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ABSTRACT

Sequence Learning is the cornerstone of data mining, and is significant in extracting useful

information, from sequencing sounds in a speech to sequencing semantics in linguistics.

Before sequence learning, finding a proper approach to collect sequential data is essential. The

main purpose of the proposed recognition system is to defeat the CAPTCHA (Completely Auto-

mated Public Turing test to Tell Computers and Humans Apart) because we need to collect the

data for the sequence learning. Besides, defeating the CAPTCHAs is also beneficial to improv-

ing the safety when we expose the CAPTCHAs’ deficiency. As an effective way to protect the

security and preserve the privacy of the network data, CAPTCHA is widely used in recent years.

Normally, three steps are utilized to defeat the CHAPCHAs - Preprocessing, Segmentation and

Recognition. Since there is not a universal segmentation framework that is adaptive to all the

possible CAPTCHA characters, each individual character requires separate segmentation which

makes the segmentation complicated. In this dissertation, we present a self-adaptive algorithm

in optimally segmenting different CAPTCHA characters. Current classifiers including Template

Matching (TM), Optical Character Recognition (OCR) and Convolutional Neural Networks (CNN)

are utilized in classifying these segmented CAPTCHA characters. The CAPTCHAs experimental

results show the outperformance of the proposed recognition system in defeating the CAPTCHA.

In the currently existing financial related Chinese text classification task, the data quality of

those tasks is not ideal because labeled Chinese datasets are not large enough. Besides the text-

based CAPTCHA recognition, short-term text classification also plays an important role in se-

quence learning. After obtaining the titles of Chinese commercial news, a new Chinese financial

related Short-term Text Classification Task (STCT) is introduced and its corresponding benchmark

is provided.

As a popular solution for STCT in sequence learning, recurrent neural networks (RNNs) have

proven its efficiency in processing sequential information. However, the traditional RNNs have

suffered from the gradient diminishing problem until the advent of Long Short-Term Memory

ii



(LSTM). The LSTM, though, is still weak in capturing long-time dependency in sequential data

due to the inadequacy of memory capacity in LSTM cells. To address this challenge, we propose

an Attention-augmentation Bidirectional Multi-residual Recurrent Neural Network (ABMRNN) to

overcome this deficiency. The proposed ABMRNN integrates both past and future information at

every time step with an omniscient attention model. The multi-residual mechanism has also been

proposed in our model targeting the pattern of the relationship between the current time step and

further distant time steps instead of only one previous time step. The experimental results show

that the proposed model outperforms the traditional statistical classifiers and other state-of-the-

art variations of RNN architectures in both the STCT and other public tasks, such as AG news,

Sequential-MNIST, and IMDB.
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1. INTRODUCTION

Sequence Learning (SL) is the cornerstone of data mining, which is significant to extract useful

information. In particular, sequence learning plays a vital component of learning in numerous task

domains - natural language processing, sequencing sounds in speech, sequencing actions in driving

an automobile and so on.

Nowadays, plentiful approaches towards sequence learning have been proposed, resulting from

different perspectives taken in disparate task domains [1]. Sequence learning is not a simple task

because of these aforementioned different domains. To find more advanced algorithms, training

procedures, and theories are to comprehensively understand the sequence and achieve state-of-the-

art performance in given topics. To develop better and more powerful algorithms, it is necessary

to compare, contrast, and combine different existing methods, approaches and paradigms.

Before learning the sequence, the first part is fetching the data. Although tons of data exist

among the internet, how to collect the data we need for the sequence learning properly is essential.

CAPTCHA (Completely Automated Public Turing test to Tell Computers and Humans Apart)

is widely used to protect data from auto bots. Furthermode, defeating the CAPTCHAs is also

beneficial to improving safety when we expose the CAPTCHAs’ deficiency. CAPTCHA designers

change the combination of coloring numbers and characters and so on which can be recognized

by people but not the automated bots. Besides, both companies and individuals apply text-based

CAPTCHAs most frequently because of the convenience.

CAPTCHA is used to prevent the auto bots, but it is impossible to manually collect the data we

need for sequence learning by human beings. Therefore, we have to defeat text-based CAPTCHA

automatically first. Three steps are normally needed: preprocessing by denoising, segmentation to

get individual characters and recognition to identify each character. Those three steps are treated

as equally important. Regarding the preprocessing step, since there may be a lot of noise affect-

ing the performance, we must decrease the effect to obtain clear images for higher performance.

Nowadays, a lot of methods are proposed to achieve the goal, like certain image processing ways
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and machine learning algorithms such as median filter [2], neighborhood filter, wavelet threshold,

universal denies, K-nearest neighbors algorithm, support vector machine and so on. However, only

when the appropriate denoising method is selected, we can acquire the clearest output [3][4].

After preprocessing, we should segment the image into characters individually. This is because

if the image can be divided perfectly, it will be helpful for the next step about the recognition

accuracy. As we mentioned before, the CAPTCHAs’ images are not always the same, thus de-

feating the CAPTCHAs itself heavily depends on the detailed weakness. After numerous methods

about segmentation experiments, image intensity histogram and color clustering [5] are the two

most effective ways. Last we present our novel adaptive algorithm to optimize the segmentation in

defeating the CAPTCHAs which will be further discussed.

Recognition is the last step to get the output of defeating the CAPTCHAs. Through a lot

of explorations, we conclude three fast and reliable recognition ways, they are Optical Character

Recognition(OCR), Template Matching(TM) and convolutional neural network(CNN). First of all,

OCR is used to convert words in pictures to the formal printed text [6]. Actually, OCR has been

applied in a wide range of areas such as documents like contracts, passport, receipts, even business

and credit cards. Besides, many commercial applications also have been developed for the task of

identifying machine typed text. While OCR has failed to defeat the CAPTCHAs due to various

reasons. Some commercial OCR methods can only work well on black-and-white images, part of

them are even based on free-noise text. However, the majority of the CAPTCHAs we need to deal

with in this paper are against free-noise text, they are always randomly noised, colored and even

rotated [3][7]. Moreover, the examples of our datasets suffer from various fonts, directions, and

even other distortions, so that the combination of those existing problems can not be easily solved

by just employing OCR.

To overcome OCR’s shortage, we would like to introduce TM. Long long ago, before OCR, this

is the most original machine learning way to perform recognition [8]. TM is straightforward and

easy to implement. Specifically, when we defeat some CAPTCHAs with rotated examples, TM

can achieve a higher accuracy rate than OCR. With the increasingly complicated circumstances
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designed, in terms of heavily rotated, overlapped and twisted, CNN overwhelmingly works better

than any others in terms of accuracy and time complexity [9]. However, constructing a CNN is also

huge, which needs to pre-train numerous well-prepared samples [10]. Our own CNN conquers this

problem with a lot of manual efforts aiming at data collection. We finally obtain state-of-the-art

performance to defeat the CAPTCHAs.

After defeating the CAPTCHAs and obtaining the data, the task has been proposed for learning

the sequence. Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

are the two primary architectures in neural networks for sequence learning. RNNs are often applied

to sequential data such as natural language processing and speech processing [11, 12], while CNNs

are more employed in image processing areas [13, 7, 14]. Among the existing RNN models, LSTM

[15] is one of the most popular approaches since it initially solves gradient vanishing and exploding

problems during RNN training by introducing forget gates and memory cells. After the literature

review, we found that numerous RNN variations have been proposed to achieve state-of-the-art

performance in different tasks, where LSTM is the cornerstone of those structures. However, due

to the limited memory cell in LSTM, when the time sequence is long, the LSTM performance is

heavily influenced.

With the increase of the depth of layers and the length of the sequences, residual networks have

proved their advantages in both CNNs [16, 17] and RNNs [18]. Residual networks connect current

and distant previous time steps for optimizing of the layer information. [16] and [19] propose

similar residual ideas to randomly connect one previous distant time step to the current time step,

where the problem of long time dependency is solved partially. Therefore, the residual networks

motivate us to combine the residual network with LSTM, where the information in current time

step has been updated dynamically based on the attained correlation between previous time steps

and current time step.

To better attain the correlation between current time step and previous time steps, the attention

model is widely applied in image processing, speech processing, and natural language processing.

The objective of the attention model is to ultimately optimize the training procedure when the
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amount of attention is limited. [20] initially leverages the attention model from image processing

to natural language processing. [21] proposes a model as a decoder network between previous

states and current state. [22] simplifies the model as an attention-based weighted pooling RNN to

acquire utterance representation in speech processing. Since the attention is limited, the way to

effectively distribute those attention becomes considerably important. Inspired by the attention-

based approaches, we leverage the attention model [23] to strengthen the correlation between the

current state and both previous and future distant states. As for [23], they focus on the relationship

between the current time step with previous information. Since the objective is to allocate the

attention properly, we regard the past and the future as the same importance, which means we

integrate both the previous and the future time steps to refine the information of current time step

instead of only relying on previous time steps.

Therefore, to address the aforementioned challenges in long time dependency and optimizing

the text correlations, this paper develops an Attention-augmentation Bidirectional Multi-residual

Recurrent Neural Network (ABMRNN). The proposed ABMRNN achieves state-of-the-art perfor-

mance among several existing sequential classification tasks. The main contributions of this work

are summarized as follows:

• Our algorithm overcomes the deficiency of LSTM in weak modeling the long-time depen-

dency, so we can handle much longer sequential data and obtain higher accuracy rate in

longer sequential tasks. In this algorithm, we design a novel bi-directional layer to dynami-

cally acquire and allocate attention from both previous and future time steps. Bi-directional

layers help us focus not only on the past but also in the future so that we can attain a better

correlation between current steps and distant time steps.

• To better supplement the acquired attention from bi-directional layer, we also leverage the

multi-residual mechanism to recurrent networks. Compared with traditional residual net-

works, the advantages of ours are more obvious because the proposed multi-residual mech-

anism is more rational than previous residual networks in sequence learning since the tra-

ditional residual networks connect current time step with only one randomly previous time
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step.

• The proposed model contains fewer parameters than current popular models such as [16] and

[24], which indicates that the architecture of the proposed model is less complicated than

those popular models. The proposed model also achieves the state-of-the-art performance in

sequence learning of STCT.
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2. AN OPTIMIZED SYSTEM TO SOLVE TEXT-BASED CAPTCHA 1

2.1 CAPTCHA overview

Before learning the sequence, the first part is fetching the data. Although tons of data exist

among the internet, it is essential to collect the proper data for sequence learning. CAPTCHA

(Completely Automated Public Turing test to Tell Computers and Humans Apart) is widely used

to protect data from auto bots as shows in Figure 2.1. Furthermode, defeating the CAPTCHAs

is also beneficial to improving safety when we expose the CAPTCHAs’ deficiency. CAPTCHA

designers change the combination of coloring numbers and characters and so on which can be

recognized by people but not the automated bots. Besides, both companies and individuals apply

text-based CAPTCHAs most frequently because of the convenience.

We rely on CAPTCHA increasingly heavily in distinguishing between human beings and com-

puter programs automatically. Because of the combination of distorting characters and obfuscation

techniques which can be recognized by people but may be hard for automated bots [25][26], and

text-based CAPTCHAs are most widely used by both companies and individuals.

We divide text-based CAPTCHA defeating into three parts: denoising, segmentation and recog-

nition. They are equally vital, regarding preprocessing step. The purpose is to decrease the noise

influence for ensuring the correct segmentation which can increase the recognition accuracy rate.

Actually, there exist a lot of methods, including the combination of image processing and artificial

intelligence algorithms, like median filter [2], neighborhood filter, wavelet threshold, universal de-

nies, K-nearest neighbors algorithm, support vector machine and so on. However, how to choose

those candidate ways is the key to perform the right denoising [3][4]. Actually, if we could di-

rectly utilize OCR, segmentation is not an essential step. While after preprocessing, most of our

1Part of this section is reprinted with permission from (1) “A self-adaptive algorithm to defeat text-based
CAPTCHA” by Ye Wang and Mi Lu, 2016. Proceedings of the 2016 IEEE International Conference on Industrial
Technology (ICIT), Page 720-725, c©2016 IEEE. (2) “Combining convolutional neural network and self-adaptive al-
gorithm to defeat synthetic multi-digit text-based CAPTCHA ” by Ye Wang, Yuanjiang Huang, Wu Zheng, Zhi Zhou,
Debin Liu and Mi Lu, 2017. Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT),
Page 980-985, c©2017 IEEE. (3) “An optimized system to solve text-based CAPTCHA” by Ye Wang and Mi Lu, 2018.
arXiv preprint arXiv:1806.07202, c©2018 arXiv.org.

6



Figure 2.1: CAPTCHA applications

Figure 2.2: Online samples in the datasets

CAPTCHAs cannot be recognized by OCR. Thus, we should use the segmentation to divide the

image into characters for better performance. Towards the segmentation, it heavily depends on

the feature of the images. Image intensity histogram and color clustering are the most frequently

used techniques [5]. For some special CAPTCHAs to be further discussed later, we present our

novel adaptive length of characters to implement the segmentation. Recognition is the last step

to get outputs. First of all, Optical Character Recognition (OCR) is the way to convert words in

pictures or other language related in images to the typed text [6]. It is widely used as a form of

data entry from the printed records, whether documents like bank statements, contracts, receipts,

even business or credit cards and so on. Currently, the task to identify machine typed text has
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already been absolutely solved. Many business commercial applications are now in the markets

but the methods failed to CAPTCHAs due to various reasons. Some applications work well on

black-and-white images, some based on free-noise text, while the majority of the CAPTCHAs we

will discuss in this section are against the rules - they are randomly noised, colored and even ro-

tated [3][4]. Moreover, our CAPTCHAs images suffers from inconsistent lighting conditions, and

different fonts, directions, and other distortions. The combination of those complicated problems

can not be easily solved by employing only OCR. The second potential way is Template Matching,

before OCR, this is the most original artificial intelligence method to execute recognition [8]. The

review of TM is considerably straightforward and convenient. At the mean time, for some rotated

CAPTCHAs, it can get kind of higher accuracy rate than OCR. We need to figure out that with

the development of increasingly complex circumstances, including heavily rotation, overlapping

and twisted, CNN (convolutional neural network) overwhelmingly works better than any others in

terms of accuracy and time complexity [9]. Every coin has two sides, so does the CNN. It needs

to be pre-trained with a lot of well prepared samples, which is the essential contribution part of

this CNN [10]. Our CNN conquers this problem with a lot of human being efforts aiming at data

collection. So that, we finally achieve state-of-the-art performance to defeat the CAPTCHAs.

The rest of this section is organized as follows: Section 2.2 describes the background on the

three steps in terms of denoising, segmentation and recognition. Section 2.3 proposes the scheme

of adaptive segmentation and how we construct our convolutional neural network. Section IV

shows the experiment. The section concludes in Section 2.4.

2.2 State-of-the-art CAPTCHA algorithms

CAPTCHAs can be found almost in every websites [26][27][28]. Each type of CAPTCHA

should be solved accordingly because of the unique encoding algorithms. Correspondingly, a lot

of deCAPTCHA algorithms have been proposed for most famous companies such as Google, Mi-

crosoft, and Facebook. A low-cost attack on a Microsoft CAPTCHA was presented for solving

the segmentation resistant task, which achieved a segmentation success rate of higher than 90%

[29]. Moreover, another projection-based segmentation algorithm for breaking MSN and YAHOO
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Figure 2.3: CAPTCHA datasets

Figure 2.4: Basic flow chart to defeat the CAPTCHA

CAPTCHAs proves to be effective, which doubled the corrected segmentation rate over the tra-

ditional method [30]. Besides, an algorithm using ellipse-shaped blobs detection for breaking

Facebook CAPTCHA also presents to be useful [31].

As can be seen, Figure 2.2 presents some examples of text-based CAPTCHAs which will be

discussed later. Figure 2.3 describes the system of our datasets. Figure 2.4 shows the basic flow

chart to defeat the CAPTCHAs. In this section, we will demonstrate the whole process.
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2.2.1 Data processing

There are several possible techniques to denoise the images based on various types of each

other. After our efforts, we find out the appropriate ways according to the different types of exam-

ples. Median filter is effective for nonlinear digital method to filter the noise. Affine transformation

plays an equivalently important role in preprocessing. Actually affine transformation does not nec-

essarily preserve angles between lines or distances between points, though it does preserve ratios

of distances between points lying on a straight line [32]. After an affine transformation, the sets of

parallel lines can still remain parallel, which also preserve points, lines and planes.

2.2.1.1 Thresholding

In an image, the main difficulty of finding the optimal intensity of the whole image between

real image and noise is thresholding, because there are not any relationships between the pixels.

No one can guarantee that the pixels between each others identified by the thresholding process

are contiguous. We can easily include irrelative pixels that aren’t part of the desired region in real

image we actually need, and we can easily miss isolated pixels within the region as well (espe-

cially near the boundaries of the region). These effects get increasingly worse as the type of noise

becomes more and more complicated, simply because it’s more likely that a pixel intensity cannot

represent free-noise image intensity in the region [33]. When we use thresholding method, we

typically have to balance with the tradeoff in terms of losing too much of the region informations

and getting too many background pixels with noise. (Shadows of objects in the image are also a

real pain - not just where they fall across another object but where they mistakenly get included as

part of a dark object on a light background.)

Right here, we utilize the Automated Methods for Finding Thresholds: To set a global threshold

or to adapt a local threshold to an area, we usually look at the histogram to see if we can find two

or more distinct modes, one for the foreground and one for the background [34].
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Figure 2.5: A classic example of affine transformation

2.2.1.2 Median filter

Median filter [2] is effective for nonlinear digital signal to remove noise as well as preserve

edges while removing noises. Noise reduction is a typical pre-processing step to improve the

final results of later processing (for example, edge detection on an image). The main idea of the

median filter is to run through the signal entry by entry, replacing each entry with the median of

neighboring entries. For example, for every window slides, y[1] = Median[2 2 80] = 2.

2.2.1.3 Affine transformation

In geometry, an affine transformation, affine map or an affinity is a function between affine

spaces which preserves points, straight lines and planes. An affine transformation may not neces-

sarily preserve angles between lines or distances between points, though it does preserve ratios of

distances between points lying on a straight line [32].

An affine map is made up of two functions: a translation and a linear map. The ordinary vec-

tor algebra represents linear maps by matrix multiplication, and represents translations by vector

addition. If the linear map is expressed as a multiplication by a matrix A and the translation as the

addition of a vector~b, an affine map f acting on a vector ~x can be represented as

~y = f(~x) = A~x+~b (2.1)
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In Figure 2.5, we can easily understand the effect of affine transformation. In short, we need to

retain the ratio among graphics while the angles cannot be guaranteed.

2.2.2 Segmentation

Segmentation is quite important, which can heavily influence the performance. The most com-

mon way for analyzing segmentation is to divide the CAPTCHAs’ image into multiple single parts

[5][14]. Segmentation is used to detect the examples of CAPTCHAs’ boundaries like lines or

curves, with consideration of the rotation, noise and even twisted characters.

Histogram-based and K-means clustering are two effective methods in segmentation. Histogram-

based is to count the quantity of pixels in each row or column in grey level. The basic algorithm

would be illustrated as y0, y1, ..... yn, where yi is the number of pixels in the image with gray-level

i, and n is the maximum gray-level attained. Imagine that if the distance in histogram between the

characters is very far, it would be easy to separate the characters [35]. While K-means clustering is

another method for segmentation, segmentation is a very dependent method since the CAPTCHAs

vary considerably. So far, there aren’t any useful algorithms to segment the affixed, bended, even

twisted characters. There are several generations of K-means methods. Following is the basic

pseudocode we would need to exploit.

Algorithm 1: K-Means Algorithm
1.Select K points as the initial centroids
2.Repeat

Form K clusters by assigning all points to the closest centroid
Recompute the centroid of each cluster

3.Until The centroids don’t change

In the next section, we will focus on an algorithm which contains a lot of CAPTCHAs by using

adaptive length segmentation.
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2.2.3 Recognition

The last step is to recognize the characters automatically, getting printed message to fulfill the

whole process of defeating the CAPTCHAs. We implement the recognition in three ways, Optical

character recognition (OCR), Template Matching (TM) and Convolutional Neural Network (CNN).

For OCR, we choose an open source software named Tesseract by Google [6] [36]. If the format

is rigid, the recognition accuracy performance would be the best. While not all the CAPTCHAs

can be similar, for some irregular cases, TM is an option, which is a pattern-oriented method to

find the most similar candidate characters. The theory is to slide the template image over the input

image, then get the similarity matrix of each other to obtain the best candidate.

CNN is a more complicated artificial intelligent technique compared with OCR and TM [37][9],

since it needs much more pre-defined data to train the classifier for a system in terms of higher ac-

curacy rate and less time complexity. This is because the more data we can use, the better classifier

we would get. The limitation of CNN is also apparent in terms of the size of datasets, since we

need to manually denoise the image first and then segment them into individual characters, thus

the working procedure is comparably complicated than the others.

2.3 Proposed scheme

2.3.1 Denoise filter

There are many types of CAPTCHA examples and each type of them is not the same as oth-

ers. Generally, we need to first denoise the examples for clear images as we mentioned before.

There are two major denoise methods regarding image processing, one is to carry on in frequency

domain and the other is to process in time domain. In the frequency domain, we usually transfer

the image from time series to frequency series, utilizing a corresponding transformation such as

Fourier Transformation (FT) which can reflect image characteristics to denoise the image. In FT

spectrum, the noise always exists around high frequency areas while the image entity itself exists in

low frequency areas. So some particular low pass filters can be adopted to eliminate the noise and

to retain the filtered real image. Normally, the filters are divided into linear and non-linear one for
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denoising. Actually, linear filters such as mean filter and gaussian filter can be considered as a re-

sult of raw data and the filters in arithmetic computations like addition, subtraction, multiplication

and division. Due to the limitation of arithmetic computation in linear filters, the transformation

function is determinate and unique.

In the time domain, compared with the linear filter, the process of non-linear filtering can be

viewed as passing raw data though specific filters such as minimum filter, maximum filter and

median filter. As to the implementation, nonlinear filters act like to slide a window to make the

decision about minimum, maximum or median value within the window frame. Unlike linear

filters, this operation is nondeterminate because of the logic relationship in window sliding. What’s

more, compared with linear filters, the function of nonlinear filters is not limited to protecting the

margins but also removing the noise much better. The speed in non-linear filters would be slower

than that in linear filters, because we have to slide the window over the whole image. Median filter

is a typical nonlinear technique. The basic idea is to get the median value of a pixel in grey level

within the window. Since the noise pixels are always higher or lower than the image entity itself,

this method is significantly effective in denoising and margin protection.

2.3.2 Adaptive algorithm

There are various kinds of similar notations defeating CAPTCHAs. As an example, we in-

vested the popular query involving the following triplet structure,< first operand, operator, second

operand>.

One may need to know that the length of operator is variant here. Also, the operands can be

of different fonts, like traditional Chinese characters, simplified Chinese characters and Arabic

numbers. Furthermore, the font of the operator is orthogonal to that of the operands. There are

three kinds of operators, symbol operator, single character and double characters operators, each

of them also includes several types of operations. The ones given in Figure 2.6 show the challenge

involving Chinese characters. For example, in the first row, it asked you to answer the question:9+

5 =?. The first operand and second operand are traditional Chinese characters, and the operator is

made up of two characters. While in the third row, there is a symbol operator with Arabic number
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Traditional Chinese operands with double
Chinese characters operator

Traditional Chinese operands with
symbolic operator

Arabic numeric operands with symbolic
operator

Simplified Chinese operands with double
Chinese characters operator

Traditional Chinese operands with single
Chinese character operator

Arabic numeric operands with double
Chinese characters operator

Simplified Chinese operands with
symbolic operator

Arabic numeric operands with single
Chinese character operator

Figure 2.6: The example of adaptive segmentation

operands which means 9− 5 =?.

Let’s start with the operand first. The first operand can be made up with any digits, so can

the second operand. We assume that the numbers of the first operands, the second operands and

the operator are M, N and O respectively. Since they are pairwise orthogonal, the total number of

combinations of those notations can be up to M ∗N ∗O which is very massive. Fortunately, in our

cases, some rules can be applied to reduce the number of possible combinations.

For example, given one operand with values zero to nine to represent: there are three fonts

like traditional Chinese characters, simplified Chinese characters and Arabic numbers, resulting in

10 ∗ 3 = 30 potential choices in total.

Moreover, the operators representing addition, subtraction, multiplication or division can be

of three fonts, symbolic operators, single Chinese characters and double Chinese characters. The

total number of operator candidates is 4 + 4 + 4 = 12. With the two operands and one operator

taken into consideration, the total number of combinations is 30 ∗ 30 ∗ 12 = 10800.

As the last but not the least important issue, Table 2.1 shows all the possible combinations in

our cases. S represents simplified Chinese, T is the traditional Chinese, and D stands for Arabic
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A=simplified/traditional Chinese
width=20

B=operator width= 9
C=digit width=11

INPUT

Adaptive
Segmentation

Otherwise

Second character <14

First character<14

Third character<14

D O D

Second character<14

Otherwise

Fourth character<14

D N DD NN D
T O T
S O S

Otherwise

Fourth character = 等

Otherwise

T N T T NN T
S NN S

Figure 2.7: The detailed flow chart of adaptive segmentation
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numbers. Regarding the operator, we use O for symbolic operator, and N and NN for the single

and double Chinese characters symbols respectively. For all the possible combinations, please

refer to Table 2.1. We divide all the combinations into three types based on the different fonts of

operands. The simplified Chinese operands belong to Type 1, traditional Chinese operands belong

to Type 2 and Arabic numeric operands belong to Type 3 respectively.

Since the operators needs be paired with different kinds of operands, the combinations of

operand and operator examples are enumerated in Table 2.1. Nine groups among the operands

and operators in total are shown in Table 2.1. For example, single character operator can be paired

with traditional Chinese operands, simplified Chinese operands and Arabic numbers. One thing

needs to be mentioned here. According to the shortage of our datasets, one type of notation is

missing, SNS in the second row of Type 1. So we have, actually, only eight kinds of notations as

shown in Figure 2.6.

As we introduced before, the segmentation for each type of CAPTCHAs is a very critical

operation. Since there are eight types of notations, we have to try eight times to identify which

font type it belongs to if using the traditional sequential method. We propose our algorithm to

identify the font type, with the higher speedup and accuracy.

After preprocessing, we cannot directly employ the histogram-based method to apply segmen-

tation because of the characters’ rotation. Besides, the neighboring characters will affect close-by

characters of each others. Therefore we have to use Affine Transformation to turn the rotated

Type 1 Type 2 Type 3
S O S T O T D O D
S N S T N T D N D
S NN S T NN T D NN D

Table 2.1: All possible cases
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characters into vertical. Following is the representation:

 x′

y′

 =

 ax+ by

dx+ ey

 =

 a b

d e


 x

y

 (2.2)

One attractive feature of this matrix representation is that we can use it to factor a complex

transformation into a set of simpler transformations. Because the rotation transformation is uti-

lized, the following rotation matrix is essential:

 cos θ − sin θ

sin θ cos θ

, where θ is an angle of coun-

terclockwise rotation around the origin.

Whenever loading an image we first perform the regular affine transformation to make it ver-

tical. The good thing in our application is that the rotated angels of the characters in CAPTCHA

examples are fixed, so our task would be much simpler. After the optimization of the overall pro-

cedure, the whole process is exhibited in Figure 2.8. We just need to check the first four characters,

because the citation we deal with is the operation of the operands. We need the first operand, the

operator and the second operand where the operator includes one or two characters. Then we need

to identify those operators, checking the first four characters are sufficient.

Once the notation comes into our system, we check the first character. If it is an Arabic number,

we know that the notation belongs to Type 3 in Table 2.1, possibly in <D - -> form. Next we goto

the third character where the second operand is possibly located. If that character is a D, we are

sure that <D O D> or <D N D> is the form of the notation. We can then go back to check the

second character to confirm whether it is an operator represented in N or O. If the third character

is not an Arabic number, indicated is that it is not the second operand, because the second and

first operand should be of the same type. The option left is that the operator between the two

operands is of NN form. In that case, the second operand must be located in the position of the

fourth character. Since the first and the second operands must be of the same type as we mentioned

before, the fourth character will be an Arabic number, then the notation is represented in <D NN

D> form.
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If the first character is not an Arabic number, the notation could belong to Type 1 or Type 2

listed in Table 2.1 in <S - S> or <T - T> form. Next we go to the second character to verify

whether it is a symbolic operator or not. If it is, the notation is then represented in <S O S>

or <T O T> form. If the second character is not symbolic, then it can be a Chinese character,

representing the operator by itself. The other case is that the operator is represented by double

Chinese characters. Let’s move to the third character to check. For the former case, the third

character is where the second operand stands, and the second operand should have the same style

as the first one. So we get <S N S> or <T N T> as listed in Table 2.1. For the latter case, operator

being double Chinese characters case, NN will extend to the third character position. The simplest

way is to directly check the fourth character, to see whether it is equal to one particular ideograph

or not.

We take the third row in Figure 2.6 as an example, the meaning of which is 9 − 5 =?. The

first character is a digit such as D, then we move to check the third one. The third character is a

digit like the first operand. Then as the last examination, the second character is to be verified to

confirm the operator type. It turns out that the operator is a symbolic operator, so we conclude that

the notation type is <D O D>.

We look at another example next, from the 6th row of Figure 2.6. We check the first character

and find that it is a digit. We move to the third one and find that it is not a digit but a Chinese

character. Quickly we understand that the operator is a double-character operator and the notation

is in <D NN D> form. Actually we don’t have to examine the fourth character because it must be

the same type of operand as the first one.

In Figure 2.6, we check a character by its width instead of its content, which is much faster and

more reliable. We found that the width of both the simplified Chinese characters and the traditional

Chinese characters are 20. Besides, the width of a symbolic operator is 9 and that of a digit is 11.

We set the threshold of the width as 14.

Figure 2.9 shows the basic flow chart of segmentation which is a basic sequential test procedure.

Figure 2.9 illustrates the traditional serialized method. If we use the serialized segmentation shown
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Figure 2.8: Traditional flow chart of segmentation

in Figure 2.9, the total time to identify which CAPTCHA type regarding the input image belongs

to in Figure 2.6 is: T1 = 8 ∗ 4 ∗ t, where t is the time to check a single character. Regarding our

algorithm, as Figure 2.7 illustrated, the whole procedure is optimized into at most three steps, thus

the time to identify the correct CAPTCHA type is T2 = 3 ∗ t. The speedup between ours and

serialized segmentation is:

T1/T2 = 10.67

We denote the single character recognition rate as r. In the serialized segmentation, the suc-

cessive recognition rate of the whole eight types R1 would be:

R1 = r4∗8

In our algorithm, the successive recognition rate R2 is:

R2 = r3∗8

Ideally, compared with the traditional algorithm, the improvement we obtained is

R1/R2 = r

One can reference to Section 2.4, Experiment, in the later part of this section to find the im-

provement of the single character recognition rate of our algorithm over the traditional algorithm,
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1 2 8

Figure 2.9: Sequentially defeating the CAPTCHA

which is roughly from 75% to 99% depending on the types of CAPTCHA.

2.3.3 Convolutional neural network construction

2.3.3.1 The Architecture

The CNN architecture is shown in Figure 2.10, which is adapted with one of the most classic

LeNet-5 [38][39]. In Figure 2.10, the top is our image input layer and the image size is 32 × 32.

The net contains six layers: the first four layers are convolutional layers and the remaining two

are fully connected layers. The general strategy of CNN is to extract simple features at a higher

resolution by the first convolutional layer, and then convert the features in higher resolution into

more complex features at a coarser resolution [40]. To obtain the coarser resolution, the most

frequently used method is to sub-sample a layer by a factor of two, which can be utilized for the

size of convolutional kernel as shown in the second layer in Figure 2.10. Regarding the kernel’s

width, the criteria is to have enough overlap to keep useful information but not too much redundant

computation. Thus we choose five by five as the kernel size because three by three is too small

with only one unit overlapping, and seven by seven is too big with 5 units overlapping. After

the first convolutional layer extracting features, we found that if the kernel size is 5. The overall

performance is better than the case with a kernel size less than 5, which means that increasing the

kernel size cannot improve the performance significantly. Then we subsample those features to

decease the data size, prevent over-fitting as well as preserve the important information such as

margins. Similarly we repeat the first and second layer to construct the third and fourth layer, so
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that we can carry enough information to the classification layer. Finally we add a trainable classifier

to the extractor which is of two fully connected layers. The output of the last fully connected layers

is fed to a 82-way (10 for digits 0-9, 26 for lower case letters a-z and 26 for capital letters A-Z,

10 for simplified Chinese digits and 10 for traditional Chinese digits) softmax which produces a

distribution over 82 class labels.

2.3.3.2 Pooling layer

Pooling layers in CNNs summarize the outputs of neighboring groups of neurons in the same

kernel map. Traditionally, the neighborhoods summarized by adjacent pooling units do not overlap

[41]. A pooling layer is to construct a grid of pooling units with pixels s spaced apart, each

summarizing a neighborhood of size z × z centered at the location of the pooling unit. Regarding

the pooling size, typical values are 2 × 2 or no max-pooling. Very large input images may warrant

4 × 4 pooling in the lower-layers. However, such a large 4 × 4 pooling layer will reduce the

dimension of the signal by a factor of 16, and may cause throwing away too much information

[37][9].

2.3.3.3 Hyper-parameters

CNNs’ parameters are especially tricky to train, as it contains more hyper-parameters than a

standard MLP (Multilayer perceptron). While the general rules of thumb for learning rates and

regularization constants still apply, the following should be kept in mind when optimizing CNNs

[41]. Since the feature map size decreases as the depth of layers increasing, layers near the input

layer will tend to have fewer filters, while layers higher up can have much more filters. In fact,

to equalize computations at each layer, the product of the number of features and the number of

pixel positions is typically picked to be nearly constant across layers. To preserve the information

about the input, it is required to keep the total number of activations (number of feature maps times

number of pixel positions) to be non-decreasing from one layer to the next. The number of feature

maps directly controls the capacity, while the features are dependant on the number of available

examples and the complexity of the task [42][9].
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Figure 2.10: Neural network structure
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Figure 2.11: Rotate the image to diversify training data

2.3.3.4 Datasets

Our datasets are mentioned in Figure 2.2, which come from three major sources to provide

CAPTCHA examples. The challenge is the insufficient size of datasets. However, with the increase

of training data size, the performance of accuracy will correspondingly improve. We propose

a method to gain data with larger size as shown in Figure 2.11. Through careful observation,

we found that the majority of rotation angels in examples vary from −50◦ to +50◦. However,

our manually training samples are insufficient, which means that training samples cannot cover

the comprehensively rotated CAPTCHA examples. Thus we rotate our data every 5◦ to get the

complete samples.

2.4 Summary

More than 7,000 testing samples were selected in our experiment work. The whole process

of defeating the CAPTCHA is illustrated in Figure 2.12 including denoising, segmentation and

recognition. We present the result of accuracy rate by our methods in Figure 2.13. Overall, CNN

is much more robust than OCR/TM. However, the way to obtain the training data is really painful
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because we have to manually decompose the examples into single characters and label them. Be-

sides, we rotate the training data from −50◦ to 50◦ in every 5◦ for enlarging the data size ten times

more than before. Rotating the training sample also brings more comprehensively circumstances

for potential testing data, which proved to be more useful. This is because our raw data size is lim-

ited and cannot cover the whole rotated cases. However, we can fulfill the rotation completeness

by our method.

Shown in Figure 2.13 are the results for comparison. It can be seen that the recognition rate

for the particularly rotated CAPTCHAs such as the 9th and 10th row are much lower than the

others. The best rotated recognition rate is 71.6% in the sixth row in Figure 2.13, and the lowest

accuracy rate of rotated fonts is as low as 33%. With the increase of rotated angle, the accuracy

rate is correspondingly decreasing. Therefore, the rotation hinders the accuracy of segmentation

and recognition. However, CNN can always perform robustly than TM/OCR especially in rotation

types. The average performance in CNN is approximately 10% better than in TM/OCR.

In fact, in some simple cases like first-row in Figure 2.13, both TM/OCR and CNN perform

similarly regarding the accuracy rate. With the rotated angles increasing, more advantages appear

on CNN than on TM/OCR. Figure 2.14 shows the accuracy rate much clearer.

Our CAPTCHA examples are always constructed by four characters. If and only if all of them

have been correctly recognized, we consider it as a successful defeat as we introduced before.

More precisely, Figure 2.15 shows the single character recognition accuracy rate. As we can see,

the lowest accuracy rate is 75.96% in TM/OCR and 85.72% in CNN. The highest accuracy rate

in Figure 2.15 is 98.98% in TM/OCR and 99.65% in CNN, which indicates that our method has

achieved the state-of-the-art performance.
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Original	  CAPTCHA	   Denoising	   Segmentation	   Output	  

Figure 2.12: The full process of defeating the CAPTCHA
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Figure 2.13: The accuracy rate for each CAPTCHA

1 2 3 4 5 6 7 8 9 10 11 
OCR/TM 96.00% 88.00% 81.30% 80.30% 78.30% 71.60% 64% 55.30% 54.00% 35.00% 33.30% 
CNN 98.60% 96.30% 91.20% 86.70% 85% 87.60% 66.60% 64% 65% 55% 54% 
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Figure 2.14: Overall CAPTCHA accuracy rate
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1 2 3 4 5 6 7 8 9 10 11 
CNN 99.65% 99.06% 97.72% 96.49% 96.02% 96.74% 90.34% 89.44% 89.79% 86.23% 85.72% 
OCR/TM 98.98% 96.85% 94.96% 94.66% 94.07% 91.99% 89.44% 86.23% 85.72% 76.92% 75.96% 

75.00% 

80.00% 

85.00% 

90.00% 

95.00% 

100.00% 

Figure 2.15: Accuracy rate of individual character
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3. COMPARISONS AND SELECTIONS OF FEATURES AND CLASSIFIERS FOR SHORT

TEXT CLASSIFICATION 1

3.1 Task motivation

After obtaining the data as we introduced in Section 2, in this section, we will illustrate the task

we proposed. Currently, there isn’t a good quality task about Chinese short-term text classification

unlike English text classification task such as AG_NEWS and IMDB. Therefore, we propose a

Chinese short-term text classification task and we provide a baseline performance for evaluation.

Short text classification is unlike traditional long text documents, due to its own characteristics

in terms of shortness and conciseness. The objective of this section is to compare existing non-AI

methods for short-text classification. Each short-term text is constructed by less than 20 words,

and we manually labeled it into two class of tags, there are eight types of labels in the big class and

fifty-nine types of labels in the small class. The total number of short text files is about 400,000,

and the number of labels’ short-term text is equal. In other words, we can feed about 50,000 short

text files to train each label in the big class, and around 6,700 files to train each label in the small

class. There exist some challenges specific to short text classification. Shortness is a synonym for

simplicity, which can confuse when we try to classify 59 labels with files of no more than 20 words.

Besides, we have more than 400,000 short text files, which amount to approximately 5,349,348

words and would certainly create a lot of sparsities in the vectorization process. Sparsity would

in turn lead to several problems such as data redundancy, sparsity matrix, etc. We will introduce

them in the next few sections.

The rest of this section is organized as follows: Section 3.3.2 presents a high-level description

of the approach in terms of data processing and classifier training. Section 3.3.3 introduces the

system implementing our task and how we handle the challenges. Section 3.3.4 discusses the

experiment results, and the section concludes with Section 3.3.5.

1Reprinted with permission from “Comparisons and selections of features and classifiers for short text classifica-
tion” byYe Wang, Zhi Zhou, Shan Jin, Debin Liu and Mi Lu, 2017. Proceedings of the 2017 International Conference
on Artificial Intelligence Applications and Technologies (AIAAT 2017), Page 012-018, c©2017 IOP PUBLISHING.
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Figure 3.1: Announcement examples in dataset

RawData Data
Processing

Classifier
Training CrossValidation

Figure 3.2: Basic flow chart

3.2 General approach description

As can be seen, Figure 3.1 lists some examples of our data samples which will be used later.

Fig.2 shows the basic flow chart which can be regarded as top level description of our approach.

In this section, we will discuss in details about the entire process.

3.2.1 Data processing

There are many different data processing techniques. We should be aware of their characteris-

tics and choose the appropriate method.
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Figure 3.3: Processing the data

3.2.1.1 Segmentation

According to [43], segmentation is becoming increasingly more important in Chinese, Japanese

and many other Asian language processing tasks. Unlike English, Chinese words are not delimited

by whitespace characters, so word segmentation is a fundamental first step in processing these

languages. Several algorithms have been proposed for Chinese word segmentation [44], and the

study in automatic Chinese word segmentation has made significant progresses in recent years. For

the purpose of our study, we just chose the currently most popular segmentation method which is

based on prefix-trie and the Viterbi algorithm.

3.2.1.2 Feature selection

Figure 3.2 shows the data processing flow chart. Once we get the segmented words, we can

convert them into a vector matrix for later training. This process is called word embedding, or

distributional models. The reason for constructing such a vector matrix is that we can utilize the

term-context matrix to represent the short text, which is much simpler for training purposes. There

are many ways to construct the vectors, such as sparse vectors and dense vectors. Sparse vectors
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Figure 3.4: Two models of word2vec

have most elements equal to zero and lengths of about 20,000 to 50,000, which will be very time-

consuming computationally, while dense vectors are constructed in 100-500 dimensions, so are

much faster than sparse vectors when used in training and classifications. Dense vectors may also

better capture synonymies than sparse vectors [45]. Moreover, we employed two methods for the

sparse vector construction, i.e. counter vectorizer and term frequency-inverse document frequency

(tf-idf). Counter vectorizer is also called one-hot coding, which is applied to categorical features.

Categorical features are "attribute-value" pairs where the value is restricted to a list of discrete

possibilities without ordering. Counter vectorizer is like a raw vectorizer, while tf-idf is more

refined, since it is a numerical statistic that is intended to reflect how important a word is to the short

text in our collections. It is often used as a weighted factor in applications. The key characteristic

of tf-idf is that it increases proportionally with the frequency of a word appearing in the document,

but is offset by the frequency of the word in the corpus, which helps to adjust for the fact that some

words appear more frequently in general [46].

Compared with sparse vectors, dense vectors are more popular because they are shorter and
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Figure 3.5: Paragraph2vec model

yet more meaningful. There are three popular methods for constructing dense vectors, i.e. singular

value decomposition, neural language models and Brown clustering. Here we would like to focus

on the neural language model, which is the state-of-the-art method for dense vector construction

[45][47] . There are two type of neural language models, Skip-gram and continuous bag of words

(CBOW), which are also collectively called word2vec models, as shown in Figure 3.4. In short,

the CBOW architecture predicts the current word based on the context while skip-gram predicts

surrounding words given the current word. One advantage of dense vectors is that we can get a

short and yet meaningful vector to represent each word. Also, it has the superior characteristic

that the matrix of similar words also has a closer distance, which is helpful to constructing the the-

saurus. Moreover, [48] enhanced his work of word embedding and proposed a novel model called

paragraph2vec (or doc2vec) as shown in Figure 3.5. This method trains the entire document as a

vector matrix, while for word2vec, the basic idea is to predict the word. Similar to word2vec, in the

training of the document vector we need to go through the whole text. We have also implemented

doc2vec in this section and will compare it with other feature selection methods in the results and

analyses part.

3.2.2 Different types of classifiers

Once the feature is selected, the next step is to train the classifier. Classification is one of the

most important steps in all machine learning tasks. Classification is the problem of identifying to
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which set or category a new observation belongs, on the basis of a training set of data containing

observations whose class is known. Since we already have labeled all the instances, we only need to

choose supervised learning classifiers. Among the various learning algorithms, we cannot simply

decide the best one before experimenting and comparing some of them. Hence we selected several

popular classifiers, including naive Bayes (NB), decision tree (DT), k-nearest neighbor (KNN),

logistic regression (LR) and support vector classifier (SVC), and applied them with both the big

and small classes of labels. Each classifier has its own advantages and disadvantages.

3.2.2.1 Naive bayes

Naive Bayes (NB) methods build upon the famous Bayes’ theorem with the “naive” assump-

tion of independence between each pair of features. The NB method contains a very low time

complexity, and its assumption usually works quite well in some real-world situations such as

spam filtering and document classification. As a consequence of the decoupling of the conditional

probability distributions of different features, the probability distribution of each feature can be

independently estimated as a one dimensional distribution, which in turn helps solve problems

stemming from the curse of dimensionality. In this study we compared both Gaussian Naive Bayes

(GNB) and Multinomial Naive Bayes (MNB) classifiers. When dealing with dense vectors, we

treat those data as continuous data, and when dealing with continuous data, a typical assumption is

that the continuous values associated with each class are distributed according to a Gaussian dis-

tribution. In a multinomial event model, samples (feature vectors) represent the frequencies with

which certain events have been generated by a multinomial (p1, ..., pn) where pi is the probability

that event i occurs ( or k such multinomials occur in the multi-class case).

3.2.2.2 Decision tree

Decision tree learning is a useful machine learning method commonly used in data mining.

The goal is to create a model that predicts the value of a target variable based on several input

variables. Actually there are basically two types of decision trees: classification and regression

trees. In classification tree analysis the predicted outcome is the class to which the data belongs,
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while in regression tree analysis the predicted outcome can be considered a real number. Decision

tree is known to be NP-complete under several aspects of optimality and even for simple concepts.

Besides, it is very easy to construct an overfitting tree, thus appropriate pruning is necessary to

avoid over-complexity.

3.2.2.3 Logistic regression

Multinomial logistic regression is known by a variety of other names, including polytomous

LR, multi-class LR, softmax regression, multinomial logit, maximum entropy (MaxEnt) classifier,

and conditional maximum entropy model. In fact, multinomial logistic regression is a classification

method that generalizes logistic regression to multiple-class problems. In this model, the probabil-

ities describing the possible outcomes of a single trial are modeled using a logistic function.

3.2.2.4 Support vector machine

Support Vector Machine (SVM) is widely used among classification, regression and even out-

lier detection. The advantage of SVM is obvious: First, it is very effective not only in high dimen-

sional spaces, but also in cases if the number of dimensions is greater than the number of samples.

Second, it is considerably memory efficient due to its own advantage of kernel mapping to high-

dimensional feature spaces. Since SVM is a double-edged sword, the disadvantage of SVM is that

if the number of feature is much greater than the number of samples, the method is likely to give

poor performance. A linear support vector classifier (SVC) is used in this section.

3.3 Specific system implementations

The whole structure of our system is divided into four parts as we illustrated before: Getting

raw data, Processing data, training classifier and cross validation. We implemented it by Python2.7

with some open source APIs like Scikit-learn [49] and Gensim [46].

3.4 Summary

Several classifiers have been trained to classify Chinese short text files, including GNB, MNB,

SVC, LR, KNN and DT. However, we will only present the experiment results of MNB, SVC and
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Figure 3.6: Result

LR in this section, since they are much better than those of the other classifiers.

Figure 3.6 to Figure 3.10 show the 5-fold cross-validation results for each of the three classi-

fiers. In the cross-validation tests We have used four features, i.e. word2vec, doc2vec, tf-idf and

counter vectorizers. The performances of the last two are similar so we treat them indifferently as

a single tf-idf/counter feature. In addition, we have filtered stop words in each experiment, which

also slightly improves the accuracy.

From the tables we can see that in all cases, the tf-idf/counter feature has the highest accuracy,

while word2vec next, and doc2vec the lowest. The feature doc2vec produces the worst result in

any circumstance, even much worse than plain guessing, which is different from the long text

classification results [48]. We also get different results for the big and small classes of labels. The

small class generally results in higher accuracy than the big class, which is counterintuitive and

needs further investigation.

A comparison of different classifiers would show that with the tf-idf/counters feature, LR and

SVC are much better than MNB, and the results of the two are comparable with each other. This

may not be the case when other features are used. While a high accuracy is expected for the
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Figure 3.7: 1/2 datasets of overall

SVC because of the use of kernel function, it is a little surprising that the overall highest accuracy

84.22% is associated with LR. Additionally we have tried to change the size of the dataset, and it

seems that increasing the size of the dataset can raise the accuracy, but this impact is not significant.
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Figure 3.8: 1/2 datasets of word2vec

Figure 3.9: 1/2 datasets of doc2vec
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Figure 3.10: 1/2 datasets of tf-idf/counter
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4. ATTENTION-AUGMENTATION WITH MULTI-RESIDUAL IN BIDIRECTIONAL

LSTM1

4.1 Background

Unlike image data, all the sequential data contains a time series characteristic. Recurrent neu-

ral networks (RNNs) have been proven to be efficient in processing sequential data. However, the

traditional RNNs have suffered from the gradient diminishing problem until the advent of Long

Short-Term Memory (LSTM). However, LSTM is weak in capturaing long-time dependency in

sequential data due to the inadequacy of memory capacity in LSTM cells. To address this chal-

lenge, we propose an Attention-augmentation Bidirectional Multi-residual Recurrent Neural Net-

work (ABMRNN) to overcome the deficiency. We propose an algorithm which integrates both

past and future information at every time step with omniscient attention model. The multi-residual

mechanism has also been leveraged in the proposed model targeting the pattern of the relationship

between current time step and further distant time steps instead of only one previous time step.

The results of experiments show that our model outperforms the traditional statistical classifiers

and other existing RNN architectures.

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are the two

primary architectures in neural networks. RNNs are often applied to sequential data such as natu-

ral language processing and speech processing [11, 12], while CNNs are more employed in image

processing areas [13, 7, 14]. Among the existing RNN models, LSTM [15] is one of the most pop-

ular approaches since it initially solves gradient vanishing and exploding problems during RNN

training by introducing forget gates and memory cells. After the literature review, we found that

numerous RNN variations have been proposed to achieve the state-of-the-art performance in differ-

ent tasks, where LSTM is the cornerstone of those structures. However, due to the limited memory

1Reprinted with permission from “An Attention-aware Bidirectional Multi-residual Recurrent Neural Network
(Abmrnn): A Study about Better Short-term Text Classification ” by Ye Wang, Han Wang, Xinxiang Zhang, Theodora
Chaspari, Yoonsuck Choe, Mi Lu, 2019. Proceedings of the 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Page 3582-3586 , c©2019 IEEE.
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cell in LSTM, when a time sequence is long, the LSTM performance is heavily influenced.

With the increase of the depth of layers and the length of the sequences, residual networks have

proved their advantages in both CNNs [16, 17] and RNNs [18]. Residual networks connect current

and distant previous time steps for optimizing the layer information. [16] and [19] propose similar

residual ideas to randomly connect one previous distant time step to current time step, where the

problem of long time dependency is solved partially. Therefore, the residual networks motivate us

to combine the residual network with LSTM, where the information in current time step has been

updated dynamically based on the attained correlation between previous time steps and current

time step.

To better attain the correlation between current time step and previous time steps, the attention

model is widely applied in image processing, speech processing and natural language processing.

The objective of the attention model is to ultimately optimize the training procedure when the

amount of attention is limited. [20] initially leverages the attention model from image processing

to natural language processing. [21] proposes a model as a decoder network between previous

states and current state. [22] simplifies the model as an attention-based weighted pooling RNN to

acquire utterance representation in speech processing. Since the attention is limited, the way to

effectively distribute those attention becomes considerably important. Inspired by the attention-

based approaches, we leverage the attention model [23] to strengthen the correlation between the

current state and both previous and future distant states. As for [23], they focus on the relationship

between current time step with previous information. Since the objective is to allocate the attention

properly, we regard the past and the future time steps as the same important time steps, which

means we integrate both the previous and the future time steps to refine the information of current

time step instead of only relying on previous time steps.

Therefore, to address the aforementioned challenges in long time dependency and to optimize

the text correlations, this section develops an Attention-augmentation Bidirectional Multi-residual

Recurrent Neural Network (ABMRNN). The proposed ABMRNN achieves the state-of-the-art

performance among several existing sequential classification tasks. The main contributions of this
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work are summarized as following:

• Our algorithm overcomes the deficiency of LSTM in weak modeling the long-time depen-

dency, so we can handle much longer sequential data and obtain higher accuracy rate in

longer sequential tasks. In this algorithm, we design a novel bi-directional layer to dynami-

cally acquire and allocate attention from both previous and future time steps. Bi-directional

layers help us focus not only on the past but also on the future, so that we can attain the

better correlation between current steps and distant time steps (In STCT, after incorporating

the bi-direction layer, the accuracy has improved from 93.01% to 94.10%).

• To better supplement the acquired attention from bi-directional layer, we also leverage the

multi-residual mechanism to the recurrent networks. Compared with traditional residual net-

works, the advantages of ours are more obvious because the proposed multi-residual mecha-

nism is more rational than previous residual networks in sequence learning as the traditional

residual networks connect current time step with only one randomly previous time step.

• The proposed model contains fewer parameters than current popular models such as [16] and

[24], which indicates that the architecture of the proposed model is less complicated than

those popular models. The proposed model also achieves the state-of-the-art performance in

sequence learning of STCT from 93.01% to 96.50%.

Three major directions have been studied in recent years towards the structure exploration for

sequence learning, including capturing better feature representation, optimizing cell memory us-

age and improving the capacity of long time dependency. First, an increasing number of layers and

numerous embedding techniques are employed for feature extraction [50][47][51]. However, with

the increase of layers, the computational complexity becomes critical and unaffordable in current

neural networks. Second, a wide range of variations towards the RNN interior cell structure units

such as LSTM and GRU [52] are proposed. Nonetheless, those RNN variations are confronted

with the same imperfection due to the limited cell memory. Third, the attention-based approaches
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[20][53] are proposed to improve the capacity of long time dependency in RNN variations. Nev-

ertheless, partial information has been obtained because the proposed attention models only focus

on previous states.

Therefore, the contribution of our work integrates the advantages of residual networks and

attention-augmentation mechanism for the tasks of interest. Unlike the popular trend of combining

deeper and wider neural networks [54], we propose a novel RNN variation with forward and back-

ward layers. The proposed model attains the text information from both past and future time steps

based on the limited memory cell of LSTM and improves the capacity of long time dependency.

4.2 Recurrent neural networks preliminaries

The basic LSTM architecture of solving the problem of gradient diminishing in traditional

RNNs is described and the illustrated equations are given in Section 4.3.1. Besides, the fundamen-

tal residual mechanism employed in recurrent neural networks is presented in Section 4.3.2.

4.2.1 Long short-term memory (LSTM)

The traditional RNNs have suffered from gradient diminishing problem until the advent of

LSTM. The appearance of LSTM is meaningful because the authors introduced the gates’ mech-

anism by adding nonlinear activation functions. Activation functions squash the values of these

vectors between 0 and 1. Figure 4.1 shows the structure of LSTM cell, where Equations (4.1-4.6)

follows the data flow: The input gate activation vector it (forget gate activation vector ft, output

gate activation vector ot respectively) is obtained by the sigmoid function of the updated current

input vector xt and updated hidden state vector ht−1. The update of xt is by a weight matrix U

converting the input to the current hidden layer in the input gate (forget gate, output gate respec-

tively). The update of ht−1 is through matrix W i, representing a recurrent connection between the

previous hidden layer and the current layer in the input gate (forget gate, output gate respectively).

it = σ
(
xtU

i + ht−1W
i
)

(4.1)

ft = σ
(
xtU

f + ht−1W
f
)

(4.2)
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Figure 4.1: LSTM cell

ot = σ
(
xtU

o + ht−1W
o
)

(4.3)

In the forget gate, by the element-wise multiplication activation function with input and hidden

state vectors, we can control the amount of information from the previous state. Similarly, in the

output gate, we can control the amount of information between internal state and external network.

C̃t = tanh
(
xtU

c + ht−1W
c
)

(4.4)

Ct = σ
(
ft ∗ Ct−1 + it ∗ C̃t

)
(4.5)

ht = tanh(Ct) ∗ ot (4.6)

For cell state vector Ct, C̃t is the candidate value to update it. C̃t can be obtained by the

tanh function of updated xt and update ht, the output vector of the LSTM unit in Equation 4.6.

Ct is obtained by the sigmoid function of two Hadamard products (element-wise products), the

Hadamard product of ft and Ct−1, and that of it and C̃t.

4.2.2 Recurrent residual network

LSTM solves gradient vanishing and exploding problems. However, the dependency between

the past and the current information is neglected because current time step only depends on pre-

vious time step if the time sequence is too long. To enhance such a distant relationship, residual
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recurrent neural networks have been proposed [18][19].

Figure 4.2 shows the general structure of a residual recurrent network. Residual recurrent

network introduces a direct shortcut between different time steps to strengthen the connection.
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Figure 4.2: Residual recurrent network

Regarding the implementation of the basic residual network, for each current time step t, we

consider both the previous time step t − 1 and the additional specific previous time step (e.g. we

assume the time step to be t0 in Figure 4.2).

Cnew
t−1 = Cold

t−1 + α ∗ C0 (4.7)

hnewt−1 = holdt−1 + α ∗ h0 (4.8)

where α represents the specific scalar weight of how much information is imported from previous

time step to current time step. Recurrent residual networks leverage the convolutional residual

network [16] and improve the performance in particular sequential tasks.

4.3 Proposed scheme

In this section, we propose an Attention-augmentation Bidrectional Multi-residual Recurrent

Neural Network (ABMRNN). The algorithm will be illustrated and scheme described in details.

First, a modified attention model is proposed which can resolve the memory cell limitation in
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LSTM, by the sliding window-based implementation. Also, efforts are made to identify the specific

previous time step such that linking to it is most effective. Instead of randomly connecting to a

previous time step, a multi-residual mechanism is developed to enhance the correlation of current

time step and distant previous time steps. Additionally, a bidirectional multi-residual mechanism is

proposed that can combine both past and future information comprehensively, rather than partially

capturing the previous information only. Moreover, the detailed training procedure of ABMRNN

is made available, and its function further explained.

4.3.1 Attention-augmentation mechanism

The objective of the attention model is to ultimately optimize the training procedure when the

amount of attention is limited. Therefore, the way to effectively distribute those attention becomes

considerably crucial. We illustrate the equations as follows:

WS = Σtn
T=t1(aT × hT ) (4.9)

aT =
exp(W · hT )

Σtn
T=t1exp(W · hT )

(4.10)

In Equation 4.9, we define a Weighted Summation (WS) at current time step T as the whole

attention from previous time steps. hT represents the value in hidden state at time step T . aT is

a scalar value representing the weight at time step T . We compute aT through a softmax form,

and W is a parameter which needs to be learned during training. exp(W × hT ) represents the

potential energy at time step T . Figure 4.3 illustrates one example of the attention model. To

simplify the model, previous six steps are considered. At time step t, we compute the relationship

between ht and previous time steps. The energy height represents the corresponding weight value.

Therefore, we put more attention in specific time steps of which the energy is high. In Figure 4.3,

we acquire the highest attention at t− 3 and the lowest attention at t− 6 when current time step is

t. For every selected time step T , theoretically, we should review all the previous states to obtain

the comprehensive relationship. However, the complexity of such an attention model is too high,

being O(N2) if we compute all the previous states. Due to the limitation of computational power,
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we select the fixed N past states to cover by a sliding window, complexity is hence reduced to

O(N).

Attention Model
t

Energy

�	�	���	���	���	���	���	��

Figure 4.3: Attention model
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Figure 4.4: Multi-residual LSTM with attention Model, unrolling our model along the time axis.
The dashed box indicates the updated state in current time step.

4.3.2 Multi-residual LSTM

Due to the limited memory cell in LSTM, when the time sequence is long, the LSTM per-

formance is heavily impeded. The residual networks introduced in Section 5.3.2 inspire us by

combing residual network and LSTM with attention model. In this way, the information in current
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Figure 4.5: Bidirectional multi-residual LSTM with attention model

time step has been updated reasonably because we obtain the correlation between previous time

steps and current time step.

[16] initially proposes a residual learning framework. They attempt to build a block as:

y = F(x, {Wi}) + x (4.11)

where x and y are input and output vectors respectively. The function F(x, {Wi}) represents the

residual mapping to be learned. The operation F + x is performed by a shortcut connection and

element-wise addition.

Our idea is illustrated in Figure 4.4. With the help of attention model, we are inferred that ht−4

and ht−3 gained more attentions compared with other states when we only pick top two attentions.

Therefore, we import the information from ht−4 and ht−3 to current time step ht. The proposed

equations below are introduced to explain our model:

C̃t = tanh
(
WC · [h

′

t−1, xt]
)

(4.12)
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Ct = σ
(
ft ∗ Ct−1 + it ∗ C̃t

)
(4.13)

C
′
= ΣT (WCT

× CT ) (4.14)

WCT
=

exp(W · CT )

ΣT exp(W · CT )
(4.15)

ht = tanh(Ct) ∗ ot (4.16)

h
′
= ΣT (WhT

× hT ) (4.17)

WhT
=

exp(W · hT )

ΣT exp(W · hT )
(4.18)

In Equation 4.12, we modify C̃t based on the updated previous hidden state h′t−1. In Equation

4.13, we calculate Ct by using the updated C̃t. In our model, we update every Ct and ht not only

depending on time t − 1, but also involving several past states by weighted summation of multi-

residual schemes in terms of memory cells and hidden states. Therefore, in Equation 4.14 and

4.17, the updated C ′ and h′ are introduced by the weighted summation of the previous time steps.

T is the candidate set of previous time steps. WCT
and WhT

are both scalar weighted numbers at

the corresponding specific time steps. In Equation 4.15 and 4.18, W is a shared candidate vector

by the model which needs to be learned from data.

4.3.3 Bidirectional multi-residual network

Compared with the previous models, We add one more layer as shown in Figure 4.5. The

forward sequence and backward sequence are fed into training processing simultaneously. The

advantage is to enable updating the weights combining both previous and future time steps. The

equations are shown as follows:

h′t = [
−→
h t,
←−
h t] (4.19)

−→
h′ t−1 =

−→
h t−1 + Σ−→

T
−→aT (tanh(CT )⊗ σ(xT )) (4.20)

←−
h′ t−1 =

←−
h t−1 + Σ←−

T
←−aT (tanh(CT )⊗ σ(xT )) (4.21)

where
−→
T ,
←−
T ∈ N, t− n ≤

−→
T ≤ t− 1, t+ 1 ≤

←−
T ≤ t+ n and ⊗ represents tensor product.
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In Equation 4.20 and Equation 4.21,
−→
h t−1 and

←−
h t−1 are the original forward and backward

hidden states at time step t − 1 of bidirectional LSTM respectively.
−→
h′ t−1 and

←−
h′ t−1 are updated

forward and backward hidden states at time step t− 1 of the proposed ABMRNN. The concept of

residual is the weighted summation of the hidden states from selected time steps T based on the

attention scalar aT obtained in Equation 4.10. The updated hidden states at time step t− 1 are the

input to compute the output at time step t.

Since the forward sequence and backward sequence are fed into training processing simulta-

neously, both of the past and future information have been considered together with the current

time step. Besides, our model allows more time flexibilities which enable recalling past pieces of

information, predicting the future time steps and evaluating the influences between each states and

current state.

4.3.4 Training procedure

Algorithm 2: ABMRNN training procedure
xbi ←↩ {−→x ,←−x } where −→x is the forward input, t is the target value and←−x is the backward
(reversed) input.
ε : number of epochs
e←↩ 0
for e < ε do

for xT ∈ xbi do
y ←↩ F(xbi, {W})
Wtmp←↩ A({W}), h∗←↩ H(h, {Wtmp})
y∗←↩ F(y, h∗, {Wtmp})
error E ←↩ ‖t− y∗‖
update W ←↩ backpropagate(W,E)

end for
e←↩ e+ 1

end for

We present the training procedure of ABMRNN as pseudo-code in Algorithm 1. The input

sequence xbi is composed of a forward order sequence and a backward order sequence. The ob-
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jective is to minimize the loss function by updating hidden states and the corresponding attention-

augmentation dynamics.

F is denoted as the function of ABMRNN to obtain output states when the input is xbi and

matrix weights is W . A represents the function of updated attention, where we can obtain the

attention distribution. H stands for the function of updated hidden states which means we have

imported the important information from previous and future to current time step. W is the matrix

weights while Wtmp is the temporary updated weights from attention model A. h is defined as the

initial hidden states while h∗ is treated as the updated hidden states. y is the initial output while y∗

is the updated output.

4.4 Summary

Dataset Ave. Len Max Len #Classes #Train : #Test
STCT 20 30 8 28,000 : 12,000
IMDB 300 3000 2 25,000 : 25,000

AG_NEWS 30 200 4 8,000 : 1,000
MNIST 784 784 10 60,000 : 10,000

Table 4.1: Classification datasets

In this section, we will introduce the classification tasks and illustrate our experimental results.

Table 4.1 shows the detailed statistics of each dataset.

1. Short-term text classification task (STCT) is still a challenging task. Unlike traditional long

text documents, short-term texts including headings and news titles are usually concise,

which somehow impact the performance. [55] introduces STCT which is constructed by

average 20 Chinese words in coarse and refined categories. There are eight labels. The total

number of texts is 400,000. Besides, the baseline performance has been provided by tradi-

tional statistical methods such as support vector machine, decision tree, logistic regression

and so on.
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2. AG_NEWS is a collection of more than 1 million news articles. All the titles have been

labeled in four categories. We randomly select 8,000 samples for training and 1000 samples

for testing.

3. IMDB movie review dataset is a binary classification task containing movie reviews with

positive and negative labels. We select 5000 samples in total, half for training and the other

half for testing. The maximum length in the review is up to 3000 and the average length is

about 300.

4. Originally, MNIST is an image classification task (10 categories). However, we flat the

pixels as the sequential data and feed into the training to predict the image label. Therefore,

MNIST is assumed as a solid task for long time dependencies modeling (up to 784). There

are 60000 training samples and 10000 testing samples.

Model IMDB AG_NEWS MNIST STCT
Plain LSTM 88.77% 82.33% 97.01% 93.01%

Bi-LSTM 89.91% 83.13% 98.31% 94.10%
2-layer LSTM 88.42% 82.27% 98.03% 93.16%

1-layer IndRNN 80.60% 84.98% 97.58% 93.02%
5-layer IndRNN 76.39% 84.74% 97.71% 88.89%

Plain RNN 77.12% 80.33% 97.66% 78.89%
5-layer RNN 50.00% 77.76% 97.45% 87.23%

1-D CNN 88.70% 84.61% 98.01% 94.50%
Attention-LSTM 89.50% 82.17% 98.31% 95.88%
Residual-LSTM 90.80% 84.71% 98.03% 93.55%

Our-model 90.91% 86.31% 98.53% 96.50%

Table 4.2: Accuracy in classification results

Regarding the preprocessing, we leverage the mechanism [44] for word segmentation. Since

English is delimited by whitespace, nevertheless, Chinese, Korean and any other Asian language

are not. Therefore, segmentation is a fundamental step in the first step. For our study, we adopt the

Viterbi algorithm [56] in segmentation.
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(a) (b)

(c) (d)

Figure 4.6: Error rate

The next step is word embedding. There are numerous methods for word embedding such as

dense vector and sparse vector. We apply word2vec [47] for word embedding. The dense vector

is more superior than sparse vector in terms of training speed and capacity of synonym capturing.

Dense vectors are much shorter than sparse vectors, which means the computation power will be

low. Besides, dense vectors obtained by word2vec reveal an attractive property that similar words

in the vector matrix have a closer distance than others.

After selecting the features, the next step is to build the neural network. For better illustrat-

ing the improvement, various models are evaluated and compared such as plain RNNs, LSTMs,

Bidirectional LSTM, 1-D CNNs, single residual and multi-residual networks. Two layers with

128 forward and 128 backward LSTM units are employed in our model. We also utilized gradient

clipping [57]. All the weights are randomly initialized by the isotropic Gaussian distribution of

variance 0.1. The dropout rate is 0.2 for each layer [58] and the batch size is 64. Regarding the

other models, we keep the consistent setting with 128 hidden units in hidden layers.
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Overall results of the experiment are shown in Table 4.2. Our model achieves the state-of-the-

art performance in STCT. The highest accuracy rate in STCT is 96.5%, while the baseline perfor-

mance provided is 69.03% [55]. We improve the ground truth about 39.7%, even the plain RNN

model outperforms the statistical classification models (SVM 69.03% vs. Plain RNN 78.89%).

Besides, with the model becoming more advanced, the corresponding accuracy rate is increasingly

improved (Plain RNN 78.89% - LSTM 93.01% - Bi-LSTM 94.10%). We leverage the attention

mechanism for optimizing the relationship between distant time steps, which improves the per-

formance as well (plain LSTM 93.01% vs. attention LSTM 95.88%). We also attempt other

architectures in STCT such as IndRNN [54], multi-layer RNNs. Our model outperforms all the

existing methods.

(a) STCT (b) AG_NEWS

(c) IMDB (d) MNIST

Figure 4.7: Training loss
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We also concern about the training loss, because training loss can determine whether the model

is converged or not, as well as provide the lower bound to estimate the performance. Those four

models are selected because they represent the most typical structures. In Figure 4.7(a) and 4.7(c),

plain RNNs keep oscillating, which means it is hard to converge. This is because compared with

task AG_NEWS and MNIST, STCT and IMDB are much more complicated, which indicates

RNNs cannot handle those hard tasks. However, ABMRNN, LSTM and IndRNN converge af-

ter only a few epochs in those four tasks, but LSTM converges slower than IndRNN. Although the

training loss of ABMRNN is a little higher than that of LSTM, training loss can only guarantee the

lower bound instead of the upper bound with regarding the accuracy rate.

AG’s news corpus is a short-term text task which is similar to STCT. The accuracy rate in our

model is 86.31%, where outperforms the rest RNN models. However, the 5-layer RNN obtains the

lowest accuracy rate (77.76%). The accuracy rate in plain LSTM, 2-layer LSTM and bi-LSTM are

82.33%, 82.27% and 82.13% respectively. With the residual mechanism adopted into LSTM, the

performance improves correspondingly (from 82.33% to 84.71%).

In IMDB datasets, with the text length increasing up to 3000, compared with short-term text,

the performance is impacted because more redundancies and noises are introduced. We achieve

the highest accuracy (90.91%) while the lowest accuracy is only 50% in the 5-layer RNN. Since

IMDB is a binary classification task, 50% accuracy rate means blind guess.

In MNIST, RNNs generally cannot perform as good as CNNs. We still apply models in MNIST

because this is also a good task to test the robustness and reliability if we regard the images as

sequential data. In sequential MNIST, the accuracy rate in 1-D CNN is only 98.01%. However,

our model obtains the highest accuracy rate (98.53%) than other models because our model inherits

the advantages from both residual network and LSTM.

For better illustrating the improvement of our model, we define Error Rate(ER) = 1 - accuracy

and show the results with bar chart. Figure 4.6 shows the ER with four datasets. In STCT and

AG’s NEWS, ERs are decreased about 503% (from 21.11% to 3.5%) and 62.5% (from 22.24% to

13.69%) respectively. In IMDB and MNIST, we finally improve the performance by 450% (from

55



50% to 9.09%) and 103% (from 2.99% to 1.47%) respectively.

Regarding recent neural networks towards AG’s NEWS, IMDB and MNIST, all the models

become increasingly complex with deeper layers. We illustrate the number of parameters of each

model in Table 4.3. The number of parameters in [50] and [51] are 7.8M and 50M respectively.

However, our model only contains 0.5M parameters. In AG’s NEWS, [51] and [50] claim that

their ER are 13.39% and 10.17% respectively. However, the ER in our model is 13.69%; our

model demonstrates high efficiency in training (0.5M vs. 7.8M vs. 50M) and comparatively top

performance (13.69% vs. 13.39% vs. 10.17%). Besides, in IMDB datasets, [59] and [60] declare

that the ER are 11.52% and 11% respectively while the ER in our model is 9.19%. Furthermore,

in [60], the depth of their model is 200 nevertheless ours is only two. In MNIST, although there

are numerous famous CNN architectures such as ResNet (25.5M) AlexNet (60M) and VGGNet

(138M), the depth of their models are considerably high (up to 1000). They perform from 95% to

97% variously because they mainly focus on the size of 224*224 while the size of the image in

MNIST is 28*28. Therefore, [24] introduces a smaller architecture towards MNIST and achieves

the state-of-the-art performance (ER = 0.23%). The number of parameters in [24] is 12M whereas

ours is 0.5M. As we mentioned before, unlike all the 2D-CNN methods, we consider MNIST

as a sequential classification task to test the model regarding robustness and reliability, and we

outperform other RNN models.

Model #parameter
VDCNN[50] 7.8M

CharCNN[51] 50M
ResNet[16] 25M
AlexNet [9] 60M
APNN[24] 12M

VGGNet [61] 138M
ABMRNN 0.5M

Table 4.3: The number of parameters
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5. CONCLUSION

Regarding the data fetching, an optimized system has been proposed for defeating the CAPTCHAs

including an adaptive length system and an optimal classifier to achieve state-of-the-art perfor-

mance, which is faster and more accurate. The adaptive length system can perform up to 10.67

times faster than the sequential segmentation, and the successful single character recognition rate

is improved variously from 75% to 99% depending on the type of CAPTCHA.

Defeating the CAPTCHAs is also beneficial to improving the safety when we expose the

CAPTCHAs’ deficiency. Regarding the recognition performance of the classifiers, although TM/OCR

is fast and cost-effective, we can only use OCR under ideal conditions, such as twisted-free, noise-

free and rotation-free. This is because with the situation getting more sophisticated, the perfor-

mance in TM/OCR drops dramatically. CNN acts as a more reliable classifier than TM/OCR

during the whole test. CNN cannot perform well without sufficient high quality and quantity train-

ing data and reliable neural network. The cost to collect the training data in the beginning is huge.

We also proposed our method to reduce the collecting cost massively. Another contribution of our

work is completely solving the problem of CAPTCHAs in terms of manually collecting sufficient

training data, evaluating different existing methods in practice, and combining the optimal method

with our proposed algorithm to defeat the CAPTCHAs with state-of-the-art performance.

We have demonstrated the classification task of Chinese short-term text, in the context of public

financial news titles. Different features and classifiers are applied and compared, and the baseline

performance has been provided. Cross-validation results show that logistic regression and support

vector classifier with the tf-idf or CounterVectorizer feature attain the highest accuracy and are

most stable in all circumstances.

An Attention-augmentation Bidirectional Multi-residual Recurrent Neural Network (ABM-

RNN) has been proposed to achieve state-of-the-art performance in the proposed classification

task. Furthermore, we also test our model in the public tasks. The memory cell limitation in

LSTM has been eliminated through a modified attention model. The specific previous time steps
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can be identified so that linking to those specific time steps is considerably effective. Moreover,

unlike randomly connecting to a previous time step, a multi-residue mechanism has been lever-

aged to enhance the correlation of current time step and distant previous time steps. In addition,

a bidirectional multi-residual mechanism has been proposed which can combine past and future

information comprehensively, instead of partially capturing the previous information solely. Last

but not the least, the detailed training procedure of ABMRNN has been made available. The results

have shown that our model outperforms other RNN models such as plain RNN, the variations of

LSTM and IndRNN, and has achieved state-of-the-art performance in the proposed task. In addi-

tion to solve the proposed task, we also apply our model in other public tasks and have obtained

the competitive performance. Compared with existing models, our model has demonstrated high

efficiency in training and has achieved top performance.

Our future work includes applying ABMRNN in other tasks, and further optimizing our model

to handle longer sequences.
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