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ABSTRACT 

 

Offshore site characterization for geotechnical construction projects relies on 

geological and geophysical survey data because geotechnical sampling techniques have 

limitations for offshore environments. However, the seismic images, the observed data 

from the most popular geophysical surveys for offshore exploration, are only reflected 

signals in time-domain and still difficult to apply for the geohazards evaluation in space-

domain. Thus, offshore geo-site characterization requires the seismic inversion methods, 

which can convert from observed wave signals into the soil and rock properties along 

with the depth. However, this spatial inverse problem contains the mathematical non-

uniqueness problem, so we need a probabilistic approach to quantify the uncertainty. 

The probabilistic site characterization in this study is based on the stochastic 

process in the Bayesian framework. The spatial Gaussian process and reversible jump 

Markov chain Monte Carlo (rj-MCMC) methods are developed to utilize the offshore 

geological drilled borehole data and geophysical seismic survey data. Bayesian 

inference, which integrates the observed data, model predictions, and expert’s beliefs, 

supports the geospatial analysis to provide probabilistic descriptions of the model 

parameters. It is required for the inverse problem to understand the quantified 

uncertainty from all model parameters and widely used for the nonlinear geophysical 

seismic inverse problems. 

This dissertation focuses on the probabilistic inversions with geophysical seismic 

data and starts from a synthetic offshore shallow case study to integrate geological and 



 

iii 

 

geophysical surveys for better ground model estimation. Geological borehole data 

provides the initial condition of the stratigraphy information, and geophysical seismic 

inversion finds out the model parameters, bulk densities, acoustic P-wave velocities, and 

the depth of layer interfaces. The spatial random field from Gaussian process supports 

the probabilistic seismic inversion, and this study introduces a new approach to 

reconstruct the subsurface ground model information in high-resolution. 

Practical applications are developed from this case study by applying the rj-

MCMC method, which recently showed a great advantage in geophysical studies. The 

main idea of the rj-MCMC method is to define the unknown subsurface geologic layers 

as another random variable, and design hierarchical Bayesian priors to support the 

convergence of the dimensions during the stochastic process. Three case studies in 

varying dimensions are discussed for the geological offshore stratigraphic modeling, 

geophysical stochastic post-stack seismic inversion, and geomechanical Bayesian full-

waveform inversion (FWI). The rj-MCMC methods in those case studies lead the 

probabilistic site characterization to find the correct target modeling parameters, which 

is challenging for the unknown subsurface estimation. One of those studies is also 

applied to field data near Sigsbee Escarpment, a steep marine slope in the Gulf of 

Mexico. The results show the two-dimensional subsurface image of the ground model 

under the seafloor, which can help us to avoid geohazard prone areas. 
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MCMC Markov chain Monte Carlo method 

rj-MCMC reversible jump Markov chain Monte Carlo method 

𝜽 Random variable as a vector 

𝜽∗ Proposed modeling parameter vector in the MCMC method 

𝑘 Dimension parameter of rj-MCMC method 

𝒛 Depth parameter of layer interfaces as a vector 

𝜷 Material property parameter as a vector 

𝒅𝒐𝒃𝒔 Observed data 

𝒅𝒑𝒓𝒆𝒅 Predicted data 

𝜌 Soil density parameter  

𝜌𝑤 Water density parameter  

𝑉𝑃 Acoustic P-wave velocity parameter  

𝑉𝑆 Elastic S-wave velocity parameter 

𝑓 Frequency of seismic signals 

𝜆  (Chapt.2, 3, 4) Wavelength of seismic signals 

RC Reflection Coefficient 

CMP Common-Mid-Point 

𝜇  (Chapt.2, 3, 4) Mean of Gaussian distribution 

𝜎 Standard deviation of Gaussian distribution 

𝐶𝑑 Covariance matrix 
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CV coefficient of variation 

𝑠 Dynamic standard deviation for the likelihood function 

𝑣  (Chapt.4) Precise parameter for dynamic proposal distribution 

SASW Spectral Analysis of Surface Waves 

MASW Multichannel Analysis of Surface Waves 

FWI Full Waveform Inversion 

SEM Spectral-Finite Element Method 

𝜎 & 𝜖  (Chapt.5) Stress & Strain 

𝜆  (Chapt.5) Lame’s 1st parameter 

𝜇  (Chapt.5) Lame’s 2nd parameter (shear modulus) 

𝐸 Young’s modulus 

𝐾 Bulk modulus 

𝑣  (Chapt.5) Poisson’s ratio 

CFL Courant-Friedrichs-Lewy 
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1. INTRODUCTION  

 

1.1. Problem Statement 

Geohazards can be defined as a geological state in a large area or local soil 

conditions having a potential of leading geotechnical failure events to cause loss of life 

or damage environments and infrastructures. Numerous offshore projects have a large 

practice to develop deepwater oil fields or install wind turbines for renewable energy, 

but the marine continental shelves are geohazard prone area with hazardous ground 

conditions (Lacasse et al., 2013). Abrupt human activities for the offshore projects can 

be a triggering mechanism for the failure of unstable soil mass on the continental shelve, 

and this infrequent event becomes a direct threat to subsea infrastructures. A 

retrogressive slope failure causes the debris flows and turbidity current, which damages 

the installed offshore foundations of floating platforms for keeping the fixed location. 

Large scale submarine slides are well known to initiate tsunamis with devastating effects 

on adjacent coastal areas. 

Offshore geohazard studies are important as an essential process to design the 

geotechnical foundations, but it is particularly challenging because of the possible large 

uncertainty in soil properties (Jeanjean, Liedtke, Clukey, Hampson, & Evans, 2005). 

One of the offshore projects in the Gulf of Mexico to develop the Mad Dog oil field in 

2005 is a good example to show why we should focus on geohazard studies. The Mad 

Dog oil field is a deep-water oil field located along the Sigsbee Escarpment in the 

southeastern part of the Green Canyon. Eleven suction piles arranged in three clusters 

1 
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were designed for the foundation and mooring system (Berger, Lanier, & Jeanjean, 

2006). Two clusters are installed along the lower continental slope, and one cluster is 

situated along the escarpment. Because of these clusters in geohazard prone area, many 

slope stability analyses have been studied with both deterministic and probabilistic 

approaches. Nowacki et al. (2003) explained the detail of deterministic slope stability 

analyses in this area with the finite-element method. The ground model from the site 

investigation was used as initial and boundary conditions of the numerical modeling, and 

this study showed how the vertical and horizontal faults with week layers affect the 

failure mechanisms based on the quantified factor of safety. Another probabilistic 

approach is applied for the slope stability analysis in the same area (Nadim, Krunic, & 

Philippe, 2003). Based on the theory of triggering mechanisms and historical submarine 

slides data, they used the Bayesian framework to integrate the data and establish the 

annual probability of slope instability. Even though the triggering mechanisms such as 

fluid losses in shallow section during drilling, overweight equipment on the seafloor, 

pressure change from lack of well control or gas hydrate melting, horizontal anchor 

forces during storm loading (Locat & Lee, 2002) are important for submarine landslide 

analysis, the information of subsurface ground model is vital for both approaches. 

A ground model, an integrated database of subsurface, requires proper site 

investigations. Offshore geotechnical site investigations include drilling boreholes, core 

sampling, and in situ testing, and the soil data from these investigations can help us to 

explain the ground instabilities and heterogeneity under the seafloor. Liedtke, Jeanjean, 

and Humphrey (2006) presented the salient aspects of the offshore geotechnical 
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fieldwork performed to characterize the top 150 feet of sediments for the design of the 

Mad Dog suction anchors. Kvalstad (2007) explained various engineering approaches; 

the cone penetration tests (CPTs), wireline logging, pore pressure measurements, 

temperature distribution, and pressure coring for the offshore geohazard investigations. 

Aubeny et al. (2013) also described various offshore in-situ testing methods, such as the 

vane shear test, piezo-cone penetrometer test, long core sampling, and continuous PCPT 

testing. The practical approaches for current industry strongly rely on these geotechnical 

site investigation based on the Bureau of Safety and Environmental Enforcement 

(BSEE) regulations and the American Petroleum Institute (API) standards. However, the 

matter of scale, complexity, and high cost of offshore geotechnical site investigation are 

still difficult problems, so most of the offshore project engineers suffer from a lack of 

field data. 

 

1.2. Geophysical Site Investigation 

To overcome the lack of site investigation data problem, the geophysical 

investigations are getting increased for offshore projects. Seismic reflection systems, the 

most commonly used geophysical techniques, use sound propagation energy generated 

by a device towed behind a ship (Briaud, 2013), so this survey can explore the wide-area 

with a relatively lower cost than geotechnical site investigations. Generated acoustic 

waves travel down to the seafloor or the interfaces between subsurface geological strata 

and are reflected up to a receiving array. The amount of reflection is affected by acoustic 

impedance, the product of the soil density (𝜌) and the acoustic P-wave velocity (𝑣𝑝). 
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The higher contrast of acoustic impedance shows the better chance that the subsurface 

layers will be detected by seismic reflection. The impedance contrast at the geological 

strata interface is quantified by the acoustic impedance ratio, defined as the ratio of the 

acoustic impedances in the lower layer and upper layer. 

Empirical equations have been developed to find the two important soil 

properties, geophysical acoustic impedance and geotechnical shear strength (Brand, 

Lanier, Berger III, Kasch, & Young, 2003; Hamilton, 1971, 1979; Hamilton & 

Bachman, 1982). The laboratory test with Multi-Sensor Core Logger (MSCL) measures 

the geophysical properties of offshore soil samples along with the depth, and the results 

can be compared with results from the geotechnical measurement. Regression equations 

based on these measured soil data were suggested (Hamilton & Bachman, 1982) to show 

the correlation between the geophysical acoustic wave velocity and geotechnical 

porosity, density, or clay size. The introduced empirical equations were based on three 

different general marine environments as follows: continental terrace (shelf and slope), 

abyssal hill (pelagic), and abyssal plain (turbidite). These empirical equations enhanced 

the advantage of integrated geophysical and geotechnical data. However, general three 

categorizations of soils are not specific enough because of spatial variation, and 

geophysical surveys have developed to obtain more high-resolution data. 

Autonomous Underwater Vehicle (AUV) survey is one of the seismic reflection 

systems which collect high-resolution data. This survey was applied to the eastern 

Sigsbee Escarpment investigation (George, Gee, Hill, Thomson, & Jeanjean, 2002) and 

supported the engineering problems such as the installation of export pipelines, infield 
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flowlines and production facilities. Jeanjean, Berger III, Liedtke, and Lanier (2006) 

described how the results of the geotechnical campaign were integrated with the sub-

bottom profiler, high-resolution geophysical data, to define the bathymetric constraints 

associated with the anchor designing and locations. They overlaid the CPTs results on 

the sub-bottom profilers to integrate the different types of site investigation from the 

same site. Based on these integrated data, the geotechnical properties on the soil 

stratigraphy were considered for the decision of designed anchor locations.  

More advanced application of ultra-high resolution 3D seismic data for the 

offshore geohazard identification is recently introduced (Brookshire Jr, Landers, & 

Stein, 2015). They applied the P-cable seismic system, which employs multiple short 

streamers towed from a cross cable diverted between two vanes. Since the heads of the 

relatively short streamers are fixed along the cross cable, the cross-line streamer spacing 

can be very short by the system design. Based on this acquisition system, the apparent 

subsurface horizontal resolution is in the order of 16 meters, and the vertical resolution 

of the sub-bottom profile is as high as 1.6 meters. This approach supported the likely 

possibility of applying geophysical data to the geotechnical risk assessment. However, 

the geophysical data is in still in time-domain and difficult to be compared with 

geotechnical data in space-domain. 

 

1.2.1. Onshore surface wave inversion 

The first application to convert the seismic data in time-domain into space-

domain is introduced by (Stokoe, Wright, Bay, & Roesset, 1994) for geotechnical site 
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investigation. If the velocity of a seismic wave traveling in the soil media depends only 

on the physical properties, then the wave velocity is constant and independent of 

frequency. Such a material is called a nondispersive material, and the seismic waves 

traveling through this media will maintain a constant shape of waves (Stokoe, Joh, & 

Woods, 2004). This would be the case of waves in the homogeneous soil with uniform 

properties independent of the depth. However, most of the soils have different properties 

along with the depth, and they are dispersive materials, because of different deposit 

history of layering or variations in effective stress. Consequently, the group of waves 

with different frequencies changes the shapes as the wave travels through the soil media. 

The different shapes in the wave group are distinguished by group velocity (𝑣𝑔) 

and phase velocity (𝑣𝑝ℎ). The group velocity is the travel speed of the energy carried by 

the wave group, and the phase velocity is the speed of an individual wave in the group, 

and it depends on the frequency. In the case of nondispersive material, the group and 

phase velocities are the same, but in the case of dispersive material like soils, those 

velocities become different. The SASW technique uses this different frequency content 

of those velocities in the group of Rayleigh waves because this group of surface waves 

has the most seismic energy, about two-third, at shallow depth and attenuate a lot less 

than body waves (Briaud, 2013). The high-frequency waves only penetrate the shallow 

layers, and low-frequency waves penetrate much deeper layers in the soil deposit, so 

they give the shear wave velocity profile in shallow and deep layers, respectively. This 

method has been developed with improved data interpretation method (Joh, Rosenblad, 

& Stokoe, 1997), multichannel recording device (C. B. Park, Miller, & Xia, 1999; Yuan, 
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Zhu, & Kim, 2014), and artificial fixed source and receivers on the seafloor (B. Lee, 

Rosenblad, Wright, & Stokoe, 1997). The analytical case study of SASW along the 

seafloor used Scholte waves instead of Rayleigh waves on the seafloor between acoustic 

and elastic material layers and showed the potential benefit for the offshore site 

investigation. However, most of the offshore seismic data acquisition system is based on 

the survey system with towed hydrophones, so SASW is still not suitable for the 

offshore site characterization. 

 

1.2.2. Offshore seismic exploration 

Conventional marine operations for offshore seismic data acquisition involve one 

ship that tows both the sources and hydrophone streamers. When the station, the sources, 

streamers, and other towed equipment are unreeled from the stern of the large ship, 

which must maintain its forward motion so as not to lose control over the tow (Sheriff & 

Geldart, 1995). Navigation of the ship during recording is automatically done by GPS, 

and normal operations proceed at about 6 knots (11 𝑘𝑚/ℎ𝑟 or 3 𝑚/𝑠). Hence, about 250 

km of CMP data could be recorded in a day with the interval distance about 30 to 45 

meters apart when the sources activated every 10 to 15 seconds. A tremendous amount 

of data is generated from a large number of sensors with these short term shots for the 

marine survey. Modern marine 3-D seismic survey ships tow multiple sources and 

streamers with perhaps 500 channels each and generate a huge volume of data from 

closely spaced parallel 2-D subsurface lines (Yilmaz, 2001). 
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Common midpoint (CMP) is an important concept in multichannel seismic 

acquisition, and this represents the point on the surface halfway between the source and 

receiver that is shared by numerous source-receiver pairs. Such redundant seismic data 

among source-receiver pairs in the multichannel system suppress the noise signals and 

enhances the quality of seismic data when the data are stacked. The common-midpoint 

staking is regarded as the most important data processing application in improving data 

quality (Sheriff & Geldart, 1995), so the seismic data before and after this processing 

application are divided into two groups and defined as pre-stack data and post-stack 

data, respectively. This CMP stacking processing gathers all the raw seismic (pre-stack) 

data from multiple shots and stacks them as a seismic trace (post-stack) data at the CMP.  

After conducting another signal processing applications, the seismic trace 

becomes the vertical geometry of one point, and a bunch of them as post-stack data 

shows the 3-dimensional geological formation. In short, most of the offshore seismic 

data is post-stack data, so the SASW application, which should utilize the pre-stack data, 

cannot be suitable for the offshore site characterization. Even though the multichannel 

analysis of surface waves (MASW) has been recently applied for underwater site 

characterization (Paoletti, Mouton, & Liposcak, 2010; Choon B. Park et al., 2005; 

Puech, Rivoallan, & Cherel, 2004), the observed data was not conventional offshore 

seismic data with stratigraphy. They measured the Scholte waves on the boundary where 

a body of water overlies solid materials, and the location of the towed seismic source 

and receivers were different from conventional data acquisition system, which requires 

the extra cost of special surveys. 
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1.3. Integrated Site Characterization 

Since all geophysical site investigation methods have their limitations, integrated 

studies for the offshore site characterization has been highlighted. The integrated study is 

to put together all available offshore survey data, geotechnical, geophysical, geological, 

and oceanographic data from the same location to fully define the subsurface geo-site 

conditions and geologic processes (Campbell, Quiros, & Young, 1988). Although this 

concept seems to be simple, this requires to know every data from different site 

investigation methods and the details of the data can be complex. 

One of the practical approaches for an offshore project showed how to use 

integrated geoscience data to avoid deepwater anchoring problems (Young et al., 2009). 

They described a proposed site risk assessment that can be used with existing 

geophysical and geotechnical data to support the evaluation of the anchoring problems, 

including the soil conditions, spatial soil variability, type of seafloor strength profile, 

confidence in computed anchor capacity, seafloor topography and so on. This approach 

showed the potential possibility to develop a particularly useful tool in the early stages 

of an offshore project before the acquisition of high-resolution geophysical data. This 

previous study motivated my research to develop more advanced data integration 

method by using a probabilistic approach for the fully understood geotechnical site 

characterization with quantified uncertainty. 
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2. INTEGRATED SEISMIC INVERSION WITH SPATIAL GAUSSIAN PROCESS  

 

2.1. Summary 

The stochastic seismic inversion based on Markov chain Monte Carlo (MCMC) 

method has been widely used for the imaging of unknown geological spatial 

information. Even though this seismic inversion approach can quantify the uncertainty of 

the estimated results, but it requires vertical in-situ well log data as the reliable initial 

accurate information to overcome the non-uniqueness problem in seismic modeling. 

However, most of the marine seismic surveys for the geohazard evaluation have only a 

few locations of drilled boreholes, and these data have limitations to apply to the entire 

target area for accurate site characterization. Recently, the trans-dimensional MCMC 

method has been used for the 3-D deep oil reservoir monitoring, but we cannot use this 

approach for the geohazard evaluation in heterogeneous shallow thin soil layers because 

of the inherent low seismic resolution problem. Therefore, the goal of this study is to 

apply spatial Gaussian Process (GP) to support the MCMC seismic inversion for the 

high-resolution near-surface site characterization from conventional offshore post-stack 

seismic survey data. We used a synthetic marine near-surface ground model in fine-scale 

grids as the benchmark model and applied the low-frequency seismic source to generate 

synthetic seismograms from the model. The results show that integrated MCMC seismic 

inversion with GP can find out thin dense soil layers in high-resolution regardless of the 

low frequency in observed seismic data. 
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2.2. Introduction 

The most important part of the site characterization for the offshore construction 

projects is the integration of all available geotechnical, geological, and geophysical 

marine survey data. Geotechnical surveys from in-situ soil samples show the material 

properties in vertical depth, but this data is limited to shallow layers. Geological surveys 

which use drilling boreholes can reach the further depth, but those data shows only the 

material properties along with the depth, and cannot be extended to the horizontal 

direction to estimate the 3-dimensional ground model. Furthermore, the number of 

borehole data is not enough to interpolate accurately because of the high cost of offshore 

drilling. Thus, geophysical survey data, especially the near-surface seismic reflections, 

are the only available and important as the offshore site investigation for geotechnical 

projects, but this time-domain data is challenging to estimate the material properties in 

space-domain. For the estimation of shallow material properties in-depth, the seismic 

inversion has been used for the estimation of the P-wave velocity and density. The 

results from seismic inversion also provide the stratigraphic geometry of geological 

subsurface layers in-depth, so many offshore projects have relied on not only 

geotechnical data but also geological and geophysical survey data (Jeanjean et al., 2006; 

Medina-Cetina, Kang, Esmailzadeh, & Kallivokas, 2013; Medina-Cetina, Son, & 

Moradi, 2019). 

Because of the non-uniqueness problem in seismic inverse modeling, the 

stochastic approach of Markov chain Monte Carlo (MCMC) method has been used to 

quantify the uncertainty of modeling parameters. Since Sambridge and Mosegaard 
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(2002) introduced the generalized MCMC method for geophysical exploration, advanced 

approaches were developed for Amplitude Verse Offset (AVO) inversion (Gunning & 

Glinsky, 2004) and Full-Waveform Inversion (FWI) approaches (Peyman P Moghaddam 

& Herrmann, 2010). The reversible jump Markov chain Monte Carlo (rj-MCMC) 

method in varying dimension (Green, 1995), which was first applied for the 

electromagnetic inverse problem (Malinverno, 2002) in applied geophysics, became 

distinguished and has been widely used for seismic inversion (Thomas Bodin & 

Sambridge, 2009; S. K. Dadi, 2014; S Esmailzadeh, Medina-Cetina, Kang, & 

Kallivokas, 2015a). This approach recently showed the analysis of uncertainty 

quantification from 2- & 3-dimensional seismic data for the deep reservoir monitoring 

(Cho, Zhu, & Gibson, 2017; Zhu & Gibson, 2016). 

Even though those stochastic approaches have shown a great advantage of 

seismic inversion for the accurate site characterization, it cannot reach to the high-

resolution subsurface imaging yet. The high-resolution spatial analysis is a critical issue 

for marine near-surface characterization because of the three challenging problems. 

First, we can obtain only a few information of the in-situ soil sample data, because 

drilling for site investigation may trigger a marine landslide. All the previous seismic 

inversion research for the deep hydrocarbon reservoir monitoring was possible based on 

in-situ well-log data, which is important to prevent the non-uniqueness problem in 

seismic inverse modeling as accurate initial information. However, drilling on shallow 

marine slope area will make a new path of vertical seawater flow, and may reach to the 

deep unknown geological fault and trigger an earthquake. Second, even though the 
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multi-channel system improved the horizontal resolution of seismic surveys, the vertical 

resolution of seismic data is limited to the seismic source frequency and not good 

enough to identify thin soil layers. Autonomous underwater vehicle (AUV) used to apply 

an extremely high-frequency acoustic source for the near-surface site characterization, 

but the energy loss from attenuation also causes the limitation of data depth problem. 

Last, the last challenging issues for the near-surface marine site characterization is that 

the shallow sediments show extremely high heterogeneity, so engineers require high-

resolution subsurface imaging results, which can show less than a one-meter thickness of 

soil layers. In short, we need to use conventional low-frequency seismic data to identify 

thin soil layers without in-situ well-log data, but the seismic non-uniqueness problem 

makes it difficult to find the accurate ground model. Consequently, the geotechnical risk 

assessments still cannot be fully integrated with the geophysical seismic survey data. 

In this paper, we introduce a new approach of integrated MCMC seismic 

inversion based on spatial Gaussian process (GP) for the offshore near-surface site 

characterization. We hypothesized that spatial random fields from the Gaussian process 

in anisotropic condition could represent thin horizontal layers between offshore 

boreholes. The realizations of spatial random fields were used as the proposed 

candidates of MCMC seismic inversion based on low-frequency observed seismic 

reflection data. Since the realizations were generated from fine-scale borehole data, the 

imaging results of seismic inversion could show the high-resolution subsurface ground 

model. To demonstrate the numerical experiments, we generated a 2-dimensional 

shallow offshore ground model, which has the soil properties of the Hydrate Ridge on 
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the West coast of Oregon State. Synthetic seismic traces were generated over the entire 

ground model by the seismic convolution modeling with 100 Hz Ricker wavelet. From 

those limited observed data, we applied integrated seismic inversion from the spatial 

Gaussian process and compared to trans-dimensional MCMC seismic inversion, which is 

recently developed and applied for deep oil reservoir monitoring. 

 

2.3. Methodology 

2.3.1. Stochastic seismic inversion 

Stochastic inverse modeling based on Markov chain Monte Carlo (MCMC) 

method uses the modeling parameters as random variables and changes them to 

maximize the Probability Density Function (PDF) of the posterior (𝑝(𝜽|𝒅)). The 

calculation of this conditional probability follows the Bayesian paradigm. 

𝒑(𝜽|𝒅𝒐𝒃𝒔) =
𝒑(𝒅𝒐𝒃𝒔|𝜽)𝒑(𝜽)

𝒑(𝒅𝒐𝒃𝒔)
     (2.1) 

The 𝜽 represent the modeling parameters in forward modeling. We use seismic 

convolution method, whose parameters are the depth of layer interfaces, material 

properties of soil density, and P-wave velocity at each layer. This forward modeling 

calculates the seismic impedance in each subsurface layer and the reflection coefficients 

along with the depth. Those data in space is converted to time domain based on the P-

wave velocity information and generate synthetic seismogram based on source wavelet. 

The seismogram becomes our predicted data (𝒅𝒑𝒓𝒆𝒅) and we compare this to observed 

data (𝒅𝒐𝒃𝒔). The important term in the Bayesian framework is the likelihood function 

(𝑝(𝒅𝒐𝒃𝒔|𝜽)), which quantifies the PDF from the data residual (𝜖 = |𝒅𝒑𝒓𝒆𝒅 − 𝒅𝒐𝒃𝒔|). 
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𝑝(𝒅𝒐𝒃𝒔|𝜽) =
1

[(2𝜋)𝑛|𝐶𝑑|]
1
2

∗ exp [−
1

2
(𝜖)𝑇𝐶𝑑

−1(𝜖)]    (2.2) 

The advantage of this Bayesian paradigm for the stochastic seismic inversion is that 

we can apply our previous information as priors (𝑝(𝜽)) to support the calculation of the 

posterior PDF. For the seismic inverse modeling, physical known properties of seawater 

and subsurface seawater in below list can be used as our priors. 

 Density and P-wave velocity of seawater; 𝜌𝑤~𝑁(1000,10), 𝑉𝑝𝑤~(1500,10) 

 Depth of seafloor; 𝑧𝑤~𝑁(20,1) 

 Range of material properties in marine sediments; 𝜌𝑠~𝑈𝑛𝑖𝑓(1500,2200) 

where, 𝜌𝑤 is the density and acoustic P-wave velocity of seawater, which are known 

value as 1000 𝑘𝑔/𝑚3 and 1500 𝑚/𝑠 respectively. Since the depth of seafloor (𝑧𝑤) is 

relatively clear to estimate in the offshore seismic survey, we applied it as our prior. The 

minimum and maximum value of soil bulk density properties (𝑘𝑔/𝑚3) are also available 

from the measurement of borehole soil samples, and those become the range of uniform 

distribution as another prior for the inverse modeling. 

 

2.3.2. Spatial regression model 

Spatial Gaussian process is a stochastic process to generate the spatial regression 

model (𝑌(𝑠𝑖𝑗)) from Gaussian random fields (𝑤(𝑠𝑖𝑗)). The spatial model is defined as 

𝑌(𝑠𝑖𝑗) = 𝑋(𝑠𝑖𝑗)
𝑇
𝛽 + 𝑤(𝑠𝑖𝑗) + 𝜖(𝑠𝑖𝑗)    (2.3) 

where 𝑋(𝑠𝑖𝑗) is a set of observed data, and 𝛽 is the regression parameter to find the 

deterministic regression model of the spatial target field. The regression remains the 
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residual, and the residual is partitioned into two terms: 𝑤(𝑠𝑖𝑗) is stationary Gaussian 

random process with the covariance matrix, while 𝜖(𝑠𝑖𝑗) represents the nugget effect as 

white noise (Carlin, Gelfand, & Banerjee, 2014; Cressie & Wikle, 2015).  

The covariance matrix is calculated by the spatial standard deviation matrix and 

correlation matrix. The correlation function uses the coordinate information to define the 

correlation between certain distances, and we chose the correlation function as an 

exponentially decaying function;  

𝑦(𝑑) = exp (−
𝑑

𝜙
)       (2.4) 

where 𝑑 is the distance between two points in the spatial domain, and 𝜙 is the range 

parameter. Since the anisotropy condition is important for geological stratigraphy 

estimation, we estimated two range parameters in a horizontal and vertical direction 

independently. The value of the vertical range parameter (𝜙𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙) came from the 

observed well log data, and we decided the horizontal one (𝜙ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙) from the seismic 

data, which only has spatial information in a horizontal direction. The standard deviation 

is modified to apply the location information of the observed in-situ boreholes. We 

controlled the standard deviation with respect to the distance from the boreholes to apply 

higher uncertainty to the far-fields from the drilled wells. All of this spatial Gaussian 

process is implemented on vertical cross-section, and the calculated the final covariance 

matrix genets anisotropic geological stratigraphy model, similar to the 2-D seismic 

image data. 
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2.3.3. Integrated Markov chain Monte Carlo method 

The key point of the integrated MCMC seismic inversion with a spatial Gaussian 

process is that the candidate modeling parameter (𝜽′) for MCMC is generated from the 

spatial regression model (𝑌(𝑠𝑖𝑗)). Figure 2.1 shows the workflow of this integrated 

seismic inversion method. When we obtain all available offshore survey data, we need to 

sort them into geological borehole data or geophysical seismic data. Both contain spatial 

information, but the interpretation and extraction methods of valuable information from 

them are different. From the geological borehole data, we used to apply them to GIS 

analysis system and apply a statistical approach to interpolate unknown information 

between borehole data. Geophysical seismic data, which shows the subsurface image in 

only time-domain, needs seismic inversion to estimate the material property and depth of 

geological layer interfaces. Those two work processes were independent before, but we 

apply the anisotropic random fields from spatial Gaussian process as the proposed 

candidate for the stochastic seismic inversion process. Since these candidate samples 

came from the high-resolution borehole data and contain the anisotropic geological 

information, the result of MCMC seismic inversion can estimate the heterogeneous 

stratigraphy ground model in the fine-scale discretized spatial domain. 
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Figure 2.1. Workflow of the integrated MCMC seismic inversion method 

 

2.4. Numerical Experiments 

2.4.1. The dataset from the west coast of Oregon State 

 The west coast of the Oregon State is one of the example locations to discuss 

how to use our various types of offshore survey data for better site characterization. 

Since this area contains thin layers of gas hydrate in a shallow depth, many geological 

and geophysical offshore surveys have been implemented in this area (Bangs, Musgrave, 

& Trehu, 2005; Kumar, Sen, Bangs, Wang, & Pecher, 2006). Figure 2.2 shows the 
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locations of drilled boreholes from geological surveys, and the black line on the map 

indicates the path of a geophysical seismic survey on the same target area. The two 

boreholes (ODP 204-1246 in red and ODP 204-1250 in yellow) are on the path of this 

geophysical survey. Since the integration of those two different types of data is 

challenging, we can see there are other extra boreholes (white) to estimate the accurate 

subsurface ground model between those two boreholes (red & yellow). 

 

Figure 2.2. Map of geological and geophysical offshore surveys for gas hydrate 

characterization 

 

All the drilled borehole data are managed in the International Ocean Drilling 

Projects (IODP), and we obtained in-situ vertical soil bulk density data from those two 

boreholes (ODP 204-1246 & 1250). Based on those field data, we interpolated these raw 

data into fine-scale 1-meter discretization in depth from the seafloor to 80 meters below 

the seafloor and used them to build up our synthetic shallow offshore soil ground model 
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for the numerical simulation (Figure 2.3). The two boreholes were used as left and right-

side boundaries of 1 km width synthetic model, and we interpolated the unknown soil 

properties inside the model with an assumption of flat seafloor bathymetry. This simple 

shallow offshore soil ground model in high-resolution shows thin dense soil layers (red 

in Figure 2.3) at the depth 40 or 60 meters below the seafloor, and we used this as our 

target model to prove our integrated seismic inverse modeling. 

 

Figure 2.3. Synthetic marine shallow ground model 

 

Since the drilling is very limited in the offshore environment, we assumed that 

we had only four locations of drilled borehole data in this target area. The locations of 

them are 0, 300, 700, and 1000 meters in the horizontal distance (Figure 2.4-a). We 

named those locations A, B, C, and D, and each location has the observed vertical soil 

profiles (Figure 2.4-b) as accurate in-situ information. The geological soil profiles from 

the drilled boreholes show two dense thin layers, which has about 3 meters of thickness. 
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Even though we could get important geological stratigraphy information from the 

observed borehole data, all other parts between boreholes are still unknown, and it is 

difficult to estimate the geometry of the subsurface stratigraphy model or properties of 

the ground soil materials. 

 

Figure 2.4. Locations of four observed boreholes 
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Even though the geological data from drilled boreholes are not enough for site 

characterization, we can apply geophysical survey data for the characterization of this 

target ground model. We assumed the seismic data are measured every 20 meters in this 

area; that means 51 shots in 1,000 meters width to get 51 seismic traces as geophysical 

data. Figure 2.5-a shows the synthetic seismogram, which usually displayed in a grey-

scale image. The high amplitude of reflections (white) shows the seafloor and shallow 

geological strata in the time domain. The P-wave velocity in this shallow synthetic soil 

ground model was assumed as homogeneous 2,300 𝑚/𝑠, so the heterogeneous bulk 

density in Figure 2.3 made the different reflection coefficients inside this ground model 

to generate those seismic reflections. Since we applied the seismic convolution method 

with 100 𝐻𝑧 frequency Ricker wavelet as the seismic source, the resolution of this 

seismic data is not high enough for the shallow site characterization to use them for the 

geohazard evaluation. 
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Figure 2.5. Synthetic seismogram with low-frequency source wavelet 

 

2.4.2. Geophysical convolution 

Figure 2.5-b shows the same seismic data, as in Figure 2.5-a in a different 

visualization method. The seismic data is a bunch of wiggling traces, so we applied the 

convolution as the seismic forward model to capture the features of each seismic trace. 

Convolution is the mathematical operation of multiplying two-time series signals 

representing two input data strings. It is one of the most useful and widely used 
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operations in seismology and digital signal processing because it represents the physical 

process of combining two seismic signals (Zhou, 2014). A seismogram (𝐷) can be 

approximated as the convolution (∗) of a source wavelet (𝐺) with the ground medium 

function (𝐹). Synthetic seismogram by convolving well-log traces with an appropriate 

wavelet is often computed to match the in-situ well-log measurements with a seismic 

reflection profile on the same target area. 

𝐹(𝑡) ∗ 𝐺(𝑡) = 𝐷(𝑡)     (2.5) 

Mathematically, multiplication of two-time series vector data leads to another 

time series vector data as the one convolved data from two original data. We can express 

the time series data as 𝑎𝑡 = [𝑎1, 𝑎2, … , 𝑎𝑛], 𝑏𝑡 = [𝑏1, 𝑏, … , 𝑏𝑚], and make two matrices 

from them. 

𝐴 =

[
 
 
 
 
 
 
 𝑎1 0 ⋯
 𝑎2 𝑎1 ⋱
⋮ 𝑎2 ⋱

0
⋮
0

𝑎𝑛 ⋮ ⋱ 𝑎1
0 𝑎𝑛 ⋮
⋮ ⋱ ⋱
0 ⋯ 0

𝑎2
⋮
𝑎𝑛]
 
 
 
 
 
 

     (2.6) 

where 𝐴 is the matrix with 𝑁 +𝑀 − 1 raws &  𝑀 columns. Each column contains the 

time series 𝑎𝑡 and it is shifted one element downwards sequentially from the second 

column. The result of the convolution of 𝑎𝑡 and 𝑏𝑡 comes from the matrix 𝐴𝑏. 

𝑐 = 𝐴𝑏 =

[
 
 
 
 
 
 
 𝑎1 0 ⋯
 𝑎2 𝑎1 ⋱
⋮ 𝑎2 ⋱

0
⋮
0

𝑎𝑛 ⋮ ⋱ 𝑎1
0 𝑎𝑛 ⋮
⋮ ⋱ ⋱
0 ⋯ 0

𝑎2
⋮
𝑎𝑛]
 
 
 
 
 
 

[

𝑏1
𝑏2
⋮
𝑏𝑛

]    (2.7) 
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We need to take the 𝑘𝑡ℎ row of the above equation, so the convolved signal (𝑐𝑘) 

becomes below equation where 𝑘 goes from 1 to 𝑁 +𝑀 − 1, and the index 𝑖 move 

through all the non-zero elements of the two input time series. 

𝑐𝑘 = ∑ 𝑎𝑘−𝑖+1𝑏𝑖𝑖       (2.8) 

 

2.4.3. Gaussian process 

As described in previous part, spatial regression model (𝑌(𝑠𝑖𝑗) is the summation 

of the deterministic regression model (𝑋(𝑠𝑖𝑗)
𝑇
𝛽) and spatial random field (𝑤(𝑠𝑖𝑗)). 

Since we already had four locations of observed boreholes and knew the horizontal 

geometry of the subsurface layers from the obtained seismic data, first we applied the 

piecewise constant interpolation between boreholes. Figure 2.6 showed the four 

locations of drilled boreholes (A, B, C, and D), and the four divided subdomains around 

those boreholes. The horizontal linear regression roughly estimates the material 

properties between boreholes. For example, the subdomain near the borehole B (distance 

at 300 m) has a 340-meter width from 160 to 500 m as the left and right side of the 

boundary. We chose those boundaries at 0, 160, 500, 860, and 1000 meters in the 

horizontal distance where the farthest points from the observed borehole locations are. 
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Figure 2.6. Deterministic interpolation from borehole data 

 

 Since the rough estimation from Figure 2.6 cannot be accurate enough, we need 

to apply the spatial Gaussian process (GP) to generate random fields (𝑤(𝑠𝑖𝑗)) to add on 

the previous result. The spatial GP relies on the covariance matrix, which is generated 

from the standard deviation matrix and the correlation matrix. As the first step of the GP, 

we need to extract the coordinate information from the ground model and calculate the 

pairwise difference matrix for both horizontal and vertical direction (Figure 2.7). The 

size of the elements in our synthetic ground model is 1 x 20 meters in the vertical and 

horizontal direction, respectively. Thus, the ground model consists of 80 elements in 

vertical and 51 elements in horizontal, so the total number of them is 4080. The pairwise 

difference matrix has the 4080x4080 size and contains every Euclidean distance between 

all elements inside the ground model. 
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Figure 2.7. Pairwise difference matrix from coordinates 

 

 The correlation matrix has the same size as the pairwise difference matrix, and 

the correlation function uses the distance between each element to calculate the 

correlation coefficient. The anisotropy condition is the most important part of the 

correlation function, and this requires two range parameters in horizontal, vertical 

directions. From the stratigraphy analysis on the observed four boreholes (Figure 2.4-b), 

we found out the thickness of the thin dense layer was about 3-meters and used it as the 

vertical range parameter (𝜙𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙). On the other hand, the horizontal range parameter 

(𝜙ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙) was defined from geophysical seismic interpretation. Even though the 

seismic data has horizontal information in multichannel streamer accusation system, the 

length of correlated geological strata was not clear to define, so we roughly chose 300 

meters as the horizontal range parameter for the correlation function. 

 In geostatistics, which can be defined as the branch of statistical science that 

studies spatial phenomena and capitalizes on spatial relationships to model possible 

values of variables at unobserved locations (Caers, 2005), variograms are used to 

describe the geological continuity and quantify the spatial correlation. However, this 
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study didn’t use the variogram, because the thickness of extraordinary thin dense layers 

were clear from the stratigraphy analysis to define the range parameter. Furthermore, the 

variograms also has a major limitation of its inability to model realistic geological 

features. Since the variogram models correlation between only two spatial locations, 

they are poor discriminators of geological scenarios even with exhaustive data. 

The spatial Gaussian process requires not only the correlation matrix but also the 

standard deviation matrix to define the covariance matrix for the spatial random field 

generation. One of the main advantages of the Gaussian process in this study is that we 

can control the amount of uncertainty in a random field by using modified standard 

deviation function along with the distance (Figure 2.8-a). Since we already know the 

locations of the observed boreholes, we don’t need to allow any uncertainty on those 

borehole locations. Otherwise, the unknown locations, for example, the center between 

two boreholes as the far-field, should contain a larger value of standard deviation to 

allow high uncertainty for the accurate site characterization. Thus, our standard deviation 

varies with the distance from the observed borehole locations, so the function has the 

shape of hat function (Figure 2.8-a) to control the uncertainty of the random field 

generation. The maximum value of the standard deviation for GP is chosen as the same 

value as the standard deviation in the observed borehole data (Figure 2.4-b). As a result, 

the allowed uncertainty for the random field generation is almost zero at the observed 

borehole locations; A, B, C, and D points (0, 300, 700, 1000 meters in horizontal 

direction), and the center point of the ground model (500 meters in horizontal direction) 

has the largest uncertainty. The generated standard deviation matrix from this function is 
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multiplied to the correlation matrix (Figure 2.8-b) to make the covariance matrix (Figure 

2.8-c). Since we applied the low standard deviation at the four borehole locations, the 

points A, B, C, and D in the covariance matrix show almost zero value, which had 

another value on the diagonal in the previous correlation matrix. 

 

Figure 2.8. (a) Standard deviation for Gaussian process, (b) Correlation matrix, 

and (c) Covariance matrix 

 

Figure 2.9-a shows one of the generated random fields (𝑤(𝑠𝑖𝑗)) from the spatial 

Gaussian process. Since we applied anisotropy condition with uneven range parameters 

for correlation function, the generated random field shows horizontal long and narrow 

geological clusters. Furthermore, the random field shows almost zero values in four 

columns of the observed borehole A, B, C, and D locations because of the modified 

standard deviation function (Figure 2.8-a). From the covariance matrix, we generated 
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100,000 samples of random fields and combined them with the previous deterministic 

regression result (𝑋(𝑠𝑖𝑗)
𝑇
𝛽) in the Figure 2.6 to generate the final spatial regression 

model (𝑌(𝑠𝑖𝑗)) in the Figure 2.8-b. Consequently, the generated 100,000 spatial 

regression models became the geological candidate models, and we proposed those 

models to the seismic MCMC inversion process, as explained in the previous workflow 

(Figure 2.1). 
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Figure 2.9. (a) One of the spatial random fields from Gaussian process, and (b) one 

estimated realization as the final spatial regression model 

 

 

 

 

 



 

32 

 

2.4.4. Integrated MCMC seismic inversions 

From the spatial regression model with Gaussian process, we got 100,000 

samples of 51 columns inside the offshore soil ground model. We added the top seawater 

layer over the ground model and applied the properties of the soil and seawater in every 

1-meter discretized space domain to the seismic convolution forward model to generate 

synthetic seismograms. Each of 51 predicted seismic-trace signals are compared with 

observed seismic data at the same location. In short, the reconstruction of the 2-D 

ground model image requires seismic inverse modeling of 51 independent MCMC 

simulation to generate each column inside the ground model, and we should gather them 

together to make the cross-section surface. 

 

Figure 2.10. Convergence of the 51 MCMC inversions after the burn-in point 

 

 Figure 2.10 shows the samplings from 51 independent MCMC inversion at 51 

different locations with each observed seismic trace. From the 100,000 samples from the 
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spatial random fields, MCMC method chose a few of them, and the stochastic process 

shows a convergence in the L2 norm of residual errors between the predicted and 

observed seismic signal data. We decided the half point, 50,000 sampling point, as our 

burn-in point for every 51 simulations, and measure the mean and standard deviation 

from the chosen samples (Figure 2.11). Since this result comes from the spatial Gaussian 

regression model from the fine-scale observed vertical borehole data, the estimated final 

result of the ground model (Figure 2.11-a) shows the heterogeneous soil properties in the 

high-resolution image. This image is the set of independent columns, and some of those 

columns are different from the target ground model (Figure 2.3). However, the image 

can show much better stratigraphy inside the ground model with keeping its high-

resolution information than the simple interpolated ground model (Figure 2.6). 

Furthermore, the quantified standard deviation (Figure 2.11-b) shows less uncertainty 

near the observed borehole locations (0, 300, 700, and 1000 meters in the horizontal 

direction), and increasing uncertainty along with the distance from those borehole 

locations. For example, the uncertainty around 850 meters in Figure 2.11-b has higher 

value of standard deviation than those at 700 or 1000 meters locations.  

 



 

34 

 

 

Figure 2.11. Final results of the integrated MCMC seismic inversion using spatial 

random fields from Gaussian process; (a) mean of the posterior distribution and (b) 

quantified uncertainty 
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2.5. Discussion 

2.5.1. Random variables in the high-resolution 

 The quantified uncertainty from the case study showed some columns with an 

extremely low value of standard deviation (Figure 2.11-b). For example, the location 500 

meters, shows almost zero uncertainty because the seismic MCMC inversion couldn’t 

collect any proposed samples from the Gaussian regression model. This zero acceptance 

happens because this study used neither Bayesian rule nor conventional normal 

distribution for proposing candidates in seismic inversion. We need to clarify that the 

only 100,000 realizations, which were generated from the spatial regression model were 

used for the integrated MCMC seismic inversion.  

The conventional stochastic approach, which defines each 81 elements as a fully 

random variable, is not able to use for this high-resolution seismic imaging because of 

two reasons. First, if we make all 81 small size elements to be changed in random in the 

MCMC method, the seismic inversion does not show the convergence. That is the 

seismic non-uniqueness problem. Since the wavelength is about 23 meters, we have 23 

independent elements inside the wavelength. Thus, we cannot let those 23 elements to 

make one block of seismic signal in a stationary condition. Second, if we apply the fully 

random perturbation, we will lose the anisotropy condition in our ground model. The 

seismic inversion is based on each trace for 1-D site characterization, so multi-channel 

seismic data itself cannot generate the anisotropic random field. In short, the 

conventional MCMC random variable approach cannot be appropriate for the high-

resolution imaging, and spatial Gaussian process is important for this integrated MCMC 
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method. This also indicates the importance of the appropriate deterministic regression 

model before the Gaussian process, so this approach also requires more future works in 

the pre-required regression process for better site characterization. 

 

2.5.2. Trans-dimensional seismic inversion 

Since the previous case study of the integrated MCMC seismic inversion method 

with spatial Gaussian process showed some limitation, we applied the recently 

developed another method, trans-dimensional MCMC seismic inversion to the same 

benchmark offshore ground model. This method was introduced for the 3-D monitoring 

of deep oil reservoirs and showed a great benefit when we know some information about 

observed in-situ well logging data. This seismic inversion is similar to our previous case 

study, but the outstanding feature of this rj-MCMC seismic inversion method is that the 

number of geological layers is an unknown random variable.  

The trans-dimensional MCMC is called reversible-jump Markov chain Monte 

Carlo (rj-MCMC) method, and this approach has a strong point to identify the unknown 

stratigraphy for the seismic inversion. This approach in varying dimension has been 

widely used for the geoscience, and the key point of this rj-MCMC method is that the 

number of unknown geological layers is also another random variable in the stochastic 

MCMC inversion process. Since the dimension of MCMC becomes a random variable, 

the model selection of rj-MCMC method becomes a random process to choose one of 

four types of proposals (S Esmailzadeh et al., 2015a) to generate a new candidate 

modeling parameter (𝜽′). 
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 BIRTH: randomly pick a depth location to create one new layer with the new 

material property. 

 DEATH: randomly pick one of the current layers to remove it and merge to the 

neighboring layer. 

 MOVE: randomly pick one of the current layers and change the depth of the 

layer interface. 

 PERTURB: randomly pick one of the current layers and change the material 

property. 

 

Figure 2.12. Results of the trans-dimensional rj-MCMC seismic inversion; (a) mean 

of the posterior distribution and (b) quantified uncertainty 

 

 The four different types of modeling selection in rj-MCMC seismic inversion 

estimate the number of geological layers from the observed seismic data. However, the 

estimated results from this rj-MCMC approach for the shallow site characterization 

(Figure 2.12) was different from the target ground model (Figure 2.3). The chosen 

number of layers from this approach is about 5 or 6 and extremely lower than what we 
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expected in the high-resolution image. Because the seismic wavelength in this 100 𝐻𝑧 

frequency simulation was about 23 meters, so the theoretical seismic vertical resolution 

is about 5-meters. Furthermore, seismic data shows the reflection only at the high 

contrast layer interfaces, so the 3-meters  thickness of the dense soil layers are 

overestimated to about 10-meters. This inherent seismic low resolution from low-

frequency seismic source consequently make the thicker layer estimation and estimate 

upscaled stratigraphy model under the seafloor. In short, the rj-MCMC seismic inversion 

method, which is developed recently and showed a great potential possibility for the 

seismic imaging cannot be appropriate for the shallow site characterization for the high-

resolution stratigraphy modeling. 

 

2.6. Conclusion 

This paper demonstrated the integrated Markov chain Monte Carlo (MCMC) 

seismic inversion with spatial Gaussian process (GP) for the offshore shallow site 

characterization in high-resolution. Spatial regression models are generated from fine-

scale geological borehole data and contain the information of thin layers in 

heterogeneous shallow ground model. The deterministic spatial interpolation and 

Gaussian process generate anisotropic random fields to represent the aspect of the spatial 

variation of the geological ground model, and those realizations are used as proposed 

candidate models to the seismic inversion. Even though the seismic signal frequency is 

still low as same as the conventional offshore field survey data, the estimated ground 

model from the posterior distribution of the samples shows the subsurface stratigraphy 
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model in high-resolution. Some of the columns in the predicted ground model show 

different values from the target material properties, but this problem can be solved when 

the various types of deterministic regression models are applied together to support the 

stochastic approaches. This integrated seismic inversion approach with spatial regression 

can prevent the extra costs of drilling offshore boreholes, and improve the quality of the 

offshore ground model estimation when we already have both geological and 

geophysical survey data on the target area. 
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3. PROBABILISTIC GEOLOGICAL STRATIGRAPHIC MODELING 

 

3.1. Summary 

Stratigraphy estimation from in-situ borehole soil samples is a process to identify 

the vertical geologic formation under the seafloor. This offshore site characterization 

process is important for marine slope stability analysis; however, the estimated vertical 

soil profiles have contained uncertainty problems from the data measuring errors. In this 

paper, we applied probabilistic Bayesian calibration with a reversible jump Markov 

chain Monte Carlo (rj-MCMC) method to estimate the depth of layer interfaces and soil 

properties of each layer in varying dimensions. The spatial average method, based on 

step function operator, is applied to define the geological strata along with the depth for 

the stratigraphic modeling. We applied Bayesian calibration to this model with a field 

shear strength profile from a borehole data at the northeast Gulf of Mexico, where many 

studies warned the geohazard threat against the marine landslide. The results of 

probabilistic calibration show the different geological estimation based on different prior 

information to compare with other data from geophysical or geotechnical surveys. We 

expect that the results from geological offshore site investigation will be able to support 

the geomechanical slope stability analysis on this area as reliable in-situ information of 

subsurface soil layers. 
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3.2. Introduction 

Offshore projects for renewable energy and oil-producing platform have 

proliferated in the past few years. These projects require to design reliable foundations to 

support up to the huge size of structural facilities, and many advanced studies about 

anchors and piles have been studied (Aubeny, 2017; Randolph & Gourvenec, 2017). 

However, the seafloor ground contains highly heterogeneous and inelastic mud 

sediments, so we cannot guarantee how the foundation on that unstable soil would 

behave. Furthermore, the external loads from the foundations may trigger submarine 

landslide due to the unstable seafloor slope stability condition. Many geomechanical 

slope stability analysis has been studied (Locat & Lee, 2002; Nadim et al., 2003; Nadim, 

Lacasse, Choi, & Hadley, 2014; Nowacki et al., 2003) for the geohazards assessment 

against the marine debris flow threat which would damage the installed geotechnical 

foundations for offshore infrastructures. 

The primary information of soil properties for the marine slope stability analysis 

should be based on accurate site investigation, and many advanced methods have been 

studied for offshore site characterization. All those methods rely on the soil properties 

from in-situ drilled borehole soil samples to show the vertical profile under the seafloor. 

However, there are three critical problems to estimate this vertical soil profile from the 

offshore borehole data. First, the soil samples from offshore boreholes are disturbed in 

the laboratory tests. The offshore sediments are sensitive to the extreme change of 

pressure and temperature in the indoor laboratory. Furthermore, the measurement of 

offshore undrained shear strength data is usually measured by using the handheld 
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penetrometer. That device is appropriate to measure the large scale offshore data in a 

short time, but it cannot be accurate enough. Thus, the results sometimes show 

extraordinary outliers, but it is difficult to define them as measurement errors or valuable 

geological changes. Second, the drilled borehole data may have some missing parts due 

to losing soil samples during the drilling extraction. Third, we cannot take enough 

borehole data from our target area because the cost of drilling in offshore is expensive, 

so the site characterization from boreholes always suffers from a lack of field data. 

Because of these challenging issues in stratigraphy analysis, probabilistic 

calibration method has been widely used for geological analysis with borehole and well 

log data. The Bayesian inference with Markov chain Monte Carlo (MCMC) method has 

been used with a forward model, called spatial average method. This forward model is a 

vertical classification method to make soil blocks with a step function. This function 

defines the depth of layer interfaces and material properties at each layer for the 

stratigraphy analysis, but the number of layers was chosen manually and fixed (Richard 

L. Gibson & Hwang, 2009). Recently, trans-dimensional approach, called reversible 

jump Markov chain Monte Carlo (rj-MCMC) method (Green, 1995), was applied to the 

upscaling problems of well logging data (S. Dadi, Gibson Jr, & Wang, 2015). This 

method defines the number of layers as another random variable and shows reliable 

stratigraphy result of vertical profiles. Since this method can identify the accurate 

information of vertical profiles, many studies for the seismic inverse problem has been 

developed based on this stratigraphy estimation with rj-MCMC method (T Bodin, 
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Salmon, Kennett, & Sambridge, 2012; Thomas Bodin & Sambridge, 2009; Cho et al., 

2017; S Esmailzadeh et al., 2015a; Zhu & Gibson, 2016). 

In this study, we introduced our trans-dimensional soil calibration approach with 

the rj-MCMC method and applied it to the vertical soil profiles from in-situ field 

borehole data in the northeast Gulf of Mexico. Because of complex geologic formation 

from the Mississippi sediment deposit, this area has been studied for marine landslide 

analysis (Sawyer, Flemings, Dugan, & Germaine, 2009). We applied the Bayesian 

calibration method to the shear strength borehole data, which is important for the 

geomechanical analysis of slope stability but has not been discussed before. We also 

explained the importance of Bayesian priors when we need to compare those geological 

borehole data with other geophysical or geotechnical survey data at the same location. 

We expect the result of this study could help more advanced risk assessment against the 

threat of a marine landslide. 

 

3.3. Methodology 

3.3.1. Modeling parameters for vertical soil classification 

To estimate the depth of layer interfaces from the borehole data, we applied the 

spatial average method as our forward model, which has been used for the upscaling of 

well-logging data to classify the fine-scale measurement into course scale layer groups. 

This method has been widely used for geoscience (S. Dadi et al., 2015; Richard L. 

Gibson & Hwang, 2009) and petroleum engineering (Mondal, Mallick, Efendiev, & 

Datta-Gupta, 2014) to estimate the depth of geological formations and thickness of deep 
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hydrocarbon reservoirs, respectively. Since the subsurface layering relies on the 

geological deposit process, the soils in one layer can be defined as one homogeneous 

group which has similar material properties. When this geologic deposit process has 

significant changes, the sediments property changes with a new layer interface. Figure 

3.1 shows an example of spatial block averages overlaid on the scattered shear strength 

vertical profile as raw data. Since the raw observed data (𝑑𝑜𝑏𝑠) shows obvious 

discontinuities at a certain depth, and layer interfaces can be defined in predicted 

modeling data (𝑑𝑝𝑟𝑒𝑑) in dimension five.  

 

Figure 3.1. Stratigraphic modeling with vertical calibration forward model 

 

Parameters (𝜃𝑖) at each layer contains the information of the layer interface depth 

and the material property along with the depth. The calibration of vertical profile 

modeling for borehole data analysis has three main parameters, the number of layer (𝑘) 

within our target depth, depth of layer interfaces (𝑧𝑖), and the material properties (𝛽𝑖) for 
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each layer. The parameter 𝑘 controls the dimensions of other parameter vectors 𝑧𝑖 and 

𝛽𝑖, and set of those parameters become the main parameter (𝜽) in varying dimensions. 

𝜽 = [𝑘, 𝑧𝑖, 𝛽𝑖] = [𝑘, 𝑧1, … , 𝑧𝑘, 𝛽1, … , 𝛽𝑘]   (3.1) 

The spatial average method as a forward model uses the main parameter with the 

discretized space domain in our target depth to make blocks of soil layers. The Bayesian 

paradigm for the probabilistic calibration defines those parameters as random variables 

to estimate the numbers and location of layer blocks from the in-situ borehole data. 

 

3.3.2. The Bayesian paradigm for probabilistic calibration 

The main goal of probabilistic calibration is to sample the posterior probability 

density function (pdf) that is central to Bayesian inference, which updates our prior 

information of physical properties based on the observed data (D.G.T. Denison, Holmes, 

Mallick, & Smith, 2002). The posterior pdf of the model parameters can be expressed as 

𝜋(𝜽|𝒅𝒐𝒃𝒔) =
𝜋(𝜽)×𝑓(𝒅𝒐𝒃𝒔|𝜽)

∫𝜋(𝜽)×𝑓(𝒅𝒐𝒃𝒔|𝜽)𝑑𝜽
   (3.2) 

where 𝜽 is the vector of model parameters, and 𝑑_𝑜𝑏𝑠 represent the observed data which 

features the vertical borehole profile data in this study. The prior knowledge regarding 

the model is in the prior distribution 𝜋(𝜽), while the likelihood function 𝑓(𝒅𝒐𝒃𝒔|𝜽) 

quantifies the probability of obtaining data values from the forward modeling with the 

given model parameter vector 𝜽. The likelihood pdf compares the observed and 

predicted data to minimize the difference between those data during the calibration 

process. The absolute value of this modeling error distribution follows the multivariate 
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Gaussian distribution with zero mean value. Thus, the likelihood function can be 

expressed as below. 

𝑓(𝒅𝒐𝒃𝒔|𝜽) =
1

(2𝜋)
𝑛
2|𝐶𝑑|

1
2

× 

exp [−
1

2
 (𝑔(𝜽) − 𝒅𝒐𝒃𝒔)

𝑇(𝐶𝑑)
−1(𝑔(𝜽) − 𝒅𝒐𝒃𝒔)]   (3.3) 

where the 𝑔(𝜃) is the spatial average method as a forward model, and 𝐶𝑑 is the data 

covariance matrix. We applied the variance times identity matrix (𝜎2 ∗ 𝐼) as our 

covariance matrix without data correlation and 𝑛 is the number of observations. 

Because our model parameters are defined in the different dimensions with the 

different number of layers, the prior and likelihood functions are updated with the newly 

proposed dimension (𝑘) for every iteration. Thus, we applied hierarchical Bayesian 

priors to support the posterior pdf calculation. The number of layers (𝑘) is the 

fundamental prior, which follows a Normal distribution, and the priors for modeling 

parameter 𝜽; specified by the parameters 𝑧𝑖 and 𝛽𝑖, rely on the dimension prior. We 

applied uniform distribution for those modeling priors to define the minimum and 

maximum range of our target depth and material property. We also applied an additional 

non-informative prior to support the likelihood function. The normal distribution of 

likelihood has a dynamic standard deviation(𝑠), and  the non-informative prior (𝑝(𝑠))  

has inverse Gamma distribution with hyperparameters, as explained in S Esmailzadeh et 

al. (2015a). 

𝜋𝜽|𝒅𝒐𝒃𝒔) ≈ 𝑓(𝒅𝒐𝒃𝒔|𝒛, 𝜷, 𝑘, 𝑠)𝑝(𝑠)𝑝(𝒛|𝑘)𝑝(𝜷|𝑘)𝑝(𝑘)  (3.4) 
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3.3.3. Trans-dimensional stochastic process 

To implement the trans-dimensional calibration, we need to sample the proposed 

candidate with the reversible jump Markov chain Monte Carlo (rj-MCMC) method. We 

follow the model selection algorithm introduced by S Esmailzadeh et al. (2015a) for the 

rj-MCMC method and update it for vertical data calibration. This approach defines four 

types of model selection; BIRTH, DEATH, MOVE, and PERTURB. One of these types 

is randomly chosen during the stochastic process with four given probabilities; 𝑏𝑘, 𝑑𝑘, 

𝑚𝑘, and 𝑝𝑘, respectively. In the BIRTH and DEATH types, the algorithm randomly 

chooses one current layer and proposes to create another new layer or erase one of the 

current layers. The MOVE type also randomly choose one of layer interface and allows 

to change the vertical depth. The PERTURB type doesn’t change the layer depth but 

applies random perturbation of material property for all layers. The moving of layer 

depth follows uniform distribution inside the depth range of upper and lower interfaces, 

and perturbing of material property follows a normal distribution with the coefficient of 

variance. 

 BIRTH: a type of proposing to add new parameters (z*,β*) at one newborn layer 

with the probability 𝑏𝑘 at a randomly chosen depth point. The chosen layer is 

divided into two, and the proposed dimension k* becomes to k+1. 

 DEATH: a type of proposing to remove a randomly chosen current layer with the 

probability 𝑑𝑘. The parameters in the chosen layer become the same values to its 

upper layer or lower layer. The proposed dimension k* becomes to k-1. 
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 MOVE: a type of proposing to change the parameters at a randomly chosen one

current layer with the probability 𝑚𝑘. The depth of only chosen layer changes

within its boundaries. The proposed dimension k* is equal to the current

dimension k.

 PERTURB: a type of proposing to change the material properties in every

current layer with the probability 𝑝𝑘. The location of layer boundaries doesn’t

change, so the proposed dimension k* is equal to the current dimension k.

The rj-MCMC method requires generalized Metropolis-Hastings sampling (MH) 

algorithm (Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) 

that samples from posterior of varying dimension. Procedures of the generalized MH 

algorithm need to be explained as two steps. The first step is to propose a new candidate 

model (𝜽∗) from the current model (𝜽) and calculate the proposal ratio from the

distributions 𝑞(𝜽|𝜽∗) and 𝑞(𝜽∗|𝜽) for the varying dimensional model selection. When

we apply the MOVE and PERTURB types in fixed dimension, those proposal 

distributions are canceled out, and the proposal ratio becomes one, but this ratio becomes 

𝑏𝑘/𝑑𝑘  or 𝑑𝑘/𝑏𝑘  respectively when we apply the BIRTH and DEATH types with 

probability 𝑏𝑘 and 𝑑𝑘. The second step is to apply these ratio to the calculation of 

acceptance probability (𝛼). 

𝛼(𝜽∗|𝜽) = 𝑚𝑖𝑛{1,
𝑓(𝑫𝒐𝒃𝒔|𝜽

∗
)

𝑓(𝑫𝒐𝒃𝒔|𝜽)⏟      
likelihood ratio

×
𝜋(𝜽∗)

𝜋(𝜽)⏟
prior ratio

×
𝑞(𝜽|𝜽∗)
𝑞(𝜽∗|𝜽)⏟    

proposal ratio

× |𝑱|} (3.5) 



The 𝐽 is a Jacobian matrix which normalizes the difference in volume between 

two spaces of different dimensions. The varying dimension of BIRTH and DEATH 

types requires this term, and the mathematical proof of this is explained in S 

Esmailzadeh et al. (2015a). The acceptance probability (𝛼) is compared with another 

uniform random deviate (𝑢). If u is smaller than α, the newly proposed candidate is 

accepted, and the current model is updated with the proposed one. Otherwise, the 

proposed candidate is rejected, and the current model remains in the Markov-chain to 

propose another new candidate. 

3.4. Experiments of Calibration Modeling 

3.4.1. Field borehole data from the Gulf of Mexico 

We applied our Bayesian probabilistic calibration with the rj-MCMC method to 

an offshore in-situ borehole data. We chose the in-situ field data from Integrated Ocean 

Drilling Program (IODP) Expedition 308, the site U1322 borehole data in the Ursa basin 

at the northeast Gulf of Mexico (Figure 3.2), 210 km south-southeast of New Orleans, 

Louisiana, USA (Reece, Flemings, Dugan, Long, & Germaine, 2012). This location is a 

margin of the marine continental shelf with the sediments deposits from the Mississippi 

River (Yamamoto & Sawyer, 2012), and this large mass transport deposits made a 

complex geological structure in this area (Sawyer et al., 2009; Sawyer, Flemings, Shipp, 

& Winker, 2007). Direct pore fluid pressure was measured in this area (Fleming et al., 

2008), and they found overpressure zones, which may trigger the submarine landslide 

(Sawyer, Flemings, & Nikolinakou, 2014). The data were used to reveal an active 
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hydrodynamic environment of this area, and provided insight into the geological process 

at the deep subsurface layers. Since our goal is to support shallow slope stability analysis 

from this site investigation data, we decided to use the shallow part of this borehole data. 

We applied the probabilistic calibration modeling to the shear strength soil profiles to 

figure out the engineering soil properties at this shallow layers and estimate the layer 

interfaces and material property at each layer. Observed raw data (Figure 3.3) shows the 

measurement error problem; meaningless low values at the shallow depth, missing parts, 

extraordinary outliers as discussed above introduction. 

Figure 3.2. Location of the chosen borehole data in the northeast Gulf of Mexico 
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Figure 3.3. Observed in-situ borehole data from ODP 308 U1322 site 

 

3.4.2. Preprocessing and interpolation 

Since the in-situ soil data contains undefined errors, we applied the statistical 

preprocessing and applied the interpolation to this raw data (Figure 3.4). We measured 

the sampling intervals and checked the cumulative density function and histogram with 

relative frequency to figure out the best uniform sampling interval. The distribution of 

sampling intervals has maximum relative frequency near the 0.8 meters, but we chose a 

much small value of 0.2 meters for the interpolation not to lose any depth information on 

fine-scale. The figure shows our interpolated data matches well to the raw data, and this 

process excluded the extreme outlier near the 85 meters depth below the seafloor. 
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Figure 3.4. Statistical analysis for the raw borehole data and interpolation 

 

3.4.3. Non-informative calibration 

Based on the interpolated soil profile data, we applied trans-dimensional 

calibration with the rj-MCMC method to estimate the number of subsurface layers and 

the depth of each layer interface. Since we wanted to focus on the in-situ geological data 

itself without other geophysical or geotechnical data, the calibration was non-

informative Bayesian modeling with only the prior of material property; uniform 

distribution with the range from minimum to maximum observed values. Our target 

depth is from the seafloor to 100 meters below from the seafloor, and observed range of 

shear strength material profile is from 0 to 2.5 𝑘𝑔/𝑐𝑚2. We applied that observed 

information to set up the priors with uniform distribution. 

𝑧~𝑈𝑛𝑖𝑓(0,100)     (3.6) 

𝛽~𝑈𝑛𝑖𝑓(0,2.5)     (3.7) 



 

53 

 

The probabilities of model selection were all equal; 0.25 for BIRTH (𝑏𝑘), 0.25 

for DEATH (𝑑𝑘), 0.25 for MOVE (𝑚𝑘), and 0.25 for PERTURB (𝑝𝑘), to avoid 

subjective model parameters. The stochastic process took 200,000 samples during the 

calibration, and each sample had a different number of layers from one to ten as the 

dimension of the forward modeling. Figure 3.5 shows the varying dimension during the 

iterations, which start from only one homogeneous initial condition. The convergence of 

dimension and histogram shows that most of the chosen samples have 11 layers. 

 

Figure 3.5. Convergence of stochastic process in varying dimensions 

 

To identify the stationary condition in this stochastic process, we chose only 

samples whose modeling dimension is 11. More than 150,000 samples were collected, 

and we plot the surface of the modeling parameter (Figure 3.6-a). We defined 75,000 

sampling point as our burn-in point to choose the samples in a stationary condition. The 

calculation of cumulative mean and standard deviation verified that the modeling 

parameters in the samples after the burn-in point are stationary at each depth. Figure 3.6-
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b & c show three chosen depth (25, 50, and 75 meters) to plot the shear strength 

properties as random variables. 

 

Figure 3.6. Estimation of the burn-in point in the stationary condition 

 

 Figure 3.7-a shows the mean of the posterior distribution of the samples (black) 

as our final result of the estimated vertical soil profile in depth. Even though the initial 

soil model (red) was homogeneous, the stratigraphic modeling generates vertical random 
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profiles as realizations (grey) based on the observed borehole data (blue). The 

probability and uncertainty of those realizations can be quantified (Figure 3.7-b). The 

soil strata with a yellow indicator have a high probability, which is enough to confirm 

the soil property. However, others with green indicator mean high uncertainty, where we 

should consider the potential possibility of soil heterogeneity. 

 

Figure 3.7. Estimated geological stratigraphic model 

 

3.4.4. Informative calibration in coarse-scale 

We applied only general priors to the previous non-informative stratigraphic 

modeling. However, we should consider this approach in course scale when we need to 

compare the in-situ geological borehole data with geophysical survey data at the same 

location. Because geophysical seismic data has low-resolution problem due to its 

inherent frequency limit. For example, if we use 30 Hz air gun source for offshore 

surveys, the wavelength in seawater becomes about 50 meters. Since the vertical 
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resolution of seismic data is a quarter of the wavelength, seismic data can show the 

stratigraphic layers with more than 12.5-meter thickness. Thus, we should apply a new 

prior of assuming the dimension for our stratigraphic modeling that it would be around 8 

layers in our target depth; 100 meters below from the seafloor. 

𝑘~𝑁(8,1)     (3.8) 

 After applying this new prior to our previous Bayesian framework, the dimension 

of stratigraphic modeling from the same in-situ borehole data becomes smaller. The 

estimated number of layers from the previous non-informative calibration was 11, but 

the informative calibration with a new prior defined only 6 layers (Figure 3.8). 

 

Figure 3.8. Convergence of the stochastic process in varying dimensions with 

Bayesian prior in coarse-scale 
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Figure 3.9. Estimated stratigraphic model with Bayesian prior in coarse-scale 

 

3.4.5. Informative calibration in fine-scale 

Geophysical data has low-resolution problem, but geotechnical offshore survey 

data; such as cone penetration test (CPT), box coring, can measure the soil properties in 

high-resolution. However, those geotechnical investigation methods can measure only 

shallow depth, so the high-resolution soil data also has to be compared with other 

geological borehole data or geophysical seismic data to estimate the ground model in 

subsurface deep soil layers. Since our non-informative calibration showed 11 layers, we 

decided to assume 20 layers to get fine-scale stratigraphy result. 

𝑘~𝑁(20,1)     (3.9) 

 This third calibration with another new prior for fine-scale analysis shows 15 

layers. Since this calibration was more accurate to define specific thin layers in the 
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borehole data, the results show less probability with high uncertainty than previous 

course scale calibration. 

 

Figure 3.10. Convergence of the stochastic process in varying dimensions with 

Bayesian prior in fine-scale 

 

 

Figure 3.11. Estimated stratigraphic model with Bayesian prior in fine-scale 
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3.5. Discussion: Quantified Uncertainty 

From three experiments with different Bayesian priors, we could estimate the 

stratigraphy of shallow soil layers in the Northeast Gulf of Mexico. Those calibrations 

started from the same observed data but showed a different number of layers, and those 

estimations in different dimensions are important to compare the data with other 

geophysical or geotechnical survey data at the same location. The integration of all 

available survey data will improve the quality of the offshore site characterization results 

with reduced uncertainty. 

 The vertical calibration with the rj-MCMC method was focused on random 

modeling in varying dimensions. However, this approach was also available to show the 

uncertainty with calculated probabilities. We can notice that if we assume less number of 

layers inside the geological borehole data, then the result shows high probability with 

less uncertainty. On the other hand, when we applied a bigger number of layers to the 

calibration modeling, some parts show less probability with a blurry image. For 

example, the soils between the depths of 50 to 70 meters in Figure 3.11-b shows less 

probability with a wide range of realization. That means the stratigraphy modeling at 

that location contains more possibility of uncertainty problem. 

 To make a more clear comparison of uncertainty, we compared the histogram of 

estimated soil properties at three-point locations (25, 50, and 75 meters depths) from all 

those three previous calibration modelings (Figure 3.12). All the samples show the 

normal distribution in the histogram, and the estimated mean value at three different 

depths are similar. However, we can notice the standard deviation of the histogram is 
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getting wider in our third fine-scale calibration, especially at a depth of 50 meters. Table 

3.1 shows that the standard deviation at a depth of 50 meters (𝜎2) is getting increased 

from 0.1354 to 0.2726 as increasing the modeling dimension. This result is the same as 

the estimation from the previous probability calculations, and indicate that the 

probabilistic Bayesian approach is essential for this stratigraphic modeling work to 

quantify the uncertainty of site characterization.  

 

Figure 3.12. Histograms of estimated material properties; (a) dimension 6 in 

coarse-scale, (b) dimension 11, and (c) dimension 16 in fine-scale 
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Table 3.1. Uncertainty of the three different Bayesian calibration modeling 

Std. 

Depth 

𝝈𝟏 

in coarse-scale 

𝝈𝟐 

 

𝝈𝟑 

in fine-scale 

25 m 0.1144 0.1506 0.0993 

50 m 0.1354 0.2213 0.2726 

75 m 0.1225 0.1128 0.1071 

 

3.6. Conclusion 

 We applied the probabilistic Bayesian calibration approach with a trans-

dimensional rj-MCMC method to estimate the depth of soil layer interfaces with 

material properties. This stratigraphic modeling analysis is applied to an offshore in-situ 

borehole data in the northeast Gulf of Mexico, where it shows potential geohazard of the 

marine landslide. The observed raw soil data of shear strength profile was not 

appropriate for the geological interpretation because it suffers from the measurement 

errors in in-situ soil samples. Our Bayesian calibration with the spatial average method 

classifies to define the soil layers and quantifies the uncertainty in this soil data. 

Furthermore, we introduced how to apply Bayesian prior information to control the 

expected dimension of stochastic modeling to compare the geological borehole data with 

other geophysical or geotechnical surveys at the same location. This stratigraphic 

modeling is the fundamental step for the offshore survey data integration, which is 

important to figure out accurate subsurface information from the limited number of 

survey data. The estimation of more accurate stratigraphy under the seafloor should be 

considered for geomechanical slope stability analysis to prevent man-induced marine 

landslide, tsunami, or ocean pollutions. 
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4. PROBABILISTIC OFFSHORE SEISMIC INVERSION 

 

4.1. Summary 

Geophysical seismic surveys have been widely used for offshore site 

characterization, and this non-destructive method generates a vertical image of the 

subsurface geological information under the marine slope, where drilling boreholes may 

trigger a man-induced landslide. This offshore survey analysis from the seismic data is 

essential for the geohazard evaluation, but the geophysical data cannot show the depth 

and material properties because it is reflected wave signals in the time domain. 

Reconstruction for the information in the space-domain requires the seismic inversion, a 

method to convert those signals to the material properties in depth by using iterative 

numerical modeling. In this paper, we introduce a Bayesian seismic inversion as an 

integrated offshore site characterization method to apply geophysical seismic survey 

data for geotechnical slope stability analysis. This inversion is based on the reversible 

jump Markov chain Monte Carlo method, which defines the number of geological strata 

as a random variable. The forward modeling in this method is the geophysical seismic 

convolution, whose modeling parameters are the depth of layer interfaces, bulk density 

and P-wave velocity of the soil and seawater. We applied this method to an offshore 

multichannel seismic data, obtained near the steep marine slope, Sigsbee Escarpment, 

close to the deepwater oil fields in the Gulf of Mexico. The image of the ground model 

result shows the heterogeneous subsurface soil material properties in-depth under the 

marine slope. This study shows the approach of how to use geophysical survey data to 
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estimate the soil properties and quantified uncertainty to support the geotechnical slope 

stability analysis. 

 

4.2. Introduction 

Submarine slope stability analysis has been studied for many offshore 

geotechnical projects to prevent man-induced triggering geohazard disasters. When we 

install the pipelines and geotechnical foundations under the seawater, we should 

consider the slope stability condition of the sensitive marine sediments. Because the 

debris flow, especially the submarine mass movement, may threat various human 

activities in the offshore environment, appropriate evaluation of geohazard should be 

developed and implemented (Locat & Lee, 2002). The installation of the offshore 

geotechnical foundation for Mad Dog spar on a steep slope in the Gulf of Mexico as an 

example to show the importance of submarine slope stability analysis for the offshore 

project (Liedtke et al., 2006). Geohazard risk assessment for this project has been 

discussed in a practical perspective (Jeanjean et al., 2005), and the state of arts in 

offshore geohazard investigations have been studied for the project (Kvalstad, 2007). 

The investigations are important for the site characterization; however, geotechnical 

methods to measure the in-situ soil properties take too much cost and time. Furthermore, 

these direct investigation approaches can obtain the soil information in only a few meters 

in shallow depth, and this short range cannot be enough for the slope stability analysis in 

deep soils. 
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Offshore geophysical surveys have been applied to support the better offshore 

site characterization, and the survey data have been integrated with geotechnical 

investigation data (Jeanjean et al., 2006; Medina-Cetina & Esmailzadeh, 2014; Medina-

Cetina et al., 2013; Vanneste et al., 2018; Vanneste et al., 2015). Multi-beam sonar, 

which can show the high-resolution bathymetry, has been used for marine slope stability 

estimation (Locat et al., 1999). Since this method was not able to penetrate the seafloor 

to show the vertical image of the offshore ground model, high-resolution Autonomous 

Underwater Vehicle (AUV) survey was applied to a marine steep slope area, which is 

called as Sigsbee Escarpment, in the Gulf of Mexico (George et al., 2002). However, 

penetration depth was shallow due to lots of attenuation from high-frequency source, so 

another geophysical survey; multichannel seismic data was used for the site 

characterization on the slope area again (Jeanjean et al., 2006). Since this seismic survey 

is based on the acoustic impedance; a geophysical parameter which comes from the 

multiplication between acoustic wave velocity and bulk density properties, an empirical 

relationship between geophysical and geotechnical properties have been introduced to 

utilize the geophysical survey results for offshore projects (Brand et al., 2003). Even 

though the acquisition system of the geophysical seismic survey has been developed to 

show higher resolution for better geohazard evaluation (Brookshire Jr et al., 2015), the 

observed seismic data are reflected wave signals in only time-domain instead of space-

domain. This time-domain data cannot be used for the site characterization, and we need 

to convert those data from time- to space-domain. 
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The conversion of geophysical seismic data is called seismic inversion, and many 

deterministic and probabilistic inverse approaches have been developed to show the 

ground model in space-domain. The Spectral Analysis of Surface Waves (SASW) 

(Stokoe et al., 1994) is the most popular application of seismic inversion to use 

geophysical survey data for geotechnical site characterization. This method measures the 

dispersion of surface waves of the land seismic survey data and converts the observed 

signals from time- to frequency-domain. Since the surface waves are related to the 

elastic modulus of the soil media, the chosen dominant signals in frequency-domain are 

used to estimate the shear modulus property of the onshore ground model. A theoretical 

approach based on the SASW method was also applied to a synthetic offshore case study 

and showed a potential possibility for offshore site characterization (B. Lee et al., 1997). 

However, the data acquisition system was different from conventional offshore seismic 

surveys, and this approach was difficult to apply for a field case study. 

 Another geophysical method, which is called Full-Waveform Inversion (FWI), 

has been developed and introduced for shallow site characterization. This FWI method 

uses not only the surface waves but also the acoustic and elastic body waves inside the 

ground model. All of the refraction, reflection, dispersion, and scattering phenomena 

inside the ground model are used as observed data to predict the unknown soil 

properties. Recently, the deterministic approach of FWI was compared with SASW on a 

land site characterization and showed an improved subsurface image with the estimated 

elastic soil properties (Kallivokas et al., 2013). Many research based on this approach 

has been studied for onshore case studies (Nguyen, Tran, & McVay, 2016; Tran & 
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McVay, 2012; Tran, McVay, Faraone, & Horhota, 2013), but offshore case study for 

geotechnical analysis is not fully described yet. Medina-Cetina et al. (2013) started to 

introduce a Bayesian geophysical inverse modeling to use the geophysical survey data 

for the offshore site characterization, and this probabilistic approach has been developed 

for more accurate stratigraphy estimation under the seafloor (Medina-Cetina et al., 2019) 

In this paper, we applied a Bayesian seismic inverse method with the reversible 

jumping Markov chain Monte Carlo method (rj-MCMC) to multichannel seismic survey 

field data for offshore site characterization. This trans-dimensional rj-MCMC approach 

was introduced for a theoretical offshore case study with synthetic electromagnetic and 

acoustic surveys data (S. Esmailzadeh, Medina-Cetina, Kang, & Kallivokas, 2015), and 

the estimated ground model with quantified uncertainty showed the potential possibility 

of the Bayesian inversion method to support the geotechnical site characterization from 

geophysical surveys. We updated this inversion with another forward model, 

geophysical seismic convolution, to develop a practical approach and applied this 

inversion method for the offshore seismic data near the Sigsbee Escarpment in the Gulf 

of Mexico. Spectral filtering in the frequency-domain is applied as preprocessing for the 

noisy field seismic data, and the estimated ground model from the Bayesian inversion 

indicated the locations of dense and soft sediments under the seafloor in the space-

domain. Furthermore, the uncertainty of the estimated ground model is quantified and 

supports to notice the geohazard prone area. This reconstructed spatial ground model 

information will support the geomechanical slope stability analysis as accurate initial 

and boundary conditions. 
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4.3. Methodology 

4.3.1. Geophysical seismic convolution method 

 Since the stochastic inverse modeling requires plenty of sampling from iterative 

computation, we decided to use a mathematical operator, the geophysical seismic 

convolution method, as our forward model. Seismic convolution has been widely used 

for geophysical studies and has many advantages (Zhou, 2014). This convolution 

operator implements the seismic modeling in fast, and it is appropriate for the iterative 

inverse modeling. Furthermore, the calculation of reflected signals based on seismic 

impedance parameters is accurate enough to compare with field data. However, seismic 

convolution also has some limitations in comparison with numerical simulations, such as 

Finite-Element method or Finite-Difference Method (Yilmaz, 2001). Since the 

convolution operator shows the only 1-dimensional seismic trace, the result cannot 

consider the energy loss from the realistic 2-or 3-dimensional geometrical spreading. 

This operator is only appropriate for the elastic case study and not able to consider 

inelastic attenuation, which comes from the seismic energy absorption inside the soil 

media itself. Furthermore, this theoretical operator cannot generate multiples, which is 

trapped inside layers and reflected back with small amount of amplitude. Consequently, 

this seismic convolution is not appropriate for the SASW or FWI methods in land 

seismic surveys. 

 However, offshore seismic survey data is different from land seismic data, and 

the convolution method has been widely used as the best approach for the seismic 

inversion. Conventional offshore seismic data is post-stack data, which means processed 
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data based on the acquisition system with multi-channel streamers. The multiple seismic 

traces from multiple hydrophones are stacked and become a 1-dimensional seismic trace 

to increase the signal over noise ratio. Another processing technique amplifies the 

amplitude of the processed seismic traces along with the depth to make a clear vision of 

the signals in deep layers. Furthermore, most of the identified multiples are removed for 

better visualization, and the final processed offshore seismic data can show the existence 

of subsurface geological layers. In short, seismic convolution is appropriate for the 

seismic inversion with offshore seismic data, because the offshore data already 

processed and adjusted signals beyond the physical phenomena. 

 Even though the seismic convolution method is fast and accurate, the application 

for this forward model is not simple, so we explained the detail process of it with a 

diagram (Figure 4.1). From the ground model, we need to get geological information in 

vertical cross-section and define layers with density (𝜌) and P-wave velocity (𝑉𝑝). The 

acoustic impedance (𝐼𝑚𝑝) can be calculated from them, and the only locations of the 

layer interfaces will get non-zero values of reflection coefficients (𝑅𝐶𝑧) in depth. 

𝑅𝐶𝑧 =
(𝜌2𝑉𝑝2−𝜌1𝑉𝑝1)

(𝜌2𝑉𝑝2+𝜌1𝑉𝑝1)
      (4.1) 

The subscription 2 and 1 for the calculation of reflection coefficients indicate geological 

lower and upper layers, which define the layer interfaces. Since we know the depths and 

P-wave velocities at the layer interfaces, the two-way travel time (TWTT) can be 

calculated in time-domain. We need to convert the reflection coefficients from space- to 

time-domain and make the reflectivity function in time (𝑔𝑡). The seismic wavelet (𝑓𝑡) in 

time, which comes from the seismic source generation device is applied to the 
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reflectivity function, and the convolution operator generates the seismic trace data (𝑠𝑡) 

from them. 

 

Figure 4.1. Diagram to describe seismic convolution modeling 

 

4.3.2. Geophysical non-uniqueness problem 

The most challenging problem for the spatial inverse problem is related to the 

non-uniqueness of the solution from the inverse modeling. This drawback affects most 

of the geophysical inverse problems which are often ill-posed from the mathematical 

point of view (Foti, Comina, Boiero, & Socco, 2009), and it is not possible to prove the 

uniqueness when we use the seismic convolution method for the inverse problem. A 

diagram (Figure 4.2) explains the difference between forward and inverse model for the 

spatial analysis to describe the specific meaning of this non-uniqueness problem. The 

numerical seismic forward model generates only one reflected wave signals from one 

input soil ground model. This result is a unique value, so many times of duplicated 

forward modeling with the same ground model will generate the same seismic data. 

However, the problem is that some of the other different ground models also can 
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generate the same seismic data. Thus, inverse modeling from the seismic data as 

observed data may show us many different ground models as the candidates from one 

seismic data, and this is called geophysical non-uniqueness problem. Finding the one 

true target ground model from the observed survey data is challenging, and requires a 

probabilistic approach to compare all the candidate ground models for the site 

characterization. 

 

Figure 4.2. Diagram to explain the possibility of incorrect estimation from the 

spatial inverse model 
 

 We tested four ground models with seismic forward modeling and compared the 

generated seismic signals to clarify the problem of seismic non-uniqueness for the 

geophysical inverse modeling (Figure 4.3). Since our objective is to focus on offshore 

shallow sediments, the four different ground models have all the seawater layer at the 

top and have two model parameters; soil density (Figure 4.3-a) and acoustic P-wave 



 

71 

 

velocity (Figure 4.3-b). Those ground models have two soil layers under the water, but 

the material properties and the location depth of layer interfaces are slightly different. 

The detail information about the modeling parameters is described in Table 4.1. Even 

though the vertical soil profiles of those four ground models are all different, the 

generated geophysical seismic signals (Figure 4.3-c) are the same exactly. This result 

shows an example of the geophysical non-uniqueness problem in seismic inverse 

modeling and proves the importance of probabilistic inversion approach to consider 

every possible candidate ground models. 

 

Figure 4.3. Example of the geophysical seismic non-uniqueness problem 
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Table 4.1. Properties of the four different soil ground models 

ground models 
Depths of 

interfaces [m] 

Soil density 

[g/cc] 

P-wave velocity 

[km/s] 

A 150 250 1.00 1.50 2.00 1.50 2.00 3.00 

B 150 250 1.00 1.50 1.60 1.50 2.00 3.75 

C 150 260 1.00 1.25 2.00 1.50 2.40 3.00 

D 150 250 1.10 1.65 2.20 1.50 2.00 3.00 

 

4.3.3. Trans-dimensional Markov chain Monte Carlo method 

The probabilistic approach for the geophysical inverse problem requires trans-

dimensional Markov chain Monte Carlo (MCMC) method. Because the dimension of the 

stochastic process, which represents the number of subsurface geological layers, is 

unknown and has to be another random variable inside the inversion. Medina-Cetina et 

al. (2013) introduced the theoretical probabilistic approach for the offshore site 

characterization, and S Esmailzadeh et al. (2015a) explained the details of MCMC 

approach in varying dimensions, which is called as the reversible jump Markov chain 

Monte Carlo (rj-MCMC) method. Based on those previous methods, we applied the 

seismic convolution method as new forward modeling to utilize the conventional 

offshore seismic survey data with the modeling parameters (𝜽); depth of layer interfaces 

(𝑧𝑖), bulk density (𝜌𝑖) and P-wave velocity (𝑉𝑝𝑖). The observed data (𝑑𝑜𝑏𝑠) for this 

inversion is seismic traces from offshore post-stack seismic data, and the likelihood 

function is defined with the observed data (𝑑𝑜𝑏𝑠), seismic forward model (𝑔(𝜽)). The 

size of the observed data (𝑛) and covariance matrix (𝐶𝑑) is also defined from the seismic 

data. 
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𝑓(𝒅𝒐𝒃𝒔|𝜽) =
1

(2𝜋)
𝑛
2|𝐶𝑑|

1
2

× 

exp [−
1

2
 (𝑔(𝜽) − 𝒅𝒐𝒃𝒔)

𝑇(𝐶𝑑)
−1(𝑔(𝜽) − 𝒅𝒐𝒃𝒔)]   (4.2) 

 The proposal model selection in varying dimension is important for the 

likelihood function with forward modeling. The method to generate candidates from the 

proposal model, which were introduced for geophysical inversion (S. Esmailzadeh et al., 

2015),  follows four different types of model selection during the stochastic process; 

BIRTH, DEATH, MOVE and PERTURB, and each of them has different proposal 

distribution based on the properties of modeling parameters. We described this method 

with the extra explanation to clarify the model selection process in detail. 

 BIRTH: This creates a new subsurface layer with a new depth of layer interface 

(𝑧∗) and new material properties (𝛽∗). This new layer is located under a 

randomly chosen layer depth (𝑧𝑖𝑑𝑥). 

𝑧∗ ~ 𝑢𝑛𝑖𝑓(𝑧𝑖𝑑𝑥, 𝑧𝑖𝑑𝑥+1)     (4.3.a) 

𝛽∗ ~ 𝑁(𝛽𝑖𝑑𝑥, 𝑣 ∗ 𝜎)     (4.3.b) 

 DEATH: This removes one of the current subsurface layers. The randomly 

chosen depth (𝑧𝑖𝑑𝑥) is removed, and the material properties at this depth are 

defined as the average values between the upper and lower layers. 

 MOVE: This does not change the dimension of the modeling, and only changes 

the location of one current layer. One of the current layer depth is randomly 

chosen, and the new location (𝑧∗) is randomly located between upper (𝑧𝑢𝑝) and 

lower (𝑧𝑙𝑜𝑤) layer interfaces. 
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𝑧𝑖
∗~𝑢𝑛𝑖𝑓(𝑧𝑢𝑝, 𝑧𝑙𝑜𝑤)     (4.4) 

 PERTURB: This does not change the dimension of the modeling, and only 

changes the material properties of one current layer. One of the current layer 

material properties (𝛽𝑖) is randomly chosen, and the new material properties (𝛽∗) 

is randomly defined with standard deviation (𝜎) and parameter (𝑣). 

𝛽𝑖
∗~𝑁(𝛽𝑖, 𝑣 ∗ 𝜎)     (4.5) 

  

Since this modeling selection changes the dimension of the modeling in a 

random process, we need to apply the generalized Metropolis-Hasting sampling 

algorithm with the acceptance probability (𝛼). The calculation of this probability is 

based on likelihood, prior and proposal ratios from the current model parameters (𝜃) and 

proposed model parameters (𝜃∗). 

𝛼(𝜽∗|𝜽) = 𝑚𝑖𝑛{1,
𝑓(𝑫𝒐𝒃𝒔|𝜽

∗
)

𝑓(𝑫𝒐𝒃𝒔|𝜽)⏟      
likelihood ratio

×
𝜋(𝜽∗)

𝜋(𝜽)⏟
prior ratio

×
𝑞(𝜽|𝜽∗)
𝑞(𝜽∗|𝜽)⏟    

proposal ratio

}   (4.6) 

The proposal ratio is the key point in the calculation of acceptance probability 

(α) to control the varying dimension. This ratio should be considered in both forward 

and reverse movement in varying dimensions. When the rj-MCMC choose the MOVE, 

PERTURB for model selection, the probability in forward (from 𝜃 to 𝜃∗) is equal to the 

probability in reverse (from 𝜃∗ to 𝜃 ), so the dimension does not change at all. That 

means the probabilities of proposals are canceled out, and the proposal ratio becomes 

one to be ignored. However, BIRTH and DEATH types for model selection change their 
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modeling dimension, so each proposal ratio involves extra calculations. Since the 

locations of layers are proposed independently from the material properties, the 

calculation of the proposal ratio can be separated into two terms.  

𝑞(𝜃|𝜃∗)

𝑞(𝜃∗|𝜃)
=
𝑞(𝑧|𝜃∗)

𝑞(𝑧∗|𝜃)
×
𝑞(𝛽|𝜃∗)

𝑞(𝛽∗|𝜃)
     (4.7) 

The calculation requires a total number of the discretized elements (𝑁) for the first 

term, and the second term for the material property simply follows the normal 

distributions. The specific probabilities are defined in different forms for each BIRTH 

and DEATH types, and S. Esmailzadeh et al. (2015) explained the details. 

 BIRTH: This changes the dimension from 𝑘 layers to 𝑘 + 1 layers.  

𝑞(𝑧∗|𝜃) =
1

𝑁−𝑘
      (4.8.a) 

𝑞(𝑧|𝜃∗) =
1

𝑘+1
      (4.8.b) 

 DEATH: This changes the dimension from 𝑘 layers to 𝑘 − 1 layers.  

𝑞(𝑧∗|𝜃) =
1

𝑘
       (4.9.a) 

𝑞(𝑧|𝜃∗) =
1

𝑁−(𝑘−1)
      (4.9.b) 

 

4.4. Experiments 

4.4.1. Synthetic case study 

To verify the accuracy of the stochastic seismic inversion, we designed a simple 

synthetic case study with a shallow offshore ground model. The ground model has five 

layers with the top seawater and four of soil layers within the depth of 80 meters below 

the seafloor (Figure 4.4-a). The soil density is getting increased from 1.5 to 2.0 𝑔/𝑐𝑐, but 
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one layer at the depth around 50 meters shows unexpected soft layer (Figure 4.4-b). 

Each layer has a different value of soil density, but the P-wave velocities in the seawater 

and ground model are assumed as constant 1.5 and 2.0 𝑘𝑚/𝑠, respectively. This 

synthetic ground model design tries to catch the features of the offshore shallow 

sediments, which has a wide range of density and narrow range of P-wave velocity.  

 

Figure 4.4. Material properties of the synthetic offshore ground model; (a) & (c) 

soil density, (b) & (d) P-wave velocity 
 

The seismic wave source is located at the top surface of seawater, and four 

interfaces in the ground model generate the reflected seismic signals. When we apply the 



 

77 

 

geophysical survey with the multi-channel streamers at every 10 meters, the processed 

offshore seismic data show the signal traces in the vertical time-domain (Figure 4.5-a). 

Since the applied source frequency is assumed as low 20 𝐻𝑧, widely used for the 

traditional air gun blaster source, the seismic interpretation can only figure out the 

location of the seafloor and the existence of geologic strata under the seafloor. 

Furthermore, the observed seismic signal data contains noise signals (Figure 4.5-b), so 

the direct estimation of ground model properties from the observed seismic data is not 

possible, and we need the seismic inversion. 

 

Figure 4.5. Geophysical seismic data; (a) seismic traces from multi-channel 

streamers, and (b) observed signal with and without noise 

 

 We applied the seismic convolution and hierarchical Bayesian model for the 

stochastic seismic inversion with the synthetic observed data. The Bayesian model based 

on rj-MCMC method implements the inverse modeling in varying dimensions, so the 

predicted number of geological layers inside the ground model is a random variable. The 

stochastic process (Figure 4.6-a) shows the convergence of this random dimension 
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during the iterative samplings, and histogram (Figure 4.6-b) also verifies the predicted 

number of layers is five; one for seawater and four for soils in the ground model. Thus, 

we only collected the samples in five dimensions and discarded other samples from the 

total 800,000 accepted samples. 

 

Figure 4.6. Stochastic process in varying dimensions; (a) plot to show the 

convergence, and (b) histogram 

 

Figure 4.7-a shows the random process of the chosen five dimension samples in a 

surface with the depth and number of samples in the vertical and horizontal axis, 

respectively. The cumulative means and standard deviation of the random variables in 

the ground model, which means the predicted properties of each soil layer, show the 

convergence and stationary condition. (Figure 4.7-b). We decided the 400,000 as the 

burn-in point to use the only stationery samples for the posterior distribution to estimate 

the final value of the ground model. The stochastic process also shows that predicted soil 
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profiles during the iterative inversion is getting closer to the unknown target values 

(Figure 4.8). 

 

 

Figure 4.7. Stationary condition after the burn-in point; (a) surface of random 

variables in-depth, and (b) stationary condition after the burn-in point 
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Figure 4.8. Predicted soil profiles from accepted candidates during the stochastic 

process. (a)(b)(c) images of the ground models, and (d)(e)(f) vertical profiles 

 

 The final estimation from the posterior distribution of the samples is accurate 

regardless of the initial condition of the stochastic seismic inversion was incorrect 

homogeneous soil. The initial seismic data and initial vertical soil profiles, the red 

dashed lines in Figure 4.9-a & -b, are different from the observed data. However, the 

realizations in the time-domain from the chosen samples shows an accurate match to the 

observed seismic data regardless of the signal noise (Figure 4.9-a). The final estimation 

of the vertical soil profile, the black line in Figure 4.9-b, is the mean of realizations from 

the samples after the burn-in point, and it also matches well to the target ground model. 
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Figure 4.9-c indicates the probability of the estimated results, and this shows the 

uncertainty is getting increased along with the depth.  

 

Figure 4.9. Results; (a) realizations in the time-domain, (b) realizations in-depth, 

and (c) probability in the vertical profile 

 

 To compare the uncertainty from each soil layer, we plot the histograms of the 

posterior distribution of the samples (Figure 4.10). The black vertical lines indicate the 

unknown true values of the material properties, and the histogram shows normal 

distribution around the true values. Since the bottom layer in this synthetic ground model 

cannot calculate the seismic reflection coefficient, the histogram at 70 meters depth 

shows the widest range of standard deviation. Even though the results contain high 

uncertainty at the bottom layer of the ground model, this stochastic seismic inversion 

method can find the accurate soil material properties (Figure 4.10) and depth locations of 

geological layers (Figure 4.11) from the observed seismic data itself. 
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Figure 4.10. Histogram to show the distributions of density parameters in four 

different soil layers 

 

 

Figure 4.11. Histogram to show the distributions of depth parameters in four 

different soil layers 
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4.4.2. Field case study 

From the synthetic case study, we verified the stochastic seismic inversion 

method could find out the subsurface location of geological layers and the soil material 

properties inside the ground model. We applied this approach to an offshore field 

seismic survey data from the Gulf of Mexico. We chose the marine steep slope area, 

called Sigsbee escarpment, near offshore platforms on the deepwater reservoir fields 

(Figure 4.12). Because the suction pile installation on this area has been issued since the 

installation of the Mad Dog spar (Berger et al., 2006; Jeanjean et al., 2006; Liedtke et al., 

2006). The geophysical seismic survey data is obtained from the Marine Geoscience 

Data System (MGDS), and Figure 4.13 shows the vertical image of geological 

stratigraphy under the seafloor as the result of this geophysical survey. We chose only 

the location of the steep slope data inside the black box on the left side of the figure and 

first applied the spectral analysis in the frequency-domain. 
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Figure 4.12. Locations of platforms (grey) and the path of the geophysical seismic 

survey (yellow) near the Mad dog platform (red) in the Gulf of Mexico 

 

 

Figure 4.13. Observed seismic data to show the image of geological stratigraphy 

under the seafloor 

 

 Figure 4.14 shows a single seismic trace signal from the chosen seismic data. 

Even though the seismic data is processed signals, this raw data (Figure 4.14-a) still 

contains lots of noise in high-frequency (Figure 4.14-c). We applied the bandpass 

filtering (Menke & Menke, 2016) to focus on the frequency range from 10 to 40 𝐻𝑧 and 
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removed the noise signals in over this range (Figure 4.14-c). This spectral filtered data 

(Figure 4.14-b) becomes smoother than raw data and shows clear variations in the 

observed signals. We applied this spectral filtering process to all seismic traces in the 

steep slope area, so the previous vertical image of the ground model under the slope 

(Figure 4.15-a) became more clear to show the existence of geological layers under the 

slope (Figure 4.15-b). 

 

Figure 4.14. Fourier transform and spectral filtering; (a) & (c) raw data, (b) & (d) 

in time- and frequency-domain, respectively 
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Figure 4.15. Images of the steep marine slope in seismic data; (a) raw data before 

spectral filtering, and (b) processed data after spectral filtering 

 

 Before we apply the stochastic seismic inversion to convert the seismic data from 

time to space-domain, we need to decide the wavelet for the seismic forward modeling. 

We chose the Ricker wavelet, which shows the shape of a Mexican hat (Figure 4.16-a) in 

time-domain. The amplitude (𝐴) of the Ricker wavelet is computed 

𝐴 = (1 − 2𝜋2𝑓2𝒕2) exp(−𝜋2𝑓2𝒕2)    (4.10) 
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where 𝑓 and 𝒕 indicate the value of dominant frequency and time vector, respectively. 

The dominant frequency of this theoretical source wavelet function is 20 𝐻𝑧, and the 

range of the frequency in this wavelet matches well to the previous spectral filtered data 

(Figure 4.16-b). Consequently, our spectral filtered seismic data is ready to apply for the 

stochastic seismic inversion with seismic convolution method. 

 

Figure 4.16. Ricker wavelet for seismic forward modeling in time-domain (a) and 

frequency-domain (b) 

 

 The chosen seismic data (Figure 4.15) had 120 vertical traces, and we applied the 

stochastic seismic inversion with rj-MCMC method to every signal independently. We 

took 400,000 samples and decided the 250,000 as out burn-in point (Figure 4.17). For 

every independent stochastic inverse modeling, all the parameters were the same, but 

one of the important setup was that the depth of the seafloor was controlled to follow the 

slope and adjust the initial predicted seismic signal to the observed signal. Otherwise, the 
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inversion may decide an incorrect location of the seafloor and converges to incorrect soil 

material properties in every layer under the seafloor. 

 

Figure 4.17. Stochastic sampling process of the seismic traces 

 

 The final results of the inversion are estimated from the samples after the burn-in 

point. We calculated the mean (Figure 4.18-a) and standard deviation (Figure 4.18-b) of 

the samples to estimate the vertical image of the ground model under the marine slope 

and quantified uncertainty, respectively. From the mean of posterior (Figure 4.18-a), we 

can figure out the location of dense soils (red) and soft soils (green) under the seawater 

(blue). Since we roughly assumed the property of P-wave velocity in the ground model 

as a constant value 2,000 𝑚/𝑠, it is difficult to say that the estimation results would 

match to the in-situ material properties in this area. However, these independent vertical 

inversions show continuous horizontal layers under the seafloor, and this approach has a 

potential possibility to improve our offshore site characterization if we apply more 

realistic values for the P-wave velocities in the ground model. 
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Figure 4.18. Final results from posterior distribution; (a) mean as an estimated 

ground model, and (b) standard deviation for uncertainty quantification 

 

4.5. Discussion 

From the field case study in the Gulf of Mexico, we realized the importance of 

the appropriate P-wave velocity assumption to improve the quality of the geophysical 

seismic inversion. Even though many studies introduced the empirical equations to 

define the relationship between bulk density and P-wave velocity (Gardner, Gardner, & 

Gregory, 1974; Hamilton, 1971; Hamilton & Bachman, 1982), we need to estimate the 
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best relationships on different target area to represent each geological environment with 

respect to the locations. 

 Another feature we can find from the seismic inversion result is that the image of 

the bathymetry is not a clear continuous line. The image is still blurry, and this does not 

relate to the assumption of the P-wave velocity. The observed seismic data near the 

Sigsbee Escarpment was measured in 1976 from the cruise survey for the project IG1904 

at Marine Geoscience Data System (MGDS) (http://www-

udc.ig.utexas.edu/sdc/cruise.php?cruiseIn=IG1904#segy_proc). The seismic data and 

cores were collected crossing the Louisiana and Florida shelf edge on its way into deeper 

water. The project at that time couldn’t fully conduct the seismic data processing, so the 

signal still contains lots of noise and induces blurry image with high uncertainty at the 

geological layer interfaces, including the seafloor. Since the Bayesian stochastic 

approach captured all the possible candidates from the sampling, the bathymetric line 

cannot become a clear, vivid line in the estimated ground model. If we apply this 

inversion method to a recent offshore data, which comes after more advanced 

geophysical seismic processing, we can expect the quality of the estimated ground model 

will be more clear and accurate for better site characterization. 

 

4.6. Conclusion 

We developed a Bayesian seismic inversion method with geophysical seismic 

convolution method and reversible jump Markov chain Monte Carlo (rj-MCMC) method 

in varying dimensions for the offshore site characterization. This method is appropriate 

http://www-udc.ig.utexas.edu/sdc/cruise.php?cruiseIn=IG1904#segy_proc
http://www-udc.ig.utexas.edu/sdc/cruise.php?cruiseIn=IG1904#segy_proc
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to apply for the conventional offshore multichannel seismic survey data, which comes 

after the geophysical signal processing to remove the noise and show the images of 

subsurface geological stratigraphy. Since the site characterization near the Sigsbee 

Escarpment, a submarine steep slope area in the northern Gulf of Mexico, is important 

for the geohazard assessment of offshore platform foundations, we applied seismic 

inversion method to an offshore field data and generated a 2-dimensional vertical cross-

section image of the marine slope area. Dense and soft sediments under the seafloor 

were indicated with depth information, which was not able to identify from the offshore 

geophysical data. Since the result of the offshore ground model contains the soil 

information in discretized mesh in the space-domain, estimated soil properties can be 

used for the geomechanical slope stability analysis. This geophysical inversion method 

can be applied for conventional offshore seismic survey data, and we expect this can 

support to get better information from geophysical survey data for offshore geotechnical 

projects. 
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5. PROBABILISTIC SEISMIC FULL WAVEFORM INVERSION 

 

5.1. Summary 

Seismic full-waveform inversion (FWI) has been widely used for the geophysical 

site characterization to estimate the subsurface geomechanical soil properties. Since FWI 

requires high computational resources, most of FWI studies rely on uniform rectangular 

elements for the 2-dimensional regular mesh with the flat free surface condition. 

However, near-surface FWI for land survey requires the irregular free surface condition 

to generate the accurate surface waves, which cause high amplitude noise signals on the 

ground, and this has been challenging in conventional FWI approaches. This study 

shows Bayesian FWI case studies with the elastic seismic forward model based on 

Spectral Finite-Element Method (SEM), which is appropriate to apply irregular mesh as 

a high-order Finite-Element Method (FEM). Reversible jump Markov chain Monte 

Carlo (rj-MCMC) method is applied with SEM for the iterative inversion process, and 

we introduce supervised classification to support this rj-MCMC method for mesh 

partitioning to define geologic layers as classified groups. Synthetic shallow layered soil 

models, whose material properties are the same as the known soil profiles in GeoPark, 

Florida, are used with different topography conditions for the numerical experiments. 

The modeling results show that seismic modeling errors due to the topography cannot be 

neglected, and the case studies of inversion prove the importance of accurate modeling 

for near-surface site characterization. 
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5.2. Introduction 

The goal of geophysical inverse modeling is to find the earth model parameters 

which can explain the observed complex data (Sen & Stoffa, 2013). The model-based 

seismic inversions attempt to infer the parameters by iteratively fitting the predicted data 

to the observed data (Albert Tarantola, 2005). This process minimizes the misfit function 

by using optimization algorithms, and predicted earth model could be used to find out 

unknown anomalies under the surface. The seismic inversion methods for near-surface 

land site characterization can be categorized into two; using body waves and using 

surface waves. 

Seismic Full Waveform Inversion (FWI) methods which use body waves are 

capable of imaging the arbitrarily heterogeneous velocity profiles in high-resolution 

because the modeling is based on fine-scale discretized mesh model. However, because 

of demanding computation, early attempts of FWI was based on only the acoustic wave 

equation (Lailly, 1983; Pan, Phinney, & Odom, 1988; R. G. Pratt & Worthington, 1988; 

A. Tarantola, 1984). As computational power increases, elastic FWI has been widely 

used for the deep subsurface imaging (Fang, Herrmann, & Silva, 2014; Fichtner, 2011; 

Peyman P Moghaddam & Herrmann, 2010; P. P. Moghaddam, Keers, Herrmann, & 

Mulder, 2013; Shin & Ha, 2008; Shin & Min, 2006; Sirgue & Pratt, 2004; Virieux & 

Operto, 2009).  

Another approach; Spectral Analysis of Surface Waves (SASW), which uses 

only surface waves, is the most well-known application for near-surface site 

characterizations (Joh et al., 1997; Stokoe et al., 1994). SASW uses the dispersion of 
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surface waves in shallow heterogeneous media, and this method has been developed to 

MASW with multi-channel streamers (C. B. Park et al., 1999). MASW has been applied 

for various near-surface land surveys (Choon B Park, Miller, Xia, & Ivanov, 2007; Xia, 

Miller, Park, Hunter, & Harris, 2000; Yuan et al., 2014), but the estimated material 

properties from this method is not accurate enough because this method relies on 

subjective decision for the dispersion range. 

Even though FWI can image more accurate values of the soil model, FWI was 

not considered to be appropriate for near-surface land surveys because complex surface 

waves from irregular free surface generate unwanted ground roll noise. Recently, 

deterministic FWI study was compared with the SASW method at the same target site in 

Austin, TX (Kallivokas et al., 2013) and showed a better subsurface image than SASW. 

Tran et al. (2013) also showed the possibility of applying FWI to image near-surface 

anomalies to detect the shallow sinkholes. However, all those approaches were still 

limited to flat topography earth model, and the effect of topography in FWI has not been 

fully discussed yet. 

In this study, we introduce a new approach of seismic FWI to overcome the 

irregular topography problem of near-surface site characterization. We decided to use 

the Spectral Finite-Element Method (SEM) as our forward modeling to generate the 

accurate both body waves and surface waves. For the iterative inversion, we applied the 

reversible jump Markov chain Monte Carlo (rj-MCMC) method, which has the number 

of subsurface layers as a random variable. This approach has been widely used for 

geophysical inverse problems (Thomas Bodin & Sambridge, 2009; Malinverno, 2002), 
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and this approach was recently developed for the inversion of post-processing seismic 

data (Cho et al., 2017; S. K. Dadi, 2014; Zhu & Gibson, 2016). We applied this rj-

MCMC method for pre-processing seismic data with mesh partitioning from supervised 

classification. Synthetic shallow earth model, which is the same as the known soil profile 

in GeoPark, Florida, has been used to prove this application. Since this earth model 

contains irregular free surface, this study explains how important to consider the effect 

of topography in the near-surface FWI for land surveys. 

 

5.3. Methodology 

5.3.1. Numerical algorithms for seismology 

The subsurface soil and rock layers are complex heterogeneous material, so 

analytical methods cannot provide solutions of wave propagations, and approximate 

numerical methods are required. The numerical methods transform the original partial 

differential problems into a system of algebraic equations, and the forward modeling 

notates the numerical modeling of the full seismic wavefield. The primary purpose of the 

forward modeling has been the reduction of the numerical dispersion errors and 

represent the realistic reflections, refractions, scattering with attenuation to simulate the 

accurate elastic dynamics in heterogeneous anisotropic media (Aki & Richards, 2002). 

The partial differential equation of the seismic wavefield modeling in time-

domain is as below: 

𝑀(𝑥)
𝑑2𝑢(𝑥,𝑡)

𝑑𝑡2
= 𝐴(𝑥)𝑢(𝑥, 𝑡) + 𝑠(𝑥, 𝑡)    (5.1) 
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where 𝑀 and 𝐴 are the mass matrix and the stiffness matrix (Marfurt, 1984). The source 

term is denoted by 𝑠(𝑥, 𝑡) and the seismic wave field is 𝑢(𝑥, 𝑡). In the acoustic forward 

modeling, which considers only P-wave velocity, the wavefield represents the pressure. 

This should be replaced into horizontal and vertical particle velocities or displacements 

for elastic forward modeling, which requires considering both P- and S-wave velocities 

simultaneously. The 𝑡 represents the time, and 𝑥 does the spatial coordinates. Equation is 

solved with an explicit time-marching algorithm that the value of the wavefield at time 

step (𝑛 + 1) is inferred from the value at the previous time step (𝑛) for each spatial 

position. Implicit time marching algorithms are not recommended because they require 

expensive computational memory (Virieux & Operto, 2009). 

The equation can be transformed into the frequency domain, and the wave 

equation reduces to a system of the linear equation: 

𝐵(𝑥,𝑤)𝑢(𝑥, 𝑤) = 𝑠(𝑥, 𝑤)     (5.2) 

The 𝑠(𝑥, 𝑤) is the source term, 𝐵(𝑥,𝑤) is the impedance matrix, and 𝑢(𝑥, 𝑤) is the 

seismic wavefield as the solution of this equation with the angular frequency (𝑤) 

(Marfurt, 1984). The impedance matrix has a symmetric pattern, but it becomes non-

symmetric when we apply the absorbing boundary conditions(Hustedt, Operto, & 

Virieux, 2004). Thus, the equation can be solved by decomposition of the impedance 

matrix into lower and upper (𝐿𝑈) triangular decomposition. This decomposition leads 

equation to direct solver approach whose advantage is the efficient solving for multiple 

sources using forward and backward substitutions. The frequency domain forward 

modeling approach has been widely used for efficient 2-D modeling (R. G. Pratt, 1990, 
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1999; R Gerhard Pratt, Shin, & Hick, 1998; R. G. Pratt & Shipp, 1999; R. G. Pratt & 

Worthington, 1988; Sirgue & Pratt, 2004), but its scalability for large scale 3-D 

problems is limited because of the time and memory complexities of 𝐿𝑈 factorization 

(Operto et al., 2007). 

For the seismic forward modeling, the time domain is the most appropriate to 

identify the specific type of arriving signals, whereas the frequency domain is better to 

select only one or a few frequencies for waveform inversion (Virieux & Operto, 2009). 

Even though the frequency domain is efficient to solve the wave equation, the useful 

time windowing based on wavefield snapshots cannot be applied in frequency domain 

forward modeling, because only a few frequencies are modeled at a time. Since seismic 

waves in the real soil and rock media always convert to other phases, for example, P- to 

S-waves or S- to P-waves, arriving signal identification in time-domain is essential for 

the correct signal interpretation. Consequently, we need to consider both time and 

frequency domains on how to apply our forward modeling appropriately for each 

problem with different conditions. 

For the accurate elastic wavefield generation in the time domain, the finite-

difference method (FDM) has been used as the most common and popular approach to 

simulate seismic wave propagation. The FDM belongs to grid-point methods, whose 

computational domain is covered by space-time grids, and each function has its values at 

grid points. A derivative of wave equations is approximated and uses the values of a 

specified set of grid points (Moczo, Kristeck, & Halada, 2004). FDM represents the 

spatial domain with uniformly structured grids. This approach was suitable for the 
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acoustic wave equation and applied since the early beginning of seismology (Kelly & 

Alford, 1973; Kelly, Ward, Treitel, & Alford, 1976; Marfurt, 1985). The application 

based on FDM for wave equations allows the direct and accurate modeling through the 

complex and heterogeneous geological structures, and it is the most widely used 

approach for seismic modeling until now. 

One of the big steps for making FDM be widely used is the staggered grid finite-

difference method (SG-FDM) (Virieux, 1986). Conventional grid, which all 

displacement and body-force components are located at each spatial grid point, is the 

most natural choice of the FDM. The particle motion of seismic wave propagation on the 

grids represents the stress-strain relation based on Hooke’s law and constitutive law in 

continuum mechanics with initial and boundary conditions (Moczo, Kristek, & 

Bystricky, 2000). However, the displacement on the conventional grids had problems 

with instabilities and grid dispersion error with high Poisson’s ratio. However, with the 

staggered grid, different components of one physical parameter are defined at different 

staggered points. Thus, all displacement components share the same grid position, but 

each stress-tensor component has its own grid position. The staggered grid scheme 

solved the numerical instabilities due to the vertical derivatives over the free surface and 

it was also appropriate to handle the acoustic and elastic material coupling problem at 

the fluid-solid interfaces. The staggered grid was induced for earthquake rupture 

dynamic modeling first (Madariaga, 1976), and Virieux (1986) made major progress in 

the seismic forward modeling. Advanced study, the 4th order staggered grid FDM, is 

also introduced by (Levander, 1988) and this scheme showed less memory requirement 
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of four times for 2-D and eight times for 3-D modeling than traditional SG-FDM. Thus, 

this 4th order SG-FDM has become the dominant type of the forward model schemes in 

the large scale seismic wave propagation models (Graves, 1996; Y. Liu & Sen, 2009a, 

2009b; Moczo, Robertsson, & Eisner, 2007). 

The FDM has many advantages in practical exploration seismology, but many 

users worried about the inherent limitations of this method. Even though FDM is 

relatively easy for implementation and it requires relatively less expensive 

computational resources, FDM suffers from grid flexibility, so the implementation of 

irregular boundary conditions is challenging problem (Moczo et al., 2004). Since FDM 

relies on uniformly structured grids, representation of complex geological structures 

such as structural faults, salt dome, or complex surface topography for land seismic 

cannot be correct, and FDM still requires much more elaboration. 

The first step of the finite-element method (FEM) dates back to the beginning of 

the 20th century with remarkable publications (Galerkin, 1923; Ritz, 1909). This method 

is also known as the method of weighted residuals (Clough, 1980), and the first naming 

as finite-element was applied by Turner, Clough, Martin, and Topp (1956). The FEM 

has been developed as the most frequently used technique for many engineering 

problems to solve the partial differential equations. In structural mechanics, scalar wave 

propagation was implemented by using FEM (Kallivokas & Lee, 2004b), and this 

approach extended into 3-dimensional solutions  (Kallivokas & Lee, 2004a). The 

perfectly matched layers (PML) as absorbing boundary conditions are also applied on it 

(Fathi, Poursartip, & Kallivokas, 2015; Kang & Kallivokas, 2010) and this application 
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has been used for geotechnical site investigation  (Fathi, Poursartip, Stokoe, & 

Kallivokas, 2016; Kallivokas et al., 2013; Pakravan, Kang, Newtson, & Kallivokas, 

2014). 

FEM, which based on the interchanging between global and local coordinate 

system, has a strong advantage to solve the waveform equations on the unstructured 

grids, compared with the FDM (Marfurt, 1984). Curved layer interfaces and free surface 

boundary are very important for seismology, so the FEM is applied to an early time 

(Marfurt, 1977) and developed to improve the accuracy in elastic media with frequency-

domain solutions (Marfurt, 1985). However, FEM requires a more expensive cost of 

computational resources than FDM to implement the complex assembling of global 

matrices, and FEM approach is recognized as a quite inefficient method (Gao, Chung, 

Gibson, Fu, & Efendiev, 2015). Thus, a lot of large scale geophysical waveform 

projects, especially in the oil and gas industry, are developed with FDM, and FEM has 

rarely been used in contrast to FDM (Virieux, Calandra, & Plessix, 2011). 

The spectral finite-element method (SEM) belongs to the continuous Galerkin 

formulation of FEM (Schuberth, 2003). The basis functions are piecewise continuous 

Lagrange polynomial within the variable nodes. Therefore, the seismic wavefield 

solution is supposed to be smoothly continuous. The difference between SEM and the 

traditional CG-FEM is the choice of appropriate integration points in calculating the 

mass and stiffness matrices on the local elements. Traditional CG-FEM uses Gaussian 

integration points; otherwise, SEM uses the Gauss-Lobatto-Legendre (GLL) integration 
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points, which makes the strictly diagonal global mass matrix and be efficient to 

calculate. 

The SEM was first introduced to the field of computational fluid dynamics 

(Patera, 1984). This method is based on a weak formulation of the wave equation, just 

like other FEM approaches, and this SEM approach was first used in geophysics in the 

1990s (Priolo, Carcione, & Seriani, 1994; Seriani & Priolo, 1994). Based on these 

studies, Komatitsch and Vilotte (1998) developed SEM as an efficient tool for accurate 

seismic wave simulation. Many numerical validation for complex problems such as 

mesh refinement in 2-D and 3-D problems (Komatitsch & Tromp, 1999), fluid-solid 

interface (Komatitsch, Barnes, & Tromp, 2000), global seismology (Komatitsch & 

Tromp, 2002a, 2002b), perfectly matched layer (PML) as absorbing boundary condition 

(Komatitsch & Tromp, 2003). Since the SEM application for seismology was introduced 

in a mature level (Komatitsch, Tsuboi, & Tromp, 2005), the grid dispersion and stability 

criteria for SEM were proved (J. D. De Basabe & Sen, 2007; T. Liu, Sen, Hu, De 

Basabe, & Li, 2012). The research groups in seismology keep developing this SEM 

approach and many practical research based on SEM with real site information were 

published (Casarotti et al., 2008; S. J. Lee et al., 2008; Luo, Tromp, Denel, & Calandra, 

2013; Tape, Liu, Maggi, & Tromp, 2010; Tromp, Komatitsch, & Liu, 2008). 

The efficiency of Continuous Galerkin FEM (CG-FEM) for waveform modeling 

is limited by the continuity requirements in a medium when high contrasts of material 

properties exist. Furthermore, CG-FEM is difficult to apply to mesh discretization, 

which includes non-conforming element boundaries. These problems are naturally 
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solved with the discontinuous Galerkin finite-element method (DG-FEM), which allows 

discontinuous solutions across the cell boundaries. This approach was first proposed for 

the neutron transport equation (Reed & Hill, 1973), and applied to wave propagation 

solutions since the 2000s (Chung & Engquist, 2006, 2009; Grote, Schneebeli, & 

Schotzau, 2006; Riviere & Wheeler, 2003). DG-FEM approaches have the advantage 

that the global mass matrix is the block diagonal and dramatically reduce computational 

costs. Besides, the parallelization of the algorithm, which is difficult with CG-FEM due 

to the overlapping in the supports of element nodes, becomes easier. Many advanced 

studies are published recently to maximize these attractive advantages of DG-FEM 

(Chan, Chung, & Cohen, 2013; Chung, Lam, & Qian, 2015; Wilcox, Stadler, Burstedde, 

& Ghattas, 2010; Ye, de Hoop, Petrovitch, Pyrak-Nolte, & Wilcox, 2016). However, the 

discussions about the efficiency and accuracy of this DG-FEM is still ongoing compared 

with another algorithm, multiscale finite-element method. Multiscale finite-element 

method (MsFEM) is also proposed for the elliptic problems in porous media (Hou & 

Wu, 1997). In this approach, the partial differential equation is solved on an only course 

mesh instead of fine mesh. The course mesh represents the fine heterogeneous material 

properties on a fine scale with multiscale basis functions (Efendiev & Hou, 2009). The 

idea of multiscale basis functions was applied to wave propagation modeling based on 

pressure velocity mixed formation for the acoustic wavefield (R. L. Gibson, Gao, Chung, 

& Efendiev, 2014). The improved algorithm with better stability was developed as a 

generalized multiscale finite-element method (GMsFEM) (Efendiev, Galvis, & Hou, 

2013) and applied to elastic wavefield modeling (Chung, Efendiev, & Leung, 2014). The 
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multiscale basis functions are built directly from the smallest eigenvalues and efficiently 

be able to relate the wavefield with a coarse mesh to the finer scale heterogeneities (Gao, 

Fu, Gibson, Chung, & Efendiev, 2015). 

Since the seismic forward modeling is one of the key points for better seismic 

imaging and inversion methods, we need to compare them and be aware of the strength 

and weakness of each algorithm. Three different approaches, SEM, DG-FEM, and FDM, 

for acoustic and elastic wave propagation, were reviewed to compare their accuracy and 

efficiency (Jonas D De Basabe & Sen, 2009). FEM approaches are suitable for 

accurately approximating waves with free surface and fluid-solid boundary conditions. 

However, they are still considerably slower than the FDM because FDM uses only a few 

of the surrounding nodes. J. D. De Basabe and Sen (2015) developed their previous 

research more complex fluid-solid interface conditions. They found that classical FDM 

and low-order FEM have a significant amount of grid dispersion error in the fluid region, 

which renders them impractical to use for offshore research. On the other hand, SG-

FDM and SEM show accurate results for the body waves in both fluid and solid regions. 

Even though lots of advanced numerical approaches were developed, Virieux et 

al. (2011) summarized that finite-difference approaches with fourth-order compact 

schemes with second-order time integration show the strongest advantages in a marine 

environment. Because FDM, working with relatively smooth earth parameters at the 

wavelength scale, is often sufficient in velocity model building with acoustic P-waves. 

However, with the regaining of the importance of land seismic exploration, they 

concluded that the SEM might become crucial to better model the seismic wave 
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propagation because it has reached a mature level of precise modeling including surface 

waves and around complex interfaces. 

 

5.3.2. Spectral Finite-Element Method (SEM) 

We decided to use the SEM algorithm for near-surface seismic FWI because 

SEM has two main benefits for seismic forward modeling. First, SEM can handle 

complex geometries with great accuracy. Although the traditional FEM has obvious 

advantages based on flexible meshes for complex geological structures, its accuracy was 

lacking (Komatitsch & Vilotte, 1998). Otherwise, the pseudo-spectral method shows 

high accuracy, but cannot handle the complex geometries. SEM is a combined method 

between FEM and pseudo-spectral method to obtain both advantages; flexibility and 

accuracy (Komatitsch et al., 2005). Second, SEM is a much efficient algorithm than the 

FEM for the forward modeling with high-order basis functions. Traditional high-order 

FEM, which uses Gauss-Legendre integration, have suffered from expensive 

computational costs. However, the discretized elements in SEM is based on high-degree 

Lagrange interpolation, and integration over each elements is accomplished based on the 

Gauss-Lobatto-Legendre integration (GLL) rule (Komatitsch & Tromp, 1999). This 

approach leads to an exactly diagonal mass matrix, and the algorithm can be drastically 

simplified in matrix inversion calculation. 

SEM is an efficient algorithm than the FEM for the seismic forward modeling 

with high-order basis functions. Traditional high-order FEM, which uses Gauss-

Legendre integration, have suffered from expensive computational costs. However, the 
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discretized elements in SEM is based on high-degree Lagrange interpolation, and 

integration over each elements is accomplished based on the Gauss-Lobatto-Legendre 

integration (GLL) rule (Komatitsch & Tromp, 1999). This approach leads to an exactly 

diagonal mass matrix, and the algorithm can be simplified in matrix inversion 

calculation. 

Furthermore, these GLL points help numerical modeling to apply accurate 

boundary conditions. For the elastic seismic modeling, the free surface, the top boundary 

of the earth model, is important to generate strong surface waves, so this SEM method is 

appropriate for the near-surface seismic modeling with irregular topography. 

Furthermore, the other boundaries on the left, right, and bottom are assigned as Perfect 

Match Layers (PML), the artificial absorbing boundaries to avoid using a huge mesh 

(Komatitsch & Tromp, 2003). Figure 5.1 shows an example of the two-dimensional 

mesh in vertical cross-section with irregular topography, surrounded by PMLs with the 

source (×) & receivers (◊) on the irregular free surface. All the elements with different 

colors indicate the independent random variables in the FWI. 

 

Figure 5.1. Two-dimensional mesh with irregular free surface 
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Details of the elastic seismic wavefield in SEM is described well in Komatitsch 

et al. (2005), and the fundamental governing partial differential equations can be defined 

as below equations in both velocity and stress fields in the 2-D spatial domain. 

𝑣�̇� =
1

𝜌
(
𝜕𝜎𝑥𝑥

𝜕𝑥
+
𝜕𝜎𝑥𝑧

𝜕𝑧
) + 𝑓𝑥    (5.3.a) 

𝑣�̇� =
1

𝜌
(
𝜕𝜎𝑥𝑧

𝜕𝑥
+
𝜕𝜎𝑧𝑧

𝜕𝑧
) + 𝑓𝑧    (5.3.b) 

𝜎𝑥𝑥̇ = (𝜆 + 2𝜇)
𝜕𝑣𝑥

𝜕𝑥
+ 𝜆

𝜕𝑣𝑧

𝜕𝑧
    (5.3.c) 

𝜎𝑧𝑧̇ = (𝜆 + 2𝜇)
𝜕𝑣𝑧

𝜕𝑧
+ 𝜆

𝜕𝑣𝑥

𝜕𝑥
    (5.3.d) 

𝜎𝑥𝑧̇ = 𝜇 (
𝜕𝑣𝑥

𝜕𝑧
+
𝜕𝑣𝑧

𝜕𝑥
)     (5.3.e) 

where 𝑣, 𝑓, 𝜎, and 𝜌 represent the particle velocity vector, body force vector, stress 

tensor, and density of materials, respectively. The 𝜆 and 𝜇 are the lame parameters, 

important to calculate the elastic parameters in the seismic forward modeling, and 

important free surface boundary condition is implemented as the stresses with vertical 

component (𝜎𝑧𝑧, 𝜎𝑥𝑧) on the irregular top surface become to zero. We used 

SPECFEM2D package for elastic near-surface seismic forward modeling based on SEM, 

and the validations of this package were shown from theoretical case studies 

(Komatitsch et al., 2000; Komatitsch & Tromp, 2002a). 

 

5.3.3. Mesh partitioning by supervised classification 

We need to define the modeling parameters in discretized mesh to implement 

forward modeling. However, fine-scale mesh, whose element size is less than seismic 

resolution, cannot guarantee to find out subsurface layers. Thus, we applied supervised 
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classification for the mesh partitioning to make a group of elements as geologic strata. 

The classification is a technique, which has been often used for the quantitative analysis 

of remote sensing image data, to classify the pixel data into categorized groups with 

unique values (Richards, 2013). For example, if all the discretized elements in Figure 5.1 

had a homogeneous soil property, then this model is defined as one group. To increase 

the number of soil groups, we need to spread random seeds in the 2-D discretized mesh. 

Figure 5.2 shows an example of mesh partitioning from the random seeds spreading. The 

location with horizontal and vertical coordinates of the seeds are random, but each seed 

contains a unique value for the classification. Based on the locations of those random 

seeds with a unique value, supervised classification distributes those unique values of 

seeds to the entire 2-D spatial domain. Based on the coordinates of those random seeds, 

the classification method automatically generate the interfaces between different groups 

and defined every discretized element in the whole mesh.  

This mesh partitioning is important to support the rj-MCMC method, and it has 

been studied as Bayesian Partitioning modelling (D. G. T. Denison, Adams, Holmes, & 

Hand, 2002). The main idea of this method is to use the Voronoi diagram. This is a 

partitioning of a plane into sub-regions based on distance to points in a specific subset of 

the plane, and also called as a Voronoi tessellation or decomposition. The set of points 

can be defined by rj-MCMC approach and applied for geophysical two-dimensional 

imaging studies (T Bodin et al., 2012; S Esmailzadeh, Medina-Cetina, Kang, & 

Kallivokas, 2015b). However, this approach was clear to apply for tetrahedral mesh 

elements, but the calculation with quadrilateral mesh elements takes much more 
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computational time. Because this method has to make the projection from tetrahedral 

mesh to quadrilateral mesh, and also requires the information outside of the mesh 

domain to draw the polygons of the Voronoi cells. On the other hand, the supervised 

classification from deep learning package in MATLAB library showed fast and accurate 

mesh partitioning, though we cannot explain everything inside the machine learning 

algorithm. 

 

Figure 5.2. Mesh partitioning by supervised classification with random seed points 

on discretized 2-D mesh 

 

5.3.4. Reversible jump MCMC inversion 

Since the number of soil groups is unknown for the inverse modeling, we applied 

the reversible jump Markov chain Monte Carlo (rj-MCMC) inversion algorithm to use 

the dimension of modeling parameters as a random variable. This rj-MCMC maximizes 

the Probability Density Function (PDF) of the posterior, denoted as 𝑝(𝜽|𝒅). 

𝒑(𝜽|𝒅) =
𝒑(𝒅|𝜽)𝒑(𝜽)

𝒑(𝒅)
    (5.4) 
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The 𝜽 represent the modeling parameter, and d is the observed data. The 

likelihood function (𝑝(𝒅|𝜽)) quantifies the PDF based on the residual between the 

observed data and predicted data, where 𝐺(𝜽) is the elastic seismic forward modeling 

based on SEM algorithm and 𝐶𝑑 is the covariance matrix. 

𝑝(𝒅|𝜽) =
1

[(2𝜋)𝑛|𝐶𝑑|]
1
2

× exp [−
1

2
(𝐺(𝜽) − 𝒅)𝑇𝐶𝑑

−1(𝐺(𝜽) − 𝒅)] (5.5) 

 

 We applied two Bayesian priors to control this inverse modeling. The first is the 

range of soil material property. Since we can define the minimum and maximum value 

of soil properties from 1-D in-situ data, we apply uniform distribution for the PDF of 

prior. This is important to control the stability condition in seismic forward modeling, 

and we will explain this in the next forward modeling chapter. The second is a 

geological prior that we assumed geologic structure has a high correlation in the only 

horizontal direction. Most of the near-surface soil layers don’t have a history of the 

tectonic force, so the formation of the layer shows a horizontal layered model. That 

means the difference of material property in the horizontal direction is about to zero, and 

we applied Gaussian distribution to this feature as the equation. 

The key point in this study is the rj-MCMC method defines the modeling dimension 

in random and spreads random seeds with unique values inside the irregular mesh. Based 

on the positions of the seeds, classification defines the partitions in mesh and allocates 

the modeling parameters on every element for SEM forward modeling. This model 

selection process randomly comes from one of four proposals below to generate a new 

candidate modeling parameter (𝜽′). 
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 BIRTH: randomly pick a new seeding point in 2-d mesh to classify as a new 

group before new partitioning. 

 DEATH: Randomly pick two of the current groups and merge them into one. The 

new location of random seed become the center of the previous two seeds. 

 MOVE: Randomly pick one of the current groups and change the location of the 

seeding point in the 2-d mesh. The stochastic movement of the new location 

follows Gaussian distribution; 𝑥′~𝑁(𝑥, 1) & 𝑧′~𝑁(𝑧, 1). 

 PERTURB: Randomly pick one of the current groups and change the material 

property in a fixed location. The stochastic movement of the new material flows 

Gaussian distribution; 𝛽′~𝑁(𝛽, 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ∗ 𝛽) 

 

5.4. Modeling of Seismic Wavefield 

5.4.1. Dataset from GeoPark in Florida 

Our numerical modeling has been proved with a synthetic shallow earth model 

whose material properties are the same as the soil profile data from GeoPark in Tampa, 

West Florida. Many geophysical studies have shown that the Florida state may have 

possibly the most sinkhole areas because of the statewide dominance of Karst geology 

(Kruse, Grasmueck, Weiss, & Viggiano, 2006). Various geologic, geotechnical, and 

geophysical investigations have been implemented to compile the cross-section of the 

buried sinkhole area (Carpenter, Doll, & Kaufmann, 1998; Stewart & Parker, 1991).  

The range of S-wave velocity (𝑉𝑆) in shallow depth was defined from 150 to 450 

m/s, and we assumed the P-wave velocity (𝑉𝑃) was double of 𝑉𝑆 with constant 2 g/cc 
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density. All the seismic acquisition parameters in this numerical modeling follow the 

MASW field survey system that uses 24 channel land streamers spaced every 1.2 meters. 

Since the seismic source from a sledgehammer generates low-frequency energy, 15 Hz 

of vertical point stress was used as the seismic source on the free surface. 

Figure 5.3 shows a 2-D soil vertical profile from the GeoPark field MASW 

survey. This multichannel SASW approach uses the dispersion of surface waves in the 

frequency domain (Figure 5.3-a) and finds out the dominant wave mode to figure out the 

S-wave velocity along with the depth (Figure 5.3-b). The survey with multiple shots 

generate the 2-D cross-section of the subsurface map and shows an abrupt change at a 

depth of 25 ft. Based on the geometry and properties from this analysis, we generated 

our synthetic shallow soil model for the numerical experiments. 
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Figure 5.3. SASW analysis of GeoPark field data 

 

5.4.2. Parameter analysis in geomechanics 

When we apply the elastic seismic inverse modeling, we can convert the 

geophysical parameters to the geomechanical parameters. Lame parameters, denoted by 

𝜆 and 𝜇, are two material dependent quantities derived from strain-stress relationships in 

continuum mechanics. If we use the homogeneous and isotropic materials, Lame 

parameters define the Hookes’s law; 

𝜎 = 2𝜇𝜖 + 𝜆 𝑡𝑟(𝜖)𝐼    (5.6) 

 



 

113 

 

where 𝜎, 𝜖, 𝐼 are the stress, strain tensor, and identity matrix, respectively. Since this 

stress was defined with P-wave velocity (𝑉𝑃), S-wave velocity (𝑉𝑆) in previous soil 

dynamics with FEM, the relationship between the Lame parameters and geophysical 

parameters can be defined as below with the material density (𝜌). 

𝑉𝑃 = √
𝜆+2𝜇

𝜌
     (5.7.a) 

𝑉𝑆 = √
𝜇
𝜌⁄      (5.7.b) 

𝜆 = 𝜌(𝑉𝑃
2 − 2𝑉𝑆

2)    (5.7.c) 

𝜇 = 𝜌𝑉𝑆
2     (5.7.d) 

 

Consequently, we can define the geomechanical parameters; Poisson’s ratio (𝑣), 

Bulk modulus (𝐾), and Elastic modulus (𝐸), which we need to infer from the 

geophysical seismic non-destructive surveys data before the construction projects. 

𝑣 =
𝜆

2(𝜆+𝜇)
=

𝑉𝑃
2−2𝑉𝑆

2

2(𝑉𝑃
2−𝑉𝑆

2)
     (5.8.a) 

𝐾 = 𝜆 +
2

3
𝜇 = 𝜌 (𝑉𝑃

2 −
4

3
𝑉𝑆
2)    (5.8.b) 

𝐸 =
𝜇(3𝜆+2𝜇)

𝜆+𝜇
=
𝜌𝑉𝑆

2(3𝑉𝑃
2−4𝑉𝑆

2)

𝑉𝑃
2−𝑉𝑆

2     (5.8.c) 

  

Based on those equations above, our synthetic dataset can be used to estimate the 

geomechanical properties in the shallow layered soil model (Table 5.1). Since the ratio 

of 𝑉𝑃 𝑉𝑆⁄  is 2, the Poisson’s ratio become 0.33, which is similar to the realistic field data 
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of shallow land soils. The elastic Young’s modulus of soil represents weathered soil, and 

the bedrock can be estimated as a stiff rock. 

 

Table 5.1. Converting parameters from geophysics to geomechanics 

 Parameters soil bedrock 

Geophysics 

Density [kg/m3] 2000 2000 

P-wave velocity [m/s] 400 800 

S-wave velocity [m/s] 200 400 

Continuum 

mechanics 

Lame’s 1st parameter [MPa] 160 640 

Lame’s 2nd parameter [MPa] 80 320 

Geomechanics 

Poisson’s ratio 0.33 0.33 

Bulk modulus [MPa] 240 960 

Young’s modulus [MPa] 216 864 

 

5.4.3. Parameter analysis for numerical computation 

Based on the range of target material properties, numerical forward modeling to 

generate seismic wavefield requires a specific setup for accurate, stable, and efficient 

computation.  First of all, all of the numerical solvers for seismic wave modeling based 

on partial differential equations should follow an important computational rule to solve 

the accurate wavefield. Otherwise, the results would be corrupted by artificial errors, 

which is called grid dispersion. The grid dispersion is a numerical noise related to grid 

spacing, which has a detrimental effect on accuracy (J. D. De Basabe & Sen, 2007). It 
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occurs because the actual velocity of high-frequency waves in the grid is different from 

the true velocity, and it is dependent on the grid spacing and the size of the time step for 

the numerical seismic wavefield modeling. We need to avoid this grid dispersion error, 

and the first step should be the decision of the maximum spatial grid point distance 

(discretized element size) for the correct sampling of the wavefield. The maximum size 

of the element should be smaller than the wavelength over the required element number 

(𝑛𝑒) based on the order of basis function in the numerical algorithm. When we choose 

the 4th order of basis function in SEM, then the number of elements in one wavelength 

should be larger than five (Komatitsch et al., 2005). Since the minimum wavelength is 

the minimum S-wave velocity divided by the maximum dominant frequency, the 

minimum wavelength is about 200/15 = 13.3 meters. Thus, the maximum grid spacing 

becomes 13.3/5 = 2.6 meters, and we chose 2.5 meters as our element size of the 2-D 

mesh generation in both horizontal and vertical directions. 

𝑑ℎ ≤
𝜆𝑚𝑖𝑛

𝑛𝑒
=

min(𝑉𝑠)

𝑛𝑒×max(𝑓)
    (5.9) 

The discretization in time domain also has to satisfy the sampling criterion to 

ensure the numerical modeling in stable condition. Since the wave propagates in the 

discretized mesh in spatial domain with the chosen element size (𝑑ℎ), the time step (𝑑𝑡) 

should be less than the time to travel between two adjacent grid points for the waves. In 

mathematically, this limit is called Courant-Friedrichs-Lewy (CFL) condition (Courant, 

Friedrichs, & Lewy, 1967), and this is an essential condition while solving any partial 

differential equations with numerical approaches. The Courant number (𝐶) and the 

maximum size of the time step (𝑑𝑡) can be calculated from the CFL condition. We 



 

116 

 

already decided to use grid point distance (𝑑ℎ) as 2.5 meters, and the maximum range of 

P-wave velocity is assumed as 800 m/s. From the maximum Courant number for the 

elastic seismic modeling in SEM, the maximum suggested value of stable time step (𝑑𝑡) 

becomes about 0.259 ms. We chose 0.2 ms as the time step for the seismic forward 

modeling, so the maximum CFL stability condition becomes 0.386, which should be 

lower than 0.5.  

𝐶 =
max(𝑉𝑃)∗𝑑𝑡

𝑑ℎ
≤ 𝐶𝑚𝑎𝑥    (5.10.a) 

𝑑𝑡 ≤
𝑑ℎ

𝐶𝑚𝑎𝑥×max(𝑉𝑃)
     (5.10.b) 

 Based on the chosen time step, we need to define the total number of time 

iteration for one cycle of seismic forward modeling. The bottom depth of the spatial 

domain is 25 meters, and the distance between the source and the farthest boundary on 

the right side is about 50 meters. Thus, the diagonal distance of this spatial mesh is about 

55 meters, and the maximum travel distance for reflected waves for going down and 

back up is about 80 meters. This total travel distance over the minimum range of S-wave 

velocity (150 m/s) becomes the minimum required time length (530 ms). Furthermore, 

the numerical delay time when we use the Ricker wavelet with 15 Hz is inverse of the 

dominant frequency, and it becomes about 70 ms of additional time length. Thus, we 

should generate the wavefield during at least 600 ms with 0.2 ms time steps, and the 

minimum required the number of time iteration for seismic modeling becomes 3000. We 

chose 4000-time iterations for one cycle of the forward modeling to capture other 

multiple reflections inside the shallow anomalies. 
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 For the efficient forward modeling with this demanding time iteration, we 

applied artificial absorbing boundary condition to reduce the total number of elements in 

the mesh. Perfectly matched layer (PML) is a boundary condition which has the 

remarkable property of having a zero reflection coefficient for all angles of incidence 

and frequencies before discretization (Komatitsch & Tromp, 2003). For the land seismic 

data acquisition, the top boundary is set up as the free surface, which means the interface 

between the elastic medium and air to vanish all stresses in the normal direction. 

However, all other left, right, and bottom side of boundaries has PMLs to make the 

model as a semi-finite spatial 2-D model. The PMLs doesn’t show reflection when the 

wave equation is solved by a coordinate stretch of the wave equations in the frequency 

domain and creating exponential decaying the amplitude of wave solutions (Komatitsch 

& Martin, 2007). This artificial boundary condition makes the spatial mesh as small as 

possible to save the computational resources for the wave modeling, and this efficient 

artificial boundary condition has been widely used for seismic wavefield simulations 

(Kang & Kallivokas, 2010; Pakravan et al., 2014). 

 

5.4.4. Effect of irregular topography 

Based on our chosen modeling parameters, we generated two synthetic 

seismograms by SEM forward modeling from different 2-D soil models to verify the 

effect of the irregular free surface before the stochastic FWI. One soil model has a flat 

free-surface (Figure 5.4-a), and the other has a smooth irregular free-surface (Figure 5.4-

b). All other conditions; the property of shallow soil layer, the property of deep bedrock, 
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the shape of bedrock interface, are the same in those two synthetic soil models except 

the topography. One single seismic source (x) is used on the left side of the domain 

surface, and receivers (◊) measure the propagation of seismic energy from left to right. 

Even though the elevation of smooth free-surface was less than one-meter, Figure 5.4-c 

shows the modeling error from the wrong assumption of flat topography. The red traces 

from the irregular surface model were supposed to be the same as the blue traces from a 

flat surface model, so the difference between them causes modeling error in near-surface 

seismic FWI. Thus, near-surface FWI should be able to consider the effect of topography 

to get accurate results. 

 

Figure 5.4. Soil models with flat (a) & irregular (b) free surface, and the modeling 

error of the seismogram due to the topography effect 
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5.5. Numerical Experiments 

5.5.1. Soil model with a flat free-surface 

Based on the SEM forward model, which generates an accurate wavefield in 

shallow soil media, we decided to verify the Bayesian inversion method first on the 

simple soil model without the topography condition. Our target model is a two-layered 

soil model (Figure 5.5-a), but the initial model is a simple homogeneous soil (Figure 5.5-

b). The condition of source and receivers are the same to the previous Figure 5.4, and the 

seismogram signal from one of the receivers (the most far from the source location) from 

two soil models are compared in Figure 5.5-c. The seismogram from the initial 

homogeneous soil model shows only direct P and S waves. However, the observed 

signals from the layered target soil model have direct waves and refraction (P-P’) and 

reflection (P-P*) waves from the subsurface bedrock. Those signals in multi-channel 

acquisition system become complex in near-surface wavefield. Even though the 

interpretation of those signals is challenging, the benefit of FWI method is that this 

approach uses the signals as observed data itself for the iterative inverse modeling 

without complex interpretation. 



 

120 

 

 

Figure 5.5. (a) unknown target model, (b) initial guess model, and (c) seismograms 

from (a) and (b) 

 

Figure 5.6 shows the process of Bayesian FWI method. Based on the signal 

difference in seismograms, the rj-MCMC method randomly changes the dimension of 

the inverse modeling to increase or decrease the number of subdomains in the mesh. Not 

only the number of subdomains but also the locations are random, so mesh partitioning 

in this stochastic process eventually converge to the same geometry as the target layered 
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soil model. The material properties inside those partitioned subdomains are randomly 

changed based on the comparison of seismic signal amplitudes. As the number of 

accepted samples increasing, the predicted soil model shows the values of shallow soil 

layer (blue), and bedrock layer (red) as similar to the target model. 

 

Figure 5.6. Stochastic process in the rj-MCMC method. Random seeds (white) 

define subdomains with random material properties. 

 

The iterative sampling from rj-MCMC method shows the decrease of the residual 

error between observed and predicted data (Figure 5.7). Since the dimension of model 

parameters are in random, most of the rj-MCMC approaches use L2-norm calculation of 

this error to decide the burn-in point instead of the mean and standard deviation of 
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random parameters. This L2-norm calculation quantifies Euclidean distance between 

two different vector data, and the amount of the error converges after the 200,000 

sampling point. 

 

Figure 5.7. Burn-in point from the residual error estimation of simulation with a 

simple flat soil model 

 

From the 200,000 samples after this burn-in point, we measured the mean and 

standard deviation of the posterior distribution on every discretized 2-dimensional mesh 

elements. The mean of parameters show the final results of the estimated soil model 

(Figure 5.8-a), and the standard deviation quantifies the uncertainty of this inversion 

result (Figure 5.8-b). From these results, we can find that this inversion method shows 

three features to discuss more. 

 The estimated results show the accurate soil properties in-depth, and it can show 

the location of subsurface bedrock. 
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 Since the seismic forward modeling uses absorbing boundary conditions; PMLs 

on the left, right, and bottom edges of the soil model, the results show high 

uncertainty inside the PMLs. 

 The location of the seismic source was on the left side of the soil model. Multi-

channel receivers measure lots of signals from left, but they couldn’t have 

enough signals from the right side. Thus, the results show less uncertainty near 

the seismic source, and the uncertainty is propagated and increasing along the 

distance from the source.  

 

Figure 5.8. Mean (a) and standard deviation (b) of the posterior distribution from 

the inversion with a flat free surface model 

 



 

124 

 

5.5.2. Soil model with an irregular free-surface 

After the verification of the simulation with a simple model, we implemented the 

same inversion with an irregular free-surface model to apply the topography condition. 

The topography follows the smooth curved shape in the previous Figure 5.1. Since the 

elevation of topography on the ground surface is easy to measure, we assumed that we 

already know the information of topography as our priors in the inverse modeling. All 

other conditions in soil model are the same as the previous model (Figure 5.5-a), and the 

process of stochastic sampling shows very similar steps to the previous simulation 

without topography effects. 

 

Figure 5.9. Mean (a) and standard deviation (b) of the posteriors from the inversion 

with the irregular free surface model (no visualization of the irregular surface) 
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 The final result (Figure 5.9-a) is similar to the previous inversion, but we can see 

that the estimation inside the PML boundary is not accurate enough. Because of the high 

uncertainty in those boundary elements, the uncertainty propagation from the seismic 

source is also difficult to find out (Figure 5.9-b). This simulation took 200,000 samples 

and chose 100,000 as our burn-in point, as same as the previous inversion in Figure 5.8. 

The only difference between them was applying the irregular shape to the free-surface, 

and the observed data from the seismogram becomes more complex due to the 

topography. In short, this simulation shows that the Bayesian FWI approach with 

classification method can estimate the accurate location of bedrock layer and material 

properties under the irregular topography. However, the accurate estimation requires 

more samples as the shape of free-surface becomes more complex. 

 

5.6. Discussion: Inversion with Ignored Topography 

As we described in the introduction part, the main purpose of this study is to 

show the effect of modeling errors due to the irregular topography in geophysical 

seismic inversion method for the accurate near-surface site characterization of elastic 

soil properties. From the previous two inverse modelings, we proved that this new 

approach of Bayesian FWI could reconstruct the accurate soil profile, and the complex 

geometry of the topography model requires more enough number of sampling. In our 3rd 

case study, we generated the observed data with irregular the topography model (Figure 

5.4-b) and implemented our inversion with the flat free-surface model (Figure 5.4-a). 

This is the common mistake when we apply near-surface seismic inverse modeling to 
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observed field data. Even though the elevation of topography is relatively smaller than 

the size of the whole spatial domain, this inappropriate modeling condition causes a 

wrong estimation of soil properties in different shape of bedrock.  

 

Figure 5.10. Burn-in point from the residual error estimation of simulation with the 

wrong assumption as the flat soil model 

 

 Since the samplings during the stochastic process were not easy to find the 

stationary condition, we took 800,000 samples, which was four times more than the 

previous two case studies. We chose the half-point 400,000 as our burn-in point and 

calculated the mean and standard deviation from the chosen samples. The final result 

from this wrong assumption inverse modeling is in Figure 5.11. The target layered soil 

model was the same as the previous. However, the estimated result from the mean of 

posterior shows a different wrong soil profile (Figure 5.11-a). The most important point 

of this wrong site characterization is that the modeling cannot find out the depth and 

shape of the subsurface bedrock. Furthermore, the soil properties inside the bedrock are 
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underestimated than true values in the target layered soil model. Only the center part, 

from 30 to 40 meters in the horizontal distance, shows the accurate depth of interface, 

flat geometry, and similar material properties of the bedrock layer. We think this result 

comes from the geometry of our synthetic soil model, which has a relatively flat surface 

only at the center point. In other words, gentle slopes outside of this center part cause 

critical errors from the irregular free surface, and the estimated soil profile becomes 

useless. The importance of this topography effect cannot be emphasized enough for 

accurate near-surface characterization. 

 

Figure 5.11. Mean (a) and standard deviation (b) of the posterior distribution from 

the wrong assumption inversion with the flat free surface model 
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5.7. Conclusion 

We introduce a Bayesian seismic full waveform inversion (FWI) method for 

shallow site characterization to overcome the irregular free-surface topography problem. 

Spectral finite-element method (SEM) is used as the seismic forward model because this 

algorithm is suitable to capture the complex geometry of the model and able to generate 

the accurate elastic wavefield, including challenging surface waves. The stochastic 

inversion process is based on the trans-dimensional rj-MCMC method to define not only 

the material properties but also the number of unknown modeling parameters. To 

support the mesh partitioning for the rj-MCMC method, we applied a supervised 

classification method and generated random seeding points to define subdomains inside 

the two-dimensional mesh model. This approach is verified with a simple synthetic 

layered soil model with a flat free surface condition, and we applied it to an irregular 

surface topography model again. Even though the seismogram showed significant 

different observed data due to the topography, the inversion shows an accurate 

estimation of subsurface soil profiles. This study also shows a case study of the wrong 

assumption that assumed flat surface condition in modeling when observed data was 

measured from irregular surface. The results of these studies show the importance of 

accurate topography condition for the seismic full-waveform inversion to image the 

accurate subsurface geomechanical soil properties from the geophysical seismic survey 

on land. 
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APPENDIX 

HIERARCHICAL BAYESION MODELING 

This appendix shows the detailed algorithm of the Metropolis-Hastings sampling 

for trans-dimensional rj-MCMC method, which defines criteria to accept or reject the 

proposed candidates. The probabilistic approach to integrate multiple data sets requires 

hierarchical approach, which uses the Bayesian method in multiple levels to estimate the 

parameters of the posterior distribution. 

A. Hierarchical Bayesian priors in varying dimension

Since the reversible jump Markov chain Monte Carlo (rj-MCMC) method uses

independent random variables in varying dimensions, we should apply appropriate priors 

to control the dimension and make convergence to find the stationary condition in 

stochastic sampling. For the stochastic seismic inversion, the depth of layer interfaces 

(𝑧) and material properties (𝛽) in each layer are defined as the random input variables. 

Thus, we can apply two different priors, one is about the material properties inside the 

layer, and the other is about discretization in the depth of the ground model. 

𝑝(𝜽) = 𝑝(𝑘, 𝑧, 𝛽) = 𝑝(𝛽|𝑘)𝑝(𝑧|𝑘)𝑝(𝑘)   (A.1) 

The first Bayesian prior for the material properties comes from the information 

about seawater and shallow marine sediments. We can assume the P-wave velocity and 

density for seawater is around 1,500 𝑚/𝑠 and 1.0 𝑔/𝑐𝑐 with a small amount of 

uncertainty. Since those properties in soil layers have large variation, we defined the 
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only minimum and maximum values and applied uniform distribution for the prior of 

submarine soil property. This prior has to consider the number of dimensions, and we 

need to combine every probability based on the dimension parameter (𝑘). 

𝑝(𝛽𝑖|𝑘) = {
1

𝛽𝑚𝑎𝑥−𝛽𝑚𝑖𝑛
, 𝑖𝑓 𝛽 ∈ 𝛽𝑟𝑎𝑛𝑔𝑒

0
   (A.2.a) 

𝑝(𝛽|𝑘) = ∏ 𝑝(𝛽𝑖|𝑘)
𝑘
𝑖=1      (A.2.b) 

The second Bayesian prior for the mesh discretization is based on the possible 

number of the specific event from the given maximum dimension. For example, if we 

have 100 discretized elements in our target depth, then we can define 1 to 100 layers in 

this mesh. If we need to define 5 layers from these 100 elements, this becomes a 

selection problem of 5 from 100 with a combination operator in mathematics, and the 

probability can be written using factorials. 

𝑝(𝒛|𝑘) = [
𝑁!

𝑘!(𝑁−𝑘)!
]
−1

    (A.3) 

 The last Bayesian prior for the unknown dimension has only one information, the 

numbers of minimum and maximum layer interfaces in our target depth. These are 

subjective, but we can roughly estimate those numbers from the geophysical seismic 

interpretation. 

𝑘∗ ~ 𝑢𝑛𝑖𝑓(𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥)    (A.4) 

We also applied the non-informative priors to support the dynamic standard 

deviation of the likelihood function and proposal distribution. These priors use 

hyperparameters with inverse gamma distribution and increase the acceptance ratio 

during the stochastic sampling process. The random variable as the standard deviation 
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(𝑠) supports the likelihood function, and the other random variable (𝑣) supports the 

proposal distribution. Both non-informative priors use the value of 0.01 for their 

hyperparameters based on the theoretical background, which were described in other 

previous trans-dimensional research (S Esmailzadeh et al., 2015a; Mondal et al., 2014) 

𝑠~𝐼𝐺(0.01,0.01)     (A.5.a) 

𝑣~𝐺(0.01,0.01)     (A.5.b) 

 Consequently, the Bayesian priors are defined as below in the hierarchical format 

based on the information about material properties, mesh discretization, the expected 

number of layers in the target area, and the non-informative priors. 

𝑝(𝜽) = 𝑝(𝜌|𝑘, 𝜌𝑤)𝑝(𝜌𝑤)𝑝(𝑉𝑝|𝑘, 𝑉𝑝𝑤)𝑝(𝑉𝑝𝑤) 

× 𝑝(𝑧|𝑘)𝑝(𝑘)𝑝(𝑠)𝑝(𝑣)  (A.6) 

If we don’t apply appropriate priors in this trans-dimensional modeling, the 

strong likelihood function will keep increasing the number of layers to minimize the 

misfit between observed and predicted seismic data. This abused optimization in the 

maximum dimension may cause the over-fitted problem and generate an incorrect 

ground model. In short, the accurate geophysical seismic interpretation should be 

implemented as the importance pre-process for the seismic inversion to build up the 

appropriate Bayesian modeling priors. 
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B. Proposal distributions for trans-dimensional model selection 

The stochastic process in varying dimensions requires to choose one type of 

model selections at each iterative modeling. This random process is uniformly selected 

from the four following possibilities. 

 BIRTH: This creates a new subsurface layer with a new depth of layer interface 

(𝑧∗) and new material properties (𝛽∗). This new layer is located under a 

randomly chosen layer depth (𝑧𝑖𝑑𝑥). 

𝑧∗ ~ 𝑢𝑛𝑖𝑓(𝑧𝑖𝑑𝑥, 𝑧𝑖𝑑𝑥+1)     (A.7.a) 

𝛽∗ ~ 𝑁(𝛽𝑖𝑑𝑥, 𝑣 ∗ 𝜎)     (A.7.b) 

{𝑧1, … , 𝑧𝑖𝑑𝑥, 𝑧𝑖𝑑𝑥+1… , 𝑧𝑘} → {𝑧1, … , 𝑧𝑖𝑑𝑥, 𝑧
∗, 𝑧𝑖𝑑𝑥+1, … , 𝑧𝑘}   (A.7.c) 

{𝛽1, … , 𝛽𝑖𝑑𝑥, 𝛽𝑖𝑑𝑥+1… , 𝛽𝑘} → {𝛽1, … , 𝛽𝑖𝑑𝑥, 𝛽
∗, 𝛽𝑖𝑑𝑥+1, … , 𝛽𝑘}  (A.7.d) 

 DEATH: This removes one of the current subsurface layers. The randomly 

chosen depth (𝑧𝑖𝑑𝑥) is removed, and the material properties at this depth are 

defined as the average values between the upper and lower layers. 

{𝑧, … , 𝑧𝑖𝑑𝑥, 𝑧𝑖𝑑𝑥+1… , 𝑧𝑘} → {𝑧1, … , 𝑧𝑖𝑑𝑥−1, 𝑧𝑖𝑑𝑥+1, … , 𝑧𝑘}   (A.8.a) 

{𝛽1, … , 𝛽𝑖𝑑𝑥, 𝛽𝑖𝑑𝑥+1… , 𝛽𝑘} → {𝛽1, … ,
𝛽𝑖𝑑𝑥+𝛽𝑖𝑑𝑥+1

2
, … , 𝛽𝑘}   (A.8.b) 

 MOVE: This does not change the dimension of the modeling, and only changes 

the location of one current layer. One of the current layer depth is randomly 

chosen, and the new location (𝑧∗) is randomly located between upper (𝑧𝑢𝑝) and 

lower (𝑧𝑙𝑜𝑤) layer interfaces. 

𝑧𝑖
∗~𝑢𝑛𝑖𝑓(𝑧𝑢𝑝, 𝑧𝑙𝑜𝑤)     (A.9) 
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 PERTURB: This does not change the dimension of the modeling, and only 

changes the material properties of one current layer. One of the current layer 

material properties (𝛽𝑖) is randomly chosen, and the new material properties (𝛽∗) 

is randomly defined with standard deviation (𝜎) and parameter (𝑣). 

𝛽𝑖
∗~𝑁(𝛽𝑖, 𝑣 ∗ 𝜎)     (A.10) 

 

C. Proposal ratios 

Since this modeling selection changes the dimension of the modeling in a 

random process, we need to apply the generalized Metropolis-Hasting sampling 

algorithm with the acceptance probability (𝛼). The calculation of this probability is 

based on likelihood, prior and proposal ratios from the current model parameters (𝜃) and 

proposed model parameters (𝜃∗). 

𝛼(𝜽∗|𝜽) = 𝑚𝑖𝑛{1,
𝑝(𝑫𝒐𝒃𝒔|𝜽

∗
)

𝑝(𝑫𝒐𝒃𝒔|𝜽)⏟      
likelihood ratio

×
𝜋(𝜽∗)

𝜋(𝜽)⏟
prior ratio

×
𝑞(𝜽|𝜽∗)
𝑞(𝜽∗|𝜽)⏟    

proposal ratio

}   (A.11) 

The proposal ratio is the key point in the calculation of acceptance probability 

(α) to control the varying dimension. This ratio should be considered in both forward 

and reverse movement in varying dimensions. When the rj-MCMC choose the MOVE, 

PERTURB for model selection, the probability in forward (from 𝜃 to 𝜃∗) is equal to the 

probability in reverse (from 𝜃∗ to 𝜃 ), so the dimension does not change at all. That 

means the probabilities of proposals are canceled out and the proposal ratio becomes one 

to be ignored. However, BIRTH and DEATH types for model selection change their 
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modeling dimension, so each proposal ratio involves extra calculations. Since the 

locations of layers are proposed independently from the material properties, the 

calculation of the proposal ratio can be separated into two terms.  

𝑞(𝜃|𝜃∗)

𝑞(𝜃∗|𝜃)
=
𝑞(𝑧|𝜃∗)

𝑞(𝑧∗|𝜃)
×
𝑞(𝛽|𝜃∗)

𝑞(𝛽∗|𝜃)
     (A.12) 

The calculation requires a total number of the discretized elements (𝑁) for the 

first term, and the second term for the material property simply follows the normal 

distributions. The specific probabilities for the BIRTH and DEATH are defined in 

different forms, respectively.  

 BIRTH: This changes the dimension from 𝑘 layers to 𝑘 + 1 layers.  

𝑞(𝑧∗|𝜃) =
1

𝑁−𝑘
      (A.13.a) 

𝑞(𝑧|𝜃∗) =
1

𝑘+1
      (A.13.b) 

𝑞(𝛽∗|𝜃) = 𝑛𝑜𝑟𝑚𝑝𝑑𝑓(𝛽, 𝑣 ∗ 𝜎)    (A.13.c) 

𝑞(𝛽|𝜃∗) = 1       (A.13.d) 

 DEATH: This changes the dimension from 𝑘 layers to 𝑘 − 1 layers.  

𝑞(𝑧∗|𝜃) =
1

𝑘
       (A.14.a) 

𝑞(𝑧|𝜃∗) =
1

𝑁−(𝑘−1)
      (A.14.b) 

𝑞(𝛽∗|𝜃) =
(𝛽𝑖+𝛽𝑖+1)

2
      (A.14.c) 

𝑞(𝛽|𝜃∗) = 𝑛𝑜𝑟𝑚𝑝𝑑𝑓(𝛽, 𝑣 ∗ 𝜎)    (A.14.d) 

 

 


