
LIQUID STATE MACHINE MODEL WITH HOMEOSTASIS AND SUPERVISED STDP ON

NEUROMORPHIC LOIHI PROCESSOR

A Thesis

by

ASHVIN SHENOY RENJAL

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Peng Li
Committee Members, Andrew Jiang

Srinivas Shakkottai
Head of Department, Miroslav M. Begovic

December 2019

Major Subject: Computer Engineering

Copyright 2019 Ashvin Shenoy Renjal

ABSTRACT

This research focuses on the implementation of the Liquid State Machine model with Intrinsic

Plasticity (IP) for the reservoir layer and Synaptic Plasticity for the readout layer on Intel’s new

digital neuromorphic processor Loihi. Synaptic plasticity refers to the modification of weights in

order to learn and infer certain patterns using a learning rule. The learning rule adopted for this

model is supervised and local. Intrinsic plasticity refers to modification of neuronal states such as

threshold voltage to maintain homeostasis. A Liquid State Machine Model with the combination

of a homeostatic rule and a local learning rule is created on the Loihi platform and benchmarked

on a speech dataset to verify its performance.

ii

DEDICATION

To my mother, my father and my teachers

iii

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Dr. Peng Li for giving me an opportunity to

pursue research in neuromorphic computing and giving inputs to nudge me in the right direction.

I also thank the committee members, Dr. Andrew Jiang and Dr. Srinivas Shakkottai for guidance

and support. Special thanks to Wenrui Zhang who cleared my innumerable queries related to the

topic as well as the Loihi chip. I would also thank Renqian Zhang, Yu Liu, Jeongjun Lee and other

research group members for providing insight into the topic through interesting discussions which

helped me in my initial phase of research.

Last but not the least, I would like to thank Intel’s Neuromorphic Computing Lab for providing

access to Loihi and clearing related queries in timely manner without which this research wouldn’t

have been possible.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Dr. Peng Li[advisor] and Dr.

Srinivas Shakkottai of the Department of Electrical and Computer Engineering and Dr. Andrew

Jiang of the Department of Computer Science and Engineering. Intel provided access to Loihi and

tutorials on its software development kit.

Wenrui Zhang developed the initial framework for Loihi, data-set in the relevant format and

the mathematical derivation of SpiKL-IP rule in the threshold voltage format. All other work

conducted for the thesis was completed by me independently.

Funding Sources

Graduate study was supported by a fellowship from the Department of Electrical and Computer

Engineering at Texas A&M University.

v

NOMENCLATURE

IP Intrinsic Plasticity

SNN Spiking Neural Network

ANN Artificial Neural Network

RNN Recurrent Neural Network

SVM Support Vector Machine

IF Integrate and Fire

LIF Leaky Integrate and Fire

LSM Liquid State Machine

LTP Long Term Potentiation

LTD Long Term Depression

STDP Spike Timing Dependent Plasticity

S-STDP Supervised-Spike Timing Dependent Plasticity

ReSuMe Remote Supervised Method

API Application Programming Interface

SNIP Sequential Neural Interfacing Processes

SP Separation Property

AP Approximation Property

BSA Ben’s Spiker Algorithm

INRC Intel Neuromorphic Research Community

TAMU Texas A&M University

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. x

1. INTRODUCTION. 1

2. NEURON MODELS AND LEARNING . 4

2.1 Brief overview of Spiking Neuron Model . 4
2.2 Leaky Integrate and Fire Model [1] . 5
2.3 Hebbian Learning . 6
2.4 Spike Timing Dependent Plasticity . 6

3. OVERVIEW OF LOIHI INFRASTRUCTURE. 8

3.1 Neuromorphic architectures . 8
3.2 Spiking Neural Unit in Loihi . 8
3.3 Learning rule engine in Loihi. 8

3.3.1 Trace evaluation . 9
3.4 Homeostasis . 10
3.5 Software Infrastructure . 10

3.5.1 Compartment . 10
3.5.2 Connections . 11
3.5.3 SNIP. 11

4. EXPERIMENTAL SETUP . 13

4.1 Brief overview of the Liquid State Machine model . 13

vii

4.2 LSM model of the setup . 13
4.2.1 Input layer . 14
4.2.2 Reservoir layer. 15
4.2.3 Readout layer . 15

4.3 Setup on Loihi . 15
4.3.1 Working of setup . 17
4.3.2 SNIP in the setup . 18

5. NETWORK PARAMETERS AND RESULTS . 20

5.1 Parameters of the network . 20
5.1.1 Input layer . 20
5.1.2 Reservoir layer. 21
5.1.3 Readout layer . 21

5.2 Results . 23
5.2.1 TI-digits . 23
5.2.2 TI-alpha . 24

6. SUMMARY AND CONCLUSIONS . 25

6.1 Future work. 25
6.1.1 SpiKL-IP . 25
6.1.2 Calcium based supervised training Rule . 25

6.2 Conclusion. 26

REFERENCES . 27

viii

LIST OF FIGURES

FIGURE Page

1.1 The LSM model . 1

2.1 The LIF neuron model flowchart and circuit . 4

2.2 STDP curve . 7

3.1 Prototypes on Loihi . 11

3.2 Block diagram of simple network on Loihi . 12

3.3 Python and SNIP communication . 12

4.1 The proposed model . 14

4.2 Block diagram of objects in network . 16

4.3 Block diagram of working of setup . 17

4.4 Steps in compile phase and the channels. 18

4.5 Steps in run phase . 19

5.1 Accuracy plot for TI-digits dataset . 23

5.2 Accuracy plot for TI-alpha dataset . 24

ix

LIST OF TABLES

TABLE Page

5.1 Dataset summary . 20

5.2 Input layer parameters . 20

5.3 Reservoir layer parameters . 21

5.4 Readout compartment parameters . 22

5.5 Readout connection parameters . 22

x

1. INTRODUCTION

Spiking neural networks (SNN) [1] [2] [3] consist of fundamental computational units called

neurons communicating through sequence of spikes called spike train. The spike train can be

modelled as a Dirac Comb or simplified as a sequence of bits in a digital platform. These networks

have been demonstrated to be computationally more powerful [4] than the conventional neural

networks such as feedforward neural networks and recurrent neural networks[5] popular today.

The spiking neuron model is also biologically plausible and provides intrinsic tuning parameters

like threshold voltage. In addition, low-power neuromorphic hardware[6][7][8][9] is advantageous

in applications involving edge computing and self driving cars which are conventionally done by

power consuming GPUs today.

Figure 1.1: The LSM model

1

One of the biologically plausible models of SNN is called Liquid state machine (LSM) model

[10], a specific form of reservoir computing [11]. As shown in figure 1.1, the LSM model consists

of the input layer receiving the input spikes, which is randomly connected to the reservoir (also

called liquid) layer followed by a fully connected readout layer.

The liquid layer consists of neurons with recurrent, static but random connections. This layer

non-linearly projects the dataset to a higher dimension like in the case of Support Vector Machine

(SVM) [12]. However, reservoir layer has recurrent connections which gives it a temporal benefit

as in the case of Recurrent Neural Network (RNN) [13]. The advantages of this model over RNN

are two-fold [14]. Firstly, the weights of liquid layer are static, unlike the recurrent weights in

RNN which are harder to train. Secondly, the static liquid layer could be connected to multiple

output layers and thus provide parallelism.

The readout weights between the reservoir and the readout layer are fully connected and modi-

fied using a local learning rule which is linear in nature. It can range from linear discriminant[15] to

bio-inspired rules like Spike Timing Dependent Plasticity (STDP) [3]. The local nature of the rule

provides computational advantage over conventional Back-Propagation [16] rules used in multi-

layer perceptron in addition to significant power saving [7]. Although STDP is unsupervised in

nature, there are supervised versions such as ReSume[17] and S-STDP[18]. Such a modification

of weights based on a learning rule is called synaptic plasticity. The term is based on the bio-

logical term synapse[19], which is the connection between two neurons through which spikes are

transferred.

Although the weights are not modified in the liquid layer, certain parameters like threshold

voltage of the reservoir neurons could be modified to give a desired output across the readout

layer. This is called Intrinsic Plasticity (IP) [20] where intrinsic refers to the tuning parameter

internal to the neuron model (in this case it is threshold voltage). These rules, which are unsu-

pervised in nature, aim to maintain neuronal activity within the desired threshold [21] or create an

optimum distribution for the neuronal firing rate. An example for the former is the activity range

homeostasis[8] where the threshold voltage is updated based on activity trace of the individual

2

neurons. The SpiKL-IP rule[22] is an example for the latter where the ultimate goal would be to

produce an optimal exponential distribution of firing rate for the reservoir neurons.

3

2. NEURON MODELS AND LEARNING

2.1 Brief overview of Spiking Neuron Model

Figure 2.1: The LIF neuron model flowchart and circuit

The brain consists of fundamental units called neurons which communicate through signals

called action potentials [23]. The typical action potential is a continuous curve with different por-

tions pointing to different phases in its generation by a neuron. However, the information carried

from one neuron to another lies in the sequence, timing and count of these signals rather than their

4

individual shapes [3]. Hence, action potentials can be represented as spikes and a sequence of them

is called a spike train. These spikes trains can be approximated by Dirac comb
∑

f δ(t − tf) or

sequence of bits in the case of digital signals.

There are several neuron models ranging from rigorous models such as Hodgkin Huxley model

[24] to simpler mathematical models such as McCulloch-Pitts neuron [25] and perceptron [26].

However, all the neurons based on these models have the following common principles [3]. They

are multiple input single output structures, their output is enhanced by certain excitatory inputs and

repressed by inhibitory inputs and their output is governed by at least one state variable. In this

document, the neuronal units are based on the Leaky Integrate and Fire (LIF) model [1][3] unless

otherwise specified.

2.2 Leaky Integrate and Fire Model [1]

The flowchart and circuit of the LIF model is indicated in figure 2.1. The incoming input spikes

are integrated by a low pass filter into a continuous current. The filter may be of first, second or

higher order. The current from several inputs (or synapses) are weighted and fed into the RC circuit

which models the neuronal membrane. The Capacitance acts as an Integrator and Resistor R acts

as the leak,giving it the name Leaky Integrate and Fire. If the membrane voltage (Vmem) measured

across the capacitance is greater than some threshold voltage (Vth), then the neuron fires, producing

an output spike train which then acts as an input to other neurons in the network. Vmem is then

reset to the resting potential (Vrest usually 0). This process can be summarized by the differential

equation 2.1

dVm(t)

dt
= −Vm

τ
+
∑
i

∑
j

wmi · s(t− tij − di) (2.1)

where Vm and τ are the membrane voltage and time constant of the m-th neuron. wmi is the

weight connecting the m-th post-synaptic neuron to the i-th pre-synaptic neuron. The function

s() indicates the synaptic response which is the output of the low pass filter. tij is the time of

spiking of the j-th spike by the i-th synaptic neuron. dij is the synaptic delay which is a property

5

of the synapse. In addition to these parameters, there is the refractory delay tr not included in the

equation and in the figure 2.1. This is the duration after the firing of neuron for which all the inputs

will be ignored and the membrane voltage won’t be accumulated.

2.3 Hebbian Learning

The principle of Hebbian Learning [27] states that the synaptic strength between the neurons

depend solely on their correlated activities. In simple terms, "the neurons that fire together wire

together". If xi and yj are the activities of presynaptic and postsynaptic neurons respectively, then

the change in weight ∆w is given by

∆w ∝ xi · yj (2.2)

Similarly, there is the principle anti-hebbian learning where correlated input and output spikes

lead to the depression of weights.

2.4 Spike Timing Dependent Plasticity

There are several unsupervised learning rules based on Hebbian Learning. One of them could

be as follows. It was observed in [28] that there is an increase in synaptic weight when the postsy-

naptic spike occurs after the presynaptic spike thus giving rise to Long Term Potentiation(LTP)[29].

Similarly, there is a decrease in synaptic weight when there is a postsynaptic spike before the presy-

naptic spike, resulting in Long Term Depression(LTD)[30]. This biological process of synaptic

weight change occurring due to temporal correlation of input and output spikes is called Spike

Timing Dependent Plasticity(STDP)[3].

These weight changes are governed by the STDP curve as shown in figure 2.2. From this figure,

we observe that closer input and output spikes result in greater weight change by magnitude. In

the mathematical form, the STDP rule is given by the following equations.

∆W =

A+(w) · e−

∆t
τ+ , if ∆t ≥ 0

A−(w) · e−
∆t
τ− , if ∆t < 0

(2.3)

6

Figure 2.2: STDP curve

An interesting form from the perspective of implementation is the online form of STDP [31]

given by the equation 2.4 for a postsynaptic spike j with weight wj . Here x(t) and y(t) indicates

input and output traces which are the low pass filtered versions of the respective spike trains. tn

represents the output spike time and tf indicates the input spike time.

dwj
dt

= A+(wj)x(t)
∑
n

δ(t− tn)− A−(wj)y(t)
∑
f

δ(t− tfj) (2.4)

The STDP rule is a Hebbian rule which is unsupervised in nature. A supervised STDP rule

called ReSume[3][17] was formulated combining both the Hebbian and anti-Hebbian principles

with a form similar to Widrow-Hoff rule [32]

7

3. OVERVIEW OF LOIHI INFRASTRUCTURE

3.1 Neuromorphic architectures

The word neuromorphic was coined by Carver Mead in [33] to refer to the analog architectures

which mimic the biological brain. Today the term encompasses a wide range of analog, digital

and hybrid architectures. But this research will mainly focus on implementation of our LSM based

model on Intel’s neuromorphic digital processor Loihi [8].

3.2 Spiking Neural Unit in Loihi

The Spiking neural units are based on the simplified version of the CUBA model [34]. Ac-

cording to this model, there are two state variables for the neuron; synaptic current ui(t) and

membrane voltage vi(t). The synaptic current is obtained by passing the input spikes through a

low pass filter and multiplying them with their synaptic weights. It is given by equation 3.1, where

αu(t) = e
− t
τu

τu
H(t) is the impulse response of the filter with time constant τu and the term H(t) in-

dicates the step function. The synaptic current is then accumulated to obtain the membrane voltage

which is given by equation 3.2. If the membrane voltage crosses the threshold voltage Vth, then it

is reset to 0 and a output spike is generated.

ui(t) =
∑
j 6=i

wij(αu ∗ σj)(t) + bi (3.1)

v̇i(t) = − 1

τv
vi(t) + ui(t) (3.2)

3.3 Learning rule engine in Loihi

Loihi supports learning rules which are local in nature such as Spike Timing Dependent Plas-

ticity (STDP) (see section 2.4). The learning rule should be written in the sum of product form

[18] given by the following equation

8

z(t) = z(t− 1) +
∑
m

Sm
∏
n

Fn (3.3)

where z indicates the synaptic state variable (weight,delay and tag) and S is a constant. F can one

of the following: input/output spikes, input/output traces or special functions such as sign of any

synaptic state variable. The input and output spikes/traces are denoted by xk and yk respectively

where k can range from 0 to 3 with 0 indicating spikes and 1,2,3 representing different traces. The

learning rule is applied at periodic intervals called epoch time (tEpoch) which can range from 1 to

63 but generally set as a power of 2 for efficiency. For example an online form of unsupervised

STDP (see equation 2.4) can be written as

w(t) = w(t− 1) + y0x1 − x0y1 (3.4)

Another example would be the potentiation rule of Supervised STDP (S-STDP) [18] given by

the equation 3.5 where S1 and S2 are constants. The term uk is a dependency factor which evaluates

the product at every tEpoch · 2k timestep; at all other time steps the product is 0.

w(t) = w(t− 1)− S1y0x1 + S2ukx1 (3.5)

3.3.1 Trace evaluation

The trace is the filtered version of the spike train which can be utilized for online learning.

Loihi provides up to 2 presynaptic traces per input axons (with at most 2048 learning enabled

input axons per core) and 3 postsynaptic traces per compartment (with at most 1024 compartments

per core). Each trace has two components: the decay α and the impulse δ which is the gain added

to the trace whenever there is a spike. The trace is evaluated [8] by the following equation where

α indicates the decay and δ is the impulse for every spike s[t]

x[t] = −α · x[t− 1] + δ · s[t] (3.6)

9

3.4 Homeostasis

Loihi supports threshold voltage homeostasis rules. The chip also has an inbuilt homeostasis

mechanism which is governed by a separate trace called activity trace. This trace variable has

an impulse value and time constant like in the case of learning rule. If the activity goes beyond

the upper and lower limit then threshold voltage is increased and reduced respectively to keep the

neuronal firing rate under control. The equation for this rule is given by

∆Vth =

β · (y − ymax), if y > ymax

β · (y − ymin), if y < ymin

(3.7)

where ∆Vth is the change in threshold voltage, y is the activity trace, ymin and ymax are the lower

and upper limits of activity trace respectively.

3.5 Software Infrastructure

The toolchain and procedure of programming Loihi along with architecture can be found in

[18]. Loihi toolchain consists of python API at the front end which is used to create neural net-

works. The programming interface is user oriented and abstracts many details of the underlying

hardware. The python code is then compiled and run on the hardware which is accessed via cloud.

The programming model can be divided into three portions: Compartments analogous to the body

of neuron, connections/synapses and the learning rules formulated with traces (see section 3.3).

3.5.1 Compartment

The compartment receives input spikes and integrates them to current and voltage. Loihi pro-

vides API to configure several parameters including refractory delay, homeostasis, axon delay, bias

and threshold. A compartment prototype can also be declared which would help in the creation of

groups of several compartments (shown in figure 3.1). Loihi also provides a spike generator object

which provides input spikes to the compartments at run-time.

10

3.5.2 Connections

The connection object functions as a synapse between a compartment and another compart-

ment/spike generator. The connections supports feedforward and recurrent connections. An im-

portant functionality of the connection object is that it hosts the learning rule engine and a rein-

forcement channel through which reinforcement spikes can be inserted at run-time.

Figure 3.1: Prototypes on Loihi

Figure 3.2 block diagram shows a simple network with a compartment, connection and spike

generator

3.5.3 SNIP

The python framework helps in creating a network and running it. But there may be cases

where one would require actions such as pruning neurons, disabling and switching learning rules

11

Figure 3.2: Block diagram of simple network on Loihi

or other run-time decisions which depend on fulfillment of spiking and timing conditions. SNIP

(Sequential Neural Interfacing Processes) is a C based interface which provides access to certain

Loihi parameters at runtime. It behaves like a controller which monitors the state of the neural

networks and takes specific actions. The SNIP code directly accesses the registers at run-time to

modify the network. The python and the SNIP block communicate via channels as shown in figure

3.3. These channels are initialised on startup. Separate channels can be created to send the data to

SNIP as well as receive the data from it. In addition to switching learning rules, SNIPs can also be

used to change bias, membrane time constant and threshold voltage at runtime.

Figure 3.3: Python and SNIP communication

12

4. EXPERIMENTAL SETUP

The main goal of this research is to setup an LSM model with intrinsic plasticity at the reservoir

layer and synaptic plasticity at the readout layer for a classification task. The model is then run on

the Loihi processor utilizing its learning engine and software development kit. Since the chip and

its setup is recent and novel, we face inherent challenges of adapting our model to this environment.

The setup is then benchmarked on single speaker TI-alpha and TI-digits dataset [35][36].

4.1 Brief overview of the Liquid State Machine model

As mentioned in section 1, the LSM model contains a reservoir(liquid) layer which has re-

current connections. However, there can be ensembles of reservoirs too as demonstrated in [37].

The reservoir is a 3 dimensional structure with individual LIF neurons. These neurons project the

input dataset to high dimensional space where the dataset is linearly separable. So two different

inputs should result in different outputs from the reservoir if they have to be separable. This is

called the Separation Property (SP) [10]. For the neurons i,j separated by Euclidean distance Di,j

in the liquid layer, the probability of connection is given by equation 4.1 with λ and c as constants.

These connections are static in nature. The liquid also demonstrates fading memory[38] and is

time invariant which gives it universal computational power [10]

Pi,j = c · e−
D2
i,j

λ2 (4.1)

The output of the reservoir layer is given to the memoryless (doesn’t remember the previous

input unlike the liquid) readout layer. The connections between these layers are plastic, modified

using a simple learning rule.

4.2 LSM model of the setup

The setup on Loihi will be based on the LSM model. The recurrent structure of Liquid layer

along with fading memory helps in processing temporal information efficiently. Hence the setup

13

will be benchmarked on a speech dataset. However, there are works such as [22] and [37] which

were benchmarked on image datasets like MNIST[39] and Cityscape[40]. The LSM model is

summarized in the figure 4.1.

Figure 4.1: The proposed model

4.2.1 Input layer

The input layer has the function of data pre-processing and spike generation. This layer con-

verts the speech dataset into spike trains. This objective is achieved by a combination of Lyon’s

cochlear model based on human ear [41] and BSA algorithm[42]. The methodology is explained

in this work [43]. The Lyon’s model consist of 78 cascaded band pass filter each of which produces

signals of different frequency with 1 being the highest and 78 being the lowest. Each dataset signal

is sent into these cascaded filters followed by a combination of half wave rectifier and automatic

gain control layer which compresses the signal. All the 78 inputs generated is then converted to

14

78 individual spike trains by the BSA layer. However, the Loihi setup will receive the already

preprocessed dataset as file which has the ports and the time at which these ports should produce

the spikes listed.

4.2.2 Reservoir layer

The Reservoir layer consists of 135 LIF neurons in a 3D structure with dimensions 3x3x15 neu-

rons. As mentioned earlier, the weights are recurrent and static with the probability of connection

between any two neurons given by equation 4.1. The connections are either excitatory with pos-

itive weights or inhibitory with negative weights with the proportion of these weights decided by

the application. We may use unsupervised methods such as homeostasis to give desirable output.

In this work an inbuilt homeostasis setup provided by Loihi is used, which tweaks the threshold

voltage based on activity range given by equation 3.7.

4.2.3 Readout layer

The readout layer has plastic synapses which are modified using a local learning rule. We

employ Supervised STDP rule [18] which is inspired by the ReSuMe rule [17]. Since supervised

learning is desired, the rule will have two individual rules. A potentiating rule which is applied

to the weights of the desired neuron to strengthen its connections and a depressing rule which is

applied to other neurons to suppress their weights.

PotentiatingRule : w(t) = w(t− 1)− S1y0x1 + S2ukx1 (4.2)

DepressingRule : w(t) = w(t− 1)− S1y0x1 (4.3)

4.3 Setup on Loihi

The setup consists two blocks: python block which is used to create,run the network and the C

based SNIP(see section 3.5.3) which takes run-time decisions such as switching learning rules and

disabling learning. The python code is object oriented with the object diagram given by the figure

4.2. All the compartment and connection objects are inherited from their respective prototypes as

15

Figure 4.2: Block diagram of objects in network

shown in figure 3.1. As mentioned in the previous section, the Loihi setup will obtain preprocessed

spikes directly as a file which is then parsed to give spike data. The LSM object created on start-

up will have an input, a reservoir and an output compartment object. The input compartment

is a spike generator with 78 input ports which is connected to the reservoir compartment object

through the input connection object. Each input port will have 32 random connections to any of

the 135 reservoir neurons. The reservoir compartment object is recurrently connected via reservoir

connection object. These connections are sparse and probabilistic governed by equation. 4.1. The

reservoir and readout compartments are fully connected by the readout connection object which

also contains the potentiating and depressing learning rule. At run-time, these learning rules are

applied to desired and undesired neurons at the start of each sample. The number of neurons in the

output compartment depends on the dataset.

16

4.3.1 Working of setup

The python setup consists of a main file from which all the decisions are made. The steps

consist of initialization, creation of LSM object, compiling and running the network which is

shown in figure 4.3.

Figure 4.3: Block diagram of working of setup

The dataset is read from the file via a parser and passed to the LSM object. Additional parame-

ters such as number of epochs, duration of each sample,number of testing and training samples are

also provided here. The compartments and their respective connections are then configured with

the required parameters such as weights. The code is then compiled and run. At the end, the data

is collected and the state of the network is persisted on to a text file.

The compile phase also consists of additional activities such as initializing probes (monitors the

17

state variables for data collection), SNIP (see section 3.5.3) and the send channels. This is shown

in figure 4.4. There are two channels to send the data from the running python code to SNIP. Init

channel is used to send the network configuration parameters on start-up such as sample duration,

number of neurons in reservoir and readout and the core id of Loihi (where the network is located

in the chip). Label channel sends the ground truth label on the start of every sample. This is done

because the learning rules are switched between the label and undesired neurons in the SNIP. The

run phase is shown in figure 4.5

Figure 4.4: Steps in compile phase and the channels

4.3.2 SNIP in the setup

The SNIP performs the task of switching the potentiating and depressing learning rules between

the label and other neurons in the training phase and disables learning at the beginning of the testing

18

phase. It also resets the state variables such as membrane voltage and current, and sets the learning

and activity traces to zero at the beginning of each sample.

Figure 4.5: Steps in run phase

19

5. NETWORK PARAMETERS AND RESULTS

The network is benchmarked on a subset of TI-alpha and TI-digits datasets[35]. Only a single

speaker subset is used, as the Loihi device, accessed via cloud, is time-shared between all the

participating teams. The size of the dataset is summarized in the table 5.1. The single speaker

dataset is divided in the ratio 8:2 between training and testing samples without cross validation.

Dataset Number of classes Number of training samples Number of testing samples
TI-alpha 26 208 52
TI-digits 10 80 20

Table 5.1: Dataset summary

5.1 Parameters of the network

The sample duration is 700 time steps in Loihi units. The layer wise parameters are shown

below.

5.1.1 Input layer

The input layer consists of a spike-generator which is connected to the reservoir layer with

parameters in table 5.2. These individual elements of the spike generator aren’t neurons but rather

simple signal generators without any neuronal parameters such as threshold voltage.

Parameters Value
Ports 78
Connection Each port connected to 32 random reservoir neurons
Excitatory Probability 0.5
Excitatory weight 128
Inhibitory weight -128

Table 5.2: Input layer parameters

20

5.1.2 Reservoir layer

The reservoir layer is recurrently connected as per the equation 4.1 and the parameters are

shown in in table 5.3. Activity range homeostasis (see section 3.4) is enabled for this layer. The

threshold voltage for the reservoir neurons are lower than the readout neurons. The minimum

activity level is kept at 0 (lowest possible value since activity is non-negative) and maximum is

kept at 5. The recurrent weights are either excitatory or inhibitory depending on the probability.

The connection probability between these neurons also depends on their type.

Parameters Value
Number of neurons 135
Dimensions 3x3x15
Threshold Voltage 80
Compartment voltage time constant 32
Compartment Current time constant 8
Refractory Delay 2
Homeostasis gain 5
Activity Impulse 1
Activity time constant 64
Activity max limit 5
Activity min limit 0
Excitatory Probability 0.8
E->E/I weight 32
I->I/E weight -32
E->E c (see equation 4.1) 0.3
E->I c 0.2
I->E c 0.4
I->I c 0.1

Table 5.3: Reservoir layer parameters

5.1.3 Readout layer

The reservoir layer and readout layer are fully connected. The range of readout weight is

[−256, 255] which is same as the range of weights for Loihi. The weight values are integers, ran-

21

domly chosen from the range for each connection based on uniform distribution. The connection

also has the learning rule enabled given by equation 4.2 and 4.3.

Parameters Value
Number of neurons 26/10
Threshold Voltage 5120
Compartment voltage time constant 32
Compartment Current time constant 8
Refractory Delay 2
Homeostasis Disabled

Table 5.4: Readout compartment parameters

All the readout connections will have learning rule enabled. As per the Loihi documentation, the

tEpoch value (see section 3.3) should be a power of 2. The learning rule parameters for readout

connections are shown in table 5.5. If the constants S1 and S2 are equal then the potentiating rule

reduces to the ReSuMe rule[3]. For the setup we choose a higher tEpoch value 8, with impulse

value of 127 (maximum possible) and time constant of input trace as 10. This results in shorter

traces which decline quickly.

Parameters Value
Connections Fully connected to reservoir
Weight range [-256,255]
tEpoch 8
S1 2−6

S2 2−5

uk (see section 3.3) u1
Input trace(x1) impulse 127
Input trace(x1) time constant 10

Table 5.5: Readout connection parameters

22

5.2 Results

As mentioned earlier only the single speaker subset of the TI-alpha and TI-digits are used due

to the time limitation in running the setup.

5.2.1 TI-digits

Figure 5.1: Accuracy plot for TI-digits dataset

In the case of TI-digits dataset, the setup is able to complete the classification within 10 epochs.

Since the dataset is simpler in nature, the same classification accuracy can be achieved by disabling

homeostasis. The result is shown in figure 5.1. The accuracy achieved is 100% for the given subset.

However, the same performance cannot be guaranteed for the whole dataset.

23

5.2.2 TI-alpha

Figure 5.2: Accuracy plot for TI-alpha dataset

In the case of single speaker TI-alpha dataset, the performance is very poor without homeosta-

sis. This is because the dataset contains similar sounding classes(alphabets), which the learning

rule finds harder to classify. However with homeostasis enabled, a maximum accuracy of 86.54%

(about 45 of 52 samples) could be classified correctly. Similar sounding alphabets such as B-D-G

or V-Z couldn’t be classified,with the last alphabet encountered during training dominating. The

result is shown in figure 5.2.

24

6. SUMMARY AND CONCLUSIONS

6.1 Future work

6.1.1 SpiKL-IP

The intrinsic plasticity rule called SpiKL-IP [22] applied to the reservoir layer, utilizes KL

divergence to produce an exponential distribution of firing rate. The challenge here is that the rule

modifies the resistance (which isn’t accessible on Loihi) and membrane time constant of a neuron

to achieve the results . So we use a novel unexplored variation which changes the easily accessible

membrane threshold voltage Vth given by the equations 6.1 and 6.2.

w =
VTh · τm(
1
y
− tr

) (6.1)

∆VTh = −lr ·

(
τm

(
2 · y − y2

µ

)
− 1
)

w
− 1

Vth

 (6.2)

where VTh is the change in threshold voltage, y is the current trace of the neuron, µ is the expected

trace ,τm is the membrane time constant and tr is the refractory period.

6.1.2 Calcium based supervised training Rule

In this rule [43], the weights are adjusted taking into account the upper and lower limits of the

output trace which is biologically significant as the calcium concentration of the neuron. The rule is

given by the following equation 6.3 and 6.4 where y is the trace (current Calcium concentration),

cm is the expected Calcium concentration and δ defines the range. ∆W is constant change in

weight.

Potentiating Rule: dw =

∆W, with prob p if cm ≤ y ≤ cm + δ

0, otherwise
(6.3)

25

Depressing Rule: dw =

−∆W, with prob p if cm ≥ y ≥ cm − δ

0, otherwise
(6.4)

6.2 Conclusion

• A spiking neural network based on liquid state machine model with input, reservoir and

output layers was implemented on the Loihi processor.

• For the readout learning rule, Supervised STDP rule was used which is based on ReSuMe

rule. Intrinsic Plasticity was explored in the reservoir layer by the implementation of activity

range homeostasis.

• A setup was created with a framework composed of python and SNIP. The python block

created and ran the network. The SNIP layer undertook run-time decisions like switching

learning rules.

• The network was benchmarked on the single speaker TI-alpha and TI-digits dataset.

• An accuracy of 86.54% was obtained for the TI-alpha subset.

26

REFERENCES

[1] W. Gerstner and W. Kistler, Spiking Neuron Models: An Introduction. New York, NY, USA:

Cambridge University Press, 2002.

[2] J. Vreeken, “Spiking neural networks, an introduction,” 2003.

[3] F. Ponulak and A. Kasinski, “Introduction to spiking neural networks: Information process-

ing, learning and applications.,” Acta neurobiologiae experimentalis, vol. 71, no. 4, pp. 409–

433, 2011.

[4] W. Maass, “Networks of spiking neurons: the third generation of neural network models,”

Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[5] S. Haykin, “Neural networks: A comprehensive foundation,” 2007.

[6] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L.

Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A million spiking-neuron integrated circuit

with a scalable communication network and interface,” Science, vol. 345, no. 6197, pp. 668–

673, 2014.

[7] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, “A digital neu-

rosynaptic core using embedded crossbar memory with 45pj per spike in 45nm,” in 2011

IEEE custom integrated circuits conference (CICC), pp. 1–4, IEEE, 2011.

[8] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,

N. Imam, S. Jain, et al., “Loihi: A neuromorphic manycore processor with on-chip learning,”

IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[9] C. S. T. Thakur, J. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar, N. Qiao, J. Schemmel,

R. M. Wang, E. Chicca, J. Olson Hasler, et al., “Large-scale neuromorphic spiking array

processors: A quest to mimic the brain,” Frontiers in neuroscience, vol. 12, p. 891, 2018.

27

[10] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable states: A

new framework for neural computation based on perturbations,” Neural computation, vol. 14,

no. 11, pp. 2531–2560, 2002.

[11] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recurrent neural network

training,” Computer Science Review, vol. 3, no. 3, pp. 127–149, 2009.

[12] V. Vapnik, The nature of statistical learning theory. Springer science & business media,

2013.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,

no. 8, pp. 1735–1780, 1997.

[14] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout, “Isolated word recog-

nition with the liquid state machine: a case study,” Information Processing Letters, vol. 95,

no. 6, pp. 521–528, 2005.

[15] M. Welling, “Fisher linear discriminant analysis,” Department of Computer Science, Univer-

sity of Toronto, vol. 3, no. 1, 2005.

[16] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning representations by back-

propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[17] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural networks with resume:

sequence learning, classification, and spike shifting,” Neural computation, vol. 22, no. 2,

pp. 467–510, 2010.

[18] C.-K. Lin, A. Wild, G. N. Chinya, Y. Cao, M. Davies, D. M. Lavery, and H. Wang, “Program-

ming spiking neural networks on intel loihi,” Computer, vol. 51, no. 3, pp. 52–61, 2018.

[19] M. R. Bennett, “The early history of the synapse: from plato to sherrington,” Brain research

bulletin, vol. 50, no. 2, pp. 95–118, 1999.

[20] R. H. Cudmore and N. S. Desai, “Intrinsic plasticity,” Scholarpedia, vol. 3, no. 2, p. 1363,

2008. revision #129344.

28

[21] G. G. Turrigiano and S. B. Nelson, “Homeostatic plasticity in the developing nervous sys-

tem,” Nature reviews neuroscience, vol. 5, no. 2, p. 97, 2004.

[22] W. Zhang and P. Li, “Information-theoretic intrinsic plasticity for online unsupervised learn-

ing in spiking neural networks,” Frontiers in neuroscience, vol. 13, 2019.

[23] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From single

neurons to networks and models of cognition. Cambridge University Press, 2014.

[24] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its

application to conduction and excitation in nerve,” The Journal of physiology, vol. 117, no. 4,

pp. 500–544, 1952.

[25] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”

The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[26] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell

Aeronautical Laboratory, 1957.

[27] D. O. Hebb, The organization of behavior: a neuropsychological theory. Science Editions,

1962.

[28] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hippocampal neurons: de-

pendence on spike timing, synaptic strength, and postsynaptic cell type,” Journal of neuro-

science, vol. 18, no. 24, pp. 10464–10472, 1998.

[29] T. Lømo, “The discovery of long-term potentiation,” Philosophical Transactions of the Royal

Society of London. Series B: Biological Sciences, vol. 358, no. 1432, pp. 617–620, 2003.

[30] V. Jacob, D. J. Brasier, I. Erchova, D. Feldman, and D. E. Shulz, “Spike timing-dependent

synaptic depression in the in vivo barrel cortex of the rat,” Journal of Neuroscience, vol. 27,

no. 6, pp. 1271–1284, 2007.

[31] J. Sjoestroem and W. Gerstner, “Spike-timing dependent plasticity,” Scholarpedia, vol. 5,

no. 2, p. 1362, 2010. revision #184913.

29

[32] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” tech. rep., Stanford Univ Ca Stan-

ford Electronics Labs, 1960.

[33] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, vol. 78, pp. 1629–

1636, Oct 1990.

[34] T. P. Vogels and L. F. Abbott, “Signal propagation and logic gating in networks of integrate-

and-fire neurons,” Journal of neuroscience, vol. 25, no. 46, pp. 10786–10795, 2005.

[35] M. Liberman, L. D. Consortium., and T. I. Incorporated., “TI 46-word,” 1993.

[36] G. R. Doddington and T. B. Schalk, “Computers: Speech recognition: Turning theory to prac-

tice: New ics have brought the requisite computer power to speech technology; an evaluation

of equipment shows where it stands today,” IEEE spectrum, vol. 18, no. 9, pp. 26–32, 1981.

[37] P. Wijesinghe, G. Srinivasan, P. Panda, and K. Roy, “Analysis of liquid ensembles for en-

hancing the performance and accuracy of liquid state machines,” Frontiers in neuroscience,

vol. 13, p. 504, 2019.

[38] S. Boyd and L. Chua, “Fading memory and the problem of approximating nonlinear operators

with volterra series,” IEEE Transactions on circuits and systems, vol. 32, no. 11, pp. 1150–

1161, 1985.

[39] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[40] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,

and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pp. 3213–3223,

2016.

[41] M. Slaney, Lyon’s cochlear model, vol. 13. Apple Computer, Advanced Technology Group,

1988.

30

[42] B. Schrauwen and J. Van Campenhout, “Bsa, a fast and accurate spike train encoding

scheme,” in Proceedings of the International Joint Conference on Neural Networks, 2003.,

vol. 4, pp. 2825–2830, IEEE, 2003.

[43] Y. Zhang, P. Li, Y. Jin, and Y. Choe, “A digital liquid state machine with biologically inspired

learning and its application to speech recognition,” IEEE transactions on neural networks

and learning systems, vol. 26, no. 11, pp. 2635–2649, 2015.

31

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	NEURON MODELS AND LEARNING
	Brief overview of Spiking Neuron Model
	Leaky Integrate and Fire Model SNMGerstner
	Hebbian Learning
	Spike Timing Dependent Plasticity

	OVERVIEW OF LOIHI INFRASTRUCTURE
	Neuromorphic architectures
	Spiking Neural Unit in Loihi
	Learning rule engine in Loihi
	Trace evaluation

	Homeostasis
	Software Infrastructure
	Compartment
	Connections
	SNIP

	EXPERIMENTAL SETUP
	Brief overview of the Liquid State Machine model
	LSM model of the setup
	Input layer
	Reservoir layer
	Readout layer

	Setup on Loihi
	Working of setup
	SNIP in the setup

	NETWORK PARAMETERS AND RESULTS
	Parameters of the network
	Input layer
	Reservoir layer
	Readout layer

	Results
	TI-digits
	TI-alpha

	SUMMARY AND CONCLUSIONS
	Future work
	SpiKL-IP
	Calcium based supervised training Rule

	Conclusion

	REFERENCES

