

A PARALLEL FPGA SVD ACCELERATOR WITH OPTIMIZED ON-CHIP DATA

REUSE

A Thesis

by

YU WANG

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Peng Li

Co-Chair of Committee, Jeyavijayan Rajendran

Committee Member, Eun Jung Kim

Head of Department, Miroslav M. Begovic

December 2019

Major Subject: Computer Engineering

Copyright 2019 Yu Wang

ii

ABSTRACT

In recent years, the emerging of new machine learning algorithms and the fast

development of available hardware allow people to perform complex recognition and

generation tasks of images, natural languages and speaking voices. Although the general-

purpose CPUs are continuously being optimized, it still takes massive time to finish

training or even perform recognition with the growing size of datasets. The pressing need

for fast, energy and area efficient hardware platforms make research community and the

industry focus on developing dedicated hardware accelerators for running computationally

intensive data processing algorithms.

Singular value decomposition (SVD) is a fundamental computation kernel which

has been wildly applied in pattern recognition, matrix compression and signal processing.

However, limited by the high computation complexity, it usually is the most time-

consuming part in many data pre-processing schemes and machine learning algorithms.

While many existing works have proposed their parallel computing architectures

for SVD, these works are either limited by the strict requirement of matrix sizes, or the

flexibility and scalability of their architectures. Moreover, the data movement issue, which

serves as a critical bottleneck in parallel computation architectures for SVD, has rarely

been discussed.

In this thesis, we propose a new Maximum Data Sharing ordering (MDS ordering)

and corresponding Field Programmable Logic Array (FPGA) architecture to maximize the

data reuse on-chip and can significantly reduce the bandwidth requirement. The proposed

iii

reconfigurable SVD engine can decompose matrices with arbitrary sizes much larger than

existing solutions and can reach a speed up of 80X to 300X compared with the results of

Eigen package running on high performance CPU.

iv

DEDICATION

Alea jacta est!

v

ACKNOWLEDGEMENTS

At the very first beginning, I would like to thank Dr Peng Li, my committee chair

and Dr Jeyavijayan Rajendran as well as Dr Eun Jung Kim, my committee member for the

guidance in completing the research work and suggestions in my graduate years. Learning

how to start a research, complete a research and most importantly, improve the research

is the most precious treasure I found in A&M.

I also want to thank my friends, both in AMS group and CE group. I’m fortunate

enough to meet you and share the meaningful days together in this flashing two years.

Your enthusiasm and sincerity often make me feel flattered.

Finally, I must thank my parents for their unconditional love and support, the

unlimited power in fighting the loneliness and difficulties in this arduous journey of

learning abroad. Without you, I will never have been able to go this far.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee of Professor Peng Li, Professor

Jeyavijayan Rajendran of the Department of Electrical and Computer

Engineering and Professor Eun Jung Kim of Computer Science and Engineering.

Part of the work is collaborated with Jeong-Jun Lee, a Ph.D. candidate at Texas

A&M University. The rest of the work conducted for the thesis was completed by the

student independently.

There are no outside funding contributions to acknowledge related to the research

and compilation of this document.

vii

TABLE OF CONTENTS

Page

ABSTRACT ...ii

DEDICATION ..iv

ACKNOWLEDGEMENTS ...v

CONTRIBUTORS AND FUNDING SOURCES ...vi

TABLE OF CONTENTS ...vii

LIST OF FIGURES ...ix

LIST OF TABLES ...x

1. INTRODUCTION .. 1

1.1. Background.. ..1
1.2. Organization of thesis.. 4

2. JACOBI METHOD IN SINGULAR VALUE DECOMPOSITION 5

2.1. Singular Value Decomposition ... 5

2.2. Jacobian Rotation .. 5
2.3. Two-sided Jacobi Method ... 6

2.4. One-sided Jacobi Method .. 6

3. DATA ORDERING IN JACOBI METHOD ... 9

3.1. Data Reuse and Data Ordering in the Hestenes-Jacobi Architecture 9
3.2. Existing Round-Robin Ordering and Ring Ordering .. 9

4. PROPOSED DATA ORDERING AND SVD ARCHITECTURE 12

4.1. Proposed Maximum Data Sharing Ordering ... 12
4.2. Proposed Linearly-Connected (LC) PU Array .. 13
4.3. Row-based Parallelism and Vector PU ... 16

4.4. Proposed SVD Architecture with Row and Column-based Parallelism 18

5. IMPLEMENTATION DETAILS .. 20

viii

5.1. Data Ordering Generator ... 20
5.2. Processing Unit ... 20

5.2.1. Covariance Calculator .. 21
5.2.2. Update Kernel ... 21
5.2.3. Local Memory .. 22

5.3. Rotation Parameter Calculator .. 22

6. EXPERIMENT SETUP AND RESULTS ... 24

6.1. Experiment Setup .. 24
6.2. Resource Utilization and Power Dissipation ... 25
6.3. Performance Boost Analysis ... 25

7. CONCLUSIONS AND FUTURE WORKS .. 29

7.1. Conclusion ... 29
7.2. Future Works ... 30

REFERENCES ... 31

ix

LIST OF FIGURES

Page

Figure 3.1: General Hestenes-Jacobi architecture. ... 10

Figure 3.2: Round-robin ordering: “a,b” stands for the indices of the two columns

processed by a certain PU at a given step. .. 11

Figure 3.3: Ring ordering: columns in red are cached and will be reused in the same

PU at the next step. ... 11

Figure 4.1: Proposed data ordering. Columns with a red index are reused by the same

PU while ones with a blue index are reused by another PU in the following

step. ... 14

Figure 4.2: Proposed linearly-connected (LC) PU array. ... 15

Figure 4.3: Data sharing example in the proposed LC PU array. 16

Figure 4.4: Data flow for PU array when data sharing is not available. 17

Figure 4.5: An example of a vector PU. ... 18

Figure 4.6: The proposed SVD architecture with the MDS ordering and both column

and row-based parallelisms. .. 19

Figure 5.1: The architecture of a single processing unit (PU). .. 20

Figure 5.2: Covariance calculator (left) and update kernel (right). 21

Figure 5.3: The architecture of the rotation parameter calculator. 23

Figure 6.1: Normalized execution times of Eigen Jacobi & Eigen BDC @2.8GHz and

20 Single PU Array @150MHz. ... 26

Figure 6.2: Normalized execution times of the 20 Single PU Array, 10 Vector PU

Array and 10 Single PU Array all running at 150MHz on the FPGA. 27

Figure 6.3: Normalized execution time of three orderings. ... 28

x

LIST OF TABLES

Page

Table 6.1: Resource utilization and power dissipation of three designs. 25

Table 6.2: Execution times (seconds) of Eigen-Jacobi routine, Eigen-BDC routine,

and our FPGA designs. ... 26

Table 6.3: Execution time (seconds) of three different data ordering. 27

1. INTRODUCTION

1.1. Background

Since its first appearance in 1940s, the performance of computers has been

continuously improved. Computer engineers have been trying to push the throughput of

single core processors by utilizing pipelining, instruction level parallelism (ILP) and

caching techniques. However, performance improvement starts to degrade in the early 21st

century.

Meanwhile, engineers started to look for alternative ways to further improve the

throughput. Some of them focused on thread level parallelism and developed the multi-

core processors. The others utilized the data level parallelism and proposed the idea of

heterogeneous computing.

In recent days, heterogeneous computing is being frequently discussed mainly for

the following two reasons. First, application that require parallel computation for

acceleration is increasing, from PC gaming, to the big data center analysis, and the

emerging machine learning field. Multicore processors are not able to achieve decent

performance in these application specific tasks. Second, the development in hardware

devices and techniques allow integration of different co-processors. Additionally, the

development of general high-speed buses, e.g. PCIE and SATA, makes the integration and

data communication more efficient. For users and developers, it is convenient to be not

restricted to the CPU-GPU architecture, but also to be able to choose the CPU-FPGA for

flexible design or the CPU-ASIC for good application specific performance.

1

2

Among them, the CPU-PFGA architecture is attracting more and more attention in

heterogeneous computation. It can be quickly developed and deployed for a specific

application scenario and achieve acceptable performance boost without the huge

investigation needed as that of AISC circuits design. Although compared with GPUs,

FPGA has fewer available computation resource on-chip, the programmable characteristic

gives it the flexibility to well organize the data flow and makes the implementation be

more efficient. Noticeably, in the current data science and machine learning area, new

algorithms are developing fast and some of them are difficult for GPU users to program

as GPU programmers have less control in data sharing between threads. For this reason,

for architecture research, as well as commercial data centers, CPU-FPGA architecture is

gaining increasing popularity.

Singular value decomposition (SVD) is a fundamental computation method that is

applied to many machine learning algorithms. It is wildly used in data processing, matrix

compression and many recognition tasks [15][16]. However, most SVD algorithms have

a complexity which is cubic in problem size and severely limits the application of SVD in

many real time tasks [17]. As a result, many architecture researches have been done on

SVD of utilizing parallel algorithms and implementing them on FPGA or GPUs.

Among the existing algorithms, the Jacobi algorithm has the highest accuracy and

numerical stability while the convergence rate is slow. However, the inner parallelism of

Jacobi algorithm makes it well suitable for parallel acceleration of SVD. Two kinds of

Jacobi methods, the two-sided Jacobi method and the Hestenes-Jacobi method have been

extensively targeted for developing parallel architectures. The first systolic array

architecture utilizing two-side Jacobi method is reported in [2]. Modified systolic arrays

designed for modern FPGAs have also been implemented in [3][14]. However, these

architectures are limited by a strict requirement for square input matrices and they are

difficult to scale up with respect to problem size.

 In contrast, the Hestenes-Jacobi method, which is proposed in [1] is more flexible

for hardware acceleration as it can decompose rectangular matrices. GPU application of

the algorithm has been reported in [4][5][6]. Nevertheless, the designs are not able to show

reasonable speedups compared with SVD engines on CPU due to the frequent data

synchronization as discussed in [4]. On the reconfigurable family side, a fixed-point

implementation is shown in [8], with a low dynamic range and restriction on computation

of matrices no large than 32 × 128. In [9], an architecture that computes only singular

values for matrices with a size from 100 × 100 to 2𝑘 × 2𝑘 is presented. However, the

design does not give a solution to the on-chip data reuse and faces a severe performance

degradation when the on-chip cache is fully utilized. In [10], the data reuse for the

Hestenes-Jacobi method implemented on distributed memory systems have been

discussed, but related studies have not been explored in recent FPGAs.

 In this thesis, we present a scalable SVD engine utilizing the Hestenes-Jacobi

method and our proposed Maximum Data Sharing ordering (MDS ordering). Our

architecture can maximize the data reuse in the Hestenes-Jacobi algorithm and can

significantly reduce the bandwidth requirement by 2𝑘, while 𝑘 is the number of parallel

processing elements. Meanwhile, to further improve the throughput and reduce the on-

chip cache requirement of the design, we also explore the row-based parallelism and

3

4

integrate it into our SVD architecture. With the application of the MDS ordering and

utilization of both column & row-based parallelism, our architecture can reach up to 300X

speed up compared with the solvers in the Eigen package running on high performance

CPU. Compared with existing FPGA implementation, our SVD engine can give a full

solution to much larger matrices.

1.2. Organization of thesis

The dissertation can be divided into the following parts. In Section 2, we will give

a brief introduction to SVD and the Jacobi method. In Section 3, parallelism of the

Hestenes-Jacobi method and data reuse possibility will be discussed. We will also give a

definition of data ordering in the Hestenes-Jacobi method and present two existing data

orderings. In Section 4, we will demonstrate our proposed MDS ordering and the

corresponding hardware architecture. In Section 5, detailed implementation of different

parts of the system will be discussed. In Section 6, we will show the experiment setup and

analyze the experiment results. In the final part, we will conclude the dissertation and

discuss about the future works.

5

2. JACOBI METHOD IN SINGULAR VALUE DECOMPOSITION

2.1. Singular Value Decomposition

Singular value decomposition is defined as a factorization of a matrix in linear

algebra. Given a matrix 𝑨𝑚×𝑛, the decomposition can be written as:

 𝑨𝑚×𝑛 = 𝑼𝑚×𝑛𝚺𝑛×𝑛𝑽𝑛×𝑛
𝑻 , (2.1)

where 𝑼,𝑽 are both unitary matrices and 𝚺 is a diagonal matrix. The diagonal

elements of 𝚺, i.e. 𝜎𝑖 are called the singular values of 𝑨.

Without losing generality, we assume the matrices discussed in our dissertation are

full ranked, i.e. 𝑟𝑎𝑛𝑘(𝑨) = 𝑚𝑖𝑛{𝑚, 𝑛}. Under this assumption, the columns in unitary

matrix 𝑼 form a set of orthogonal bases in the column space of 𝑨, while columns in 𝑽

form a set of orthogonal bases in the row space of 𝑨. Noticeably, although given a specific

matrix, the singular values are determined, the decomposition itself is not unique, as the

orthogonal bases for row or column space of 𝑨 can be chosen arbitrarily.

2.2. Jacobian Rotation

In linear algebra, Jacobi rotation is defined as a unitary transformation for a given

2×2 real symmetric matrix:

 [
𝑏1 0
0 𝑏2

] = [
𝑐 𝑠

−𝑠 𝑐
]
𝑇

[
𝑎1 𝑎2

𝑎2 𝑎3
] [

𝑐 𝑠
−𝑠 𝑐

] (2.2)

 The rotation parameters, 𝑐, 𝑠 can be calculated with eq. (2.3):

𝑙𝑒𝑡 𝛽 =
𝑎3 − 𝑎1

2𝑎2
, 𝑡 =

𝑠𝑔𝑛(𝛽)

|𝛽| + √𝛽2 + 1

6

 𝑐 =
1

√𝑡2+1
, 𝑠 = 𝑐 ∙ 𝑡 (2.3)

Jacobian rotation is a unitary transformation and can be applied to diagonalize

symmetric matrices. Due to its property, it serves as the basic transformation in the two-

sided Jacobi method.

2.3. Two-sided Jacobi Method

The Two-sided Jacobi method is proposed in [18] to decompose symmetric square

matrices 𝑨𝑛×𝑛. By utilizing Jacobian rotation for a submatrix 𝑨𝑝,𝑞 = [
𝐴𝑝𝑝 𝐴𝑝𝑞

𝐴𝑞𝑝 𝐴𝑞𝑞
]of 𝑨, the

off-diagonal elements of 𝑨𝑝,𝑞 can be annihilated.

Jacobian rotations for different sub-matrices in 𝑨 can be applied simultaneously,

i.e. given 𝑨𝑝,𝑞 , 𝑨𝑘,𝑙(𝑝, 𝑞 ≠ 𝑘, 𝑙), the diagonalizations can be performed at the same time.

Thus, parallel acceleration of Jacobi method can be done by performing Jacobian rotations

for different sub-matrices.

However, several limitations prevent the wild application of the two-sided Jacobi

method. First, the input matrix has to be a square symmetric matrix 𝑨𝑛×𝑛. Second, the

number of parallel computation units needed is quadratic proportional to 𝑛, which severely

limits the scalability of the algorithm.

2.4. One-sided Jacobi Method

To overcome the deficiencies in the two-sided Jacobi method, the Hestenes-Jacobi

method is proposed in [1]. By rewriting the SVD definition as eq. (2.4):

 𝑩 = 𝑨𝑽 = 𝑼𝚺 (2.4)

7

As 𝑼 is unitary and 𝚺 is diagonal, the left-hand side of the equation must be an

orthogonal matrix, i.e. the SVD process becomes applying a unitary transformation to 𝑨

and makes it become orthogonal. Meanwhile, the right-hand side transformation 𝑽 can be

split into a series of iterative orthogonal transformations as shown in eq. (2.5):

 𝑽 = 𝑱1𝑱2𝑱3𝑱4 ⋯

where: 𝐽𝑝,𝑞 =

 𝑝 𝑞

𝑝

𝑞

[

1 ⋯ 0

⋮
 𝑐 ⋯ −𝑠
 ⋮ ⋱ ⋮
 𝑠 ⋯ 𝑐

⋮

0 ⋯ 1]

𝑛×𝑛

 (2.5)

 In every 𝑱 matrix, with proper rotation parameters 𝑐, 𝑠, two columns in 𝑨 can be

rotated and orthogonalized as shown in eq. (2.6).

 𝑨𝑝
′ , 𝑨𝑞

′ = [𝑨𝑝, 𝑨𝑞] ∙ [
𝑐 −𝑠
𝑠 𝑐

] , 𝑤ℎ𝑒𝑟𝑒 𝑨𝑝
′ ∙ 𝑨𝑞

′ = 𝟎 (2.6)

 Rotation parameters can be calculated with eq. (2.7) as presented in [11].

𝑙𝑒𝑡 𝑄 = 𝑛𝑝 − 𝑛𝑞 , 𝑃 = 2𝑐𝑜𝑣, 𝑉 = √𝑄2 + 𝑃2

𝑖𝑓 𝑄 ≥ 0: 𝑐 = √
𝑉+𝑄

2𝑉
, 𝑠 =

𝑃

√2𝑉(𝑉+𝑄)

 𝑖𝑓 𝑄 < 0: 𝑠 = √
𝑉−𝑄

2𝑉
, 𝑐 =

𝑃

√2𝑉(𝑉−𝑄)
 (2.7)

 In the Hestenes-Jacobi method, all possible column pairs will be orthogonalized

sequentially. This process is called a sweep. After certain sweeps, convergence can be

reached [1] and the 𝚺 and 𝑼 matrix are then calculated by eq. (2.8).

 𝚺 = √𝑩𝑻𝑩, 𝑼 = 𝑩/𝚺 (2.8)

8

 The basic Hestenes-Jacobi algorithm without any optimization in data ordering is

shown in algorithm 1.

9

3. DATA ORDERING IN JACOBI METHOD

3.1. Data Reuse and Data Ordering in the Hestenes-Jacobi Architecture

The parallelism of the Hestenes-Jacobi algorithm allows processing of different

column pairs by different processing units (PU) at each step, where each processing unit

is responsible for calculating Euclidean norms, covariances and updating the column pairs

as shown in Algorithm 1. To maximize throughput, each processing unit is designed to be

fully pipelined [9]. However, the increasing of problem size results in storing the whole

matrix in off-chip memory. To achieve reasonable speedup, the required bandwidth grows

dramatically when the number of PUs increases (as shown in Figure 3.1). Thus, proper

data cache technique should be introduced to minimize the frequent data transmission

between on-chip PUs and off-chip memory.

To well exploit the data reuse opportunities in the Hestenes-Jacobi method, on-

chip memory should be employed to cache processed column pairs for further reuse at the

following steps. At a certain step in one sweep, the columns being processed and stored

should be reused as many as possible. To satisfy the requirement, data ordering is

introduced to determine which column pair should be processed by certain PU at each step

to achieve column-based parallel processing and minimize the on-chip and off-chip data

communication.

3.2. Existing Round-Robin Ordering and Ring Ordering

In [10], round-robin ordering and ring ordering have been implemented and

analyzed for distributed memory system. The two orderings are also popular in some

10

existing architectures [3], and thus, adopted in this dissertation for comparison. As an

example, round-robin ordering and ring ordering for matrix with 8 columns and 2 PUs are

shown in Figure 3.2 and Figure 3.3.

Figure 3.1: General Hestenes-Jacobi architecture.

The generation of round-robin ordering is simple and it can support column-based

parallel processing. However, as shown in Figure 3.2, no data sharing is available between

different steps, i.e. at each step, all the PUs should request, process and write back new

column pairs. In ring ordering, the column updated at the previous step can be reused by

the same PU as shown in Figure 3.3. However, to reuse columns between different PUs

across different steps, complex interconnection network on-chip is required, especially

when the number of PUs increases. Both round-robin ordering and ring ordering cannot

fully utilize the data reuse potentiality in the Hestenes-Jacobi architecture.

11

Figure 3.2: Round-robin ordering: “a,b” stands for the indices of the two columns

processed by a certain PU at a given step.

Figure 3.3: Ring ordering: columns in red are cached and will be reused in the same PU

at the next step.

12

4. PROPOSED DATA ORDERING AND SVD ARCHITECTURE

4.1. Proposed Maximum Data Sharing Ordering

 To maximize the data reuse between different steps in the Hestenes-Jacobi method,

two types of data reuses should be utilized by caching processed columns in on-chip

memory:

 a. Column processed at previous step shall be reused by the same PU at next step.

 b. Column processed at precious step can be reused by another PU at next step.

 Furthermore, a well-designed data ordering for parallel acceleration in the

Hestenes-Jacobi architecture should satisfy the following three key properties:

 a. Parallelism: Different PUs are processing different column pairs.

 b. Reusability: The data ordering should utilize both two types of data reuses.

c. Simplicity: The data reuse should not result in complex interconnection network.

 As mentioned in section 3.2, round-robin ordering satisfies parallelism only, while

ring ordering is parallel but cannot satisfy reusability and simplicity simultaneously. To

overcome the limitations, we propose Maximum Data Sharing ordering (MDS ordering)

as shown in Algorithm 2. Our MDS ordering is a parallel ordering that not only explores

both two types of data reuses, but also simplifies the required architecture. An example of

the MDS ordering for a matrix with 8 columns and an architecture of 4 PUs is shown in

Figure 4.1.

13

4.2. Proposed Linearly-Connected (LC) PU Array

As demonstrated in Figure 4.1, at each step of the MDS ordering, the data sharing

between different PUs are completed in a fixed pattern, i.e. the communications happen

only between a certain PU and its neighboring two PUs. Thus, implementing our MDS

ordering does not need a complex interconnection network on-chip. To take advantage of

this property, a linearly-connected (LC) PU array architecture is demonstrated as shown

in Figure 4.2.

14

Figure 4.1: Proposed data ordering. Columns with a red index are reused by the same PU

while ones with a blue index are reused by another PU in the following step.

In each PU, two local memories cache the two columns to be updated and are

configured as either private or shared during a certain step. If a memory caches column

that will be reused by the same PU, it will be configured as private. Otherwise, the memory

will be configured as shared. At the end of each step, when the columns in each PU have

been updated, the column from the private memory (ones with red indices in Figure 4.1)

will be written back to the same memory while the column from the shared memory (ones

with blue indices in Figure 4.1) will be sent to the shared memory of the “next” PU. At

the next step, the memories of each PU will be configured again and the same process

continues.

15

Figure 4.2: Proposed linearly-connected (LC) PU array.

In Figure 4.3, an example data sharing in the MDS ordering for a matrix with 8

columns in an array of two PUs, e.g. the first two steps of PU1 and PU2 in Figure 4.1, is

demonstrated.

In general, we suppose our target matrix has 𝑛 columns and the PU array has 𝑘

PUs. In a sweep (with
𝑛(𝑛−1)

2
 steps) of utilizing the MDS ordering, there are 𝑛/2𝑘 steps

where the columns processed at previous step cannot be reused at next step. In this case,

all PUs have to flush the cached data and refill new data. The data communication between

the PU array and the off-chip memory will be done sequentially as shown in Figure 4.4.

At other steps, only the “first” and the “last” PUs (as shown in Figure 4.2) need to

communicate with off-chip memory, thus the required bandwidth is reduced by a factor

of 2𝑘. Since the first situation is not so frequent during a sweep, we are able to implement

more PUs without increasing the bandwidth requirement.

16

Figure 4.3: Data sharing example in the proposed LC PU array.

4.3. Row-based Parallelism and Vector PU

Noticeably, the design of a Hestenes-Jacobi SVD accelerator needs a careful

balancing in the utilization of two types of resources on-chip:

a. Logic/compute resources, limiting the number of PUs that can be employed;

b. On-chip memory (BRAM) resources, limiting the maximum column size and

number of columns can be cached.

When the column size is huge, the local memory of each PU has to be sufficiently

large to cache the whole column. Due to the high requirement of local memory per PU,

the number of PUs that can be supported, i.e. the level of column-based parallelism will

be fairly small, despite the fact that logic/compute resources may be still under-utilized.

17

Figure 4.4: Data flow for PU array when data sharing is not available.

To fully utilize the available logic resources on-chip and achieve the maximum

throughput, row-based parallelism should be introduced as an additional design freedom.

With the row-based parallelism, vector-based computation, i.e. the calculation of norms,

covariances and the updating of columns can be split into multiple column segments

simultaneously.

In this case, a vector PU can be developed with multiple single PUs as mentioned

before (shown in Figure 4.5). Inside the vector PU, each single PU is responsible for

caching and computing one segment of a column pair.

18

Figure 4.5: An example of a vector PU.

4.4. Proposed SVD Architecture with Row and Column-based Parallelism

Figure 4.6 demonstrates an overview of our proposed Hestenes-Jacobi architecture

which can be mainly divided into three parts: a vector PU array, a data ordering generator,

and a rotation parameter calculator. The data ordering generator utilizes algorithm 2 to

generate required column indices of the MDS ordering for all the PUs. The vector PU

array consists of multiple vector PUs. At a certain step, each vector PU is responsible for

caching a column pair, calculating the corresponding norms, covariances and updating the

two columns. The rotation parameter calculator is employed to generate rotation

parameters which are used to perform Jacobian rotation given the covariances and

Euclidean norms. Two FIFOs a are implemented to synchronize data between the on-chip

processing PU array and off-chip memory.

19

Figure 4.6: The proposed SVD architecture with the MDS ordering and both column and

row-based parallelisms.

20

5. IMPLEMENTATION DETAILS

5.1. Data Ordering Generator

The data ordering is generated by data ordering generator with algorithms 2. The

reconfigurable sequential logic in this component can generate data orderings for matrices

with arbitrary sizes. After initialization, the component generates all column pairs for 𝑘

PUs in 𝑘 clock cycles. Our data ordering generator can also be configured to generate

round-robin ordering or ring ordering. Thus, our system is able to utilize, analyze and

compare three different orderings.

5.2. Processing Unit

The calculation of the Euclidean norms and updating of columns in algorithm 1

are finished in each PU with three modules: the covariance calculator, the update kernel,

and the local memory. A single PU is shown in Figure 5.1.

Figure 5.1: The architecture of a single processing unit (PU).

21

5.2.1. Covariance Calculator

The Euclidean norms and covariances of two columns (𝑨𝑝, 𝑨𝑞) can be calculated

with eq. (5.1).

 𝑛𝑝 = ∑ 𝐴𝑝𝑖
2𝑛

𝑖=1 , 𝑛𝑞 = ∑ 𝐴𝑞𝑖
2𝑛

𝑖=1 , 𝑐𝑜𝑣 = ∑ 𝐴𝑝𝑖𝐴𝑞𝑖
𝑛
𝑖=1 (5.1)

Each covariance calculator consists three floating point multipliers and three

floating point accumulators (in Figure 5.2 (left)). When all entries in the two columns are

accumulated, the final norms and covariances will be sent to rotation parameter calculator.

5.2.2. Update Kernel

The update kernel performs Jacobi rotation with eq. (2.6). A single update kernel

is shown as Figure 5.2(right), where four floating point multipliers and two floating point

adders are utilized.

Figure 5.2: Covariance calculator (left) and update kernel (right).

In each PU, two update kernels are employed, one for updating of column pairs in

𝑨, the other is used to update column pairs in 𝑽.

22

In the final processing of calculating 𝑼 with eq. (2.8), 1/𝜎𝑝, 1/𝜎𝑞will be provided

by rotation parameter calculator and two multipliers will be reconfigured to complete the

updating.

5.2.3. Local Memory

To utilize on-chip data reuse, four true dual port BRAMs are employed in each PU

and are used to cache the whole column pairs of 𝑨 and 𝑽.

At a certain step, the column pairs are firstly cached while their corresponding

norms and covariances are calculated. After that, according to the reuse type of the cached

columns, the memories will be configured as either private or shared. When the rotation

parameters have been calculated and Jacobi rotations have been performed, the updated

columns will be sent back to locations according to its memory type: updated columns

from private memory will be sent back to the same memory, while the updated columns

from shared memory will be sent to another PU or back to off-chip memory.

5.3. Rotation Parameter Calculator

The calculation of the rotation parameters requires multiple steps of multiplication,

addition/subtraction, division and square root operation. In previous small-scale

application, fixed-point representation is adopted and Coordinate Rotation Digital

Computer (CORDIC) algorithm is applied because of its efficiency and simplicity by

performing iterative shifting-adding operation [3][7][8]. In our architecture, to achieve

large dynamic range and reasonable precision, single precision floating point

representation is adopted, and the CORDIC algorithm, limited by inherent shifting-adding

23

procedure, is no longer suitable for this situation. Thus, the floating-point IP, provided by

Xilinx is utilized.

The calculation is performed with eq. (2.7). In our rotation parameter calculator

(RP calculator), a comparator, 5 adders/subtractors, three multipliers, three square root

operators and a divider are employed. Two shift registers are utilized to hold the inner

value P and Q (as shown in Figure 5.3). The component is fully pipelined with a delay of

145 cycles.

Figure 5.3: The architecture of the rotation parameter calculator.

When the algorithm is converged, the input norms, 𝑛𝑝, 𝑛𝑞 are actually the squared

𝑝th and 𝑞th singular values. The square root operator will be used to calculate the singular

values (𝜎𝑝, 𝜎𝑞) and a divider will calculate 1/𝜎𝑝, 1/𝜎𝑞 which will be sent to update kernel.

24

6. EXPERIMENT SETUP AND RESULTS

6.1. Experiment Setup

Our proposed Hestenes-Jacobi architecture is implemented on Xilinx ZC706

evaluation board. The data in the architecture is represented in IEEE754 single precision

floating point format. All the computation is done by utilizing the Xilinx Floating point

generator [12]. The on-chip logic array is functioning at a clock rate of 150MHz. Input

matrices and results are stored in the DRAM at the Cortex-A9 ARM core side. The data

communication between off-chip logic and DRAM utilizes Xilinx direct memory access

(DMA) IP [13].

As a demonstration of our SVD engine, three different designs with different

degrees of parallelism are implemented. The first design has an array of 20 single PUs,

where each PU has a local memory size of 0.5 Mb and is able to cache columns that have

up to 4,096 entries. The second design has an array of 10 single PUs with the same single

PU local memory size of 0.5 Mb. The third design has a vector PU array of 10 vector PUs,

where each vector PU consists two single PUs. The local memory size of a vector PU is

set to be 0.5 Mb.

The analysis of our proposed architecture is demonstrated in three aspects. First,

resource utilization and power dissipation are reported. Second, randomized matrices of

various dimensions are used to measure the execution time and speedup of the

accelerators. Third, the MDS ordering is analyzed by comparing with round-robin

ordering and ring ordering running on a same SVD engine.

25

6.2. Resource Utilization and Power Dissipation

Resource utilizations (in percentages of total amount available on the FPGA) and

power dissipations of the three designs are summarized in Table 6.1, approximately

proportional to the number of single PUs in each design.

Table 6.1: Resource utilization and power dissipation of three designs.
Utilization: % 20 Single PU Array 10 Single PU Array 10 Vector PU Array

LUTs 41.8 21.8 42.2

FFs 33.6 17.4 33.81

DSP48 79.1 40.4 79.3

BRAMs 52.1 26 26

Power(W) 3.886 1.964 3.91

6.3. Performance Boost Analysis

Performance boost is measured by comparing the execution time of decomposing

various random generated matrices by our designs running at 150 MHz and two SVD

routines in Eigen library, the Jacobi algorithm and Bidiagonal-Divide-and-Conquer

(BDC) algorithm, running on a Xeon E5-2680 CPU clocked at 2.8GHz. The execution

times are shown in Table 6.2. Normalized execution times of Eigen solvers with respect

to the 20 single PU design are shown in Figure 6.1. Our architecture can reach a speedup

of up to 300X compared with the software solutions in Eigen package.

As a demonstration of row-based parallelism, the comparison of execution time of

the three FPGA designs are shown in Figure 6.2. Noticeable that the 10 single PU design

and the 10 vector PU design has the same amount of total BRAM utilized. However, by

introducing the row-based parallelism, the 10 vector PU design is able to achieve 2X

speedup compared with the 10 single PU design. Generally speaking, when the on-chip

26

BRAM resource serves as a limiting factor, i.e. the degree of column-based parallelism is

limited, introducing the row-based parallelism can help achieve further speedup.

Table 6.2: Execution times (seconds) of Eigen-Jacobi routine, Eigen-BDC routine, and

our FPGA designs.

Figure 6.1: Normalized execution times of Eigen Jacobi & Eigen BDC @2.8GHz and 20

Single PU Array @150MHz.

To analyze the proposed MDS ordering, various randomized matrices are

decomposed by our 20 single PU array design with round-robin ordering, ring ordering

and the proposed MDS ordering. The execution times of three different data orderings are

shown in Table 6.3. And the normalized execution times with respect to MDS ordering

are shown in Figure 6.3.

0

50

100

150

200

250

300

100x100 200x200 500x500 1kx1k 2kx2k 4kx4k

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Matrix Size

Eigen Jacobi Eigen BDC 20 Signle PU Array

Matrix Eigen-Jacobi Eigen-BDC 10 PU Array 20 PU Array
10 Vector

PU Array

100 × 100 0.3067 0.2367 0.0067 0.0038 0.0040

200 × 200 2.1533 1.0000 0.0349 0.0191 0.0201

500 × 500 32.7433 7.5500 0.3684 0.1943 0.2005

1𝑘 × 1𝑘 271.2830 41.7800 2.4738 1.2770 1.3020

2𝑘 × 2𝑘 2220.7900 260.0030 17.8956 9.1080 9.2080

4𝑘 × 4𝑘 20933.3197 1784.7700 135.5832 68.4320 68.8319

27

Figure 6.2: Normalized execution times of the 20 Single PU Array, 10 Vector PU Array

and 10 Single PU Array all running at 150MHz on the FPGA.

Table 6.3: Execution time (seconds) of three different data ordering.
Matrix Round-robing Ring MDS

100 × 100 0.021 0.013 0.004

200 × 200 0.165 0.093 0.019

500 × 500 2.533 1.330 0.194

1𝑘 × 1𝑘 20.133 10.319 1.277

2𝑘 × 2𝑘 160.529 81.276 9.108

4𝑘 × 4𝑘 1282.115 645.104 68.432

When the bandwidth is the limiting factor, the MDS ordering is able to achieve

significant performance boost with a well utilization of on-chip data reuse. In the same

situation for round-robin and ring ordering, the PUs have to compete for using the bus for

communicate with off-chip memory and cannot achieve the desired maximum throughput.

The MDS ordering allow us to implement more PUs and achieve higher level of

parallelism with the same bandwidth available. Experiment shows the MDS ordering can

achieve roughly 20X speedup over round robin ordering and approximately 10X speedup

over ring ordering.

0.0

0.5

1.0

1.5

2.0

100x100 200x200 500x500 1kx1k 2kx2k 4kx4k

N
o

rm
a

liz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Matirx Size

20 Single PU Array 10 Vector PU Array 10 Single PU Array

28

Figure 6.3: Normalized execution time of three orderings.

0.0

5.0

10.0

15.0

20.0

100x100 200x200 500x500 1kx1k 2kx2k 4kx4k

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Matrix Size

Round-robin Ring MDS

29

7. CONCLUSIONS AND FUTURE WORKS

7.1. Conclusion

In the dissertation, we first go through the emerging need for high performance

heterogeneous computation. The importance and challenges in the current accelerator

designs are discussed. We then use SVD, a popular computation intensive algorithm as a

case study to analyze in this particular algorithm, how optimized data flow is able to

reduce data transmission and bandwidth requirement.

After that, we propose a new MDS data ordering and implement the corresponding

SVD accelerator architecture on FPGA. Our design is able to achieve up to 300X speedup

compared with the Eigen library. Our experiments also show that the proposed ordering

is able to provide higher degrees of parallelism for the Hestenes-Jacobi algorithm and can

achieve better performance boost with limited bandwidth available. Compared with some

existing SVD accelerators, our design is improved at the following aspects: first, the

design provides a full solution for reasonable big matrices of arbitrary dimensions; second,

the MDS ordering significantly reduces the bandwidth requirement and allows for higher

parallelism; third, our proposed vector PU architecture with the row-based parallelism

introduces an additional design freedom to well balance the logic and memory

requirements.

30

7.2. Future Works

Although the dissertation provides a relatively thorough research on the Hestenes-

Jacobi method and its related architectures, there exist limitations which can be further

improved in future works.

The architecture proposed in the dissertation is limited by the local memory size

of each PU. The accelerator in general, cannot process matrix whose columns (i.e. the size

of which is larger than 4096 in the design) cannot be fully cached in a vector PU’s local

memory. In this case, row-based parallelism has to be introduced which results in

additional requirement for bandwidth. Currently, the implementation is a fixed array and

cannot be reconfigured to balance the trade-off between maximum processing size,

required bandwidth and the required speedup. Developing the accelerator at a higher

perspective, i.e. auto reconfiguring and adaptation to various requirements, is an

interesting topic in the future.

31

REFERENCES

[1] Hestenes, M.R., “Inversion of matrices by biorthogonalization and related

results”, J. Soc.Indus. Appl.Math.6 (1958), 51-90.

[2] Brent, R.P., and Luk, F.T., “The solution of and symmetric eigenvalue problems

on multiprocessor arrays”, SIAM J. Sci. Statist. Comput. 6 (1985) 69–84.

[3] W. Ma, M. E. Kaye, D. M. Luke, R. Doraiswami, “An FPGA-based singular

value decomposition processor”, IEEE CCECE, Ottawa, 2006.

[4] C. Kotas, J. Barhen, “Singular value decomposition utilizing parallel algorithm

on graphical processors”, IEEE OCEANS, 2011.

[5] J. An, D. Wang, “Efficient One-Sided Jacobi SVD Computation on AMD GPU

using OpenCL”, IEEE ICSP, Chengdu, 2016.

[6] S. Cuomo, L. Marcellino, G. Navarra, “A parallel implementation of the

Hestenes-Jacobi-One-Sides method using GPU-CUDA”, 26th Euromicro International

Conference on Parallel, Distributed and Network-based Processing (PDP)

[7] R. Monhanty, G. Anirudh, T. Pradhan, B. Kabi, “Design and Performance

Analysis of Fixed-Point Jacobi SVD Algorithm on Reconfigurable System”,

International Conference on Applied Computing, Computer Science, and Computer

Engineering (ICACC), 2013.

[8] L. Ledesma-Carrillo, E. Cabal-Yepez, R. de J Romero-Troncoso, A. Garcia-

Perez, R. Osornio-Rios, and T. Carozzi, “Reconfigurable FPGA-Based unit for Singular

32

Value Decomposition of large m x n matrices,” Proceedings of International Conference

on Reconfigurable Computing and FPGAs (ReConFig), 2011.

[9] X. Wang, J. Zambreno, “An FPGA Implementation of the Hestenes-Jacobi

Algorithm for Singular Value Decomposition”, 2014 IEEE 28th International Parallel &

Distributed Processing Symposium Workshop.

[10] P.J. Eberlein, H. Park, “Efficient implementation of Jacobi alorithms and Jacobi sets

on distributed memory architectures”, Journal of Parallel and Distributed Computing,

Vol 8. April 1990, pp. 358-366.

[11] L. zhao, Q. Guo, “A Variable Relaxation Parameter for The Parallel Oone-Sided

JRS SVD Algortihm”, 7th International Conference on Computer Science & Education

(ICCSE), 2012, Melbourne.

[12] Xilinx LogiCORE IP Floating-Point Operator v7.1 Product guide (PG060),

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_0/p

g060-floating-point.pdf

[13] Xilinx AXI DMA LogiCORE IP Product Guide (PG021),

https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021

_axi_dma.pdf

[14] A. Ahmedsaid, A. Amira, A. Bouridane, “Improved SVD systolic array and

implementation on FPGA”, IEEE International Conference on Field-Programmable

Technology (FPT), 2003 Tokyo.

[15] Md Sahidullah, Tomi Kinnunen, “Local spectral variability features for speaker

verification,” Digital Signal Processing, vol 50, March 2016, Page 1-11

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_0/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_0/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf

33

[16] Orly Alter, Patrick O. Brown, and David Botstein, “Singular value

decomposition for genome-wide expression data processing and modeling,” PNAS. 97

(18): 10101–10106.

[17] M. V. Athi, S. R. Zekavat, “Real-Time Signal Processing of Massive Sensor

Arrays via a Parallel Fast Converging SVD Algorithm: Latency, Throughput, and

Resource Analysis”, IEEE Sensor Journal, Vol. 16, No. 8, April15, 2016.

[18] Jacobi, C.G.J. “"Über ein leichtes Verfahren, die in der Theorie der

Säkularstörungen vorkommenden Gleichungen numerisch aufzulösen".”, Crelle's

Journal (in German). 30 (30): 51–94.

https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
https://en.wikipedia.org/wiki/Crelle%27s_Journal
https://en.wikipedia.org/wiki/Crelle%27s_Journal

