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ABSTRACT

This study focuses on the surface hydrology to contribute to its better parameterization through

inter-comparison and direct improvement with two scopes: (1) soil evaporation process, and (2)

the forest hydrological/physiological process based on Community Land Model (CLM).

In soil evaporation study, the behaviors of the in-soil system and soil-atmosphere interface are

explored and improved. The study of saturated front depths, under steady-state bare-soil evapora-

tion, updates the previous method, which also provides a better understanding of the mechanism

of the in-soil system. Through this investigation, the analytical and mass-conservative solution

of the front depth is developed from Darcy’s equation by applying two-direction flows in the soil

system. More importantly, applying soil-pore heterogeneity at the soil-atmosphere interface in the

model has a significant influence on the evaporation rate. Through this study, a practical equation

to use soil-pore heterogeneity is selected among known diffusion-based models (except empirical

models) for the above the soil layer. Also, this study verifies the fully physical-based model about

in and out soil system can mimic the behavior of bare-soil evaporation.

The study of the canopy process identifies that CLM4.5&5 fail to capture the environmental

complexity on tropical mountain rainforest in Costa Rica. The newer version (CLM5) shows some

improvement. However, it still has discrepancies with observations. This study highlights the is-

sue of the parameter for photosynthesis, but also the lack of in-canopy variability caused by overly

simple model structure for sub-canopy layers and site-specific features (e.g., large/frequent pre-

cipitation, steep slope). Conversely, multi-layered CLM (CLM-ml) alleviates temperature-related

variables and leaf wetness, and it is useful in self-diagnosing through the profiled observation.

For this test, the CLM-ml is updated for an in-canopy turbulence transfer, canopy shape, and car-

bon dioxide (CO2) concentration profile. This study indicates updating sub-canopy structure (e.g.,

canopy shapes), and the parameter for the turbulent transfer model can have a significant influ-

ence on model performance. However, more extensive monitoring of sub-canopies is necessary to

increase model reliability for this and other sites with complex terrain and vegetation roughness.
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1. INTRODUCTION

The main theme of this research is understanding of key mechanisms of land surface processes

and their role in hydrologic cycles and exchange of greenhouse gases, from the soil-vegetation sys-

tem to land-atmosphere interactions. Here, we explore how complex surface systems are currently

conceptualized for modeling and how these conceptualizations perform when tested against field

data. Also, we seek improvement of a model for the better understanding land surface system.

Land-surface process plays a vital role as a component of Earth system through the exchange

of heat, water vapor, and carbon dioxide from the terrestrial surface to the atmosphere. Substantial

and non-stationary change of vegetation/land-use by season and intensity of human activities can

significantly influence these processes (Kume et al., 2011; Fisher et al., 2009; Loescher et al., 2005;

Sheil, 2018). Including those anthropogenic/seasonal influences, dynamic interactions between

the land surface and the atmosphere extensively affect the current state of global atmospheric

dynamics. The LSMs have been increasingly studied for future climate predictions but also used

to examine climate impacts on the Earth surfaces. For reliable global-scale simulation, LSMs

should able to reflect any possible surface environment varied by topographical/regional/seasonal

difference, which requires extensive efforts: large amount of information or samples, gathered from

different ecosystems, is needed to increase reliability. We need to note that obtaining information

about the cause and effect of climate change relies on model simulation, and that it is used for

critical purposes such as climate change mitigation policy (Bonan, 2008). Hence, developing

accurate LSMs still remains a critical task for Earth system science.

In LSMs, modeling of surface-atmosphere interaction typically starts with incoming solar ra-

diation and precipitation, which are the most important exogenic drivers at the terrestrial surface.

The prediction of total absorbed energy from the sun, also known as net radiation Rn, and its par-

titioning is a key process to understand the surface process and to predict each major fluxes (Wang
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Figure 1.1: (a) Energy Balance, and (b) Water Balance.

et al., 2016) [Figure 1.1a]. The energy balance equation with the main elements is

Rn = λE +H +G+ Cm (1.1)

where λE is latent heat exchange vaporization, H is sensible heat exchange, G is sensible heat

exchange to the ground, and Cm is the other miner energy exchange including the metabolism of

energy for photosynthesis and storage flux in canopy air space (Heidkamp et al., 2018; Monteith

and Unsworth, 2013). This energy budget indicates that the water vapor flux (∼ λE) is one of the

key components, which highlight the role of water budget is also important in this system [Figure

1.1b]. The water balance equation is

P = ET + I +R + S (1.2)

where P is precipitation, ET is evapotranspiration, I is infiltration into soil, R is runoff, and S

is a storage term (Brutsaert, 2005). Consequently, these two simplified relationships, water and

energy balance, become a foundation of LSM, denoting various static or dynamic activities and

their interactions.

Water is intertwined with the most of Earth systems, which indicates its importance but also

means it makes modeling difficult. The water vapor flux is one of the key components of the energy
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exchange [Figure 1.1b] and the most essential source of any organism and the living environment.

For instance, vegetation is readily affected by the climate and particularly by water availability.

Conversely, it also has an important role in regulating the amount of the water vapor and other

greenhouse gases (e.g., carbon dioxide) via photosynthesis. On the other side, humans and trees

also pump to the surface from deep ground, which takes a long time to recharge water. Hence, the

water moves through various systems, which results in different temporal/spatial characteristics.

These each system even a little linked with the water cannot be easily disregarded to understand

the land surface system, and consequently the complex characteristics of and interactions between

different systems are difficult to capture through simple models. As the concepts included are

expanded, LSMs become increasingly complex and must represent multiple constituents (e.g.,

by matters), spatial scales (e.g., hillslope, watershed, continent), and time periods (e.g., hours,

seasons, decades).

Although considering numerous sub-systems is possible for an advanced model, here, for prac-

tical purposes, we split the focus into two to three main categories: soil (vadose zone), vegetation,

and surface boundary layer. One of the reasons to separate the system is the significantly differ-

ent time scale (Wang et al., 2006). For instance, precipitation quickly reaches the ground while

infiltration is a slow process, thus surface water tends to respond faster to the weather conditions

than does deep soil. The vapor state within the surface boundary layer has a faster response to the

turbulence transfer than the liquid state in soil or vegetation. Besides, the soil has a complicated

system itself to influence a water flux as infiltration or evaporation process, because the water flows

through irregular pore space and competing reciprocal actions (Mein and Larson, 1973; Shokri and

Salvucci, 2011; Shokri et al., 2008). Vegetation transfers the soil water into the surface through

transpiration and carbon uptake for photosynthesis, responding to the intensity of sunlight and at-

mosphere demands for water. The vegetation characteristic also changes dynamically in spatial

and time scale (e.g., tree growth and mortality) (Fisher et al., 2018; Medvigy et al., 2009; Bonan

et al., 2014).

Therefore, it is important to keep studying the soil and vegetation processes for the better
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understanding and accurate LSM, mainly through model diagnosis and updating. Among these

major systems, we limit our research scope and focus on the soil and vegetation system: (1) Soil

evaporation without vegetation, and (2) The matter and energy exchange in the vegetated surface.

This distinction is necessary because the existence of vegetation makes the fundamentally alters

the relative importance of the controlling variables like a switch. It is consequently divided by

which surface system either soil (e.g., evaporation) or vegetation (e.g., photosynthesis) is a main

controller. Here, atmospheric conditions are important in both cases, but the condition of soil

surface (e.g., soil surface temperature, water contents, pore size) can be the main driver for the soil

evaporation without vegetation. On the other hand, vegetation forms the canopy which results in

shaded soil surface (small energy exchange at the surface), and it conveys soil water through sap-

flow suppressing soil evaporation. Moreover, the vegetation is a key contributor to the exchange

of other elements (e.g., carbon). With dense canopy, the vegetation would become the main player

as the substance and energy exchange, although soil activity still exists.

To investigate those important elements in this study, the first section focuses on the interaction

between bare-soil evaporation and sub-surface behavior. Then, the second section of this study

addresses canopy processes in a point-scale LSM using Community Land Model (CLM). This

study is related to our research project about mountain rainforest in Costa Rica, so it allows us to

use extensive observations for the model improvement.

In the first section (Section 2), I focus on how shallow sub-surface conditions interact with

evaporation rates, particularly in the very early stages after wetting events. Through this study, a

new relationship for the saturated front depth (also known as the characteristic length) is derived

under the condition of a shallow water table. Because the front depth in a soil is highly related to

the evaporation rate at the surface, the more accurate estimation provides insight into improvement

of soil evaporation theory.

Section 3 examines the influence of pore-size heterogeneity on evaporation rates. Here, relative

evaporation models are explored, and their improved formulas are introduced to reflect heteroge-

neous pore sizes at soil surface based on a capillary theory and a pore-size distribution. This model
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is tested through a soil-atmosphere resistance scheme (Haghighi et al., 2013), whereby drying rates

are controlled by resistances in a soil layer and a viscous boundary layer at the soil-atmosphere

interface. Using a heterogeneous representation of wetted soil pores, this exploration give a great

insight of its role in between atmosphere and soil system.

In Section 4, a state-of-art LSM is explored, which contains complex physiological and hy-

drologic processes. Here, the performance of the Community Land Models (CLM4.5 and CLM5)

is examined against tower and ground measurements from a tropical montane rainforest in Costa

Rica. The study site receives frequent and intense precipitation and experiences high levels of rela-

tive humidity. A measurement tower there is equipped with an eddy-covariance and vertical profile

systems able to capture various micrometeorological variables, particularly for wet and complex

terrain. In this work, results from point-scale simulation for both CLM4.5 and its updated version

(CLM5) are compared to observed canopy flux and micro-meteorological data. Through this deep

examination, we suggest several improvements to the advanced land surface model.

Finally, in Section 5, more complicated LSM (Multi-Layered CLM, CLM-ml) is tested and

modified, to explore how the representation of in-canopy vegetation structure affects model’s per-

formance, against the same measurements in Costa Rica along with a vertical canopy profile tower.

For further investigation, several canopy shapes are applied via a statistical distribution, and their

“true” shape (more complex shape) is fitted using mixed-distributions. To reflect the canopy shapes

in CLM-ml, a first-order-closure model is applied for turbulence. This study highlights the impor-

tance of in-canopy characteristics for the accurate prediction of forest-atmosphere interactions.
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2. SATURATED DEPTH (CHARACTERISTIC LENGTH) OF POROUS MEDIA UNDER

STEADY-STATE EVAPORATION

2.1 Introduction

Evaporation is one of the key processes in the hydrological cycle, with obvious linkages to

other biogeochemical cycles. The interplay between evaporation and precipitation determines the

amount of water available for other hydrologic processes (such as runoff or subsurface transport

processes). Because the evaporative flux also acts as an important lower boundary condition for

global meteorological simulations, the evaporation rate is a vital component for understanding cur-

rent and future climate. In contrast to the evaporation from a free-water surface (such as a lake), the

physics of evaporation from porous media has complicated characteristics which are incompletely

understood. Conversely, evaporation from bare soil avoids the complications present in transpira-

tion where individual plant species responses biologically control the water flux rate. Natural soils

have irregular pore sizes, and significant spatial heterogeneity, so a-priori prediction of evaporation

from bare soil systems remains a challenge, and often depends on empirical calibrations. Because

the evaporation rate of a soil system depends on both the soil characteristics as well as the atmo-

spheric demands for water, The dynamic interactions between the supply of water and atmospheric

demand result in an extensive variety of evaporation behaviors through time (Lehmann, 2008).

During the evaporation process at the soil surface, the relative evaporation rate stays in nearly

constant while surface water decreases, and such process is not fully understood yet due to its

complexity. This relative drying rate tends to show different stages which correspond to periods

where different processes are in control of the evaporation rate. At the beginning of evaporation

with a fully saturated condition, the dying rate remains constant at the potential drying rate (Stage

I) until the condition reaches ‘critical water content’ at the surface (Sherwood, 1930). After that,

its rate starts to decrease; this period is called as Stage II. Based on this idea, two or three steps of

evaporation type are defined (Idso, 1974; Philip, 1957).
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Many studies parameterize such this Stage I/Stage II phenomenon using empirical methods

(Kondo et al., 1990; Chanzy and Bruckler, 1993; Griend and Owe, 1994; Swenson and Lawrence,

2014). However, an alternate approach has been introduced by some studies to more physically

interpret this phenomenon (Suzuki and Maeda, 1968; Schlünder, 1988), in which the water vapor

flux from the soil surface is controlled by the wind layer’s thickness (viscous boundary layer, VBL)

and pore size. This conceptualized model based on diffusion theory can represent Stage I and Stage

II together, and it proves the existence of a constant drying period.

On the other hand, to predict evaporation, an understanding of the mechanisms taking place

inside soil system (below VBL) is also vital, because the source of the evaporation comes from

inside of the soil. The water movement inside a soil system is governed by a number of possible

potentials, but the most important drivers are known to be the gravitational potential and matric

potential (which is also called capillary potential) (Hillel, 2003). The soil drying rate is highly

related to the two important activities depending on which potential dominates the total potential.

The negative pressure (suction) of a partially saturated soil leads to redistribution of moisture in

the soil, which is a key mechanism for continuously furnishing a top soil layer with the evaporative

water. Due to the physical relationship between the pore size distribution and the negative pressure

(Hillel, 2003), some models for the soil water have been derived based on capillary theory and pore

size distribution; one such representative example is the unsaturated hydraulic conductivity model

(Mualem, 1976).

Hence, many studies have emphasized the importance of soil characteristics to understand and

mimic the evaporation mechanism (Shokri et al., 2008; Shahraeeni et al., 2012; Haghighi et al.,

2013). Haghighi et al. (2013) showed the evaporation rate is controlled by the viscous boundary

layer (VBL) but that the water supply is also limited by soil resistance - conditions both below

and above the soil need to be taken into account. Using resistance terms based on the Schlünder

model and Darcy’s law, Haghighi’s results compared well to experimental data, and reduced the

discrepancy of the diffusion-only model for VBL. In this case, the evaporation rate is related to

atmospheric demands, which are dominated by diffusion process (Haghighi et al., 2013), and the
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water for the evaporation from the spil surface is supplied from the soil, and hence is controlled by

soil properties.

Figure 2.1: Water supply machanism for drying soil in pore scale. ∆z, ∆h, and ∆θ are the vertical
difference of height, pressure head, and the water contents. qz, qx, and e0 are vertical water flux,
horizontal water flux, and surface evaporation flux. The Figure is modified from (Lehmann, 2008)

.

Particularly, to track such the constant soil evaporation (Stage I), the soil characteristics for

water flows are an important factor. Yiotis et al. (2006) investigated the constant drying rate (Stage

I) using numerical simulations, and found that pore size and the pore size distribution are related

to the constant drying rate. Higher Bond number systems, where the gravitational force is larger

than surface tension, tend to have shorter periods of Stage I (Yiotis et al., 2006). Lehmann (2008)

also studied the Stage I evaporation, and used the relation between the duration of Stage I and the

evaporative front depth, which is also known as the characteristic length. This study expressed

the front depth as a function of capillarity, gravity, and viscous forces. The derivation of this

relationship is based on capillary potential or matric potential having a role of supplying the water

onto a surface (Lehmann, 2008). Here, the assumption was that the soil-water system consists

of thin films. The use of only capillary potential cannot be realistic since the matric potential is
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the bigger concept for soil system (Hillel, 2003). However, their analysis and results show that

the behavior of soil water based on capillary theory using the scheme of two films [Figure 2.1]

are similar to those based on matric potential, which indicates pore size and its distribution are

important to determine the front depth. In Lehmann (2008), the derivation of the characteristic

length is simplified for practical calculation and it is simulated well for relatively large particles

such as sand.

The saturated depth (front depth or characteristic length) essentially implies the characteristics

of surface water content and soil, which are closely related to evaporation rates. Recently, many

studies have investigated the use of the characteristic length concept in the development of models

for the movement of vapor and liquid water (see Shahraeeni et al. (2012); Sadeghi et al. (2012);

Neriah (2014); Sadeghi et al. (2014)), because the characteristic length enables the estimation of

evaporation using their correlations. For examples, applying the characteristic length theory, de-

rived from assumptions about vertical diffusion coming from dried pores below the soil surface,

and the Suzuki and Maeda (1968) model, which addresses vertical and horizontal direction trans-

fers within a boundary layer above the soil surface, time series of evaporation rates were well

modeled by Shahraeeni et al. (2012). Their results show the front depth has an important/useful

role in determining the water supply at the soil surface. Relationships such as this can also be used

in global simulations using Community Land Model (CLM5). The term used in the CLM work is

different (Dry Surface Layer - DSL), but the concept is the similar and it gives great improvement

on soil evaporation (Swenson and Lawrence, 2014; Lawrence et al., 2018). Sadeghi et al. (2012)

developed an exact solution and a simplified solution to the front depth (Sadeghi et al., 2012),

applying an assumption of the shallow water table and considering the vertical transport of water

supply based on Darcy’s law and Brooks-Corely unsaturated hydraulic conductivity (Brooks and

Corey, 1964).

The front depth has been taken to be formed by the single direction flow like the usual 1D sim-

ulation of soil moisture transport. However, it can be argued that the characteristic length is more

likely controlled by a two dimensional flows. This is mainly because the retention curve seems
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to provide volume changes (via volumetric water contents ∝ pressure head) within Darcy’s law

during the evaporation process, but the Darcy’s flow focuses on a pressure head difference. The

volume estimated from the head still represents the pressure not actual volume yet. Therefore, the

Darcy’s law without additional constraint cannot promise the mass conservation. Considering only

1D flow may not be adequate to represent the realistic behavior of the characteristic length. Based

on an idea of Lehmann (2008), if a soil system consists of films with various pore sizes, the water

movements are mainly governed by capillary force. In the film zone, there can exist both thick and

thin films of water [Figure 2.1], which tend to have different pressure heads. Then, the water held

by thin films would reach the surface to supply the surface evaporation. At the same time, the wa-

ter in the thin films lost through the surface evaporation is refilled from the adjacent thicker films

due to the different pressure heads. This water re-supply is viewed to take place in a horizontal

direction (contrasting with the vertical flow to the surface), and an equation for water movement in

the horizontal direction needs to be included (Lehmann, 2008). In Lehmann (2008), for the deriva-

tion of characteristic length an empirical equation, the van Genuchten-Mualem (VGM) model (van

Genuchten, 1980; Mualem, 1976), was used as a retention curve. On the other hand, the derivation

of Sadeghi et al. (2012) is based solely on vertical direction flow, assuming the one directional soil

system. Although Sadeghi et al. (2012) used the different retention curve and hydraulic conductiv-

ity equations (Brooks and Corey (BC) equation (Brooks and Corey, 1964) compared to Lehmann

(2008), their mathematical approach to the derivation of the characteristic length is identical. How-

ever, it is important to keep in mind their intrinsic ideas differ on whether evaporative water is

supplied vertically or horizontally.

Normally, the front depth is directly estimated using Darcy’s law without applying the conser-

vation of mass to avoid having to solve Richards equation numerically (Richards, 1931). Never-

theless, the question here is whether the front depth estimated using a single directional Darcy’s

equation can accurately represent accurate saturated depths. In this study, a comparison is made

whether the estimated front depth is different if conservation of mass is also used. To lead to better

agreement for the simplified model, the front depth theory is updated based on the approaches of

10



Lehmann (2008) and Sadeghi et al. (2012) under the steady state of evaporation (Stage I). Simu-

lations may show the suggested method would not only work well for the soil having somewhat

uniformly-distributed-particle sizes (large n for VGM), but it is also suitable for the soils having

inconsistently-distributed-particle sizes (small n). Comparisons will also be conducted between a

previous method (Lehmann, 2008; Sadeghi et al., 2012), the new method, and a numerical simu-

lation of Richards equation. We also discuss some of the difficulty in simulating the front depth

when the parameter ‘n’ is small, and point out how the new approach avoids this difficulty.

2.2 Methodologies

2.2.1 Theory

In this section we derive a new 2-dimensional flow approach for the estimation of characteristic

length. The derivation considers one grid box with large-scale flow occurring in a single dimension

(z-axis) flow qz on the larger scale. The assumption is that there is no horizontal flow between grid

boxes qx = qy = 0. Therefore, any horizontal flow shown in here is fine scale flow within a single

grid box. The scale we consider here would be smaller than Darcy REV-scale which is normally

used for field studies, but still larger than pore-scale because it is based on Darcy’s law. Then,

with conditions that soil water flows out of the soil system only in vertical direction, an anisotropic

Darcy’s law can be written as

qz = −Kxz(h)
∂h

∂x
−Kyz(h)

∂h

∂y
−Kzz(h)

∂h

∂z
= 0 (2.1)

qz = qxz + qyz + qzz (2.2)

where qz is total vertical flow, x and y are the horizontal directions, z is the vertical direction, K is

the unsaturated hydraulic conductivity (Kxz indicates flow direction from x to z), and h is pressure

head. In Eq. (2.2), qyz + qzz indicates horizontal flow joining vertical flow, and qzz is vertical flow.

If there is no any interference from horizontal flow (qxz = qyz = 0), qz becomes equal to qzz. It
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means there is no horizontal flow both within and between a grid box.

Figure 2.2: The scheme of evaporation process. With the idea that the evaporation rate occurs only
at active pores (thin films), the water under the inactive pores which is called as vertically stable
water (VSW) in this manuscript can migrate through vertical flux under the active pores.

The underlying idea used in past derivations of characteristic length is that the supply of the

water moves vertically to the soil surface due to difference of capillary head or matric head as

Sadeghi et al. (2012). Based on Darcy’s law, vertical flow can be written as

qz = −Kzz(h)

(
∂h

∂z
+ 1

)
(2.3)

where Kzz is the unsaturated hydraulic conductivity in the of vertical direction. This equation has

the same form to the anisotropic equation with qxz = qyz = 0. In this condition, dotted lines in

[Figure 2.2b] for horizontal flow are closed. Here, h can be directly related to water volume using

an empirical relationship (e.g., retention curves). However the head in the equation represents the

pressure, so the equation cannot necessarily insure mass-conservation.

To properly estimate the front depth and hold mass-conservation, we want to consider the case

where the horizontal flow within the grid box may not be zero qxz = qyz 6= 0. In other words, if

horizontal flows were allowed, the dotted lines in [Figure 2.2b] become open, and qxz and qyz are

no longer zero. At this time, the amount of horizontal flux qxz+qyz is unknown but we assume that
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its flow path is known. In this system, all water continues to eventually exit through one vertical

pipe (small pore). Therefore, it should hold qxz + qyz = qzz as an equilibrium, as long as qxz + qyz

allows the evaporation rate e0 or qzz. This also supports the idea that water can be taken to move in

the horizontal direction from a large pore into a nearby small pore, due to the flow which is forced

by their vertically different matric forces (Lehmann, 2008). In this schema the horizontal flows

should not contribute to long-distance water movement since the flows occur between adjacent

soil pores within the grid box. Smaller pores lose the water via evaporation (vertical direction) and

this active flow produces a vertical pressure difference. At the same time, the water recharges from

the surrounding bigger pores which have self immovable status by the vertical suction force. We

will call here this status as vertically stable water (VSW), and this water mainly flows out through

a smaller pore as long as the water is still connected in the horizontal direction [Figure 2.2b].

Therefore, these horizontal flows can be triggered by vertical flow which caused by a difference

between two heads which is equivalent to ∆h in the vertical direction (Lehmann, 2008). The

absolute vertical length (z) of the water migration from a large pore to a small pore is equal to

∆z [Figure 2.1; Figure 2.2], and so this water migration through a horizontal way is equivalent

to vertical flow by ∆h/∆z, so hydraulic conductivity would also follow Kzz(h) if the system is

isotropic. The combined effects of this process may form the front depth in soil system. Finally,

vertical water flow exists coming from lower grid in 1D system too. Therefore, the total resistance

by a soil system can be lower than our previous thought.

The equilibrium qxz + qyz = qzz can be also derived from Richards equation.

∂Θ

∂t
= −∂qz

∂t
=

∂

∂z

[
Kzz(h)

(
∂h

∂z
+ 1

)]
(2.4)

If the water contents in the vertical direction were always wet (the water film is not vertically dis-

connected) and the total water contents only changed in horizontal dimensions [Figure 2.2c], z can

be independent from other dimensions in Θ(t, x, y, z). Taking a vertical integration (z direction)
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in the both sides with small vertical distance δz, the Richards equation can be written as

∂Θ(t, x, y)

∂t
δz ≈

∫
z

∂Θ(t, x, y, z)

∂t
dz = Kzz(h)

(
∂h

∂z
+ 1

)
(2.5)

Finally, as in the left hand side, the change of water content Θ(t, x, y) with respect to time,

within a certain time and certain vertical length δz, becomes only a function of the horizontal

direction. According to this relationship, the change of the water amount (in length scale here) is

directly related to the change of horizontal size of water content ∂Θ(t, x, y)/∂t, and it is equal to

the vertical flux as in the right hand side [Figure 2.2c]. Therefore, we can substitute the horizontal

flux term in the right hand side as

Kxz(h)
∂h

∂x
+Kyz(h)

∂h

∂y
≈ Kzz(h)

(
∂h

∂z
+ 1

)
(2.6)

Again, this shows the equilibrium qxz + qyz = qzz is necessary for the mass conservation. The

left term represents horizontal fluxes which finally flow out via vertical flow (evaporation) and it

also represents the mass change and size change of water contents. We also need to note that the

left hand side equation is derived from ∂Θ/∂t, so the flow occurs in one grid box.

If the horizontal flow or the change of the water volume ∂Θ/∂t is only transported through the

same path as the vertical flux qzz, Eq. (2.2) to conserve the mass becomes

qz = −c ·Kzz(h)

(
∂h

∂z
+ 1

)
≈ −2 ·Kzz(h)

(
∂h

∂z
+ 1

)
(2.7)

where c is a constant for when the two relationships (two direction flows) are not identical in Eq.

(2.6), and the c may become 2 if they are identical. However, the exact value of c is unknown yet.

The important thing to note here is that the horizontal flux in Eq. (2.6) cannot exceed the vertical

flux because the horizontal flux depends on the vertical flux and the vertical flux is determined

by the evaporation rate. Here, c · Kzz(h) does not mean the over flow of qz, but it rather implies

lowered resistance against qz. If this is the case, the parameter c could be close to 2. On the other
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hand, the parameter c could be less than 2, if the horizontal flux is limited by a soil property such

as very low horizontal saturated Ks value. Also, c becomes 1 ( considering only a single direction

of flow like as Eq. (2.3)), if saturated Ks is zero

2.2.2 General Formulation

The front depth can be estimated by solving Eq. (2.7). If the total flux qz is given by the

evaporation rate e0, the front depth using pressure head terms and water contents terms becomes


Z(hsurf ) =

∫ hsurf
0

1/
(

e0
c·K(h)

+ 1
)
dh

Z(Θsurf ) =
∫ Θsurf

1
1/
(

e0
c·K(Θ)

+ 1
)

∂h
∂Θ
dΘ

(2.8)

Θ =
θ(h)− θr
φ− θr

(2.9)

where c is a constant (1 is single flow and 2 is double flow in this study), Z is the front depth also

known as the characteristic length (Lc), Θ is a normalized water content, θ is a volumetric water

content, θr is a residual water content, φ is a saturated water content or a porosity, ∂h/∂Θ can

be estimated through any retention curve, hsurf and Θsurf are the matric potential head and the

normalized volumetric water content at the surface (Lehmann, 2008; Sadeghi et al., 2012). Using

the normalized water content term is useful because it has a bounded range from 0 to 1 for the

numerical integration if it is necessary. The integration would be solved exactly or numerically

depending on the unsaturated hydraulic conductivity model K(Θ). The solution from numerical

integration is called here a semi-analytical method because it is much simpler than solving Richards

equation.

To account for the total mass loss V [L] to reach Θsurf from the fully saturated condition, Eq.

(2.8) adds the water content from the integration to become

V (Θsurf ) =

∫ Θsurf

1

(1−Θ) /

(
e0

c ·K(Θ)
+ 1

)
∂h

∂Θ
dΘ (2.10)
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and its cumulative time T from Eq. (2.10) is

T (Θsurf ) = V (Θsurf )/e0 (2.11)

Calculation of the total mass lost V is useful for comparison of the model results with nu-

merical simulations of Richards Equation, since it too is derived from mass conservation. Also,

the cumulative time which indicates the end of Stage I can be predicted using Eq. (2.11). Some-

times this cumulative time is useful because for some other models it can define the ending point

of Stage I evaporation. Comparing between the previous Eq. (2.5) method (c = 1) and the new

method (c = 2) given in Eq. (2.8), the suggested method has only a higher hydraulic conductivity

K than the previous method, without any complicated modifications.

2.2.3 Special Case (Closed-Form)

This section provides a closed-form equation using a relatively simple hydraulic conductiv-

ity model based on the derived equation in the previous section. Considering Brooks and Corey

hydraulic conductivity as (Sadeghi et al., 2012),

K(h) =


Ks (h ≤ hb)

Ks (h/hb)
−P (h > hb)

(2.12)

The front depth can be calculated as

Z(hsurf ) =


hsurf
e0

c·Ks
+1

(hsurf ≤ hb)

hb
e0

c·Ks
+1

+
∫ hsurf
hb

1/
(

e0
c·K(h)

+ 1
)
dh (hsurf > hb)

(2.13)

where hb is the head of air entry pressure, P is a Brooks and Corey parameter, c is 2 for our case

and 1 for previous case, andKs is saturated hydraulic conductivity. The solution for the integration

part in Eq. (2.13) follows the method described in Sadeghi et al. (2012), and the derivation is based

on assumption of e0 < c · Ks or e0 < c · K(h) (Sadeghi et al., 2012). Using a Maclaurin series
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expansion, the integration can be

∫ hsurf

hb

1/

[
−
(
− e0

c ·K(h)

)
+ 1

]
dh =

∫ hsurf

hb

∞∑
n=0

[
− e0

c ·Ks

(
h

hb

)P]n
dh =

∞∑
n=0

hsurf
Pn+ 1

[
− e0

c ·Ks

(
hsurf
hb

)P]n
−
∞∑
n=0

hb
Pn+ 1

− e0

c ·Ks
�

�
�

��(
hb
hb

)Pn (2.14)

The infinite series is equivalent to the Gaussian hypergeometric function, allowing Eq. (2.14) to

be rewritten as

∫ hsurf

hb

1/

[
−
(
− e0

c ·K(h)

)
+ 1

]
dh =

hsurf · 2F1

(
1,

1

P
, 1 +

1

P
,− e0

c ·Ks

(
hsurf
hb

)P)
− hb · 2F1

(
1,

1

P
, 1 +

1

P
,− e0

c ·Ks

) (2.15)

where 2F1 is the Gaussian hypergeometric function. The definition of the hypergeometric function

and detailed steps of conversion, from the infinite series like as Eq. (2.14) into 2F1, are described

in the Appendix A. In general, the coefficients of the resulting hypergeometric function do not

allow to be reduced a specific special function (i.e. Bessel function), but numerical evaluation

of the Gaussian hypergeometric function is straightforward in modern computer programming

systems such as Matlab or Python. Based on Eq. (2.15), some simulation results are also presented

in [Figure 2.3].

Additionally, the total volume of mass loss can be estimated as

V (hsurf ) =


0 (hsurf ≤ hb)∫ hsurf
hb

(1−Θ(h))/
(

e0
c·K(h)

+ 1
)
dh (hsurf > hb)

(2.16)

where Θ(h) is (h/hb)
(2−P )/3 here and the integration can be estimated in terms of the hypergeo-
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Figure 2.3: Test Simulation using Eq. (15): c = 1 (Sadeghi et al. (2012)) and c = 2 (New method).

metric function as

∫ hsurf

hb

(1−Θ(h))/

(
e0

c ·K(h)
+ 1

)
dh

=

[
h ·

(
2F1

(
1,

1

P
, 1 +

1

P
,− e0

c ·Ks

(
h

hb

)P)

+
3

P − 5

(
h

hb

) 2−P
3

2F1

(
1,
P − 5

3P
,
2P + 5

3P
,− e0

c ·Ks

(
h

hb

)P))]hsulf
hb

(2.17)

To estimate the maximum depth Zmax(= Lc) (the depth when hydraulic disconnection occurs) for

this new model in simplified version, we can follow the derivation steps outlined in Sadeghi et al.

(2012), and find:

Zmax =hb/

(
e0

c ·Ks

+ 1

)
+ he −

he
P + 1

ln(2)− hb

+
hb

P + 1
ln

(
e0

c ·Ks

+ 1

)
− he

(
ln(2)

1− P
+
π2 − 12ln(2)

12P (1− P )

) (2.18)
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where he he is equal to hb [e0/(c ·Ks)]
−1/p. This expression is an approximate solution but it

provides reasonable results (Sadeghi et al., 2012).

2.3 Simulation Setup

First, while ideally comparison of the models would be made against field measurements, the

fine scale of vertical resolution of soil moisture needed for comparison with the model is not readily

attained. To allow, therefore, between a single-flow (old method) and double-flow (new method)

approaches for the front depth Eq. (2.8) are first compared using the Richards equation Eq. (2.4)

as "true" data set. The Richards equation requires numerical method to solve, so it is accomplished

by the aid of a HYDRUS 1D program for this test. HYDRUS 1D solves the uses a finite element

approach for the numerical solution of Richards equation in one dimension. The Richards equa-

tion is derived based on mass-conservation, so it can be a good target for this comparison. Since

HYDRUS 1D does not use the simplifications of the Richards equation, it holds the potential to

match better the true physical conditions of the soil moisture flow. The simulations for this study

were designed to estimate the characteristic lengths and to enable comparison between the analyt-

ical solutions and the numerical solution. For that, both the HYDRUS 1D program and the two

characteristic length solutions use the same retention curve equation, which requires soil physical

parameters. Given the choice of the Van Genuchten-Mualem model (VGM) for the hydraulic con-

ductivity equation, parameters n, α, and Ks are required. Therefore, following methods for those

parameters are taken from Carsel and Parrish (1988): (the r2 for these coefficient values are 0.94

and 0.92 (Lehmann, 2008).

α = 0.0087 · (n− 1) [mm−1] (2.19)

Ks = 0.0077n7.35 · 103 [mm · day−1] (2.20)

where n is a VGM parameter related to a pore size distribution, α is the inverse air entry pressure

hg, Ks is the saturated hydraulic conductivity.
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For the HYDRUS 1D simulation as a "true" result, the setting of the simulation mimics the

way Lehmann (2008) did. An initial condition of h = −1mm was set for the entire simulation

domain; this is equivalent to saturation. The simulation domain was set at a depth of 3m, and 501

nodes were used in the calculations. For the lower boundary, a zero-flux boundary condition was

used. For the upper-boundary flux, again following the simulations of Lehmann (2008), a constant

evaporation rate of either 3mm/day or 10mm/day was set to represent low and high atmospheric

demands. Using the simulation results from HYDRUS 1D, additional analysis is made to estimate

the front depth at the end of Stage I. For numerical reasons which will be discussed below, the

drying front depth in the simulations was defined as the depth where the volumetric water content

was equal to 0.99 of saturation. Additionally, because the condition of the end of Stage I should

be defined, the criteria was set as 15 bars at the soil surface (Lehmann, 2008; Kozak et al., 2005).

For soil-water retention curve and hydraulic conductivity models, the van Genuchten-Mualem

models can be written as

Θ = [1 + (αh)n]−(1−1/n) (2.21)

K(Θ) = KsΘ
τ

[
1−

(
1−Θ

1
1−1/n

)1−1/n
]2

(2.22)

where n is a parameter related to a pore size distribution, ℵ is equal to 1/hg, K is the hydraulic

conductivity, Ks is the saturated hydraulic conductivity, and τ is 0.5. Unlike Sadeghi et al. (2012),

who used the Brooks and Corey equation for the soil retention curve and the Gardner equation

for the unsaturated hydraulic conductivity, the integral forms of Eq. (2.8),and Eq. (2.10) based

on VGM models cannot be exactly solved, and so numerical integrations are employed for this

simulation. However, this loss of an analytic solution is outweighed by the value of the greater

verification and acceptance of the VGM models. Moreover, Eq. (2.8) and Eq. (2.13) are not

significantly sensitive to the method use to conduct the numerical integration for this simulation.

The shapes of the functions are not complicated (normal or exponential shape) and, additionally,

the integral range is small if Θ domain is considered. This method provides a much lower com-
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putational time compared to a complete numerical solution of Richard’s equation. For example,

to solve Eq. (2.8) and Eq. (2.13), 20 nodes in one time were enough to calculate the integration

but about 500 nodes in many times (iterated through time) were necessary in HYDRUS for this

study. It should be noted that because, maximum front depths and time are usually unknown, a

trial-and-error approach is often needed to find the proper number of nodes and maximum depths

and time for the HYDRUS model.

For the comparisons, various plots will show simulation results of the front depth and total vol-

ume/time at the end of Stage I, with different soil properties ‘n’. The first simulation is conducted

based on a single direction flow Eq. (2.8) with (c = 1) to test the previous theory and the results

are compared with the results of Richards equation Eq. (2.4) under HYDRUS 1D. Due to that the

Richards equation is based on mass conservation, the cumulative times from Eq. (2.10) are also

compared. Then, the new methods given in Eq. (2.8) and Eq. (2.10) with (c = 2) are simulated

and the results are compared in the same way.

Additionally, the experimentally-based data from the literature (Sadeghi et al., 2012; Shokri

and Salvucci, 2011) are compared using the exact solution which is derived based on Brooks and

Corey hydraulic conductivity in the section 2.1. Except newly introduced parameter (c = 2), the

comparison way and calculation methods (other soil parameters) are identical with the previous

study (Sadeghi et al., 2012).

As long as concerning about the terminology and abbreviation, we use Lc = Zmax as the

saturated depth at the end of Stage I. Also, Z should be between 0 and Zmax based on Eq. (2.8).

The characteristic length (Lc) is used in (Lehmann, 2008), and it is also called as the maximum

water table depth (Dmax) in (Sadeghi et al., 2012). These all represent a depth from a surface to the

fully saturated location in the soil system. Therefore, it can be also possibly called as front depth,

wet front, saturated depth, etc.

2.4 Results and Discussion

In the comparison, the previous method cannot adequately predict the front depth, although it

tends to follow the behavior (HYDRUS 1D) driven by different soil properties [Figure 2.4]. Using
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the front depth equation based on single-direction flow Eq. (2.8) with (c = 1) results in low front

depths compared to the Richards Equation Eq. (2.4) simulated by HYDRUS 1D. As was found in

the previous study (Lehmann, 2008), the characteristic lengths (Lc) are well simulated if the soil

parameter ‘n’ is large (n > 2). Overall, the trend between n and maximum drying front depth

(Lc) is well predicted, although there is again significant divergence of the predictions at small ‘n’

values. Like the front depth, the total duration until the end of Stage I, which is related total mass

loss Eq. (2.10), are not well predicted [Figure 2.5].

Figure 2.4: Estimated front depth (Lc = Zmax) vs VGM parameter ‘n’ where e0 is 3 mm/day and
10 mm/day. Dotted lines are estimated by HYDRUS and general lines are calculated based on
using previous method Eq. (2.8) with (c = 1). The Root Mean Squared Errors (RMSE) of the
prediction in this graph are 12.114 mm for 3 mm/day and 3.151 mm for 10 mm/day.

On the other hand, the suggested two-direction flow method Eq. (2.8) with (c = 2) introduced

in this study shows better agreement [Figure 2.6] for the front depth, compared with [Figure 2.4]:

the Root Mean Squared Errors (RMSE) are decreased by 85% and 68% in each 3mm/day and

10mm/day simulation. In the results of total duration and cumulative mass losses, simulations
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Figure 2.5: Days for the end of Stage I vs VGM parameter ‘n’. Lines are earned through Eq. (2.10)
and Eq. (2.11) with (c = 1) and marks from HYDRUS.

estimated by the newly presented method agree well with those given by the Richard’s equation

simulation [Figure 2.7;Figure 2.8]. These tests indicate that the new theory gives an improvement

of the estimation of the front depth and the conservation of mass. This result reveals that the

formation of the saturated depth are not mainly controlled by only single direction flow, but they

are rather affected by both horizontal redistribution and vertical direction flows.

Newly introduced method can reasonably predict the front depth as Zmax or Lc at the end of

Stage I, but it also shows possible predictions according to the state of surface water contents as

Z(Θsurf ). An additional example supports the idea between surface water contents and the front

depth using the semi-analytic solution [Figure 2.9]. It shows, although the results are not perfectly

matched, the method introduced in this study has ability to predict the front depth depending on

the surface water content.

An interesting aspect in [Figure 2.9] is that soils with very small ‘n’ (low homogeneity) tends

to have bigger discrepancy in the comparison, although the front depth at the end of Stage I as in
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Figure 2.6: Estimated front depth (Lc = Zmax) vs VGM parameter ‘n’ where e0 is 3 mm/day
and 10 mm/day. Dotted lines are estimated by HYDRUS and general lines are calculated based
on using previous method Eq. (2.8) with (c = 2). The RMSE in this graph are 1.875 mm for 3
mm/day and 0.993 mm for 10 mm/day.

[Figure 2.6] is well simulated with most of soil properties. The errors with small ‘n’ may result

from numerical error, inexact c parameter, or more possibly inadequate definition of front depth

(Θ = 1). Also, one might cast doubt to the criteria of the pressure head for the end of Stage I

(−1500kP ) for all soil types.

During this study, precision and accuracy problems arise in numerical method (HYDRUS) to

identify the true front depth, which can cause in the bigger error with small n. If we look the

profile of depth of the HYDRUS simulation in [Figure 2.10], the boundary of saturated zone tends

to reach a deeper depth quickly with a small value of ‘n’, which makes it difficult to define where

the front depth (Θ = 1) is. By increasing the precision in HYDRUS, the deep depth (long tail)

easily goes to infinity. Therefore, it may be dubious to define such deep-depth as the front depth or

evaporative depth, because this deeper depth does not seem the main contributor of the evaporation

(see n = 1.1&e0 = 3mm/day in [Figure 2.10]). As can be seen in in the figure, distinguishing
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Figure 2.7: Days for the end of Stage I vs VGM parameter ‘n’. Lines are earned through Eq. (2.10)
and Eq. (2.11) with (c = 2) and marks from HYDRUS.

between the depths of −0.3m and −0.5m seems unimportant for determining an exact saturated

depth. It is more essential to find the actual contributing depth for the evaporation.

Hence, some criteria may be necessary to use a numerical way. In order to avoid selecting

an incorrect front depth caused by the long tail and wasting time for changing precisions, more

discretization is usually required to reduce numerical error or to get a more precise solution, which

results in a longer computational time. In [Figure 2.6], the front depth is defined at the water

content equal to 0.99 instead of 1 for both HYDRUS and methods from Eq. (2.8). On the other

hand, a simulation in [Figure 2.11] shows that the front depth is defined at the water content equal

to 0.95, which does not show a significant change of the total mass loss (no figure) but the front

depths seem fit better. However, we need to notice that front depth from HYDRUS tends to slightly

decrease in all range comparing to [Figure 2.6].

Actual data comparison also shows the improvement by the two-direction flow solution. The

experimentally-based data from literature are used for this test as previously accomplished in
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Figure 2.8: Plots of total mass loss with different soil properties for comparing results of HYDRUS
and Eq. (2.10): Old version is with (c = 1) and new version is with (c = 2).

Sadeghi et al. (2012); Shokri and Salvucci (2011) [Figure 2.12]. These graphs, the relative evap-

oration rate versus the front depth normalized by the maximum depth Zmax , clearly show that

evaporation rate is strongly related the front depth, and the activity of evaporation rate almost dis-

appears when an evaporation depth is deeper than Zmax except for Chino clay. In the case of Chino

clay, the significantly different behavior from the others may be caused by adapting lower poten-

tial evaporation due to the insufficient information (Sadeghi et al., 2012). The figure also shows

differences between the old formulation (c = 1) and the proposed method (c = 2). The average

relative evaporation rate is decreased by 89% in the old ones and 98% in the new ones after the
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Figure 2.9: Dotted lines are new method and the lines are generated by HYDRUS (e0 = 3mm/day).
The filled circles indicates the end of Stage I (h=-1500kP).

stage change: these average values for Stage I were estimated about the relative depth 0.5 ∼ 1

(Z/Zmax), and between 1 and 1.5 for Stage II. These average values for Stage I are 0.722 for old

methods and 0.657 for the new ones, and 0.077 and 0.011 for Stage II. Both graphs have similar

behaviors as mentioned above, but a model taking into account two direction flows tends to result

in more consistency at around the transition point where the Stage I is ending (the front depth reach

the maximum value Zmax).
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Figure 2.10: Detailed plots front depth behavior with different parameter ‘n’ in HYDRUS simula-
tion.
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Figure 2.11: The same graph as [Figure 2.6] but the front depth is defined at the water content
equal to 0.95 in results from HYDRUS. In [Figure 2.6], it is defined as 0.99.
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Figure 2.12: Experiment data plot using Zmax based on Eq. (2.18): it is the same as Sadeghi et al.
(2012) if c = 1, and it is from the introduced method if c = 2.
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2.5 Summary and Conclusion

This study introduces two-direction flow concept to catch both the improved prediction of the

saturated depth and the conservation of mass. The change of key concept is explored by the inter-

comparison between the previous model, the newly derived model, the mass-conservation model

(HYDRUS1D), and observations. Different from the previous method (single-direction flow), the

newly introduced model is derived through anisotropic Darcy’s law but also Richards equation,

which shows a need to consider both horizontal and vertical flows (hydraulic conductivities) to

capture mass-conservation. The flows are finally caused by vertical pressure differences, but the

water is supplied through two directions: vertical to vertical flow and horizontal to vertical flow

within one grid cell. The new equation, which has an integral form, has a similar equation form as

the previous method, so derivation of exact solution and simplified solution is possible as Sadeghi

et al. (2012) has been done.

The previous model can mimic the trend between soil parameter ‘n’ and the front depth from

HYDURS 1D, but its depth is significantly under estimated. The value of the total duration which

is calculated from total masses Eq. (2.10) is not well predicted [Figure 2.5]. However, the newly

introduced method Eq. (2.8) with (c = 2) results in better agreement [Figure 2.6; Figure 2.12] than

with previous method [Figure 2.4; Figure 2.12], compared with "true" sets (e.g., the HYDRUS1D

and experiment-based data from the literature). This result supports that the front depths can be

controlled by a vertical direction flow, but they can be also significantly affected by horizontal di-

rection flows. Adding horizontal flow within the front-depth equation, which then loses more water

or has less resistance for the evaporation flux, gives such stronger agreement. In the consequences

of cumulative mass Eq. (2.10) and total time Eq. (2.11), calculated based on the new method,

they are well agreed with those by Richards equation [Figure 2.7; Figure 2.8]. Therefore, these

results indicate that new theory gives an improvement of both the estimation of the maximum front

depth and the mass conservation for a broad of soil category. Additionally, it shows a possibility

of estimating the front depth not only for the end of Stage I but also for depending on different

surface water contents [Figure 2.9].
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Additionally, this study also highlights the advantage of analytical/semi-analytical solution for

the saturated depth. Of course, A lot of computational time can be saved, but a confusion caused by

numerical error can be also prevented. In the simulation of the HYDRUS 1D for Richards equation,

the profiles of water contents with small value of ‘n’ makes difficult to identify the exact saturated

depth, because the depth varies with different model settings. Due to this sensitivity, a criterion

is required to avoid such errors. In this study, the locations of the front depth are extracted from

the profiles at the water content equal to 0.99. This uncertainty may appear under measurement

and it can consequently cause problems in the interpretation of experimental data and simulations.

Therefore, further study is necessary to better understand the front depth and to develop appropriate

criteria for it.

As previously mentioned, simulations with relatively small ‘n’ (n < 2) tend to have bigger

discrepancy in [Figure 2.9]. It is still not clear whether there is an error in the numerical solution

of the Richards equation or there are inherent difficulties with small ‘n’ in the new method. Also,

one might question to the criteria of the pressure for the end of Stage I (−1500kP ) for all soil types.

Finally, the parameter (c = 2) in the new model could vary if there were anisotropy of hydraulic

conductivity, as might be normally found in a real soil system. It is necessary to investigate these

unresolved problems in future research, to understand better soil-water movement and to improve

its prediction.
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3. INVESTIGATION OF DIFFUSION-BASED SOIL EVAPORATION MODEL FOR

HETEROGENEOUS PORE SIZES AND ITS APPLICATION WITH SOIL RESISTANCE

SCHEME

3.1 Introduction

As mentioned in previous section, some evaporation studies utilize a scaled (relative) evapo-

ration rate e/e0 (Lehmann, 2008; Shahraeeni et al., 2012; Haghighi et al., 2013) also known as

a beta function β (Kondo et al., 1990; Sakaguchi and Zeng, 2009), where e is actual evaporation

rate and e0 is potential evaporation rate. This scaled drying rate is useful to identify major controls

beyond the atmosphere condition, and it tends to have several stages responding to the different

main controls of soil evaporation process. Starting from a fully saturated condition, the drying

rate remains constant as much as a potential drying rate (Stage I), until the surface water contents

reaches ‘critical water content’ or often known as ‘field capacity’ (Sherwood, 1930; Sakaguchi

and Zeng, 2009). Then, the evaporation rate decreases and this period is called Stage II. The de-

creasing rate becomes slow, and eventually it can be called as Stage III. Based on this concept, the

features of relative evaporation are defined as two or three stages (Idso, 1974; Lehmann, 2008),

and this behavior is often parametrized resting on empirical methods (Merlin et al., 2016; Chanzy

and Bruckler, 1993; Kondo et al., 1990; Sakaguchi and Zeng, 2009).

Several attempts have been made to capture such feature of the relative evaporation based

on physical-based relationships (e.g., diffusion theory) within Viscous Boundary Layer (VBL)

(Suzuki and Maeda, 1968; Schlünder, 1988). S&M (Suzuki and Maeda, 1968) and SCH (Schlün-

der, 1988) models follow the critical behavior of soil evaporation, where the relative evaporation

rate decreases slowly at the beginning (not a perfectly constant) and then starts to sharply drop

at some points during a decrease in the water content. Such concept makes models possible to

represent Stage I and Stage II in one physical equation. Here, this behavior varies depending on

the wetted pore size P as in SCH or the particle size W (total or maximum pore size including the
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wetted pore) in S&M, if viscous layer thickness δ is fixed. The division of Stage I and Stage II

more clearly appears in the case of small values of W or P [Figure 3.1]. In such models, evapora-

tive flux from the soil surface is mainly regulated by (1) thickness of wind layer and (2) the relative

wet-pore size (wet area). Based on these features, many studies have been accomplished such as

Lehmann et al. (2018); Shokri et al. (2008); Shahraeeni et al. (2012); Haghighi et al. (2013). Inside

the viscous boundary layer, advection and diffusion co-exist, and among them the diffusion pro-

cess is dominant for the bare soil evaporation (Haghighi et al., 2013). However, the model in VBL

does not always successfully capture all possible evaporation activities. Sometimes experimental

data show opposite or different behaviors: Stage I can be very short with small P and W (Chanzy

and Bruckler, 1993; Teng et al., 2014). Therefore, it is still necessary to update such models via

more precise understanding of such phenomenon.

Figure 3.1: Plots of S&M models and SCH model (Suzuki and Maeda, 1968; Schlünder, 1988).

Considering only VBL cannot be sufficient to demonstrate evaporation activities, because the

evaporating water is supplied through the Soil Layer (SL) in a liquid or vapor state. Haghighi et al.

(2013) shows the evaporation rate is controlled by the condition within VBL including atmospheric

demand and surface water contents, but its water supply is also controlled by soil resistance. The

study indicates that conditions of both below and above soils need to be taken into account in soil
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evaporation models. Applying the resistance terms based on both the Schlünder model for VBL

and Darcy’s law for SL, the combined models can be successfully simulated compared to experi-

mental data, and it alleviates the weakness of the only diffusion-based model (e.g., overestimation

in stage II and III). Shahraeeni et al. (2012) performed a simulation utilizing both S&M model

for VBL and the front depth theory for SL (Lehmann, 2008) to reflect the additional contribution

to the evaporation through invaded pores (from deep soil). The simulated results follow well the

experimental data in several ambient conditions with relatively homogeneous soil (small variance

of pore size distribution). These studies highlight that the role of soil is important as much as the

atmospheric condition above the soil surface.

In spite of the consistent model improvement, an evaporation model cannot satisfactorily mimic

observations yet, and some significant disagreement still exists against gauged data in some envi-

ronment conditions. The reason of such errors is not clear, and so, investigation is still necessary

to reduce the gap between our understanding and the complicated natural phenomenon. Some

experiments show the Stage I rapidly disappears under high demand of atmospheric condition

(Shahraeeni et al., 2012; Mosthaf, 2014). Although the diffusion based models (SCH or S&M)

with soil resistance models are used as a main controll on Stage I or II, these simulations are

not able to adequately fit to experimental data (Mosthaf, 2014). Mosthaf (2014) tested numerical

simulation based on Schlünder’s model considering key elements (e.g., thermal conductivity, va-

por/liquid flux, etc.) inside of the soil system, and the sensitivities and behaviors were explored

applying different simulation parameters. In the one of the investigations, Mosthaf (2014) cast

doubt on the selection of pore sizes for the SCH model (usually mean or median of pore size are

used for the model), because pore sizes of natural soil are not actually homogeneous. From this

idea, a calculation of the pore size is attempted by Mosthaf (2014) in Representative Elementary

Volume (REV) scale, based on Young-Laplace equation to apply its variation into the Schlünder’s

models. The test results in some improvement of the model at high demand atmosphere condition

but also shows a needs of more study.

However, the effect of pore-size heterogeneity, which results in ever-changing wet-pore size
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with surface water contents, is not sufficiently investigated yet at REV-scale with various soil types.

Like as Mosthaf (2014), the equations are based on assumptions such as homogeneous pore (SCH)

or continuum system (S&M), so it may not be adequate to simulate relative evaporation due to their

over-simplification (Mosthaf, 2014). Moreover, most of the experimental data and simulations

have had relatively large particles and a large Van Genuchen (van Genuchten, 1980) parameter

n which means the soil is close having homogeneous conditions. Therefore, it is necessary to

investigate VBL-related models in the case of relatively inhomogeneous soil grains.

Moreover, relative evaporation models in VBL often employ S&M and SCH model to connect

between soil surface and the atmosphere. Although the two are derived based on diffusion-based

theory and both seem to have similar behaviors, their outputs are not close to each other (Haghighi

et al., 2013). Therefore, it is necessary to revisit the two models and check their dissimilarity.

In this study, (Section 3.2) diffusion-based models, S&M and SCH, are explored to demon-

strate their similarities and to show the proper use of the models for soil evaporation. Then, (Sec-

tion 3.3) inhomogeneous model (modified SCH) is introduced based on Young-Laplace equation

and pore size distribution. (Section 3.4) The new model is tested through a soil-atmosphere resis-

tance scheme (Haghighi et al., 2013), to identify their characteristics about a wide range of soil

properties. Applying such heterogeneously wetted soil pores, this investigation will give a great

insight of its role in between atmosphere and soil system.

3.2 Two Homogeneous Diffusion Models

In this section, the two diffusion-base models are briefly introduced and then investigated to

prove their similarity. S&M is founded on the well-known diffusion-equation (Fick’s law), but it

needs to be calculated using a numerical methods. On the other hand, SCH model are an asymp-

totic solution with length of mean free path
radius of wet patches →0, but its simulation is very straightforward. As mentioned

before, the both are based on diffusion theory and they seem to have similar behaviors, but their

results are not close to each other [Figure 3.1].
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3.2.1 S&M Model

Suzuki and Maeda (1968) solve the diffusion equation of Fick’s law in 2D space, with a hori-

zontal direction (x) and vertical direction (z) [Figure 3.2]. The two-dimensional diffusion-equation

Figure 3.2: The concept of S&M models: P is a wetted part for evaporation e, W is a width of wet
and dry surface, and δ is viscous boundry layer which is usually determined by windspeed. SCH
model, on the other hand, consider 2-D circle for P and 2-D square for W .

is
∂2C

∂x2
+
∂2C

∂z2
= 0 (3.1)

where C is concentration. With boundary conditions including surface water contents θsurf = P/

W (see Suzuki and Maeda (1968)), the solution for the relative evaporation model depends on 3

variables as Eq. (3.2).
k

k0

= S&M(θsurf , δ,W ) (3.2)

where k is actual flux (conductivity m/s), k0 is potential flux, θsurf is 1D surface water content,

δ is the thickness of the viscous boundary layer, W is the width of a unit surface including soil
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particles and pores which is often regarded as being proportional to particle size (Shokri et al.,

2008), P is wet pore size. The solutions are introduced by Suzuki and Maeda (1968) as

k

k0

=
I(ℵ)I ′(i)

I ′(ℵ)I(i)
,

δ

W
=

I(ℵ)

2I ′(ℵ)
, θsurf =

sn−1 (i′/ℵ′,ℵ′)
I ′(ℵ)

(3.3)

where ℵ and i are moduli(parameters) which have a geometric space and are only used internally,

I is the complete elliptic integral of the first kind, I ′(i) is the same as I(
√

1− i2), i′ is the same

as
√

1− i2, and sn is the Jacobian elliptic function. We need to note that this solution requires

additional numerical methods (e.g., optimization) to get the actual numbers.

3.2.2 SCH Model

For SCH model (Schlünder, 1988), the solution is derived based on Stefan diffusion and Knud-

sen diffusion theories. Using ratio of the free path and a pore size, an asymptotic solution is

introduced as

k

k0

= SCH(θsurf , δ, P ) = 1/

[
1 +

P

δ

2

π

√
1

4θsurf

(√
π

4θsurf
− 1

)]
(3.4)

where P is pore size and θsurf is equal to ( P
W

)2 π
4

which represents 2D surface water content. To

express those θsurf in 3 dimensional way, they become θ3D = ( P
W

)2 π
4
L
L

for SCH and θ3D = P
W

W
W

L
L

for S&M, where L is a vertical length (Haghighi et al., 2013).

3.2.3 The Proof of Similarity

To understand each model and to identify the reason for their different results [Figure 3.1], we

need to reconsider the meaning of each parameter carefully. Parameter W is normally regraded

as a total width or particle size, P is a pore size, and their relationship can be approximately

expressed as W ≈ 3P (Haghighi et al., 2013; Gupta and Larson, 1979). If the soil surface was

homogeneous, P represents a mean pore size and W is a mean particle size. In a homogeneous

soil system, even though the water content on the surface is decreased by evaporation, pore sizes

which are active or inactive (whether currently contributing evaporation rates) cannot change. In
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other words, while surface water contents change, averaged pore size should be fixed. The water

content is altered by the transition of each pore state (active↔inactive). If active pore sizes vary

according to the change of water content during the simulation with S&M or SCH, they cannot

correctly demonstrate a evaporation rate.

Therefore, the pore sizes for those models need to be a constant in homogeneous soil system,

and it is proper to carry out simulations with assumption that the width of dry surface W changes

along with θsurf .This idea agrees with Shahraeeni et al. (2012) and we can conclude that the

Schlünder’s approach is more plausible to construct a relationship between surface water content

and relative evaporation rate about soil surfaces. If this idea is applied to S&M with assumptions

that SCH surface water content θsurf = θ3D = ( P
W

)2 π
4
L
L

and S&M surface water content θ3D =

P
W

W
W

L
L

are the same, W varies as P/
√

4
π
θsurf . Then, the S&M equation can be rewritten as

k

k0

= S&M

(
θsurf , δ, P/

√
4

π
θsurf

)
(3.5)

The results of test simulations from modified-S&M Eq. (3.5) and Schlünder’s equations Eq.

(3.4) are not the perfectly same but reasonably well matched [Figure 3.3]. Through this simple test,

we can conclude that the two methods are close to each other when the concepts of surface water

contents are identical, and the result reveals that SCH methods are a reasonable way to achieve

both the simulation of evaporation rate and reduction of computational time.
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Figure 3.3: Comparison between SCH Eq. (3.4) and modified S&M Eq. (3.5)

3.3 Diffusion Model for Heterogeneous Soil Grain

The basic idea used to apply the model to heterogeneous soil pores is that the representative

pore changes following the state of surface water content. Through this idea and derivation, this

application will lead the pore size and the water contents to have a similar behavior with respect

to unsaturated hydraulic conductivity. As shown in the exploration in the previous section, three

input variables for S&M or SCH are required to simulate relative evaporation within the surface

boundary layer. Among the parameters, two of them are directly related to soil properties, which

indicates that the soil heterogeneity can affect the simulation performance. At a surface with

unsaturated conditions, due to that the low effect of gravitational force, the force for water suction

at the surface becomes dominant, mostly caused by matric potential or primarily capillary forces

(Lehmann, 2008). When the surface water content decreases within a heterogeneous soil system,

the relatively small pores tend to be the main contributor of evaporation [Figure 3.4]. On the other

hand, large pores tend to dry due to relatively small negative pressures: the force of suction is

relatively lower and gravitational force is dominant).
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Therefore, The evaporation model needs to apply a more realistic activity of the interface be-

tween VBL and SL. [Figure 3.4]. Ideally, the mean pore sizes contributing to the evaporation (see

S&M or SCH model) could vary along with the alteration of the surface water content (Mosthaf,

2014). Second, volumetric water content for usual soil models is based on 3 dimensional spaces

(m3·m−3). The effective water contents, which just face to the atmospheric boundary layer in 2-

dimensional way, may not be the same as the 3-dimensional water contents. Here, we would like to

investigate how the application of non-homogeneous soil surface affects the result of relative evap-

oration models. In this section, effective pore sizes and effective water contents are introduced and

the behaviors are explored.

Figure 3.4: Scheme of the water behavior at a surface. Within Viscous Boundary Layer (VBL),
k/k0 is the function of Θeff(2D), Peff , and δ which are the effective surface water contents, the
effective pore size, and the thickness of VBL. In the soil layer, the vertical flow qz follows Darcy’s
law, which consists of Θeff(2D), τ , Ks, ∂h/∂z, and n, where τ is the tortuosity and n is a parameter
for soil feature if the Van Genuchten (VG) retention curve (van Genuchten, 1980) is used.

3.3.1 Assumptions and Basic Equations

For this study, the water movement of soil system is conceptualized as capillary flows (by

capillary potential). The matric potential is a better term than capillary potential which is a part of
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the matric potential in soil system (Hillel, 2003). However, such a concept is reasonable because

capillary force is a main driver and widely applied due to its simplicity in various soil related

studies such as unsaturated hydraulic conductivity model (Mualem, 1976).

Here we assume that the water holding in a soil system is mainly governed by capillary force,

which makes it possible to construct a relationship between the pore sizes and pressure heads using

Young-Laplace equation as Mosthaf (2014) and Lehmann (2008). The Young-Laplace equation is

h =
2σ

ρgR
=

4σ

ρgP
(3.6)

where g is the gravitational acceleration, ρ is the water density, h is the capillary pressure head, σ

is the surface tension (8.5 × 10−3 kg ·m2 · s−2) (Tschapek et al., 1978), P is the diameter of the

pore, and R is the radius of the pore. A contact angle (it is not presented in Eq. (3.6)) should be

included but for relatively small pore size (R < 300µm) it is nearly constant and usually set to

one (Lehmann, 2008; Li et al., 2014). We also assume that surface tension σ is the same among

any pore, and can be also canceled out in the further steps of derivations. With the corresponding

pressure hm, the mode or average value of pore size distribution Pm is assigned as a base line,

which can be estimated via a retention curve equation. Using Eq. (3.6), any pore size P can be

calculated using base line values (hm,Pm) as

P =
hm
h
Pm (3.7)

We need to note that hm · Pm is a constant based on Eq. (3.6), so only one of the two needs to

be known. However, they represent actual soil properties, and these values can be better to get

independently through experiments. For instance, hm can be regarded as a the air entry pressure hg

or estimated from pore-size distribution (retention curve). Pm can be earned from direct soil test,

or it can be predicted using hm with Eq. (3.6).

In this study, to connect between pressure heads and water contents, the Van Genuchten (VG)
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retention curve (van Genuchten, 1980) is applied for this study.

Θ =
θ(h)− θr
φ− θr

= [1 + (αh)n]−m (3.8)

where Θ is a normalized water content, θ is a volumetric water content, θr is a residual water con-

tent, φ is a saturated water content or porosity, n is a parameter related to a pore size distribution,

m is 1− 1/n for this study, and α is equal to 1/hg. If hm corresponds to the mode of pore size, the

pressure head from VG model is

hm = hg

(
n− 1

mn+ 1

)1/n

(3.9)

If hm was set to an average value, air entry pressure hg becomes close to hm, and this choice

gives a further derivation simplification. However, existing retention curves such as VG models

tend to provide unrealistic pore sizes (because of the long tail of the distribution) at the very wet/dry

condition, and consequently this leads mean pore sizes to be very small in some cases, so the mode

of pore size is used for Pm with hm for this study. If pore size Pm was given, it is primarily used

as mentioned previously. Using these simple capillary-based relationships, effective pore size and

surface water content are derived in the next section.

3.3.2 Effective Pore Size

As in [Figure 3.4], the effective/active pore sizes consist of relatively smaller pores than the

mean of total pore size P̄ , because relatively thin pores may be main providers of surface evapora-

tion under an unsaturated state. The water held in relatively large pores might flows out in gravita-

tional and horizontal way, furnishing the active pores (small pores) as the evaporation (Shahraeeni

et al., 2012). From this idea, we derive the mean of this active pore sizes; it will be called here the

effective pore size. With pore size distribution dΘ/dh and Eq. (3.7), the effective pore size Peff
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can be calculated as

Peff = P̄ =

∫ − inf

hsurf

dΘ
dh
· Pdh∫ − inf

hsurf

dΘ
dh
dh

= hmPm

∫ 0

Θsurf

1
h
dΘ∫ 0

Θsurf
dΘ

= Pm

(
hm
hg

) [1− (1−Θ
1/m
surf

)m]
Θsurf

(3.10)

where the mean pore size P̄ becomes the same as the effective pore size Peff when P̄ is no longer

a constant, Θsurf [m3 ·m−3] is normalized surface water contents, and hsurf is the surface pressure

head. One may notice that the derivation is very similar to the Mualem models (Mualem, 1976)

and the Eq. (3.10) is tested with different parameters [Figure 3.5]. Simulation of this equation

indicates that the effective pore size is always smaller than Pm (hm/hg) as expected. In other

words, when the surface water content decreases (drying), the decreasing rate (Stage I → Stage

II) of relative evaporation becomes more moderated than those in homogeneous model (smaller P

in Eq. (3.4)), due to smaller pore has a longer Stage I. Another characteristic is the SCH model

with the effective pore sizes becomes additionally depending on soil parameters n and hg. If n is

large, which means the pore size distribution is more homogeneous, the simulation is close to the

original SCH model.

3.3.3 Effective Surface Water Content

Like as the effective pore sizes, relatively thin pores also affect surface water contents [Figure

3.4]. The effective surface water contents, which refer to 2-dimensional area or contact area to the

atmosphere, may not be the same as the volumetric water content (3D). Therefore, the area ratios

between water filled pores and total pores can be likewise calculated based on the Young-Laplace

equation and the pore size distribution. The relationship is defined as

Θeff(2D) =

[
Pwet
W

]2

=

∫ 0

Θsurf

1
h
dΘ∫ 0

1
1
h
dΘ

2

=
[
1−

(
1−Θ

1/m
surf

)m]2

(3.11)

where Θeff(2D) is a normalized water content tangent to the atmosphere or an area ratio between

active pores Pwet and total pores W . It is possible to apply an area-based ratio AP/AW instead of
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Figure 3.5: The behavior of effective pore size based on Eq. (3.10). Mean of pore size is set to 100
µ m, the parameters n are 1.2, 1.5, 2, 3, 8 and m = 1− 1/n.

Pwet/W for Eq. (3.11) but it does not provide a closed-form.

The derivation of this equation is identical to Van Genuchten-Mualem (VGM) (van Genuchten,

1980; Mualem, 1976) except a tortuosity parameter and a saturated hydraulic conductivity: VGM

can be written as K(Θ) = Ksτ
0.5Θeff(2D). This VGM model is widely applied and validated

in soil-related simulations, which indicates these derived parameters (e.g., effective pore size and

water contents) have a similar role at the interface. The driver for the evaporation in VBL becomes

Θeff(2D), Peff , n, and δ at the soil surface (the red line in Figure 3.4). Similar to the parameters

of the interface for VBL, the key variables for the vertical flow qz at just below the soil surface

are τ , Ks, ∂h/∂z, and n including Θeff(2D) too in VGM [Figure 3.4]. The expression of VGM

represents the active proportion of 2-D area as the cross section of water pipe passing through

between soil layers and the surface layer. In the case of Eq. (3.11), it can be seen that the effective

water contents Θeff(2D) represent the wetted-pore area facing to the atmosphere and contributing

actual evaporation toward the atmosphere. To get its surface water content θeff(2D), we assume

that residual water content is close to zero so it is negligible. Then, from the 3-D porosity φ, the
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two-dimensional water content can be calculated as

θeff =
π

4

[
Pwet
W

φ1/3

]2

=
π

4
Θeff(2D)φ

2/3 (3.12)

where π/4 is for the circle shape of pore, and φ1/3 is one dimensional porosity to get the total

wet-able surface area [W/φ1/3]2. The plots for the example are displayed in [Figure 3.6], which

applied both effective pore size and effective water contents in the SCH model. Although effective

pore size tends to make Stage I longer, relative evaporation rate eventually decreases by effective

water contents.

Figure 3.6: Simulation using SCH model using the effective pore size and surface water content
(lines). Average pore size 100 µm and δ=0.0023m are used here. Original SCH model is depicted
for the reference (dotted line).

3.4 Setup for Model Test

In this section, the model of bare soil evaporation is derived applying non-homogeneous soil

grains through the effective pore size and effective water contents, based on Schlünder (SCH)
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models and a soil resistance scheme like as Haghighi et al. (2013). The following part explains a

simulation setup for a test including required parameters and observations to compare.

3.4.1 Modified-SCH Model

If both the effective pore size Eq. (3.10) and effective surface water content Eq. (3.11, 3.12)

are applied in the SCH model, Eq. (3.4) becomes the modified-SCH model:

k

k0

=
e

e0

= SCH[θeff (θsurf , n) , δ, Peff (θsurf , Pm, n)] (3.13)

where k/k0 is the ratio of mass transfer, e/e0 is in evaporation term, θeff [m2 ·m−2] is 2D surface

water contents, θsurf [m3 ·m−3] is the volumetric water content at the surface, and Pm is the mode

of pore size [Figure 3.6]. The modified-SCH (MSCH) model depends on four parameters that are

the volumetric water content at the surface θsurf , the thickness of viscous boundary layer δ, the

mode of pore size Pm, and the parameter of pore size distribution n. In most soil studies, some

parameters are given, but Pm and δ (wind speed) are not generally provided. A value for pore size

can be analogized through soil types or approximately estimated though a simple calculation via

grain sizes (Waverege/3) if they are provided. It is also possible to estimate pore size through the

Young-Laplace Equation Eq. (3.6, 3.7).

3.4.2 Full Resistance Scheme

Haghighi et al. (2013) utilize total resistance rt, which consists of a resistance inside of the soil

rs and within boundary-layer between the surface and the atmosphere (VBL) rBL.

rt = rBL + rs [s ·m−1] (3.14)

rBL =
1(

k
k0

)
SCH

1

k0

=
1(

k
k0

)
SCH
· D
δm

(3.15)

rs =
Cs − C∞
ρwKeff

∂h
∂z

=
ps − p∞

ρw4K(θsurf )

Mm

RT
(3.16)
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where Cs − C∞ is the difference of vapor concentration, ps − p∞ is the difference of the vapor

pressure,Mm (≈0.018 kg ·mol−1) is the molar mass of water,R (≈8.314 J ·mol−1) is the universal

gas constant, ρw (≈1000 kg ·m−3) is density of water, ∂h
∂z

is set to one like as Haghighi et al. (2013),

T is absolute temperature,D is the diffusion coefficient, δm is the height of viscous boundary layer,

and Keff is 4K(θsurf ) (Haghighi et al., 2013).

Based on the total resistance model introduced above, due to the fact that k = 1/rt and k0 =

D/δm, the relative evaporation can be expressed as

k

k0

=
1

rtD/δm
= 1/

 1(
k
k0

)
SCH

+
ps − p∞

ρw4K(θsurf )

Mm

RT

D

δm

 (3.17)

If rearrange it by applying the heterogeneity of soil pore (the effective pore size and the effective

water contents), it becomes

k

k0

=
1

rtD/δm
= 1/

[
1 +

Peff
δm

2

π

√
1

4θeff

(√
π

4θeff
− 1

)
+

ps − p∞
ρw4K(θsurf )

Mm

RT

D

δm

]
(3.18)

We need to note that this final equation reflects three important layers, which are VBL, SL,

and their interface. The model takes soil pore heterogeneity of SL and the interface into account,

which finally affects soil-atmosphere interaction (evaporation) in the VBL.

A relationship for viscous boundary layer δm is used: (Lehmann, 2008; Haghighi et al., 2013;

Haghighi and Or, 2013)

δm = 2.26 · U−1/2
∞ [mm] (3.19)

where U∞ is an air velocity. This equation is also validated under turbulent conditions (Mosthaf,

2014). The vapor pressure and vapor concentration difference are also obtained based on Clausius-

Clapeyron relation as in Haghighi and Or (2013)

p(T ) = 611 · exp

(
λMm

R

(
1

273
− 1

T

))
[Pa] (3.20)
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ps − p∞ = p(Ts)−RH · p(T∞) [Pa] (3.21)

where λ ≈ (2450 ·103 J ·kg−1) is the latent heat of vaporization, Ts[K] is the surface temperature,

and T∞[K] is the atmosphere temperature. Last, the diffusion coefficientD and saturated hydraulic

conductivity Ks based on the Kozeny-Carman method are also calculated as in Haghighi and Or

(2013) and Haghighi et al. (2013)

D = 1.49 · 10−7 · T∞ − 1.96 · 10−5 [m2 · s−1] (3.22)

Ks =
(3P )2φ3g

180(1− φ)2ν
[m · s−1] (3.23)

where P is a mean pore size, φ is porosity, g (≈9.81 m · s−2) is the acceleration of the gravity

and ν (≈ 10−6 m2 · s−1) is the kinematic viscosity. For unsaturated hydraulic conductivities, Van

Genuchten-Mualem models (van Genuchten, 1980; Mualem, 1976) are applied.

3.4.3 Simulation Setup

To explore the simulation of Eq. (3.17) or Eq. (3.18), the results are compared with several

experimental data from literatures (Kondo et al., 1990; Chanzy and Bruckler, 1993; Griend and

Owe, 1994; Aluwihare and Watanabe, 2003; Lehmann et al., 2018; Merlin et al., 2016). The

majority of the data do not provide sufficient information including meteorological variables and

soil properties, so some of parameters (e.g., temperature) are approximately selected or estimated

through the other subsidiary information such as graphs. However, the soil parameters which are

important in this study are selected as described below. The mode of pore size are estimated based

on the VGM parameter ’n’. Additionally, as in a previous study by Lehmann (2008), air entry

pressure (hg or α) is predicted via a model Eq. (3.24) fitted by Carsel and Parrish (1988) as

α = 0.0087(n− 1) [mm−1] (3.24)
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which is also used for the calculation of the mode of pore size distribution Eq. (3.6) and Eq. (3.9).

If VGM parameter ’n’ was not given, it is approximated through soil categories.

Aluwihare and Watanabe (2003) conducted an experiment using Toyoura Sand with 0.445

porosity, 0.018 cm particle size (this value is not used here), and 4.55 for n. Due to the fact that

the actual velocity is not provided, wind speed was assumed to be 0.4 m/s for the simulation: the

experimental instrument can control wind velocities up to a maximum value of 0.7m/s (Aluwihare

and Watanabe, 2003) [Figure 3.7]. The relative humidity (RH) is set as 0.7 through their graph, and

surface and air temperature are 30 C◦. In the case of Griend and Owe (1994) [Figure 3.7], surface

resistance is studied for fine Sandy-Loam under field condition which has Ts=27.8 C◦, Ta=32.8 C◦

and RH = 0.5. The wind speed is up to 4 m/s but wind speed is also unknown (3 m/s is used

here). Other parameters are set as n=2.5, and θs = 0.4 for the simulation in [Figure 3.7]. Other

surface resistance vlaues for loam and sand are gauged and calculated by Kondo et al. (1990), and

the experiment conditions are air velocity = 1 m/s, Ts=35 C◦, and Ta=35 C◦. The porosities of

the loam and sand are 0.39 and 0.49. The un-provided parameters are set as n = 1.7 for loam, 2.5

for sand, and RH = 0.5 for the both [Figure 3.8]. Last, the relative evaporation rate is calculated

through an empirical method by Chanzy and Bruckler (1993) and compared with measured data

to explore the effective depth for remote sensing. The parameters of the soils about Clay, Loam

and Silt clay loam are provided but the considered depths are relatively thick and the parameters

have a piecewise form depending on water saturations. Therefore, soil parameters are averaged

and rounded. For the simulations in this study [Figure 3.9], n = 1.2 1.7 1.35, θs = 0.3 for all, Ts=35

C◦, Ta=35 C◦, RH = 0.4 and wind speed = 1.5 m/s. The parameter n for clay is reported as 1.5

but it leads a pore size too big and the most granulometric tables indicate that it can be smaller

than silt-clay-loam. Therefore, we used 1.2 for this simulation. The case of Lehmann et al. (2018)

and Merlin et al. (2016) provides various data sets with diverse parameters. For this study, several

soil groups are selected among the sets, to test this model (resistance scheme) [Figure 3.10]. We

need to note that the simulation scheme in Lehmann et al. (2018) is similar to our total resistance

model except the soil pore heterogeneity. The major difference can be the usage of a equation
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(∂h
∂z

= 1 + e0
4K(hc)

) which is related to the characteristic length introduced by Lehmann (2008) and

which is additionally applied from Eq. (3.16) to Eq. (3.18) (Lehmann et al., 2018).

3.5 Results and Discussion

Figure 3.7: Plots in (A) are total resistance (rt = rs + rBL) using Eq. (3.14). (B) is relative
evaporation from Eq. (3.17) or Eq. (3.18). In plot (B), lines are simuated based on original SCH
model Eq. (3.4) and dotted lines are from modified SCH Eq. (3.13) which is applied effective pore
sizes and effective water contents. Marks are measured data by Aluwihare and Watanabe (2003)
and Griend and Owe (1994). Additionally, fitted line by Griend and Owe (1994) also presented on
the graph.

The total resistance models (rt = rs+rBL) Eq. (3.14) for both SCH or modified-SCH (MSCH)

tend to reasonably follow actual behaviors of the evaporation, and they demonstrate that the models

have ability to cover a wide range of soil group (Haghighi et al., 2013). A plot using resistance

terms cannot distinctly display evaporation rates because the resistance dramatically increases at

some point by the action of low hydraulic conductivity. Therefore, the models also additionally

simulate the relative evaporation rate [Figure 3.7; Figure 3.8; Figure 3.9; Figure 3.10]. In the all

comparisons, the relative evaporations e/e0 are estimated through the final form Eq. (3.17, 3.18)

based on two different equations: original SCH Eq. (3.4) (line) and MSCH Eq. (3.13) (dotted

line).
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Figure 3.8: Plots in (A) are total resistance using Eq. (3.14). (B) is relative evaporation from Eq.
(3.17) or Eq. (3.18). In plot (B), lines are simuated based on SCH model Eq. (3.4) and dotted
lines are from modified SCH Eq. (3.13) which is applied effective pore sizes and effective water
contents. Marks are measured data by Kondo et al. (1990).

Figure 3.9: a similar graph as [Figure 3.7] and [Figure 3.8]. Marks are measured data by Chanzy
and Bruckler (1993).

The scaled evaporation (dotted line on the graph (B)) through inhomogeneous soil tends to have

smaller evaporation rates with observations than the results from the homogeneous soil (line). The

important point in this test is that applying the heterogeneous soil pores can significantly affect the

Stage I evaporation process. The two different simulations (line and dotted line) are only close to

each other when soil has low hydraulic conductivity (Ks): soil resistance is dominant.
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Figure 3.10: lines are simulated based on original SCH model Eq. (3.4) and dotted lines are
from modified SCH Eq. (3.13) which is applied effective pore sizes and effective water contents.
Additionally, ∂h

∂z
= 1 + e0

4K(hc)
is applied following Lehmann et al. (2018). The datasets and

parameters are produced by Lehmann et al. (2018); Merlin et al. (2016).

The heterogeneous pore size and wet area yield different outputs in our simulation [Figure

3.11]. Therefore, applying the proper features of soil surface such as pore size, wet area, and other

soil parameters can be important for the performance of evaporation models. This change in the

model affects the evaporation rate in the middle of transitional stage (between stage I&II) but we

can also see that the impact starts at the very beginning of evaporation process (nearly saturated)

[Figure 3.7; Figure 3.8; Figure 3.11]. Such a range cannot be ignored because it is related to a

large amount of water movement and it can lead a time dependent simulation being unsuccessful

by inaccurate prediction of soil water contents.

The limiting supply of water from the soil rs is still an major mechanism for change in evapo-

ration stage and evaporation rate [Figure 3.11]. Under unsaturated soil condition, during an role of

the boundary layer (rBL) fades away, the limit of water supply in soil system by hydraulic conduc-

tivity K(θsurf ) becomes the more dominant process. On the other side, the remaining evaporation

activity after water supply is completely disconnected K(θsurf = 0) cannot be captured yet [Fig-

ure 3.7; Figure 3.8; Figure 3.9; Figure 3.10]. This process may be caused by vapor transport

inside of soil system based on front depths or evaporation depths so that air-invaded pore models
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(Shahraeeni et al., 2012) can be applied to mimic such phenomenon.

Figure 3.11: plots to see influence of effective water contents, effective pore sizes and hydraulic
conductivity. Applying SCH means the resistance of boundary layer (rBL) is active, and K(θ)
(Hydaulic Conductivity) means soil resistance (rs) is applied. Modified SCH means applying
effective pore size and effective water content.

These all results indicate that the both behaviors rBL and rs can coexist under unsaturated con-

ditions (Haghighi et al., 2013), and that, depending on soil properties and atmospheric condition,

either resistance (rBL or rs) can dominant the process [Figure 3.7; Figure 3.8; Figure 3.9; Figure

3.10]. With small n and with small pore sizes, the evaporation rate can be mainly controlled by

rs due to the relatively low hydraulic conductivity compare with the atmospheric demand rBL.

These effects can be the cause of very short stage-I. With large n, which represents homogeneous

pore size distribution and usually consists of large pore sizes, the boundary layer resistance rBL

tends to control the simulation, and the effect of heterogeneous soil grain can appear at this point

[Figure 3.10; Figure 3.11]. This is because resistance of the water supply under the surface is not

significant by large K, even though rs would always be dominant at the end (very dry condition).
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3.6 Summary and Conclusion

In this study, the relative evaporation models are explored and those modifications are intro-

duced to reflect heterogeneous pore sizes of soil via capillary theory and pore-size distribution for

an advanced evaporation model. The models we consider here are based on a theory that drying

rate is controlled by resistance inside the soil rs and resistance between the surface and the atmo-

sphere rBL as Haghighi et al. (2013). Above the soil surface (VBL), S&M model and SCH model

are often used and they are regarded as having similar behaviors but different outcomes. The two

models are compared and their similarities were explored. Moreover, many studies assume soil

grains are homogeneous at the surface interface in VBL models, so pore sizes are regarded as a

constant during their simulations of evaporation. To consider heterogeneous pore in this study, the

scheme of different pore sizes are applied based on Young-Laplace equation and pore size distribu-

tions. In the same way, the 2D surface water contents are formulated corresponding to the different

pore sizes.

Through the investigation, we found that the SCH model is the more practical method than

S&M model for homogeneous soil grains. To compare SCH with S&M, the two models are simu-

lated with the original concept [Figure 3.1]: (1) SCH is based on a fixed mean pore size P and a

varying total pore size W , and (2) S&M is based on a fixed total pore size W and a changing ac-

tive pore size P . If soil pores have the same size (homogeneous), under any state of water content,

active pore size should not be changed and the number of inactive pores increases over the evapora-

tive surface. Therefore, we may conclude that the considered area of horizontal soil surface might

be expanded by increasing inactive pores like as SCH rather than decreasing active pore size as in

S&M, while the water content decreases. Because this idea accords with SCH model, S&M model

is modified to link the two models. The comparison through Eq. (3.4) and Eq. (3.5) shows that

they are well matched [Figure 3.3]. The S&M model is mathematically derived based on Fick’s

law but a numerical method is required for the calculation. On the other hand, the SCH model is

an approximate solution, so a simulation through SCH is straightforward and gives a reasonable

performance compared to S&M. The investigation indicates that employing SCH method can be a
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practical way to simulate evaporation rate and to reduce computational time. If one may want to

use S&M model, a modification like Eq. (3.5) is recommended for such homogeneous case.

Second, inhomogeneous soil grains are applied on the SCH model, which results in the change

of relative evaporation curves, especially at Stage I and its transition point heading to Stage II. To

apply heterogeneous pores, effective pore sizes Peff (the mean active pore size) are applied inside

SCH model. As in [Figure 3.5], applying this idea tends to reduce the mean pore sizes and it can

lead the relative evaporation rate increase according to the equation of SCH model (reduction rate

decreases while the surface is drying). In a case with large n or homogeneous materials, the models

can be close to the original SCH model. Effective water contents θeff are also calculated based on

the derivation of the effective pore sizes and applied into the SCH model for heterogeneous soil

evaporation. Considering both effective pore sizes and water contents with SCH model, the relative

evaporation rates tend to be lower than original SCH model [Figure 3.6]. Although shrunk pore

sizes by Peff in the model should yield reduction of the decreasing rate of evaporation from Stage I

to II, the simulated results show opposite behavior after the application of effective water contents.

Therefore, effective water content, which is related to contact area between wetted surface and the

atmosphere, can have more significant role in the mechanism of evaporation than the effective pore

size.

The simulation is tested based on resistance models implemented by Haghighi et al. (2013)

and Lehmann et al. (2018), and the results well follow measured data from several studies [Figure

3.7; Figure 3.8; Figure 3.9; Figure 3.10]. Except when the soil water content is close to zero, this

study shows the resistance scheme is a reasonable method to capture both VBL and SL roles for

evaporation, and it demonstrates that the models may have ability to cover a wide range of soil

groups. The limiting supply of water from the soil rs is an important mechanism. However, before

the water supply for the evaporation is limited by low K(θsurf ), the drying rate mainly depends on

the process within the boundary layer, which controls large amount of water movement with even

small changes. Through this test, in this period (Stage I&II), the inhomogeneity of soil pores can

have a substantial impact on the evaporation rate.
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Through this study, existing evaporation models are explored and modified, to find a practical

diffusion model and to check its different behavior by applying heterogeneous pore sizes with var-

ious soil types. The relative evaporation model in this study shows reasonable outcomes compared

with measured data. However, model error still exists: evaporation still occurs in actual data even

when the hydraulic conductivity is zero in the models. Such behavior cannot be exactly explained

yet, whether it is due to the diffusion process inside soil or it is still hydraulically connected, and

how such processes actually work. For the future research, the models may need to include the

influence of vapor fluxes within soil and temperature gradients, which may be related to a tran-

sition from Stage II to Stage III while evaporation process. Also, more experimental data about

diverse soil types are needed with detailed information such as meteorological variables and soil

parameters, to improve and verify evaporation models.
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4. MODELING LAND SURFACE PROCESSES OVER A MOUNTAINOUS RAINFOREST

IN COSTA RICA USING CLM4.5 AND CLM5

4.1 Introduction

Tropical forests play a critical role in determining regional and global climate. Due to their sig-

nificance for the global water (Zhang et al., 2010; Choudhury and DiGirolamo, 1998) and climate

cycles (Huntingford et al., 2013; Beer et al., 2010), accurate modeling of tropical regions is impor-

tant for the prediction of future climate and climate change impacts. Forests in the tropics house

25% of the carbon stocks found in the terrestrial biosphere, accounting for 33% of global net pri-

mary production (NPP) (Bonan, 2008). While tropical forests occupy only 16% of the global area,

they account for 33% of terrestrial evapotranspiration (ET), of which 70% is transpiration (TR)

(Schlesinger and Jasechko, 2014). In tropical forests, ET can range from 1,000 mm up to 2,200

mm per year (Kume et al., 2011; Fisher et al., 2009; Loescher et al., 2005; Sheil, 2018). Hydrologi-

cal processes in the humid tropics are also distinctly characterized by warm, uniform temperatures,

large inter-annual and spatial variability, intense rainfall, and greater energy exchange accelerated

by low albedos and high evaporative cooling (Wohl et al., 2012; Bonan, 2008). The loss of such

forests by climate change or human impact can therefore be influential not only locally, but also in

more remote regions (Lawrence and Vandecar, 2014). The accurate prediction and assessment of

these extratropical effects and subsequent feedback to the reainforest are beyond the scope of this

paper.

Land-surface models (LSMs), as a component of Earth system models (ESM), simulate the

emission of heat, water vapor, and carbon dioxide from the terrestrial surface to the atmosphere,

based essentially on the partitioning of net radiation (Wang et al., 2016). As an example of their

application, they have been used for the assessment of the impacts of future climate change on

tropical and extra-tropical forests (Cox et al., 2013; Huntingford et al., 2013). However, such

models do not yet successfully capture the underlying complexity of land-atmosphere interactions
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(Cai et al., 2014; Wang et al., 2014; Lawrence et al., 2011; Oleson et al., 2010). In particular,

LSMs are known to make significant errors in the prediction of carbon and water fluxes for tropical

regions, the reasons for which are not entirely clear, even though significant improvements have

been made in this field of study (i.e., empirically and mechanistically). Lawrence et al. (2011)

compared estimates obtained using two versions of the Community Land Model (CLM3.5 (Oleson

et al., 2008) and CLM4.0 (Oleson et al., 2010)) to observed sensible and latent heat flux data from

FLUXNET (Baldocchi et al., 2001). They found that CLM4.0 improved predictions compared

to CLM3.5 for most sites across the network, but continued to show low agreement for tropical

sites. Bonan et al. (2011) updated CLM4.0 by modifying the structure of radiative transfer model

and physiological parameters for canopy processes, which resulted in notable improvements in

CLM4.5 ((Oleson et al., 2013)) but overestimation of carbon/vapor fluxes persisted in areas closest

to the equator. The deficit is especially true for tropical wet mountain rainforests, which have rarely

been studied in the context of improving global LSMs, due to the lack of long-term/uniformly

distributed measurement and the small number of observation sites (Fisher et al., 2009; Wohl et al.,

2012).

To improve land surface models addressing tropical ecosystem biosphere-atmosphere interac-

tions, partitioning net radiation (energy) and water accurately is critical for these models, especially

with respect to estimating latent heat flux. Many studies maintain that vapor fluxes in the tropical

site are highly correlated (≈ 87%) with net radiation (Andrews et al., 2019; Fisher et al., 2009;

Hasler and Avissar, 2007; Loescher et al., 2005). Others found that leaf wetness is also an im-

portant control (Andrews et al., 2019; Giambelluca et al., 2009). Some studies indicate that the

effects of leaf wetness (which can contribute 8%-20% of ET) can appear depending on canopy

water storage capacity and rainfall pattern, although short duration and high intensity rainfall does

not significantly affect canopy evaporation (Kume et al., 2011; Loescher et al., 2005). In other

words, water/vapor (e.g., ET/interception) related models are essential for tropical sites. Aerody-

namic conductance has also been considered as a strong driver for evapotranspiration in tropical

forest because the large amount of precipitation and frequently wetted canopy conditions control
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leaf conductance (Shuttleworth, 1988; Loescher et al., 2005). Vapor pressure deficit (VPD) has

been shown to only slightly influence (≈ 14% predictor) on tropical ET (Fisher et al., 2009; Kume

et al., 2011). However, when assessing these studies, it is noticeable that they all highlight the im-

portance and difficulties of quantifying canopy water fluxes. ET dynamics are dependent on how

these micrometeorological variables are related to the latent heat flux within the energy balance.

In tropical forests, the Bowen ratio is consistently less than one (Loescher et al., 2005), which

implies net radiation highly correlated with latent heat flux. Moreover, the forest canopy acts like

a well-watered crop without water limits (Loescher et al., 2005; Hasler and Avissar, 2007; Kume

et al., 2011). Tracking water movement within the system (water balance), finding ET proportion

of net radiation (energy balance), and the deeper partitioning of the ET are still a critical question

in highly saturated systems.

Therefore, accurately capturing each detailed hydrological processes, including partitioning

rainfall flux by the sub-models (e.g., interception model or infiltration model), is a preemptive

process for accurate tropical LSMs, not only because ET from the water has great portion of total

energy exchange (Net Radiation) in fine scale, but also ET is a substantial portion of the water

balance. Tropical regions, particularly in montane forest, play a crucial role in regulating and

gathering atmospheric moisture in larger sense (Wohl et al., 2012). Clark et al. (2015) explores

11 LSMs and suggests possible improvement about detailed components of hydrologic processes,

such as for soil moisture and ground water dynamics and including the space-time variability for

plant activities. Also, the problem of spatial heterogeneity and hydrologic connectivity is men-

tioned, between large scale process (land-atmosphere flux) and microscale process (biophysical-

biogeochemical-hydrologic processes) (Clark et al., 2015).

To the contrary, water is not our only concern, and it cannot be independently considered in

Earth system or land surface system models. Other energy-related/physiological elements, such

as thermal flux, radiative transfers, and vegetation activity (e.g., photosynthesis or respiration) are

likewise important, because they are mutually dependent on the water. The main schemes of any

land model including CLM (e.g., heat/vapor flux, carbon flux, and net radiation) and additional
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components have been continuously incorporated and updated in LSMs to represent more realistic

processes and new community interests, including: soil carbon and nitrogen cycling (Thornton

et al., 2007), multi-layer plant canopies (Ryder et al., 2016; Launiainen et al., 2015; Bonan et al.,

2018), and even more sophisticated urban/ rural model (Lawrence et al., 2018; Buzan et al., 2015).

These indicate that the current LSM consists of a plethora of sub-models, making it difficult to

identify a specific sub-model or set of sub-models leading towards an entire model error.

Hence, in order to properly parametrize global LSMs and to precisely represent such com-

plicated systems, such as the tropics, it is necessary to keep diagnosing the land surface models

relying on site-based data especially from tropical sites, and such site-based studies have con-

firmed in developing advanced LSMs (Mao et al., 2016). Unique site like tropical forests are

valuable testbeds for these models because the environment is beyond the normal boundary con-

dition, which enhances model calibration under more extreme climate conditions associated with

climate change. In site-based studies via data analysis (e.g., simple comparison plots or diurnal

variation plots), it is possible to identify and alleviate the error of sub-component model (such

as soil moisture/temperature, interception, stomatal process, etc.). Such errors cannot be easily

detected by the analysis of main/large-scale elements (such as albedo, net radiation, etc.).

Land surface models are gradually increasing their resolution with the improvement of remote-

sensing technology in which reflects the high heterogeneity of the Earth surface. This exacerbates

current model uncertainty caused by blurred/oversimplified parameterization and misinterpretation

(Singh et al., 2015; Wood et al., 2011). Site-based measurements including eddy-covariance tower

systems have been widely utilized for the advance of global land surface models via calibration and

validation (Bonan et al., 2012; Zaehle and Friend, 2010; Larsen et al., 2016; Chaney et al., 2016),

and such observations will be continuously needed. Gridded global data from the FLUXNET

network is also available for model development at large scales (Bonan et al., 2011; Jung, 2009).

However, point-scale or small scale study is still the core and the base-line for any other scale

study. In this study, CLM4.5 (Oleson et al., 2013) and its updated version (CLM5) (Lawrence

et al., 2018) are employed, and micrometeorological datasets from a tropical rainforest in Costa
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Rica are compared with these simulation results. The objectives are three-fold:

1. To compare the default, point-scale predictions of CLM 4.5 and CLM 5.0 against microme-

teorological and flux measurements collected in a Costa Rican wet montane tropical forest;

2. To identify the improvements in performance between the two CLM versions, and to de-

tect the still existing shortcomings in the newer version (CLM5), which errors are possi-

bly caused by the unique environment at our study site (i.e., frequent rainfall and moun-

tainous topography) and by simplified formulations and coarsely assigned parameters (i.e.,

interception/leaf-wetness models, photosynthesis models, etc.); and

3. To determine which canopy-atmosphere processes are most poorly represented, and identify

which sub-models are responsible for the largest errors in radiation partitioning, in order to

suggest priorities for future model improvements.

4.2 Methodology

4.2.1 Study Site

The field site is located at the Texas A&M University Soltis Center near San Isidro de Peñas

Blancas in Costa Rica (10◦23′13′′N, 84◦37′33′′W , about 600 m above sea level). This area has

a mean annual temperature of 24 ◦C, relative humidity of 85%, and precipitation of 4200 mm

(Teale et al., 2014). The study area is classified as a transitional, tropical premontane, moist forest.

The canopy height ranges from between 24 and 45 m, and its terrain has a steeply eastern slope

(Aparecido et al., 2016; Jung, 2009). Rainfall is frequent, and a little over two-thirds of days have

one or more rain events.

4.2.2 Micrometeorological Measurements

The site has two primary biometeorological measurement locations. The main weather tower

(hereafter called “Met Tower”) is located in a flat clearing over grass at the base of the mountain.

The walkup canopy access tower (hereafter called “Canopy Tower”) is located within the forest,

on the eastern slope. The Met Tower allows for the measurement of meteorological conditions
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without the influence of canopy processes and resistances. Precipitation (mm; TE525, Campbell

Scientific, Logan, UT), incoming solar radiation, net radiation (W ·m−2; CNR1, Campbell Scien-

tific), air temperature (◦C; HMP60, Campbell Scientific), and relative humidity data (%; HMP60,

Campbell Scientific) have been collected since 2010. The Canopy Tower has collected the same

variables as the Met Tower (with exception of precipitation) and additional measurements, such

as vapor and CO2 concentration, soil moisture, leaf wetness and sap flow since 2014. An infrared

trace gas profiler (IRGA; AP200, Campbell Scientific) and an eddy-covariance system (LI-7200,

LI-COR, Lincoln, NE; CSAT3, Campbell Scientific, Logan, UT) are used to collect micrometeo-

rological data at various heights, including concentrations of water (i.e., H2O) and carbon dioxide

(i.e., CO2), wind speed and direction, and air temperature. Additional data are also collected to

track canopy processes: leaf wetness sensors at four different heights (LWS, Decagon Devices,

Utah), photosynthetically active radiation (PAR) profiles (LI-190, LI-COR) at five heights, leaf

area index (LAI) profile using a lined PAR sensor (LI-191, LI-COR) and Beer-Lamber law (Vose

et al., 1995; Andrews et al., 2019), leaf temperature sensors for sunlit and shade leaves (SI-111,

Apogee Instruments, Logan, UT), soil heat flux (HFT3, Campbell Scientific), soil temperature

(5TE, Decagon Devices, WA), soil moisture (EC-4 and 10HS, Decagon Devices, WA), soil res-

piration (LI-8100A, LI-COR) and transpiration from sap flow system. Refer to Aparecido et al.

(2016) and Andrews et al. (2019) for more detailed information about the sap flow system and

the profile measurements, respectively. The datasets for this site from 2014 to 2017 are available

online (Miller et al., 2018a,b,c,d).

The Canopy Tower is situated above the canopy but near an emergent tree [Figure 4.1], leading

to a large gap in the canopy in between heights of roughly 30 and 40 m. This configuration leads

to two main challenges. Below this gap, the canopy is closed. Above the gap, one emergent,

upslope tree provides a significant degree of shading, which leads to a 70% reduction in PAR

between measurements at the canopy surface (32 m) and above the emergent tree (44 m). We

also note that this configuration has some implications which make the eddy covariance method

less ideal. The sonic anemometer and IRGA are located at 34 m height, extending away from
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the tower and clear of obstructions in both the upwind and downslope directions [Figure 4.1].

Predominant winds occur parallel to the mountain, along the valley rather than over the slope,

allowing us to capture fluxes, albeit under a narrowed set of ambient conditions. Thus, while these

data are not necessarily sufficient for recording long-term, integrated measures of ecosystem level

variables, like gross primary production, they are suitable for testing and validating models despite

the presence of such significant canopy gaps by the emergent tree.

Figure 4.1: Sketch of Canopy Tower located in a plot within a mature premontane moist tropical
forest in Costa Rica (right) with LAI profiles highlighted (left) along with the location of the
eddy covariance system (EC 33m) and the spire (44 m) hoisting the net radiometer including an
incoming solar radiation sensor. The sum of points (LAIz) totals LAI(m2 · m−2) = 6 for this
stand. The method used to obtain the LAI profile of the canopy is explained in a previous study
Andrews et al. (2019)

4.2.3 Model Description

In this section, the land model is briefly described focusing on the model structure and main for-

mula (i.e., energy balance equation), and several sub-models which have high potential of causing
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model errors for this site are examined. Considering that our study site has extremely high humid-

ity and annual precipitation, the sub-models related to water fluxes are hypothesized as being the

main sources of prediction/estimation errors. There are many sub-models within CLM, and more

detailed descriptions can be found in the technical manual (Lawrence et al., 2018; Oleson et al.,

2013, 2010). Additionally, hereafter we use CLM in a general sense, with a statement being ap-

plicable to both CLM4.5 and CLM5; but provide the specific version number when distinguishing

their respective behavior or the effects of recent code modifications.

CLM calculates the radiative transfer through the canopy and the surface, using the Two-stream

approximation method (Dickinson, 1983; Sellers et al., 1992; Bonan, 1996; Oleson et al., 2013),

which is a starting point for land surface models determining the amount of energy exchange.

In the procedure, the canopy structure and the albedo, as influenced by current conditions (leaf

angle, wetness, solar angle, etc.), are main controllers determining the absorptivity of incoming

solar radiation by the canopy and the soil surface. Based on the absorbed energy of incoming

energy, fluxes of sensible heat, latent heat, and soil heat are estimated using the energy balance

equation. For example, as a function of vegetation temperature (Tv), the canopy energy balance

can be written as

−Sv + Lv(Tv) +Hv(Tv) + LEv(Tv) = 0 (4.1)

where Sv is the absorbed solar radiation by canopy, Lv is the long wave radiation emitted by

canopy, Hv is the sensible heat flux, and LEv is the latent heat flux from the canopy, all of which

are given in W · m−2 (Oleson et al., 2013). Monin-Obukhov Similarity Theory (MOST) is used

to determine resistances along the soil-plant-atmosphere continuum [Figure 4.2], which is then

used to calculate Hv and LEv (Zeng et al., 1998; Oleson et al., 2013). As a big-leaf model, CLM

represents both sunlit and shade leaves (Dai et al., 2004).

The water balance equation tracks the water movement through the system and connects to the

energy balance via its dual controls on ET. The first of these controls, the influence of soil moisture

on stomatal conductance, is not considered in this study. Prior work has determined that ET at the
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Figure 4.2: Resistance network schemes incorporated within CLM for a) sensible heat flux and
b) latent heat flux. Main state variables are atmospheric forcing temperature (θatm) and specific
humidity (qatm), canopy air temperature (n) and specific humidity (qs), leaf temperature (Tv) and its
corresponding specific humidity (qv), and ground temperature (Tg) and its corresponding specific
humidity (qg). Relevant heights are the atmospheric reference height (zatm), the canopy roughness
heigth (Z0), the groundwater roughness height (Z ′0), and the displacement height (d). Resistances
are specified by their scalar (h for heat and w for water vapor), type (a for aerodynamic, b for
boundary layer, s for stomatal, or litter for litter), and lighting (sun or shade). Leaf wetness also
exerts control on fluxes, via a wetness fraction (fwet) and (L+S) is leaf and stem are index. Figure
adapted after Oleson et al. (2013).

present study site is not limited by soil water deficits during normal to above-normal rainfall years,

such as the period from 2014 to 2016 (Andrews et al., 2019). Rather, while its effect is considered

to be small in some ecosystems (Burns et al., 2018), previous studies have shown that leaf wetness

exerts significant influence on fluxes from rainforests in general (Loescher et al., 2005; Kume

et al., 2011) and in this site specifically (Aparecido et al., 2017; Moore et al., 2018). CLM reflects

these mechanisms as well in the resistance network [Figure 4.2b], and the leaf wetness prevents

transpiration and contributes to canopy evaporation rates. Here, leaf wetness is determined by the

interception rate of incoming precipitation (Deardorff, 1978; Dickinson et al., 1993; Lawrence and

Chase, 2007). The amount of interception qic is given in CLM4.5 as:

qic = 0.25 · qrain/snow · [1− e−0.5(L+S)] (4.2)

and in CLM5 as:

qic = 1.00 · qrain/snow · tanh(L+ S) (4.3)
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where qrain/snow is the precipitation as liquid or snow, and 0.25 is a model coefficient. Here, we

note that when the leaf-stem area index is high (L+S > 2) the interception rate approaches 100%

in CLM5 only. This can be questionable in our view because canopy in this site, which has LAI

far higher than 2 (m2 ·m−2), does not cover 100% sky (≈ tanh(2)). On the other hand, the value

of 0.25 in CLM4.5 seems too low. After determining intercepted rainfall, canopy water storage

(Wcan) is calculated through re-partitioning based on the condition of 0 5 Wcan 5 Wmax, where

Wmax is 0.1(L+ S) (Dickinson et al., 1993; Oleson et al., 2013). Finally, fwet is

fwet =

[
Wcan

Wmax

]2/3

(4.4)

Additionally, in CLM5, fwet cannot exceed a maximum value (fwetmax) of 0.05, and fdry is calcu-

lated as:

fdry =
(1− fwet) · L

L+ S
(4.5)

In Eq. (4.4), the 2/3 exponent was assumed following the original literature (Deardorff, 1978),

because the canopy water tends not to be evaporated when it is set to one and evaporates too fast

when set to zero (Deardorff, 1978).

Additionally, CLM mainly uses the Farquhar model (Farquhar et al., 1980; Oleson et al., 2013)

for the estimation of photosynthesic rates. In our site, air temperature varies little throughout the

year, and CO2 concentration is not significantly variable. Consequently, light-limited photosynthe-

sis can be considered as a dominant process. The light-limited model wj (µmol·m−2s−1) in CLM

is developed based on the Farquhar model (Oleson et al., 2013) and can be written as:

wj = 0.25JxCi, Ci =
ci − cp
ci + 2cp

(4.6)

where ci is intracelular CO2 concentration, cp is CO2 compensation point, assuming 4 electrons

per CO2 molecule, Ci is a function of ci and cp, and Jx (µmol ·m−2s−1) is the electron transport
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rate which can be additionally estimated through

ΘJ2
x − (IPSII + Jmax)Jx + IPSIIJmax = 0 (4.7)

where Θ is a curvature parameter (Θ = 0.7 in default), Jmax (µmol ·m−2s−1) is maximum rate

of electron transport, IPSII can be estimated as IPSII = 0.5Φ · IAPAR, Φ is quantum efficiency of

photosystem II (Φ = 0.85), 0.5 is for two photosystems for one electron, and IAPAR is absorbed

PAR (µmol ·m−2s−1).

To further explore these relationships, Eq. (4.6) and Eq. (4.7) are simplified and recalculated

to make them comparable to apparent quantum yield (α). This is because the light-limited model

has a hyperbolic shape caused by other environment conditions. However, the apparent quantum

yield is a slope parameter (or the initial slope of the light-limited model) between absorbed-PAR

and photosynthetic rate, which we can see it is a well known and simple parameter with a long

research history in the literature (Skillman, 2007; Evans, 2013). From Eq. (4.6), if ambient con-

dition has cp ≈ 40µmol, ca ≈ 400 and ci/ca ≈ 0.7,which gives ci ≈ 0.7 · 400µmol (Launiainen

et al., 2011; Katul et al., 2010), then Ci becomes 0.667. Also, if ci becomes higher as atmo-

spheric CO2 concentrations increase, it becomes closer to 1. Through Eq. (4.6) and Eq. (4.7),

the initial quantum yield of CO2, also known as apparent quantum yield (α), can be estimated via

∂Jx/∂IAPAR×0.667×0.25, which can be used as simple-version models such as wj = α · IAPAR.

The theoretical maximum for α should be ≈ 0.11, α with saturated condition is approximately

0.075 (absence of photorespiration), and in normal atmosphere condition α is about 0.05 which is

estimated if Φ ≈ 0.6 in Eq. (4.7) (Evans, 2013; Raj et al., 2015; Skillman, 2007). These light-limit

models with different parameters are explored with observations in later section.

4.2.4 Simulation Setup and Comparison Method

CLM was tested in point-scale mode, using the satellite phenology (SP) with default settings,

with exceptions noted below. Extension modes, which consider additional processes such as dy-

namic global vegetation (DGVM), biogeochemical cycles (BGC), or carbon-nitrogen cycling (CN)
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were mostly not considered since they do not afect our study interests here (e.g., tree growth

and stand competition). Input parameters for the simulation were determined using the ‘mksurf-

data_map ’ utility provided in Community Earth System Model (CESM). The utility derives its

values from satellite-based global datasets of phenology, soils, and topography, provided by Uni-

versity Corporation for Atmospheric Research (UCAR) (Oleson et al., 2013).

Based on many tests, we decided to use global parameters as possible if there was no significant

influence on model performance. Location specific default parameters from the global dataset

included: leaf area index (LAI , 5m2 ·m−2), stem area index (SAI , 0.8m2 ·m−2), canopy height

(34 m), sand clay loam soil (47% sand, 26% clay, 27% silt), organic matter density (33 kg ·m−3),

maximum fractional saturated area (0.39), color class (15). We need to note that a small change

of these parameters to apply local parameters did not affect much the model’s results in our test.

This is because our LAI value is high enough to be the dominant process, and the role of the soil

is small. Moreover, the slope parameter exists but it is never used in the radiative transfer, canopy

process, and turbulence model in CLM. Also, the most of the measured parameters at this site

are not much different from the default values. Therefore, we decided to use the default setting

except for some significant differences as below. The tropical, broadleaf evergreen tree (BET)

plant functional type (PFT) was used as the basis for representing the site’s specific landcover. The

location in question had a default value of 30% BET tropical, 30% of tropical broadleaf deciduous

trees (BDT Tropical), and 25% for grass and crop which we altered to 100% BET for purposes

of this study. The atmospheric reference height was set to 44 m to reflect the location of the net

radiation sensor on the Canopy Tower.

As an input, a meteorological forcing data set for CLM was created based on the measurements

collected on site. These variables include half-hourly averages of wind speed (m · s−1), incoming

solar radiation, relative humidity, air temperature, air pressure, precipitation, and CO2 concentra-

tion. Comparison of the simulation was based on measurements taken at Canopy Tower; thus,

Canopy Tower data was primarily used as forcing data when possible data was available. Average

precipitation and air temperature data collected at 10-m height at Met Tower were also used for
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data gap-filling. In most cases, weather data obtained from the two towers were highly correlated,

as the locations are less than 1 km away and only differ in their immediate surroundings (i.e., forest

vs. clearing) and slope degree (i.e., ∼45 degree slope vs. flat terrain).

Although flux methods cannot measure gross primary production (GPP) directly, it is an ex-

tremely important variable in the context of global carbon cycle modeling. In light of this, we

estimated GPP based on net ecosystem exchange (NEE), net ecosystem production (NEP), and

ecosystem respiration (ER), where NEE ≈ NEP and GPP = NEP – ER. With eddy-covariance

data being collected at the height of 33 m, NEP was estimated as CO2 flux + CO2 storage flux.

Ecosystem respiration (ER) was estimated to be around 1.2 (µmol ·m−2s−1) based on the night-

time data found using the u* threshold method (Papale, 2006; Reichstein et al., 2005). This EC

based data for CO2 flux including H2O flux can be still questionable due to the circumstance of

the measurement. However, later comparison shows these data provide acceptable tolerance when

compared to sap-flow data, and they are enough to give the information whether the model is

over-parameterized.

For transpiration (TR), measured data and simulated transpiration rates are compared at daily

timescales. To investigate water loss from the canopy, it is necessary to estimate or measure each

major flux (partitioned flux) within ET. In this site, up-scaled sap-flow data provides a transpiration

rate (Aparecido et al., 2016), which in turns allows for water vapor flux partitioning. Although the

sap-flow data at the site tends to be temporally lagged and a nocturnal sap-flow activity appears

(shown later), it provides data to be used as a comparison at a daily scale against CLM estimates.

As CLM cannot represent nighttime transpiration, sap flow measurements collected when the co-

sine zenith in CLM is less than zero were eliminated from the comparison. This daily scale com-

parison is made by a one to one figure with R-squared value, and also regression analysis which

provides additional information how much the model is deviated from observation: the slope and

its intercepts supposed to be 1 and 0. Particularly, the intercept is related to the mean value so it is

directly affected by whether the nighttime transpiration is included in this analysis. This difference

can reflect the lag between sap-flow at the base of the tree and actual transpiration rate.
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In physiological model for GPP and TR, unlike the radiative transfer models, notable updates

to the physiological models and their associated parameters have been made in CLM5 compared

to previous version in CLM4.5. The Ball-Berry Model (BB) (Ball et al., 1987) was supplanted

by a combination the Medlyn model for the stomatal conductivity (Medlyn et al., 2011), a plant

hydraulic stress model (Bonan et al., 2014), and the Leaf Use of Nitrogen for Assimilation (LUNA)

routine (Ali, 2016). While the BB model still can be used for CLM5, the slope parameter, which

is directly associated with stomatal conductivity, has been changed from 9 to 7.3 for C3 plants.

We have tested several options in CLM5 and determined that changing the stomatal conductivity

model does not affect photosynthesis-related results (e.g., GPP) in our case. Therefore, we can

simply understand that the slope of BB parameter has been reduced for CLM5 for carbon flux and

vapor flux, if differences are identified in photosynthesis rate between two different CLM versions.

For some comparisons, the determination of each variable’s height is necessary for CLM. In

this case, each reference height is determined based on assigned parameters in CLM: the displace-

ment height is d = 23.45m, ground roughness height is z0mg = z0vg = z0hg = 0.01m, and surface

height is z0 = z0mv = 2.625m, so the canopy height is d + z0 = 26.075m. Therefore, for in-

stance, canopy air temperature (Ta) in CLM is 2 m temperature in this comparison study, so it has

d + z0 + 2 = 28.075m. Our instrument heights do not exactly correspond to those assumed by

CLM, so one or two closest-positioned data are used for the comparison rather than interpolating

all data.

Additionally, in this simulation, since CLM5 has low leaf wetness ratio (the maximum is 0.05

as Eq. (4.4)), a range of leaf wetness parameters were applied to determine its influence. To

explore leaf wetness models, all leaf wetness [0-1] from CLM were re-estimated based on the

water amount on canopy using Eq. (4.4). Additionally, the question whether or not to apply the

power of 2/3 does not change much our comparisons.

Soil related data is spatially up-scaled and vertically interpolated to compare with the simula-

tion. For the spatial up-scale, soil temperatures and soil heat fluxes are measured at five different

places near the Canopy Tower, and the vertical profile data are also collected close to the base of
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the tower. For the vertical profile, CLM considers more number of soil layers, so the results of

CLM are linearly interpolated, to compare with the measured data.

To initialize the simulations, CLM was first executed with a cold start (i.e., randomly produced

initial values) and run for 100 years to get stable soil temperatures, cycling 6 years datasets col-

lected between the beginning of 2010 and the end of 2015. Once stable soil temperatures were

obtained, CLM was rerun for two years (2014 – 2016) at a 30-minute time step. Linear regressions

were performed to compare CLM outputs to field data. Goodness-of-fit of the regression analysis

was provided based on coefficient of determination (R-squared) if necessary. The variables con-

sidered when comparing observed vs. predicted were net radiation, PAR, albedo, CO2 flux, GPP,

transpiration, latent heat flux, air temperature, leaf temperature, leaf wetness, and soil related vari-

ables. Additional test simulations were used to determine how changes in levels of maximum leaf

wetness (fwetmax) and quantum efficiency of photosystem (Φ) affected goodness-of-fit. The mod-

ifications of LAI, light extinction related coefficients, and canopy heights (34m∼44m) were also

tested. Unlike fwetmax and Φ, however, they provided no significant difference or better results, so

comparison and discussion of them are not made here.

4.3 Simulation Results and Comparison

4.3.1 Net Radiation and Albedo

Light related comparisons indicate modeled land surfaces receive less energy than field mea-

surements, even though net radiation components were overall well predicted. Net radiation simu-

lations were -20 W ·m−2 less than the average measured values, although diurnal patterns closely

matched (R2=0.99). CLM was approximately -15 to -45 W ·m−2 lower than field measurements

during the daytime, -10 to -15 W ·m−2 during the nighttime [Figure 4.3a; Figure 4.3b], indicating

that the land surface in CLM tends to absorb less energy than the actual surface. Little difference

(< 5 W · m−2, R2=0.99) was detected between CLM4.5 and CLM5. The following simulated

shortwave reflectance (albedo) in CLM is higher (+0.022 in all daytime data, around 15% higher)

than the gauged albedo [Figure 4.3c], which can be also implied by the result of net radiation
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(longwave and shortwave radiation) above.

Light data was clearly affected by the sloped terrain. Although the models were developed for

all the global surface, sub-grid scale heterogeneity in land surface elevations has not yet been im-

plemented in CLM4.5/5.0. Albedo from CLM tends to have a symmetric form, while the measured

albedo has a skewed diurnal pattern [Figure 4.3c]. A large discrepancy occurs in the early morning

and the largest during mid-afternoon (+0.0517 at 3PM; [Figure 4.3c]). Additionally, the reflectance

in the morning is usually higher than in the afternoon [Figure 4.3c]. Except for the early morn-

ing and late afternoon, when solar angle or intensity peaks [Figure 4.3e], the albedo in CLM is

close to the measured data. The highest PAR intensity (or highest incoming solar radiation) occurs

at 10AM, at which time produces the smallest difference between observation and simulation of

albedo (+0.0214 in [Figure 4.3c]). In some parts, this may be caused by the oversimplification of

albedo models which cannot properly respond to the intensity of solar radiation/angle. However,

the skewed albedo seen on the measured data but not in the simulation [Figure 4.3c; Figure 4.3d]

clearly indicates CLM cannot represent the slope effect of the land surface. Such skewed diurnal

variations are also observed in the PAR profiles [Figure 4.3e; Figure 4.3f]. The measured PAR val-

ues, which are somewhat shaded by the upper canopy, are diurnally skewed compared with shaded

PAR in CLM. Different from the solar radiation above the canopy (i.e., the top of the tower), ra-

diation starts to get skewed right after infiltrating the top canopy layer. If revisiting the effect of

canopy gaps by the emergent tree for a quantitative check, we can check that radiation between the

top of the canopy (≈ 400 W · m−2 at 44 m from Net Radiation) and the next nearest heights (≈

110 W ·m−2 at 32-38 m from PAR) are considerably different (about 70-80% reduction from the

top) as mentioned before. The height of tall tree on this site is about 38 m (Aparecido et al., 2016),

so the shade effect is significant within small thickness of canopy (the emergent tree).

4.3.2 CO2 Flux (GPP)

All CLM versions (CLM4.5, CLM5, and CLM5BGC) overestimate GPP (6.7, 4.9, and 3.6

µmol · m−2s−1) [Figure 4.4a; Figure 4.4b]. Compared to CLM4.5, results from the new version

CLM5 seem to be more similar to measured data [Figure 4.4a]. However, CLM5 yields a lower
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Figure 4.3: (a) and (b) - comparison of net radiation between CLM and measurement on Canopy
Tower at 44m. (c) and (d) - albedo at 44m. (e) and (f) - PAR comparision for shaded canopies. All
left plots (a, c, and e) are ensemble diurnal variation and the right plots (b, d, and f) are one to one
comparison plots between CLM and measured data. Hysteresis depicted on (d) and (f) is based on
hourly ensemble average values for daytime.

photosynthetic rates than CLM4.5, possibly due to the lower BB parameter and lower maximum

rates of Vc,max25 and Jmax25 which the maximum rate is suppressed by LUNA and BGC mode.
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Here in CLM5, disabling the plant hydraulic model increases the carbon-assimilation rate, while

disabling the LUNA model decreases it in this site study. The prediction for the middle range of

photosynthetic rate (5-15 µmol ·m−2s−1) has not been much improved compared with CLM4.5.

One of the possible causes of discrepancy between the GPP and its observation may be the

light-limiting model [Figure 4.4b]. Comparison between absorbed PAR versus GPP shows that the

initial slope of measured data is much lower than the simulated one [Figure 4.4c]. As previously

explained (Figure 4.4d), through an extensive literature study Skillman (2007) and Evans (2013)

show the theoretical maximum for α should be≈0.11, α with saturated condition is approximately

0.075 (absence of photorespiration), and in normal atmosphere condition without any extreme con-

dition α is about 0.05 which is estimated when considering Φ ≈0.6 in Eq. (4.7) (Evans, 2013; Raj

et al., 2015; Skillman, 2007). Here, our fitted value for α is 0.021 (Φ ≈0.25) from our observation.

This low value can be caused by other factors such as physiological stress or a scale problem. The

fitted value is estimated from eddy-covariance measurement, not from leaf scale study. In current

CLM4.5 or CLM5, the α is around 0.07 with Ci=0.667, which is higher than 0.05 as usual cases

(Skillman, 2007; Ehleringer and Pearcy, 1983; Ehleringer and Björkman, 1977). For this study, Φ

was constrainedly modified to get proper α, but we need to revisit this model for the future study.

Test simulation with CLM4.5 and CLM5 was conducted using Φ=0.25 and Θ=0.7. By altering

Φ value, both CLM4.5 and CLM5 had better performance compared to the previous comparison

[Figure 4.5;Figure 4.4a]. The shape of the comparison plot in the middle range of GPP in this

study (5-15 µmol ·m−2s−1) results in more stable prediction with new parameter. However, max-

imum GPP has been reduced as expected [Figure 4.4d], and it is possible to fix such reduction by

updating Θ (curve shape), as shown on [Figure 4.4d]. In the simulated diurnal variation plot, the

trend is slightly shifted in the afternoon, also probably due to the effects of the topographical slope

[Figure 4.5b]. Time-dependent classification (i.e., regression lines with intercept forced through

zero [Figure 4.5b]) and the fitted slopes indicate that geographical features have an influence on

photosynthetic activity, which is mostly caused by the radiative transfer models, like albedo. How-

ever, the model fails to accurately represent such features, since CO2 flux in CLM is lower in the
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morning and higher in the afternoon.

Figure 4.4: (a) The ensemble diurnal variation of CO2 flux: differences between Eddy Covari-
ance (Canopy Tower 33m) and CLM in daytime is 6.7, 4.9, and 3.6 µmol·m−2s−1 for CLM4.5,
CLM5, and CLM5BGC, respectively; (b) One to one plot in reference to data shown in figure
(a); (c) APAR vs GPP, and wj is simulated with default parameters and Ci=0.667; (d) ‘A)’ is the
theoretical maximum α≈0.11, ‘B)’ is saturated/elevated condition α≈0.075 (absence of photores-
piration), ‘C)’ is normal atmosphere condition α≈0.05 if Φ≈0.6, and ‘D)’ is a fitted value α≈0.021
if Φ≈0.25 from our observation. [Θ] means applying the hyperbolic function Eq. (4.7) with the
curvature value Θ. The change of the slope can alter maximum assimilation rate, and the alteration
can be counterbalanced if Θ is modified.

4.3.3 H2O Flux

The effect of the change of fwetmax can be detected in the model’s results for vapor fluxes

[Figure 4.6a; Figure 4.6c; Figure 4.6e; Figure 4.6f]. In this simulation, since CLM5 has a low leaf
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Figure 4.5: Test simulation using Φ=0.25 and Θ=0.7 as in [Figure 4.4d]. By the modification of
Φ, maximum GPP has been reduced. It is possible to improve this model by updating Θ. r2 is a
R-squared value without an intercept.

wetness coefficient (i.e., maximum rate is 0.05 as Eq. (4.4), which reduces canopy evaporation

and elevate transpiration rate), fwetmax was considered as 1 for CLM5 and it is hereafter named as

(CLM5 fmx=1).

Similarly to CO2 flux, total H2O fluxes of CLM5 are overestimated (2.1×10−5 mm·s−1 higher

in daytime than Eddy-Covariance). Flux rate in CLM5 with fmx=1 which is for fair comparison

is reduced in comparison to the previous version [Figure 4.6a; Figure 4.6b]. The notable decrease

(CLM4.5 & CLM5 with Φ=0.25) was due to the change of the quantum yield α parameter as

done for the GPP simulation [Figure 4.5], which results in the further reduction but in the case of

CLM5 still 1.1×10−5 mm·s−1 higher than measurement during daytime. Meanwhile, transpiration

rates (TR) are overestimated in both CLM4.5 and CLM5 (Figure 4.6d) but there is also notable

improvement when changing the quantum efficiency parameter, as done previously for GPP and

total vapor flux. At the daily time scale, CLM4.5 produces the highest estimates for both ET

and TR in comparison to the other versions. CLM5 yields a notable and reduced change to the

estimated ET and TR due to the newly implemented leaf wetness parameter fwetmax. Applying

a quantum efficiency of Φ=0.25 makes fitted lines more close to the 1:1 line in both ET and TR

[Figure 4.6e; Figure 4.6f]. Here, correlations of TR are slightly increased by around 0.01 (R2
CLM4.5

= 0.67, R2
CLM5 = 0.68) when considering Φ = 0.25, however, the correlations of ET are decreased
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by around 0.1 (R2
CLM4.5 = 0.42, R2

CLM5 = 0.44) [Table 4.1]. The reduced TR when assuming

a lower quantum efficiency makes the fitted slope for ET decrease [Figure 4.6e], possibly since

transpiration rate is a more influential component than evaporation in this site. Thus, driving ET

rates when there is higher energy exchange condition (i.e., warm, sunnier and drier time). The

daily-scale comparison which is up-scaled except nocturnal transpiration as mentioned previously,

If one wants to include nighttime transpiration, the all intercept values (y-axis) in [Table 1] for

transpiration are decreased by -2.2×10−6·mm·s−1.

Table 4.1: Fitting parameters and regression coefficients for sap flow and eddy-covariance mea-
surements (except nighttime transpiration) versus simulation by CLM in daily scale for [Figure
4.6e] and [Figure 4.6f].

Figure Line Model Data Slope Intercept
(10−6·mm·s−1) R2

1 CLM5 0.92 9.98 0.51
2 CLM5 fmx=1 0.82 10.79 0.51
3 CLM4.5 1.04 8.06 0.55
4 CLM5 Φ=0.25 0.69 8.51 0.42

[Figure 4.6e]

5 CLM4.5 Φ=0.25

EC 33m
(ET)

0.75 7.65 0.44
1 CLM5 1.01 -0.22 0.66
2 CLM5 fmx=1 1.17 -5.32 0.67
3 CLM4.5 1.37 -7.29 0.67
4 CLM5 Φ=0.25 0.79 -2.14 0.67

[Figure 4.6f]

5 CLM4.5 Φ=0.25

Sapflow
(TR)

1.03 -5.84 0.68

4.3.4 Leaf Wetness

Simulated leaf wetness via CLM is not in agreement with the diurnal leaf wetness variation

measured in this site [Figure 4.7b]. In particular, the night-time fraction of leaf wetness is signifi-

cantly higher when compared with gauged data. The biggest problem detected in this study is that

intercepted canopy water is rarely evaporated in the model, especially due to frequent nighttime

rainfall (starting in late afternoon) or high daytime humidity (condensation). Daytime leaf wetness

seems to be reasonably simulated [Figure 4.7b], but the comparison between simulated and mea-
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sured data (not displayed here) cannot identify any trend, which indicates that the formula cannot

adequately represent actual behaviors of wet fraction in both CLM5 and CLM4.5.

Secondary analyses show that leaf wetness behavior is highly sensitive to incoming solar radi-

ation. The analyses are to track the behavior of drying leaf in [Figure 4.7e; Figure 4.7f], which is

drawn via the collection of consecutive no-rain events for 3 hours just right after last rain events in

the daytime between 10 AM and 14 PM. Although it is difficult to gather such a serial drying event

(each plot uses at least 12 successive datasets), the result clearly shows that leaf wetness is strongly

influenced by increase of incoming solar radiation when fwetmax=1 (CLM5 fmx=1 and CLM4.5).

In the case of fwetmax=0.05 (CLM5), the drying rate is reasonable at low solar radiation, but it is

still higher than observed with high incoming solar radiation. The measured data in the analysis

shows relatively small values of leaf wetness at lower levels of the canopy, which indicates that the

lower canopy does not sensitively respond to the interception for rain. This aspect can be a case to

support lower fwetmax can be reasonable.

Intercepted precipitation is usually too high in CLM compared with observed leaf wetness

[Figure 4.7c; Figure 4.7d]. The analysis made via detecting the increment of the leaf wetness by

precipitation, which is directly related with canopy interception: the usual increment for 2-hour

(30-min) rain is 0.71(0.33) at 38m, 0.48(0.28) at 3m observation, around 0.88(0.73) in CLM5,

0.97(0.77) in CLM5 fmx=1, and 0.94 (0.46) in CLM4.5. The interception model in CLM5 fmx=1

has been updated in Eq. (4.3) resulting in higher interception rate than CLM4.5 fmx=1 [Eq. (4.2)].

Also, the interception rate seems higher with CLM5 fmx=1 than with CLM5 as in [Figure 4.7c].

This is because CLM5 fmx=1 has higher canopy evaporation rate which results in the acceleration

of canopy evaporation while allowing interception to assume a larger role in the canopy water

balance. In the one to one comparison, the increase of leaf wetness in CLM is usually higher than

in measured data. Consequently, the wet canopy fraction at the beginning of the drying process

right after the last rain events is usually higher in CLM than in measurement: 0.63 at 38m, 0.47

at 3m observation, 0.96 in CLM5, 0.9 in CLM5 fmx=1, and 0.78 in CLM4.5 (see y-axis data at 0

x-axis in [Figure 7e]).
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4.3.5 Temperatures and Soil Flux

The simulated canopy air temperature in both CLM4.5 and CLM5 is overestimated during

daytime (+0.8 and +1 ◦C, respectively) and underestimated during the nighttime (-1.9 and -1.1 ◦C,

respectively) as seen in the ensemble diurnal variation analysis [Figure 8]. In other words, the

model results have more variation than measured data, and the simulated temperature might be

oversensitive to incoming solar radiation, as seen for leaf wetness. Updated MOST parameters im-

proved nighttime air temperatures in CLM5 (Burns et al., 2018), but they are still underestimated.

Remaining water on the canopy during nighttime tends to not be efficiently evaporated as reported

in the previous section [Figure 4.7b] which is also possibly related to low canopy temperature

in CLM. At lower canopy levels, the ground air temperature at the surface is also overestimated

during daytime, and it is even higher than air temperature at 1m-5m [Figure 4.8b].

Ground surface tends to have high energy exchange during daytime like as canopy process,

compared measured data. Considering the soil temperatures [Figure 4.8] and the soil heat fluxes

[Figure 4.9], we found they are overestimated during daytime and underestimated in the night-

time. Soil temperature and heat flux in CLM was highly variable, as expected due to results from

previous sections. Soil evaporation rates in both CLM4.5 and CLM5 are also overestimated com-

pared with estimated data from soil respiration chamber measurements (LI8100) [Figure 4.9]. For

soil evaporation, averaged differences in daytime is 5×10−7 mm·s−1 with CLM4.5 and 15×10−7

mm·s−1 with CLM5, while measured field value is around 1×10−7 mm·s−1. The simulated soil

moistures also have high changeability with low mean water contents (around 0.2 m3·m−3) com-

pared with gauged values (0.3-0.4 m3·m−3).

The overestimation of vegetation temperature (Tv) in both CLM4.5 and CLM5 also appears in

the daytime (≈ + 1.0∼2.4 ◦C) through the ensemble diurnal variation and the one to one compar-

ison [Figure 4.10a; Figure 4.10b]. Another model test is also made using global forcing datasets

(Qian et al., 2006) to corroborate our simulations, and the result was a very similar behavior (≈ + 5

◦C, not depicted here). The high Tv and Ta from CLM simulations results in lower relative humid-

ity than gauged-based canopy air humidity (figures are not presented here). We need to note that
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the sunlit/shade scheme in CLM does not consider two different vegetation temperatures, so it only

takes single variable Tv representing entire canopy. Canopy temperature (Tv) in CLM should be

an average of sunlit and shaded leaf temperature but the simulated results are far from our expecta-

tion [Figure 4.10a]. A comparison plot also shows significant error [Figure 4.10b]. The additional

comparisons indicate that Tv on sunlit leaves normally follows the canopy air temperature (leaf

thermoregulation) but CLM does not have such properties [Figure 4.10c; Figure 4.10d].

81



Figure 4.6: (a) The ensemble diurnal variation of total H2O flux, where “Measured 33m”
is measured by Eddy Covariance (at 33m), “Sapflow” is transpiration measured through
sapflow, all “CLM” are about evapotranspiration (ET), ‘fmx=1’ sign represents fwetmax=1, and
‘Φ=0.25’ means 0.25 applied to Φ in Eq. (4.7); (b) One to one plot in reference to data shown
on figure (a); (c) diurnal variation of partitioned H2O flux, where ET, TR, and VE are evapotran-
spiration, transpiration, and canopy evaporation from CLM; (d) The one to one plots of 30 min
scale transpiration rate between simulated TR versus sapflow transpiration rates; (e) The one to
one plots of daily evapotranspiration (except nighttime transpiration) rate between simulated ET
versus measured one from eddy-covariance; (f) The one to one plots of daily transpiration rate
between simulated TR versus sapflow data (except nighttime transpiration)
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Figure 4.7: (a) Transpiration/Evapotranspiration versus leaf wetness and classified by relative hu-
midity [0-1]; (b) The ensemble diurnal variation of leaf wetness, where ‘38m’, ‘11m’, and ‘3m’ are
measurement heights and the others are leaf wetness from CLM5 (fwetmax=0.05), CLM5 fmx=1
(fwetmax=1), and CLM4.5 (fwetmax=1); (c) and (d) are the behavior of wetting canopy at 38m and
large markers are the average of each simulated value. The collected data has the condition that
there is no previous rainfall event at least in 2 hours and leaf wetness is lower than 0.2 at the
beginning; (c) is for 0.5-hour rainfall events (one consecutive event in 30-min scale); (d) is for 2
hours rainfall events (four consecutive events); (e) and (f) are the behavior of drying canopy. For
this analysis, Consecutive no-rainfall (3 hours) data and daytime between 10 am and 2 pm are
collected right after rain event. Marked lines are from measurements, and continuous lines are
estimated from CLM; (e) is when solar radiation is low (0 - 300 W·m−2); (f) when solar radiation
is higher than 300 W·m−2. All leaf wetness [0-1] from CLM was re-estimated based on Eq. (4)
because such CLM5 has a limit as fwetmax=0.05. Also, whether or not to apply the power of 2/3
does not change much our comparisons. 83



Figure 4.8: The ensemble diurnal variation of air temperatures. Canopy Levels at 22-33m and
1-5m are measured air temperatures, Ta represents air temperature at 28.075m in CLM, and Tg is
ground air temperature at 0.01m in CLM. ‘Ts -0.02m’ is measured/simulated soil temeprature. In
(a), both CLM4.5 and CLM5 is overestimated in daytime (+0.8 and +1 ◦C) and underestimated
during the nighttime (-1.9 and -1.1 ◦C). In (b), differences bettwen ‘Measured Ta 01-05m’ and all
CLM values (CLM5.0 Tg, CLM4.5 Tg, CLM5.0 Ts, and CLM4.5 Ts) are -0.39, -0.14, -0.32, and
-0.06 in daytime and -0.02, 0.18, -0.11, and 0.08 ◦C in nighttime. Differences with ‘Measured Ts
-0.02m’ are -0.04, 0.21, 0.03, and 0.30 in daytime and 0.90, 1.10, 0.81, and 1 ◦C in nighttime.

Figure 4.9: The ensemble diurnal variation of soil/ground heat fluxes (into soil +) (left) and soil
evaporation.
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Figure 4.10: (a) The diurnal variation of leaf temperatures with measured canopy air temper-
atures; (b) The one to one plot of leaf temperatures: CLM vegetation temperatures (Tv) are
compared with measured values for the both gauged shade (Shade Tv) and sunlit (Sunlit Tv)
vegetation temperatures; (c) The one to one plots about measured canopy air temperatures ver-
sus measured leaf temperatures (sunlit and shade); (d) The one to one plots about canopy air
temperatures versus leaf temperatures from CLM (CLM5 Ta vs CLM5 Tv) and observation
(Canopy Ta 22-38m vs averaged Tv from sunlit and shade Tv): Averaged Tv is estimated through
(LAIShade × TvShade + LAISunlit × TvSunlit)/LAI . In (a), daytime differences ‘CLM 5.0 Tv’
minus measurments (’Measured Ta 22-38m’, ‘Measured Shade Tv’, and ‘Measured Sunlit Tv’)
are 1.1, 2.4, and 1.0. In nighttime, the differences are -2, -0.3, and -1.8 ◦C. CLM5 normally 0.2
higher in daytime and 0.8 higher in nighttime.
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4.4 Discussion and Conclusion

In this study, two versions of the Community Land Model (CLM4.5 and CLM5), running pri-

marily in the satellite phenology (SP) mode, were tested against measured data from a mountainous

tropical rainforest in Costa Rica. Net radiation was underpredicted by both CLM4.5 and CLM5, by

an average of -20 W ·m−2 [Figure 4.3a; Figure 4.3b]. The discrepancy was attributable to CLM’s

over-prediction of surface albedo, which showed a +0.022 difference [Figure 4.3c; Figure 4.3d].

The effects of topological slope clearly appear in the diurnal plots for albedo/PAR [Figure 4.3]

and for CO2 flux [Figure 4.5]. With respect to albedo, the hillslope shading effects magnified

these discrepancies, with afternoon values having larger differences as the sun moved behind the

north-south trending mountain [Figure 4.3]. Different degrees of discrepancy exists according to

the diurnal cycle of the intensity of incoming solar radiation and solar angle [Figure 4.3c; Figure

4.3d]. PAR profiles also show radiation levels within the canopy have a skewed cycle [Figure

4.3e; Figure 4.3f], which were not captured by CLM. These indicate that canopy radiative transfer,

including the surface albedo and sunlit/shade separation in CLM, may need to represent such

characteristic for advanced land surface model to reflect a more realistic response to solar radiation

or topographical slope. More importantly, aerodynamic resistance models, such as MOST, are

currently incapable of representing a sloped terrain. If such effects can be implemented in CLM,

predictions can be highly improved, especially at a fine grid scale.

This study demonstrates the possibility of reducing predictive uncertainty by adapting the

model to mimic such slope effects, and suggests that additional observations are necessary to

examine and capture such features. Many past studies to compare and improve CLM have taken

a similar approach to this study, but with more focus on specific sub-model performance (Burns

et al., 2018; Swenson and Lawrence, 2014; Bonan et al., 2011), rather than studying spatial com-

plexity. The slope effects for albedo are minor in this study, because the hysteresis effect (which

appears as skewness in the diurnal average curve) is relatively small and because the effects cannot

be visually identified from the net radiation curves. On the other hand, the skewness for PAR is

significant and this is obviously related to the different response of GPP through time [Figure 4.5].
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Such influence might not be noticeable if the GPP comparison were not classified by time, because

the error appears similar to white noise. If this effect is captured, the prediction of physiological

variables (e.g., GPP and TR) can be improved. We anticipate the same effect would be present in

a wider range of forests. Also, recent land surface models are becoming more elaborate vertically

(e.g., multi-layered model (Bonan et al., 2018; Ryder et al., 2016)) and horizontally (e.g., vege-

tation demographics (Fisher et al., 2018), and the performance of these advanced models would

be affected by topographical characteristics. Hence, further investigation should focus on both

improved model parameterization for hillslopes and additional data from mountainous forests.

The simulated photosynthesis rate tends to be higher than those observed; these result are also

reported in similar studies of montane rainforest (Fan et al., 2019; Muñoz-Villers et al., 2012);

such errors could possibly be alleviated by updating parameters associated with light-limitation

effects. For carbon flux (GPP) and transpiration (TR), the over-estimation in CLM4.5 has been

reduced in CLM5 [Figure 4.4b; Figure 4.6b; Figure 4.6d]. However, CLM5 and CLM-BGC seem

to reduce the maximum assimilation rate limit by lowering the BB slope photosynthesis parameters

(i.e., Vc,max25 or Jmax25). The curved-shape error in GPP, the middle range of photosynthesis rate,

still exists compared with CLM4.5 [Figure 4.4b], and one of the light-response photosynthesis

model could be the cause. We have briefly addressed the electron transport model (Eq. (4.6) and

Eq. (4.7)) and tested it by changing quantum yield and curvature parameters [Figure 4.4c; Figure

4.4c]. The GPP including transpiration shows the change of the parameter (fitted quantum yield)

results in better agreement with observation and additionally a clear effect of the topographical

slope appears [Figure 4.5; Figure 4.6f].

Partitioning the water flux is a critical task which also needs more investigation. Errors in vapor

flux are particularly difficult to diagnose since the discrepancy can be caused by the failure of any

of the embedded sub-models, although transpiration is the largest driver of the overall pattern of

total vapor flux (ET) [Figure 4.6c]. For comparison, CO2 flux in CLM largely depends on plant-

light relationships (photosynthesis). In contrast, evapotranspiration (ET) consists of three major

components: soil evaporation, canopy evaporation, and transpiration. Therefore, an error in any
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one of the sub-models can make the entire water flux (ET) inaccurate. We can also recognize

that the comparison of total vapor flux [Figure 4.6b] has much uncertainty compared to CO2 flux

[Figure 4.4b], which has a strong curved correlation at least

Canopy evaporation, which relies on both the rainfall interception sub-model and the leaf wet-

ness sub-model, is a key to proper partitioning. Both ET and TR are affected by the Canopy

evaporation [Figure 4.6a; Figure 4.6c], because leaf wetness suppresses transpiration and enhances

canopy evaporation in CLM [Figure 4.2b; Figure 4.7a]. However, the leaf wetness variable in CLM

has high uncertainty in a number of analyses, including ensemble diurnal variation [Figure 4.7b]

and interception rate [Figure 4.7c; Figure 4.7d], possibly due to oversimplifaction of throughfall

processes as reported in a previous study (Fan et al., 2019). Leaf wetness related parameters are

optimized for large-scale forcing (e.g., 6 hourly data). The improperly modeled canopy water lev-

els and the wetted fraction result in errors in canopy evaporation which overreacts to the intensity

of solar radiation (or net radiation) [Figure 4.7e; Figure 4.7f]. We observe some improvement in

CLM5 by low maximum wetness fwetmax but the simulated leaf wetness is still sensitive to the

incoming solar energy. Such water-related process can also have vertical/spatial variation due to

the structure and the shape of canopy but also the topographical effects.

The new maximum leaf wetness applied in CLM5 may need to vary more by vegetation type,

as highlighted in a previous study (Fan et al., 2019). Changing fwetmax has a significant impact

on latent heat fluxes [Figure 4.6a; Figure 4.6c; Figure 4.6e; Figure 4.6f], contrary to the results

noted by Burns et al. (2018). While this affect could be attributed to much more frequent rainfall

at our site, it also could be that a low fwetmax is more reasonable for needle leaf species than it is

for those with large, broad leaves. Leaf surfaces in canopy fwet cannot be easily fully-wetted even

with conifer, and transpiration rate is not much sensitive with relatively high leaf wetness (fwet

> 0.4) [Figure 4.7a], however, simply applying fwetmax as 0.05 for all sites cannot be realistic.

The role of leaf wet faction is not negligible in CLM, and the behavior of the photosynthesis

is still sensitive to leaf wetness (fwet 5 0.4). At low relative humidity values, the relationship

between leaf wetness and transpiration is close to linear, but it tends towards non-linearity at high
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relative humidity [Figure 4.7a]. In our site, different leaf wetness behaviors have been observed

between sunlit canopy and shaded canopy (Andrews et al., 2019), which can be also an important

characteristic for tracking canopy evaporation and ET.

Temperature-related variables are also problematic in CLM [Figure 4.8; Figure 4.9; Figure

4.10], which may be caused by errors in energy partitioning and modeling aerodynamic resistance.

Day vs. night changes in canopy air temperature and leaf temperature in CLM are excessive, an

issue also noted in previous comparisons. In the Burns et al. (2018) study, changing the MOST pa-

rameters partially corrected underestimates of nighttime air temperature in CLM5. The source of

error is similar to, and perhaps intertwined with, the issues found with leaf wetness. Consequently,

because the canopy air temperature is linked with soil/ground temperature, following soil temper-

ature and soil heat flux including the ground evaporation in CLM also has higher fluctuation than

measured datasets [Figure 4.9]. These variables (soil moisture, soil temperature, and soil heat flux)

are highly related each other and they are also linked with the canopy condition, so it is difficult to

conclude which part most results in such high variation in the soil system. Additionally, the CLM

results have low relative humidity at canopy air (lower than measured data) in daytime. This is also

possibly related to the overestimated canopy air/leaf temperatures, which can also affect physio-

logical simulation such as transpiration rates. Such overresponse to incoming solar radiation can

be caused by the failure of energy partitioning and the estimation of aerodynamic resistance, but

it is challenging to attribute the error precisely. For instance, ET is overestimated in the daytime,

which results in low thermal exchange between the surface and the atmosphere according to the

energy balance. On the other hand, the temperature gradients between the atmosphere, the canopy,

and the ground are higher than anticipated [Figure 4.8], which is possibly triggered by the error of

aerodynamic parameters. We need to note that the aerodynamic resistance is likewise affected by

the air temperature gradient so they are mutually dependent.

Adjustments in light-related parameters (e.g., LAI, leaf angle, and optical depth) did not no-

ticeably improve model results. The ratio of the absorbed energy on the soil surface to the total

incoming solar radiation in CLM is 0.0342, but our PAR profile data [Figure 4.3e] indicates the
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ratio should be lower, around 0.01. Even though the modeled ground surface tends to receive ex-

cess solar energy, changing this value does not seem to result in significant improvement in any

simulated variables, because it is a relatively low portion of the energy budget. Likewise, increas-

ing LAI to 7.7, based on nearby site measurements (Teale et al., 2014), only slightly alleviated

issues associated soil temperatures and made no difference in canopy temperatures. We have also

tested with different leaf angles which are directly related to the optical depth (K), but there is no

significant difference; a change in leaf angle from χL=0.1 to χL=0.4 results in a 0.3 ◦C decrease in

ground surface temperature. These supplementary tests indicate that the reduction of absorbed so-

lar radiation on the ground and the some changes of parameters for soil albedo do not significantly

alter canopy temperatures. The problem may more likely be caused by errors in the aerodynamic

resistance above the canopy or oversimplified canopy structures, as has been reported in other

studies (Wang et al., 2014; Chen et al., 2010; Zheng et al., 2012; Zeng et al., 2012).

A complete multi-layer scheme may be necessary to improve the model. From the Tv analysis,

we find that both CLM5 and CLM4.5 have two big-leaf scheme as sunlit/shade area in the canopy.

However, this module works only for incoming solar radiation, not for leaf temperature or canopy

air temperature. The air temperature differences along heights within the canopy are not significant

based on measured data, but leaf temperature can be a promising variable to be partitioned into

sunlit and shade temperatres due to that the two have somewhat different behaviors: see between

measured sunlit and shaded vegetation temperatures (the fraction of sunlit is about 26% in CLM)

[Figure 4.10]. The fraction of leaf wetness also represents the entire canopy area in CLM, which

seems physically too simplified. The higher location of canopy tends to be easily wetted/dried than

the lower location; the more exposed canopy area (higher location) is normally wetter than shaded

canopy area [Figure 4.7e; Figure 4.7f].

Vegetation temperature affects energy flux temperature via its relationship to canopy air tem-

perature (Ta) and physiological processes such as transpiration (Wang et al., 2014). Nevertheless,

the problem of skin (surface/leaf) temperature appears in this study as other reports (Wang et al.,

2014; Chen et al., 2010; Zheng et al., 2012; Zeng et al., 2012). Some researchers attribute these
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issues to incorrect parameterization of roughness length for heat and have made a number of ad-

vances toward reducing these errors (Yang et al., 2002; Wang et al., 2014; Chen et al., 2010; Zheng

et al., 2012; Zeng et al., 2012). However, we note that our case is different since most studies

discussed low diurnal variations and underestimations. The one to one comparisons between the

canopy air temperature and the leaf surface temperature [Figure 4.10c; Figure 4.10d] indicate that

Tv on sunlit leaves normally follows the canopy air temperature (leaf thermoregulation) as de-

scribed in other literature (Michaletz et al., 2016). However, CLM does not consider such leaf

thermoregulation processes.

In conclusion, through the simulation test of CLM on land-atmosphere processes of a steep

mountainous tropical rainforest, we identify how the global-scale parameterization works at this

unique site. These are very few case studies of such steep surface and wet tropical forest, which

more highlights the importance of this study. We have found that CLM5 has some advantages

over CLM4.5. However, CLM5 does not yet sufficiently resolve the critical problems (such as par-

titioning the energy balance), and updates to the representation of in-canopy processes (such as,

photosynthesis model, turbulence model, and model structures) are still needed to capture temper-

ature variations and physiological activity. More importantly, further investigation into including

slope effects into the models is required.

Some detailed results are that canopy temperatures and leaf temperatures are over-sensitive to

incoming solar radiation, which can cause a number of issues: low relative humidity near canopy

surface, subsequently affecting tree physiological processes, and excessive heating of the soil sur-

face, leading to unrealistically high average and day-to-night differences in soil temperatures and

soil heat fluxes. The formulation describing leaf wetness processes is too simplified, causing model

failure for the frequently rainy areas. Transpiration rate, which is the largest part of latent heat flux

at the site, as well as carbon uptake (photosynthesis activity) are also over-estimated in CLM. We

have also suggested potential improvement of photosynthesis model by the re-parameterization of

quantum efficiency. Ultimately, however, it may be necessary to apply a two big leaf scheme or

multi-layer scheme to better depict the multi-faceted interactions between leaf wetness, temper-
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ature, and shading to properly represent canopy processes in tall, dense, or mountainous forests

such as this.

Based on these new findings, the application and further investigations are necessary. In partic-

ular, actual improvement at this study site by applying new parameterizations and global-scale tests

will be the next goal. Also, more observations at both this site and other new places are essential

to increase the number of samples and to enhance the reliability of the land surface model.
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5. PROFILE MODELING OF MICROMETEOROLOGICAL VARIABLES IN A TROPICAL

MOUNTAIN RAINFOREST USING MULTILAYERED CLM (CLM-ML)

5.1 Introduction

Land surface models (LSM) do not yet adequately capture land-atmosphere interactions (Cai

et al., 2014; Wang et al., 2014; Lawrence et al., 2011; Oleson et al., 2010). In particular, as

discussed in the previous section, a LSM prediction is likely contains significant errors in tropical

regions (Bonan et al., 2011, 2012), although the LSM such Community Land Model (CLM) has

been updated for continued improvement.

One of the main reason of model failure discussed in previous section is that a single layer

model can be insufficient to represent various surface environments. Consequently, inter-comparison

study or site-based study based on the single layer model (e.g., CLM4.5, CLM5) cannot be ade-

quate for a notable improvement of model. The surface layer is normally described as one or two

uniform blocks including soil and vegetation, which is also known as the Big-Leaf model (Dai

et al., 2004; Oleson et al., 2013). Applying such as model to the energy budget in the surface layer

provides an efficient and tolerable degree of accuracy for the many study sites (Ryder et al., 2016).

However, it cannot sufficiently represent the response of various fluxes from the surface caused

by large differences in the generating mechanisms such as vegetation growth, turbulent transfer,

and energy exchange within the canopy. The main fluxes such as latent and sensible heat flux are

sensitive to model structures and process-based parameters, but the big leaf models are too sim-

plified to show such effects (Jiménez et al., 2011). The structure of the land surface models can

be more important than input data for evapotranspiration (Schlosser and Gao, 2010; Ryder et al.,

2016). Some studies also report that Big-Leaf scheme cannot properly predict fluxes of sensible

and latent heat due to the absence of the vertical structure of canopy (Jiménez et al., 2011; Ogée

et al., 2003; Pitman et al., 2009; Bonan et al., 2014). The main cause of this shortfall is the failure

of the partitioning of incoming solar radiation as function of height which is one of the most vital
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inputs to simulate transpiration (TR), carbon uptake, and energy balance (net radiation) through

the leaf density.

Due to the potential of multi-layered scheme, development is in this area ongoing on a number

of multi-layer canopy models in addition to CLM. However, most of them have similar functional

forms, so focusing on CLM can be sufficient to represent effects on current LSMs. In a typical

model, a light profile scheme is applied to predict net radiation at each layer, and a wind pro-

file model is then used to estimate the magnitude of flux transfer between layers. Finally, each

flux of interest is estimated based on a scalar mass-conservation equation about the vertical ex-

change of each species (e.g., heat, vapor, CO2). However, the models differ in their sub-models,

which themselves can have varying methods and levels of complexity. For instance, in the light

profile scheme,the Multilayer Canopy-Root-Soil model (MLCan) (Drewry et al., 2010) and CLM-

ml (CLMML) (Bonan et al., 2018) use the radiative transfer model described by Campbell and

Norman (2012) which has simple mechanical and iterative procedures. CLM-ml (CLMML) can

additionally select to use the multi-layered Two-stream approximation method introduced by Bo-

nan et al. (2011), which is mathematical based model (closed-form) and also used in single-layered

CLMs.The Atmosphere-Plant Exchange Simulator (APES) (Launiainen et al., 2015) uses a math-

ematical scattering model from (Zhao and Qualls, 2005). Multi-layer Simulator of the Interactions

between a Coniferous stand and the Atmosphere (MuSiCA) (Ogée et al., 2003) and Organizing

Carbon and Hydrology In Dynamic Ecosystems – CANopy (ORCHIDEE-CAN) (Ryder et al.,

2016) follow the method in Gu et al. (1999) for a light profile which is different version of the

Two-stream radiative transfer model. Simultaneous Heat and Water model (SHAW) (Flerchinger,

2000) uses a radiative transfer model introduced by Flerchinger et al. (2009) which has a similar

approach with Zhao and Qualls (2005). For wind profiles or turbulent transfer scheme, MLCan,

APES, and ORCHIDEE-CAN employ 1st-order turbulence closure or similar scheme based on

K-theory (Massman and Weil, 1999; Katul et al., 2004). On the other hand, MuSiCA, SHAW, and

CLM-ml (CLMML) use the extended version of MOST (Harman and Finnigan, 2007; Leuning,

2000). MOST in CLM is widely utilized for many land surface models such as Simultaneous Heat
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and Water (SHAW) models (Flerchinger, 2000), Community Land Models (CLM5) (Lawrence

et al., 2018), and Community Noah land surface model with Multi-Parameterization options (Noah

MP) model (Niu et al., 2011).

When they applied a multi-layered scheme into single-layered CLM, Bonan et al. (2018) also

identified the weakness of turbulence model (Monin–Obukhov Similarity Theory, MOST) which

has a critical role in determining the amount of each flux such as heat and moisture. The up-

dated turbulence model called Roughness Sub-Layer model (RSL) was successfully applied to the

CLM-based multi-layer model (CLM-ml, CLMML) (Bonan et al., 2018). Despite the reasonable

predictions of mean gradient and turbulent fluxes, MOST tends to fail within roughness sublayer

above or near canopy height (Bonan et al., 2018; Harman and Finnigan, 2008, 2007). By compar-

ing MOST with RSL using CLMML, this study reveals that the turbulent transfer scheme is a key

element to determine a model’s performance. The study also highlights the change of in-canopy

structure in the land surface model produces the reduction of known bias in sensible and latent heat

flux, GPP (gross primary production), and also turbulent transfer itself (Bonan et al., 2018).

Despite the update of CLM, a case study with the multi-layer scheme has not sufficiently con-

ducted due to the lack of study sites having profiled observations (Bonan et al., 2018). This is

mainly because most sites are initially installed for single-layered scheme/model. Moreover, ob-

servations of tropical and geographically complex areas in particular are rare (Song et al., 2019).

Case study is important because it can most directly help to diagnose in detail and to develop the

more advanced land surface model. Here, the environment of the study site we explore here has

several extreme features compared to other sites where data of this type are available (Song et al.,

2019), with ambient condition of high humidity, large precipitation, and steeply sloped surface.

Furthermore, a wide range of micrometeorological observations - including vertical profiles of

temperature, CO2 concentrations, and water vapor deficit - are available at this site. This study

will be a test case for tropical climates, but also it will provide useful insight into the importance

of multi-layered schemes in land surface models of tall forests. This study will suggest possible

updates to accurately capture the land surface process in such a unique environment.
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For this study, in addition to the multi-layered scheme, some different and additional ap-

proaches are necessary due to the features of our study site. In a departure from other studies

which have normally modeled a flat surface, we will examine the influences of a steep hillslope

which mainly affect wind profile (turbulence-transfer profile) and canopy shapes. Tracking turbu-

lence activity is intricate over the sloped surface/canopy because the effect of the hillslope canopy

cannot be simply up-scaled to the horizontal boundary of the top grid box, although for flat surface

it has been possible that single canopy is regarded as a representative for a study area (grid box).

Moreover, to apply in-canopy complexity, two different wind profile methods, (1) RSL scheme

embedded in CLM-ml and (2) numerical solution to first-order closure model, are used to estimate

the wind forcing value and the wind profile. Additionally, estimates of CO2 emissions from soil

and calculations to determine CO2 concentrations in the canopy airspace are also added to CLM-

ml. Leaf area density (LAD) profile and its displacement height (d) are additionally investigated

due to site uniqueness. Different LAD distributions are also tested how such difference can affect

the model simulation.

In the previous study of this site, some improvements of CLM5 are identified compared to

CLM4.5, but the model is not yet sufficient resolved to represent the canopy process of montane

tropical rainforest (Song et al., 2019). In this study, another test case is conducted for the multi-

layer scheme, and then the model (e.g., wind profile models, canopy shapes, and parameters) is

updated to better capture various fluxes and vertical profiles. The detailed information about the

study site and those updates are described in a later section.

5.2 Methodology

5.2.1 Micrometeorological Measurements

The study site is the same site in the previous section, located at the Texas A&M University

Soltis Center nearby San Isidro de Peñas Blancas in Costa Rica. The site has two primary biome-

teorological measurement locations. The main weather tower (hereafter called “Met Tower”) is

located in a flat clearing over grass at the base of the mountain. The walkup canopy access tower
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(hereafter called “Canopy tower”) is located within the forest, on the eastern slope. The Met Tower

allows for the measurement of meteorological conditions without the influence of canopy processes

and resistances.

Figure 5.1: Simplified illustration of sloped surface and its two canopies for this study site, where
H is average canopy height in large scale, Hmax is the maximum canopy height at the measure-
ment place, r is the measurement location between two canopies, EC represent eddy-covariance
measurement or its sonic anemometer, and d is displacement height.

The Canopy tower is positioned above the canopy but there is an emergent tree [Figure 5.1],

leading to a large vertical opening between the canopies from approximately 30 to 40 m. Above

the gap, the emergent tree (the upslope tree) provides a substantial degree of sheltering; we see a

70% drop in photosynthetically active radiation (PAR) between downslope canopy surface (30 m)

and above the emergent tree (44 m). This configuration can also have some implications which

make the eddy covariance method less than ideal. The sonic anemometer and IRGA are located at

97



33 m, extending away from the tower and clear of obstructions in both the upwind and downslope

directions [Figure 5.1]. Major winds occur parallel to the mountain, along the valley rather than

over the slope, allowing us to capture fluxes, albeit under a narrowed set of ambient conditions.

Thus, while these data are not necessarily sufficient for recording long-term, integrated measures

of variables like gross primary production, they are appropriate for testing and validating models

which can be assessed despite the presence of gaps by the emergent tree (Song et al., 2019).

5.2.2 Forcing Data

As in a previous study which used CLM4.5/5 for comparison with observations, CLMML

requires the same forcing data including wind speed, incoming solar radiation, temperature, air

pressure, and relative humidity (RH). These data are collected from the Canopy tower in the for-

est. Missing data are filled with Met tower data, since meteorology data from the two towers are

highly correlated with each other. Final missing data are replaced by available data from randomly

different day in the same month at the same time, to make the forcing data not to have NaN values.

However, these gap-filled data are not compared with observation for this study. Solar data are

mostly from the 44 m sensor at the Canopy tower in the mountain forest. Air temperature, RH, and

pressure are from the 38 m sensor at the Canopy tower. The air temperature and RH do not much

vertical variation (33 m-38m), and these data are also similar to the observation from Met tower.

For wind data, Canopy tower data are used for this study although Met tower is built for the

forcing data. The main reason is that it cannot be simply applied as wind forcing due to the effect

of the emergent tree. The Met Tower (weather station) collects meteorological data at 10m height

over grassland and The Canopy tower also has wind sensors (33 m is the highest). The Canopy

tower is placed on the mountain where the actual elevation is much higher (more than 200m by

pressure difference) than the Met tower. However, the wind speeds measured in both sites have a

similar magnitude: Met tower data (for general forcing data) versus EC data at 33 m tower [Figure

B.1]. This means the wind speed at higher location can be much different in the Canopy tower.
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5.2.3 Forcing and Canopy Heights

With the previous assumption, the change of forcing height with variables other than wind

speed did not give a significant difference for the simulation. In the previous study, we set all

forcing heights including the wind as 44 m which is the height of the top radiation sensor. For

wind speed, it was mainly because the EC sensor is placed at the lower canopy and above it, as

if the radiation sensor is on a high canopy. In this circumstance, due to low displacement height

(≤ 35 m), the simulation result was not improved even if we reduced the forcing height to 35 m,

which is default height of Canopy in the satellite phenology (SP) mode in CLM. Global forcing

data were also used to test this site but yielded similar results, since they have 35 m canopy height

and 35m forcing height.

In this study, we assumed that wind data can be affected by two major canopies. In our case,

the height of EC for simulation can be influenced by spatially irregular canopy caused by the

circumstance of this site. We need to note that the study site is over a sloped surface, and the

EC sensor (CSAT3 wind sensor) is located above the lower (downslope) canopy. By the effect of

slope, the height of EC at the Canopy tower is 33 m, but its actual height at the lower (downslope)

tree location may be higher than that.

Here for various test cases, we use the similar setting of the previous study for all forcing data

and also use a higher height (50 m) to start far from the maximum canopy height (43.7 m). At this

point, wind speed becomes sensitive to changes in the height. Therefore, it is necessary to predict

wind speed at a higher location (50m in this study) based on the measured data which is lower (33

m) than the maximum canopy height (43.7 m by an upslope canopy) among the two trees.

Two test cases for CLMML mimic the previous study about the wind speed forcing, but the

other cases in this study mainly use the original height (33 m) of sonic anemometer. CLM4.5/5

simulations and the two test cases of the CLMML set the forcing heights at 44 m as the previous

study, to compare each other. Again, this assumes there is no interference from the emergent tree

which leads to directly use raw forcing data from both Canopy and Met towers. Applying the

influence of the emergent tree, other CLMML tests have 50m forcing height induced by 33 m
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wind speed and have 43.7 m maximum canopy height, with applying different LAD distributions

[Figure 5.3] and different wind profile models.

5.2.4 Simulation Setup and Analysis

For CLMML, 30 vertical nodes were used in this study, and the original CLMML code (CLM-

ml v0) (Bonan et al., 2018) was modified for the study purposes and inserted in CLM5 code at

the middle of the running flow (“clm_driver.F90”) to execute CLMML. It is because the update

of CLMML is only for canopy process. CLMML runs independently, but it needs other required

modules (e.g., soil temperature module, input/output module, etc.) and default variables (Bonan

et al., 2018).

Various simulation settings are assigned for the inter-comparison between single canopy mod-

els (CLM4.5/5), multi-layered CLM (CLMML), and observation. First, it requires us to add ad-

ditional equations such as CO2 profile scheme because CLMML does not calculate it yet. Then,

other modification and improvement are mainly to address this complex terrain, which affects leaf

distribution, wind/turbulent magnitude, etc. Most of the settings for the all simulations are the

same as the default using the satellite phenology (SP) mode. As discussed in previous study, the

default parameter is not modified if there is no significant improvement (Song et al., 2019). The

major differences from the previous study are the model change (CLMML) for canopy process and

forcing height. The additional simulation setup and analysis as below.

This study site presented three main challenges: (1) how to setup the wind forcing data, (2) how

to address the complicated canopy shape in the model, and (3) which height the eddy-covariance

(EC) measurements actually represents over this sloped surface.

First, applying wind speed data from the canopy gap (EC 33 m) on the Canopy tower as the

forcing can be better than on using the data from Met Tower for model simulation. Normally,

forcing data for the land surface model is measured on a flat surface like as Met Tower. For

example, wind data measured at 10m height over grassland can be applied as forcing value, because

it is near-inertial sublayer which means wind speed is not much different at the higher location

(approximately 1.6 times higher at 250 m higher in neutral condition based on the parameter in
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CLM5) [Figure 5.2]. Therefore, wind data from the two places were assumed replaceable for

each other, and they were applied as forcing data in the previous study for CLM4.5/CLM5 (Song

et al., 2019), because the two are highly correlated. However, using such forcing data did not give

reasonable simulation results as shown in the previous study. Even a wind speed value which is

around two times higher (estimated from the Met tower using a logarithmic relationship) did not

give better results. It is possibly because the differences in the turbulent process for flat grassland

and sloped canopy surface are not fully understood, which makes it difficult to connect the two

locations. Given this result, another idea is tested here to see if the wind speed at the Canopy tower

can be used to track a whole wind profile, considering the influence of emergent tree. The basic

idea is to use the wind data as forcing to track upward and downward from the middle height of

the two canopies, not for downward tracking only.

Figure 5.2: Simplified illustration of two different wind sensors. R2
0 is R-squared without intercept.

CLM only takes wind value higher than 1 m2 · s−1 to avoid numerical error (Lawrence et al., 2018)

Additionally, the previous wind profile model (RSL) does not perfectly reflect LAD distri-
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bution below the maximum canopy height Hmax (See Appendix B.2.2). Therefore, we need to

investigate whether a wind profile model responding to different LAD distributions can result in

different model performance. On the other hand, the RSL model is a practical and reliable method.

RSL is the updated version of MOST to reflect canopy effects, incorporating the stability theory

which has been widely used and proved through many studies. A mixed-model allows for both

advantages; here, RSL is applied above the maximum canopy height and the first order closure

model is numerically solved in lower portions. Additionally, the computational time is minimized

in this test by applying wind profile shapes from the previous step as the initial condition.

The displacement height in RSL is derived based on the centroid drag on the canopy (Harman

and Finnigan, 2007). Therefore, the displacement heights for a sloped surface could be relatively

lower than those for a flat area, because the maximum canopy height Hmax and the spatially-

averaged height H are not the same [Figure 5.1]. The sloped place produces two parameters:

single (flat/average) canopy heightH and the maximum canopy heightHmax especially if all tree’s

canopies are homogeneously overlapping within a horizontal grid. Then, the canopy height for

displacement height (d) may be estimated from average height H , not from Hmax, if the centroid

drag is considered through this sloped canopy.

Secondly, the influence of LAD distributions, maximum canopy height, and displacement

heights on this study site (Canopy tower) were assessed. A fitted LAD via measurements is de-

fined as the true LAD profile here. The actual LAD distribution is determined with light sensors

and light extinction model, and the shape shows two major canopies appearing in the profile as

expected (Andrews et al., 2019). Another possible shape was found in previous literature, where

Bonan et al. (2018) describe LAD distributions for deciduous trees and pine trees based on the

Beta distribution. We found that pine trees (p = 11.5 and q = 3.5) were most similar to our ob-

served LAD distribution: a tall tree with dense canopy at the top. Canopy height in CLM4.5/5 is

35m as a default value on a flat surface. On the other hand, in this study site, through dual canopy

profile model as below, the fitted value for average canopy height is H=39 m and maximum canopy

height is about Hmax=43.7 m caused by topographical slope effect. The dual-canopy model is a
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mixed distribution based on a single-canopy model. The Beta distribution function is used for the

single-canopy model as in (Bonan et al., 2018)

fLAD,1(z,H) =
L

H
· fBeta(z/H, p, q) +

S

H
(5.1)

where fLAD,1 [m2·m−3] is the single-canopy model for leaf area density (LAD), z [m] is height,

H [m] is canopy height, L [m2·m−2] is leaf area index, S is stem area index, and p and q are shape

parameters for the Beta distribution. Then, the dual-canopy LAD model can be written using

mixed-distribution as

fLAD,2(z,Hd, r,∆H) = r · fLAD,1(z + (r − 1) ·∆H,Hd)+

(1− r) · fLAD,1(z + r ·∆H,Hd)

(5.2)

where fLAD,2 [m2·m−3] is the dual-canopy model for leaf area density (LAD), r [-] is horizontal

relative location between the two canopies, Hd [m] is the height of dominant tree which is the

same as H , the maximum canopy height Hmax [m] between the two is estimated through Hmax=

Hd + (r − 1)·∆H , and ∆H [m] is the vertical distance between each canopy heights Hd [Figure

5.1]. Additional combinations could better mimic mid-story and sub-story structure in the canopy,

however, here we assume the dual-canopy model is sufficient to represent the true canopy shape

for this study. More detailed information about LAD model may be found in Appendix B.2.4.

Finally, the eddy-covariance system is located above the lower (downslope) canopy but still

between the two major trees, making it difficult to identify what the flux measurements actually

represent. This is because the surface is not flat, allowing possible interference from a nearby

emergent tree upslope. Here, measured data were compared to simulation results to assess three

possible hypotheses using the aid of the multi-layer model. carbon and water flux can have rela-

tively large scale compared to the turbulence scheme. The wind and its turbulence can be regarded

as the forcing to transport species (more fit to Eulerian approach). On the other hand, the carbon

and water vapor are the actual species which can move long distance (close to Lagrangian ap-
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proach). The scale gets larger if the tree gets taller (more air space) as with our study site. This

is mainly because the source for the fluxes has a footprint which depends on wind direction and

the measurement height (Burba, 2013). Moreover, tracking the source can be complicated in the

steep area because the footprint can be small for upslope and large for downslope. Wind direction

does not normally follow an inclined plane in this study site which makes possible to assume that

the upslope and downslope footprints can be counterbalanced. However, this approach does have

uncertainty.

We can look the EC data in three different ways: (H0) EC can represent the full flux of the

area as in the previous study: EC versus total fluxes from CLM, (H1) EC measures the partial

flux of the area which does not contain the residual flux from the emergent tree above the EC

measurement at 33 m: EC versus fluxes at 33 m from CLM, and (H2) EC represents a mixture

between the top and EC height at the Canopy tower. This test is possible due to a multi-layered

model. If EC flux was not falling between Top (H0) and 33 m flux (H1), then we can conclude that

model excessively over or under-estimates the fluxes. If H2 is acceptable, then, we can conclude

the overestimation of the CLM caused by the error photosynthesis parameter like as previous study,

or/and the underestimation caused by low incoming solar radiation at lower canopy (light profile

error) which would indicate that light-extinction model may be too simplified for sloped canopy

and possibly for sparse canopy having various heights.

All simulation results and observations were compared using the vertical profile of into day-

time versus nighttime and wet days versus dry day. Upscaling (or spatially normalizing) from the

bottom to the top was also conducted for the canopy water and temperature to compare with the

single-layered model (CLM). For example, upscaled-values (X) for dirunal variations about the

two variables were estimated as:

X =

(∑
z

LSAIz · xz

)
/
∑
z

LSAIz (5.3)

where z is heights (m) which represents each node, and LSAIz is leaf-stem area index (m2·m−2)

at each node.
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Finally, the simulation setting is listed [Table 5.1], where zmax is forcing height except wind, zu

is wind forcing height, Hmax is maximum canopy height, d is displacement height, H(d) canopy

height for displacement calculation d, p and q are parameters for the Beta function, and r and ∆H

is LAD distribution parameters. These parameters gives different canopy shapes in simulations,

which affects both fluxes and other meteorological variables. R10 and Q10 are parameters for soil

respiration. For the wind model, MOST and RSL are different schemes and their difference only

affects above the canopy (≥ Hmax) in this study. We use the term (Numerical) for when a turbulent

model for under the Hmax is changed from RSL (closed-form) to the First-order closure model.

The LAD distribution was described previously but the soil and the wind model will be discussed

in later section. The different canopy shapes are plotted in [Figure 5.3].

Table 5.1: Model list and the name is abbreviation

# Name
zmax

/ zu

Hmax

/ H(d)
Wind model LAD p q r ∆H R10 Q10

1 CLM5.0 44/44 35/35 MOST - - - - - - -

2 CLM4.5 44/44 35/35 MOST - - - - - - -

3 R1Co H35m 44/44 35/35 RSL Single 11.5 3.5 - - 0.3 2.0

4 R1Co H39m 44/44 39/39 RSL Single 11.5 3.5 - - 0.3 2.0

5 N1C H35m 50/33 35/35 Numerical Single 11.5 3.5 - - 0.3 2.0

6 N1C H39m 50/33 39/39 Numerical Single 11.5 3.5 - - 0.3 2.0

7 R1C H44m 50/33 43.7/43.7 RSL Single 11.5 3.5 - - 0.3 2.0

8 N1C H44m 50/33 43.7/43.7 Numerical Single 11.5 3.5 - - 0.3 2.0

9 R1C 50/33 43.7/39 RSL Single 11.5 3.5 - - 0.3 2.0

10 R2C 50/33 43.7/39 RSL Double 69.9 8.7 0.65 13.5 0.3 2.0

11 N1C 50/33 43.7/39 Numerical Single 11.5 3.5 - - 0.3 2.0

12 N2C 50/33 43.7/39 Numerical Double 69.9 8.7 0.65 13.5 0.3 2.0

13 NFC 50/33 43.7/39 Numerical Flat 1 1 - - 0.3 2.0

14 N1C Q1 50/33 43.7/39 Numerical Single 11.5 3.5 - - 2.4 1.7

5.2.5 Additional Calculations

In addition to introducing new LAD distributions, we added or reformulated three aspects of

CLMML: reformulated a wind speed profile scheme, and added a CO2 profile scheme and a soil

respiration flux. The equations are discussed briefly here; more detailed information may be found
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Figure 5.3: Various LAD distributions by the two parameters (p, q, r) and heights (h = Hmax) for
this study [Table 5.1]. 30 nodes are used here.

in Appendix B.2.

A first-order closure model of wind profile for the eddy-diffusivity is used in this study to re-

flect different LAD distributions because RSL (closed-form but approximation) cannot fully reflect

LAD distributions as mentioned previously. The model follows previous work (Launiainen et al.,

2011; Katul et al., 2004; Drewry et al., 2010) as

Km
∂2u

∂z2
+
∂Km

∂z

∂u

∂z
− Cda(z)u2 = 0 (5.4)

whereKm is the eddy diffusivity for momentum, u is wind speed, z is height, Cd is drag coefficient

(0.25), and a(z) is LAD (Launiainen et al., 2011). The eddy diffusivity for momentum is

Km = l2m

∣∣∣∣∂u∂z
∣∣∣∣ (5.5)
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where l is mixing length given as

lm =


kvz, z < α′Hmax/kv

α′Hmax, α′Hmax/kv ≤ z < Hmax

kv(z − d), Hmax ≤ z

(5.6)

where kv is Von Karman constant, α′ is kv(1− d/Hmax), Hmax is canopy height, and d is the zero-

plane displacement height (Launiainen et al., 2011; Katul et al., 2004). The displacement height is

usually 0.667·Hmax but it varies in CLMML (Bonan et al., 2018) [See Appendix B.2.1]. For this

study, the displacement height is estimated based on the average canopy height H or Hd, so the

height is calculated based on the concept of dual-canopy model (fLAD,2) to apply the slope effect.

In different settings as [Table 5.1], the wind profile is mostly (except #1-4) estimated based on

EC data (uEC) placed at the middle of the profile system [Figure 5.1; Figure 5.2]. For the first-order

closure model, the ordinary differential equation (ODE) is solved based on two wind speed values

as the boundary conditions which are at the EC location and the ground (u=0). The wind speed

is calculated for the higher level until the maximum canopy height, using the wind speed and its

vertical gradient at the EC location. On the other hand, this calculation becomes straightforward

in the RSL model because it has an analytical solution in which the key function depends on the

height (u(z)=f(z)) [See Appendix B.2.2]. Wind speed as a function of height is estimated using

the reference wind speed (uEC) at the EC location (zEC) as

u(z) = uEC(zEC) · f(zEC)/f(z) (5.7)

The method to determine CO2 concentrations as a function of height (i.e., CO2 profile) is

similar to other profile estimations like as water vapor in CLMML, described by Bonan et al.
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(2018):

ρm
∂C

∂t
− ∂

∂z

(
ρmKc(z)

∂C

∂z

)
= [fc,sun(z)fsun(z) + fc,sha(z)fsha(z)] a(z) (5.8)

where ρm is molar density (mol·m−3), C is CO2 concentration (µmol·mol−1), t is time (s), Kc

is scalar diffusivity and it was assumed the same as Km in this study based on the previous study

that the ratio appears close to 1 (Launiainen et al., 2011), fsun is the fraction of sunlit leaves, fc

is photosynthesis flux, and the sum of square bracket is source and sink term. Soil respiration

R (µmol·m−2s−1) is also applied in CLMML as a source term. The expression follows as in

Launiainen et al. (2011) which has

R = R10Q
(Tg−10)/10
10 (5.9)

where R10 and Q10 are parameters which have 0.3 and 2 (R≈0.7 at 22 ◦C) (Launiainen et al.,

2011), and Tg is ground temperature (◦C). These parameters are also fitted using measured data in

this site which have 2.4 and 1.7 [Figure B.2a in Appendix B.1]. This fitted soil respiration model

(called as ‘Q1’ in this study) tends to produce very high rates (R≈4.5 at 22 ◦C). Also, including

CLM5/CLM4.5, CLMML have a relatively high ground temperature which makes soil respiration

rate too high (model’s error). Therefore, for ‘Q1’ simulation the ground temperature is directly

predicted by the simple regression model [Figure B.2b in Appendix B.1].

Applying these additional equations and to conduct its inter-comparison study, the CLMML

and CLM5 were simulated from 2014 to 2017. Also, CLM4.5 was also simulated because CLMML

is based on CLM4.5. However, the comparison is mostly with CLM5 if there is no significant

difference.

5.3 Simulation Results and Discussion

Total net radiation showed no significant differences between any single layer model (CLM4.5

and CLM5) and a multi-layer model (CLMML) [Figure 5.4] because it was estimated from the

same radiative transfer parameters, particularly albedo. A small daytime difference may originate
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due to multi-layered radiative transfer scheme, and more significantly due to the fact that the multi-

layer model was able to resolve energy segmentation at each height through the vertical profile,

which produces different total net radiations from different LAD shapes [Figure 5.5a; Figure 5.5b;

Figure 5.5c]. The impact of in-canopy variation can be detected via flux comparisons. The night-

time net radiation has been decreased when the case has a higher canopy height (see net radiation

chart in supplementary data). In this case, the wind turbulence model highly affects the energy

exchange in the night time. A net radiation profile including the PAR profile in the daytime is

greatly influenced by canopy shape [Figure 5.5a; Figure 5.5b], and we need to note that the net

radiation profile is also affected by light–extinction model. Consequently, this vertical variation of

net-energy affects physiological activities such as GPP and transpiration (TR), which has similar

profile shape (shown later).

Figure 5.4: (a) and (b) - comparison of net radiation between CLM and measurement on Canopy
Tower at 44m.

Simulated net radiation and PAR profiles for the dual-canopy simulation (N2C) have a two-

steps stair shape, and we note that contrary to expectations, the amount of received energy is

significantly different between the two upslope and downslope trees [Figure 5.5a; Figure 5.5b].

The inconsistency arises because in effect the two canopies spatially overlap slightly [Figure 5.1].
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This error likely occurs because the measured LAD profile has a relatively small footprint. On the

other hand, the PAR profile follows the observations well, compared to other shapes [Figure 5.5a],

and the predicted net radiation profile with the two canopies (N2C) can be more reasonable than

with other shapes.

Additionally, the evapotranspiration (ET) fraction profile tends to converge to the 0.7 at a high

leaf area density and a high energy exchange [Figure 5.5b; Figure 5.5d]. These profiles indicate

that the ET flux is a main contributor to the energy exchange in this site. Also, it shows the

importance of a canopy shape because the received energy profile depends on the leaf distribution.

From the PAR profile shape, and the profiles of net radiation and sensible heat flux, it seems that

the very thin thickness of leaf density is contributing the most of energy exchange including ET.

Therefore, an accurate canopy model such as physiologically-based model is very important.

Figure 5.5: (a) PAR profile, (b) Net radiation profile, (c) Sensible heat flux, and (d) Evaporative
fraction in daytime. These profiles are simulated through multi-layered CLM (CLMML) with
different structures [Table 5.1].

The shape of the wind profile generated by the numerical method tends to follow the observa-

tions within the canopy well [Figure 5.6]. Applying the more realistic canopy height and shape

(dual-canopy formulation) gives a more plausible wind profile [Figure 5.6c]. Here, the different

shape of the canopy profile does not seem to yield large differences in wind speeds (i.e., N1C vs
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N2C) [Figure 5.6c]. Some differences in the wind profile can be identified between the numerical

estimation (N1C) and RSL (R1C), however, these differences have a little impact on the simula-

tion of final flux at the top which will appear in later comparisons and Supplementary Data. Our

analysis indicates that the change of the canopy heights produces a notable impact on the wind

profile. The different heights for this test case consist of the mean canopy height 39 m and the

actual maximum height 44 m due to the slope effect. Also, the displacement height (d) would be

lower than usual [Figure 5.1]. RSL profile with lowered d (R1C) seems to worsen the results than

with normal d (R1C H44m), but we need to note that RSL cannot reflect the canopy shape. The

first-order closure model seems to have some improvement, given its low d value (see N1C H44m

vs. N1C) [Figure 5.6b].

Figure 5.6: Wind profile. (a) Wind profiles with different canopy heights. H indicatesHmax=H(d)
[Table 5.1]. (b) Wind profile with different models. (c) Wind profile with different LAD distribu-
tions.

The multi-layered model can give significant improvement to the prediction of leaf wetness

[Figure 5.7]. The leaf wetness profile for wet days highly depends on the shape of LAD (see in

[Figure B.3] and Supplementary data). Also, the increase in nighttime evaporation has an important

role in moderating the over-fluctuation in diel variation compared to the previous study (Song et al.,

2019). The overall result indicates that the higher portions of the canopy in CLMML tend to follow
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well measured values, but the lower portions of the profile, which also have low leaf areas, tend to

hold more water than observations would suggest [Figure B.3 in Appendix B.1]. This is possibly

caused by low net radiation at the lower heights as shown in the profile shape of net radiation.

We cannot visually identify the impact between two different turbulent transfer schemes (R2C and

N2C) but the small difference can be detected in the nighttime and wet day (see supplementary

data). Nonetheless, the multi-layer model provides more reasonable results as displayed in the

comparison using up-scaled leaf wetness [Figure 5.7]. Considerable measurement error may be

expected from these sensors due to their shape and low spatial coverage, but they do provide

insight into diurnal variations in wetness.

Figure 5.7: Diurnal variation plot for canopy water which is up-scaled from profile results [Figure
B.3 in Appendix B.1] via Eq. (5.3). Here the wetness is not used to avoid the confusion by the
power term (2/3) in CLM. This canopy water represents the ratio between the current canopy water
and the maximum canopy water Wmax = 0.1kg·m−2 without the power term, because Wmax is a
constant and total LSAI has only temporal variability. The water on y-axis represents the total
water on the canopy : the LSAI is approximately ≈ 6 m2·m−2.

Modeled profiles of air temperature, relative humidity, and CO2 concentration show general

agreement with the observations, indicating that these variables were mainly affected by turbulence-

transfer parameters, especially by the maximum canopy height Hmax and LAD distributions [Fig-
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ure 5.8; Figure 5.9; Figure 5.10]. The night-time profiles are noticeably improved compared to

the single-layer model. Most profiles seem within the standard deviation of observed profiles (see

error bar plots), but some cases with low canopy heights such as N1C H39m and N1C H34m tend

to have more errors especially in CO2 profile.

Figure 5.8: CO2 concentration profile, with observations from AP200 system

Both the CO2 profile and CO2 flux were highly influenced by the soil respiration [Figure 5.11;

Figure 5.8]. Applying parameters from Launiainen et al. (2011) resulted in reasonable predictions

but applying our measured soil flux (N1C Q1) made the comparison deviate from expectations.

However, it is not yet certain which one is correct, due to the significant error of GPP prediction in

CLMML that still exists.

For CO2 and H2O fluxes, both H0 and H1 types of interpretation do not yield a successful

comparison between EC data at 33 m and simulated fluxes, but the H2 type seems more valid. The

EC data possibly represents a height higher than 33 m (H1) and lower than the total maximum

canopy height (H0). For the H0 case, the multi-layer model seems to overestimate the total flux

in the daytime for all the simulated cases [Table 5.1] [Figure 5.11]. If we assume H1 is correct,

the simulated fluxes are mostly underestimated. There are some exceptions such as a simulation

(N1C H35) having 35m canopy height which overestimates CO2 flux but it did not match the

113



Figure 5.9: Relative Humidity (RH) profiles with the profiled observation.

Figure 5.10: Air Temperature profiles.

CO2 profile either [Figure 5.8]. The other 39 m simulation (N1C H39) and the 44 m flat canopy

simulation (NFC) matched observed H2O fluxes at 33 m but their wind profiles and leaf wetness

are not well predicted. Therefore, both hypotheses were not supported and the 33 m observation

(eddy-covariance) may represent a height between the two places (H2 case). These results are

also supported via transpiration (TR) observations, where total sap flow rates is higher than 33 m

eddy-covariance and lower than the simulated TR rate (Aparecido et al., 2016).

These simulated carbon/water fluxes as well as their concentrations indicate that as compared
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with the single layer model, sub-canopy models produce significantly different results and are sen-

sitive to changes in structural parameters. Particularly, canopy parameters that affect the turbulence

model and light penetration alter the resulting understory concentrations of trace gasses. For in-

stance, GPP and transpiration (TR) predictions are mainly influenced by radiative transfer [Figure

5.13], which is mainly affected by LAD distribution. Fluxes CO2/H2O and their concentrations are

more altered by changing turbulence-related formulations or parameters (e.g., canopy height, LAD

distribution) [Figure 5.11; Figure 5.12] (also see supplementary charts). These intrinsic variations,

caused particularly by canopy shape, produce diverse fluxes of land-atmosphere interaction. Here,

we need to notice that CO2/H2O fluxes, their concentrations, and GPP/Transpiration are different.

These fluxes represent final fluxes toward the atmosphere/in-canopy air which are affected by the

turbulence model. GPP/TR indicates source and sink through physiological activity.

The multi-layered model tended to show higher night time evaporation rates, which is caused by

improved turbulence scheme by model itself (RSL) including model parameters and different LAD.

These changes consequently contribute to the improvement of leaf wetness compared to the single-

layered model. The nighttime water flux mostly occurs at the dense top canopy [Figure 5.12].

However, the comparison problem for the water flux exists similarly to CO2 flux when compared

with EC data, which makes diagnosis difficult. Through the aid of concentration profiles, the in-

canopy behavior of the model can be diagnosed. For more accurate partitioning the water flux, all

models related to canopy water need to be re-investigated with more observations to capture the

effects particularly produced by the topographical complexity.

The profile of TR rate reasonably mimics observation but the predicted total flux (TranDom) is

still overestimated [Figure 5.13]. This result supports the idea of the previous study (Song et al.,

2019) which highlights the possible issues with light-limited photosynthesis models. In this site,

the sap-flow data can regraded as profile data, as it is measured from trees with a range of canopy

heights. The data has three different categories: Sub-story, Mid-story, and Dominant canopy are

separately measured, and these are accumulated toward the top canopy for the profiled plot. The

heights are estimated as Hsap = H + ∆H(1− r) according to the previous sap-flow study which
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Figure 5.11: CO2 flux profiles simulated using under different canopy parameters [Table 5.1]. For
the observation from EC measurement, the circle is the mean value and the bar indicates standard
deviation.

Figure 5.12: H2O flux profiles in the same way of [Figure 5.11].

gives possible each maximum canopy height for flat surface as H = 11m, 27m, and 39m. Other

parameters for sloped surface are ∆H = 13.5m and r = 0.65, which result in 15.725m, 31.725m,

and 43.725m for the Sub-story, Mid-story, and Dominant canopy.

Night time improvements due to the multi-layered scheme can be also detected in the diurnal

variation of leaf temperature [Figure 5.14]. The overall temperature is increased but the amplitude

of leaf temperature, as well as air temperature [Figure 5.10], is reduced and the cycle follows well
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Figure 5.13: Transpiration (TR) profile in the same way of [Figure 5.11]. It should be noted that
the Observation 33 m is EC which represents total H2O flux including TR. TranSUM, TranMID,
and TranDOM are from sap-flow data, which represent in 15.725 m, 31.725 m, and 43.725 m for
the Sub-story, Mid-story, and Dominant canopy

the observation (see N1C case). Through the multi-layered model, other variables such as RH and

Air Temperature were also improved compared with the single-layer model (CLM5) [Figure 5.9;

Figure 5.10].

Figure 5.14: Diurnal plot of Leaf Temperature (TV ) via Eq. (5.3).

117



5.4 Summary

In this study, we tested multi-layered CLM (CLMML) (Bonan et al., 2018) against a suite

of micrometeorlogical observations at a tropical montane rainforest site, exploring both a multi-

layered land surface model and a tropical wet forest site on a complex terrain. Here, additional

calculations were included in the model to test different turbulent transfer models (i.e., wind pro-

files) and various canopy shapes, as reflected in leaf area density variations with height [Figure 5.3].

Additionally, a new formulation for predicting in-canopy CO2 concentrations, which includes the

effects of soil respiration, was also estimated through CLMML to compare with our available data

set.

Overall, the top-of-canopy energy balances predicted by CLMML were similar to those from

CLM due to the same radiative transfer model. However, CLMML’s main advantage was to re-

produce trace gas concentrations, and micrometeorological variables with the subcanopy, allowing

for paritioning of trace gas fluxes as a function of height in the under-story. The small alteration of

the net radiation comes from a different energy partitioning caused by the change of model struc-

ture (e.g., multi-layer and RSL). The simulated meteorological profiles such as air temperature,

RH and CO2 concentration are not perfectly matched with the observations. However, the mean

profile falls within the standard deviation of observation in most of test case. We also found the

CO2 concentration profile and its fluxe are very sensitive to the soil respiration, which indicates we

need to focus on soil activity for tropical site.

With the aid of multi-layer scheme, this study showed it is possible to model a complex terrain

by including its atypical features. The general wind speed model cannot be simply applied in

a mountain area (sloped surface) to accomplish comparisons because the surface is not flat and

accordingly overall LAD distribution becomes a mixed-distribution (dual-canopy) [Figure 5.1].

Also, the displacement height is derived based on the centroid drag on the canopy area, which

results in the lower displacement heights by the slope effect.

Furthermore, the RSL model embedded in previous CLMML for under canopy may not be

adequate to predict a turbulent transfer because it cannot reflect LAD distribution. Therefore, a
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first-order closure scheme Eq. (5.4) is applied to explore its effect. The wind forcing data located

at the middle height of the canopy profile was successfully included in the model [Figure 5.6].

This shows the possibility to overcome the difficulty of data use/ modeling at abnormal site. It also

highlights that normal forcing data (such as Met Tower) cannot be easily applied for such complex

terrain, because the wind profile was abruptly increased at the higher location [Figure 5.6].

Applying different types of wind speed models and parameters clearly affects the wind profile

shapes, and the canopy height is most influential parameter for overall performance. However,

changes between numerical and RSL methods and different displacement heights have a similar

performance for the other variables (e.g., temperatures, etc.), especially with single-canopy profile.

The small difference can be detected for leaf wetness and H2O flux when dual-canopy LAD is

applied (see supplementary data). This similarity can be mainly because RSL model is derived

based on the first-order closure model. In contrast, some small differences are identified here

(see actual value in supplementary data), which indicates there is still the possibility of having a

stronger influence in a different environment. Since we used only several leaf profiles, fixed LAI,

etc., different ambient conditions can show different outcomes. More investigation is necessary.

This study highlights that the two schemes, turbulent model and LAD distributions including

radiative transfer model, are important for the performance of land surface models. LAD distribu-

tions affect the direct/instant energy exchange over the leaf profiles, so a different LAD distribution

produces significantly different outcomes for trace gas and momentum fluxes as well as state vari-

ables(e.g., CO2/H2O flux, GPP, TR, leaf wetness, and leaf temperature). These differences are

directly attributable to the influence of light penetration through the canopy LAD profile. They are

also influenced by the effect of wind profile (turbulent transfer) due to in-canopy feature (canopy

height, LAD distribution). Between the two schemes, the micrometeorological profiles in the air

(e.g., air temperature, RH, and CO2 concentration) are not solely/directly affected by LAD dis-

tributions (e.g., bell shape) unless the canopy shape is too different, such as a flat canopy (NFC).

They are rather more affected by parameters for the turbulent model such as the canopy height.

This study emphasizes the importance of layered structures in capturing the behavior complex
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surface systems and supports previous multilayered model studies (Jiménez et al., 2011; Ogée

et al., 2003; Pitman et al., 2009; Bonan et al., 2014). Through this test, we found that updat-

ing the model structure from the single-layer model (CLM4.5/CLM5) into the multi-layer model

(CLMML) results in improvement of water and energy partitioning, by allowing the exchanges of

matters and energies between vertical layers. Moreover, it makes further improvement possible

by applying a more realistic canopy shape, which affects radiative transfer and turbulent transfer.

This multi-layered model loosens the limitation of simplified model and allows more variability

caused by the internal structures (below canopy) (Ryder et al., 2016). For instance, the vertical

segmentation of vapor transfer as a function of height gives a notable improvement in leaf wetness

predictions. Also, GPP and TR show that different canopy structure results in different total fluxes

through vertical distribution of sources and sinks. Simulated total GPP (by vertical summation) is

increased but the top flux toward the atmosphere is reduced by a multi-layered turbulent scheme

and by the storage terms. These features cannot be captured using a single-layer model. Updating

the MOST model (RSL) improved the diurnal amplitude of both leaf temperature and leaf wetness,

which was too high in CLM4.5/CLM5. They were reduced by 67% and 47%, respectively, with

an 470% increase in nighttime evapotranspiration.

Perhaps more importantly, the profile measurement system provided additional, more detailed

information to diagnose the model performance than is normally possible through the single-layer

model. For instance, the representative height for the eddy-covariance (EC) in this site was ap-

proximately expected as H2 case through the analysis of the profiled results using CLMML. In this

analysis, some cases seem well matched at a certain height between EC and CLMML, but they

fail to reproduce the associated variables (e.g., N1C H39 seems to well estimate H2O flux at 33

m but its wind profiles, leaf wetness, and CO2 profiles are not well predicted). The profile results

related to TR show comparison between sap-flow data and simulated TR has good agreement but

still overestimate photosynthesis. This result supports the previous idea that the parameter for the

light-limit photosynthesis needs to be updated.
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5.5 Conclusion

In conclusion, the multi-layered CLM have intrinsic improvements by reflecting complicated

structures under the canopy compared to the single-layered CLM. This study shows possible po-

tential for the further improvement of LSM using this multi-layer scheme by the more detailed

interpretation of the natural phenomenon such as updating wind turbulent scheme and leaf area

profile. Moreover, the vertical profile scheme helps to examine model’s ability to capture the in-

canopy processes resulting in the final land-atmosphere interaction. It helps to track the error of

sub-model in detail by comparing with such spacially rich measurement.

However, the multi-layered CLM still cannot reflect topographical complexity. Although this

study attempts to update the original model to overcome such a deficiency, the model fails to

sufficiently capture slope effects or to find a clear answer for model improvement. An improved

capturing light-penetration scheme, especially reflecting a variety of combinations between the sur-

face slope and solar location, may be the first task to solve. In additionally, more observations are

necessary, particularly data on light profiles but also wind speed profiles. To fully understand such

complex mountain forest, vertical profile data are necessary but also the data reflecting horizontal

spatial variability are also required, which may be available at only few sites.
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6. SUMMARY

The terrestrial water and carbon cycles are important in the Earth system which influences

both living things and their climate. Water migration transverses multiple sub-systems in the Earth

(e.g., vegetation, soil, groundwater, river flow, precipitation). Therefore, their internal behaviors

and interactions with the atmosphere or with the other sub-systems need to understand, to predict

future water availability but also the climate impact. Particularly, we need to capture the relatively

fast responsive process such as the land-atmosphere interaction which highly affects future climate.

Particularly, soil evaporation and vegetation evapotranspiration including photosynthesis are

key processes in land-atmosphere interaction. However, their mechanisms are not fully understood

yet. Therefore, it is important to keep studying the soil and vegetation processes for the better

understanding and accurate LSM, through model diagnose and update.

In Section 2, a new relationship for the saturated front depth (also known as the characteris-

tic length) was derived under the condition of a shallow water table. Previously derived models

have considered only single-directional flow to determine the front depth, and the comparison

tests resulted in significant disagreement with a mass-conservation model (Richards Equation)

with respect to the front depth and the total mass loss. Through this study (Section 2), a two-

directional approach (vertical and horizontal) was derived to capture both the model improvement

and mass-conservation. The relationships were derived and proved using two different equations,

the anisotropic Darcy’s law and the Richards equation.

In this study (Section 2), the test of the two-directional approach results revealed that the new

concept provides better performance in both the front depth and the total mass loss, and this study

shows the advantage of analytical/semi-analytical solution against a numerical method. It also

implies that with further study it may be possible to predict the front depth depending on the

different surface water content.

In the next section (Section 3), relative evaporation models were explored in more detail, and

they were reformulated to reflect heterogeneous pore sizes at soil surface based on capillary theory
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(Young-Laplace equation) and pore-size distribution. The evaporation models in this study were

based on an idea that drying rates are controlled by the two main resistances from an inside soil

layer (SL) and a viscous boundary layer (VBL). Within the VBL, some diffusion-based models

(e.g., S&M, SCH), which normally consider homogeneous soil pores, have been often used to pre-

dict an evaporation rate. Such two models (S&M, SCH) were regarded as having similar behavior

each other but they were not sufficiently identical. Also, to apply the heterogeneity of soil surface

at VBL, effective pore sizes and effective water contents facing the atmosphere were derived and

applied into a diffusion-based evaporation model. Then, the influence of soil-pore heterogeneity

was tested accounting for both soil and VBL resistance schemes in the evaporation model.

In Section 3, our investigation found that the two major diffusion-based models (e.g., S&M,

SCH) are sufficiently close to each other after the re-interpretation of the model concept. Then,

with SCH, the simulation test for the heterogeneous-pore-size model indicates the drying rates tend

to be lower than the original models (homogeneous). The reduction was especially notable between

the beginning of evaporation (fully saturated condition) and transition point (stage change), which

accounts for a large amount of water movement even with small change. Also, this study shows

that effective water content tends to have a more significant role than effective pore size in the

mechanism of evaporation.

Section 4 and Section 5 examined the performance of the Community Land Models (CLM4.5,

CLM5, CLM-ml) against tower and ground measurements from a tropical montane rainforest in

Costa Rica. The study site receives over 4,000 mm of mean annual precipitation and has high

levels of relative humidity. The measurement tower is equipped with an eddy-covariance and

vertical profile systems able to capture various micrometeorological variables, particularly for wet

and complex terrain.

In Section 4, results from point-scale simulation for both CLM4.5 and its updated version

(CLM5) were compared to observed canopy flux and micro-meteorological data. Both models

failed to capture the effects of frequent rainfall events and mountainous topography on the vari-

ables of interest (temperatures, leaf wetness, and fluxes). Overall, CLM5 alleviates some errors
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in CLM4.5 but CLM5 still cannot precisely simulate a number of canopy processes in this forest.

Soil, air, and canopy temperatures, as well as leaf wetness, are still too sensitive to incoming solar

radiation rates despite updates. As a result, daytime vapor flux and carbon flux are overestimated,

and all temperature differences between day and night are higher than the observations. Slope

effects appear in the average diurnal variations of surface albedo and carbon flux from measured

data, but CLM5 cannot reflect these features. This study suggests that both CLM models still re-

quire further improvements concerning model’s structures, but also energy partitioning processes,

such as leaf wetness process, photosynthesis model, and aerodynamic resistance model for wet

and/or mountainous regions.

Section 5 utilized multi-layered Community Land Model (CLM-ml, CLMML) to test. Some

difficulties of applying forcing data and model’s evaluations due to topographical complexity over-

come through this multi-layered scheme. A wind profile for reliable simulation was traced from

available wind data at the middle of the canopy rather than very high height. The wind profile,

estimated by the analytical and numerical scheme, and different leaf area shapes were applied in

the model below the top canopy height for structure tests. For additional comparison, CO2 profile

model and soil respiration model were also added in this model.

Study results presented in Section 5 indicate that multi-layer CLM has the ability to mimic

the under-canopy shapes of micrometeorological profiles of multiple variables (humidity, CO2,

temperature, and wind speed). Especially, the over-amplitude of diurnal variations for leaf temper-

ature and leaf wetness are significantly improved compared to the single-layer model (CLM4.5 and

CLM5) in Section 4: the amplitude between the maximum and the minimum value in diel variation

are decreased by 67% and 47% with the CLM-ml. It also highlights that sub-canopy structure such

as canopy shapes and the parameter for the turbulent transfer model can play a significant role

in model performance. More importantly, such a profiled system provides detailed information to

diagnose the model performance that is not normally possible through the single-layer model. This

study indicates that representing sub-canopy activity through structure improvement can produce

more accurate estimations of energy and hydrological processes in CLM. However, more extensive
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monitoring of sub-canopies is necessary for further study and to increase model reliability for other

sites with complex terrain and irregular vegetation roughness.

Based on this research, the integrated and extended studies are possible for future study. The

combination of front-depth theory and a heterogeneous-pore-size evaporation model can be a

promising example of further study to catch soil evaporation process via considering both above

and below soil surface. Furthermore, this new soil-evaporation model can be applied to the global

scale LSM, as can the point-scale model developed for the forest.

Overall, extensive work to diagnose and improve soil and canopy process yielded better repre-

sentation of the land surface process for advanced LSM. This study highlighted the current model’

errors and provided suggestions or improvements. However, an increase in understanding each

main system (e.g., soil and canopy) still remains a challenge, as do the computational requirements

of highly integrated or fine-scale models. Interpretation of complex nature system and also finding

a practical method are necessary, through the model’s development and various observations.
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APPENDIX A

HYPERGEOMETRIC FUNCTION

The Gaussian hypergeometric function 2F1 can be defined as

2F1(af , bf , cf , z) =
∞∑
n=0

(af )n(bf )n
n!(cf )n

zn (A.1)

where any (x)n is

(x)n =


1 if n = 0

x(x+ 1)(x+ 2) · · · (x+ n− 1) if n > 0

(A.2)

When we consider a part of Eq. (2.14) as

∞∑
n=0

hsurf
Pn+ 1

[
− e0

c ·Ks

(
hsurf
hb

)P]n
(A.3)

To convert the Maclaurin series expansion of Eq. (A.3) into a hypergeometric function form,

we first define z as equal to − e0
c·Ks

(
hsurf
hb

)P
. To set 1/(Pn+ 1) in a form of (af )n(bf )n

n!(cf )n
, and simply

define a = 1. We also note that for c = b+ 1 we have

(bf )n
(cf )n

=
bf (bf + 1)(bf + 2) · · · (bf + n− 1)

(bf + 1)(bf + 2)(bf + 3) · · · (bf + n)
=

bf
bf + n

(A.4)

Therefore, with bf equal to 1/p, cf becomes 1/p+ 1, which provides the final relationship as

∞∑
n=0

hsurf
Pn+ 1

[
− e0

c ·Ks

(
hsurf
hb

)P]n
= hsurf · 2F1

(
1,

1

P
, 1 +

1

P
,− e0

c ·Ks

(
hsurf
hb

)P)
(A.5)
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APPENDIX B

UPDATED CALCULATIONS FOR MULTI-LAYERED CLM

B.1 Additional Plots

Figure B.1: Comparison plots for wind speed data between Canopy Tower and Met Tower. Slope
and its correlation get higher when wind speed is higher. CLM uses wind speed bigger than 1m·s−1.
The fitting is only for a slope without intercept so the R-squared R2

0 is normally higher than usual
case.
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Figure B.2: (a) Soil respiration data from Rivera et al. (2018) and fitted parameters. (b) Tempera-
ture fitting between forcing temperature and ground temperature.

Figure B.3: Leaf wetness profile.

B.2 Additional Description of Wind Profile Models and CO2 Profile Models

B.2.1 Wind Speed Profile Model: First-Order Closure Model

First-order closure model is solved using a numerical method. The model Eq. (5.4) follows

other literature (Launiainen et al., 2011; Katul et al., 2004; Drewry et al., 2010), which has

Km
∂2u

∂z2
+
∂Km

∂z

∂u

∂z
− Cda(z)u2 = 0 (B.1)
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whereKm is the eddy diffusivity for momentum, u is wind speed, z is height, Cd is drag coefficient

(0.25), and a(z) is LAD (Launiainen et al., 2011). The eddy diffusivity for momentum is

To solve the first-order closure model, the second-order derivative of wind speed with the

location of the vertical grid i can be written in a numerical form as

∂2u

∂z2
=
ui−1 − 2ui + ui+1

dz2
(B.2)

And the first-order derivative is
∂u

∂z
=
ui−1 − ui+1

2dz
(B.3)

The first-order derivative for the eddy diffusivity for momentum (Km,i) is

∣∣∣∣∂u∂z
∣∣∣∣
i

=

∣∣∣∣ui−1 − ui
dz

∣∣∣∣ (B.4)

The eddy diffusivity for momentum like Eq. (5.5) is

Km,i = l2m,i

∣∣∣∣∂u∂z
∣∣∣∣
i

(B.5)

where l is mixing length. Following Launiainen et al. (2011) and Katul et al. (2004), it is like Eq.

(5.6) as

lm =


kvz, z < α′Hmax/kv

α′Hmax, α′Hmax/kv ≤ z < Hmax

kv(z − d), Hmax ≤ z

(B.6)

where kv is Von Karman constant, α’ is kv(1˘d/Hmax), Hmax is canopy height, and d is the zero-

plane displacement height (Launiainen et al., 2011; Katul et al., 2004). The displacement height is

usually 0.667·Hmax but it varies in CLMML (Bonan et al., 2018). Then, the derivative of the eddy

diffusivity is
∂Km,i

∂z
=
Km,i −Km,i−1

dz
(B.7)
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If wind value and its vertical gradient are known as an initial condition, it becomes the simple

ordinary differential equations (ODEs). The case of the wind profile above the EC location is

the such case, so it can be estimated using various well-known methods such as Euler method,

Midpoint method, etc. (we used Midpoint method for this study). On the other hand, for the

below the EC location, we only know wind values at the bottom and at the EC location. In that

case, another method such as Tridiagonal matrix solution is necessary to solve the equation as

below. After solving the wind profile below the EC location, the required initial values of the ODE

solution are obtained for the higher locations.

For the solution of the below the EC location, applying all the numerical forms in the first-order

closure model, the final relationship becomes

Km,iui−1 − (Km,i +Km,i+1)ui +Km,i+1ui+1+

0.5 · (Km,i −Km,i−1) · (ui−1 − ui+1)−

Cda(z)uiui · dz2 = 0

(B.8)

Additionally, its matrix form to solve for Tridiagonal matrix solution becomes

[Km,i + 0.5 · (Km,i −Km,i+1)] · ui−1

−[(Km,i +Km,i+1) + Cda(z)ui · dz2] · ui

+[Km,i+1 − 0.5 · (Km,i −Km,i+1)] · ui+1 = 0

(B.9)

Usage of the conductivity at the ground g0 in CLM5 was also tried to apply it as a lower boundary

condition for Km but it constantly produces negative wind speed at the near ground. Therefore,

ga,0 which has around ga,0 ≈ 0.0768 in CLM5 was not applied for the first-order closure model.

B.2.2 Wind Speed Profile Model: Roughness Sublayer (RSL) Model

The tracking the wind profile using RSL model is straightforward because it is an analytical

solution that the function consists of other than the wind speed (u(z) = f(z)). The RSL model
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equation for z > Hmax is

u(z) =
u∗

kv

[
ln

(
z − d

Hmax − d

)
− ψm

(
z − d
LMO

)
+ ψm

(
Hmax − d
LMO

)
+

ψ̂m

(
z − d
LMO

,
z − d
lM/β

)
− ψ̂m

(
Hmax − d
LMO

,
Hmax − d
lM/β

)
+
kv
β

] (B.10)

where LMO is the Obukhov length [m], lM is the mixing length [m] estimated through lM =

2β3/(Cd · a) which is different from the one lm in the first-order closure model, a is the leaf

area density [m2·m−3] obtained via a = LAI/Hmax, u∗ is the friction velocity [m·s−1], ψm is

the similarity function, ψ̂m is the adjusted function to accounts for canopy effects, and β is the

parameter which is β = u ∗ /u(Hmax) (Bonan et al., 2018; Harman and Finnigan, 2008, 2007).

Also, The RSL model equation for z ≤ Hmax is

u(z) = u(hmax) exp

[
z −Hmax

lM/β

]
(B.11)

Finally, the wind speeds at different heights are estimated using the referenced wind speed

(uref ) at the reference location (zref ) as

u(z) = uref (zref ) · f(zref )/f(z) (B.12)

B.2.3 CO2 Profile Model

The method to estimate CO2 profile is similar to other profile estimations like as RH or air

temperature, described by Bonan et al. (2018). The Eq. (5.8) is

ρm
∂C

∂t
− ∂

∂z

(
ρmKc(z)

∂C

∂z

)
= [fc,sun(z)fsun(z) + fc,sha(z)fsha(z)] a(z) (B.13)

where ρm is molar density (mol·m−3), C is CO2 concentration (µmol·m−2s−1), t is the temporal

space, Kc is scalar diffusivity which is the same as Km in this study due to the ratio is close to

1 (Launiainen et al., 2011), fsun is the fraction of sunlit, fc is photosynthesis flux, and the sum
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of square bracket is source and sink term (fc). In a numerical form with vertical grid index i and

temporal grid index t, it can be written as

ρm
∆z

∆t

(
Ct+1
i − Ct

i

)
− ga,i−1

(
Ct+1
i−1 − Ct+1

i

)
+ ga,i

(
Ct+1
i−1 − Ct+1

i+1

)
= f t+1

c,i Li(z) (B.14)

where L leaf area index at each height which is estimated by a(z)·∆z, and ga is aerodynamic

conductance [mol·m−2s−1] which estimated through ρm·Kc/∆z. Like as the first-order closure

model, its matrix form to solve for Tridiagonal matrix solution becomes

−ga,i−1C
t+1
i−1(

ρm
∆z

∆t
+ ga,i−1 + ga,i

)
Ct+1
i

−ga,iCt+1
i+1

= f t+1
c,i Li(z) + ρm

∆z

∆t
Ct
i (B.15)

B.2.4 LAD Profile Model

As described before, Beta function is used for the single-canopy model as in (Bonan et al.,

2018).

fLAD,1(z,H) =
L

H
· fBeta(z/H, p, q) +

S

H
(B.16)

where fLAD,1 [m2·m−3] is the single-canopy model for leaf area density (LAD), z [m] is height,

H [m] is canopy height, L [m2·m−2] is leaf area index, S is stem area index, and p and q are shape

parameters for Beta function. Then, the two-canopy LAD model can be written using mixed-

distribution as

fLAD,2(z,Hd, r,∆H) = r · fLAD,2(z + (r − 1) ·∆H,Hd)+

(1− r) · LAD1(z + r ·∆H,Hd)

(B.17)
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where fLAD,2 [m2·m−3] is the two-canopy model for leaf area density (LAD), r [-] is horizontal

relative location between the two canopies, Hd [m] is the height of dominant tree which is the

same as H , the maximum canopy height Hmax [m] between the two is estimated through Hmax=

Hd + (r − 1)·∆H , and ∆H [m] is the vertical distance between each canopy heights Hd [Figure

5.1]. Adding more combinations for mid-story could reach four-canopy model. If mid-story and

the dominant tree had the same canopy shape parameteres as fLAD,1, the four-canopy model could

be written as

fLAD,2,2(z,Hd, rd,∆Hd, Hm, rm,∆Hm, v) = v · fLAD,2(z,Hd, rd,∆Hd)+

(1− v) · fLAD,2(z,Hm, rm,∆Hm)

(B.18)

where fLAD,2,2 [m2·m−3] is the four-canopy model: the subscript means two horizontal canopies

and two vertical canopies, these parameters are the same as fLAD,2 but subscript d represents the

dominant tree and m represents the mid-level tree, and v is LAI ratio between dominant trees and

mid-story.

Finally, the parameters are fitted based on measured data (Song et al., 2019), using the least-

squares method. Here, for proper fitting, all LADs are converted in a cumulative form because

the main purpose is for the light-extinction model. For the four-canopy model, due to too many

parameters, some assumptions were made: the horizontal distribution mid-story is homogeneous

and between mid-size trees have no gaps (no slope effect) which make rm unnecessary. For the

two-canopy LAD fitting, it was very unstable so LAD below the 20m was not included while the

fitting process. For the single-canopy fitting, the fitted shape were similar whether LAD below

the 20m is included or not. The mean-least-squared (MLS) value was 0.066 for fLAD,1. Bonan

et al. (2018) briefly explains several LAD shapes for deciduous tree and pine tree based on Beta

distribution and pine tree (p = 11.5 and q = 3.5) is more close to our observed LAD shape (MLS is

1.1). fLAD,2 has highest MLS due to the region of the mid-story: it is because the fitting was made

for above 20m but the MLS is estimated for the whole canopy levels [Table B.1].
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Table B.1: Fitted parameters in different LAD model

ID fLAD,x,v p q Hd Hm ∆Hd ∆Hm rd v MLS
M1 fLAD,1,1 0.9 0.4 41.5 - 12.4 - 1.00 1.00 0.0658
M2 fLAD,2,1 69.9 8.7 39.5 - 13.5 - 0.65 1.00 0.6342
M3 fLAD,2,2 51.5 5.7 39 10 13.7 0 0.66 0.81 0.0112

Figure B.4: LAD profile test.
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APPENDIX C

SUPPLEMENTAL SOURCES CONSULTED

• Microsoft Excel File

– Containing : This file is the simulation result from all listed setups in [Table 5.1]. The

file provides the total fluxes (e.g., net radiation, carbon dioxide, latent heat flux, and

heat flux) and the up-scaled variables (e.g., leaf wetness and vegetation temperature) of

observations and simulations in Section 5. Also, their difference, observations minus

simulations, are calculated and plotted. The data were categorized into day time, wet

day time, dry day time, night time.

– File name : "Supplement.xlsx" (82KB)
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