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ABSTRACT

This thesis proposes a least squares formulation to determine a set of empirical importance

weights to achieve a change of probability measure. The objective of the thesis is to estimate

statistics from a target distribution - distribution of interest using random samples generated from

a different proposal distribution - cheap/available distribution. The approach taken here works di-

rectly with the probability measure of the proposal and target distributions, for which only samples

from each are needed. The result is an approach more capable of achieving high dimensional prob-

ability measure change than current state-of-the-art methods. Such a method can enable efficient

and accurate propagation of uncertainty through model chains of unknown input and output reg-

ularity, such as those often encountered in process-structure-property chains in materials science.

The proposed approach is demonstrated on five benchmark problems of increasing dimension and

also tested on a Gas Turbine System.
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1. INTRODUCTION

1.1 Motivation

Uncertainty quantification and its propagation has been the subject of much recent interest due

to the increasingly availability of parallel computing platforms, widespread advancement in nu-

merical simulations and algorithms, and the development of complex simulation models. Usually,

such models carry variability with them due to lots of factors which leads to uncertain model out-

put/behaviour. When uncertainties are characterised, modeled and analyzed critically it can prove

to be instrumental in the development of these computational models for the purpose of validation,

confident decision-making and policy-making analysis. Therefore, UQ/ UP can be used to make

predictions about the real world systems, to estimate risk probabilities and failure statistics associ-

ated with the model under assumptions, to identify critical components for the design optimization

and/ or for performance enhancement. The demand and importance of UQ/UP has led to the in-

troduction of uncertainty assessment tools in very diverse areas such as climate change, structural

engineering, quality engineering, aerospace engineering and design, medicine, materials science,

etc.

In the field of materials science, however, notions of UQ remain relatively unexplored even

though it is of critical importance as the field progresses towards more predictive approaches

to materials development. Indeed, UQ/UP across multi-scale model chains are key elements of

decision-based [1, 2, 3] materials design in the framework of Integrated Computational Materials

Engineering (ICME) [4, 5], where databases, multi-scale modeling, and experiments are integrated

with the aim of time reduction in design and manufacturing of materials or products. In this con-

text, the understanding and quantification of uncertainties can provide a confidence measure for

the applicability of models for decision making in materials design. Although UQ/UP and overall

uncertainty management have been recognized as essential components of simulation-assisted ma-

terials discovery/design efforts, relatively very few examples in computational materials science
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exist [6, 7, 8, 9, 10]. UQ at the individual model stage has recently received much attention by the

materials science community [11, 12, 13, 14]. Yet, to realize ICME, techniques are required for

efficiently and accurately propagating uncertainty from the inputs of one model to its outputs and

from lower level models to upper level models within a model chain.

The proposed approach tries to solve this problem by developing the state of the art efficient

and accurate uncertainty propagation technique.

1.2 Science of Uncertainty Quantification

This thesis introduces one of the main applications of uncertainty quantification- uncertainty

propagation and the necessary model framework to carry out complex UP and hence it is logical to

start with defining what Uncertainty Quantification is, the science behind it and how it is relevant

in the modern industry.

Figure 1.1: Matrix of knowledge with four quadrants.

Matrix of knowledge [15] is used to differentiate the various problems and challenges caused

by uncertainty in engineering realm. As given in the Figure 1.1, first quadrant of known knowns

are the things that are represented as the best practice in the industry. Typical engineering work
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is done in this quadrant. The products are developed and validated using the known physics and

simulation-based models. However, discrepancy in such models are also known and they come

under the second quadrant of unknown knowns. For example, one might know factors that can

improve the simulation model but within the certain error range. However, a little effort towards

understanding such factors is what requires experience in modern-day engineering. The third

quadrant is what is identified and addressed by scientific uncertainty quantification methodologies.

This usually refers to the cases for which various parameters are known in which the data is either

not robust/ reliable/ rigorous or misinterpreted. In other words, the data is known to predict the

volatility in the operating system, but it is not systematically evaluated. In most of the cases, third

sector is caused because of not having a systematic approach in the collection and analysis of

data. However, in recent times, more responsible data collection practices have been advocated

to deal with uncertainty. The fourth quadrant is the scariest one as usually no knowledge about

it is evident. However, there are methods to address problems in this section such as the p-box

approach. The general idea is to explore the parameter space in a systematic way to search for

possible complications and quantify their risk. Particularly, important is the search for rare events

with the disastrous consequences, so called Black Swans.

This work proposes methods for all three sectors devoting most of the work to the third quad-

rant: quantifying the variabilities of engineering predictions by efficiently propagating and incor-

porating experimental data.

1.3 Advantages in Industry

UQ methods are rapidly being adopted by engineers and modeling professionals across a wide

range of industries because they can answer many questions that were previously unanswerable.

Multidisciplinary analysis is an extensive area of research, which helps in supporting today’s

modern engineering systems which are designed and developed by multiple teams (Figure 1.2).

In addition to the difficulties associated with the design of such systems, the need to enhance

performance and efficiency often drives the design to its physical limits. Modeling and simula-

tion technologies have assisted in the analysis and development of many complex and integrated

3



Figure 1.2: Uncertainty quantification and propagation can identify and predict the output variabil-
ity in a multidisciplinary design model.

multidisciplinary systems. Virtual design through extensive modeling and simulation is extremely

attractive for the engineering industry. Physical simulations help to improve product design, effi-

ciency and competitiveness. They reduce the number of required real-life tests, to allow to design

and test such products with minimal hardware prototyping, enhance speed to market and help to

avoid costly production mistakes. However, the uncertainties in various parameters regarding the

model can significantly affect the performance of the overall system. Hence, in order to assess the

system robustness, reliability and for decision making, quantification of variabilities have become

a practice in recent times.

UQ methods can be used to extend the capabilities of complex model further,

• UQ methods can be used to predict the system responses across uncertain and volatile inputs

as shown in the Figure 1.3. They can be used to incorporate the effects of manufacturing er-

rors and identify the probability of failure of a manufactured product through available data.

Reliability predictions obtained through UQ are more accurate than pure statistical predic-

tion because they complement the statistical data with high-fidelity physical information.

• UQ methods are also known to quantify the confidence in predictions. They can be used

to calculate error bars (Figure 1.3) for experiments and computations which further can be

employed to understand the robustness of the simulated model. However, as simulations

are more deterministic and experiments contain uncertainties, it can also differentiate the

4



parameters causing discrepancy between simulation and experiments.

• Sensitivity analysis or parameter screening [16] is also a part of UQ methods. Generally,

lowering the model order for the less sensitive parameter can aid to lowering costs without

compromising efficiency (Figure 1.3). Conversely, increasing the safety margins that are too

low helps to improve safety.

• Robust designing is the calculation of optima that are robust against the variations of the

input parameters. Methods for uncertainty quantification lie at the heart of the robust design

processes.

Figure 1.3: (top figure) Uncertainty propagation can help quantify uncertainty in system response
when given a corresponding input. Grey area here represents the underlying uncertainty and the red
region predicts failure probability (left bottom figure), Error bars (right bottom figure). Sensitivity
analysis can identify the parameters sensitive to the response and help understand the model.
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1.4 Types of Uncertainties

Uncertainty is an inherent part of the real world. No two physical experiments ever produce

exactly the same output values and many relevant inputs may be unknown or not-measurable.

Uncertainty effects almost all aspects of engineering modeling and design. Engineers have long

dealt with measurement errors, uncertain material properties, and unknown design demand profiles

by including factors of safety and extensively testing designs. By more deeply understanding and

quantifying the sources of uncertainty [17], we can make better decisions with known levels of

confidence.

1.4.1 Parameter uncertainty

This comes from the model parameters that are inputs to the computer model (mathematical

model) but whose exact values are unknown and cannot be controlled in physical experiments, or

whose values cannot be exactly inferred by statistical methods.

1.4.2 Parametric variability

This comes from the variability of input variables of the model. It is due to uncontrolled

and/or unspecified input conditions. For example, uncertain loading of a material and the uncertain

manufacturing process parameters can be examples of this type of uncertainty.

1.4.3 Structural uncertainty

Also known as model bias or model discrepancy, this comes from the lack of knowledge of

the underlying missing physics, numerical approximations, inaccuracies of the computer model

used to simulate real-life situation in the problem, considering they are the approximation of the

reality. One example is when modeling the pendulum movement ignorance of air friction can be

considered as a form of model discrepancy. This type of uncertainty is associated with the fact that

no model is perfect and even though there is no unknown parameters in the model, a discrepancy

is still expected.
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1.4.4 Algorithmic uncertainty

Also known as numerical uncertainty, or discrete uncertainty. This type of uncertainty arises

due to highly complicated models (most models are too complicated to solve exactly). This results

from the surrgates used or numerical assumptions and approximation made to solve the given com-

plex computational model. For example, the finite element method or finite difference method may

be used to approximate the solution of a partial differential equation (which introduces numerical

errors).

1.4.5 Residual Variability

This results from the uncertainty in intrinsic random variation in the process being modeled or

in a lack of model detail which lead to different process values.

1.4.6 Experimental uncertainty

Also known as observation error, this comes from the variability of experimental measure-

ments. The experimental uncertainty is inevitable and can be observed and mitigated by the repe-

tition of the same experiment number of times methodically.

1.4.7 Interpolation uncertainty

This comes from a lack of available data collected from computer model simulations and/or ex-

perimental measurements. For other input settings that don’t have simulation data or experimental

measurements, interpolation becomes necessary which leads to uncertainty in the corresponding

response. Even though the most accurate and efficient methods are used to interpolate the missing

data, it is probabilistically impossible to interpolate each time correctly.

1.4.8 Aleatoric and Epistemic uncertainty

In broader terms uncertainty can be classified into two categories following [18, 19, 20, 21, 22],

1. Aleatoric uncertainty is also known as statistical uncertainty and is representative of un-

knowns that differ each time we run the same experiment. It arises through natural ran-

domness in the system. This type of uncertainty is irreducible, in that there will always
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be variability in the underlying variables and can be characterized by probability distribu-

tion. An example of aleatoric uncertainty is the randomness in the outcome of a fair coin flip.

Without tossing the outcome can not be known, however it can be described by probabilities.

2. Epistemic uncertainty is also known as systematic uncertainty and is due to things one could

in principle know but doesn’t in practice. This may be because a measurement is not accu-

rate, because the model neglects certain effects, or because particular data has been deliber-

ately hidden. The parameter being measured is usually a characteristic of the material or the

physical process. The uncertainty is related to the "lack of knowledge," about this parameter.

It can be reduced by learning more about how things work. An example is distinguishing

between a fair coin and a coin that lands heads 75 percent of the time; these correspond to

two different models of reality, and you may have uncertainty over which of these models is

correct.

In real life applications, both kinds of uncertainties are present. Uncertainty quantification intends

to work toward reducing epistemic uncertainties to aleatoric uncertainties. The quantification for

the aleatoric uncertainties can be relatively straightforward to perform, depending on the appli-

cation. Techniques such as the Monte Carlo method are frequently used. To evaluate epistemic

uncertainties, the efforts are made to gain better knowledge of the system, process or mechanism.

Methods such as probability bounds analysis, fuzzy logic or evidence theory are used.

1.5 Challenges faced in Industry

While the mathematical theory of uncertainty quantification has been developed greatly in the

last decade, many methodologies have been established and widely recognized. However, many

techniques are still difficult to apply to actual engineering cases. These problems are: limited data

and statistical assumptions, limited time, the curse of dimensionality, rare events and black swans,

and model with discontinuity.
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1.5.1 Limited Data

Obtaining measurement data is generally costly. The usual methods for the collection at higher

level requires repeatability of measurements. While this is enough to estimate mean and variance, it

is generally not enough to calculate statistical failure probabilities or perform a rare event analysis.

Limited data generally leads to make assumptions about the behavior of the system. Here major

simplifications as well as coarse assumptions are common. This can be problematic in statistics.

The majority of the methods in the field of UQ assume that a sufficiently high number of samples

are available. However, in most cases that is often not the case due to limited time and cost. Wrong

assumptions about the parametric probability distribution is often underestimated.

Another problem is the wrong inputs, which lead to outputs in the region outside of defined

space. As UQ heavily requires to identify the types of uncertainties in the system, if not known can

cause undesirable effects to the solution. This conceptual error is only solved with the knowledge

and experience regarding the subject. The method introduced in the subsequent chapter provides a

single solution to the problems of how to deal with scarce data, and how to making avoid statistical

assumptions.

1.5.2 Limited time and the curse of dimensionality

There is usually a time delay between the availability of results of a simulation and a complete

UQ analysis. Receiving reliable UQ results on a standard workstation faster is only possible with

a very efficient and intelligent UQ method and a reasonably fast model. However, the excess

computational power at disposal for UQ is unfortunately not increasing nearly as rapidly as the

total resources. The possible solution is of parallelizing the UQ methodologies with the access to

high performance computing.

One of the major problems, is so called curse of dimensionality as suggested by M. Eldred

and J. Burkardt in [?]. As the dimension increases the amount of data needed to obtain the re-

liable results grow exponentially increasing the computational expense. This is clearly shown in

the Figure 1.4. Various surrogate modeling methodologies can be used to deal with the curse. Al-
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though, such methods yield inefficient and unacceptable results. The result is a highly general new

algorithm that can be parallelized easily to be used throughout any discipline.

Figure 1.4: Illustration of curse of dimensionality. As the dimension increases the model evalua-
tions rise quickly.

1.5.3 Rare Events and Black Swans

Uncertainty quantification can be used to perform risk analysis for a physical system using its

virtual simulation model. Most popular in engineering is risk analysis using Gaussian distribu-

tions. However, they can give a false sense of security. The assumption of normality removes the

possibility to account for rare events from the model. Events that are further away than five or

more standard deviations from the mean are extremely unlikely for the normal distributions - more

unlikely than they often are in reality. If such rare events have catastrophic consequences, they are

called a Black Swan, as suggested by Taleb [23]. Black Swans have so far been studied mostly

in mathematical finance to explain catastrophic market crashes. While physical laws and even

aleotory input conditions can be discovered and incorporated into the simulation process, some

unknown factors inevitably remain outside the scope of simulation. Hence, the fourth quadrant is

considered to be the most unexplored region and most of the published literature deals with the

third quadrant only. Especially for rare event analysis there is still lack of efficient uncertainty
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propagation methods.

1.5.4 Models with discontinuity

Some computational models contain instabilities, bifurcations or sharp gradients [24] in their

domain. Some discontinuities can be encountered if the uncertainties in that region is quantified.

Overall, UQ for discontinuous models lacks behind methods for continuous problems.

1.6 Research Objectives

A large proportion of the research done in uncertainty quantification is on efficient uncertainty

propagation methods. Having associated probability distributions to the parameters, we want to

know what the probability distribution of the output or the quantities of interest look like, as in

how the model converts the input probabilities to the output probabilities. Many methods in the

field have appeared during the years, addressing different issues. Some of these methods will

be presented in the coming Chapter 2. However, as it is often the case in numerical methods,

the main issues encountered in the propagation are somewhat similar to the challenges mentioned

before. Basically, they are related to the achievement of a good balance between accuracy and time

consumed at higher dimensions. This research proposes a robust and reliable method to propagate

and quantify uncertainties efficiently. The proposed methodology is developed keeping real-sized

industrial problems in a non-intrusive way. This approach can also be used to handle chains of

computational models via decomposition-based approaches [25, 20, 26, 27] that can enable rapid

and accurate UP for materials analyses. To summarize, the high level objectives of this thesis are:

• To develop a state of the art methodology to propagate uncertainties through complex

model chain in a robust and efficient manner with the guarantees of analytical conver-

gence

The proposed methodology is inspired by the change of probability measure approach. It

formulates least square to determine importance weights in order to achieve the change of

probability measure. It can provide more accurate statistical predictions for output quantities

as it does not take any assumptions about the input probability distribution.
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• To perform system level uncertainty analysis by concurrently performing uncertainty

analyses on individual disciplines followed by a synthesis of the discipline level analyses

We decompose the system uncertainty analysis into individual component level uncertainty

analysis that are then assembled to achieve the desired system level uncertainty. This ap-

proach can be used to handle chains of computational models that can enable rapid and

accurate UP for specifically materials analysis.

• To develop a computationally efficient framework capable of handling higher dimen-

sions

The developed approach utilizes matrices in order to solve the least square formulation. Such

vector based approach can be parallelized easily and they are also relevantly easy to store

when a very large input space is provided. Hence, the efficient computational framework

can help solve higher dimensional problems. The proposed approach is also compatible

with high performance computers which helps reduce the computational time significantly

and increases the accuracy of the solution.

• To demonstrate the developed approach on a real world application problem

The proposed approach is demonstrated on several benchmark test functions and a real world

application problem to check the accuracy and efficiency of the results.

1.7 Thesis Content

For the aforementioned reasons the following building blocks are needed for a comprehensive

UQ/ UP framework for industry: a method to deal with scarce experimental data to avoid statistical

errors, a method capable of dealing with many input parameters to mitigate the curse of dimen-

sionality, an efficient method to perform rare event analysis for complex computational models,

a method to deal with discontinuous data, and a method to reduce high model-form uncertainty.

Chapter 2 will go into different methodologies used in the current industry and their limitations.

Chapter 3 introduces a state of the art strategy to solve the above stated problem and will go into
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details about its functionality. Chapter 4 will cover different benchmark problems and will demon-

strate how the developed approach compares with the approaches like kernel density estimation,

L2O, Monte Carlo method, and Gaussian Processes. Chapter 5 demonstrates a complex gas tur-

bine system problem and how the developed strategy can be employed to solve this problem and

its results. Chapter 6 summarizes the importance, advantages and limitations of the approach and

also talks about the future work.
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2. BACKGROUND

Computational methods for uncertainty analysis of a single component can be classified into

two groups: intrusive and non-intrusive approaches. The exploration of the reliability of a model

using probabilistic methods is referred to as non-intrusive uncertainty quantification in the litera-

ture. The term non-intrusive means that the model is not modified but used as a black box. The

basic procedure of a non-intrusive approach is demonstrated below.

Intrusive approaches, also known as embedded projection approaches, introduce a solution

expansion into the formulation of the stochastic problem and projects the resulting equation into

the expansion basis to yield a set of equations that the expansion co-efficient satisfy. This assembly

and solution of the stochastic problem requires access and modification to the existing black box

computational model. As it is limited to the models that can be modified, irreducible errors can

not be propagated through such approaches [28, 29, 30, 31, 32]. Hence, it is not widely used in

the industry.

Non-intrusive approaches on the other hand are also called as sampling-based methodologies

due to the nature of non-invasiveness of the system formulation. This research focuses on non-

intrusive approaches due to their broader applicability; that is, they can be applied to a wide range

of models without requiring knowledge of or access to the underlying model information. In

broader perspective we will show that these methods can be also be used to solve the issues lie

within third and even fourth sector in the knowledge matrix.

We list here the common techniques used for a single component and will be used in the

following chapters of the thesis for the benchmarking purpose.

2.1 Importance Sampling

Importance sampling is a commonly used technique to carry out efficient sampling from a

proposal distribution [33]. Proposal distribution is a distribution from which the sampling has been

done to match the target distribution. Surrogate model can be considered as a proposal distribution.
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On the other hand, target distribution is a distribution from which drawing samples directly is

either complicated, difficult or expensive [34]. Hence, proposal samples sampled from proposal

distribution are then used to generate realization of the output response or target distribution.

Figure 2.1: The importance sampling process uses the proposal samples generated (red dots on left
figure) from a proposal distribution (red contours on left figure) to approximate a target distribution
(blue contour on left figure), by weighing the proposal samples (blue dots on right figure).

As an example, we have available to us x1, x2, ..., xn drawn from rather unknown input pro-

posal density fµ. We also have available the corresponding model evaluations for each proposal

sample (g(x1), g(x2), ..., g(xn)). We consider the case where the inputs are now distributed ac-

cording to a different target distribution. This refinement might happen because of the data getting

available through updated upstream models or due to adopting a different input scenario during de-

sign process. If the model g is too expensive to evaluate which is the case for most of applications

in engineering, then it becomes expensive to re-evaluate the model. Instead we use the impor-

tance sampling technique to estimate the target statistics (fν) from already generated samples from

in-expensive proposal distribution.

In other words, as shown in Figure 2.1, instead of running the target samples over the com-
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putational model, we use our proposal distribution to perform change of probability measure to

approximate the statistics of interest.

The expectation of the target evaluations is:

E = Eν [g(t)] =

∫
g(t)fν(t)dt (2.1)

And through importance sampling this estimation can be approximated as

En =
n∑
i=1

wig(xi) (2.2)

Where, wi = fν/fµ, and t is the input samples

The importance weights wi can be estimated using following techniques:

2.1.1 Monte Carlo Method

Monte Carlo method is the most common technique used for uncertainty quantification [35],

due to its simplicity and good statistical results. However, its computational cost is extremely high,

and, in many cases.

This technique generates random sampling to make numerical estimation of unknown parame-

ters in our case that is unknown proposal distribution. All the data are combined through statistics

to access the response under analysis. In other words, it is a method that is able to approximate a

deterministic response of a function through many arbitrary inputs. However, this method needs

large number of sample data to correctly identifying the target statistics accurately.

Other efficient sampling techniques which are faster and more methodical than generating ran-

dom samples are latin hyper cube sampling [36], response surface method using central composite

designs [37], advanced mean value with p-level iterations [38], etc.

2.1.2 Kernel Density Estimation

The kernel density estimation (KDE) is a method to compute the density statistics given the

random samples [39]. Here, KDE approach is applied to approximate target density (fν) and
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proposal density (fµ) from their respective random. Then, we will compute the Radon-Nikodym

importance weights by approximating the Radon-Nikodym derivative with fν
fµ

[40].

Figure 2.2: Histogram generated from the random samples can be approximated as a density func-
tion shown in the right figure using KDE. Kernel function (blue dotted line on right figure) is
integrated over the sample size and the smooth density can be obtained (black continous line).

These estimators are defined by,

f(t) =

(
1

nh

) n∑
i=1

K

(
t− xi

h

)
(2.3)

Where, xi are i.i.d random variables. h is called the bandwidth and K is a kernel function.

Intuitively, KDE uses the kernel functionK to smooth out each data points into a smooth bump.

Then, it sums over all these bumps to obtain density estimation. At regions with more data points,

it will have many bumps yielding an overall large bump as shown in the Figure 2.2. On the other

hand, regions with few observations, the density value from summing over the bumps will be low.

Usually the kernel is assumed to be non-negative and symmetric with integral 1. Here, the

choice of bandwidth h is much more important than the choice of the kernel. Small values of h

make the estimate wiggly and show spurious features, whereas big values of h lead to an estimate

which is too smooth in the sense that it is too biased and may not reveal structural features. We
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will be using the bandwidth chosen by minimal mean squared error (MMSE) principle and the

Gaussian kernel as a kernel function.

Once the densities are computed, the Radon-Nikodym importance weights are approximated

as below:

wi =
fν
fµ

(2.4)

2.1.3 L2 Optimized (L2O) Importance Weights

In L2O the optimal importance weights are obtained by solving the optimization statement

using Frank Wolfe and Dai Fletcher Algorithms respectively for lower and higher dimensional

problems [41]. Unlike density estimation techniques, this approach exploits the structure and

optimizes the weights using optimization solvers. Intuitively, it minimizes the L2 norm between

weighted proposal empirical distribution function and empirical target distribution function finding

the importance weights at each sample location (Figure 2.3).

Figure 2.3: L2O approach minimizes, with respect to empirical importance weights associated
with proposal samples, the L2 -norm between the weighted and target distribution function.
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The advantage of L2O over other approaches is that it solves itself without needing to tune

any parameters. It also scales well handling a large number of samples. However, there are some

numerical ill-conditioning when scaled for high dimensional distributions.

2.2 Gaussian Processes (GP)

The GP approach is a non-parametric Bayesian approach [42], in that it finds a distribution over

the possible functions g(t) that are consistent with the observed or here target random samples. As

with all Bayesian methods it begins with a prior distribution and updates this as data points are

observed, producing the posterior distribution.

Figure 2.4: GP based on the target or ground truth corrects the distribution generated using joint
Gaussian distribution.

In GP, it turns out we only need to be able to define a distribution over the function’s value at

a finite proposal random samples, arbitrarily, x1, x2, ..., xi. As the name suggests GP assumes that

probability density of fν(x1), ..., fν(xi) is jointly Gaussian, with some mean and covariance.

fν |X ∼ GP(g(t)|m(X),k(X,X′)) (2.5)

where m(X) = (m(xi))i, k(X,X′) = (k(xi, xj))ij and GP is the probability density function

of a n-dimensional multivariate normal random variable with mean σ and covariance matrix
∑

.
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It then iteratively adds the data points (X′) changing the joint distribution by updating the

mean (m(X)) and the covariance (k(X,X′)) according to an associated kernel function with each

addition as shown in Figure 2.4. Here, the kernel function is created as a covariance matrix that

restricts the set of functions under consideration. Once all the ground truth samples are sampled,

the final distribution is formulated such that the error values are minimized resulting into accurate

model of output distribution based on the target samples.

2.3 Current Practices

Previous work on uncertainty propagation via a change of probability measure that focuses on

density estimation of unknown distributions summarized before can often fail to yield accurate

results. If both proposal and target distributions are known and satisfy additional conditions, then

the Radon-Nikodym theorem [40] provides a valid solution. This essentially states that the re-

quired importance weights can be computed via computation of the ratio of the target and proposal

densities (Radon-Nikodym derivatives), hence the term density ratio. These approaches seek to

change the measure from the given density ratio (proposal) to a specific target value. However

estimating the unknown density function from the random samples in itself is a complicated task

and especially challenging at higher dimensions. In the case of an unknown underlying probability

distribution, even though the Radon-Nikodym theorem still applies, the density ratio is indeter-

minable and hence we cannot directly compute Radon-Nikodym derivatives for importance weight

estimation.

For this situation, previous work has generally relied on attempts at estimating unknown prob-

ability density functions from random samples generated from unknown distributions using kernel

density estimation [39]. However, similarly quite often density ratio based approaches that rely on

estimated densities fail if the sample space is high-dimensional [43, 39, 44]. Thus, this method is

used with dimensional reduction strategies like Principal Component Analysis (PCA), Generalized

Discriminant Analysis (GDA), Projection Pursuit Density Estimation (PPDE), which can result in

a significant loss of information and inaccurate UP results. In practice, this challenge can be over-

come if the random samples are known to be generated from a parametric distribution family, in
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which a parametric density estimation method can be employed.

Specifically, as input dimension increases, KDE requires significantly more samples to achieve

the same accuracy, which eventually leads to numerical ill-conditioning that currently cannot

be overcome. Other density and density ratio estimation approaches include the kernel mean

matching approach that matches moments using a universal reproducing kernel Hilbert func-

tion [45]; the probabilistic classification approach, which computes the probability density ratio

by applying Bayes’ Theorem [46]; the importance estimation filtering approach, which minimizes

the Kullback-Leibler divergence metric between the estimated and actual probability density ra-

tios [47]; the unconstrained least squares importance filtering approach, which minimizes the L2-

norm between the estimated and actual probability density ratios [48]; and the direct density ratio

estimation with dimension reduction, which solves the previous approach on a lower-dimensional

space [49]. Each of these parametric approaches requires careful tuning to their respective param-

eters to ensure accurate results and can be challenging to employ in new problem domains. As a

result, there has been a recent interest in developing approaches for importance weight estimation

that avoid estimating the probability density function or density ratio.

One such recent approach is that of Ref. [50], which works only with determinable empiri-

cal distribution functions. The approach as discussed previously computes importance weights by

minimizing the L2-norm between a target distribution function and a weighted proposal empirical

distribution function. This concept avoids using any basis function representations and regular-

ization needs. Hence, this optimization approach can be implemented at large scale (both high

dimensional and large sample size). However, eventually, numerical ill-conditioning enters owing

to most samples occupying only the boundaries of high dimensional product spaces.

The work we present here extends the L2O approach of optimization of importance weights and

introduces the novel approach of changing probability measure by computing importance weights

directly with target and proposal measures. The resulting formulation is a linear system of equa-

tions that can be readily solved using least squares techniques. The appeal of using the probability

measure rather than the cumulative distribution function of the L2O approach is that a user can
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enforce where the probability measure is evaluated. Specifically, this allows for the inclusion of

high probability areas on the boundaries of high dimensional input spaces.
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3. APPROACH

In this section, we describe our model to propagate the uncertainty using a proposal and tar-

get probability measure via the importance weights computed in the process. We note here that,

the importance weights and the probability density function need not be known explicitly and the

proposed approach can be entirely sample based. By that we mean, given the incorrect input distri-

bution or proposal random samples, this methodology can enable a rapid correction to uncertainty

propagation results via target distribution measure or random samples. This correction is based

on reweighting the previously executed model evaluations- which may have been computationally

expensive or difficult to compute again- with importance weights formulated using the linear least

square approach. Computed importance weights are such that the results converge to those results

if the correct or target distribution had been used in the first place. Hence, being a non-intrusive

method, no new model evaluations are needed for this approach, leading to rapid and efficient UP

corrections.

In the example given below in Figure 3.1, the target and proposal random samples are generated

from different normal distributions N (µ = 1, σ2 = 3) and N (µ = 0, σ4 = 4) respectively. The

core idea of our methodology is to use the computed importance weights to transform the weighted

proposal density shown as a green plot in the right image to the required target density function.

3.1 Framework

Let (Ω,F ,P) be a probability space, where Ω is a sample space consisting of all the possible

outcomes, F is a σ-field and P is probability measure on (Ω,F). F represents the collection

of the subsets of possible outcomes Ω, which is used to define the probability measure P on the

sample space. The random variable Y : (Ω,F) → (Rd,B(Rd)), where d is the dimension of

the input space, is such that the target measure, ν(A) = P(Y −1(A)) for A ⊂ Rd. The target

measure ν(A) is the probability measure of all the target random samples. Likewise, the random

variable X : (Ω,F) → (Rd,B(Rd)) is associated with the proposal measure, µ on Rd, such that
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Figure 3.1: The proposed approach corrects the proposal distribution shown in the red (left figure)
using importance weights and estimates the target distribution as a weighted proposal distribution
(dotted plot on the right).

µ(A) = P(X−1(A)) for A ⊂ Rd. Similarly, µ(A) denotes for the probability measure on proposal

random samples. Let S be a collection of closed subsets in Rd such that S = {S1, S2, ..., Sm}.

Here, topological space or Hausdorff space is given by, Sj = I1 × I2 × ... × Id where Ik is the

subset of the topological space in dimension k such that Ik ∈ B(Rk) . In our proposed approach,

each of the Sj’s can be represented as a hyper-sphere or n-sphere of dimension Rd in the measure

space B(Rd). For example, in one dimension an Sj simply represents an interval in the measure

space with some radius R as shown in the Figure 3.2. Similarly, in two dimensions, an Sj can be

considered as a disk in the measure space and in three dimensions it is a sphere.

Figure 3.2: How the n-spheres look in one, two, three and d-dimensional space.
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We then define the target probability measure as ν : S → [0, 1] of Y . Similarly, µ : S → [0, 1]

is defined as the proposal probability measure of X . Target and proposal probability measures

define the probability measure of a given hyper-sphere Sj conditioned to Sj ∈ B(Rd). In our

problem formulation, the proposal measure µ is accessible to us only through sampling; that is, we

are provided with random samples of the random variable X , but we can not evaluate µ explicitly.

Let {x1, x2, ..., xn} be random samples of X , where n is the number of random samples. The

objective of our work is to estimate statistics from the given or known target measure ν given

random samples {x1, x2, ..., xn} generated from the proposal distribution µ.

To enable the change of measure on a set of samples, we compute the empirical measure of a

given hyper-sphere as

µi =
1

n

n∑
j=1

ISi(xj), (3.1)

where

ISi(xj) =


1 if xj ∈ Si,

0 if xj /∈ Si.

Basically, it means that if a given random sample xj lies in a hyper-spheres Si, the indicator

function will yield 1 for that particular hyper-sphere and it will produce 0 if it lies outside of that

hyper-sphere. Hence, the proposal measure µi (Equation 3.1) will show normalized sum of all the

points that lie within a particular hyper-sphere Si. It can be proved that this a valid measure as it

follows all the three axioms:

1. µi(Si) > 0 for every hyper-sphere Si.

2. If a giant hyper-sphere enclosing the sample space is chosen, all the random samples are

going to lie inside it, resulting to a measure with probability 1. µ(S) = 1

3. If Si : i ∈ I is a countable, pairwise disjoint collection of hyper-spheres then,

µ(
⋃
i∈I Si) =

∑
i∈I µ(Si)
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Our goal is to change this empirical proposal measure to a weighted empirical proposal measure

such that,

µi =
n∑
j=1

wjISi(xj)→ νi, (3.2)

where convergence is in the L2-norm sense to the target measure. The task is then to find the best

set of weights, w = {w1, w2, . . . , wn} for accomplishing the measure change for each member of

S. For a given sample set, {x1, x2, . . . , xn}, a given set of hyper-sphere, S, and a proposal measure

µ, we denote the value taken by the indicator function for each sample point and each hyper-cube

as

Pij(µ) = ISi(xj). (3.3)

Given the Pij for each point and each hyper-sphere, we can arrange this information in matrix

form as

A =



P11 P12 · · · P1n

P21 P22 · · · P2n

...
... . . . ...

Pm1 Pm2 · · · Pmn


, (3.4)

where each row corresponds to a hyper-sphere in S and each column corresponds to a sample

point, xj . If we define n = (1/n, 1/n, . . . , 1/n)> and w = (w1, w2, . . . , wn)>, then we see that

Ain is Equation 3.1 and Aiw is the left side of Equation 3.2, where Ai is the ith row of A. Hence,

a particular row in the matrix A corresponds to the respective member from the set of hyper-sphere

S.

We can also assemble information regarding the desired target distribution. For this, we define

measure of a given hyper-cube under the target measure as Ti = ν(Si). Thus, for a given S we

have the vector t = (T1, T2, . . . , Tm)> representing the probability measure of each member of

hyper-sphere S. Our goal then is to find a set of weights, w, such that Aw = t. In practice,

we create A such that m � n (number of hyper-spheres constructed are more than the number

of available random samples) and compute an optimal set of weights via the normal equations,
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w = (A>A)−1A>t. It is our hypothesis that as n →∞, the sum of the computed weights via this

procedure converges to unity, and that each individual weight is greater than zero. The study of

these claims is a topic of future work.

To better understand the approach, we consider here also a graphical depiction provided in

Figure 3.3. The left portion of Figure 3.3 shows 10000 normally distributed sample points from a

given proposal measure. From this we will consider 4 points and 4 disks to clarify how the matrix

(A) and vector (t) is formed in our problem formulation.

Figure 3.3: The construction of proposal measure matrix.

After determining the sample space (often from the problem definition itself) the hyper-spheres,

Si, which are disks here, are then constructed taking each random sample as a center and some spe-

cific value as a radius. This is done in such a way that each sample point lies inside at least one

hyper-sphere. As illustrated in Figure 3.3, hyper-sphere S1 has only one point lying inside it, point

x1 itself (note, there are clearly more points, but we are focusing only on the 4 highlighted points

for clarity). Hence, the proposal measure of the first random sample x1 lying inside the first disk

S1, P11(µ) = 1. For the other three random samples, the measure for that particular disk S1 is zero.
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That is, the first row of A is

x1 x2 x3 x4( )
1 0 0 0 S1

where we are noting the column dependence on the samples and the row dependence on the given

hyper-sphere.

Similarly, hyper-sphere S2 encloses x2 and x4, resulting in 1’s in the position of A22 and A24.

Just like S1, hyper-sphere S3 contains one point itself and hence following the same procedure

it will take 1 in the space of A33. Hyper-sphere S4 contains three random samples and their re-

spective rows are filled out in the same manner as the previous hyper-spheres. The result for this

demonstration is

x1 x2 x3 x4


1 0 0 0 S1

0 1 0 1 S2

0 0 1 0 S3

0 1 1 1 S4

−→ A

The vector t can be formed in two ways. If the joint distribution of the target samples is

known, the individual elements of the vector t will give the joint probability of that particular

hyper-sphere. That is, t = ν(Si). If the underlying target measure is unknown but has been

sampled (as in the case of a chain of models), the vector t can be formed empirically. This is

similar to the construction of the matrix A, with the additional step of adding all the row elements

and dividing by the total number of samples.

This is better explained by the following Equation. Let us consider the exact same space from

the Figure 3.3 and call them target samples instead of proposal samples. The matrix t looks like

this,
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(
1

4

)
×




1 + 0 + 0 + 0 S1

0 + 1 + 0 + 1 S2

0 + 0 + 1 + 0 S3

0 + 1 + 1 + 1 S4

−→





1
4

S1

1
2

S2

1
4

S3

3
4

S4

−→ t

3.2 Algorithm

We conclude this section with a complete algorithm for implementing our methodology for

measure based change of probability measure:

Algorithm 1 Change of measure via importance weights wj’s
Data : Proposal Sample Points X , Target Distribution ν, Number of Target Samples Points M
Number of Proposal Sample points N , and the termination criteria tol
Initialization: Find the domain of the sample space Ω
loop:
Start : Construct the hyper-spheres S with the initial radius rad at all the proposal sample points X
top : Update the existing hyper-spheres S by dividing the existing radius into half
Matrix A Construction:
j : 1:N
xj = lies inside the hyper-sphere Si
Pij(µ)← 1.
Pij(µ)← 0.
Vector t Formulation:
Ti(ν)← ν(Si)
end;
goto top.
End : The following condition has been achieved: rad/2 6 tol && rad > tol.
Find w← (A>A)−1A>t.

We note here that the generation of the set S proceeded by halving the radiuses successively.

Empirically, we have found this to be superior to randomly choosing the radiuses for the hyper-

spheres, though more analysis is needed to confirm this claim. This is a topic of future work. In

our approach, the first set of hyper-spheres are generated with a specific radius such a way that
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it contains the maximum number of sample points possible. The radius of the first set of hyper-

spheres centered at the proposal sample points is halved resulting in a hierarchy of hyper-spheres.

This hierarchy is grown until a user-specified required tolerance (radius) is achieved. By each

iteration as the size of the hyper-spheres and the radius decreases the coverage of these hyper-

spheres also reduces. Analytically it will be shown in the subsequent chapters that, smaller the

radius higher the accuracy of the algorithm and ultimately more efficient UP method.

Our representation of the hyper-sphere generation process is shown in Figure 3.4. In two

dimensions this set of hyper-spheres can be considered as a set of disks. Hence, with the specific

radius first set of subsets from S1, ..., S5 will be formed. On the next step, radius will be divided

into half and this division continues until tolerance requirements are met.

Figure 3.4: Hyper-sphere generation

3.3 Modified approach for high dimensional inputs

As explained earlier in the Chapter 1, the computational models and techniques available in the

industry struggle at high dimensional inputs or when provided with large number of data samples.

Surrogate models or dimensional reduction methods can prove to be useful in such cases. Generally

these methods lack in efficiency or results in ill-conditioning of the model either way leading to in-

accurate solutions. Recent advances in technology has led to wide availability of high-performing
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computers. This aims to solve complex problems on large clusters of interconnected computers.

To take the benefit of the high performance computing, it becomes necessary to mainly exploit the

parallelization functionality.

Figure 3.5: Basic layout of how the proposed algorithm distributes work among the available
processors and solves the challenging least square problem in parallel.

The uncertainty propagation methodology adopted in this work require the construction of an

ensemble of computations. Due to the high cost of each solution - as it is common in multi-

disciplinary frameworks (i.e. aerodynamics, structure, control, etc.) - we have developed an envi-

ronment for optimal resource allocation on a UNIX multiprocessor cluster. Its structure is based on

a workflow managed via MATLAB through I/O that explicitly connects the software tools involved

in the process. It is designed to run natively on any high-performance computing (HPC) system,

by integrating with the job-submission/queuing system.

The vectorized matrix form used in our approach provides the accessibility to easy paralleliza-

tion. Here, the subsets are vectorized and then used to generate the required matrix. This allows

for the software platform to allocate the memory more efficiently. Even though it is vectorized,

the allocation of proposal measure as an each individual element of the matrix requires intense for
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loops, which is a necessary but quite an expensive step. In order to solve this problem, we are

using the distributed arrays functionality.

As demonstrated in the Figure 3.5, the distributed array shares the work with the available

processors in the system. It independently computes the decoupled matrix on each of its core

without needing to exchange the data in between. The individual processors here store the matrices

autonomously and hence will be able to compute all of them at the same time. We are using Sparse

QR decomposition technique to compute least square for the solution, since it is already made

possible to operate in parallel. This enables us to utilize the similar methodology without gathering

the data at the end of the loops. Therefore, the already parallelized matrices can directly be solved

saving computational time and storage space.
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4. BENCHMARK RESULTS

In this section we consider 5 different numerical examples to benchmark the proposed approach

and compare against the other change of measure techniques for the propagation of uncertainties.

These methods are Kernel Density Estimation (KDE), Gaussian Process (GP), and Least Square

Optimal (L2O). For this, we will assume that the measures, both proposal and target, are unknown.

However, we have x1, x2, ..., xn drawn from according to the proposal µ and similarly, we have

y1, y2, ..., ym drawn according to the target ν. We also have evaluations of each benchmark function

associated with the proposal samples, which generically we can denote as g(x1), g(x2), ..., g(xn).

The evaluation of each benchmark function associated with target samples g(y1), g(y2), ..., g(ym)

is unavailable. Instead of evaluating the computational model over the target samples, we employ

the change of measure to the proposal samples. The weighted proposal samples are then used to

evaluate statistics of the weighted evaluation function gw(x1), gw(x2), ..., gw(xn). The statistics of

interest for this experiment are the mean and the variance of each benchmark under the target distri-

bution, which is approximated by weighted proposal function evaluations. These approximations

are given as

Ew =
n∑
j=1

wjg(xj), (4.1)

and

Varw =
( V1
V 2
1 − V2

) n∑
j=1

wj(g(xj)− E(g(x))2, (4.2)

respectively, where V1 =
∑n

j=1w
j , V2 is the squared sum of weights V2 =

∑n
j=1(w

j)2. The

importance weights, wj , are obtained using KDE, GP and L2O for comparison approach.

The benchmark functions for which we test the change of measure approaches are:
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1. Oakley and O’Hagan Function (d=1) [51]:

g1 = 5 + t+ cos(t)

2. Short Column Function (d=3) [52]:

g2 = 1− 4M

bh2Y
− P 2

b2h2Y 2

3. Borehole Function (d=8) [53]:

g3 =
2u(Hu −Hl)

ln r
rw

1 +
2LTu

ln
(

r
rw

)
rw2Kw

+
Tu
Tl


4. Oakley and O’Hagan Multidimension Function (d=15) [51]:

g4 = 5 + Σ15
i=1(t

i + 2 ∗ cos ti)

5. Discontinuous Integrand Family (d=1) [54]:

f(t) =


0, if t > 0.5

exp(5 ∗ t), otherwise

For each benchmark, we describe the problem setup and present graphical results in terms of the

probability density functions and cumulative distribution functions of the outputs of each bench-

mark. We then conclude this section with a table that provides quantitative information regarding

the performance of each method on each benchmark.

Oakley and O’Hagan function. The Oakley and O’Hagan function [51] is a uni-dimensional

problem. The target distribution follows y ∼ N (0, 4) and the proposal distribution is selected to

be uniformly distributed over the range of target samples as shown in Table 4.1. The numerical
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experiment is conducted using 100 proposal random samples. The results of the experiment in

terms of the output probability density function (PDF) and cumulative distribution function (CDF)

for each method are shown in Figure 4.2. The results illustrate that the proposed approach produces

accurate PDF and CDF estimates and appears to be superior to the KDE, GP and L2O methods.

For this benchmark problem we also studied the convergence behavior of both the weighted

mean and weighted variance estimators for our proposed approach. The results of this study are

shown in Figure 4.1. This figure reveals that the proposed approach is converging in both mean

and variance to the target mean and variance. We note here again that the results of our method

used only function evaluations taken from the proposal measure and reweighted those results to

match the target. In the Figure 4.1, the blue lines represent Monte-Carlo convergence rates, which

are essentially being followed here.

Figure 4.1: Convergence results for the weighted mean and weighted variance estimators using
our proposed approach. The blue lines on each plot represent asymptotic brute force Monte Carlo
simulation convergence rates.
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Figure 4.2: Results of applying our proposed approach, the KDE approach, the GP approach and
the L2O approach to the Oakley & O’Hagan benchmark problem.
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Short Column Function. The Short Column Function is a three-dimensional problem that

takes Y as a lognormally distributed, M and P as normally distributed samples as target sam-

ples [53]. Proposal distribution are chosen on each dimension as shown below in Table 4.1. For

this benchmark, 5,000 proposal samples were used for each method. The proposal samples were

the same for each. The results of the experiment in terms of the output probability density function

(PDF) and cumulative distribution function (CDF) are shown in Figure 4.3. The figure reveals that

the our approach yields satisfactory results, however from the Table 4.2 GP and KDE performs

poorly. However, L2O performs well in comparison to our proposed approach. We note here that

the convergence rates of the mean and variance estimators for this problem showed similar trends

to those of the previous benchmark, as was the case for the following benchmarks as well.

Figure 4.3: Results of applying the developed approach on Short Column Function.

Borehole Function. The borehole function is a model of water flowing through a bore-

hole [53]. The radius of the borehole rw, radius of the influence r, transmissivity of upper aquifer

(m2/yr), potentiometric head of upper aquifer Hu (m), transmissivity of lower aquifer Tl (m2/year),

potentiometric head of lower aquifer Hl (m), length of borehole L (m) and hydraulic conductivity

of borehole Kw (m/yr) are problem constants. Thus, this benchmark is an eight-dimensional prob-

lem. For this problem, 50,000 proposal samples were used for each method. Proposal distribution
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is chosen on each dimension as shown below in Table 4.1. The results of the experiment in terms

of the output PDF and CDF for our proposed method are shown in the Figure 4.4. From the figure,

it is clear that our proposed approach is able to accurately match the target PDF and CDF for this

problem. We note that the GP, L2O and KDE methods were not able to produce satisfactory results

for this benchmark in terms of the PDF and CDF.

Figure 4.4: Results obtained from the developed approach as PDF and CDF of the Borehole Func-
tion.

Oakley and O’Hagan multi-dimensional Function. The Oakley and O’hagan multi-dimensional

funtion [55] is a family of benchmark problems that can be evaluated with any dimension. For this

demonstration, we use the fifteen-dimensional function to check our methods function-ability at

higher dimension. Such a high dimensional input is often beyond the capability of traditional im-

portance weighting methods. The target distribution follows the standard normal distribution for

each input. Proposal distribution is chosen on each dimension as shown below in Table 4.1. The

results of the experiment, which used 100,000 proposal samples, in terms of the PDF and CDF for

our proposed method are shown in the bottom plots of Figure 4.5. Even for this challenging prob-

lem, it is clear that our approach is capable of matching the target. We note that for this problem
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also, the GP, L2O and KDE methods were not able to produce satisfactory results in terms of the

PDF and CDF.

Figure 4.5: PDF and CDF of the weighted proposal, proposal and target random samples for
Oakley & O’hagan multi-dimensional function.

Discontinous Integrand Family. This Discontinous family of funtions can be quickly inte-

grated analytically and hence it can be used in multidimensional integration routine [24]. However,

this family of functions generates discontinuous system response. For this reason we will be tak-

ing this test problem to demonstrate the effectiveness of our approach in discontinuous space. The

results in terms of the CDF are shown in the Figure 4.6. Our proposed approach quickly estimated

the target CDF. Once again, the other benchmark problems could not produce satisfying results.
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Figure 4.6: Results in terms of CDF of discontinuous integrand function when the proposed ap-
proach is employed.

Problem Functions Target Distribution Proposal Distribution
Oakley & O’Hagan (1-D) N (µ = 0, σ2 = 4) U(−15, 15)

Short Column Function
Y ∼ L(a = 5, b = 0.5) Y ∼ L(a = 5.5, b = 0.7)

M ∼ N (µ = 2000, σ2 = 400) M ∼ U(500, 2500)
P ∼ N (µ = 500, σ2 = 100) P ∼ U(−350, 1100)

Borehole Function

rw ∼ N (µ = 0.10, σ2 = 0.017) rw ∼ N (µ = 0.9, σ2 = 0.02)
r ∼ L(a = 7.72, b = 1) r ∼ N (µ = 6.5, σ2 = 1)

Tu ∼ U(63, 116) Tu ∼ N (µ = 75, σ2 = 30)
Hu ∼ U(990, 1110) Hu ∼ N (µ = 1050, σ2 = 100)
Tl ∼ U(63.1, 116) Tl ∼ N (µ = 80, σ2 = 30)
Hl ∼ U(700, 820) Hl ∼ N (µ = 775, σ2 = 40)
L ∼ U(1120, 1680) L ∼ N (µ = 1400, σ2 = 50)
Kw ∼ U(9855, 12045) Kw ∼ N (µ = 11000, σ2 = 500)

Oakley & O’Hagan (15-D) N (µ = 0, σ2 = 1) U(−3, 3)
Discontinuous Integrand U(0, 1) B(a = 2, b = 1)

Table 4.1: The benchmark functions, target, and proposal distributions for comparison purpose.

To complete the comparative study, we present quantitative results regarding the performance

of each method on each benchmark. For all five benchmarks, the results are quantified by the ab-
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Problem Functions Evaluation Statistics Proposed Approach L2O GP KDE

Oakley & O’Hagan (1-D)
EE 0.009 0.02 0.05 0.36
EV 0.11 0.31 0.25 3.82

Short Column Function
EE 0.04 0.28 0.38 1.4
EV 0.09 0.14 0.3 0.48

Borehole Function
EE 0.45 2.5 5.21 9.87
EV 1.90 1.95 2.01 12.5

Oakley & O’Hagan (15-D)
EE 4.50 20.05 20.5 20.12
EV 6.11 9.80 10.5 13.54

Discontinuous Integrand
EE 0.0012 0.35 0.84 0.89
EV 0.01 0.21 0.65 0.67

Table 4.2: Tabulated results of the performance in terms of mean and variance estimation.

solute values of the difference between the mean of the target evaluation function and the weighted

mean of the proposal evaluation function. In addition, the absolute value of the difference between

the variances of the target and the weighted proposal evaluation function are compared. These

are denoted as EE and EV, respectively. The results from this numerical study are shown below

in the Table 4.2. The estimates of EE and EV are averaged over 100 independent and identically

conducted experiments. We note that our proposed approach, which computes importance weights

using the proposal and target measures directly, outperforms the industry standard KDE method,

GP method and the newly developed L2O approach.
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5. APPLICATION

5.1 Problem Setup

In this section we present a demonstration of our proposed importance weighting methodology

to a practical decomposition based uncertainty analysis problem. For this, we focus on a gas

turbine blade application. Our application problem consists of four different components, each on

their own represents disciplinary analysis: blade heat transfer, engine performance, turbine blade

lifetime, and an economic model. The complete system model and the functional relationships

between them is shown in the Figure 5.1.

Figure 5.1: The gas turbine problem contains four subsystems, each representing a disciplinary
analysis.
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The gas turbine model represents an organizational multidisciplinary environment where each

group is responsible for the assessment of different aspects of the problem. Hence, in order to

quantify and propagate uncertainties through the entire system, the decoupled decomposition based

assessment becomes useful. The specific objective of our analysis is to propagate the uncertainties

from the decoupled model chain inputs to the output of interest, here the economics of turbine

model. The uncertain input inputs, and their target distribution used for our analysis. These target

distributions are considered unknown the local uncertainty analysis is carried out on each individ-

ual four components.

Variable Name Description Distribution
t1 Tcool Coolant Temperature [K] U(550, 650)
t2 k Blade Thermal Conductivity [W/m/K] U(29, 31)
t3 hLE Leading Edge Heat Transfer Coefficient [W/m2/K] U(1975, 2025)
t4 hTE Trailing Edge Heat Transfer [W/m2] U(975, 1025)
t5 ṁ Coolant Mass Flow Rate [kg/sec] U(0.108, 0.132)
t6 Tg External Gas Path Temperature [K] U(1225, 1275)
t7 LMP Larson-Miller Parameter U(2.45 ∗ 104, 2.5 ∗ 104)
t8 Fperf Performance Factor U(0.85, 0.95)
t9 Fecon Economic Factor U(0.9, 1.1)

Table 5.1: Gas Turbine system input uncertainty distributions.

Heat Transfer Model The turbine blade heat transfer model with the help of finite element

analysis simulates a cooled gas turbine blade in hot gas path flow. The uncertain inputs to this

component is shown in Figure 5.1. The output of the heat transfer model is bulk metal temperature

(Tbulk) [K]. The output variable is calculated using a finite element method solved for the heat

equation.

Locally, this uncertainty propagation is carried out using the proposal random samples follow-

ing their respective proposal distribution as shown in the Table 5.2.

Lifetime Model The lifetime model estimates the expected time until the blade fails assuming

a Lason-Miller nickel super alloy stress-to-failure scenario. The inputs here are bulk metal temper-
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Variable Name Description Distribution
t1 Tcool Coolant Temperature [K] N (595, 50)
t2 k Blade Thermal Conductivity [W/m/K] N (29, 1.5)
t3 hLE Leading Edge Heat Transfer Coefficient [W/m2/K] N (975, 1025)
t4 hTE Trailing Edge Heat Transfer [W/m2] N (1000, 100)
t5 ṁ Coolant Mass Flow Rate [kg/sec] N (0.12, 10−4)
t6 Tg External Gas Path Temperature [K] N (1250, 100)

Table 5.2: Heat transfer model input proposal uncertainty distribution.

ature, which is the output of our first component, Tbulk, and Larson-Miller parameter, LMP [56].

The output of this subsystem is expected time until failure, tfail[hr]. The model evaluation function

is given by,

tfail = exp(LMP/Tbulk − 20) (5.1)

Similarly, the local proposal distribution and the sampled random variables are given in Ta-

ble 5.3.

Variable Name Description Distribution
t7 LMP Larson-Miller Parameter N (2.48 ∗ 10104, 200)
t10 Tbulk Bulk Metal Temperature [K] N (980, 20)

Table 5.3: Blade lifetime model input proposal uncertainty distribution.

Performance Model Here, we consider rather, a simplified low-fidelity performance model to

evaluate the maximum power output of the turbine system. It rewards high external hot gas oath

temperatures and penalizes the coolant flow usage. The output engine performance, Peng is defined

as,

Peng = Fperf (ṁo −Nṁ)CpTo(Tg/To − 2
√
Tg/To+ 1) (5.2)

where, Tg is the external gas temperature, Fperf is the performance factor introduced to account
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Variable Name Description Distribution
t5 ṁ Coolant Mass Flow Rate [kg/sec] N (0.115, 10−4)
t6 Tg External Gas Path Temperature [K] N (1240, 500)
t11 Fperf Performance Factor N (0.9, 0.02)

Table 5.4: Performance model input proposal uncertainty distribution

for the effect on engine performance of randomness associated with the gas turbine components,

N(= 90) is the number of gas turbine blade, inlet compressor flow rate ṁo(= 430[kg/sec]), Cp(=

1003.5[J/kg/K]) being the specific heat at constant pressure, and inlet compressor temperature

To(= 300[K]). The input proposal distribution assumed for the local analysis is given in Table 5.4.

Variable Name Description Distribution
t9 Fecon Economic Factor N (1.0, 0.01)
t12 tfail Blade Lifetime [year] N (200, 100)
t11 Peng Engine Performance [MW] N (120, 1)

Table 5.5: Economics model input proposal uncertainty distribution

Economics Model This model simulates and estimates the revenue generated from the oper-

ating gas turbine system. The model evaluation rewards a high-performance gas turbine engine

and penalizes a risky gas turbine engine. The inputs to this component are time until failure tfail,

engine performance factor Peng, and economic factor Fecon. The output is defined as,

recon = FecontfailPengco (5.3)

where co is the cost of energy which is taken as 0.07 [$/kWh]. The input proposal distribution

assumed are given below in the Table 5.5.
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5.2 System analysis

In the system level analysis, the analysis is carried out following the target input distribution

shown in Table 5.1. Global system analysis begins by evaluating the blade heat transfer model.

Blade heat transfer model and the performance model both rely solely on system level input vari-

ables and thus both require no information from the upstream components for the analysis purpose.

We obtain the target densities of the evaluated Tbulk and Peng. The same procedure is applied to

the lifetime model using the recently acquired input Tbulk to obtain the target density. Using the

target density of tfail, and system level inputs we acquire the desired target density of the output

of interest generated from the economic model, revenue. Here, in order to generate the target den-

sities, the system has to be in "online" phase, that is, the evaluation of the upstream components

requires evaluation of the downstream components, hence needing the continuous data from the

downstream.

5.3 Decomposition-based weighted uncertainty analysis

In the decomposition based approach, the importance weights calculated from individual com-

ponents are used to update the proposal distribution based model evaluations. Hence, simultaneous

corrections can be made without the need to couple the models. As shown in the Figure 5.2, the

bulk metal temperature distribution is corrected employing the importance weights obtained from

the proposal distribution of system inputs using the developed algorithm. The corrected distri-

bution is then used to obtain the blade lifetime distribution. Similarly, the correct distribution of

engine performance factor is constructed and together with the blade lifetime distribution as an

input the output of interest in constructed. We note that, model evaluations are not needed here to

estimate the required output distribution. The density of the output of interest Revenue from the

decomposition based weighted approach is given in the Figure 5.1. For comparison, the proposal

distribution and and the target monte-carlo analysis distribution from the system level assessment

is also given for each model response. Results show how the proposed approach can be utilized

to easier system level analysis. In particularly, the decomposition based approach several benefits
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Figure 5.2: The top left figure shows the bulk metal temperature coming out from the heat transfer
model, top right demonstrates the engine performance from the engine performance model, bottom
left image is for blade life until failure coming out from the lifetime model, and bottom right
is the final output of interest revenue generated from the economics model. Here, red line is
the results obtained from the proposal sample evaluations, blue line is the system level or target
Monte-Carlo simulations, and the dashed line is the result obtained from the decomposition-based
multi-component uncertainty analysis.

over the system level analysis in terms of flexibility. If any system input distributions are modified,

then the system output of interest can be recomputed without the additional need of component
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analysis. However, in case of system uncertainty propagation approach, the samples associated

with the modifications are to be reevaluated with respect to their associated component. In con-

trast, if the input distribution of the heat transfer model is changed, the recalculated importance

weights are employed at the already evaluated bulk metal temperature distribution for the proposal

samples and the updated target distribution can be estimated without the need of additional model

evaluation.
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6. CONCLUSION

In this chapter we provide the summary of the work done to meet the thesis objectives, the

contribution made to the community, and discuss future research work that should be considered.

6.1 Summary

Uncertainty propagation and change of measure are important tools in estimating the system

response under uncertainties. They are used wide-spread to support the confident decision making

process and to estimate the . In traditional approaches, the change of measure generally fails or

yields inaccurate results when used to estimate the response of a high dimensional input space.

The method presented here in the thesis tries to solve that problem by making the formulation

of importance weights a simple linear least square problem. Specifically, We have developed a

probability measure based approach to estimate the importance weights. The primary application

we have considered here is that of estimating statistics of a target distribution that has been prop-

agated through a computational model using only samples from a proposal distribution that has

been propagated through the same model. Natural need cases for such a capability include having

available historical data that does not conform to a desired input distribution, running an incor-

rect input distribution in an uncertainty propagation analysis, or decomposing a model chain for

uncertainty propagation with plans of updating samples as upstream information is generated.

It was shown how the developed method can be used to accurately and efficiently determine

the target statistics on various test problems. Additionally, the advantage of the approach was also

demonstrated for a decomposition based model chain application. The developed approach was

shown to be particularly useful and seem to work better in high dimensions than literature coun-

terparts such as density ratio methods based on kernel density estimation and the newly develop

L2-norm empirical cumulative distribution method, and regression methodology based gaussian

process approach. These examples demonstrated that non-intrusive uncertainty propagation meth-

ods can indeed be applied to all kinds of computational models and that it provides a powerful tool
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to predict the system volatility, reliability, failure under uncertain inputs.

The following contributions of this thesis are:

• A methodology that propagates uncertainties using change of measure which analytically

proven to converge in distribution to the target distribution.

• An easily scalable approach demonstrated to perform well in high-dimensional distributions.

A methodology enabling the system level uncertainty analysis using a decomposition based

approach.

• A demonstration of the developed approach on a more realistic problem.

6.2 Future Work

The work in this thesis provides several potential future opportunities. The biggest opportunity

is to formally understand the convergence behavior. The convergence behaviour would require the

theoretical formulation of the developed approach. Further research is also required to extend the

capability of our algorithm in highly complex and challenging model chains. Such examples and

model chains are available especially in material science.
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