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ABSTRACT 

 

 

Public breeding programs for upland cotton (Gossypium hirsutum) underutilize 

genotypic selection methods and specifically marker assisted selection for fiber quality 

selection. A previous study by Kari Hugie sought to analyze publicly available simple 

sequence repeat (SSR) markers in three diverse populations to quantify those that 

showed correlative trait stability in different backgrounds. Stable markers identified 

from that study, 6 for fiber bundle strength (FBS) and 6 for upper half mean length 

(UHML), as well as two additional markers identified by Dr. Fang of the USDA 

Louisiana Laboratory were then utilized to make selections in two G. hirsutum 

populations. Population 1 (TAM 11K-13 ELSU/Del Cerro//13P-54 ELSU) was of 

interspecific background and Population 2 (TAM 11K-13 ELSU/TAM06WE-621 ESU) 

was of intraspecific background.  

In 2016, both populations were grown at the Agrilife Research Center in College 

Station, Tx and individual plant selections were made separately on the basis of SSR 

marker number and phenotype for both FBS and UHML to form populations divergent 

for the trait of interest. Selections were planted in progeny rows in 2017 and fiber 

samples collected for each row. Fiber data was analyzed to compare selection efficacy 

within the divergently selected subpopulations and between the marker and 

phenotypically selected populations. 
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Divergent selections made on the basis of number of markers in the desired 

allelic state failed to show significant differences between subpopulations while those 

made on the basis of high and low value for the phenotypic trait were significant for both 

traits in both populations. Analyzing individual markers, none were found to be 

significant (p < 0.05) for either trait in both populations for both years. In Population 1 

for UHML, two markers were found to be significant only in 2016, CIR196197 

(p=0.0416) and NAU1369247 (p=.0011), and for FBS in 2016 only CGR6329232 was 

significant (p= 0.0278). In Population 2, marker BNL160498 was significant in both 

years for UHML (p=0.0270 and p=.0448 in 2016 and 2017 respectively), and in 2016 for 

FBS (p=0.0425). Despite significance, numerical differences between selections with or 

without the BNL160498 allele were small. 
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NOMENCLATURE 

 

ANOVA  Analysis of Variance 

ELSU Extra Long Staple Upland 

ESU Extra Strength Upland 

FBS  Fiber Bundle Strength 

HVI  High Volume Instrumentation 

QTL  Quantitative Trait Locus 

SSR  Simple Sequence Repeat 

UHML  Upper Half Mean Length 
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CHAPTER I 

INTRODUCTION 

 

Upland cotton, Gossypium hirsutum L., was introduced to what is now the United 

States of America in the early 1700s (Smith and Cothren, 1999). From that point, the 

U.S.A. has become the third largest producer in the world, harvesting approximately 1.8 

million hectares in 2017 (National Cotton Council). The majority of this fiber is 

exported to countries such as China for processing into yarn and fabrics. The product 

quality that can be produced from any given bale of cotton fiber is highly dependent on 

the fiber properties within that bale; the most important of which are upper half mean 

length (UHML), fiber bundle strength (FBS), and fiber length distribution (Simpson et 

al., 1978). Different spinning methods, of which rotor spinning and ring spinning 

predominate, may rank these traits at varying levels of importance, however air jet, or 

vortex spinning, a newer technology that promises to increase spinning speeds without 

decreasing quality, places even more importance on UHML, length distribution, and 

FBS. For the U.S.A. to maintain its competitiveness of the global market and take 

advantage of technological advances, cotton breeders must continue to target these traits. 

 One tool that has not been taken full advantage of within public cotton breeding 

programs is marker-assisted selection (MAS). MAS is the process of associating genetic 

markers with a  nearby gene of interest called a quantitative trait locus (QTL) and then 

using those markers to make plant selections based on the predicted phenotype. The 

advantages of incorporating MAS include the elimination of poor quality plants in the 
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seed or seedling stage thereby increasing the frequency of plants with the targeted trait in 

the field, more easily introgressing or pyramiding beneficial alleles, and trait selection in 

off-season nurseries.  Despite the potential benefits, successful implementation of MAS 

in other agronomic crops, and numerous mapping studies of Gossypium spp. genomes to 

associate markers with QTLs for different fiber traits, MAS remains underutilized. 

 Many factors lead into the discrepancy, foremost being that many fiber qualities, 

including UHML and FBS, are highly quantitative traits controlled by a number of 

alleles and potentially hundreds of minor effect alleles (Lande et al., 1989). QTLs for 

these traits tend to be non-robust between populations and may be affected by epistatic 

interactions. Due to this, a new set of trait-associated QTLs must be generated for each 

breeding population and possibly for each new environment which would require the 

planting, harvesting, and genotyping of a training population for each parental 

combination and maybe each location. In addition to this, UHML and FBS are both 

moderately to highly heritable traits which can be easily selected given sufficient 

manpower.  

 To overcome these disadvantages, Kari Hugie evaluated all publicly available 

QTLs (Hugie. L, 2015) proposed to be genomically associated with a number of fiber 

properties, including UHML and FBS. She used three populations, each derived from a 

different bi-parental background. In her dissertation entitled, “Evaluation of 

Conventional and Marker-Assisted Breeding Methods for the Improvement of Fiber 

Quality in Gossypium spp.”, Dr.Hugie evaluated a large number of QTLs from various 

mapping studies from which six markers for UHML and six markers for FBS were 
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identified as robust across all three populations. Grouping plants based on the number of 

alleles in the desired state for each population, it was then possible to use marker based 

selections and identify progeny with mean fiber traits not significantly different from 

those of progeny selected based on traditional phenotype based selection. 
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CHAPTER II 

LITERATURE REVIEW 

 

Overview of Gossypium and Fiber Traits of Interest 

Gossypium sp. have been in use as a source of natural fibers since the neolithic 

era (Christophe et al., 2002) and continues to be the world’s most important fiber crop. 

Four species have been grown at scale for fiber production and are grouped into new and 

old world species: G. herbaceum and G. arboreum being diploid old world species 

denoted by the A genome and G. hirsutum and G. barbadense being tetraploid, new 

world species combining the A and D genomes through an interspecific hybridization 

event (Paterson et al., 2012). Of the cultivated species, G. hirsutum is the most widely 

grown, producing more than 90% of the world’s cotton fiber (Wendel et al., 1992). This 

can be attributed to higher fiber quality than the old world species and agronomic 

adaptability to a range of growing conditions. While G. barbadense has superior fiber 

qualities compared to G. hirsutum cultivation is more difficult and yields tend to be 

lower in most environments. Thus, G. barbadense production is less widespread and 

often used for specialty and high quality textiles.  

There are many traits that dictate good quality such as color, uniformity, and 

trash content. However, the most important factors dictating the end product quality of 

woven or knit textiles are length, strength, and length uniformity parameters. UHML and 

FBS are moderate to highly quantitative traits that are largely controlled by additive gene 

action (May and Jividen, 1999). The number of genes estimated to control each trait is 
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variable among mapping studies, but a meta-analysis of fiber trait mapping studies 

conducted by J. I. Said (2013) showed more than 1,000 trait-associated QTL.  

G. hirsutum is indeterminate in habit, causing bolls to mature at different times in 

the season. Fiber extension from the seed coat begins within 3 days after flowering and 

continues extension for approximately 30 days (Braden and Smith, 2004). Even though 

maximum fiber length is reached fairly early in a boll’s life span and harvest is timed to 

maximize fiber maturity, there is still a distribution of fiber lengths created from the 

bottom to the top of the plant caused by the crops indeterminate habit, and even then 

fiber lengths vary across the surface of a single seed. Fiber length can also be affected by 

environmental factors such as day and night temperatures and water stress (Guthrie et 

al., 1993). There are many different ways to measure fiber length, but the most common 

measure is upper half mean length (UHML) which is the average length of the longest 

50% of fibers as defined by weight. The concept of UHML was introduced based on 

fibrograph technology as a way to standardize fiber length measurements (Moore, 1996). 

UHML is measured during High Volume Instrument testing (HVI) by pulling a beard of 

fiber from the sample with a comb and scanning it with a sensor to produce a fibrogram.  

The variation in fiber lengths is the fiber length uniformity, measured as the 

mean length divided by the UHML and expressed as a percentage (Cotton Incorporated, 

2019). Uniformity is affected by the natural variation in fiber lengths and all things 

which effect it, but is also affected by the ginning process which may cause fiber 

breakage (Guthrie et al., 1993). Uniformity is complex in that there are many sources 

that contribute to it, and studies conflict on the genetic basis of the trait. Multiple studies 
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have found nonadditive gene action for this trait and indicated a high amount of 

dominant gene action (Khan et al., 2001; Ali et al., 2008).  Because UHML is a 

component of fiber length uniformity and UHML is highly heritable and repeatable, 

fiber length uniformity was not a focus of this study. 

FBS is determined by the amount of carbohydrates deposited into the secondary 

cell wall as the fibers mature after fiber elongation is completed. FBS is influenced by 

the environment more than UHML because once bolls open, general weather such as UV 

exposure and rain tends to degrade the walls of the fiber which weakens them. 

Carbohydrate deposition is also highly influenced by the environment by such things at 

light intensity (Pettigrew, 2001). FBS generally has a lower heritability than UHML 

which makes trait progression in phenotypic selection slower for this trait. FBS is the 

most common measure of fiber strength in global markets and is measured through HVI 

using the same fiber beard from the UHML measurement. The beard is held at each end 

by a pair of clamps or jaws set at a given distance, and the force required to break the 

fiber bundle is determined. 

The unique structure of a mature cotton fiber is what gives it its spinnable 

quality. The fiber is composed of multiple layers which are composed of a crystalline 

cellulose lattice and which form fibrils that are differently oriented in each layer. As a 

fiber dries, its cross section takes on a bean-like shape as the hollow inner core flattens 

and the differences between fibril direction in each layer cause the fiber to twist (Hearle, 

2006). This shape allows fibers to adhere to each other when spun into yarn, and yarn 
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qualities such as strength are directly related to the qualities of the individual fibers that 

form them and the amount of variation between the fibers. 

Spinning Technologies and the Effects of Fiber Traits on Yarn Quality 

Fiber spinning is dominated by two major types of technology, ring spinning and 

rotor spinning, with a new emerging technology in the form of air jet spinning. Each of 

these processes produces yarns which are different in structure, and while all three place 

high value on UHML, FBS, and fiber length uniformity in order to produce the highest 

quality yarns possible, the structure of the yarn dictates how these three traits are ranked. 

While not discussed as broadly here, fiber fineness also plays a part in yarn strength by 

increasing the number of fibers in the yarn cross section. 

Of the three, ring spinning was the earliest introduction, having been invented in 

1832 by John Thorp as an extension and improvement on existing technology. When 

first introduced, ring spinning speeds far exceeded the other predominate systems of the 

time and quickly became widespread in the textile industry. Its versatility in producing 

high quality yarns of various weights and twist densities has led to its continued 

dominance of the spinning industry despite further advances in speed in newer 

technologies (Lawrence, 2010). 

Ring spinning produces yarns where parallel fibers are twisted throughout the 

entire yarn (Cotton Incorporated, 2003). The parallel fibers produce yarns that are less 

bulky and stronger than rotor spun yarns of the same weight, but also means that much 

of the yarn strength is conveyed by resistance to fiber slippage. While fiber strength 

plays a direct role in yarn strength as well, the more twists a yarn can be given lends to 
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more fiber to fiber surface area to impart friction between fibers then the stronger the 

yarn will be. Longer fibers therefore are more important to overall yarn quality in ring 

spun yarns in comparison to rotor spun yarns (Rengasamy, 2010). 

Rotor spinning is an open spinning method invented in the mid-1900s which 

works without the need for a spindle. Rotor spinning drafts individual fibers onto the end 

of a seed yarn and its main advantage over ring spinning is faster production speeds. The 

addition of individual fibers to the strand means that sliver can be used directly without 

further processing into roving; eliminating a step and thereby further increase production 

speeds. The method by which the yarn is formed creates a different yarn structure than 

ring spun yarns: a dense, heavily twisted core and an outer layer of fibers wrapped 

around it. Because of the difference in structure, rotor yarns are weaker but less prone to 

pilling and abrasion, and tend to be more uniform with lower hairiness (Adanur, 2001). 

Though rotor spinning cannot produce yarns as fine as ring technology, these yarn 

properties still make it advantageous for products such as wearable fabrics, household 

products, and various industrial products. 

The first air jet machine was introduced in 1981 by Murata, a Japanese company 

(Hunter, 2006). As a process it is based on open-end technology and uses airflow to form 

the yarn and impart twist to the fibers. This new technology promises increasingly fast 

production speeds with current limits being around 400 m min-1 but also has the 

flexibility in yarn weights of a ring spinning system. The produced yarns are somewhat 

similar in structure to ring spun yarns, except that vortex yarns have a small core with 

little to no twist. This leads to yarns with the lower hairiness, higher uniformity, and 
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higher durability to wear than rotor yarns (Basu, 1992). The parallel fibers within the 

core also leads to increased absorbance and faster drying. The downside of vortex yarns 

is lower yarn strength because it is the outer wrapper which maintains yarn strength. Air 

jet spinning ranks fiber strength in higher priority than fiber length, however fiber with 

increased strength and length is necessary before the full advantage of this technology 

can be achieved (Günaydin and Soydan, 2016).  

Traditional Breeding Methods and Phenotypic Selection of Fiber Traits 

 ‘Traditional’ breeding methods implies a reliance on visually identifying superior 

or inferior traits in the field during a time before modern technology allowed 

phenotyping through instrumentation. Trait advancement relied upon the individual skill 

of a breeder and the heritability of the trait in question. Breeders currently have access to 

instruments capable of fast, accurate phenotyping in a combination of traditional, field 

based selection and technology that still remains distinct from genotypic methodology. 

Visual selections may be made in the field based purely on traits that the breeder can 

identify. These selections may be harvested and further tested for phenotype in a lab 

setting with final selections made based on these data in a two step progression of 

selecting the best plants or rows to reduce time and money spent harvesting and 

analyzing poor quality plants.  

 Up until the 1940s and the application of the fibrogram to testing fiber lengths 

cotton fiber length in the United States was tested and graded by hand (Hertel, 1940) . 

Visual grading remains common in other countries and within the U.S.A. in the hobbyist 

fiber industry. An experienced grader adhering to strict standards as published by the 
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USDA’s The Classification of Cotton in a controlled environment and carefully 

examining and sorting each sample will have good accuracy in measuring the staple 

length of a sample (USDA, 1980). These conditions become increasingly difficult to 

meet where environmental conditions cannot be controlled and human error will be 

higher.  

 Numerous studies into the heritability of cotton fiber traits have shown that 

UHML has a high narrow sense heritability. Narrow sense heritability is the proportion 

of a plant’s or variety’s phenotype that can be attributed to additive genetic effects. If 

phenotyping is accurate, selections based on higher UHML than their general population 

should likewise produce progeny of higher UHML. In consideration to breeder 

selections of fiber length, even if human error in length measurements are high, as long 

as selections are not significantly worse than random then trait progress can still 

continue.  

Genotypically Based Trait Selection 

 Genotypically based selection methods for quantitative traits are based on the 

association of genetic marker with quantitative trait loci (QTL). QTLs are segments of 

the genome which, based on statistical analysis, correlate with the genetic variation in a 

given trait. Genetic markers are specific DNA sequences in linkage disequilibrium to 

these loci and allow for genomic mapping and identification of allelic differences at 

these areas that may account for the variation seen in the trait.  Linkage disequilibrium is 

the tendency of loci in close proximity to assort together during genetic recombination 

rather than randomly (Gupta et al., 2005). Paterson et al. (1988) were the first to use 
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restriction fragment length polymorphisms (RFLPs) to create a QTL linkage map. 

Further advances is research brought about amplified fragment length polymorphisms 

(AFLPs), single nucleotide polymorphisms (SNPs), simple satellite repeats (SSRs), and 

others. Technological advances have increased the speed and accuracy at which genetic 

samples can be analyzed while reducing the cost per sample making genotypic selection 

methods more accessible. 

SSRs, or microsatellites, are the marker of the most interest to this study and are 

characterized by short, repetitive sequences that can be found widely distributed 

throughout the chromosome of eukaryotic organisms. The structure of these sections 

leads to DNA slippage during replication causing differing numbers of repeats which are 

what make them useful in differentiating between alleles at their associated loci (Li et al. 

2002). SSRs have numerous advantages, including being widespread through coding and 

non-coding regions, co-dominant inheritance, having a high amount of polymorphism, 

and being relatively cheap. The current progress of genetic research also means that 

numerous mapping studies have been conducted in cotton, thus eliminating the work and 

time of identifying SSR sequences before application. 

Two prominent methods of genetic based selection are the genome-wide 

association study (GWAS) and marker assisted selection (MAS). In a breeding program 

and assuming high accuracy in phenotypic prediction, both could save time and increase 

breeding efficiency by allowing selection at the seed stage and in off season-nurseries, 

and could help identify unique recombinants and outcrossed plants.  For a GWAS, 

genetic and phenotypic samples are taken from an early generation, recombinant 
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population and trait associations are analyzed using hundreds to thousands of SNPs 

across the entire genome (Marees, 2018). The downside of this is that the study must be 

undertaken for every population in which it is used, and, specifically for moderately to 

highly heritability traits such as UHML and FBS which are the focus of this study, if 

phenotypic data must be collected then selecting parents based on phenotype alone will 

produce acceptable results while requiring significantly less labor. As well, the highly 

quantitative nature of both FBS, UHML, and other cotton fiber quality traits means that 

a sample size of at least 500 plants would be required to produce moderately accurate 

results in accordance the Beavis effect (Xu, 2003). With multiple concurrent 

populations, this could quickly become a prohibitive number.  

MAS may be more beneficial in UHML and FBS, and more applicable in closing 

the selection gap discussed above. MAS is based on QTL linkage maps and making 

selections based on a set of specified set of markers already shown to be linked to the 

trait in order to pyramid genes (Collard and Mackill, 2008). MAS has been successfully 

applied to select for ear and plant height in maize and in wheat for several quantitative 

traits including grain weight and yield. However, despite this success in other crops, 

there are few studies of MAS application to cotton fiber traits in public breeding 

programs (Zhang et al., 2010.)(Law, 1967). At least part of this is due to the 

inconsistencies of QTL association found between mapping studies in cotton. One of the 

mechanisms that could explain this in respect to UHML and FBS is the high number of 

QTLs associated with both trait. Both are controlled by a few high effect QTL and a 

large number of QTL with small effects which may affect the consistency or robustness 
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of QTL estimation and therefore their transferability between populations which 

preclude the use of MAS without a new mapping study for each population. Similarly 

controlled traits often have high genotype x environment effects which also reduces 

transferability between mapping studies from different environments which is difficult to 

maintain between different studies (Basford and Cooper. 1998). This lack of QTL 

stability therefore makes application difficult. 

Previous Study on Identification of Transferable Markers for UHML and FBS 

One of the objective that the Hugie study sought to identify QTL markers in 

Gossypium sp. with stable effects between populations of different heritage (Hugie, 

2015). Using three F3 populations of diverse backgrounds during 2013 and 2014 and 

using the results of 31 previously published mapping studies for Gossypium sp., the 

Hugie study attempted to identify SSR markers which had significant trait association 

for UHML and FBS and which were capable of predicting progeny phenotype on a 

comparable level to phenotypic selections for each trait. The three populations included 

in the study included a population with G. mustelinum and G. tomentosum background. 

Many mapping studies use interspecific crosses and it is commonly thought that many 

fiber quality alleles may have originated in non G. hirsutum species.  

From the studies reported in the literature, 536 SSR primer pairs were used to 

genotype and analyze 713 randomly selected progeny from among the populations with 

populations individually examined (Hugie, 2015). Within the populations, non-

polymorphic markers as well as markers with an extremely low degree of polymorphism 

were removed from the set and a two-step process of combining single-marker analysis 
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and then stepwise regression was performed following methodology laid out by Dudley 

(1993). Markers found nonsignificant at α=.05 were discarded. The remaining set of 

markers were validated by regressing F3:4 row phenotypes onto their respective plant-

parent by number of SSR markers and again nonsignificant markers were discarded. Six 

markers for FBS and six markers for UHML was found to be significant across all 

populations. A comparison was also made between progeny trait quality based on 

parental selections of the best 20% for each trait versus progeny trait quality based on 

20% of parents with the most markers indicating the desired state of the allele and these 

two groups were found to not be significantly different for either FBS or UHML with the 

exception of a single population where phenotypic selections were superior in FBS. Of 

the identified markers, BNL160498, a marker which was originally mapped in an 

interspecific population, was found to negatively correlate with high fiber quality for 

both traits and account for a relatively high amount of trait variation. This marker was 

therefore suggested as potentially stable through populations and a candidate in possible 

MAS methodologies. 

From this study, the large number of markers that had to be discarded is a clear 

indication of why MAS is not common for these traits; markers are largely specific to 

the study from which they originated whether that be due to one of the previously 

indicated environmental and genetic interactions or due to epistatic interactions between 

genetic backgrounds as Hugie suggested in the conclusion to her study. The work 

necessary to validate the markers including the regressions between generation 

phenotypes is an obvious disincentive when that work could instead be used to either 
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phenotype more individual plant selections or work with larger or more numerous 

populations. Identifying a set of markers to work around this would be highly beneficial 

and this study seeks to validate the conclusions of the Hugie study and observe the 

identified markers in two new populations. 

 

Objectives 

1.      Confirm stability of the “Hugie QTLs” and two additional QTLs suggested 

by Dr.David Fang, USDA-ARS genomist, using SSR (simple sequence repeats) 

markers in two G. hirsutum populations (one F2 and one F3 population). 

2.      From the same F2 and F3 populations, use traditional phenotypic selection 

based on high volume instrument (HVI) determined fiber properties. 

3.      Compare the Hugie and Fang QTLs-based selections with HVI phenotypic 

selection for effectiveness and efficiency. 
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CHAPTER III 

MATERIALS AND METHODS 

 

 Segregating Populations  

Two populations were selected for use in the study due to their diverse parentage 

and the expectation that progeny would segregate for both UHML and FBS. The Hugie 

study was interested in markers that would be capable of discerning improved fiber 

qualities associated with interspecific backgrounds which is reflected herein by using 

one segregating population with ‘Del Cerro’ (Smith et al., 1999) in its pedigree and thus 

considered to have some G. barbadense introgression and one segregating population 

with no known interspecific introgression. At the beginning of the study in 2016, both 

populations were extant at the Texas A&M Cotton Improvement lab (CIL) as early 

generation populations. 

 Population one in the present study was an F2 population in 2016  and was 

derived from a three way cross of  TAM 11K-13 ELSU (Smith et al., 2014) / Del Cerro 

// 13P-54 ELSU. Both 13P-54 ELSU and TAM 11K-13 ELSU are extra-long staple 

uplands (ELSU) developed at the CIL for improved UHML. 13P-54 ELSU is an 

unreleased experimental line. Del Cerro is an obsolete cultivar from the early 1900s with 

a diverse background that included G. hirsutum, G. barbadense, G. herbaceum, and G. 

thurberi. At the time of its original selection, Del Cerro had an UHML and FBS 

competitive with the pima cultivars of its time, and was later reselected in the 1980s for 

limited production in Arizona (Smith et al., 1999). 
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 Population two was an F3 population in 2016, derived from a cross between 

TAM 11K-13 ELSU / TAM 06WE-621 ESU. TAM 06WE-621 ESU is an extra strength 

upland (ESU) also derived at the CIL. It resulted from a four parent hybridization: DP 

491 (PI 618609)/TAM 96WD-18 (Thaxton et al., 2005)//TAM 91C-95Ls (Smith, 

2001)/Deltapine Acala90 (PI 564767). Both of the TAM lines are released germplasm 

lines developed at the CIL for improved fiber quality. DP 491 and Deltapine Acala 90 

are Deltapine cultivars developed for general improved quality and performance 

(Bowman, 2006; USDA, 2006).  

Field Trials 

 In 2016, both populations were planted on May 7 in College Station, Texas at the 

Texas A&M AgriLife Research Farm. The soil in the area consist of Weswood silt, a 

very fine Chromic Hapludert, and Ships clay, a fine-silty Udifluventic Haplustept which 

are both mixed, thermic, and active to superactive. Standard growing procedures were 

followed including the use of herbicides, pesticides, and furrow irrigation as needed. At 

approximately 30 days post emergence, plants were thinned to one plant every 20 cm. 

From each population, both genotypic and phenotypic selections were made in order to 

examine the efficacy of each selection method. 

Genotypic Selections 

 Two months after planting in 2016, 250 plants were randomly selected from 

population one and 100 plants selected from population two. Selections were 

numerically tagged and a 5 g tissue sample was taken from the meristems of each plant. 

Samples were placed into individually marked test tubes, kept on ice in the field, and 
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then transferred to storage at -800 C before being shipped to the USDA-ARS Cotton 

Fiber Bioscience Research Unit at the Southern Regional Research Center in New 

Orleans, LA for genotyping. Non-flanking SSR markers were used following the 

methodology of Hugie (2015). All markers and their corresponding traits are listed in 

Table 1. 

 

 

 

Table 1. SSR markers previously found to correlate with cotton fiber traits in multiple 

populations by Hugie and the study in which they were originally selected from. 

SSR Marker Trait Association† Publication or Source 

BNL160498 
UHML‡ Negative 

Said et al. 2013 
FBS § Negative 

BNL4017234 UHML Negative Zeng et al. 2009 

CGR5548162 UHML Negative Fang et al. 2014 

CIR196192 UHML Negative Zeng et al. 2009 

NAU1369247 
UHML Positive Shen et al. 2006 

Shen et al. 2007 FBS Negative 

NAU5046226 UHML Positive Fang et al. 2014 

CGR6329232 FBS Negative Fang et al. 2014 

DPL0236157 FBS Negative Fang et al 2014 

NAU1102231 FBS Positive Cai et al. 2014 

TMB0382179 FBS Positive Tan et al. 2015 

A07id76146 FBS Positive 
Fang, personal 

correspondence, 2016 

C2-0114149 FBS Positive 
Fang, personal 

correspondence, 2016 
† Association refers to whether the allele of interest is negatively or positively correlated with the respective trait it has 

been observed in. 
‡Upper half mean length 

§ Fiber bundle strength 
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 During the Hugie study (2015), marker sequences had previously been found 

using the CottonGen database (https://www.cottongen.org). Following the same 

methodology, fluorescent labelling was applied to the forward primers at the 5’ end 

using either 6-FAM (6-carboxyfluorescein), HEX (4, 7, 2’, 4’, 5, 7-hexachloro-

carboxyfluorescein), or NED (7’, 8’-benzo-5-fluoro 2’, 4, 7, -trichloro-5-

carboxyfluorescein) and multiplex PCR used for each sample. Fang et al. (2010) 

characterizes the protocol used for the polymerase chain reaction (PCR) for the SSR 

primer pairs. After amplification, the ABI3730XL (Applied Biosystems Inc., Foster 

City, CA, USA) automated capillary electrophoresis system was used to separate and 

size the labeled fragments. 

  After genotyping, plants were selected based on the total number of alleles in the 

desired state predicted to maximize their respective trait: present for positively 

correlating alleles, or absent for negatively correlating alleles. For each trait, UHML and 

FBS, the goal was to create diverging subpopulations in order to study the efficacy and 

discriminatory ability of MAS with the given markers. For Population One, the 20% of 

plants with the largest number of alleles in the desired state and the 20% of plants with 

the fewest number of alleles in the desired state were advanced to field trials in 2017. 

The same process was initiated for Population Two and divergent selections were 

identified, however, due to overlapping research with another graduate student with 

different objectives, all 250 plants which were genotyped were advanced for observation 

in 2017. 
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Phenotypic Selections 

 Traditional plant breeding methods refer to the process of visually selecting 

plants based on apparent phenotype. While fiber length can be evaluated to an extent in 

the field by measuring fibers pulled away from the seed coat, FBS must be measured 

using objective instrumentation. Therefore, phenotypic selection was a two-step process 

initially based only on maximum fiber length visually identifiable in the field. At harvest 

time, from populations one and two, 250 and 100 plants were selected, respectively, on 

the basis of visual fiber length. Selected plants were marked with ribbon for later sample 

collection. 

Fiber Sample Analysis 

 For both selection methods, 30 boll samples were harvested by hand from the 

identified plants and placed into individually labeled sacks. Each sample was ginned on 

the same 10-saw laboratory gin. The seeds were labeled and stored in a temperature and 

humidity controlled environment, and the fiber samples were shipped to the Texas Tech 

University Fiber and Biopolymer Research Institute (FBRI) in Lubbock, Texas for high 

volume instrument (HVI) testing. The resulting data were used to make the final 

phenotypic selections; the top and bottom 20% for both UHML and FBS were advanced 

to 2017 for both populations. 

2017 Field Observations 

 In 2017, individual plants selections were planted on April 26 to progeny rows in 

the same location as 2016 and with the same management practices. Harvest was 

delayed due to field flooding caused by a hurricane. Due to the late season and possible 
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uneven fiber degradation from part of the field retaining more water, 75 boll samples 

were harvested from each row rather than 30. Bolls were harvested as evenly as possible 

across the entire row with preference for first node bolls from the middle of the plant. 

Samples were treated the same as in 2016 and fiber shipped to the FBRI for analysis. 

Statistical Analysis 

Previous studies have found that UHML and FBS are moderately to highly 

heritable traits with fluctuations due to environmental and minor genetic effects. Due to 

the structure of the study as a CRD, genotypic effects cannot be separated into additive 

and dominant portion preventing calculation of broad sense heritability (the ratio of total 

genetic variance to phenotypic variance) or narrow sense heritability (the ratio of 

additive genetic variance divided to phenotypic variance). However, narrow sense 

heritability can be estimated as the slope of a line drawn by simple linear regression 

correlating progeny trait values with their midparent value. Here, progeny rows were 

grown from selfed bolls harvested from individual plant selections meaning that the 

midparent value is the value of the selfed parent. 

 Data were first analyzed to compare overall correlations and estimate narrow 

sense heritability of the traits between 2017 and 2016 observations for both populations. 

Data for visual and genotypic selections were combined and the averaged trait data from 

each progeny row from 2017 was regressed onto the individual plant data from 2016 by 

simple linear regression using JMP (SAS Institute Inc., 2019). These values were 

compared to the realized heritability which is found using the following formula as 

described by Fehr (1987). 
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These parameters show preliminary differences in trait progression from one generation 

to the next between the two selection methods.  

Within Each population and trait, visually selected progeny and genotypically 

selected progeny were then separately analyzed by analysis of variance (ANOVA) in 

JMP to observe statistical differences between means of the divergent subgroups. Each 

was analyzed as a completely random design (CRD) with no random effects such that 

the linear modelling statement is: 

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖𝑗  

where 𝑌𝑖𝑗 is the jth observation of the ith subgroup, 𝜇 is the population mean, 𝜏𝑖 is the 

effect of the ith subgroup, and 𝜀𝑖𝑗 is the random error. 𝜏𝑖  has three levels of I, i.e., 0 for 

the divergent subgroup formed by the individual plants selected for predicted longest or 

strongest fibers, 1 for the subgroup formed by the plants selected for predicted shortest 

or weakest fibers, and 2 for plants that were selected based on the converse fiber trait 

which serve as a control. For the ANOVAs that indicated significant differences between 

subgroup means, the subgroups were further examined using Tukey’s HSD to determine 

which subgroups differed.  

An ANOVA was then used to compare the subgroups from the visual selections 

to those of the genotypic selections with the modelling statement: 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝜀𝑖𝑗k ,  
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where 𝑦𝑖𝑗𝑘 is the kth observation of the ith subgroup of the jth selection method, 𝜇 is the 

population mean, 𝛼𝑖 is the effect of the ith subgroup, 𝛽𝑗 is the effect of the jth selection 

method, and 𝛼𝛽𝑖𝑗 is the interaction between the selection method and the subgroup. 𝛼𝑖 

has the same levels defined above for 𝜏𝑖. 𝛽𝑗 has two levels of j, 0 for visual selections and 

1 for genotypic selections. Tukey’s HSD was again used to separate the subgroups. By 

comparing the subgroup means directly, we summarize which method had the greatest 

efficacy in selecting plants whose progeny have improved trait characteristics. 

Finally to examine the effects and group effects of the individual SSR alleles 

included in the study, a stepwise multiple linear regression was used following the same 

methodology as Hugie (2015). The regression was calculated in mixed direction and the 

probability-to-enter and probability-to-leave were both set as 𝛼 > .05. Because the 

ANOVAs only show the effects of the alleles as a group, it is possible that alleles with a 

significant trait effect could be hidden by non-significant alleles; this regression ensures 

that all possibilities were considered.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

Trait Heritability 

 Fiber length and strength are two of the most important traits controlling final 

product quality in textile mills; as such, both traits and their genetic basis have been 

thoroughly researched. Previous studies have found that UHML and FBS are moderately 

to highly heritable traits with fluctuations due to environmental and minor genetic 

effects. Due to the structure of the study as a CRD, genotypic effects cannot be separated 

into additive and dominant portions, preventing calculation of broad sense heritability 

(the ratio of total genetic variance to phenotypic variance) or narrow sense heritability 

(the ratio of additive genetic variance divided to phenotypic variance). However, narrow 

sense heritability can be estimated as the slope of a line drawn by simple linear 

regression correlating progeny trait values with their midparent value. Here, progeny 

rows were grown from selfed bolls harvested from individual plant selections meaning 

that the midparent value is the value of the selfed parent.  
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Figure 1. Estimation of narrow sense heritability of upper half mean length (UHML) 

using a simple linear regression of 2017 progeny UHML on 2016 parent UHML. The 

slope of the line of best fit estimates the narrow sense heritability for UHML. The 

Pearson correlation coefficient indicates the amount of variation explained by the model. 

 
 

 

 
Figure 2. Estimation of narrow sense heritability of fiber bundle strength (FBS) using a 

simple linear regression of 2017 progeny FBS on 2016 parent FBS with combined 

populations. The slope of the line of best fit estimates the narrow sense heritability for 

FBS. The Pearson correlation coefficient indicates the amount of variation explained by 

the model. 
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 Using combined phenotypic data from both populations and selection methods, 

overall trait heritability for UHML was estimated as 0.65 (Figure 1) and for FBS as 0.49 

(Figure 2). Estimating heritability for the two populations separately (Figure 3; Figure 4) 

shows a lower correlation for each which is expected due to the smaller population size 

and differing fiber qualities within each population. Realized heritabilities calculated 

following Fehr’s procedure (1987) for the phenotypic selections were 0.59 for 

Population 1 for UHML and 0.38 for FBS. Population 2 exhibited similar values at 0.60 

and 0.27 for UHML and FBS, respectively. It has been shown that heritability can differ 

depending on the genetic background of the population and these estimates conform to 

that standard (El-Hashash, 2017). 

 

 

 
Figure 3. Estimation of narrow sense heritability of upper half mean length (UHML) 

using a simple linear regression of 2017 progeny UHML on 2016 parent UHML with 

two segregating populations. The slope of the line of best fit estimates the narrow sense 

heritability for UHML. The Pearson correlation coefficient indicates the amount of 

variation explained by the model. Population 1 was an F2 from TAM 11K-13 ELSU/ Del 

Cerro//13P-54 ELSU and Population 2 was an F3 from TAM 11K-13/ TAM 06WE-621 

ESU. 
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Figure 4. Estimation of narrow sense heritability of fiber bundle strength (FBS) using a 

simple linear regression of 2017 progeny FBS on 2016 parent FBS with two segregating 

populations. The slope of the line of best fit estimates the narrow sense heritability for 

FBS. The Pearson correlation coefficient indicates the amount of variation explained by 

the model. Population 1 was an F2 from TAM 11K-13 ELSU/ Del Cerro//13P-54 ELSU 

and Population 2 was an F3 from TAM 11K-13/ TAM 06WE-621 ESU. 

 

 

 

These values help define potential advances that can be made in each trait solely 

through phenotypic selection. In consideration of visually based selection and testing of 

plants in the field, a comparison of estimated heritability and realized heritability shows 

how effective a given plant breeder was at identifying the trait of interest. If the goal is 

to make fiber quality advances as quickly and efficiently as possible, then new methods 

of selection could reduce the differences between realized heritability and narrow sense 

heritability.  

In smaller breeding programs where space, money, and time are limited, the main 

benefits of field screening, especially in early generations where genetic diversity is 

highest, is as a resource saving measure. Field screening for visually obvious traits, 
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mean fewer plants to hand harvest and fewer samples to be objectively or machine 

phenotyped, which, in the case of cotton, means HVI or the newer Advanced Fiber 

Information System (AFIS) which provides more information but is subsequently more 

expensive. In a perfect program, where every single plant in an early generation field 

could be accurately phenotyped, trait progression between generations would be 

maximized for highly heritable traits such as FBS or UHML. Introducing human 

deficiencies in selection creates a quality gap between the actual selections and the 

‘perfect’ selections. Large, commercial programs can minimize the difference by 

harvesting and phenotyping with instrumentation a larger number of samples, and even 

this does not account for error caused by genotypic and environmental interactions. This 

gap is an area where newer technologies such as high throughput phenotyping and 

genotypic methods have the most potential in advancing trait progress. 

In 2016, initial field selections for the phenotypic groups were made based on 

visual observations of fiber length. Figure 5 shows the UHML distributions of these 

selections compared with the random plants selected for QTL marker analysis. In 

population 1, the mean UHML of the random plants was 37.9 mm and 38.1 in the visual 

selections was 38.1 mm were not found to be different (p=.2943) using a student’s t-test 

with α=.05. In population 2, the random plant mean was 35.3 mm and the visual mean 

was 35.7 mm which were different (p=.0013) using the same test. 

The visual and marker assisted selections for Population 1 do not differ 

significantly, and while the means for Population 2 are significantly different; 

numerically they are within a millimeter of each other. Even though realized heritability 
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was high, this distribution supports that it is likely a large number of plants with good 

fiber traits within the visual group remained unselected due to human bias caused by 

skill level in selections, outer appearance of the plant regardless of fiber traits, and time 

restrictions. Even with highly heritable traits, genetic screening may be competitive 

versus phenotypic screenings the fiber traits of all plants in the population are estimated. 

 

 

 

 
Figure 5. Comparison of upper half mean length (UHML) distribution from visually 

selected plants to plants selected for simple sequence repeat (SSR) based marker assisted 

selection (MAS) in populations 1 and 2. The visually selected plants were identified as 

independent plant selections on the basis of fiber length, while the genetic selections 

were random. Population 1 was an F2 from TAM 11K-13 ELSU/ Del Cerro//13P-54 

ELSU and Population 2 was an F3 from TAM 11K-13/ TAM 06WE-621 ESU. 

 

 

 

 

 

 

 

 



30 
 

Analysis of Divergent Subgroups for Each Trait and Population 

 By selecting for divergent populations, the ability of each selection method to 

accurately discriminate between high and low value plants was evaluated. Across both 

populations, ANOVA for phenotypic selections showed significant divergence (p=.001) 

in trait means for both UHML and FBS (Table 2).  

 

Table 2. ANOVA of 2017 UHML and FBS for divergent subgroups selected 

based on phenotype of parents grown in 2016 in College Station. 

   Mean Square 

  Source DF UHML†
  FBS‡  

Population 1 subgroup§ 2 22.23*** 1701.57*** 

error 61 .84 221.92 

Population 2 subgroup 2 49.00*** 2072.31*** 

error 152 .70 206.78 

*** Significant at the .001 probability level.
 

†
Upper half mean length 

‡ 
Fiber bundle strength 

§
Three subgroups are included. Two divergent subgroups were formed from the 20% of plants with the highest 

UHML and FBS, the 20% of plants with the lowest UHML and FBS. The third subgroup is composed of plants 

selected for inclusion in 2017 based on the other fiber trait. For UHML this would be plants chosen based on either 

high or low FBS and vice versa. 
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Table 3. UHML and FBS 2017 means for divergent subgroups selected based on the 

phenotype of parents grown in 2016 in College Station. 

Population 1   Mean UHML† (mm) Mean FBS‡ (kN m kg-1) 

Top 20% § 
   37.7 a ¶   357 a 

No selection  37.2 a 347 b 

Bottom 20%  35.9 b 339 b 

    

Population 2      

Top 20%  35.8a 368 a 

No selection  35.2 b 362 a 

Bottom 20%   33.9 c 355 b 
†Upper half mean length 

‡Fiber bundle strength 

§ The top 20% subgroup is composed of 2017 progeny selected based on independent plant selections which had the 

highest UHML and FBS in 2016. The bottom 20% were based on the lowest UHML and FBS. The third, no selection, 

subgroup is composed of plants selected for inclusion in 2017 based on the other fiber trait. For UHML this would be 

plants chosen based on either high or low FBS and vice versa. 

¶ Subgroup Means within columns and populations that are followed by the same letter are not significantly different 

according to Tukey’s HSD at α = 0.05. 

 

The random selection subgroup was significantly different from the divergent subgroup 

for UHML in Population 2, but not for Population 1 (Table 3). Though not significantly 

different, the random selection subgroup was numerically intermediate to the other two 

which does agree with expectations based on the realized heritability for the population. 

 Conversely, subgroups formed by genotypic MAS showed no significant 

differences in either population or for either trait (Table 4). Numerical differences 

between subgroups also failed to follow any trend showing that the MAS failed to 

discriminate at even a minor level (Table 5). As well, realized heritabilities could not be 

accurately calculated for the genotypic selections due to inflation of the heritability value 

caused by lack of differentiation in the parental subgroups from 2016.   
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Table 4. ANOVA of 2017 UHML and FBS for divergent subgroups selected using SSR 

based MAS of genotyped parents grown in 2016 in College Station. 

   Mean Square 

 source DF UHML†
  FBS ‡ 

Population 1 supgroup§ 2 .28 706.70 

error 106 .86 272.81 

Population 2 supgroup 2 0.42 383.43 

error 241 1.70 265.37 

* Significant at the .05 probability level. 

†
 
Upper half mean length 

‡ Fiber bundle strength 

§ Three subgroups are included. Two divergent subgroups were formed from the 20% of plants with the largest 

number of alleles in the desired state for UHML and FBS in 2016, and the 20% of plants with the fewest 

number of alleles in the desired state for UHML and FBS in 2016. The third subgroup is composed of plants 

selected for inclusion in 2017 based on the other fiber trait. For UHML this would be plants chosen based on 

FBS QTLs. 

 

 

 

Table 5. UHML and FBS 2017 means for divergent subgroups selected using SSR based 

MAS of genotyped parents grown in 2016 in College Station. 

Population 1   Mean UHML† (mm) Mean FBS ‡ (kN m kg-1) 

Top MAS-predicted 20%§    36.2 a ¶ 346 a 

No selection  36.4 a 343 a 

Bottom MAS-predicted 20%  36.3 a 337 a 

    

Population 2      

Top MAS-predicted 20%  34.5 a 364 a 

No selection  34.5 a 362 a 

Bottom MAS-predicted 20%   34.4 a 366 a 
†Upper half mean length 

‡ Fiber bundle strength 

§The top MAS-predicted 20% subgroup was derived from the 20% of plants with the largest number of alleles in the 

desired state for UHML and FBS in 2016. The bottom MAS-predicted 20% subgroup was derived from the 20% of 

plants with the fewest number of alleles in the desired state for UHML and FBS in 2016. The third, no selection, 

subgroup is composed of plants selected for inclusion in 2017 based on the other fiber trait. For UHML this would be 

plants chosen based on FBS QTLs. 

¶ Means within columns and populations followed by the same letter are not significantly different according to 

Tukey’s HSD at α = 0.05. 
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Direct Comparison of Selection Methods 

The two populations utilized in the study had different parental origins and 

therefore ANOVAs were run separately for each population rather than include a three-

way-interaction in order to make results as clear as possible. Of the resulting data tables, 

the UHML analyses showed two way interactions of selection method and divergent 

subgroup that were significant at α=.01 and the FBS analyses showed this interaction 

significant at α=.05 (Table 6; Table 7).  

 

Table 6. ANOVA for Population 1, TAM 11K-13 ELSU/Del Cerro//13P-54 ELSU, 

comparing divergent subgroups formed by phenotypic and SSR† marker assisted 

selection methods for UHML and FBS. 

  Mean Square 

Source‡ df                               UHML§ (mm) FBS ¶ (kNmkg-1) 

Subgroup 2 20.48*** 1600.22** 

Selection Method 1 13.90*** 1157.49* 

Selection Method x Subgroup 2 29.33*** 820.43* 

error 167 0.86 254.22 
* Significant at the .05 probability level, ** Significant at the .01 probability level, *** Significant at the .001 

probability level. 

†Simple sequence repeats 

‡Divergent subgroups were selected from 2016 parents. For the phenotypic selection method, subgroups were chosen 

based on 20% highest and 20% lowest for UHML and FBS. Genotypic subgroups were chosen based on 20% with the 

most and 20% with the least number of alleles in the desired state for UHML and FBS. For both phenotypic and 

genotypic methods, a third subgroup is included based on plants selected for inclusion in 2017 trials based on the other 

fiber trait. For UHML this would be plants included on the basis of FBS and vice versa. 

§Upper half mean length 

¶Fiber bundle strength 
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Table 7. ANOVA for Population 2, TAM 11K-13 ELSU/TAM06WE-621 ESU, 

comparing divergent subgroups formed by phenotypic and SSR† MAS‡ methods. 

                                       Mean Square 

Source df                             UHML§ (mm) FBS¶ (kNmkg-1) 

Subgroup# 2 29.95*** 919.41* 

Selection Method 1 22.59*** 679.55 

Selection Method x 

Subgroup 2 41.78*** 1915.48*** 

error 393 1.31 242.71 
* Significant at the .05 probability level, ** Significant at the .01 probability level, *** Significant at the .001 

probability level. 

† Simple sequence repeat 

‡ Marker assisted selection 

§ Upper half mean length 

¶ Fiber bundle strength 

Divergent subgroups were selected from 2016 parents. For the phenotypic selection method, subgroups were chosen 

based on 20% highest and 20% lowest for UHML and FBS. Genotypic subgroups were chosen based on 20% with the 

most and 20% with the least number of alleles in the desired state for UHML and FBS. For both phenotypic and 

genotypic methods, a third subgroup is included based on plants selected for inclusion in 2017 trials based on the other 

fiber trait. For UHML this would be plants included on the basis of FBS and vice versa. 

 

 

For fiber length in Population 1, the phenotypic selections based on longest 

UHML and those which were randomly selected statistically had the longest (p=.05) 

mean UHML while the other subgroups were undifferentiated (Table 8). Population 2 

was similar (Table 9). It is interesting to note that the genotypic subgroups with no 

selection had a lower (p=.05) mean than the phenotypic subgroup with no selection even 

though data showed that the distribution between the parents of both groups had similar 

means. 
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Table 8. Mean 2017 UHML in Population 1, TAM 11K-13 ELSU/Del Cerro//13P-54 

ELSU, comparing divergent subgroups selected using phenotypic selection to those 

selected using SSR† MAS‡. 

Method by Subgroup§   Mean UHML¶ (mm) 

Visual - Longest 20%    37.7 a# 

Visual - No Selection  37.2 a 

Genotypic - Shortest MAS-predicted  36.4 b 

Genotypic - No Selection  36.3 b 

Genotypic - Longest MAS- predicted  36.2 b 

Visual - Shortest 20%   35.9 b 
†Simple sequence repeats 

‡Marker assisted selection 

§Divergent subgroups were selected from 2016 parents. For the phenotypic selection method, subgroups were chosen 

based on 20% longest and 20% shortest UHML. Genotypic subgroups were chosen based on 20% with the most and 

20% with the least number of alleles in the desired state for UHML. For both phenotypic and genotypic methods, a 

third subgroup is included based on plants selected for inclusion in 2017 trials based on fiber bundle strength. 

¶Upper half mean length 

#Means followed by the same letter are not significantly different according to Tukey’s HSD at α = 0.05. 

 

 

 

Table 9. Mean 2017 UHML in Population 2, TAM 11K-13 ELSU/TAM06WE-621 

ESU, comparing divergent subgroups selected using phenotypic selection to those 

selected using SSR† MAS‡. 

Method by Subgroup§   Mean UHML¶ ( mm) 

Visual - Longest 20%   35.8 a# 

Visual – No Selection  35.2 a 

Genotypic - Longest MAS-predicted    34.5 bc 

Genotypic – No Selection  34.5 b 

Genotypic – Shortest MAS-predicted    34.4 bc 

Visual – Shortest 20%   33.9 c 
† Simple sequence repeats 

‡ Marker assisted selection 

§ Divergent subgroups were selected from 2016 parents. For the phenotypic selection method, subgroups were chosen 

based on 20% longest and 20% shortest UHML. Genotypic subgroups were chosen based on 20% with the most and 

20% with the least number of alleles in the desired state for UHML. For both phenotypic and genotypic methods, a 

third subgroup is included based on plants selected for inclusion in 2017 trials based on fiber bundle strength. 

¶ Upper half mean length 

# Means followed by the same letter are not significantly different according to Tukey’s HSD at α = 0.05. 
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The analyses for FBS overall showed less separation between groups, likely due 

to overall lower heritability but most likely because the parents were less variable for 

FBS in each population. In both populations, while the phenotypically selected subgroup 

for strongest fibers had the numerically highest mean, it was not different (p=.05) from 

the mean FBS of the group genotypically predicted to have the strongest fiber (Table 10; 

Table 11). Literature commonly cites that genotypic selection methods are often more 

efficient than phenotypic methods for lower heritability traits (Hospital, 1997). Trait 

progression with FBS may therefore benefit more through genotypic selection than 

UHML. Table 3 shows that the visually selected subgroups for FBS do show a level of 

discrimination for phenotype. The population would need to be further followed through 

generations to observe whether phenotypic and genotypic subgroups segregate to a 

definitive level. 
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Table 10. Mean 2017 FBS in Population 1, TAM 11K-13 ELSU/Del Cerro//13P-54 

ELSU, comparing divergent subgroups selected using phenotypic selection to those 

selected using SSR† MAS‡. 

Method by Subgroup§   Mean FBS¶ ( kNmkg-1) 

Visual - Strongest 20%    357 a# 

Visual - No Selection    347 ab 

Genotypic - Strongest MAS-predicted    346 ab 

Genotypic - Weakest MAS-predicted   343 b 

Visual - Weakest 20%   339 b 

Genotypic- No Selection    337 b 
†Simple sequence repeats 

‡Marker assisted selection 

§Divergent subgroups were selected from 2016 parents. For the phenotypic selection method, subgroups were chosen 

based on 20% strongest and 20% weakest FBS. Genotypic subgroups were chosen based on 20% with the most and 

20% with the least number of alleles in the desired state for FBS. For both phenotypic and genotypic methods, a third 

subgroup is included based on plants selected for inclusion in 2017 trials based on upper half mean length. 

¶Fiber bundle strength 

#Means followed by the same letter are not significantly different according to Tukey’s HSD at α = 0.05. 

 

 

 
Table 11. Mean 2017 FBS in Population 2, TAM 11K-13 ELSU/TAM06WE-621 ESU, 

comparing divergent subgroups selected using phenotypic selection to those selected 

using SSR† MAS‡. 

Method by Subgroup§   Mean FBS¶  (kNmkg-1) 

Visual - Strongest 20%  368 a# 

Genotypic - Weakest MAS-predicted  366 a 

Genotypic - Strongest MAS-predicted  364 a 

Visual - No Selection    362 ab 

Genotypic - No Selection    362 ab 

Visual - Weakest 20%    354 b 
† Simple sequence repeat 

‡ Marker assisted selection 

§ Divergent subgroups were selected from 2016 parents. For the phenotypic selection method, subgroups were chosen 

based on 20% strongest and 20% weakest FBS. Genotypic subgroups were chosen based on 20% with the most and 

20% with the least number of alleles in the desired state for FBS. For both phenotypic and genotypic methods, a third 

subgroup is included based on plants selected for inclusion in 2017 trials based on upper half mean length. 

¶Fiber bundle strength 

#Means followed by the same letter are not significantly different according to Tukey’s HSD at α = 0.05. 
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Individual Marker Analysis  

 Only markers with sufficient segregation across all three populations were 

considered by (2015). Utilizing the final set of Hugie markers to evaluate the two 

populations used in this study showed that several markers were homogenous in one or 

both populations or did not have enough variation for non-biased analysis. These 

markers were therefore precluded from the individual marker ANOVAs and the stepwise 

regressions. 

 

 

Table 12. ANOVA for Individual Markers previously correlated with UHML in 

Populations 1, TAM 11K-13 ELSU/Del Cerro//13P-54 ELSU, and 2, TAM 11K-13 

ELSU/TAM06WE-621 ESU. Prob>F 

UHML†  Population 1 Population 2 

Marker ‡ 2016 2017 2016 2017 

BNL160498 0.3679 0.9595 0.027* 0.0448* 

CIR196197 0.0416* 0.2128 . . 

CGR5548162 . . . . 

NAU5046226 . . 0.3092 0.4442 

NAU1369247 0.0011** 0.2958 0.3380 0.6537 

BNL4017234 0.3250 0.9903 . . 
* Significant at the .05 probability level, ** Significant at the .01 probability level. 

† Upper half mean length 

‡ Each marker that was previously identified to correlate with UHML by Kari Hugie was individually analyzed using 

an ANOVA to determine whether there were significant effects on UHML between plants with QTL which were 

homozygous for the desired allele, heterozygous, or homozygous for an undesired allele. 
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Table 13. ANOVA for Individual Markers previously correlated with FBS in Populations 

1, TAM 11K-13 ELSU/Del Cerro//13P-54 ELSU, and 2, TAM 11K-13 

ELSU/TAM06WE-621 ESU. Prob>F 

FBS†   Population 1  Population 2 

Marker‡   2016 2017   2016 2017 

BNL160498 0.8301 0.3080  0.0425* 0.1447 

CGR6329232 0.1712    0.0278*  0.1852 0.2332 

NAU1369247 0.1064 0.3082  0.1487 0.5540 

TMB0382179 0.3278 0.2464  . . 

A07id76146 0.5674 0.1070  . . 

C2-0114149 . .  . . 

NAU1102231 . .  0.6705 0.1356 

DPL0236157 . .   . . 
* Significant at the .05 probability level. 

† Fiber bundle strength 

‡ Each marker that was previously identified to correlate with FBS by Kari Hugie (2015) was 

individually analyzed using an ANOVA to determine whether there were significant effects on FBS 

between plants with SSRs which were homozygous for the desired allele, heterozygous, or 

homozygous for an undesired allele. 
 

 

 

 For Population 1, none of the SSR markers evaluated were significant for either 

trait across both 2016 and 2017 (Table 12; Table 13). CIR196197 identified plants with 

improved UHML (p=.04), however the trait association was negative for the desired 

state while positive in the Hugie (2015) study. Similarly, heterozygotes of NAU1369247 

exhibited the highest UHML means. The stepwise regressions reflects the significance of 

these two markers by including them in the models for UHML for both years, however, 

CIR196197 showed opposite effects between the models for 2016 and 2017 (Table 14).  
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Table 14. Stepwise Regression of UHML† for individual plants in 2016 and progeny 

rows in 2017 for Populations 1, TAM 11K-13 ELSU/Del Cerro//13P-54 ELSU, and 2, 

TAM 11K-13 ELSU /TAM06WE-621 ESU, based on SSR‡ single marker analysis. 

Population 1   Population 2 

2016  Estimate Publication     2016 Estimate Publication 

Intercept 37.9604   Intercept 35.4252  

CIR196192  

     [2-1&0] §  -0.1581* 
Zeng et 

al.2009  
BNL160498 

     [0&1-2] -0.2618* 
Said et al. 

2013 

NAU1369247  
     [1-0&2] -0.298** 

Shen et al. 

2006     

adj. R2 = 0.0649    adj. R2 = .0243   

       

   2017        2017    

Intercept 36.4588   Intercept 34.4337  

CIR196192  
     [1&2-0] -0.2537* 

Zeng et al. 

2009  
BNL160498 

     [0&1-2] -0.1905* 
Said et al. 

2013 

NAU1369247  
    [1-0&2] -0.2385* 

Shen et al. 

2006     

adj. R2 = 0.0817      adj. R2 = .0215    

       
* Significant at the .05 probability level, ** Significant at the .01 probability level. 

† Upper half mean length 

‡ Simple sequence repeat 

§ Markers were classified based on the desired state of the allele. 2 signifies homozygous for the desired state. 1 

signifies heterozygous. 0 signifies homozygous in an undesirable state. Number in brackets following the marker 

identify the allele state which the estimates are based on. Only markers with a significant effect are included in the 

table. 

 
 
 
The stepwise models have adjusted R2 values of 0.0649 and 0.0817 for 2016 and 2017, 

respectively, meaning that useful applicability of the models is doubtful. The stepwise 

regression models for FBS did not have any markers which remained significant across 

both years (Table 15). 
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Table 15. Stepwise Regression of FBS† for individual plants in 2016 and progeny rows 

in 2017 for Populations 1, TAM 11K-13 ELSU/Del Cerro//13P-54 ELSU, and 2, TAM 

11K-13 ELSU /TAM06WE-621 ESU, based on SSR‡ single marker analysis. 

Population 1   Population 2 

2016 Estimate Publication  2016 Estimate Publication 

Intercept 320.6338   Intercept 352.415  

NAU1369247 

     [0-1&2] 
§
  -2.5537* 

Shen et al. 

2007  
BNL160498  

     [0&1-2] -3.6587** 
Said et al. 

2013 

    
CGR6329232  
     [1&2-0] -2.9433* 

Fang et al. 

2014 

adj. R2 = .0156     adj. R2 = .0385   

2017    2017   

Intercept 343.6081   Intercept 365.6213  

CGR6329232  
   [0&1-2] -5.2367* 

Fang et al. 

2014  
BNL160498  

       [0&1-2] -2.3188* 
Said et al. 

2013 

    
CGR6329232 
     [1&2-0] -3.264* 

Fang et al. 

2014 

adj R2= .0492      adj R2 = .0299   

       
* Significant at the .05 probability level, ** Significant at the .01 probability level. 

† Fiber bundle strength 

‡ Simple sequence repeat 

§ Markers were classified based on the desired state of the allele. 2 signifies homozygous for the desired state. 1 

signifies heterozygous. 0 signifies homozygous in an undesirable state. Number in brackets following the marker 

identify the allele state which the estimates are based on. Only markers with a significant effect are included in the 

table. 

 

 

 

For Population 2, marker BNL160498 was significant in at least one year for both 

traits. BNL160498 maintained significance during both years for UHML and in 2016 for 

FBS (Table 12; Table 13). In each case, the marker showed the correct trend in that the 

homozygous desired state had a higher (p=.05) mean. The stepwise models for both fiber 

traits included BNL160498 and included CGR6329232 in both years for FBS (Table 14; 

Table 15). Like Population 1, the models all had R2 values less than 0.1 making them 

poor predictors for fiber quality. In both populations, the stepwise models included 
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markers that were not significant on an individual level due to differences in error 

partitioning between the single and multivariate models. 

 Hugie (2015) indicated that marker BNL160498 had potential for portability 

between populations. The significance within Population 2 may show that this marker is 

potentially transferable. However, data in Table 16 indicate that numerical differences 

between plants homozygous for the undesirable state and for the desirable state were 

biologically small. Even if the marker can be transferred between populations its effects 

may remain limited. 

 
 
 

Table 16. Mean UHML and FBS in 2016 and 2017 to show influence of presence or 

absence of BNL160498 for Population 2, TAM 11K-13 ELSU/TAM06WE-621 ESU, in 

2016 and 2017. 

Year  mean UHML† (mm)  mean FBS‡ (kN m kg-1) 

  absent§
  present  absent present 

2016  35.08 b¶ 35.70 a  345.8 b 352.8 a 

2017   34.23 b 34.70 a   361.9 a 364.8 a 

† Upper half mean length 

‡ Fiber bundle strength 

§ The absent state is homozygous for the undesirable allele while the present state indicates homozygosity 

for the desirable allele state. 

¶ Means followed by the same letter within each row and header are not significantly different according 

to Tukey’s HSD at α = 0.05. 
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CHAPTER V 

CONCLUSION 

 

 One of the main goals of this study was to compare the efficacy of phenotypic 

selection with MAS using markers identified in a previous study undertaken by Kari 

Hugie (2015). In both populations used in the present study, trait selection based solely 

on phenotypic selection proved capable of selecting plants which would produce 

progeny with desirable UHML and FBS. Divergent populations selected from length 

data showed more differentiation than those selected for FBS which agrees with 

estimates of narrow sense heritability from this study and more advanced calculations 

from genetic mapping studies (Paterson et al., 2003). The FBS of the parents used to 

develop the segregating populations for this study also were apparently not sufficiently 

diverse to create the appropriate variability.  

The markers identified by Hugie (2015) used for the genetic based portion of this 

study failed to predict divergent populations or populations that differed significantly 

from their means for either trait in either population. The phenotypic based selections 

therefore predicted progeny phenotype more accurately than the genotypic selections. As 

stated in the literature review, one of the issues facing widespread use of MAS for 

improvement of fiber quality in cotton is the lack of robust and portable genetic markers. 

The Hugie study identified QTL markers that predicted strain phenotype on a level equal 

or near equal to phenotypic selection within three diverse populations, but this study 

does not support her conclusions when those same QTL markers were applied to F2 or F3 
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individual plants used herein. It is likely that by starting with a large number of markers 

and narrowing down to a subset applicable to all three populations as with the Hugie 

(2015) results effectively mirrored a genome-wide association study which is already 

known to be effective but only in the initial population in which the study is conducted, 

and which therefore lacks many of the benefits of MAS. 

 On a single marker basis, it is more difficult to draw conclusions because several 

of the markers of interest were already homogenous in one or both of the populations. It 

could be possible that the homogenous markers are robust and could be used 

concomitantly in making selections or in choosing parents and that the qualities that 

make them so lead to them being quickly fixed in any given breeding program. By using 

at least one interspecific population, such alleles may have shown their merit during 

analysis, but in populations from material that has been cultured for an extensive time 

those alleles and their respective markers no longer segregate and are therefore not 

useful in their new background.  

 For the markers which were not homogenous, few showed significance and in all 

but one case, even when they did show significance the data either showed an opposite 

correlation to the published information or did not show additive inheritance of the trait. 

Hugie (2015) also observed and disqualified a number of markers showing opposite 

effects within its populations and it could be that genotype by environment (G x E) 

interactions are the cause. G x E interactions are one of the main issues in assigning 

allelic effects and these interactions may even fluctuate between different years at the 

same location (Davidonis et al., 2004). Studying and accounting for these interactions 
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would require analysis and separation of genetic effects which would necessitate a more 

complex experimental design than the simplistic design of this study. 

There was one marker that was significant in Population 2 (TAM 11K-13 ELSU / 

TAM 06WE-621 ESU; true upland / upland population) for UHML and FBS in 2016 

and for length in 2017. BNL160498, which had previously been found to positively 

correlate with both traits had the same trend in all cases here. Although mean separation 

of positive and negative homozygotes was relatively small, this does suggest that there 

are markers with potential robustness in multiple populations (Table 16). 

The results of this study suggest that the QTL markers included cannot be 

applied to individual plants of segregating populations if those QTL markers were 

derived from different parental material. Using MAS in this manner should allow 

prediction of UHML or FBS in cotton. However, looking at the length distributions of 

visually selected plants from the field in comparison to the randomly selected plants for 

the genotypically selected portion (Figure 5) and the lack of difference between the two, 

it is clear that there must be a level of skill involved in field based selections, and that 

level of care when observing any given plant is negatively correlated with how many 

plants a single person can observe. The lack of difference means that, depending on the 

trait of interest, time spent making selections by persons with low skill in identifying 

superior genotypes is better spent taking plant samples for phenotyping by 

instrumentation, and this leaves a gap that superior phenotyping or genotyping methods 

could fill. While field based selections may allow even inexperienced breeders to 

exclude poor quality plants not related to the trait of interest, genotypic based methods 
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still have the potential to offer improved screening of quantitative traits under the correct 

circumstances. 
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