aug-cc-pVTZ-pp for Sb, 6-31g(d') for F, 6-31g for C, O and H). As expected, the LUMO is concentrated on both antimony(V) centers and has a high Sb–C_{Ph} σ^* character, as observed for **60** (Figure 112) The Sb–O interactions in complexes **57** and **61** have also been investigated using a natural bond orbital (NBO) analysis. This analysis reveals the presence of a lp_(O) $\rightarrow \sigma^*_{Sb-C}$ donor-acceptor interactions which, as indicated by deletion calculations, contributes $E_{del} = 22.18$ kcal mol⁻¹ to the stability of **57** and $E_{del} = 29.79$ kcal mol⁻¹ to the stability of **61** (Figure 113). The higher value in **61** also support the greater Lewis acidity of the Sb(V) centers in **61**.

Figure 112. Contour plot of the LUMO of 61 (isovalue = 0.05).

Figure 113. Left: Plot of the NBO $lp_{(O)} \rightarrow \sigma^*_{Sb-C}$ donor-acceptor interactions calculated for **57**. Right: Plot of the NBO $lp_{(O)} \rightarrow \sigma^*_{Sb-C}$ donor-acceptor interactions calculated for **61**. Density isovalues are set at 0.05, and hydrogen atoms have been omitted for clarity.

After full characterization of complex **61**, we wanted to investigate how the Sb–O interactions would affect its fluoride ion affinities. Towards this end, **61** was treated with TBAT in CH₂Cl₂ at ambient temperature (Figure 114). After stirring for 30 min, the solvent was removed in vacuo to afford an orange oil, which was washed with a large amount of pentane. This procedure afforded TBA[**61**–F] as yellow solid in 80% yield. The ¹H NMR spectrum of this anionic complex shows that the resonances of the aryl rings in TBA[**61**–F] are significantly sharpened compared to those of the free distiborane **61** and that all four phenyl rings are equivalent in solution. In the ¹⁹F NMR spectrum of TBA[**61**–F], nine distinct resonances are found between -115 and -170 ppm, corresponding to the perfluorophenanthrenediyl–9,10–dioxy ligand and the tetrafluorobenzene backbone. The fluoride ion appears at -77.09 ppm in CDCl₃.

Figure 114. Synthesis of TBA[61–F].

Single crystals of TBA[**61**–F] were obtained by diffusion of pentane into a saturated dichloromethane solution of the salt (Figure 115). The solid-state structure was obtained by X-ray crystallography. The structure confirms that the fluoride is tightly bound to both antimony centers in a chelating fashion. In both TBA[**57**–F] and TBA[**61**–

F], the perfluorophenanthrenediyl–9,10–dioxy ligands are clamping down on the bridging fluoride, thus indicating the flexibility of such ligands. The Sb1–Sb2 separation in TBA[**57**–F] and TBA[**61**–F] are 3.8084(1) Å and 3.8525(6) Å, respectively. These values are slightly shorter than those in their *o*–chloranil analogues (TBA[**56**–F]: 3.8569(5) Å; TBA[**60**–F]: 3.8643(2) Å) despite the fact that the perfluorophenanthrene ligand is bulkier. The bridging fluoride adopts a bent geometry with a Sb1–F100–Sb2 angle of 126.27(2)^o in TBA[**57**–F] and a Sb1–F1–Sb2 angle of 129.48(6)^o in TBA[**61**–F].

Figure 115. Crystal structure of [TBA][**61**–F]. Thermal ellipsoids are drawn at the 50 % probability level. The hydrogen atoms and the TBA cation are omitted for clarity. Selected bond lengths (Å) and angles (deg) in [TBA][**61**–F]: Sb1–Sb2 3.8525(6), Sb1–C1 2.1824(2), Sb1–C04 2.1430(2), Sb1–O1 2.0516(1), Sb1–O2 2.0614(1), Sb2–C2 2.1853(2), Sb2–C40 2.1344(2), Sb2–O3 2.0658(1), Sb2–O4 2.0570(1), Sb1–F–Sb2 129.48(6), O1–Sb1–O2 78.940(6), O3–Sb2–O4 79.190(5), F1–Sb1–C04 169.979(7), F1–Sb2–C15 170.314(7).

We have also estimated the FIA of **57** and **61** using DFT methods. The optimization and frequency calculation have been carried out at the B3LYP functional with the mixed basis sets: aug-cc-pVTZ-pp for Sb, 6-31g(d') for F, 6-31g for C, O and H. Subsequently, enthalpies have been determined by a single point calculation at the DFT optimized structure applying the B3LYP functional and aug-cc-pVTZ-pp level of theory on Sb and 6-311+g(2d, p) level of theory on C, H, O, and F. The results show that the FIA of **57** (388.1 kJ mol⁻¹) is marginally higher than that of **56**. That of **61** (396.3 kJ mol⁻¹) is the highest among the four stiboranes discussed so far.

Next, we wanted to compare the fluoride anion affinity to their 9,9– dimethylxanthene analogue. To this end, we studied the reaction of [**58**][–] with an equimolar amount of **61** in THF. Unfortunately, no exchange of the fluoride anion occurred over 30 min. The reason is likely due to the Sb–O interaction in **61** that imposes a high energy barrier for the fluoride exchange reaction. To test this hypothesis, we treated a 1:1 mixture of **57** and **61** with 1 equivalent of TBAT in THF and found that the major product is TBA[**57**–F], even if **61** possess a higher FIA by calculation. Next, we performed a reverse competition experiment as descried in section 5.3. We treated a 1:1 mixture of TBA[**57**–F] and TBA[**61**–F] in THF with Al(NO₃)₃. Upon incremental addition of Al(NO₃)₃, we observed that the ¹⁹F NMR resonance signal corresponding to the bridging fluoride in TBA[**57**–F] disappeared completely while that of TBA[**61**–F] remained intact. Further addition of Al(NO₃)₃ led to the disappearance of TBA[**61**–F] signals. The corresponding ¹⁹F NMR spectra are shown in Figure 116. This experiment indeed suggests that **61** has a higher fluoride ion affinity than **57**. However, the decomplexation of fluoride ion is accompanied by decomposition of the free distiboranes. As a result, this fluoride decomplexation chemistry is not reversible.

Figure 116. a) 1:1 mixture of TBA[**57**–F] and TBA[**61**–F] in THF; b) Reaction with 0.5 equiv Al(NO₃)₃; c) Reaction with 1 equiv Al(NO₃)₃; d) Reaction with 2 equiv Al(NO₃)₃ in 5min.

5.5 Synthesis and properties of a distiboranes obtained by oxidation of the

distibines 56 and 59 with phenanthrenequinone

We have also used commercially available phenanthrenequinone to generate distiboranes. Compound **62** was generated by treatment of **56** with 2 equivalents of phenanthrenequinone under N_2 atmosphere. The compound precipitates as a yellow, insoluble solid that has very poor solubility in common organic solvents, preventing its characterization by NMR spectroscopy. Single crystals of **62** were obtained by carefully

layering a CH_2Cl_2 solution of phenanthrenequinone with a CH_2Cl_2 solution of **56** under an N₂ atmosphere.

Figure 117. Structure of one of the two independent molecules in the solid-state structure of **62**. Thermal ellipsoids are drawn at the 50 % probability level. The hydrogen atoms and solvents are omitted for clarity. Selected bond lengths (Å) and angles (deg) in **62**: Sb1–Sb2 3.507(5), Sb1–O1 2.018(5), Sb1–O2 2.150(5), Sb2–O3 2.153(5), Sb2–O4 2.009(4), Sb1–O3 2.462(5), Sb2–O2 2.446(5), O1–Sb1–O2 79.11(18), O3–Sb2–O4 79.35(18), Sb1–C2–C1 119.3(5), Sb2–C1–C2 120.4(7). The other independent molecule features similar metrical parameters.

Complex **62** crystallizes with two independent molecules in the asymmetric unit (Figure 117). Because these two molecules are very similar, the structure of only one of them is discussed here. The Sb1–Sb2 separation in this molecule is small with a value of 3.507(5) Å. This value is significantly smaller than those in **56** (3.7773(5) Å) and **57** (3.568(3) Å). The Sb and neighboring O distance is short with a value of 2.462(5) Å for the Sb1–O3 distance and 2.446(5) Å for the Sb2–O2 distance. These values are well

below the van der Waals radii of the two elements and they are significantly smaller than those in **56**. The Sb2–C1–C2 (120.4(7)°) and Sb1–C2–C1 (119.3(5)°) angles are close to the ideal value of 120°. Complex **62** was treated with TBAT in CH₂Cl₂ at ambient temperature under N₂. A new peak emerged at -70.1 ppm in the ¹⁹F NMR spectrum within 5 min indicating the formation of a fluoride adduct. However, this adduct quickly decomposed when exposed to air.

Realizing the fluoride adduct of **62** may be difficult to isolate, we turned our attention to compound **59**. To a stirred solution of **59** in CH_2Cl_2 (2 mL) was added a solution of phenanthrenequinone in CH_2Cl_2 dropwise under N₂. Stirring for 30 min resulted in a yellow precipitate of the product **63** which was isolated by filtration. The ¹⁹F NMR spectrum shows two distinct signals at -124.37 and -152.71 ppm corresponding to the fluoro–*ortho*–phenylene backbone. The ¹H NMR spectrum features eleven distinct signals, thus indicating that the hydrogen atoms on the phenanthrene moiety are inequivalent.

Single crystals of **63** were obtained as yellow needles by slow evaporation of a CH_2Cl_2 solution of 9,10–phenanthrenequinone and **59** at -20°C. The structure was determined by X-ray diffraction analysis. In the solid-state, the antimony centers adopt a distorted square-pyramidal geometry (Figure 118). The Sb1–Sb2 separation is small with a value of 3.513(4) Å. The Sb1–O3 (2.444(4) Å) and Sb2-O2 (2.448(4) Å) distances are well below the sum of van der Waals radii of the two elements indicating the presence of an interaction. These distances are significantly smaller than those in **60**, which have the value around 2.8 Å. The formation of these short distances is consistent with the higher

basicity of the oxygen atoms resulting from the presence of a non-fluorinated phenanthrene back bone. The fluorinated phenylene backbone and the resulting higher Lewis acidity of the antimony centers also plays a role. The Sb2–C1–C2 and Sb1–C2–C1 angles are $119.7(5)^{\circ}$ and $119.3(5)^{\circ}$, respectively, which are close to the ideal value of 120 °.

Figure 118. Structure of one of the two independent molecules in the solid-state structure of **63**. Thermal ellipsoids are drawn at the 50 % probability level. The hydrogen atoms and solvents are omitted for clarity. Selected bond lengths (Å) and angles (deg) in **63**: Sb1–Sb2 3.513(4), Sb1–O1 2.000(5), Sb1–O2 2.128(4), Sb2–O3 2.131(4), Sb2–O4 2.008(4), Sb1–O3 2.444(4), Sb2–O2 2.448(4), O1–Sb1–O2 80.77(17), O3–Sb2–O4 80.16(17), Sb1–C2–C1 119.3(5), Sb2–C1–C2 119.7(5).

Next, I decided to study the anion binding properties of **63** towards fluoride. Complex **63** was treated with TBAT in CH_2Cl_2 . To a solution of **63** in dichloromethane was added a solution of TBAT in dichloromethane. After stirring for 10 min, the mixture was clear yellow. The solvent was then removed in vacuo to afford TBA[**63**–F] as a green yellow solid. The ¹⁹F NMR spectrum shows three resonance signals -63.79, -121.80, - 157.61 ppm, respectively in a 1: 2: 2 ratio. The ¹H NMR spectrum features ten distinct signals, thus indicating that the hydrogen atoms on the phenanthrene moiety are inequivalent.

5.6 Conclusion

The results in this chapter show that the use of the perfluro–*ortho*–phenylene backbone can be used to access highly Lewis acidic distiboranes. Although these distiboranes readily complex fluoride anions, their lack of solubility or their instability has prevented an unambiguous clarification of their anion affinity. Nevertheless, the results I have obtained have allowed me to identify particularly promising scaffold that maximize anion chelation. These include distiborane **61** whose exterior is fully fluorinated.

5.7 Experimental

General considerations: Antimony is potentially toxic and should be handled with caution. Perfluoro(tetradecahydrophenanthrene) was purchased from Beantown Chemical and used as received. *n*–BuLi (2.65 M in hexane) was purchased from Alfa Aesar and used as received. Tetrachloro–*o*–benzoquinone (*o*–chloranil) was purchased from Acros Organics. TBAT was purchased from TCI and used as received. Ph₂SbCl,²³⁰ PhICl₂,²³¹ was prepared by following or modifying previously reported procedure from literature. All preparations were carried out under an atmosphere of dry N₂ employing either a glovebox or standard Schlenk techniques unless specified. Solvents were dried by

passing through an alumina column (pentane and CH₂Cl₂) or by refluxing under N₂ over Na/K (hexanes, Et₂O, and THF). All other solvents were ACS reagent grade and used as received. NMR spectra were recorded on a Varian Unity Inova 400 FT NMR (399.508 MHz for ¹H, 100.466 MHz for ¹³C) or Varian Unity Inova 500 FT NMR (499.42 MHz for ¹H, 469.86 MHz for ¹⁹F, 125.60 MHz for ¹³C) spectrometer at ambient temperature. ¹H and ¹³C NMR chemical shifts are given in ppm and are referenced against SiMe₄ using residual solvent signals used as secondary standards. ¹⁹F NMR chemical shifts are given in ppm and are referenced against secondary standard with δ -153.0 ppm. Elemental analyses (EA) were performed at Atlantic Microlab (Norcross, GA).

Computational Details: Density functional theory (DFT) structural optimizations with the Gaussian 09 program.208 In all cases, the structures were optimized using the B3LYP functional;209, 210, and the following mixed basis set: Sb, aug-cc-pVTZ-PP;240 Cl, 6-311+g(d); F, 6-31g(d');212 C/O/H, 6-31g. For all optimized structures, frequency calculations were carried out to confirm the absence of imaginary frequencies. The molecular orbitals were visualized and plotted in Jimp 2 program.¹⁷⁰

Crystallographic measurements: The crystallographic measurements were performed at 110(2) K using a Bruker APEX-II CCD area detector diffractometer, with a 194 graphite-mono chromated Mo-K α radiation ($\lambda = 0.71069$ A). A specimen of suitable size and quality was selected and mounted onto a nylon loop. The semi-empirical method SADABS was applied for absorption correction. The structure was solved by direct methods, which successfully located most of the non-hydrogen atoms. Subsequent

refinement on F2 using the SHELXTL/PC package (version 6.1) allowed location of the remaining non-hydrogen atoms. All H-atoms were geometrically placed and refined using a standard riding model.

Synthesis of 59: A solution of *n*–BuLi in hexane (3.5 mL, 2.2 M, 7.73 mmol) was added dropwise to a solution of 1, 2-dibromotetrafluorobenzene (0.9951 g, 3.22 mmol) in THF (20 mL) at -78 °C. After stirring at this temperature for 45 min, a suspension of Ph₂SbCl (1.9960 g, 6.44 mmol) in THF (10 mL) was transferred with a cannula to the solution. The solution was slowly warmed up to ambient temperature and stirred for an additional 12 h. The solvent was removed in vacuo and CH₂Cl₂ (30 mL) was added to the residue. The solution was then filtered through Celite. The solvent of the filtrate was removed in vacuo and resulted in yellow oily product which was isolated with silica gel column in hexane. Removal of hexane gave white crystalline solid (1.41g, 62.3%). Single crystals of (C₆F₄)Sb₂Ph₄ suitable for X-ray diffraction were obtained by a hexane solution of the compound to stand at room temperature overnight. ¹H NMR (499.42 MHz, CDCl₃): δ 7.30-7.34 (m, 12H, *p*-Sb*Ph*, *o*-Sb*Ph*), δ =7.46 ppm (m, 8H, *m*-Sb*Ph*), ¹³C{¹H} NMR $(125.60 \text{ MHz}, \text{CDCl}_3): \delta 149.52-151.57 \text{ (dm}, {}^{1}J_{C-F}=260.9 \text{ Hz}), 139.64-142.04 \text{ (dm}, {}^{1}J_{C-F}=260.9 \text{ Hz})$ 257.0 Hz), 137.63, 136.13, 129.00, 128.92 ppm. ¹⁹F NMR (469.86 MHz, CDCl₃): δ -113.99 (d, ${}^{3}J_{F-F} = 18.3$ Hz), -153.42 ppm (d, 2F, ${}^{3}J_{F-F} = 18.3$ Hz). Elemental analysis calculated (%) for 59: C, 51.48; H, 2.88; found C, 51.27; H, 3.00.

Synthesis of 60: To a stirred solution of $(C_6F_4)Sb_2Ph_4$ (50.2 mg, 0.072 mmol) in CH₂Cl₂. (2 mL) was added a solution of *o*-chloranil (35.3 mg, 0.14 mmol) in CH₂Cl₂ (2 mL) dropwise over 5 min. Stirring for 30 min resulted in yellow precipitate which was

isolated through filtration to afford the product as yellow solid (79.5 mg, 93%). Single crystals were obtained as yellow blocks by layering a diethyl ether solution of *o*-chloranil with a CH₂Cl₂ solution of (C₆F₄)Sb₂Ph₄ at ambient temperature. ¹H NMR and ¹³C NMR cannot be obtained due to the poor solubility of this complex. ¹⁹F NMR (469.86 MHz, collect in the process of the reaction): δ -120.59 (d, 2F, ³*J*_{F-F} = 16.3Hz), -149.41 ppm (d, 2F, ³*J*_{F-F} = 16.1Hz). Elemental analysis calculated (%) for C₄₂H₂₀Cl₈F₄O₄Sb₂·CH₂Cl₂: C, 40.45; H, 1.74, Cl, 27.77; found C, 40.66; H, 1.84; Cl, 27.39.

Synthesis of TBA[60–F]: To a suspension of **60** (87.8 mg, 0.074 mol) in dichloromethane (3 mL) was added a solution of TBAT (39.8 g, 0.074mol) in dichloromethane (3 mL). After stirring for 30 min, the mixture was clear. Removal of the solvent in vacuo afforded TBA[**60–**F] as a white solid which was washed with two portions of Et₂O (3 mL each), resulting in white solid (116.9mg, 91.8%). Single crystals of TBA[**60–**F] were obtained as colorless blocks by slow diffusion of pentane into a CH₂Cl₂ solution of the compound at ambient temperature. ¹H NMR (499.42 MHz, CDCl₃): *δ* 8.06 (d, 4H, ${}^{3}J_{H-H}$ = 6.62 Hz, *o*–Sb*Ph*), 7.43 (m, 6H, ${}^{3}J_{H-H}$ = 6.77 Hz, Sb*Ph*), 7.31 (d, 4H, ${}^{3}J_{H-H}$ = 7.28 Hz, Sb*Ph*), 7.21 (pseudo t, 2H, ${}^{3}J_{H-H}$ = 7.28 Hz, *p*–Sb*Ph*), 7.16 (t, 4H, ${}^{3}J_{H-H}$ = 7.28 Hz, Sb*Ph*), 2.72 (pseudo t, 8H, ${}^{3}J_{H-H}$ = 8.72 Hz, TBA–CH₂), 1.34 (broad, 8H, TBA–CH₂), 1.07 (q, 8H, ${}^{3}J_{H-H}$ = 7.54 Hz, TBA–CH₂), 0.85 ppm (t, 12H, ${}^{3}J_{H-H}$ = 7.24 Hz, TBA–CH₃). ¹³C{¹H} NMR (125.60 MHz, CDCl₃): 146.19, 145.96, 132.88, 130.08, 129.25, 128.72, 128.27, 118.74, 117.91, 115.14, 65.88(TBA), 59.23(TBA), 24.11(TBA), 19.66 (TBA) ppm. ¹⁹F NMR (469.86 MHz, CDCl₃): *δ* -68.04 (s, 1F), -119.59

(d, 2F, ³*J*_{F-F}=18.3Hz), -154.43 ppm (d, 2F, ³*J*_{F-F}=16.9Hz). Elemental analysis calculated (%) for C₅₈H₅₆Cl₈F₅NO₄Sb₂: C, 47.94; H, 3.88; N, 0.96; found C, 48.21; H, 4.01; N, 1.08.

Synthesis of 61: To a stirred solution of $(C_6F_4)Sb_2Ph_4$ (78.0 mg, 0.11 mmol) in CH₂Cl₂ (2mL) was added a solution of octafluorophenthra–9,10–quinone (78.4 mg, 0.22 mmol) in CH₂Cl₂ (2 mL) dropwise. The solvent was removed in vacuo after stirring for 30 min and washed with 2 portions (2 ml each) of Et₂O and 2ml of pentane to afford the product as yellow solid in 69% yield (107.9 mg, 0.077 mol). Single crystals were obtained by slow evaporation of a CH₂Cl₂ solution. ¹H NMR (499.42 MHz, CDCl₃): δ 7.94 (d, 4H, ³*J*_{H-H} =7.72 Hz), 7.73 (t, 2H, ³*J*_{H-H} =7.41 Hz), 7.59 (t, 4H, ³*J*_{H-H} =7.41 Hz), 7.40 (d, 4H, ³*J*_{H-H} =8.40 Hz), 7.29 (t, 2H, ³*J*_{H-H} =7.77 Hz), 7.20ppm (t, 4H, ³*J*_{H-H} =7.82 Hz). ¹³C{¹H} NMR (125.60 MHz, CDCl₃): 137.00, 135.28, 134.44, 132.98, 132.38, 131.71, 129.70, 129.43ppm. ¹⁹F{¹H} NMR (469.86 MHz, CH₂Cl₂): -119.28 (s, 2F), -129.00 (pseudo q, 4F), -141.71 (s, 2F), -146.02 (s, 2F), -147.83 (s, 2F), -156.47 (s, 2F), -157.20 (s, 2F), -160.20 (s, 2F), -160.97ppm (s, 2F). Elemental analysis calculated (%) for C₅₈H₂₀F₂₀O4Sb₂: C, 49.61; H, 1.44; found C, 49.87; H, 1.64.

Synthesis of TBA[61–F]: To a solution of 61 (58 mg, 0.041 mmol) in dichloromethane (1 mL) was added a solution of TBAT (22 mg, 0.041 mmol) in dichloromethane (2 mL). After stirring for 30 min, the solvent was removed *in vacuo*. The orange oil was washed with a large amount of pentane. This procedure afforded TBA[61–F] in 80% yield (63 mg, 0.033 mol). Single crystals of TBA[61–F] were obtained by diffusion of pentane into a saturated dichloromethane solution. ¹H NMR (499.42 MHz, CDCl₃): δ 7.64 (d, 4H, *J*_{H–H}=7.72 Hz), 7.40 (d, 4H, ³*J*_{H–H}=7.17 Hz), 7.13 (m, 6H), 6.91 (t,

4H, ${}^{3}J_{H-H}$ =7.17 Hz), 6.82 (t, 2H, ${}^{3}J_{H-H}$ =7.87 Hz), δ =2.72 (pseudo t, 8H, TBA–*CH*₂), 1.27 (broad, 8H, TBA–*CH*₂), 1.13 (m, 8H, TBA–*CH*₂), 0.82 ppm(t, 12H, ${}^{3}J_{H-H}$ =7.45 Hz, TBA– *CH*₃). ${}^{13}C{}^{1}H{}$ NMR (125.60 MHz, CD₂Cl₂): 134.87, 133.12, 132.65, 128.81, 128.41, 128.06, 127.80, 127.54, 58.88, 23.76, 10.62,13.25ppm. ${}^{19}F{}^{1}H{}$ NMR (469.86 MHz, CDCl₃): -77.09 (s, 1F), -117.48 (s, 2F), -131.71 (pseudo q, 4F), -144.61 (s, 2F), -148.13 (s, 2F), -152.79 (s, 2F), -160.00 (s, 4F), -165.34(s, 2F), -165.66ppm (s, 2F). Elemental analysis calculated (%) for C₇₄H₅₆F₂₁NO₄Sb₂: C, 53.36; H, 3.39; N, 0.84; found C, 53.62; H, 3.53; N, 0.99.

Synthesis of 63: To a stirred solution of $(C_6F_4)Sb_2Ph_4$ (80.4 mg, 0.115 mol) in CH₂Cl₂ (2 mL) was added a solution of 9,10–phenanthrenequinone (47.8 mg, 0.23 mol) in CH₂Cl₂ (2 mL) dropwise in a glovebox. Stirring for 30 min resulted in yellow precipitate which was isolated through filtration and washed with 3 portions of Et₂O to afford the product as yellow solid in 86% yield (109.9 mg, 0.099 mol). Single crystals were obtained as yellow needles by slow evaporation of CH₂Cl₂ solution of 9,10–phenanthrenequinone and (C_6F_4)Sb₂Ph₄ at -20°C. ¹H NMR (499.42 MHz, CDCl₃): δ 8.29 (d, 2H, J_{H-H} = 8.59 Hz), 8.03 (d, 6H, ${}^3J_{H-H}$ = 8.73 Hz), 7.82 (t, 2H, ${}^3J_{H-H}$ = 8.59 Hz), 7.70 (t, 4H, ${}^3J_{H-H}$ = 7.60 Hz), 7.45 (d, 4H, ${}^3J_{H-H}$ = 7.60 Hz), 7.19 (mt, 4H, ${}^3J_{H-H}$ = 8.60 Hz), 6.81 (t, 2H, ${}^3J_{H-H}$ = 8.51 Hz), 6.73-6.71ppm (m, 4H). ${}^{13}C{}^{1}H$ NMR (125.60 MHz, CDCl₃): 139.98, 137.29, 135.63, 135.36, 134.01, 132.13, 130.62, 129.89, 129.01, 127.99, 125.87, 124.74, 123.97, 123.83, 123.73, 123.50, 122.35, 120.91, 120.41, 119.97 ppm. ¹⁹F{}^{1}H NMR (469.86

MHz, CDCl₃): -124.37 (s, 2F), -152.71ppm (s, 2F). Elemental analysis calculated (%) for C₄₂H₂₀Cl₈F₄O₄Sb₂:_C, 62.40; H, 3.25; found C, 61.80; H, 3.77.

Synthesis of TBA[63–F]: To a solution of 63 (68.0 mg, 0.061 mmol) in dichloromethane (2 mL) was added a solution of TBAT (32.8 mg, 0.061 mmol) in dichloromethane (2 mL). After stirring for 10 min, the mixture was clear yellow. 4h late the solvent was removed in vacuo to afford TBA[63-F] as a green yellow solid which was washed with three portions of Et_2O (3 mL each), resulting in green yellow solid (63.0 mg, 62.5%). ¹H NMR (499.42 MHz, CDCl₃): δ 8.48 (m, 4H), 8.29 (d, 4H, ³J_{H-H} = 7.29 Hz), 8.07 (d, 2H, ${}^{3}J_{H-H} = 7.62$ Hz), 7.85 (d, 2H, ${}^{3}J_{H-H} = 8.40$ Hz), 7.53 (t, 2H, ${}^{3}J_{H-H} = 7.52$ Hz), 7.37 (m, 6H), 7.25 (d, 2H, ${}^{3}J_{H-H} = 7.49$ Hz), 7.20 (t, 2H, ${}^{3}J_{H-H} = 6.53$ Hz), 7.09 (t, 4H, ${}^{3}J_{H-H} = 6.53$ Hz), 7.09 (t, 4H, {}^{3}J_{H-H} = 6.53 Hz $_{\rm H}$ = 7.20 Hz), 7.02 (q, 4H), 6.95 (t, 4H, $^{3}J_{\rm H-H}$ = 7.29 Hz), 2.09 (t, 8H, $^{3}J_{\rm H-H}$ = 7.19 Hz), 0.70-0.60 (m, 16H), 0.51ppm(t, 12H, $J_{H-H} = 7.27$ Hz). ¹³C{¹H} NMR (125.60 MHz, CDCl₃): 138.6, 137.58, 134.97, 133.04, 129.21, 128.28, 128.14, 127.69, 127.03, 126.92, 125.36, 124.57, 124.24, 123.04, 122.49, 121.95, 121.76, 121.33, 121.24, 59.35, 24.21, 19.31, 13.39 ppm. ${}^{19}F{}^{1}H{}$ NMR (469.86 MHz, CDCl₃): -63.79 (s, F), -121.80 (d, 2F, ${}^{3}J_{F-}$ $_{\rm F}$ = 18.08 Hz), -157.61ppm (d, 2F, $^{3}J_{\rm F-F}$ =19.04 Hz). Elemental analysis calculated (%) for C₇₄H₇₂F₅NO₄Sb₂: C, 64.50; H, 5.27, N, 1.02; Found C, 64.04, H, 5.72, N, 0.96.

Figure 119. ¹H NMR spectra of 59 in CDCl₃

Figure 120. ¹³C NMR spectra of 59 in CDCl₃.

Figure 121. ¹⁹F NMR spectra of 59 in CDCl₃

Figure 122. ¹⁹F NMR spectra of 60 in CDCl₃

Figure 123. ¹H NMR spectra of TBA[60–F] in CDCl_{3.}

Figure 124. ¹³C NMR spectra of TBA[60–F] in CDCl₃.

Figure 125. ¹⁹F NMR spectra of TBA[60–F] in CDCl₃.

Figure 126. ¹H NMR spectra of 61 in CDCl_{3.}

Figure 127. ¹³C NMR spectra of 61 in CDCl₃.

Figure 128. ¹⁹F NMR spectra of 61 in CH₂Cl₂ (top) and in CDCl₃ (bottom).

Figure 129. ¹H NMR spectra of 61 in CDCl_{3.}

Figure 130. ¹³C NMR spectra of 61 in CDCl_{3.}

Figure 131. ¹⁹F NMR spectra of 61 in CDCl₃.

Figure 132. ¹H NMR spectra of 63 in CDCl_{3.}

Figure 133. ¹³C NMR spectra of 63 in CDCl₃.

Figure 134. ¹⁹F NMR spectra of 63 in CDCl₃.

Figure 135. ¹H NMR spectra of TBA[63–F] in CDCl₃.

Figure 136. ¹³C NMR spectra of TBA[63–F] in CDCl_{3.}

Figure 137. ¹⁹F NMR spectra of TBA[63–F] in CDCl₃

CHAPTER VI

SUMMARY

In search of ligand platforms, which can be used to remotely control the catalytic activity of a transition metal, I have investigated the coordination non-innocence of amphiphilic L_2/Z -type ligands containing a trifluorostiborane unit or a (triflato)stiboranyl ligand as a Lewis acid. Complexes containing these ligands are derived from the known dichlorostiboranyl platinum complex ((o-(Ph₂P)C₆H₄)₂SbCl₂)PtCl (43). In Chapter II, I generated 44 (o-(Ph₂P)C₆H₄)₂SbF₃)Pt-NCMe) and 45 (o-(Ph₂P)C₆H₄)₂SbF₃)Pt-CNCy) with a view of testing halide abstraction reactions using $B(C_6F_5)_3$. These reactions afford the cationic $[o-(Ph_2P)C_6H_4]_2SbF_2]Pt-NCMe]^+$ ([46]⁺) complexes and [o- $(Ph_2P)C_6H_4]_2SbF_2]Pt-CNCy]^+$ ([47]⁺) which have been isolated as $[BF(C_6F_5)_3]^-$ salts. These complexes possess a highly Lewis acidic difluorostibonium moiety, which exerts an intense draw on the electron density of the platinum center. As a result, the latter becomes significantly more electrophilic. In the case of $[46]^+$, which contains a labile acetonitrile ligand, this increase electrophilicity translates into increased carbophilicity as reflected by the ability of this complex to promote enyne cyclization reactions. These results demonstrate that the coordination non-innocence of antimony Z-ligands can be used to adjust the catalytic activity of an adjoining metal center.

Figure 138. Modulating the σ -accepting properties of an antimony Z-type ligand via anion abstraction as presented in Chapter II.

In Chapter III, I have synthesized a platinum complex in which the metal is connected to a Lewis acidic bis(triflato)stiboranyl ligand. This complex, ((o-(Ph₂P)C₆H₄)₂SbOTf₂)PtCl (**50**), which was obtained by treatment of ((o-(Ph₂P)C₆H₄)₂SbCl₂)PtCl (**43**) with two equivalents of AgOTf, is surprisingly air stable. Yet, it promptly reacts with cyclohexylisocyanide to afford the dicationic chlorostibine complex [((o-(Ph₂P)C₆H₄)₂SbCl)PtCNCy]²⁺ ([**51**]²⁺) as a bis-triflate salt. Formation of [**51**]²⁺ occurs through abstraction of the platinum-bound chloride ligand by the adjacent Lewis acidic antimony center. This halide migration reaction leads to activation of the platinum center. In turn, **50** behaves as a self-activating catalyst in reactions involving alkynes and readily mediate both enyne cyclisation and intramolecular hydroarylation reactions, at room temperature, without addition of a chloride abstracting reagent. These results demonstrate that the coordination non-innocence of antimony ligands can be exploited for the purpose of electrophilic catalysis.

Figure 139. Idealized representation of the self-activating properties of the antimony bis(triflate) platinum complex investigated in Chapter III.

In Chapter IV, I synthesized two types of highly Lewis acidic antimony-platinum complexes, $[(o-(Ph_2P)C_6H_4)_2Sb(OTf)_2]Pt(OTf)$ (53)namely and (o- $({}^{i}Pr_{2}P)C_{6}H_{4})_{2}Sb(OTf)_{2}Pt(OTf)$ (54) by treatment of $[(o-(R_{2}P)C_{6}H_{4})_{2}SbCl_{2}PtCl (R = Ph)$ or ^{*i*}Pr) with 3 equiv of AgOTf. The crystal structure of **54** confirmed that the chloride ligands have been fully substituted with more labile triflate ligands. Despite the structural and electronic similarities between 53 and 54, only 52 is reactive in envne cyclization reaction. Reactivity tests towards enyne cyclization reactions and hydroarylation reactions of pyrrole with acetylene and thiophene with ethyl propiolate showed that 53 has a higher previously self-activating reactivity than the reported catalyst $\left[\left(o-\right)\right]$ $(Ph_2P)C_6H_4)_2Sb(OTf)_2]PtCl (50).$

More reactive

Figure 140. Illustration of the higher catalytic activity displayed by the tris(triflate) derivative described in Chapter IV.

In Chapter V, I inspected the strong Lewis acidity of antimony in the area of anion binding. Previous studies have shown that bifunctional Lewis acids form fluoride adducts stabilized by chelation effect. Based on this precedent, I developed a new bifunctional stibine(III) 59 featuring the fluorinated ortho-phenylene backbone. Oxidation of this complex with o-chloranil, octafluorophenthra-9,10-quinone and phenanthrenequinone generated stiborane(V) 60, 61, and 63, respectively. The crystal structures of these compounds reveal that the two antimony centers are separated by 3.8176(8) Å in 60, 3.5690(7)Å/3.5969(7)Å in 61, and 3.507(5) Å in 63. The small Sb-Sb separations in 61 and 63 are due to the strong Sb-O---Sb interactions that bridge the two antimony atoms. The reaction of 60, 61, and 63 with fluoride ions resulted in the formation of the corresponding bridging fluoroantimonate complexes $[60-F]^-$, $[61-F]^-$, and $[63-F]^-$. Computational studies reveal that the fluoride ion affinities are $388.3 \text{ kJ mol}^{-1}$ for **60**, and 396.3 kJ mol⁻¹ for **61**. These values exceed that of the 9,9-dimethylxanthene-based distibution distibution distribution distribution distribution $\mathbf{8}$ (FIA = 359.88 kJ mol⁻¹), thus indicating that **60** and **61** are more fluorophilic than 8.

Figure 141. Increase in fluoride anion affinity resulting from the use of fluorinated substituents for the bifunctional antimony(V) Lewis acids described in Chapter V.

REFERENCES

- (1) Price, C. C.; Ciskowski, J. M. J. Am. Chem. Soc. **1938**, 60, 2499-2502.
- (2) Harring, S. R.; Livinghouse, T. J. Chem. Soc., Chem. Commun. 1992, 502-503.
- (3) Hyatt, J. A.; Raynolds, P. W. J. Org. Chem. 1984, 49, 384-385.
- (4) Tou, J. S.; Reusch, W. J. Org. Chem. **1980**, 45, 5012-5014.
- (5) Ruff, J. K. Inorg. Chem. **1964**, *3*, 1205-1206.
- (6) Ishihara, K.; Yamamoto, H. **1999**, *1999*, 527-538.
- (7) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. **1996**, *61*, 4196-4197.
- (8) Ishihara, K.; Kondo, S.; Yamamoto, H. J. Org. Chem. 2000, 65, 9125-9128.
- (9) Schweighauser, L.; Wegner, H. A. Chem. Eur. J. 2016, 22, 14094-14103.

(10) Kessler, S. N.; Neuburger, M.; Wegner, H. A. *Eur. J. Org. Chem.* **2011**, 2011, 3238-3245.

(11) Kessler, S. N.; Wegner, H. A. Org. Lett. 2010, 12, 4062-4065.

(12) Song, K. C.; Lee, K. M.; Kim, H.; Lee, Y. S.; Lee, M. H.; Do, Y. J. Organomet. *Chem.* **2012**, *713*, 89-95.

- (13) Galbraith, E.; James, T. D. *Chemical Society Reviews* **2010**, *39*, 3831-3842.
- (14) Prakash Reddy, V.; Sinn, E.; Hosmane, N. J. Organomet. Chem. 2015, 798, Part 1, 5-12.
- (15) Chen, J.; Wenger, O. S. Chem. Sci. 2015, 6, 3582-3592.
- (16) Zhao, H.; Leamer, L. A.; Gabbaï, F. P. Dalton Trans. 2013, 42, 8164-8178.

(17) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. **2001**, *123*, 11372-11375.

(18) Jia, L.; Yang, X.; Ishihara, A.; Marks, T. J. Organometallics **1995**, *14*, 3135-3137.

(19) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623-3625.

- (20) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10015-10031.
- (21) Grassi, A.; Pellecchia, C.; Oliva, L.; Laschi, F. *Macromol. Chem. Phys.* **1995**, *196*, 1093-1100.
- (22) Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2015, 54, 6400-6441.
- (23) Stephan, D. W. Acc. Chem. Res. 2015, 48, 306-316.

(24) Courtemanche, M.-A.; Légaré, M.-A.; Maron, L.; Fontaine, F.-G. J. Am. Chem. Soc. 2014, 136, 10708-10717.

(25) Courtemanche, M.-A.; Légaré, M.-A.; Maron, L.; Fontaine, F.-G. J. Am. Chem. Soc. 2013, 135, 9326-9329.

(26) Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46-76.

(27) Ménard, G.; Stephan, D. W. Angew. Chem. Int. Ed. 2012, 124, 4485-4488.

(28) Erős, G.; Mehdi, H.; Pápai, I.; Rokob, T. A.; Király, P.; Tárkányi, G.; Soós, T. *Angew. Chem. Int. Ed.* **2010**, *122*, 6709-6713.

(29) Eisenberger, P.; Bailey, A. M.; Crudden, C. M. J. Am. Chem. Soc. **2012**, *134*, 17384-17387.

(30) Babbini, D. C.; Mulligan, F. L.; Schulhauser, H. R.; Sweigart, T. C.; Nichol, G. S.; Hurst, S. K. *Inorg. Chem.* **2010**, *49*, 4307-4312.

(31) Copolovici, D.; Isaia, F.; Breunig, H. J.; Raţ, C. I.; Silvestru, C. *RSC Adv.* **2014**, 4, 26569-26576.

(32) Ohkata, K.; Takemoto, S.; Ohnishi, M.; Akiba, K.-Y. *Tetrahedron Lett.* **1989**, *30*, 4841-4844.

(33) Benjamin, S. L.; Levason, W.; Reid, G.; Warr, R. P. *Organometallics* **2012**, *31*, 1025-1034.

(34) Qiu, J.; Song, B.; Li, X.; Cozzolino, A. F. Phys. Chem. Chem. Phys. 2018, 20, 46-50.

(35) Christianson, A. M.; Gabbaï, F. P. Inorg. Chem. 2016, 55, 5828-5835.

(36) Böhrer, H.; Trapp, N.; Himmel, D.; Schleep, M.; Krossing, I. *Dalton Trans.* **2015**, *44*, 7489-7499.

(37) Olah, G. A.; Tolgyesi, W. S.; Kuhn, S. J.; Moffatt, M. E.; Bastien, I. J.; Baker, E. B. J. Am. Chem. Soc. **1963**, 85, 1328-1334.

- (38) Olah, G. A.; Lukas, J. J. Am. Chem. Soc. 1967, 89, 2227-2228.
- (39) Commeyras, A.; Olah, G. A. J. Am. Chem. Soc. 1969, 91, 2929-2942.
- (40) Olah, G. A.; Schlosberg, R. H. J. Am. Chem. Soc. 1968, 90, 2726-2727.
- (41) Krossing, I.; Raabe, I. Angew. Chem. Int. Ed. 2004, 43, 2066-2090.
- (42) Gutmann, V.; H., T. Monatsh. Chem. 1957, 88, 216-227.
- (43) Gutmann, V.; Hubacek, H.; Steininger, A. Monatsh. Chem. 1964, 95, 678-686.
- (44) Gutmann, V. Dalton Trans 1976, 18, 225-255.
- (45) Pan, B.; Gabbaï, F. P. J. Am. Chem. Soc. 2014, 136, 9564-9567.
- (46) Bowen, L. H.; Rood, R. T. J. Inorg. Nucl. Chem. 1966, 28, 1985-1990.
- (47) Jean, M. Anal. Chim. Acta. 1971, 57, 438-439.

(48) Holmes, R. R.; Day, R. O.; Chandrasekhar, V.; Holmes, J. M. *Inorg. Chem.* **1987**, *26*, 157-163.

(49) Cherkasov, V. K.; Abakumov, G. A.; Grunova, E. V.; Poddel'sky, A. I.; Fukin, G. K.; Baranov, E. V.; Kurskii, Y. V.; Abakumova, L. G. *Chem.--Eur. J.* **2006**, *12*, 3916-3927.

(50) Arsenyev, M. V.; Shurygina, M. P.; Poddel'sky, A. I.; Druzhkov, N. O.; Chesnokov, S. A.; Fukin, G. K.; Cherkasov, V. K.; Abakumov, G. A. *J. Polym. Res.* **2013**, *20*, 1-9.

(51) Abakumov, G. A.; Poddel'sky, A. I.; Grunova, E. V.; Cherkasov, V. K.; Fukin, G. K.; Kurskii, Y. A.; Abakumova, L. G. *Angew. Chem. Int. Ed.* **2005**, *44*, 2767-2771.

(52) Abakumov, G. A.; Vavilina, N. N.; Kurskii, Y. A.; Abakumova, L. G.; Fukin, G. K.; Cherkasov, V. K.; Shavyrin, A. S.; Baranov, E. V. J. R. C. B. *Russ. Chem. Bull.* **2007**, *56*, 1813-1820.

(53) Breunig, H. J.; Koehne, T.; Moldovan, O.; Preda, A. M.; Silvestru, A.; Silvestru, C.; Varga, R. A.; Piedra-Garza, L. F.; Kortz, U. *J. Organomet. Chem.* **2010**, *695*, 1307-1313.

(54) Lim, Y. Y.; Drago, R. S. Inorg. Chem. 1972, 11, 202-204.

- (55) Nishii, N.; Matsumura, Y.; Okawara, R. J. Organomet. Chem. 1971, 30, 59-65.
- (56) Nishii, N.; Hashimoto, K.; Okawara, R. J. Organomet. Chem. 1973, 55, 133-137.
- (57) Bordner, J.; Doak, G. O.; Peters, J. R. J. Am. Chem. Soc. 1974, 96, 6763-6765.
- (58) Hall, M.; Sowerby, D. B. J. Am. Chem. Soc. 1980, 102, 628-632.

(59) Tunde Bamgboye, T.; Begley, M. J.; Bryan Sowerby, D. *J. Organomet. Chem.* **1989**, *362*, 77-85.

(60) Dodonov, V. A.; Fedorov, A. Y.; Fukin, G. K.; Zaburdyaeva, S. N.; Zakharov, L. N.; Ígnatenko, A. V. *Main Group Chemistry* **1999**, *3*, 15-22.

(61) Robertson, A. P. M.; Burford, N.; McDonald, R.; Ferguson, M. J. Angew. Chem. *Int. Ed.* **2014**, *53*, 3480-3483.

(62) Chitnis, S. S.; Robertson, A. P. M.; Burford, N.; Patrick, B. O.; McDonald, R.; Ferguson, M. J. *Chem. Sci.* **2015**, *6*, 6545-6555.

(63) Robertson, A. P. M.; Chitnis, S. S.; Jenkins, H. A.; McDonald, R.; Ferguson, M. J.; Burford, N. *Chem. Eur. J.* **2015**, *21*, 7902-7913.

- (64) Tofan, D.; Gabbaï, F. P. Chem. Sci. 2016, 7, 6768-6778.
- (65) Hirai, M.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2015, 54, 1205-1209.
- (66) Hirai, M.; Gabbaï, F. P. Chem. Sci. 2014, 5, 1886-1893.

(67) Hirai, M.; Myahkostupov, M.; Castellano, F. N.; Gabbaï, F. P. *Organometallics* **2016**, *35*, 1854-1860.

- (68) Wade, C. R.; Gabbaï, F. P. Organometallics 2011, 30, 4479-4481.
- (69) Hirai, M.; Cho, J.; Gabbaï, F. P. Chem. Eur. J. 2016, 22, 6537-6541.

(70) Yang, M.; Pati, N.; Belanger-Chabot, G.; Hirai, M.; Gabbaï, F. P. *Dalton Trans.* **2018**, *47*, 11843-11850.

(71) Yang, M.; Tofan, D.; Chen, C.-H.; Jack, K. M.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2018, 57, 13868-13872.

(72) Yang, M.; Gabbaï, F. P. Inorg. Chem. 2017, 56, 8644-8650.

(73) Ke, I.-S.; Myahkostupov, M.; Castellano, F. N.; Gabbaï, F. P. J. Am. Chem. Soc. **2012**, *134*, 15309-15311.

(74) Chen, C.-H.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2017, 56, 1799-1804.

(75) Hall, M.; Sowerby, D. B. *Journal of the Chemical Society, Dalton Transactions* **1983**, 1095-1099.

(76) Holthausen, M. H.; Mehta, M.; Stephan, D. W. Angew. Chem. Int. Ed. 2014, 53, 6538-6541.

(77) Tsao, F. A.; Waked, A. E.; Cao, L.; Hofmann, J.; Liu, L.; Grimme, S.; Stephan, D. W. *Chem. Commun.* **2016**, *52*, 12418-12421.

- (78) Maity, A.; Teets, T. S. Chem. Rev. 2016, 116, 8873-8911.
- (79) Shook, R. L.; Borovik, A. S. Inorg. Chem. 2010, 49, 3646-3660.
- (80) Lewis, J. C. ACS Catal. 2013, 3, 2954-2975.

(81) Dogutan, D. K.; Bediako, D. K.; Graham, D. J.; Lemon, C. M.; Nocera, D. G. J. *Porphyr. Phthalocyanines* **2015**, *19*, 1-8.

- (82) Cook, S. A.; Borovik, A. S. Acc. Chem. Res. 2015, 48, 2407-2414.
- (83) Hale, L. V. A.; Szymczak, N. K. ACS Catal. 2018, 8, 6446-6461.
- (84) Creutz, S. E.; Peters, J. C. Chem. Sci. 2017, 8, 2321-2328.
- (85) Bullock, R. M.; Helm, M. L. Acc. Chem. Res. 2015, 48, 2017-2026.
- (86) Dahl, E. W.; Dong, H. T.; Szymczak, N. K. Chem. Commun. 2018, 54, 892-895.

(87) Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. J. Am. Chem. Soc. 2016, 138, 16639-16644.

(88) Sung, S.; Kumar, D.; Gil-Sepulcre, M.; Nippe, M. J. Am. Chem. Soc. 2017, 139, 13993-13996.

(89) Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. **2011**, *133*, 9274-9277.

(90) Kiernicki, J. J.; Zeller, M.; Szymczak, N. K. J. Am. Chem. Soc. **2017**, *139*, 18194-18197.

(91) Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. J. Am. Chem. Soc. **2016**, 138, 10378-10381.
(92) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2008, 130, 11874-11875.

- (93) Shriver, D. F. Acc. Chem. Res. 1970, 3, 231-238.
- (94) Parkin, G. Organometallics 2006, 25, 4744-4747.
- (95) Hill, A. F. Organometallics **2006**, *25*, 4741-4743.
- (96) Bouhadir, G.; Amgoune, A.; Bourissou, D. Adv. Organomet. Chem. **2010**, 58, 1-107.
- (97) Amgoune, A.; Bourissou, D. Chem. Commun. 2011, 47, 859-871.
- (98) Braunschweig, H.; Dewhurst, R. D. Dalton Trans. 2011, 40, 549-558.
- (99) Kameo, H.; Nakazawa, H. Chem. Asian J. 2013, 8, 1720-1734.
- (100) Jones, J. S.; Gabbaï, F. P. Acc. Chem. Res. 2016, 49, 857-867.
- (101) Jones, J. S.; Gabbaï, F. P. Chem. Lett. 2016, 45, 376-384.
- (102) Bouhadir, G.; Bourissou, D. Chem. Soc. Rev. 2016, 45, 1065-1079.
- (103) Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84-87.
- (104) Cammarota, R. C.; Lu, C. C. J. Am. Chem. Soc. 2015, 137, 12486-12489.
- (105) Vollmer, M. V.; Xie, J.; Lu, C. C. J. Am. Chem. Soc. 2017, 139, 6570-6573.

(106) Kameo, H.; Ikeda, K.; Bourissou, D.; Sakaki, S.; Takemoto, S.; Nakazawa, H.; Matsuzaka, H. *Organometallics* **2016**, *35*, 713-719.

(107) Kameo, H.; Kawamoto, T.; Sakaki, S.; Bourissou, D.; Nakazawa, H. *Chem. Eur. J.* **2016**, *22*, 2370-2375.

(108) Schindler, T.; Lux, M.; Peters, M.; Scharf, L. T.; Osseili, H.; Maron, L.; Tauchert, M. E. *Organometallics* **2015**, *34*, 1978-1984.

(109) Fong, H.; Moret, M.-E.; Lee, Y.; Peters, J. C. *Organometallics* **2013**, *32*, 3053-3062.

(110) Shih, W.-C.; Gu, W.; MacInnis, M. C.; Timpa, S. D.; Bhuvanesh, N.; Zhou, J.; Ozerov, O. V. J. Am. Chem. Soc. **2016**, *138*, 2086-2089.

(111) Barnett, B. R.; Moore, C. E.; Chandrasekaran, P.; Sproules, S.; Rheingold, A. L.; DeBeer, S.; Figueroa, J. S. *Chem. Sci.* **2015**, *6*, 7169-7178.

(112) Lin, T.-P.; Nelson, R. C.; Wu, T.; Miller, J. T.; Gabbaï, F. P. *Chem. Sci.* **2012**, *3*, 1128-1136.

(113) Frenking, G.; Fau, S.; Marchand, C. M.; Grützmacher, H. J. Am. Chem. Soc. **1997**, *119*, 6648-6655.

(114) Huggett, P. G.; Manning, K.; Wade, K. J. Inorg. Nucl. Chem. 1980, 42, 665-673.

(115) Bontemps, S.; Bouhadir, G.; Gu, W.; Mercy, M.; Chen, C.-H.; Foxman, B. M.; Maron, L.; Ozerov, O. V.; Bourissou, D. *Angew. Chem. Int. Ed.* **2008**, *47*, 1481-1484.

(116) Sircoglou, M.; Mercy, M.; Saffon, N.; Coppel, Y.; Bouhadir, G.; Maron, L.; Bourissou, D. *Angew. Chem. Int. Ed.* **2009**, *48*, 3454-3457.

(117) Sircoglou, M.; Saffon, N.; Miqueu, K.; Bouhadir, G.; Bourissou, D. *Organometallics* **2013**, *32*, 6780-6784.

(118) Derrah, E. J.; Sircoglou, M.; Mercy, M.; Ladeira, S.; Bouhadir, G.; Miqueu, K.; Maron, L.; Bourissou, D. *Organometallics* **2011**, *30*, 657-660.

(119) Gualco, P.; Lin, T.-P.; Sircoglou, M.; Mercy, M.; Ladeira, S.; Bouhadir, G.; Pérez, L. M.; Amgoune, A.; Maron, L.; Gabbaï, F. P.; Bourissou, D. *Angew. Chem. Int. Ed.* **2009**, *48*, 9892-9895.

(120) Cotton, F. A.; Murillo, C. A.; Walton, R. A.: *Multiple Bonds Between Metal Atoms*; Springer Science: New York, 2005.

(121) Cordero, B.; Gomez, V.; Platero-Prats, A. E.; Reves, M.; Echeverria, J.; Cremades, E.; Barragan, F.; Alvarez, S. *Dalton Trans.* **2008**, 2832-2838.

(122) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 6074-6077.

(123) Timoshkin, A. Y.; Suvorov, A. V.; Bettinger, H. F.; Schaefer, H. F. J. Am. Chem. Soc. **1999**, *121*, 5687-5699.

(124) Gualco, P.; Mercy, M.; Ladeira, S.; Coppel, Y.; Maron, L.; Amgoune, A.; Bourissou, D. *Chem. Eur. J.* **2010**, *16*, 10808-10817.

(125) Yang, H.; Gabbaï, F. P. J. Am. Chem. Soc. 2015, 137, 13425-13432.

(126) Alcarazo, M. Acc. Chem. Res. 2016, 49, 1797-1805.

(127) Ke, I.-S.; Gabbaï, F. P. Inorg. Chem. 2013, 52, 7145-7151.

(128) Tschersich, C.; Limberg, C.; Roggan, S.; Herwig, C.; Ernsting, N.; Kovalenko, S.; Mebs, S. *Angew. Chem. Int. Ed.* **2012**, *51*, 4989-4992.

(129) Lin, T.-P.; Ke, I.-S.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2012, 51, 4985–4988.

(130) Tschersich, C.; Hoof, S.; Frank, N.; Herwig, C.; Limberg, C. *Inorg. Chem.* **2016**, *55*, 1837-1842.

(131) Benz, S.; Poblador-Bahamonde, A. I.; Low-Ders, N.; Matile, S. Angew. Chem. Int. Ed. 2018, 57, 5408-5412.

(132) Bontemps, S.; Bouhadir, G.; Miqueu, K.; Bourissou, D. J. Am. Chem. Soc. 2006, 128, 12056-12057.

(133) Chase, P. A.; Piers, W. E.; Patrick, B. O. J. Am. Chem. Soc. 2000, 122, 12911-12912.

(134) Wade, C. R.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2011, 50, 7369-7372.

(135) Taylor, J. W.; McSkimming, A.; Moret, M.-E.; Harman, W. H. *Inorg. Chem.* **2018**, *57*, 15406-15413.

(136) Moret, M.-E.; Zhang, L.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 3792-3795.

(137) Vollmer, M. V.; Xie, J.; Cammarota, R. C.; Young Jr., V. G.; Bill, E.; Gagliardi, L.; Lu, C. C. *Angew. Chem. Int. Ed.* **2018**, *57*, 7815-7819.

(138) Wade, C. R.; Ke, I.-S.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2012, 51, 478-481.

(139) Ke, I.-S.; Jones, J. S.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2014, 53, 2633-2637.

(140) Jones, J. S.; Wade, C. R.; Gabbaï, F. P. Angew. Chem. Int. Ed. **2014**, *53*, 8876-8879.

(141) Jones, J. S.; Wade, C. R.; Yang, M.; Gabbaï, F. P. *Dalton Trans.* **2017**, *46*, 5598-5604.

(142) Jones, J. S.; Gabbaï, F. P. Chem. Eur. J. 2017, 23, 1136-1144.

(143) Benjamin, S. L.; Levason, W.; Light, M. E.; Reid, G.; Rogers, S. M. *Organometallics* **2014**, *33*, 2693-2695.

(144) Jones, J. S.; Wade, C. R.; Gabbaï, F. P. Organometallics 2015, 34, 2647-2654.

(145) Jolleys, A.; Lake, B. R. M.; Krämer, T.; Benjamin, S. L. Organometallics **2018**, *37*, 3854-3862.

(146) Plajer, A. J.; Colebatch, A. L.; Rizzuto, F. J.; Pröhm, P.; Bond, A. D.; García-Rodríguez, R.; Wright, D. S. *Angew. Chem. Int. Ed.* **2018**, *57*, 6648-6652.

(147) Matson, B. D.; Peters, J. C. ACS Catal. 2018, 8, 1448-1455.

(148) Harman, W. H.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 5080-5082.

(149) Cammarota, R. C.; Clouston, L. J.; Lu, C. C. Dalton Trans 2017, 334, 100-111.

(150) Steinhoff, P.; Paul, M.; Schroers, J. P.; Tauchert, M. E. *Dalton Trans.* **2019**, *48*, 1017-1022.

(151) Steinhoff, P.; Steinbock, R.; Friedrich, A.; Schieweck, B. G.; Cremer, C.; Truong, K.-N.; Tauchert, M. E. *Dalton Trans.* **2018**, *47*, 10439-10442.

(152) Inagaki, F.; Matsumoto, C.; Okada, Y.; Maruyama, N.; Mukai, C. Angew. Chem. Int. Ed. 2015, 54, 818-822.

(153) Inagaki, F.; Nakazawa, K.; Maeda, K.; Koseki, T.; Mukai, C. *Organometallics* **2017**, *36*, 3005-3008.

(154) Matsumoto, C.; Yamada, M.; Dong, X.; Mukai, C.; Inagaki, F. *Chem. Lett.* **2018**, 47, 1321-1323.

(155) Aullón, G.; Alvarez, S. Inorg. Chem. 1996, 35, 3137-3144.

(156) Lin, T.-P.; Wade, C. R.; Pérez, L. M.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2010, 49, 6357-6360.

(157) Sen, S.; Ke, I.-S.; Gabbaï, F. P. Organometallics 2017, 36, 4224-4230.

(158) Benjamin, S. L.; Reid, G. Dalton Trans 2015, 297, 168-180.

(159) Yang, H.; Gabbaï, F. P. J. Am. Chem. Soc. 2014, 136, 10866–10869.

(160) Braunschweig, H.; Gruss, K.; Radacki, K. Angew. Chem. Int. Ed. **2007**, 46, 7782-7784.

(161) Braunschweig, H.; Gruss, K.; Radacki, K. Inorg. Chem. 2008, 47, 8595-8597.

(162) Braunschweig, H.; Gruss, K.; Radacki, K. Angew. Chem. Int. Ed. 2009, 48, 4239-4241.

(163) Braunschweig, H.; Radacki, K.; Schwab, K. Chem. Commun. 2010, 46, 913-915.

(164) Ma, M.; Sidiropoulos, A.; Ralte, L.; Stasch, A.; Jones, C. *Chem. Commun.* **2013**, *49*, 48-50.

(165) You, D.; Gabbaï, F. P. J. Am. Chem. Soc. 2017, 139, 6843-6846.

(166) Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. *Organometallics* **1996**, *15*, 901-903.

(167) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863-11869.

(168) He, F.; Danopoulos, A. A.; Braunstein, P. Organometallics 2016, 35, 198-206.

(169) De Crisci, A. G.; Lough, A. J.; Multani, K.; Fekl, U. *Organometallics* **2008**, *27*, 1765-1779.

(170) Manson, J.; Webster, C. E.; Pérez, L. M.; Hall, M. B., http://www.chem.tamu.edu/jimp2/index.html.

(171) Yang, H. (**2016**) Antimony and Tellurium Non-Innocent Z-Ligands for Transition Metals and Their Application in Photoredox Chemistry and Electrophilic Catalysis (Doctoral dissertation). Retrieved from https://oaktrust.library.tamu.edu/

(172) Chen, E. Y.-X.; Marks, T. J. Chem. Rev. 2000, 100, 1391-1434.

(173) Piers, W. E. Adv. Organomet. Chem. 2004, 52, 1-76.

(174) Figueroa, J. S.; Melnick, J. G.; Parkin, G. Inorg. Chem. 2006, 45, 7056-7058.

(175) Masuda, Y.; Hasegawa, M.; Yamashita, M.; Nozaki, K.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. **2013**, *135*, 7142-7145.

(176) Barnett, B. R.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S. J. Am. Chem. Soc. **2014**, *136*, 10262-10265.

(177) Cowie, B. E.; Emslie, D. J. H. Chem. Eur. J. 2014, 20, 16899-16912.

(178) Shih, W.-C.; Ozerov, O. V. Organometallics 2017, 36, 228-233.

(179) Devillard, M.; Nicolas, E.; Appelt, C.; Backs, J.; Mallet-Ladeira, S.; Bouhadir, G.; Slootweg, J. C.; Uhl, W.; Bourissou, D. *Chem. Commun.* **2014**, *50*, 14805-14808.

(180) Levason, W.; Reid, G. Dalton Trans 2006, 250, 2565-2594.

(181) Malisch, W.; Panster, P. Angew. Chem. Int. Ed. 1974, 13, 670-672.

(182) Bauer, J.; Braunschweig, H.; Dewhurst, R. D. Chem. Rev. 2012, 112, 4329-4346.

(183) MacInnis, M. C.; DeMott, J. C.; Zolnhofer, E. M.; Zhou, J.; Meyer, K.; Hughes, R. P.; Ozerov, O. V. *Chem* **2016**, *1*, 902-920.

(184) Campos, J. J. Am. Chem. Soc. 2017, 139, 2944-2947.

(185) Niyogi, D. G.; Singh, S.; Verma, R. D. J. Fluor. Chem. 1995, 70, 237-240.

(186) Tinnermann, H.; Wille, C.; Alcarazo, M. Angew. Chem. Int. Ed. 2014, 53, 8732-8736.

(187) Dube, J. W.; Zheng, Y.; Thiel, W.; Alcarazo, M. J. Am. Chem. Soc. **2016**, *138*, 6869-6877.

(188) Aseman, M. D.; Roselli, C. A.; Gagné, M. R. Organometallics 2015, 34, 2707-2709.

(189) Allegretti, P. A.; Ferreira, E. M. J. Am. Chem. Soc. 2013, 135, 17266-17269.

(190) Pastine, S. J.; Youn, S. W.; Sames, D. Org. Lett. 2003, 5, 1055-1058.

(191) Olah, G. A.; Klopman, G.; Schlosberg, R. H. J. Am. Chem. Soc **1969**, *91*, 3261-3268.

(192) Ishihara, K. In *Tilte*2000; Wiley-VCH Verlag GmbH.

(193) Koppaka, A.; Park, S. H.; Hashiguchi, B. G.; Gunsalus, N. J.; King, C. R.; Konnick, M. M.; Ess, D. H.; Periana, R. A. *Angew. Chem. 2008, 120, 4122-4126;* **2019**, *58*, 2241-2245.

(194) Chitnis, S. S.; Sparkes, H. A.; Annibale, V. T.; Pridmore, N. E.; Oliver, A. M.; Manners, I. *Angew. Chem. 2008, 120, 4122-4126;* **2017**, *56*, 9536-9540.

(195) Qiu, R.; Chen, Y.; Yin, S.-F.; Xu, X.; Au, C.-T. *RSC Advances* **2012**, *2*, 10774-10793.

(196) Chitnis, S. S.; Burford, N.; McDonald, R.; Ferguson, M. J. *Inorganic Chemistry* **2014**, *53*, 5359-5372.

(197) Singhal, K.; Yadav, R. N. P.; Raj, P.; Agarwal, A. K. *Journal of Fluorine Chemistry* **2003**, *121*, 131-134.

(198) Greb, L. Chemistry - A European Journal 2018, 24, 17881-17896.

(199) Yang, M.; Tofan, D.; Chen, C.-H.; Jack, K. M.; Gabbaï, F. P. **2018**, *57*, 13868-13872.

(200) Tofan, D.; Gabbaï, F. P. Chemical Science 2016, 7, 6768-6778.

(201) Park, G.; Brock, D. J.; Pellois, J.-P.; Gabbaï, F. P. Chem 2019, 5, 2215-2227.

(202) Lo, Y. H.; Gabbai, F. P. Angewandte Chemie, International Edition 2019, 58, 10194-10197.

(203) You, D.; Gabbaï, F. P. Trends in Chemistry 2019, 1, 485-496.

(204) Annibale, G.; Bergamini, P.; Bertolasi, V.; Cattabriga, M.; Ferretti, V. *Inorg. Chem. Commun.* **2000**, *3*, 303-306.

(205) Harkins, S. B.; Peters, J. C. Organometallics 2002, 21, 1753-1755.

(206) Liberman-Martin, A. L.; Levine, D. S.; Liu, W.; Bergman, R. G.; Tilley, T. D. *Organometallics* **2016**, *35*, 1064-1069.

(207) Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem. Int. Ed. 2007, 46, 4042-4059.

(208) Parson, T. G.; Butikofer, J. L.; Houlis, J. F.; Roddick, D. M. *Organometallics* **2017**, *36*, 136-141.

(209) Vigalok, A. Acc. Chem. Res. 2015, 48, 238-247.

(210) Clement, M. L.; Grice, K. A.; Luedtke, A. T.; Kaminsky, W.; Goldberg, K. I. *Chem. Eur. J.* **2014**, *20*, 17287-17291.

(211) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208-3221.

(212) Hashmi, A. S. K.; Yang, W.; Rominger, F. 2012, 18, 6576-6580.

(213) Hashmi, A. S. K.; Schäfer, S.; Bats, J. W.; Frey, W.; Rominger, F. **2008**, 2008, 4891-4899.

(214) Sen, S. (**2017**) Phosphorus/Antimony and Phosphorus/H-bond Donor Ambiphilic Ligands: Incorporation into Late Transition Metal Complexes and the Reactivity Thereof (Doctoral dissertation). Retrieved from https://oaktrust.library.tamu.edu/

(215) Cussó, O.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Angew. Chem. Int. Ed. 2015, 54, 2729-2733.

(216) Richers, J.; Heilmann, M.; Drees, M.; Tiefenbacher, K. Organic Letters **2016**, *18*, 6472-6475.

(217) Blümel, M.; Hack, D.; Ronkartz, L.; Vermeeren, C.; Enders, D. *Chemical Communications* **2017**, *53*, 3956-3959.

(218) Melaïmi, M.; Gabbaï, F. P. J. Am. Chem. Soc. 2005, 127, 9680-9681.

(219) Zhao, H. Y.; Gabbaï, F. P. Nat. Chem. 2010, 2, 984-990.

(220) Kim, Y.; Zhao, H.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2009, 48, 4957-4960.

(221) Kim, Y.; Hudnall, T. W.; Bouhadir, G.; Bourissou, D.; Gabbaï, F. P. *Chem. Commun.* **2009**, 3729-3731.

(222) Williams, V. C.; Piers, W. E.; Clegg, W.; Elsegood, M. R. J.; Collins, S.; Marder, T. B. J. Am. Chem. Soc. **1999**, *121*, 3244-3245.

(223) Lewis, S. P.; Taylor, N. J.; Piers, W. E.; Collins, S. J. Am. Chem. Soc. 2003, 125, 14686-14687.

(224) Chai, J.; Lewis, S. P.; Collins, S.; Sciarone, T. J. J.; Henderson, L. D.; Chase, P. A.; Irvine, G. J.; Piers, W. E.; Elsegood, M. R. J.; Clegg, W. *Organometallics* **2007**, *26*, 5667-5679.

(225) Koomen, J. A.; Lucas, J. E.; Haneline, M. R.; King, J. D. B.; Gabbaï, F. P.; Russell, D. H. *Int. J. Mass Spectrom.* **2003**, *225*, 225-231.

(226) King, J. B.; Gabbaï, F. P. Organometallics 2003, 22, 1275-1280.

(227) Tschinkl, M.; Gabbaï, F. P. J. Chem. Crystallogr. 2003, 33, 595-598.

(228) Fild, M.; Glemser, O.; Christoph, G. Angew. Chem. 1964, 76, 953-953.

(229) Kiplinger, J. L.; Richmond, T. G. J. Am. Chem. Soc. 1996, 118, 1805-1806.

(230) Nunn, M.; Sowerby, D. B.; Wesolek, D. M. J. Organomet. Chem. **1983**, 251, C45-C46.

(231) Zhao, X.-F.; Zhang, C. Synthesis 2007, 551-557.