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ABSTRACT

The advent of single molecule microscopy enabled the study of subcellular processes at the

single molecule level, which was not possible before through conventional microscopy. This work

makes contributions to parameter estimation in two important applications of single molecule mi-

croscopy: single molecule super-resolution microscopy and single molecule tracking.

In single molecule super-resolution microscopy, images of subsets of stochastically photoacti-

vated fluorophores are acquired over a sequence of frames. In order to construct a high-resolution

image of the structures labeled by these fluorophores, the locations of the fluorophores are accu-

rately estimated in each frame. In this study, we develop a novel state space-based fluorophore

localization method from multi-emitter super-resolution images. An important property of our

proposed method is its capability to distinguish very closely spaced molecules and estimate their

locations accurately. Moreover, in contrast to most of the available methods that need prior knowl-

edge about the number of emitting fluorophores in the image, our method determines this number

using a procedure that utilizes a least-squares criterion.

Study of intercellular and intracellular trafficking processes of single molecules plays an impor-

tant role in biological studies. Most of available single molecule trajectory parameter estimation

methods are limited to Brownian motion and Gaussian measurement models.

Another contribution of this research is the development of a stochastic framework to calcu-

late the maximum likelihood estimates of the biophysical parameters of biomolecular interactions,

e.g., drift and diffusion coefficients, where the motion of an object of interest, e.g., single molecule,

is modeled more generally by stochastic differential equations, and the measurements are the de-

tected photons emitted by the moving fluorescently labeled object using both ideal unpixelated and

practical pixelated detectors, such as charge-coupled device (CCD) and electron multiplying CCD

(EMCCD) cameras.

More importantly, we develop a general framework to calculate the Cramér-Rao lower bound

(CRLB), given by the inverse of the Fisher information matrix, for the estimation of unknown

ii



parameters and use it as a benchmark in the evaluation of the standard deviation of the estimates.
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1. INTRODUCTION

The advent of optical microscopy has revolutionized biological investigations by providing a

powerful tool for the observation of cellular structures at a high magnification that enables the

revelation of many details of the structures that are not visible with the naked eye. Among all

microscopy modalities, fluorescence microscopy has been of particular interest in biological re-

search. In contrast to basic optical microscopy methods, in which light passes through a sample

of interest and is captured by a detector, in fluorescence microscopy, the sample is labeled by flu-

orescent markers and illuminated by an excitation light with a specific wavelength. As a result,

the fluorescent molecules emit light with a higher wavelength, which further will be captured by a

detector and form an image of the sample. It allows biologists to observe specific molecules within

their cellular context, which is not possible through other microscopy modalities.

During the recent past decades, the performance of fluorescence microscopy methods has been

improved significantly due to the advances in technological developments. Examples include the

developments of highly sensitive detectors, e.g., charge-coupled devices (CCDs), electron multi-

plying CCD (EMCCD) and scientific complementary metal-oxide semiconductors (sCMOS) cam-

eras, high speed computers used to control imaging experiments and microscopy image analysis

algorithms. Moreover, many fluorescent markers, e.g., fluorescent proteins (FPs), organic dyes

and quantum dots, have been developed to label protein molecules in living cells. These advances

enable the study of cellular processes at the single molecule level.

1.1 Single molecule microscopy

Traditionally, microscopy studies were bulk studies, i.e., the information from such studies

came from several closely spaced molecules. Therefore, these studies reflected the behavior of

ensembles of molecules as opposed to individual ones [1]. Single molecule microscopy, the No-

bel prize-winning technique, has revolutionized the field of microscopy by providing quantitative

information on the behavior of individual molecules in cellular environments, which were not
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available before through bulk studies [2, 3, 4, 5, 6, 7]. Understanding the intracellular dynamics

through different molecular pathways has been greatly benefited from the analysis of data acquired

using single molecule microscopy techniques [8, 9]. There are many challenges that need to be ad-

dressed in the application of single molecule microscopy techniques. Here, we study two specific

applications of these techniques: single molecule super-resolution microscopy and single molecule

tracking.

Single molecule super-resolution microscopy enables imaging at sub-diffraction limit resolu-

tion by producing images of subsets of stochastically photoactivated fluorophores over a sequence

of frames. In each frame of the sequence, the fluorophores are accurately localized, and the esti-

mated locations are used to construct a high-resolution image of the cellular structures labeled by

the fluorophores.

Another important application in the realm of single molecule data analysis is single molecule

tracking, which plays an important role in the study of dynamic processes in living cells. Protein

transport within and across cells is vital in maintaining normal cellular function. In biological stud-

ies, single molecule tracking methods have been used to study intracellular trafficking processes,

which is very important to understanding the molecular basis of different types of diseases caused

by the defects in these processes. In the following, we review the state-of-the-art methods proposed

in the fields of single molecule super-resolution microscopy and single molecule tracking.

1.2 Single molecule super-resolution microscopy

Single molecule super-resolution methods have been successful at achieving sub-diffraction-

limit resolution based on two key innovations: photoactivable fluorophores and powerful fluo-

rophore localization algorithms [10]. In these methods, a fluorescently labeled cellular structure

is imaged over a sequence of frames. In each frame, only a small number of stochastically pho-

toactivated fluorophores are detected. In order to construct a high-resolution image of the cellular

structure, the locations of individual emitting fluorophores are estimated with sub-pixel precision

from each frame and used to re-render the structure. Many fluorophore localization methods are

available, and they typically comprise the following separate steps: a detection step that identifies
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the regions in the image that contain emitting fluorophores, and an estimation step that determines

the locations of these fluorophores accurately. In recent years, several methods have been devel-

oped that use fitting-based algorithms to solve the estimation problem. The basis of most of these

methods is to fit a point spread function (PSF) model to the acquired data and estimate the parame-

ters of the model by minimizing the difference between the data and the model through an iterative

approach. For example, in [11], a method was proposed that uses the maximum likelihood estima-

tor to localize multiple emitters simultaneously within a two-dimensional (2D) fitting subregion.

Similarly, the DAOSTORM algorithm [12] fits multiple PSFs in a recursive approach by analyzing

pixel clusters in the residual image. In this algorithm, the fluorophore locations are determined by

minimizing a least-squares criterion.

Fitting-based algorithms are not the only approaches used to solve the estimation problem

for multi-emitter images. Many other localization methods have been developed that use non-

fitting algorithms for the estimation problem. These methods are preferable when accurate PSF

and noise models are not available. As an example, the QuickPALM software uses the simple

centroid method [13, 14]. In this method, the fluorophore location is estimated as the average

photon location, or centroid. However, the image background causes a systematic deviation in

centroid-based methods. To solve the background bias problem in centroid-based methods, the

virtual window center of mass (VWCM) method has been demonstrated to be a good background-

corrected centroid estimator [15]. Although centroid methods are fast and computationally simple,

their accuracy is not comparable to that of good fitting-based methods. Another important class

of non-fitting algorithms has been developed based on sparse support recovery methods [16]. The

compressive-sensing-based method CSSTORM [17], structured sparse model and Bayesian infor-

mation criterion (SSC-BIC) [18], and fast localization algorithm based on a continuous space for-

mulation (FALCON) [19] are well-known examples of such algorithms. Among them, CSSTORM

has been shown to achieve accurate localization for emitter densities as high as 10 emitters/µm2

[20]. In this method, a large-scale convex optimization problem needs to be solved in an itera-

tive approach [21]. Huang et al. [20] have proposed a non-fitting algorithm by transferring the
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molecule localization problem to the frequency domain. Their proposed algorithm is based on

a 2D spectrum-estimation method called matrix enhancement and matrix pencil (MEMP) [22].

MEMP can provide a significant speed advantage over CSSTORM while retaining the same level

of accuracy (it is 100 times faster than CSSTORM with l1-homotopy [20]). Huang et al., however,

assume that the PSF can be approximated by a Gaussian function, which can be problematic in

practice due to the fact that the Gaussian model is often not an accurate analytical PSF.

1.3 Single molecule tracking

The ability to track objects of interest, e.g., subcellular organelles and molecules, in cellular

environments plays an important role in studying biological systems. In particular, single molecule

tracking, which enables following subcellular processes at the single molecule level, has become

a vital tool in cell biology [23, 24, 25, 26]. In biological studies, single molecule tracking meth-

ods have been used to study the intracellular trafficking of fluorescently labeled antibodies, e.g.,

prostate-specific membrane antigen (PSMA) antibodies [27, 28], by analyzing the velocity and

path of the fluorescent molecules.

In general, the motion of an object in cellular environments is subject to different types of

forces, e.g., deterministic forces due to the environment and random forces due to random colli-

sions with other objects [29, 30]. It has been shown that the motion of a moving object in such en-

vironments can be modeled by stochastic differential equations (SDEs) [31]. In particular, in many

biological applications, solutions of linear SDEs are good fits to experimental single molecule tra-

jectories [32, 33, 34]. In a basic fluorescence microscope, a fluorescently labeled object of interest

is imaged by a detector which detects the photons emitted by the object during the acquisition

time. Since the detection process of the emitted photons is inherently a random phenomenon, the

acquired measurements are stochastic in nature. These measurements, according to the optical

diffraction theory, can be modeled by different distributions. For example, a typical distribution

for an in-focus molecule is an Airy profile [35], whereas, classical Born and Wolf profiles [36]

are used instead for out-of-focus molecules. In some cases, it is possible and computationally

beneficial to approximate these complex profiles with simple Gaussian models [37].
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In many dynamical systems, the time points of the measurements are assumed to be equidistant.

However, the time points of detection of the photons correspond to the arrival times of a Poisson

process [6, 7]. This gives rise to the non-uniform sampling of the continuous-time stochastic

process that describes the motion of the object. Since the parameters of the motion model of

the object are highly time-dependent, this randomized non-uniform sampling causes significant

fluctuations in the values of these parameters.

In recent years, many methods have been developed to analyze the trajectories of a molecule

in cellular environments. In most of these methods, the model for the motion of the molecule is

assumed to be limited to a Brownian motion (pure diffusion) model described only by the diffu-

sion coefficient, and only a small number of the available methods consider more general motion

models. The methods developed to analyze pure diffusion models are mostly based on the mean

square displacement approach [38], in which the diffusion coefficient is estimated by a linear re-

gression of the mean square displacement of the Gaussian distributed observed locations of the

molecule as a function of the time lag [39, 40, 41]. Mean square displacement-based methods are

not the only approaches used to estimate the diffusion coefficient from a set of measurements. For

example, Relich et al. [42] have proposed a method for the maximum likelihood estimation of the

diffusion coefficient, with an information-based confidence interval, from Gaussian measurements.

In all of these methods, the motion of a molecule is assumed as a pure diffusion model, and the

measurements are modeled by independent and identically distributed Gaussian random variables

[26].

However, in general, the motion of a molecule is not limited to the pure diffusion model,

and the diffusion coefficient is only one of the parameters that play a role in the motion of the

molecule. Also, the Gaussian assumption for the measurements is problematic in practice due

to the fact that the Gaussian model is often not an accurate analytical model. In [43], Ashley

and Andersson have proposed a simultaneous localization and parameter estimation algorithm for

more complex motion models, such as confined [31] and tethered motions [44], which employs the

expectation maximization algorithm, in conjunction with sequential Monte Carlo methods [45].
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For the general object tracking problem, in [46, 47], a sequential Monte Carlo method has been

developed for the parameter estimation from nonlinear non-Gaussian state-space models. Briane

et al. [30] have developed a method for classifying the object trajectories in living cells into three

types of diffusion: Brownian motion, subdiffusion (diffusion in a closed domain or a crowded

area) and superdiffusion (diffusion in a specific direction). In [32, 33, 34], the motion of a moving

object has been described more generally by a linear SDE, and the parameters of the model have

been estimated using a maximum likelihood estimation method. However, they do not consider

the randomness of the time points at which the measurements occur. Their proposed framework

also does not allow for non-Gaussian measurements.

1.4 Overview of the thesis

Estimation of the parameters of stochastic models that describe the image formation of single

molecules and their trajectories in cellular environments from microscopy data is a critical task

in the analysis of single molecule data. In summary, We propose (1) a novel location estimation

method from super-resolution single molecule microscopy image data, and (2) a stochastic frame-

work in which we calculate the maximum likelihood estimates of the biophysical parameters of

the molecular interactions, e.g., diffusion and drift coefficients, from single molecule trajectory

data. More importantly, we develop a general framework to calculate the Cramér-Rao lower bound

(CRLB), given by the inverse of the Fisher information matrix, for the estimation of unknown

parameters and use it as a benchmark in the evaluation of the standard deviation of the estimates.

The organization of the dissertation is as follows. Chapter 2 is devoted to introducing a state

space algorithm for single molecule localization in a non-iterative manner. Generally, a single

molecule fluorescence image contains multiple peaks of intensity that correspond to emitting flu-

orophores. Our solution is to model such an image by the frequency response of a multi-order

system, as the locations of the poles of such a system determine the peak locations in the fre-

quency domain. To realize this localization algorithm, we take advantage of the balanced state

space realization algorithm used in [48, 49, 50] for the reduction of noise in fluorescence mi-

croscopy images. This realization algorithm is based on the singular value decomposition (SVD)

6



of a Hankel matrix. To associate the peak locations in the image with the poles of the underlying

system, we apply this realization algorithm to the inverse Fourier transform of the image rather

than to the image itself. In our algorithm, the number of emitting fluorophores, which correspond

to the most significant peaks in the image, is ultimately determined using a procedure that utilizes

a least-squares criterion. Our algorithm also allows us to derive a theoretical reconstruction of the

image. A reconstructed image is an image that looks similar to the original image, but is specified

analytically in terms of the state space parameters of the system calculated using our proposed

localization algorithm.

In Chapter 3, we introduce a general state space system to model the motion of a fluorescently

labeled molecule in cellular environments. We assume that we have an ideal and unpixelated

detector and the measurements are the locations and time points of the detected photons emitted by

the molecule, referred to as the fundamental data model. Our model allows for Poisson time points

and arbitrary distributed, e.g, Airy and Born and Wolf, locations. We then develop a stochastic

framework in which we calculate the maximum likelihood estimates of the parameters of the model

that describes the motion of the molecule in cellular environments.

Chapter 4 discusses the performance of the proposed estimation method in Chapter 3, in terms

of the standard deviation of the estimates. For the purpose of evaluating the performance of our

proposed estimation method, we develop a general framework to calculate the Fisher information

matrix of the unknown parameters of the general motion model. There are some cases in which

Gaussian approximations of measurements are very useful due to, for example, the ability to use

computationally efficient algorithms in linear systems or the Kalman filter formulae. In particular,

for Gaussian measurements, we calculate the Fisher information matrix by taking advantage of

its relationship with the Kalman filter formula through a computationally efficient algorithm. To

the best of our knowledge, even for Gaussian measurements, there currently exists no systematic

methodology to evaluate the standard deviations of the estimates using the CRLB for the general

motion model considered here.

Chapter 5 deals with the effect of pixelation of the detector on the parameter estimation of
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single molecule trajectories and Fisher information matrix. In Chapters 3 and 4, we focused on

the fundamental microscopy data model, in which the image of a molecule is acquired by an

unpixelated detector. However, in practice, pixelated detectors, e.g., CCD cameras, are commonly

used for acquiring the image of the fluorescently labeled molecule. In this chapter, we extend our

previous results obtained from unpixelated detectors to pixelated detectors.

Finally, a summary of the thesis and conclusions are provided in Chapter 6.
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2. A STATE SPACE APPROACH TO SINGLE MOLECULE LOCALIZATION IN

FLUORESCENCE MICROSCOPY∗

2.1 Introduction

Single molecule super-resolution microscopy enables imaging at sub-diffraction-limit resolu-

tion by producing images of subsets of stochastically photoactivated fluorophores over a sequence

of frames. In each frame of the sequence, the fluorophores are accurately localized, and the es-

timated locations are used to construct a high-resolution image of the cellular structures labeled

by the fluorophores. Many methods have been developed for localizing fluorophores from the im-

ages. The majority of these methods comprise two separate steps: detection and estimation. In

the detection step, fluorophores are identified. In the estimation step, the locations of the identified

fluorophores are estimated through an iterative approach.

In this chapter, we propose a non-iterative state space-based localization method which com-

bines the detection and estimation steps. Generally, a single molecule fluorescence image contains

multiple peaks of intensity that correspond to emitting fluorophores. Our solution is to model such

an image by the frequency response of a multi-order system, as the locations of the poles of such

a system determine the peak locations in the frequency domain. To realize this localization al-

gorithm, we take advantage of the balanced state space realization algorithm used in [48, 49, 50]

for the reduction of noise in fluorescence microscopy images. This realization algorithm is based

on the singular value decomposition of a Hankel matrix. To associate the peak locations in the

image with the poles of the underlying system, we apply this realization algorithm to the inverse

Fourier transform of the image rather than to the image itself. In our algorithm, the number of

emitting fluorophores, which correspond to the most significant peaks in the image, is ultimately

determined using a procedure that utilizes a least-squares criterion. Our algorithm also allows us

to derive a theoretical reconstruction of the image. A reconstructed image is an image that looks

∗Reprinted with permission from “State space approach to single molecule localization in fluorescence mi-
croscopy,” by M. R. Vahid, J. Chao, D. Kim, E. S. Ward, and R. J. Ober, 2017. Biomedical Optics Express, vol.
8, no. 3, pp. 1332-1355, Copyright 2017 by Optical Society of America.
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similar to the original image, but is specified analytically in terms of the state space parameters of

the system calculated using our proposed localization algorithm.

Note that the realization algorithm from [50] was developed for the reduction of noise in a

three-dimensional (3D) data set comprising a z-stack of microscopy images. Here, we apply a 2D

version of that realization algorithm because the super-resolution microscopy data sets for which

we develop our localization algorithm consist of 2D images that are analyzed independently of one

another. Our localization algorithm, however, can be extended to the 3D localization of fluorescent

emitters from a z-stack by simply applying the 3D version of the realization algorithm as presented

in [50]. In the following, we first show the existence of minimal and asymptotically stable systems

that realize a 2D image in the frequency domain.

2.2 System identification using frequency measurements

In this section, we show the existence of minimal and asymptotically stable systems that re-

alize a finite 2D sequence in the frequency domain. We begin by demonstrating the existence of

minimal and asymptotically stable systems for finite one-dimensional (1D) sequences in Lemma

1, using a subspace-based method similar to that described in [51], and then extend the result to

two dimensions in Theorem 1. The basis of Lemma 1 is given by Proposition 1, which states that a

finite 1D data set can be expressed as the impulse response of a minimal and asymptotically stable

system [50]. Note that the stability of subspace methods was analyzed previously by Maciejowski

in [52], where similar results were reported.

Proposition 1. For positive integer N , let X(n) ∈ Cp×m, p,m ∈ N, n = 1, 2, ..., N , be a 1D

matrix-valued sequence. Then, there exists a minimal and asymptotically stable system (A,B,C),

such that

X(n) = CAn−1B, n = 1, 2, ..., N. (2.1)

Proposition 1 enables us to write the following lemma, which shows the existence of a minimal

and asymptotically stable system that realizes a finite 1D sequence in the frequency domain.

Lemma 1. Let X̃(k) ∈ R, k = 1, 2, ..., N , be a finite 1D sequence. For n = 1, 2, ..., N , let
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X(n) := (IDFT (X̃))(n) = 1
N

∑N
k=1 X̃(k)ei2πkn/N be the inverse discrete Fourier transform

(inverse DFT, or IDFT) of X̃ . Then, there exists a minimal and asymptotically stable system

(A,B,C), such that

X(n) = CAn−1B, n = 1, 2, ..., N. (2.2)

Moreover,

X̃(k) = C̃(ei2πk/NI − Ã)−1B̃, k = 1, 2, ..., N, (2.3)

where Ã := A, B̃ := (I − AN)B, C̃ = C. If AN = 0, then (Ã, B̃, C̃) = (A,B,C).

Proof. Let X̃(k) ∈ R, k = 1, 2, ..., N , be a finite 1D sequence. Let

X(n) := (IDFT (X̃))(n) =
1

N

N∑
k=1

X̃(k)ei2πkn/N , n = 1, 2, ..., N, (2.4)

be the IDFT of X̃ . Then, according to Proposition 1, there exists a minimal and asymptotically

stable system (A,B,C), such that

X(n) = CAn−1B, n = 1, 2, ..., N. (2.5)

According to Eqs. (2.4) and (2.5), we then have, for k = 1, 2, ..., N ,

X̃(k) = (DFT (X))(k)

=
N∑
n=1

X(n)e−i2πkn/N

= CBe−i2πk/N + CABe−i4πk/N + · · ·+ CAN−1Be−i2πkN/N

= Ce−i2πk/N
(
I + Ae−i2πk/N + · · ·+ AN−1e−i2πk(N−1)/N

)
B

= Ce−i2πk/N

[
N−1∑
n=0

(
Ae−i2πkn/N

)n]
B. (2.6)

For a square matrix T ∈ Cm×m,m ∈ N, where the number 1 is not an eigenvalue of T , we have
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the identity
∑N−1

n=0 T
n = (I − T )−1(I − TN). Then, since the realization (A,B,C) is asymp-

totically stable, i.e., |λ(A)| < 1 holds for any eigenvalue λ(A) of A, the number 1 is not an

eigenvalue of Ae−i2πk/N , k = 1, ..., N (or equivalently, I − Ae−i2πk/N , k = 1, ..., N , is invertible),

and
∑N−1

n=0

(
Ae−i2πk/N

)n
= (I − Ae−i2πk/N)−1(I − AN). Substituting this expression into Eq.

(2.6), we have, for k = 1, 2, ..., N ,

X̃(k) = Ce−i2πk/N(I − Ae−i2πk/N)−1(I − AN)B

= C(ei2πk/NI − A)−1(I − AN)B

= C̃(ei2πk/NI − Ã)−1B̃, (2.7)

where Ã := A, B̃ := (I − AN)B, C̃ = C. If AN = 0, then (Ã, B̃, C̃) = (A,B,C).

In the following theorem, we extend the results obtained for 1D sequences to 2D sequences.

Theorem 1. Let X̃(k1, k2) ∈ R, ki = 1, 2, ..., Ni, i = 1, 2, be a finite 2D sequence. For ni =

1, 2, ..., Ni, i = 1, 2, let

X(n1, n2) := (IDFT2D(X̃))(n1, n2) =
1

N1N2

N1∑
k1=1

N2∑
k2=1

X̃(k1, k2)ei2π(k1n1/N1+k2n2/N2), (2.8)

be the inverse 2D DFT of X̃ . Then, there exist minimal and asymptotically stable systems

(Ai, Bi, Ci), i = 1, 2, such that

X(n1, n2) = X1(n1)X2(n2), ni = 1, 2, ..., Ni, i = 1, 2, (2.9)

where, for i = 1, 2,

Xi(ni) := CiA
ni−1
i Bi, ni = 1, 2, ..., Ni. (2.10)

Moreover,

X̃(k1, k2) = X̃1(k1)X̃2(k2), ki = 1, 2, ..., Ni, i = 1, 2, (2.11)
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where, for kj = 1, 2, ..., Nj, j = 1, 2,

X̃j(kj) := C̃j(e
i2πkj/NjI − Ãj)−1B̃j, (2.12)

where Ãj := Aj, B̃j := (I − ANjj )Bj, C̃j := Cj . For j = 1, 2, if ANjj = 0, then (Ãj, B̃j, C̃j) =

(Aj, Bj, Cj).

Proof. Let X̃(k1, k2) ∈ R, ki = 1, 2, ..., Ni, i = 1, 2, be a finite 2D sequence. For ni = 1, ..., Ni, i =

1, 2, let

X(n1, n2) := (IDFT2D(X̃))(n1, n2) =
1

N1N2

N1∑
k1=1

N2∑
k2=1

X̃(k1, k2)ei2π(k1n1/N1+k2n2/N2), (2.13)

be the inverse 2D DFT of X̃ . Arrange the entries of X to form a matrix Q as

Q :=



X(1, 1) X(1, 2) · · · X(1, N2)

X(2, 1) X(2, 2) · · · X(2, N2)

...
... . . . ...

X(N1, 1) X(N1, 2) · · · X(N1, N2)


. (2.14)

Decompose Q via SVD as Q = UΣV , where for r ∈ N, U ∈ CN1×r,Σ ∈ Cr×r and V ∈ Cr×N2 .

For ni = 1, 2, ..., Ni, i = 1, 2, define X1(n1) ∈ C1×r and X2(n2) ∈ Cr×1, such that



X1(1)

X1(2)

...

X1(N1)


:= UΣ1/2,

[
X2(1) X2(2) · · · X2(N2)

]
:= Σ1/2V. (2.15)

Then

X(n1, n2) = X1(n1)X2(n2), ni = 1, 2, ..., Ni, i = 1, 2. (2.16)
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Moreover, according to Proposition 1, there exist minimal and asymptotically stable systems

(Ai, Bi, Ci), i = 1, 2, such that, for i = 1, 2,

Xi(ni) = CiA
ni−1
i Bi, ni = 1, 2, ..., Ni. (2.17)

According to Eqs. (2.13) and (2.16),

X̃(k1, k2) = (DFT2D(X))(k1, k2)

=

N1∑
n1=1

N2∑
n2=1

X(n1, n2)e−i2π(k1n1/N1+k2n2/N2)

=

(
N1∑
n1=1

X1(n1)e−i2πk1n1/N1

)(
N2∑
n2=1

X2(n2)e−i2πk2n2/N2

)

= X̃1(k1)X̃2(k2), ki = 1, 2, ..., Ni, i = 1, 2, (2.18)

where X̃i(ki) := (DFT (Xi))(ki), ki = 1, 2, ..., Ni, i = 1, 2. Then, according to Lemma 1, for

kj = 1, 2, , ..., Nj, j = 1, 2,

X̃j(kj) := C̃j(e
i2πkj/NjI − Ãj)−1B̃j, (2.19)

where Ãj := Aj, B̃j := (I − ANjj )Bj, C̃j := Cj . For j = 1, 2, if ANjj = 0, then (Ãj, B̃j, C̃j) =

(Aj, Bj, Cj).

2.3 Location estimation

So far, we have shown the existence of minimal and asymptotically stable systems (Ai, Bi, Ci),

i = 1, 2, that realize a finite 2D sequence X̃(k1, k2) ∈ R, ki = 1, 2, ..., Ni, i = 1, 2, in the frequency

domain. Here, we summarize our overall localization approach. Given that X̃ is a single molecule

image with multiple peaks of intensity, we determine the locations of the molecules by calculating

the pole locations of (Ai, Bi, Ci), i = 1, 2.

In Theorem 1, we have shown that there exist minimal and asymptotically stable systems
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(Ai, Bi, Ci), i = 1, 2, such that

X̃(k1, k2) = X̃1(k1)X̃2(k2), ki = 1, 2, ..., Ni, i = 1, 2, (2.20)

where, for kj = 1, 2, ..., Nj, j = 1, 2,

X̃j(kj) := C̃j(e
i2πkj/NjI − Ãj)−1B̃j, (2.21)

where Ãj := Aj, B̃j := (I−ANjj )Bj , and C̃j := Cj . For j = 1, 2, if ANjj = 0, then (Ãj, B̃j, C̃j) =

(Aj, Bj, Cj). If we diagonalize Ai, i = 1, 2, then the diagonal elements of the resulting matrix

Āi give the poles of the system. In the following, we use matrix diagonalization in Eq. (2.20) to

express X̃ in terms of the poles of the system.

For s1, s2 ∈ N and Ai ∈ Csi×si , i = 1, 2, which are diagonalizable, i.e., for ti = 1, 2, ..., si, i =

1, 2, and some invertible Ti ∈ Csi×si , we have the diagonal matrix Āi := TiAiT
−1
i = diag(ai1, · · · ,

aisi), a
i
ti
∈ C, then with B̄i := TiBi =

[
bi1, · · · , bisi

]T
, C̄i := CiT

−1
i =

[
ci1, · · · , cisi

]
, i = 1, 2,

where b1
t1
∈ C1×r, b2

t2
∈ C, c1

t1
∈ C, c2

t2
∈ Cr×1, ti = 1, 2, ..., si, i = 1, 2, for kj = 1, 2, ..., Nj, j =

1, 2, we can write X̃ in terms of the poles of the system as

X̃(k1, k2) =

2∏
j=1

C̄j(e
i2πkj/NjI − Āj)−1B̄j

= C̄1



b11c
2
1

(ei2πk1/N1−a11)(ei2πk2/N2−a21)

b11c
2
2

(ei2πk1/N1−a11)(ei2πk2/N2−a22)
· · · b11c

2
s2

(ei2πk1/N1−a11)(ei2πk2/N2−a2s2 )

b12c
2
1

(ei2πk1/N1−a12)(ei2πk2/N2−a21)

b12c
2
2

(ei2πk1/N1−a12)(ei2πk2/N2−a22)
· · · b12c

2
s2

(ei2πk1/N1−a12)(ei2πk2/N2−a2s2 )

...
...

. . .
...

b1s1
c21

(ei2πk1/N1−a1s1 )(ei2πk2/N2−a21)

b1s1
c22

(ei2πk1/N1−a1s1 )(ei2πk2/N2−a22)
· · · b1s1

c2s2
(ei2πk1/N1−a1s1 )(ei2πk2/N2−a2s2 )


B̄2

=

s1∑
l=1

s2∑
j=1

c1l b
1
l c

2
jb

2
j

(ei2πk1/N1 − a1
l )(e

i2πk2/N2 − a2
j )
. (2.22)

Equation (2.22) provides an analytical expression for the reconstructed image, in which the poles

of X̃ occur at (a1
t1
, a2

t2
), ti = 1, ..., si, i = 1, 2. (Note that for ti = 1, ..., si, i = 1, 2, if the row

b1
t1

of B̄1 and the column c2
t2

of C̄2 are perpendicular, i.e., b1
t1
c2
t2

= 0, then the residual of the

pole (a1
t1
, a2

t2
) is equal to zero, and (a1

t1
, a2

t2
) is not associated with a peak in the corresponding 2D
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image.)

We next obtain the locations of the molecules in the object space in terms of the phase of the

calculated poles. Let the 2D sequence X̃ denote the pixel intensities of our N1 × N2 image with

pixel width ∆x and pixel height ∆y, obtained by sampling the image at the center of each pixel.

Assume ajtj =
∣∣∣ajtj ∣∣∣ eiwjtj , 0 ≤ wjtj ≤ 2π, tj = 1, ..., sj, j = 1, 2. Then, by linearly mapping a 2π ×

2π square region in the frequency domain to the region with areaN1×N2 pixels in the image space

(between the center of the first pixel and the center of the last pixel) and converting from image

space units to object space units, the set containing the peak locations (i.e., the molecule locations)

in the object space is given by
{

(xt2 , yt1) : c1
t1
b1
t1
c2
t2
b2
t2
6= 0, ti = 1, ..., si, i = 1, 2

}
, where

xt2 :=
∆xw2

t2
N1

2Mπ
+

∆x

2M
, yt1 :=

∆yw1
t1
N2

2Mπ
+

∆y

2M
, (2.23)

and M > 0 denotes the lateral magnification of the microscope system.

2.4 Algorithm

We now explain our proposed approach in more detail. In Section 2.3, we have calculated

the poles of a 2D single molecule image X̃ in terms of the elements of minimal and asymptoti-

cally stable systems (Ai, Bi, Ci), i = 1, 2. Here, using the balanced state space realization algo-

rithm introduced by Maciejowski [52], we propose a step-by-step algorithm to calculate systems

(Ai, Bi, Ci), i = 1, 2, that realize X̃ , and to determine the locations of the single molecules using

the realization.

Algorithm 1. Let X̃(k1, k2) ∈ R, ki = 1, 2, ..., Ni, i = 1, 2, represent the acquired image data.

I. Subtract an estimated background level β̂, e.g., the average of the data points near the bound-

ary of the image data X̃ , from the image data X̃ , and define the background-subtracted image X̃bs

as

X̃bs(k1, k2) := X̃(k1, k2)− β̂, ki = 1, 2, ..., Ni, i = 1, 2. (2.24)
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II. Let X be the 2D IDFT of X̃bs, i.e.,

X(n1, n2) := (IDFT2D(X̃bs))(n1, n2), ni = 1, 2, ..., Ni, i = 1, 2. (2.25)

III. Arrange the entries of X to form a matrix Q as

Q :=



X(1, 1) X(1, 2) · · · X(1, N2)

X(2, 1) X(2, 2) · · · X(2, N2)

...
... . . . ...

X(N1, 1) X(N1, 2) · · · X(N1, N2)


. (2.26)

Decompose Q via SVD as Q = UΣV . Let the positive integer r ≤ K,K = min(N1, N2),

denote the number of retained singular values (see Section 2.4.1). Partition Σ = diag(Σ̂,
ˆ̂
Σ), Σ̂ ∈

Cr×r, U =

[
Û

ˆ̂
U

]
, Û ∈ CN1×r, and V =

[
V̂

ˆ̂
V

]T
, V̂ ∈ Cr×N2 . For ni = 1, 2, ..., Ni, i = 1, 2,

define Xr
1(n1) ∈ C1×r and Xr

2(n2) ∈ Cr×1, such that



Xr
1(1)

Xr
1(2)

...

Xr
1(N1)


:= ÛΣ̂1/2,

[
Xr

2(1) Xr
2(2) · · · Xr

2(N2)

]
:= Σ̂1/2V̂ . (2.27)

IV. Construct the Hankel matrices H1 ∈ C(N1+1)×(N1+1)r, H2 ∈ C(N2+1)r×(N2+1) as

Hi :=



Xr
i (1) Xr

i (2) · · · Xr
i (Ni − 1) Xr

i (Ni) 0

Xr
i (2) Xr

i (3) · · · Xr
i (Ni) 0 0

...
... . . . ...

...
...

Xr
i (Ni) 0 · · · 0 0 0

0 0 · · · 0 0 0


, i = 1, 2, (2.28)

where 0 denotes a block of zeros of the corresponding size. For i = 1, 2, decompose Hi via
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SVD as Hi = UiΣiVi. Let the positive integers si ≤ Ni, i = 1, 2, denote the numbers of

retained singular values in the respective SVDs (see Section 2.4.2). For i = 1, 2, partition

Σi = diag(Σ̂i,
ˆ̂
Σi), Σ̂i ∈ Csi×si , Ui =

[
Ûi

ˆ̂
Ui

]
, Û1 ∈ C(N1+1)×s1 , Û2 ∈ C(N2+1)r×s2 , and

Vi =

[
V̂i

ˆ̂
Vi

]T
, V̂1 ∈ Cs1×(N1+1)r, V̂2 ∈ Cs2×(N2+1), conformally. Let Cr;s1

1 ∈ C1×s1 and

Cr;s2
2 ∈ Cr×s2 be the first row of Û1Σ̂

1/2
1 and the first r rows of Û2Σ̂

1/2
2 , respectively. Also, let

Br;s1
1 ∈ Cs1×r and Br;s2

2 ∈ Cs2×1 be the first r columns of Σ̂
1/2
1 V̂1 and the first column of Σ̂

1/2
2 V̂2,

respectively. Assuming

Ûi =



Ū i
1

...

Ū i
Ni

Ū i
Ni+1


, i = 1, 2, (2.29)

where Ū1
n1
∈ C1×s1 , Ū2

n2
∈ Cr×s2 , ni = 1, ..., Ni + 1, i = 1, 2, define

Û↑i :=


Ū i

2

...

Ū i
Ni+1

 , Û↓i :=


Ū i

1

...

Ū i
Ni

 , i = 1, 2. (2.30)

Then, let Ar;sii = Σ̂
−1/2
i Û↓∗i Û

↑
i Σ̂

1/2
i ∈ Csi×si , i = 1, 2.

V. Diagonalize Ar;sjj ∈ Csj×sj , j = 1, 2, i.e., for tj = 1, 2, ..., sj, j = 1, 2, and some invertible

Tj ∈ Csj×sj , let Ār;sjj := TjA
r;sj
j T−1

j = diag(aj1, · · · , ajsj), a
j
tj =

∣∣∣ajtj ∣∣∣ eiwjtj ∈ C, 0 ≤ wjtj ≤ 2π, be

a corresponding diagonal matrix for Ar;sjj . Also, let B̄r;sj
j := TjB

r;sj
j =

[
bj1, · · · , bjsj

]T
, C̄r;sj

j :=

C
r;sj
j T−1

j =

[
cj1, · · · , cjsj

]
, j = 1, 2, where b1

t1
∈ C1×r, b2

t2
∈ C, c1

t1
∈ C, c2

t2
∈ Cr×1, tj =

1, 2, ..., sj, j = 1, 2.

Note that in theory, there is a possibility that Ar;s11 and/or Ar;s22 are not diagonalizable. In

practice, however, because the diagonalization is numerically computed, Ar;s11 and/or Ar;s22 can be

expected to be diagonalizable. In the unlikely scenario where Ar;s11 and/or Ar;s22 are not diagonal-
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izable, very small perturbations of the data can be introduced to alter slightly their eigenvalues

and make them diagonalizable. A perturbation can be achieved, for example, by simply adding a

very small value to a pixel of the image.

VI. For h = min(s1, s2), calculate, in the object space, the estimated peak locations (xk, yk),

xk ∈ {x̂1, ..., x̂s2} , yk ∈ {ŷ1, ..., ŷs1} , k = 1, ..., h, where

x̂t2 :=
∆xw2

t2
N1

2Mπ
+

∆x

2M
, ŷt1 :=

∆yw1
t1
N2

2Mπ
+

∆y

2M
, ti = 1, 2, ..., si, i = 1, 2, (2.31)

where ∆x and ∆y are the width and height of each pixel of the image, respectively, and M > 0

denotes the lateral magnification of the microscope system.

The proposed algorithm crucially depends on SVD. Most of the singular values resulting from

an SVD are relatively small and are considered to correspond to noise [50]. Here, an important

question is how many singular values are associated with noise and should be discarded in each

SVD? In the following subsections, we describe the determination of the number of retained sin-

gular values in the three SVDs of the algorithm, and importantly, the number of single molecules

in the given image. In addition, we give a description of the maximum likelihood estimator with

which we will demonstrate the use of the results of the algorithm as the initial conditions for an

estimation routine.

2.4.1 Determination of the number of retained singular values in the first SVD

Let σ1 ≥ ... ≥ σK ≥ 0, K = min(N1, N2), denote the singular values in the first SVD. For

r = 1, ..., K, let Er :=
∑r

i=1 σ
2
i be the energy of the sequence σi, i = 1, ..., r. Estimate the optimal

number of retained singular values r in the first SVD as

r̂ = min
r=1,...,K

{
r :

Er
EK

> τ

}
, (2.32)

where EK :=
∑K

i=1 σ
2
i is the energy of the sequence of all singular values and τ ∈ R denotes a

threshold value typically chosen in the range [0.8, 0.9] [20]. In Section 2.6.1.3, we examine the
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effect of different threshold values on the detection rate of the algorithm.

2.4.2 Determination of the number of retained singular values in the second and third

SVDs, and the number of single molecules in the image

Let σi1 ≥ ... ≥ σiNi ≥ 0, i = 1, 2, be the singular values in the second and third SVDs,

respectively. For li = 1, ..., Ni, i = 1, 2, let

l̂i = min
li=1,...,Ni

{
li :

Eli
ENi

> τi

}
, (2.33)

where Eli :=
∑li

j=1(σij)
2 and ENi :=

∑Ni
j=1(σij)

2 are the energies of the sequences σi1, ..., σ
i
li

and

σi1, ..., σ
i
Ni

, respectively, and τi ∈ R denotes a threshold value which is again typically chosen in

the range [0.8, 0.9] (see Section 2.6.1.3). The estimates l̂i, i = 1, 2, thus denote the number of

singular values that remain after discarding those that are considered to obviously correspond to

noise.

We next try to reduce further the number of singular values to retain using an optimization

approach that minimizes the difference between the original image and the reconstructed image

obtained by the estimated locations of the peaks of the image. For si = 1, ..., l̂i, i = 1, 2, let

X̃r;s1,s2(k1, k2) =
∑s1

l=1

∑s2
j=1

c1l b
1
l c

2
j b

2
j

(ei2πk1/N1−a1
l )(e

i2πk2/N2−a2
j )
, kt = 1, ..., Nt, t = 1, 2, be the estimated

data calculated via the algorithm by retaining r singular values in the first SVD and s1 and s2 singu-

lar values in the second and third SVDs, respectively. In other words, X̃r;s1,s2 is the reconstructed

image of Eq. (2.22) after discarding the singular values corresponding to noise. Denoting the poles

of X̃r;s1,s2 by (ā1
k, ā

2
k), ā

t
k ∈

{
at1, · · · , atst

}
, ātk := |ātk| eiw̄

t
k , 0 ≤ w̄tk ≤ 2π, k = 1, ..., s1s2, t = 1, 2,

and their corresponding product of coefficients in the numerator by pk ∈ C, k = 1, ..., s1s2, assume

the peak magnitudes to be |p1| ≥ · · · ≥ |ps1s2 | ≥ 0.

Let h = min(s1, s2) denote the number of single molecules, assuming that we retain s1 and

s2 singular values in the second and third SVDs, respectively. In the following, we estimate the

optimal number of single molecules. Let θ̂h := (θ̂1, ..., θ̂h) ∈ R2h, θ̂n := (x̂n, ŷn) ∈ R2, n =
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1, ..., h, such that

x̂n :=
∆x

2M

w̄2
nN1

π
+

∆x

2M
, ŷn :=

∆y

2M

w̄1
nN2

π
+

∆y

2M
, (2.34)

are the estimated locations of the h peaks with the largest magnitudes. In general, we consider

all possible h-combinations of the poles of X̃r;s1,s2 , but in most cases, the single molecules are

associated with the peaks with the largest magnitudes. Let
{
z1, ..., zNpix

}
denote our acquired

data, where Npix denotes the number of pixels in the image. Then, the estimated number of single

molecules ĥ is given by

ĥ = arg min
h=min(s1,s2), si=1,...,l̂i, i=1,2

Npix∑
k=1

(zk − µθ̂h(k))2

 , (2.35)

where, in the case that the single molecule image is modeled with a 2D PSF, we have, for k =

1, ..., Npix, the mean number of photons detected in the kth pixel given by[7]

µθ̂h(k) :=
h∑

n=1

Np,n

M2

∫
Ck

q
( x
M
− x̂n,

y

M
− ŷn

)
dxdy, θ̂h ∈ R2h, h = min(s1, s2), (2.36)

where Np,n is the expected number of photons due to the nth molecule that impact the detector

plane during the image exposure, Ck ⊂ R2 denotes the region in the detector plane occupied by

the kth pixel, and q is the 2D PSF of the optical system. If the PSF is the Airy profile, then q is

given by

q(x, y) :=
J2

1

(
2πna
λ

√
x2 + y2

)
π(x2 + y2)

, (x, y) ∈ R2, (2.37)

where na denotes the numerical aperture of the objective lens, λ denotes the emission wavelength

of the molecule, and J1 denotes the first order Bessel function of the first kind.

2.4.3 Fitting single molecule images using the maximum likelihood estimator

The molecule locations estimated with the proposed algorithm can be used as the initial condi-

tions in any estimation routine. In this chapter, we demonstrate this using the maximum likelihood

estimation routine [37, 6]. In the following, we briefly explain the basis of the maximum likelihood
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estimation.

Let Θ denote the parameter space that is an open subset of Rn. The maximum likelihood

estimate θ̂mle of θ ∈ Θ, for data incorporating Gaussian readout noise, is given by

θ̂mle = arg min
θ∈Θ

(
−L(θ|z1, ..., zNpix)

)
, (2.38)

where
{
z1, ..., zNpix

}
denotes an image with Npix pixels and L is the log-likelihood function given

by [7]

L(θ|z1, ..., zNpix) =

Npix∑
k=1

log

(
1√

2πσk

∞∑
l=0

(
[µθ(k) + βk]

l e−[µθ(k)+βk]

l!
e
− 1

2

(
zk−l−ηk

σk

)2
))

. (2.39)

In Eq. (2.39), in the case of one molecule, µθ(k) is the mean photon count in the kth pixel due to

the molecule and is given by

µθ(k) :=
Np

M2

∫
Ck

q
( x
M
− x0,

y

M
− y0

)
dxdy, k = 1, ..., Npix, (2.40)

where θ = (x0, y0) ∈ R2 denotes the location of the molecule in the object space, Np is the

expected number of photons from the molecule that are detected over the detector plane, and q is

the Airy profile given by Eq. (2.37). Also, βk is the background level in the kth pixel, and ηk and σk

denote the mean and standard deviation of the Gaussian readout noise in the kth pixel, respectively.

2.5 Methods

2.5.1 Simulation parameters

To analyze the performance of the proposed algorithm, we simulated different data sets us-

ing parameters commonly used in single molecule experiments. Some data sets comprise repeat

images of one molecule, and some comprise repeat images of more than one molecule. Also,

some data sets are such that each image contains a different set of molecules whose locations are

randomly chosen based on uniform distributions that place the molecules within different spatial
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intervals inside the image. Regardless of the data set, the image of a molecule was generated with

the Airy profile of Eq. (2.37) with a numerical aperture of na = 1.4 and an emission wavelength

of λ = 485 nm. Furthermore, a lateral magnification of M = 100, a detector pixel size of 6.5 µm

× 6.5 µm, and a zero-mean Gaussian readout noise with standard deviation σ = 6 e− per pixel,

were assumed. Also, we assumed that all simulated images are background-subtracted.

2.5.2 Imaging experiments

2.5.2.1 Sample preparation

High-performance Zeiss coverslips (#1.5) were prepared as follows: coverslips were sonicated

with the following solutions in succession (each for 20 minutes): 50% HPLC-grade ethanol, 1mM

HCl with 50% HPLC-grade ethanol, 1M KOH with 50% HPLC-grade ethanol, and 50% HPLC-

grade ethanol. The cleaned coverslips were attached to MatTek dishes. 200 µl of Poly-L-lysine

(PLL) solution (Sigma-Aldrich) were added to the glass bottom area of the dishes for 10 minutes

at room temperature. PPL was removed and 250-pM Alexa Fluor 647 fluorescent dye (Invitrogen)

in 200 µl of phosphate-buffered saline (PBS) was applied for 10 minutes at room temperature. The

sample was then washed with PBS twice at room temperature followed by the addition of 1 ml of

PBS to the sample.

2.5.2.2 Microscopy setup

Custom laser excitation optics were installed for a Zeiss Axio Observer.A1 microscope. The

laser optics were configured with 635-nm and 405-nm diode lasers (OptoEngine) for the excita-

tion and photoactivation, respectively, of Alexa Fluor 647. The excitation light was reflected using

a dichroic filter (Di01-R405/488/561/635-25x36; Semrock) and focused on the back focal plane

of a 63×, 1.46 NA Zeiss objective lens. The emission light from the Alexa Fluor 647 dye was

collected by the objective lens and filtered using a single bandpass filter (FF01-676/29-25; Sem-

rock). The images were recorded using an electron-multiplying charge-coupled device camera

(iXon DU897-BV; Andor) in conventional readout mode. The camera pixel size was 16 µm × 16

µm. All components, including lasers, shutters and cameras, were controlled and synchronized
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using custom software written in the C programming language.

2.5.2.3 Super-resolution imaging

We first removed PBS from the single molecule sample prepared in Section 2.5.2.1 and added

the imaging buffer (50-mM beta-mercaptoethylamine (MEA), 0.5-mg/ml glucose oxidase, 40-

µg/ml catalase in PBS, pH 7.4, with 10% glucose). The sample was sealed with a coverslip and

then positioned on the sample stage of the microscope for 5 to 10 minutes for temperature equi-

libration and the oxygen scavenging process. Images were subsequently acquired at a rate of 20

frames per second. The sample was illuminated with the 635-nm and 405-nm diode lasers alter-

nately with photoactivation by the 405-nm laser every third frame. The frames with 405-nm laser

illumination were excluded from data analysis.

2.6 Results and discussion

In this section, we present and discuss the results of the proposed algorithm when applied to

both simulated and experimental images of single molecules.

2.6.1 Results for simulated data

Using simulated data sets, we first examine the performance of the algorithm in terms of the

detection rate. We then analyze the bias and accuracy of the algorithm. The bias is assessed by the

average of the deviations of the estimated molecule locations from the ground truth. The accuracy

is assessed by looking at the square root of the average of the squared deviations from the ground

truth. For repeat images of the same molecules, however, we look instead at the standard deviation

of the estimates. In particular, for data sets containing repeat images of one molecule, we compare

the standard deviation of the estimates with the limit of the localization accuracy given by the

square root of the CRLB. Besides these analyses, we examine the effect on the detection rate when

different threshold values are used in the first, second, and third SVDs of the algorithm.
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2.6.1.1 One molecule

Here, to evaluate the detection rate of the algorithm, we first simulated data sets in which each

image contains one molecule, whose location was randomly chosen based on a uniform distribution

that places it within the image. For a given data set, the mean photon count is the same for the

molecule in every image. Different data sets differ by this mean photon count, which ranges from

500 to 4500. For each mean photon count, we simulated 200 images. To establish statistical

measures of the detection rate, we needed to pair the molecules localized by the algorithm with

the molecules from the ground truth. For this purpose, we used the Hungarian algorithm with

a search area of radius 100 nm [53]. Then, we categorized the localized molecules which were

successfully paired with ground truth molecules as true positives. The ground truth molecules

that were not paired with any localized molecule and the localized molecules which were not

paired with any ground truth molecule were categorized as false negatives and false positives,

respectively. Denoting the number of true positives by TP , the number of false negatives by

FN , and the number of false positives by FP , we define the precision (PRE) and recall (REC)

measures as [53]

PRE :=
TP

FP + TP
, REC :=

TP

FN + TP
. (2.41)

Figure 2.1 shows the results of the measures of the detection rate for data sets consisting of

images containing one molecule each. It can be seen that for all mean photon counts considered,

there are no false negatives and the recall is 1. Also, the figure shows that by increasing the

mean photon count, the precision increases. However, it is important to note that even when the

mean number of photons is as low as 500, a relatively large number of detected molecules are true

positives (about 86%).

We next examine the bias of the algorithm for a data set in which each frame contains one

molecule whose location in the image is chosen randomly. For this purpose, we simulated 1000

15 × 15-pixel images, each containing one molecule with a mean photon count of 1500 photons.

In each image, the location of the molecule was drawn from a uniform probability distribution
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Figure 2.1: Analysis of the detection rate of the algorithm, applied to data sets in which each image
contains one molecule, whose location in the image is chosen randomly according to a uniform
probability distribution. For a given data set, the same mean photon count is used to simulate the
molecule in each image. Different data sets differ by this mean photon count. For each mean
photon count, 200 images of size 30 × 30 pixels were simulated using the parameters given in
Section 2.5.1. The Hungarian algorithm with a search area of radius 100 nm is used to pair the
localized molecules with the ground truth molecules. Reprinted with permission from [54].
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Figure 2.2: Analysis of the error of location estimates obtained from a data set in which each frame
contains one molecule whose location in the image is chosen randomly. Shown in the left and
right plots are the differences between the x-estimates and the true x-values, and the differences
between the y-estimates and the true y-values, respectively, for the true positives obtained with
the algorithm. The data set consists of 1000 15 × 15-pixel images, each of a molecule with a
mean photon count of 1500 photons whose location is randomly chosen from a uniform probability
distribution that places the molecule between the 2nd and 14th pixel in both the x and y dimensions.
The images were simulated using the parameters given in Section 2.5.1. Reprinted with permission
from [54].
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that places it between the 2nd and 14th pixel in both the x and y dimensions. (We assumed that

no molecule was located near the edges of the 15 × 15-pixel image.) As shown in Fig. 2.2,

the deviations of both the x and y location estimates from the ground truth are, overall, centered

around 0 nm. Therefore, the results suggest that, in the case where there is only one molecule per

image, there is no systematic bias associated with the algorithm in this case (the average of x and

y deviations are 0.321 nm and 0.335 nm, respectively). Also, the square root of the average of the

squares of the x and y deviations are 9.123 nm and 9.467 nm, respectively, which are close to the

standard deviations of the estimated locations obtained for a data set consisting of repeat images of

one molecule with the same mean photon count of 1500 photons (analysis of data sets with repeat

images is presented next). This suggests that the variation of the deviations about the ground truth

is reasonable.

To examine further the bias of the algorithm, we simulated data sets containing repeat images

of one molecule. The data sets differ by the mean photon count of the molecule, which we assume

does not vary from frame to frame in a given data set. This mean photon count ranges from 500

to 4500 for the different data sets. For each data set, we simulated 1000 repeat images. Figure 2.3

shows, as a function of the mean photon count, the differences between the averages of the x- and

y-estimates for the correctly detected (i.e., true positive) molecules and the corresponding true x-

and y-coordinates. Similar to the case of data sets with non-repeat images [Fig. 2.2], the evenness

of the spread of the estimated bias about 0 nm for both coordinates suggests that when there is only

one molecule per image, there is no systematic bias associated with our proposed algorithm.

We next evaluate the performance of the algorithm in terms of the standard deviation of the

estimates for the sets of repeat images. For nine of the data sets from Fig. 2.3, we calculated

the standard deviations of the x-estimates and y-estimates for the correctly detected (i.e., true

positive) molecules. The percentage differences between the standard deviations and the CRLB-

based limits of the x-localization accuracy and y-localization accuracy [7] are shown in Fig. 2.4.

The percentage difference is the absolute difference between the standard deviation of the estimates

and the corresponding limit of accuracy, expressed as a percentage of the limit of accuracy. As
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Figure 2.3: Analysis of the average of location estimates obtained from repeat images of one
molecule. Shown in the left and right plots are the difference between the average of the x-
estimates and the true x-value, and the difference between the average of the y-estimates and
the true y-value, respectively, for data sets that differ by the mean photon count assumed for the
molecule per image. For each mean photon count, the data set consists of 1000 images of size
15 × 15 pixels, simulated using the parameters given in Section 2.5.1. Reprinted with permission
from [54].
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Figure 2.4: Analysis of the standard deviation of location estimates obtained from repeat images of
one molecule. (a) The standard deviations of the x- and y-estimates for nine of the data sets from
Fig. 2.3. (b) The percentage difference between the standard deviation of the x-estimates and the
limit of the x-localization accuracy, and the percentage difference between the standard deviation
of the y-estimates and the limit of the y-localization accuracy. The percentage difference is the
absolute difference between the standard deviation of the estimates and the corresponding limit of
accuracy, expressed as a percentage of the limit of accuracy. Reprinted with permission from [54].
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Figure 2.5: Analysis of the standard deviation of location estimates produced by the maximum
likelihood estimator when the location estimates obtained with the algorithm are used as the initial
conditions. (a) The standard deviations of the maximum likelihood x- and y-estimates for the
same data sets as in Fig. 2.4, which comprise repeat images of one molecule. (b) The percentage
difference between the standard deviation of the x-estimates and the limit of the x-localization
accuracy, and the percentage difference between the standard deviation of the y-estimates and the
limit of the y-localization accuracy. Reprinted with permission from [54].
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Figure 2.6: Analysis of the detection rate of the algorithm, applied to data sets in which each image
contains multiple molecules whose locations in the image are chosen randomly. For a given data
set, the mean photon count is the same for each molecule in every frame. The location of each
molecule is drawn from a uniform distribution that places it inside the image, with the constraint
that the distance between each pair of molecules is not less than the minimum distance dmin. For
each data set, we simulated 200 images of size 30×30 pixels using the parameters given in Section
2.5.1. For data sets in which there are two molecules per image, the precision and recall measures
are shown as a function of dmin in (a), where the mean photon count is 2500 photons/molecule,
and as a function of the mean photon count in (b), where dmin = 100 nm. For data sets in which
there are three molecules per image, the precision and recall measures are shown as a function of
dmin in (c), where the mean photon count is 2500 photons/molecule, and as a function of the mean
photon count in (d), where dmin = 100 nm. The Hungarian algorithm with a search area of radius
100 nm is used to pair the localized molecules with the ground truth molecules. Reprinted with
permission from [54].
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shown in Fig. 2.4, when the mean number of photons increases, the standard deviation of the

estimates decreases. Also, as can be seen in the second row of Fig. 2.4, the differences between

the standard deviations of the estimates and their respective limits of the localization accuracy are

around twice (i.e., around 200% of) the limits of accuracy. This difference likely arises from the

fact that our algorithm approximates an Airy profile with the frequency response of a first-order

system, and there is a difference between the shape of the peak of an Airy profile and that of the

first-order system in the frequency domain. In Appendix A, we applied our algorithm to images

simulated using the frequency response of a first-order system rather than an Airy profile, and in

that case, the standard deviations of the x- and y-estimates came close to their respective limits of

accuracy.

Also, we used the location estimates obtained with the algorithm from a set of repeat images as

initial conditions for the maximum likelihood estimation of the location of the molecule from those

same images. This maximum likelihood estimator fits an Airy photon distribution profile to the

image data, and the equations that describe how the maximum likelihood estimates are calculated

are given in Section 2.4.3 [Eqs. (2.38) and (2.39)]. We calculated the standard deviations of the

resulting x-estimates and y-estimates, and the percentage differences between them and the limits

of the x-localization accuracy and y-localization accuracy [Fig. 2.5]. We only considered those

estimates for which the estimated locations were within the image. As can be seen in Fig. 2.5, the

standard deviations are substantially smaller compared to those obtained with the algorithm [Fig.

2.4], and come close to the limits of accuracy, consistent with the results in [37] and [6].

2.6.1.2 Multiple molecules

So far, we have evaluated the performance of the algorithm in the case where we have only one

molecule in any given image. Here, we analyze the results obtained when the algorithm was used

to simultaneously localize molecules from images that contain multiple closely spaced molecules.

As before, we first analyze the detection rate of the algorithm. For this purpose, we simulated

data sets containing images of either two or three molecules. For each image, the location of

each molecule is randomly chosen from a uniform probability distribution that places the molecule
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Figure 2.7: Reconstruction of images containing two or three closely spaced molecules. (a) Images
of size 60 × 60 pixels of 2, 3, and 2 closely spaced point sources separated from one another by
a distance d of 300 nm, 250 nm, and 50 nm, respectively. The images are simulated using the
parameters given in Section 2.5.1. (b) Mesh plots of the images shown in (a). (c) Mesh plots of
the magnitude of the reconstructed image (algorithm result), showing the detection of 2, 3, and 2
single molecules in the image. Reprinted with permission from [54].
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inside the image, with the constraint that the distance between each pair of molecules is not less

than a minimum distance dmin. In one case, all data sets are simulated with the same minimum

distance of dmin = 100 nm, but differ by the mean photon count per molecule, which ranges from

500 to 4500. More specifically, each data set comprises 200 images, where each image contains

molecules with the same given mean photon count. In another case, the mean photon count is the

same for all data sets at 2500 photons/molecule, but the data sets differ by dmin, which ranges

from 100 nm to 500 nm. Here, each data set comprises 200 images, where each image contains

molecules separated by the same given minimum distance dmin. Figure 2.6 shows the precision

and recall measures for the different data sets (similar to the one-molecule case, the Hungarian

algorithm with a search area of radius 100 nm was used to pair the localized molecules with the

ground truth molecules). Specifically, the figure shows that the recall for all data sets is more than

95%. The precision is likewise quite good, as even when the mean number of photons is as low as

500 photons/molecule, or the minimum distance between each pair of molecules is as small as 100

nm, a relatively high percentage (around 85%) of the detected molecules are true positives. We

also analyzed the detection rate for data sets with more molecules per image (5, 7, and 9 molecules

per image), and obtained similar results. To give examples of the reconstructed image calculated

from our algorithm, we simulated images of size 60 × 60 pixels containing two or three closely

spaced molecules separated by a distance d of 50 nm, 250 nm, and 300 nm, with a mean photon

count of 1500 photons/molecule. We then reconstructed each image by applying our algorithm.

As shown in Fig. 2.7, in all cases we were able to distinguish the closely spaced molecules from

each other.

We next analyze the bias and accuracy of the algorithm when applied to data sets consisting of

repeat images of multiple molecules. Unlike the one-molecule case, bias is observed here. We first

characterize this bias by demonstrating its dependence on the distances between the molecules

relative to the image size. In the following, we focus on data sets comprising images of two

molecules, though we also analyzed data sets with three and five molecules and obtained similar

results. We simulated data sets comprising 15× 15-pixel, 20× 20-pixel, and 40× 40-pixel images
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Figure 2.8: Analysis of the average of the location estimates obtained from sets of repeat images
of two molecules. Shown in the left and right plots are the differences between the average of
the x-estimates and the true x-value for the first and second molecules, respectively, for data sets
comprising 15×15-pixel, 20×20-pixel, and 40×40-pixel images. For each image size, distances d
between the two molecules are chosen around half of the side length of the square region occupied
by the image in the object space. For a given data set, we simulated 500 images with a mean
photon count of 2500 photons/molecule and the parameters given in Section 2.5.1. The results for
d = s/2, where s = 65N nm is the side length of the square region occupied by an N × N -pixel
image in the object space, are shown with filled symbols. Reprinted with permission from [54].

in order to evaluate different combinations of the distance d between the two molecules and the

image size. For a given data set, we simulated 500 images with a mean photon count of 2500

photons/molecule, a pixel size of 6.5 µm × 6.5 µm, and a lateral magnification of 100. For these

settings, the area occupied by an N ×N -pixel image in the object space is an s× s square region,

where s = 65N nm (e.g., for N=20, s = 1300 nm). For each data set, the difference between the

average of the estimated x-locations for the correctly detected molecules and the corresponding

true x-coordinate is plotted in Fig. 2.8. For each image size considered, the figure shows that as

d approaches s/2 (e.g., for N=20, s/2 = 650 nm), i.e., as the difference between the phases of

the poles of the second-order system resulting from the algorithm approaches the maximum of π

rad on the unit circle, the effect of the poles on each other decreases and the estimated bias for the

location of each molecule approaches 0 nm. The results for d = s/2 are shown with filled symbols

in Fig. 2.8. Also, we calculated the results for the y-estimates and obtained similar results.

Having characterized the nature of the bias, we next analyze, as we did in the case of one

molecule, the bias and accuracy of the algorithm as a function of the mean photon count per
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Figure 2.9: Analysis of the average and standard deviation of location estimates obtained from
sets of repeat images of two molecules as a function of the mean photon count per molecule.
Two scenarios are considered - one in which the distance d between the two molecules is 650
nm, and one in which d is 487.5 nm. For each scenario, the data sets differ by the mean photon
count per molecule. For each mean photon count, the data set consists of 500 repeat images
of size 20 × 20 pixels, simulated using the parameters given in Section 2.5.1. (a) Differences
between the average of the estimated x-locations and the corresponding true x-coordinates for the
two molecules. (b) The standard deviations of the estimated x-locations for the two molecules.
Reprinted with permission from [54].
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molecule. For this purpose, we simulated data sets which contain repeat images of two molecules.

These data sets again differ by the mean photon count per molecule, which we assume does not

vary from frame to frame. This mean photon count ranges from 500 to 4500 for the different data

sets. We simulated 500 20 × 20-pixel images per data set. In one case, the distance d between

the two molecules is 650 nm (which corresponds to the filled circle in Fig. 2.8), and in another

case, d = 487.5 nm (which corresponds to the first open circle to the left of the filled circle in Fig.

2.8). Looking at the two distances allows us to verify the effect of different distances between the

molecules relative to the image size. To assess the bias of the algorithm, for each molecule in a

given data set, we calculated the difference between the average of the estimated x-locations and

the corresponding true x-coordinate. As can be seen in Fig. 2.9, when d = 650 nm, the estimated

bias is around 0 nm for both molecules. On the other hand, when d = 487.5 nm, the estimated bias

levels are around 3.5 nm and -3.5 nm for molecules 1 and 2, respectively. These bias results are

consistent with the illustration of bias in Fig. 2.8. Note that we also analyzed the y-estimates and

obtained similar results.

For each distance d, we calculated the standard deviations of the estimated x-locations for nine

of the data sets. As shown in Fig. 2.9, for both distances, as the mean number of photons per

molecule increases, the standard deviation of the estimates decreases. Also, even when the mean

photon count is as low as 500 photons/molecule, the plots show that our algorithm can still localize

the molecules with relatively high accuracy (the standard deviations of the x-estimates are around

30 nm for both molecules when d = 487.5 nm, and around 27 nm when d = 650 nm). Similar

results were obtained for the y-estimates.

2.6.1.3 Analysis of the effect of threshold values on the detection rate of the algorithm

In Sections 2.4.1 and 2.4.2, typical threshold values in the range [0.8, 0.9] are suggested for

the first, second, and third SVDs of the algorithm. Here, we carry out a more in-depth analysis on

the effect of the threshold values on the detection rate of the algorithm. The results of our analysis

show that in the case that we have a relatively large number of photons per molecule, the detection

rate of the algorithm is not very sensitive to the threshold values. Provided that a relatively high
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Table 2.1: Detection rate of the algorithm as a function of the threshold values used for the retention
of singular values in the first, second and third SVDs.

Data set
Mean photon count

per molecule
Threshold for
the 1st SVD

Threshold for the
2nd and 3rd SVDs Recall Precision

1 500

0.7 0.7 1 0.857
0.7 0.8 1 0.850
0.7 0.9 1 0.850
0.8 0.7 1 0.786
0.8 0.8 1 0.768
0.8 0.9 1 0.768
0.9 0.7 0.994 0.755
0.9 0.8 0.994 0.722
0.9 0.9 0.994 0.722

2 1000

0.7 0.7 0.994 0.933
0.7 0.8 0.994 0.933
0.7 0.9 0.994 0.933
0.8 0.7 0.994 0.933
0.8 0.8 0.994 0.933
0.8 0.9 0.994 0.933
0.9 0.7 0.994 0.933
0.9 0.8 0.994 0.933
0.9 0.9 0.994 0.933

3 2500

0.7 0.7 0.994 0.994
0.7 0.8 0.994 0.994
0.7 0.9 0.994 0.994
0.8 0.7 0.994 0.994
0.8 0.8 0.994 0.994
0.8 0.9 0.994 0.994
0.9 0.7 0.994 0.994
0.9 0.8 0.994 0.994
0.9 0.9 0.994 0.994

Results are shown for three simulated data sets that differ by the mean photon count per molecule
per image. Each data set consists of 100 images in which there are two molecules per image. The
location of each molecule is randomly chosen from a uniform distribution that places the
molecule inside the image, and is subject to the constraint that the distance between the two
molecules is not less than 400 nm. Reprinted with permission from [54].
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Figure 2.10: Result of the algorithm applied to an experimental super-resolution image. (a) Image
of individual Alexa Fluor 647 molecules acquired using the microscopy setup described in Section
2.5.2. The pixel size and image size are 16 µm × 16 µm and 192 × 192 pixels, respectively. (b)
The magnitude of the reconstructed image obtained with the algorithm. Reprinted with permission
from [54].

threshold value (e.g., in the range [0.7, 0.9]) is used to ensure that singular values corresponding

to signal are not discarded, it appears that the optimization procedure of Section 2.4.2 is able to

remove the singular values corresponding to noise and yield the correct result. On the other hand,

in the case of a low number of photons per molecule, the differences between the singular values

that correspond to noise and the singular values associated with signal are often small, and there is

no straightforward guideline to choose the threshold values.

In our analysis, we consider three simulated data sets in which there are two molecules per

image. The three data sets differ by the mean photon count per molecule per image, which we

chose to be 500, 1000, and 2500. As can be seen in Table 2.1, when the mean photon count is 1000

or 2500 per molecule, the recall and precision remain unchanged for threshold values of 0.7, 0.8,

and 0.9. However, in the case of the low mean photon count of 500 per molecule, use of a high

threshold value, such as 0.8 or 0.9, for the first SVD, leads to the retention of more noise singular

values and results in a nontrivial reduction of the precision.
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Figure 2.11: Results of the algorithm applied to an ROI from an experimental super-resolution
image. (a) A 41 × 41-pixel ROI of the super-resolution image shown in Fig. 2.10. (b) The magni-
tude of the reconstructed image (algorithm result). (c) The image reconstructed using Eq. (2.36),
in which the single molecule locations estimated using our algorithm are used in the computation
of the Airy profile q in Eq. (2.37), and in which the mean photon counts Np,n and the parameter
α := 2πna

λ
are separately estimated with a maximum likelihood estimator. (d), (e), and (f) show the

mesh plots of the images in (a), (b), and (c), respectively. Reprinted with permission from [54].
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2.6.2 Results for experimental data

Here, we present the results obtained by applying the proposed localization algorithm to ex-

perimental single molecule image data acquired as described in Section 2.5.2. Both the acquired

image and the reconstructed image are shown in Fig. 2.10, demonstrating that we were able to

recover the locations of the significant peaks in the original image that are associated with the

locations of individual Alexa Fluor 647 dye molecules.

We next applied the algorithm to a relatively small 41× 41-pixel region of interest (ROI) [Figs.

2.11(a) and 2.11(d)] in the acquired image so that a better visual comparison can be made between

the reconstructed image obtained with the algorithm and the actual image. In addition to the image

reconstructed in terms of the parameters of the multi-order system [Figs. 2.11(b) and 2.11(e)], an

image is reconstructed using Eq. (2.36), in which the single molecule locations estimated using

our algorithm are used in the computation of the Airy profile q [Figs. 2.11(c) and 2.11(f)]. For this

purpose, we separately estimated the mean photon counts Np,n in Eq. (2.36) and the parameter

α := 2πna
λ

in Eq. (2.37) using a maximum likelihood estimator. The reconstruction using the Airy

profile provides a better visual comparison with the actual image by showing peaks with more

comparable intensities.
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3. PARAMETER ESTIMATION OF SINGLE MOLECULE TRAJECTORIES∗

3.1 Introduction

Tracking of objects in cellular environments has become a vital tool in molecular cell biol-

ogy. A particularly important example is single molecule tracking which enables the study of the

motion of a molecule in cellular environments by locating the molecule over time. As mentioned

in the introduction chapter, the performance of available single molecule trajectory data analysis

methods are limited by several limiting factors. For example, most available methods only fo-

cus on Gaussian measurements that occur at equidistant time points. Here, in order to address

these limitations, we consider a dynamical system where the motion of an object is modeled by

stochastic differential equations, and measurements are the detected photons emitted by the mov-

ing fluorescently labeled object, which occur at discrete time points, corresponding to the arrival

times of a Poisson process. The measurements are distributed according to the optical diffraction

theory, and therefore, they would be modeled by different distributions, e.g., an Airy profile for an

in-focus and a Born and Wolf profile for an out-of-focus molecule with respect to the detector. For

some special circumstances, Gaussian image models have been proposed. Although in most of the

available approaches, the motion of the molecule is limited to Brownian motion (pure diffusion)

model, the dynamical system considered here allows for more general motion models.

In the following, we present the statistical description of the acquired data, and derive a gen-

eral formula for the likelihood function of the described data model. Here, we use the following

notation

Cl × Rl
[t] := {(r1, · · · , rl, τ1, · · · , τl) |r1, · · · , rl ∈ C, t0 ≤ τ1 < · · · < τl ≤ t} , (3.1)

where C := R2, t0 ∈ R, and l = 1, 2, · · · . If there is no bound on τl, we denote the set in Eq. (3.1)

∗From “Fisher information matrix for single molecules with stochastic trajectories,” by M. R. Vahid, B. Hanzon,
and R. J. Ober, submitted to SIAM Journal on Imaging Science.
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by Cl × Rl
[∞].

3.2 Fundamental data model

A basic setup of an optical system considered here is shown in Fig. 3.1, where an object is in the

object space and its image is captured by a planar detector in the image space. In the fundamental

data model, we assume that the microscopy image data is acquired under ideal conditions. It

assumes the use of an image detector that has an unpixelated photon detection area. The detection

of a photon is intrinsically random in terms of both the time and the location on the detector at

which the photon is detected. In general, the temporal part of the detection of the emitted photons

can be modeled as a counting process {N(τ), τ ≥ t0}. Here, we assume that {N(τ), τ ≥ t0} is a

Poisson process referred to as the photon detection process that is characterized by the intensity

function Λ(τ), τ ≥ t0, referred to as the photon detection rate. The spatial component of the photon

detection process is specified by random variables, referred to as the photon location variables, that

describe the locations at which photons emitted by the object of interest are detected.

I

( )

p

Lens system

(objective lens

and tube lens)

Detector

Object space Image space

xi

X ( )

Object

Optical 

axis

xo

Figure 3.1: Schematic of an optical microscope. An object located in the object (focal) plane is
imaged by an optical lens system and the image of the object is acquired by the planar detector in
the image space. A 2D random variable Xθ(τ), τ ≥ t0, describes the location of the object in the
object plane at time τ .
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In the following definition, we define a spatio-temporal process referred to as the image de-

tection process, which models the acquired data, for two different acquisition methods, one when

the time interval over which photons are detected is given and the other when the total number

of detected photons is given. For a fixed acquisition time, due to the stochastic nature of photon

emission, the total number of detected photons varies for every image, while in the other case, the

number of detected photons remains the same.

Definition 1. Let C := R2 denote a non-pixelated detector. Let Rn, n = 1, 2, · · · , be the n-

dimensional full parameter space. Let the parameter space Θ describe an open subset of Rn con-

taining the true parameters. Elements in Θ are described by a parameter vector θ ∈ Θ. Let the 1D

random variables T1, T2, · · · , describe the time points of detection of the photons that impact the

detector C, which are arrival time points associated with a Poisson process with intensity function

Λ(τ), τ ≥ t0, t0 ∈ R. Let U1, U2, · · · , be 2D random variables that describe the locations of de-

tection of the photons that impact the detector C. For l = 1, 2, · · · , let Ul := (U1, · · · , Ul) ,U0 = ∅,

and Tl := (T1, · · · , Tl) , T0 = ∅. Assume that the current location of the detected photon, given

the current and previous time points, is independent of the future time points, i.e., for r ∈ C and

t0 ≤ τ1 < τ2 < · · · ,

pUl|Tk

(
r|τ1, · · · , τk

)
= pUl|Tl

(
r|τ1, · · · , τl

)
, for all k, l = 1, 2, · · · , k ≥ l,

where, for random vectors X and Y , the conditional probability density function of X , given Y , is

denoted by pX|Y .

1. For a fixed acquisition time interval [t0, t], an image detection process G[t]

( (
U[t], T[t]

)
, C,Θ

)
for a time interval [t0, t] is defined as a spatio-temporal process whose temporal part T[t] and

spatial part U[t] describe the time points and the locations of detection of the photons that impact

the detector C in the time interval [t0, t], respectively, i.e., for ω ∈ Ω, where Ω is the sample space,

USt(ω) = TSt(ω) = ∅, St(ω) = 0,
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and

T[t](ω) :=
(
T1(ω), · · · , TSt(ω)(ω)

)
, U[t](ω) :=

(
U1(ω), · · · , USt(ω)(ω)

)
, St(w) > 0,

where t0 ≤ T1(ω) < · · · < TSt(ω)(ω) ≤ t, and St is a discrete 1D random variable that takes its

values in the non-negative integers such that TSt(ω)(ω) ≤ t, TSt(ω)+1(ω) > t, St(w) > 0.

2. Given a fixed numberL = 1, 2, · · · , of photons, an image detection process GL
(

(UL, TL) , C,

Θ
)

for a fixed number L of photons is defined as a spatio-temporal process whose temporal and

spatial parts describe the time points and the locations of detection of the L photons that im-

pact the detector C, respectively. Moreover, given TL = (τ1, · · · , τL) , t0 ≤ τ1 < τ2 < · · · <

τL, Gτ1,··· ,τL
(

(UL, TL) , C,Θ
)

is referred to as the image detection process at fixed time points

τ1, · · · , τL.

In Theorem 2, we state expressions for the probability/probability density functions of image

detection processes for a fixed time interval and for a fixed number of photons in terms of the

conditional distributions of the locations of the detected photons, given the previous locations and

the current and previous time points of the detected photons. We further show that each of these

conditional distributions can be expressed in terms of a scaled and shifted version of the image of

the object and the distribution of the prediction of the object location, given the previous locations

and time points of the detected photons. We drop the parameter vector θ ∈ Θ, when it is clear from

the context.

Theorem 2. Let G[t]

( (
U[t], T[t]

)
, C,Θ

)
and GL

(
(UL, TL) , C,Θ

)
be image detection processes for

a time interval [t0, t] and for a fixed numberL of photons, respectively. LetD[t] :=
(
U[t], T[t]

)
,Dk :=

(Uk, Tk) , k = 0, 1, · · · .

1. Then, the probability of D[t] = ∅ and N(t) = 0 is given by

P
(
D[t] = ∅, N(t) = 0

)
= e

−
∫ t
t0

Λ(τ)dτ
,
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and the probability density function p[t] of D[t] and N(t) is given by

p[t]

(
dK ,K

)
= e
−
∫ t
t0

Λ(τ)dτ
K∏
k=1

Λ(τk)

[
K∏
l=1

pUl|Tl,Dl−1

(
rl|τl, dl−1

)]
, (3.2)

where dK ∈ CK × RK
[t], K = 1, 2, · · · , and pUl|Tl,Dl−1

denotes the conditional probability density

function of Ul, given Tl,Dl−1, with pU1|T1,D0

(
r1|τ1, d0

)
:= pU1|T1

(
r1|τ1

)
.

2. Moreover, the probability density function pL of DL is given by

pL

(
dL

)
= e−

∫ τL
t0

Λ(τ)dτ
L∏
k=1

Λ(τk)

[
L∏
l=1

pUl|Tl,Dl−1

(
rl|τl, dl−1

)]
, dL ∈ CL × RL[∞]. (3.3)

Proof. 1. According to [55, 56] and Lemma 4 (see Section B.6), the probability P
(
D[t] =

∅, N(t) = 0
)

is given by

P
(
D[t] = ∅, N(t) = 0

)
= P

(
N(t) = 0

)
= e

−
∫ t
t0

Λ(τ)dτ
.

Also, the probability density function p[t] of D[t] and N(t) is given by

p[t]

(
dK ,K

)
= pUK |TK ,N(t)

(
r1, · · · , rK |τ1, · · · , τK ,K

)
pTK |N(t)

(
τ1, · · · , τK |K

)
P
(
N(t) = K

)
, (3.4)

where dl ∈ Cl × Rl
[t] and K = 1, 2, · · · . According to Lemma 4 (see Section B.6),

P
(
N(t) = K

)
=

1

K!
e
−
∫ t
t0

Λ(τ)dτ

(∫ t

t0

Λ(τ)dτ

)K
, K = 0, 1, · · · , (3.5)

and

pTK |N(t)

(
τ1, · · · , τK |K

)
=
K!
∏K

k=1 Λ(τk)(∫ t
t0

Λ(τ)dτ
)K , K = 1, 2, · · · , (3.6)

and using the assumption of Definition 1 (it is assumed that Ul, l = 1, · · · , K, is only dependent

of the previous and current time points T1, · · · , Tl, and is independent of the future time points
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Tl+1, · · · , TK and the total number N(t) of the detected photons),

pUK |TK ,N(t)

(
r1, · · · , rK |τ1, · · · , τK ,K

)
= pUK |TK

(
r1, · · · , rK |τ1, · · · , τK

)
= pUK |TK ,DK−1

(
rK |τK , dK−1

)
pUK−1|TK−1,TK ,DK−2

(
rK−1|τK−1, τK , dK−2

)
× · · · × pU1|TK

(
r1|τ1, · · · , τK

)
= pUK |TK ,DK−1

(
rK |τK , dK−1

)
pUK−1|TK−1,DK−2

(
rK−1|τK−1, dK−2

)
× · · · × pU1|T1

(
r1|τ1

)
=

K∏
l=1

pUl|Tl,Dl−1

(
rl|τl, dl−1

)
, (3.7)

where pU1|T1,D0

(
r1|τ1, d0

)
:= pU1|T1

(
r1|τ1

)
. By substituting Eqs. (3.5)-(3.7) into Eq. (3.4), we

have

p[t]

(
dK ,K

)
= e
−
∫ t
t0

Λ(τ)dτ
K∏
k=1

Λ(τk)

[
K∏
l=1

pUl|Tl,Dl−1

(
rl|τl, dl−1

)]
.

2. The probability density function pL of DL is given by

pL

(
dL

)
= pUL|TL

(
r1, · · · , rL|τ1, · · · , τL

)
pTL

(
τ1, · · · , τL

)
=

[
L∏
l=1

pUl|Tl,Dl−1

(
rl|τl, dl−1

)]
pTL

(
τ1, · · · , τL

)
, (3.8)

where dl ∈ Cl × Rl
[∞] and whereby Lemma 4 (see Section B.6),

pTL

(
τ1, · · · , τL

)
= e−

∫ τL
t0

Λ(τ)dτ
L∏
k=1

Λ(τk). (3.9)

By substituting Eq. (3.9) into Eq. (3.8), we have

pL

(
dL

)
= e−

∫ τL
t0

Λ(τ)dτ
L∏
k=1

Λ(τk)

[
L∏
l=1

pUl|Tl,Dl−1

(
rl|τl, dl−1

)]
,
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and it completes the proof.

Note that, as can be seen in the above theorem, the probability density function of an image

detection process for a time interval [t0, t] depends on the integral of the photon detection rate

Λ(τ), τ ≥ t0, over the time interval [t0, t], and the probability density function of an image detec-

tion process for a fixed number L of photons depends on the integral of the photon detection rate

over the time interval [t0, τL], where τL denotes the time point of the Lth (last) detected photon.

The probability density function of the location at which a photon emitted by the object of

interest is detected, is referred to as the image profile of the object. So far we have made no

assumptions about the specific functional form of the image profile of the object. In many practical

cases, the image profile can be described as a scaled and shifted version of the image function. In

such cases, an image function describes the image of an object on the detector plane at unit lateral

magnification. Also, in general, the trajectory of the object can be described by a random process.

In the following definition, we define image detection processes driven by a stochastic trajectory

of the object and the image function for a fixed time interval and for a fixed number of photons.

Definition 2. Let G[t]

( (
U[t], T[t]

)
, C,Θ

)
and GL

(
(UL, TL) , C,Θ

)
be image detection processes for

a time interval [t0, t] and for a fixed number L of photons, respectively. Let X(τ), τ ≥ t0, denote

a 3D random process that describes the 3D stochastic trajectory of the object. Also, let {fx}x∈R3

defined on the detector C, be a family of image profiles of an object located at x ∈ R3 in the object

space. Assume that the current location of the detected photon, given the current location of the

object, is independent of the previous locations and time points of the detected photons, i.e., for all

x ∈ R3,

pUl|X(Tl),Tl,Dl−1

(
rl|x, τl, dl−1

)
= pUl|X(τl)

(
rl|x
)

:= fx (rl) , rl ∈ C,

where dl ∈ Cl × Rl
[t] for G[t], dl ∈ Cl × Rl

[∞] for GL, pUl|X(Tl),Tl,Dl−1
is the conditional probability

density function of Ul, given X(Tl), Tl,Dl−1, and pUl|X(τl) denotes the conditional probability den-

sity function of Ul, given X(τl). Assume that there exists a function qz0 : R2 7→ R, z0 ∈ R, such that
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for an invertible matrix M ∈ R2×2 and x := (x0, y0, z0) ∈ R3,

fx (r) :=
1

|det (M)|
qz0

(
M−1r − (x0, y0)T

)
, r ∈ C. (3.10)

In the above equation, qz0 , which is referred to as the image function, is a function that describes,

at unit lateral magnification, the image of the object in the detector plane when the object is located

at (0, 0, z0) in the object space.

Image detection processes G[t]

(
X,
(
U[t], T[t]

)
, q, C,Θ

)
and GL

(
X, (UL, TL) , q, C,Θ

)
driven by

the stochastic trajectory X and image function q for a time interval [t0, t] and for a fixed number L

of photons are defined as the spatio-temporal processes G[t] and GL, respectively.

In the classical case of a measurement error, the image function qz0 is defined as a function

of
(
r −M(x0, y0)T

)
, which is the deviation between two locations in the image space. Here,

however, in order to be consistent with our previous framework developed for a static object, qz0

is defined as a function of
(
M−1r − (x0, y0)T

)
, which is the difference between two points in the

object space.

We next illustrate specific image functions that describe the image of a point source. According

to the optical diffraction theory, when a point source is in-focus with respect to the detector, the

intensity distribution of the image of the point source is described by an Airy profile given by [7]

(see Fig. 3.2(a))

q(x, y) =
J2

1

(
2πna
λ

√
x2 + y2

)
π (x2 + y2)

, (x, y) ∈ R2, (3.11)

where na denotes the numerical aperture of the objective lens, λ denotes the emission wavelength

of the molecule, and J1 denotes the first order Bessel function of the first kind. The 2D Gaussian

profile, on the other hand, which has been widely used to approximate the Airy profile, is given by

q(x, y) =
1

2πσ2
e
− 1

2

(
x2+y2

σ2

)
, (x, y) ∈ R2, (3.12)
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where σ > 0.

For an out-of-focus point source, the image function can be obtained by the classical Born and

Wolf model given by [36]

qz0(x, y) =
4πn2

a

λ2

∣∣∣∣∫ 1

0

J0

(
2πna
λ

√
x2 + y2ρ

)
e
jπn2

az0
noλ

ρ2

ρdρ

∣∣∣∣2 , (x, y) ∈ R2, (3.13)

where J0 is the zeroth-order Bessel function of the first kind, no is the refractive index of the

objective lens immersion medium, and z0 ∈ R is the z-location of the point source on the optical

axis in the object space. When the point source is in-focus with respect to the detector, i.e., it lies

in the object plane, then z0 = 0 and Eqs. (3.11) and (3.13) are equivalent.
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Figure 3.2: Image function examples. (a) Airy and (b) symmetric Gaussian profiles, which describe
the images of an in-focus point source, simulated by Eqs. (3.11) and (3.12), respectively, with the
parameters given in Section 3.4.1. (c) Born and Wolf profile simulated by Eq. (3.13) with the
out-of-focus level z0 = 1 µm, and the parameters given in Section 3.4.1.

We calculate pUl|Tl,Dl−1
, l = 1, 2, · · · , for more general cases. In the following corollary to
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Theorem 2, by describing these conditional probability density functions in terms of the image

function, we derive expressions for the probability density functions of the image detection pro-

cesses driven by the stochastic trajectory X and image function q for a time interval [t0, t] and for

a fixed number L of photons.

Corollary 1. Let G[t]

(
X,
(
U[t], T[t]

)
, q, C,Θ

)
(or GL

(
X, (UL, TL) , q, C,Θ

)
) be an image detection

process driven by the stochastic trajectory X and image function q for a time interval [t0, t] (or

for a fixed number L of photons). Then, the conditional probability density function pUl|Tl,Dl−1
, l =

1, 2, · · · , in Eq. (3.2) (or in Eq. (3.3)) of Theorem 2 is given by, for x := (x0, y0, z0) ∈ R3,

pUl|Tl,Dl−1

(
rl|τl, dl−1

)
=

∫
R3

fx (rl) pprl

(
x|τl, dl−1

)
dx

=
1

|det(M)|

∫
R3

qz0

(
M−1rl − (x0, y0)

)
pprl

(
x|τl, dl−1

)
dx, (3.14)

where dl ∈ Cl × Rl
[t] (or dl ∈ Cl × Rl

[∞]), pprl := pX(Tl)|Tl,Dl−1
denotes the distribution of the

prediction of the object location, ppr1
(
x|τ1, d0

)
:= ppr1

(
x|τ1

)
, and fx, x ∈ R3, is the image

profile of an object located at x in the object space.

Proof. The conditional probability density function pUl|Tl,Dl−1
in Eqs. (3.2) and (3.3) of Theorem

2 can be written as, for x := (x0, y0, z0) ∈ R3,

pUl|Tl,Dl−1

(
rl|τl, dl−1

)
=

∫
R3

pUl,X(Tl)|Tl,Dl−1

(
rl, x|τl, dl−1

)
dx

=

∫
R3

pUl|X(Tl),Tl,Dl−1

(
rl|x, τl, dl−1

)
pX(Tl)|Tl,Dl−1

(
x|τl, dl−1

)
dx

=

∫
R3

fx (rl) pprl

(
x|τl, dl−1

)
dx

=
1

|det(M)|

∫
R3

qz0

(
M−1rl − (x0, y0)

)
pprl

(
x|τl, dl−1

)
dx, (3.15)

where dl ∈ Cl×Rl
[t] for G[t] (or dl ∈ Cl×Rl

[∞] for GL), pprl := pX(Tl)|Tl,Dl−1
, l = 1, 2, · · · , denotes

the distribution of the prediction of the object location, and ppr1
(
x|τ1, d0

)
:= ppr1

(
x|τ1

)
, in which

we have used the assumption of Definition 2.
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As can be seen in the above corollary, the expression of the probability density function of

the image detection process depends on the distribution pprl , l = 1, 2, · · · , of the prediction of the

object location, given the previous locations of the detected photons and the current and previous

time points. In the following section, we introduce linear stochastic systems and calculate pprl , l =

1, 2, · · · , for them.

In Theorem 2, we expressed the probability density functions of image detection processes in

terms of conditional probability densities pUl|Tl,Dl−1
, l = 1, 2, · · · , of the locations of the detected

photons, given the previous locations and the current and previous time points of the detected

photons. In particular, for an object with a deterministic trajectory or a static object, the conditional

probability densities pUl|Tl,Dl−1
, l = 1, 2, · · · , are given as follows. For an object with deterministic

trajectory X(τ) ∈ R3, τ ≥ t0, we have

pUl|Tl,Dl−1

(
rl|τl, dl−1

)
= pUl|Tl(rl|τl) := fX(τl) (rl) . (3.16)

Also, for a static object with position X0 ∈ R3, we have

pUl|Tl,Dl−1

(
rl|τl, dl−1

)
= pUl(rl) := fX0 (rl) . (3.17)

3.3 Linear stochastic systems

In general, the motion of an object in cellular environments is subject to different types of

forces, e.g., deterministic forces due to the environment and random forces due to random colli-

sions with other objects [29, 30]. The 3D random variable X(τ) denotes the location of the object

at time τ ≥ t0. Then, the motion of the object is assumed to be modeled through a general state

space system with state X̃(τ) ∈ Rk, τ ≥ t0, as

X̃(τl+1) = φ̃(τl, τl+1)X̃(τl) + W̃ (τl, τl+1), τ0 := t0 ≤ τ1 < · · · < τl+1 < · · · , (3.18)
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where we assume that there exists a function g: Rk 7→ R3 such that X(τ) = g
(
X̃(τ)

)
, τ ≥ t0,

φ̃(τl, τl+1) ∈ Rk×k is a state transition matrix, and{
W̃ (τl, τl+1) , l = 1, 2, · · · } is a sequence of k-dimensional random variables with probability

density functions pW̃ (τl,τl+1).

The general system of discrete evolution equations described by Eq. (3.18) can arise, for

example, from stochastic differential equations [31]. In particular, in many biological applications,

solutions of linear stochastic differential equations are good fits to experimental single-molecule

trajectories [31]. As an example, we assume that the motion of the object of interest, e.g., a single

molecule, is described by the following linear vector stochastic differential equation [57, 34]

dX(τ) = (V + F (τ)X(τ)) dτ +G(τ)dB(τ), τ ≥ t0, (3.19)

where the 3D random process X(τ) describes the location of the object at time τ ≥ t0, F ∈

R3×3 and G ∈ R3×r are continuous matrix time-functions, V ∈ R3 is a zero order drift, and

{B(τ) ∈ Rr, τ ≥ t0} is a random process [58].

Here, we assume that {B(τ) ∈ Rr, τ ≥ t0} is an r-vector Brownian motion (Wiener) process

with E
{
dB(τ)dB(τ)T

}
= Ir×r, τ ≥ t0, where Ir×r is the r×r identity matrix [32, 33, 34]. Then,

the solution of Eq. (3.19) at discrete time points τ0 := t0 ≤ τ1 < · · · < τl+1 < · · · is given by [59]

X(τl+1) = φ(τl, τl+1)X(τl) + a(τl, τl+1) +Wg(τl, τl+1), (3.20)

where the continuous matrix time-function φ ∈ R3×3 is given by

dφ(t, τ)

dt
= F (t)φ(t, τ), φ(τ, τ) = I3×3, for all t, τ ≥ t0,

φ(t, τ)φ(τ, ψ) = φ(t, ψ), for all t, τ, ψ ≥ t0,
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and the vector a(τl, τl+1) ∈ R3×1 is given by

a(τl, τl+1) :=

∫ τl+1

τl

φ(τ, τl+1)V dτ.

Also, in this case,
{
Wg(τl, τl+1) :=

∫ τl+1

τl
φ(τ, τl+1)G(τ)dB(τ), l = 1, 2, · · ·

}
is a zero mean white

Gaussian sequence with covariance Qg(τl, τl+1) ∈ R3×3 given by

Qg(τl, τl+1) =

∫ τl+1

τl

φ(τ, τl+1)G(τ)GT (τ)φT (τ, τl+1)dτ.

By letting X̃(τ) :=

X(τ)

1

 ∈ R4, X(τ) = g
(
X̃(τ)

)
:=

[
I3×3 03×1

]
X̃(τ), τ ≥ t0, where 03×1

is the 3 × 1 zero matrix, we obtain expressions of the form of Eq. (3.18), where the continuous

matrix time-function φ̃ ∈ R4×4 is given by

φ̃(τl, τl+1) =

φ(τl, τl+1) a(τl, τl+1)

01×3 1

 ,

and W̃ (τl, τl+1) =

Wg(τl, τl+1)

0

 ∈ R4.

As an another example, for pure diffusion motion, when V and F (τ), τ ≥ 0, in Eq. (3.19) are

equal to zero, the discrete motion model is given by

X(τl+1) = X(τl) +Wg(τl, τl+1), τ0 := t0 ≤ τ1 < · · · < τl+1 < · · · . (3.21)

Setting X̃(τ) := X(τ), τ ≥ t0, with g the identity function, φ̃(τl, τl+1) = φ(τl, τl+1) = I3×3, and

W̃ (τl, τl+1) = Wg(τl, τl+1), we again obtain expressions of the form of Eq. (3.18).

The above discussion motivates us to model the motion of the object, in the following defini-

tion, by Eq. (3.18) with, in general, an arbitrary distributed process noise W̃ . In particular, we also

consider the special case of Gaussian distributed process noise W̃g, separately.
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Definition 3. Let G[t]

(
X,
(
U[t], T[t]

)
, q, C,Θ

)
and GL

(
X, (UL, TL) , q, C,Θ

)
be image detection

processes driven by a stochastic trajectory X and image function q for a fixed time interval [t0, t]

and for a fixed number L of photons. Let pX(t0) be the probability density function of the initial

location X(t0) of the object. We assume that

a. the motion of the object is modeled through a general state space system with state X̃(τ) ∈

Rk, τ ≥ t0, as

X̃(τl+1) = φ̃(τl, τl+1)X̃(τl) + W̃ (τl, τl+1), τ0 := t0 ≤ τ1 < · · · < τl+1 < · · · , (3.22)

where we assume that there exists a function g: Rk 7→ R3 such that X(τ) = g
(
X̃(τ)

)
, τ ≥ t0,

φ̃(τl, τl+1) ∈ Φ̃, where Φ̃ =
{
φ̃(τ, ψ)

}
ψ>τ≥t0

is a family of k × k invertible real-valued state-

transition matrices, and
{
W̃ (τl, τl+1), l = 0, 1, 2, · · ·

}
is a process noise sequence of independent

k-dimensional random variables with probability density functions pW̃ (τl,τl+1).

b. We assume that

Ul = Z (X(τl)) , l = 1, 2, · · · , (3.23)

where {Z (X(τl)) , l = 1, 2, · · · } is a measurement sequence of independent 2D random variables

with probability density functions pZ(X(τl)) = fX(τl), where Z is a random function that maps the

object space into the image space, fX(τl) is the image profile of an object located at X(τl) defined

in Definition 2 and

c. We assume that the sequences
{
W̃ (τl, τl+1), l = 0, 1, · · · }, {Z (X(τl)) , l = 1, 2, · · · }, and

X̃(t0) are independent of one another.

The image detection process G[t]

(
X,
(
U[t], T[t]

)
, q, C,Θ

)
(or GL

(
X, (UL, TL) , q, C,Θ

)
) with

the additional properties (a)-(c) is called an image detection process with expanded state space X̃

for a time interval [t0, t] (or for a fixed numberL of photons), and is denoted by G[t]

((
X̃, g, W̃ , Z

)
,(

U[t], T[t]

)
, Φ̃, C,Θ

)
(or GL

((
X̃, g, W̃ , Z

)
, (UL, TL) , Φ̃, C,Θ

)
).

We further assume that
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α.
{
W̃g(τl, τl+1) := W̃ (τl, τl+1), l = 0, 1, · · ·

}
is a white Gaussian sequence with mean zero

and covariance matrix Q̃g(τl, τl+1) ∈ Rk×k, Q̃g(τl, τl+1) > 0,

β.

Z(X(τl)) = M ′X(τl) + Zg,l l = 1, 2, · · · , (3.24)

where M ′ :=

[
M 02×1

]
∈ R2×3, in which M ∈ R2×2 is an invertible magnification matrix

used in the definition of the image function (Eq. (3.10)), where 02×1 is the 2 × 1 zero matrix,

and {Zg,l, l = 1, 2, · · · } is a measurement noise sequence of independent 2D Gaussian random

variables with mean zero and the same covariance matrix Σg ∈ R2×2,Σg > 0.

γ. We assume that the initial state X̃(t0) is Gaussian distributed with mean x̃0 ∈ Rk and

covariance matrix P̃0 ∈ Rk×k, P̃0 > 0.

If, in addition, an expanded image detection process has the properties (α)-(γ), it is called an

image detection process with expanded state space X̃ and Gaussian process and measurement noise

models, and is denoted by Gg[t]
((

X̃, g, W̃g, Zg

)
,
(
U[t], T[t]

)
, Φ̃,M ′, C,Θ

)
(or GgL

((
X̃, g, W̃g, Zg

)
,

(UL, TL) , Φ̃,M ′, C,Θ
)

) for a time interval [t0, t] (or for a fixed number L of photons).

In Corollary 1, we calculated the probability density function of the image detection process

in terms of the image function q and the distribution pprl , l = 1, 2, · · · , of the prediction of the

object location, given the previous locations of the detected photons and the current and previous

time points. In the following theorem, for a linear stochastic system and Gaussian process and

measurement noise, we calculate these distributions using the Kalman filter formulae. Also, for

a more general Markov motion model described by a first order system with arbitrary distributed

process and measurement noise, we calculate these distributions recursively.

Theorem 3. Let G[t]

((
X̃, g, W̃ , Z

)
,
(
U[t], T[t]

)
, Φ̃, C,Θ

)
(or GL

((
X̃, g, W̃ , Z

)
, (UL, TL) , Φ̃, C,

Θ
)

) be an image detection process with expanded state space X̃ for a time interval [t0, t] (or for a
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fixed number L of photons). Let Dk := (Uk, Tk) , k = 0, 1, · · · , and

p̃prl

(
x̃|τl, dl−1

)
:= pX̃(Tl)|Tl,Dl−1

(
x̃|τl, dl−1

)
, x̃ ∈ Rk,

where dl ∈ Cl×Rl
[t] (or dl ∈ Cl×Rl

[∞]), be the distribution of the prediction of the object location,

and p̃pr1
(
x̃|τ1, d0

)
:= p̃pr1

(
x̃|τ1

)
.

1. Then, p̃prl , l = 0, 1, 2, · · · , can be calculated through the following recursive formula

p̃prl+1

(
x̃|τl+1, dl

)
=

1

|det (φ(τl, τl+1))|

∫
Rk
p̃fil

(
φ−1(τl, τl+1)x̃o|dl

)
pW̃ (τl,τl+1)

(
x̃− x̃o

)
dx̃o, (3.25)

where d0 = ∅, and the distribution p̃fil
(
x̃|dl

)
:= pX̃(Tl)|Dl

(
x̃|dl

)
of the filtered object location is

given by

p̃fil

(
x̃|dl

)
=

pZ(g(x̃)) (rl) p̃prl

(
x̃|τl, dl−1

)
∫
Rk pZ(g(x̃o)) (rl) p̃prl

(
x̃o|τl, dl−1

)
dx̃o

. (3.26)

2.1. Let Gg[t]
((

X̃, g, W̃g, Zg

)
,
(
U[t], T[t]

)
, Φ̃,M ′, C,Θ

)
(or GgL

((
X̃, g, W̃g, Zg

)
, (UL, TL) , Φ̃,

M ′, C,Θ
)

) be an image detection process with expanded state space X̃ and Gaussian process and

measurement noise models for a time interval [t0, t] (or for a fixed number L of photons). Assume

that

X(τ) = g(X̃(τ)) := GX̃(τ), τ ≥ t0,

where G ∈ R3×k, and let C := M ′G. Then, for l = 0, 1, · · · ,

p̃prl+1

(
x̃|dl, τl+1

)
=

1

2π
[
det(P ll+1)

]1/2 exp

(
−1

2
(x̃− x̂ll+1)T

(
P ll+1

)−1
(x̃− x̂ll+1)

)
, x̃ ∈ Rk,

(3.27)

where dl ∈ Cl×Rl
[t] (or dl ∈ Cl×Rl

[∞]), x̂
0
1 = φ̃(τ0, τ1)x̃0, P

0
1 = φ̃(τ0, τ1)P̃0φ̃

T (τ0, τ1)+Q̃g(τ0, τ1),
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and for l = 1, 2, · · · ,

x̂ll+1 = φ̃(τl, τl+1)x̂ll,

P ll+1 = φ̃(τl, τl+1)P ll φ̃
T (τl, τl+1) + Q̃g(τl, τl+1), (3.28)

with

Kl = P l−1
l CT

(
CP l−1

l CT + Σg

)−1
,

x̂ll = x̂l−1
l +Kl(rl − Cx̂l−1

l ),

P ll = P l−1
l −KlCP

l−1
l . (3.29)

2.2. Moreover, the conditional probability density function pUl|Tl,Dl−1
is given by

pUl|Tl,Dl−1

(
rl|τl, dl−1

)
=

1

2π [det (Rl)]
1/2

exp

(
− 1

2
(rl − r̂l)TR−1

l (rl − r̂l)

)
, (3.30)

where dl ∈ Cl × Rl
[t] (or dl ∈ Cl × Rl

[∞]), Rl := CP l−1
l CT + Σg and r̂l := Cx̂l−1

l .

Proof. Let G[t]

((
X̃, g, W̃ , Z

)
,
(
U[t], T[t]

)
, Φ̃, C,Θ

)
(or GL

((
X̃, g, W̃ , Z

)
, (UL, TL) , Φ̃, C,Θ

)
)

be an image detection process with expanded state space X̃ for a time interval [t0, t] (or for a fixed

number L of photons). Let Dk := (Uk, Tk) , k = 0, 1, · · · , and

p̃prl

(
x̃|τl, dl−1

)
:= pX̃(Tl)|Tl,Dl−1

(
x̃|τl, dl−1

)
, x̃ ∈ Rk,

where dl ∈ Cl×Rl
[t] (or dl ∈ Cl×Rl

[∞]), be the distribution of the prediction of the object location,

and p̃pr1
(
x̃|τ1, d0

)
:= p̃pr1

(
x̃|τ1

)
.

1. Then, p̃prl can be calculated through the following steps:

Step 1. For l = 0, Eq. (3.22) becomes

X̃(T1) = φ̃(t0, T1)X̃(t0) + W̃ (t0, T1).
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Then, by conditioning the both sides of the above equation on T1 = τ1, the conditional probability

density function pX̃(T1)|T1
is given by

pX̃(T1)|T1

(
x̃|τ1

)
=
(
pφ̃(t0,τ1)X̃(t0) ∗ pW̃ (t0,τ1)

)
(x̃) ,

where x̃ ∈ Rk, and ∗ denotes the convolution operator. Then,

p̃pr1

(
x̃|τ1

)
: = pX̃(T1)|T1

(
x̃|τ1

)
=

∫
Rk
pφ̃(t0,τ1)X̃(t0)

(
x̃o

)
pW̃ (t0,τ1)

(
x̃− x̃o

)
dx̃o

=
1∣∣∣det

(
φ̃(t0, τ1)

)∣∣∣
∫
Rk
pX̃(t0)

(
φ̃−1(t0, τ1)x̃o

)
pW̃ (t0,τ1)

(
x̃− x̃o

)
dx̃o.

Step 2l. For l = 1, 2, · · · , let

Al :=
{
X̃(Tl) = x̃

}
, Bl := {Ul = rl} , and Cl := {Tl = τl} ∩ {Dl−1 = dl−1} .

Then, according to Bayes’ rule, we have the relation between the conditional probability densities

of Al, Bl, and Cl as follows

p
(
Al|Bl, Cl

)
=
p
(
Bl|Al, Cl

)
p
(
Al|Cl

)
p
(
Bl|Cl

) ,
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i.e.,

pX̃(Tl)|Dl

(
x̃|dl

)
=
pUl|X̃(Tl),Tl,Dl−1

(
rl|x̃, τl, dl−1

)
pX̃(Tl)|Tl,Dl−1

(
x̃|τl, dl−1

)
pUl|Tl,Dl−1

(
rl|τl, dl−1

)
=
pUl|X̃(Tl),Tl,Dl−1

(
rl|x̃, τl, dl−1

)
pX̃(Tl)|Tl,Dl−1

(
x̃|τl, dl−1

)
∫
Rk pUl,X̃(Tl)|Tl,Dl−1

(
rl, x̃o|τl, dl−1

)
dx̃o

=
pUl|X̃(Tl),Tl,Dl−1

(
rl|x̃, τl, dl−1

)
pX̃(Tl)|Tl,Dl−1

(
x̃|τl, dl−1

)
∫
Rk pUl|X̃(Tl),Tl,Dl−1

(
rl|x̃o, τl, dl−1

)
pX̃(Tl)|Tl,Dl−1

(
x̃o|τl, dl−1

)
dx̃o

. (3.31)

Since initial location of the object, observation noise, and process noise are mutually independent,

according to Eq. (3.23) and Theorem 2.7 of [59], we have

pUl|X̃(Tl),Tl,Dl−1

(
rl|x̃, τl, dl−1

)
= pUl|X̃(τl)

(
rl|x̃
)

= pZ(x̃) (rl) , x̃ ∈ Rk. (3.32)

Therefore, by substituting Eq. (3.32) into Eq. (3.31) (note that we calculated p̃prl in the previous

step),

pfil

(
x̃|dl

)
: = pX̃(Tl)|Dl

(
x̃|dl

)
=

pZ(x̃) (rl) p̃prl

(
x̃|τl, dl−1

)
∫
Rk pZ(x̃o) (rl) p̃prl

(
x̃o|τl, dl−1

)
dx̃o

.

Step 2l + 1. By conditioning the both sides of Eq. (3.22) on Tl+1 = τl+1 and Dl = dl, we have

, for l = 1, 2, · · · ,

pX̃(Tl+1)|Tl+1,Dl

(
x̃|τl+1, dl

)
= pφ̃(Tl,Tl+1)X̃(Tl)|Tl+1,Dl

(
x̃|τl+1, dl

)
∗ pW̃ (Tl,Tl+1)|Tl+1,Dl

(
x̃|τl+1, dl

)
,
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which, according to the independence of W̃ (Tl, Tl+1) and Ul, Tl−1, becomes

pX̃(Tl+1)|Tl+1,Dl

(
x̃|τl+1, dl

)
= pφ̃(τl,τl+1)X̃(Tl)|Dl

(
x̃|dl

)
∗ pW̃ (τl,τl+1)

(
x̃
)

=

∫
Rk
pφ̃(τl,τl+1)X̃(Tl)|Dl

(
x̃o|dl

)
pW̃ (τl,τl+1)

(
x̃− x̃o

)
dx̃o

=
1∣∣∣det

(
φ̃(τl, τl+1)

)∣∣∣
∫
Rk
pX̃(Tl)|Dl

(
φ̃−1(τl, τl+1)x̃o|dl

)
pW̃ (τl,τl+1)

(
x̃− x̃o

)
dx̃o,

or equivalently (note that we calculated p̃fil in the previous step),

p̃prl+1

(
x̃|τl+1, dl

)
=

1∣∣∣det
(
φ̃(τl, τl+1)

)∣∣∣
∫
Rk
p̃fil

(
φ̃−1(τl, τl+1)x̃o|dl

)
pW̃ (τl,τl+1)

(
x̃− x̃o

)
dx̃o. (3.33)

2.1. See Theorem 7.2 of [59].

2.2. Setting C := M ′G, Eq. (3.24) becomes

Ul = Z(X̃(τl)) = CX̃(τl) + Zg,l, l = 1, 2, · · · , (3.34)

where

pZg,l(r) :=
1

2π [det(Σg)]
1/2

exp

(
−1

2
rTΣ−1

g r

)
, r ∈ C.

Since Zg,l is independent of Dl−1, Tl and X̃ , then, according to Eq. (3.34), Z(X̃(τl)) is the sum of

two independent Gaussian random variables and its probability density function is given by

pUl|Tl,Dl−1

(
rl|τl, dl−1

)
= pZ(X̃(τl))|Tl,Dl−1

(
rl|τl, dl−1

)
=

1

2π [det (Rl)]
1/2

exp

(
− 1

2
(rl − r̂l)TR−1

l (rl − r̂l)

)
, (3.35)

where Rl := CP l−1
l CT + Σg and r̂l := Cx̂l−1

l .
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3.4 Maximum likelihood estimation

The main purpose of the presented materials in the previous section is to provide a mathemat-

ical framework to estimate the parameters of interest, such as the parameters of the model that

describes the motion of a moving object with stochastic trajectories, from the acquired data. Here,

we use the maximum likelihood estimation approach as follows. For a general parameter esti-

mation problem, denoting the acquired data by d̄ ∈ Rm,m = 1, 2, · · · , the maximum likelihood

estimate θ̂mle of θ ∈ Θ, if it exists, is given by

θ̂mle = argmin
θ∈Θ

(
− logL(θ|d̄)

)
,

where L denotes the likelihood function. In our specific problem, the acquired data for the fixed

time interval [t0, t] acquisition case is denoted by d̄K ∈ CK × RK
[t], K = 0, 1, · · · . Then, the

likelihood function L[t] of G[t]

( (
U[t], T[t]

)
, C,Θ

)
is given by, according to Theorem 2 (see also

[55, 56]), for θ ∈ Θ,

L[t](θ|d̄K) =


e
−
∫ t
t0

Λθ(τ)dτ
, K = 0,

e
−
∫ t
t0

Λθ(τ)dτ ∏K
k=1 Λθ(τ̄k)

[∏K
l=1 p

θ
Ul|Tl,Dl−1

(
r̄l|τ̄l, d̄l−1

)]
, K = 1, 2, · · · ,

(3.36)

and the likelihood function LL of GL
(

(UL, TL) , C,Θ
)

is given by

LL(θ|d̄L) = pθL(d̄L) = e−
∫ τ̄L
t0

Λθ(τ)dτ
L∏
k=1

Λθ(τ̄k)

[
L∏
l=1

pθUl|Tl,Dl−1

(
r̄l|τ̄l, d̄l−1

)]
, (3.37)

where d̄L ∈ CL × RL
[∞], L = 1, 2, · · · .

In appendix Section B.1, we provide an example to illustrate our results for the specific case that

the motion model is described by a simple linear stochastic differential equation and the parameter

vector contains the drift and diffusion coefficients.

In the following, we present and discuss the results of the proposed maximum likelihood es-

timation method when applied to simulated data sets containing linear stochastic trajectories of a

single molecule.
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3.4.1 Simulated parameters

To analyze the performance of the proposed maximum likelihood estimation method, we sim-

ulated different data sets using parameters commonly used in single molecule experiments. Unless

otherwise stated, the images of in-focus and out-of-focus molecules were generated with Airy and

Born and Wolf profiles (Eqs. (3.11) and (3.13)), respectively, where na = 1.4, λ = 520 nm,

no = 1.515, and z0 = 1 µm. For the Gaussian measurement case, the image of a molecule was

generated with a zero-mean Gaussian measurement noise with the probability density function

given by Eq. (3.12), where σ = 70 nm, which is related to the corresponding Airy profile.

Furthermore, a measurement (magnification) matrix M = 100I2×2 was assumed to map the

object space to the image space.

3.4.2 Estimation results

Using simulated data sets, we first examine the performance of the maximum likelihood esti-

mation method used to estimate the parameters of the linear motion model of a moving molecule

in terms of the bias of the method. The bias is assessed by the average of the deviations of the

estimates from the true value. For this purpose, we simulated 100 data sets, each containing a tra-

jectory of an out-of-focus molecule simulated using Eqs. (B.1) and (3.23), with the Born and Wolf

profile (Eq. (3.13)) and the parameters given in Section 3.4.1, with a mean photon count of 500

photons in the time interval [0, 100] ms, where the first order drift coefficient F = −10/s and the

diffusion coefficient D = 1 µm2/s. In Figs. 3.3(a) and 3.3(b), an example of a molecule trajectory

in the object space and its image in the image space are shown. For these data sets, we calculated

the maximum likelihood estimates of the diffusion and the first order drift coefficients, separately.

For this purpose, we needed to obtain the distributions of the prediction in the likelihood function

expressions (Eqs. (3.36) and (3.37)) through Eqs. (3.25) and (3.26), which in general is a computa-

tionally expensive problem. We approximated the distributions of the prediction using a sequential

Monte Carlo algorithm proposed in [45]. The overall approach is explained in appendix Section

B.2 in detail. In Figs. 3.3(c) and 3.3(d), the differences between the maximum likelihood estimates
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Figure 3.3: Analysis of the error of diffusion coefficient and drift coefficient estimates produced by
the maximum likelihood estimation method for the Born and Wolf measurement model. (a) A typi-
cal two-dimensional single molecule trajectory in the object space simulated using Eq. (B.1) where
the time points are drawn from a Poisson process with mean 500 in the time interval [0, 100] ms
with the first order drift coefficient F = −10/s and the diffusion coefficientD = 1 µm2/s. Also, we
assume that the initial location of the molecule is Gaussian distributed with mean x0 = (4.4, 4.4)T

µm and covariance P0 = 10I2×2 nm2. (b) Detected locations of the photons emitted from the
molecule trajectory of part (a) in the image space, which are simulated using Eq. (3.23) with the
Born and Wolf profile (Eq. (3.13)) and the parameters given in Section 3.4.1. (c) Differences be-
tween the diffusion coefficient estimates and the true diffusion coefficient value for 100 data sets,
each containing a trajectory of a molecule simulated using Eqs. (B.1) and (3.23) with the Born and
Wolf profile, and the parameters given in parts (a) and (b). (d) Differences between the first order
drift coefficient estimates and the true first order drift coefficient value for the data sets of part (c).
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of the diffusion and the first order drift coefficients and the true values are plotted. As can be seen,

the deviations of the estimates from the ground truth are, overall, centered around 0 nm, which

suggests that there is no systematic bias associated with our proposed method (the average of the

diffusion coefficient deviations and the first order drift coefficient deviations are -0.0319 µm2/s and

0.0307/s, respectively).
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Figure 3.4: Predicted locations of the molecule for the Born and Wolf measurement model. (a) and
(b) Means of the distributions of the prediction of the molecule x- and y-locations, where the first
order drift coefficient is unknown, and the true x- and y-locations of the molecule for the same data
set as in Figs. 3.3(a) and 3.3(b). The measurements transformed from the image space to the object
space are also shown. (c) and (d) Means of the distributions of the prediction of the molecule x-
and y-locations and the true x- and y-locations of the molecule over the time interval [0, 27.5] ms.

We further investigate the distribution pprl , l = 1, 2, · · · , of the prediction of the molecule

location, given previous observations, for the molecule trajectory shown in Figs. 3.3(a) and 3.3(b).

The means of the distributions of the prediction of the molecule x- and y-locations, where the first

order drift coefficient is unknown, and the true x- and y-locations are shown in Fig. 3.4(a) and

3.4(b). We also show the measurements transformed from the image space to the object space.
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For a better visual comparison, the means of the distributions of the prediction of the molecule

locations and the true locations for x- and y-coordinates are also shown over a shorter time interval

in Figs. 3.4(c) and 3.4(d). As can be seen, the predicted locations are able to track the true locations

of the molecule for both x- and y-coordinates. We also show the differences between the means of

the distributions of the prediction of the molecule locations and the true locations of the molecule

in Fig. B.3 (see Section B.11 in Appendix B). We also applied the proposed method to trajectory

data of an in-focus molecule simulated using an Airy profile, with the same standard deviation

as the Born and Wolf data, and obtained similar results (see Figs. B.1, B.2 and B.4 in appendix

Section B.3).

As mentioned, in some applications, it is useful to approximate the point spread function of an

optical system with a Gaussian profile. We analyzed the error of the estimates for simulated data

sets with Gaussian measurement noise, with the same standard deviation as the Born and Wolf data,

and obtained similar results (see Figs. 3.5, 3.6 and B.5). In order to calculate the predicted locations

of the molecule for Gaussian measurements, we took advantage of the relationship between the

likelihood function and Kalman filter formulae (see Theorem 3). It improved the computational

efficiency significantly.
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Figure 3.5: Analysis of the error of diffusion coefficient and drift coefficient estimates produced
by the maximum likelihood estimation method for the Gaussian measurement noise case. (a) The
two-dimensional single molecule trajectory simulated in Fig. 3.3(a). (b) Detected locations of the
photons emitted from the molecule trajectory of part (a) in the image space, which are simulated
using Eq. (3.24) with the Gaussian measurement noise (Eq. (3.12)) and σ = 0.51 µm. (c)
Differences between the diffusion coefficient estimates and the true diffusion coefficient value for
100 data sets, each containing a trajectory of a molecule simulated using Eqs. (B.1) and (3.24)
with the Gaussian profile, and the parameters given in parts (a) and (b). (d) Differences between
the first order drift coefficient estimates and the true first order drift coefficient value for the data
sets of part (c).
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Figure 3.6: Predicted locations of the molecule for the Gaussian measurement noise case. (a) and
(b) Means of the distributions of the prediction of the molecule x- and y-locations, where the first
order drift coefficient is unknown, and the true x- and y-locations of the molecule for the same data
set as in Figs. 3.5(a) and 3.5(b). The measurements transformed from the image space to the object
space are also shown. (c) and (d) Means of the distributions of the prediction of the molecule x-
and y-locations and the true x- and y-locations of the molecule over the time interval [0, 27.5] ms.
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4. FISHER INFORMATION MATRIX AND CRLB∗

4.1 Introduction

In any estimation problem, the performance of the estimator can be evaluated by calculating

their standard deviations from the true parameter values. According to a well-known result from

estimation theory, assuming that the estimator is unbiased, its standard deviation is then at best

equal to the square root of the CRLB, which is given by the inverse of the Fisher information

matrix [35, 7, 6]. In other words, according to the Cramér-Rao inequality, the covariance matrix

of any unbiased estimator θ̂ of an unknown vector parameter θ is bounded from below by the

inverse of the Fisher information matrix I(θ), i.e., Cov(θ̂) ≥ I−1(θ). Therefore, a benchmark on

the standard deviation of estimates can be obtained by the square root of the inverse of the Fisher

information matrix. Note that the Fisher information matrix only depends on the statistical nature

of the acquired data and is independent of the applied estimation technique. In the following, we

introduce a mathematical framework to calculate general expressions for the CRLB and Fisher

information matrix relating to the parameter estimation problem.

4.2 Fisher information matrix

Since this concept is very important when we have fixed time points, as we defined image

detection processes and their probability density functions at fixed time points in Section 3.2, here,

we first introduce a notation for the Fisher information matrix of these processes in Definition 4,

and use it to calculate the Fisher information matrix of image detection processes for the fixed time

interval and for the fixed number of photons in Theorem 4.

Definition 4. For t0 ≤ τ1 < · · · < τK , let Gτ1,··· ,τK
(

(UK , TK) , C,Θ
)

be an image detection pro-

cess at fixed time points τ1, · · · , τK . We introduce the following notation for the Fisher information

∗From “Fisher information matrix for single molecules with stochastic trajectories,” by M. R. Vahid, B. Hanzon,
and R. J. Ober, submitted to SIAM Journal on Imaging Science.
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matrix of Gτ1,··· ,τK
(

(UK , TK) , C,Θ
)

as, for a row parameter vector θ ∈ Θ,

Iτ1,··· ,τK (θ) : = EUK |TK=τ1:K


∂ log pθUK |TK

(
r1:K |τ1:K

)
∂θ

T ∂ log pθUK |TK

(
r1:K |τ1:K

)
∂θ




=

∫
C
· · ·
∫
C
pθUK |TK

(
r1:K |τ1:K

)∂ log pθUK |TK

(
r1:K |τ1:K

)
∂θ

T

×

∂ log pθUK |TK

(
r1:K |τ1:K

)
∂θ

 dr1 · · · drK ,

for t0 ≤ τ1 < · · · < τK , and Iτ1,··· ,τK (θ) = 0, otherwise, where r1:K := (r1, · · · , rK)

, r1, · · · , rk ∈ C, τ1:K := (τ1, · · · , τK) , K = 1, 2, · · · , and EUK |TK=τ1:K
denotes the expected value

with respect to the conditional probability density function pθUK |TK of UK , given TK = τ1:K .

Theorem 4. Let G[t]

( (
U[t], T[t]

)
, C,Θ

)
and GL

(
(UL, TL) , C,Θ

)
be image detection processes for

a time interval [t0, t] and for a fixed numberL of photons, respectively. LetD[t] :=
(
U[t], T[t]

)
,Dk :=

(Uk, Tk) , k = 0, 1, · · · . Assume that the conditional probability density functions pθUl|Tl,Dl−1
, l =

1, 2, · · · , ofUl, given Tl andDl−1, satisfy the following regularity conditions, for θ = (θ1, · · · , θn) ∈

Θ,

(a)
∂pθ
Ul|Tl,Dl−1

(
rl|τl,dl−1

)
∂θi

exists for i = 1, · · · , n,

(b)

∫
C

∣∣∣∣∣∣
∂pθ
Ul|Tl,Dl−1

(
r|τl,dl−1

)
∂θi

∣∣∣∣∣∣ dr <∞ for i = 1, · · · , n,

where dl ∈ Cl × Rl
[t] for G[t], dl ∈ Cl × Rl

[∞] for GL, and pθ
(
r1|τ1, d0

)
:= pθ

(
r1|τ1

)
.

1.1. Then, the Fisher information matrix I[t] of G[t] is given by

I[t](θ) =
1

Pθ

(
N(t) = 0

)
∂Pθ

(
N(t) = 0

)
∂θ

T ∂Pθ
(
N(t) = 0

)
∂θ



+

∞∑
K=1

∫ t

t0

∫ τK

t0

· · ·
∫ τ3

t0

∫ τ2

t0

[∫
C
· · ·
∫
C

1

pθ[t]

(
dK ,K

)
∂pθ[t]

(
dK ,K

)
∂θ

T ∂pθ[t]
(
dK ,K

)
∂θ


× dr1 · · · drK

]
dτ1dτ2 · · · dτK−1dτK , (4.1)

where dl ∈ Cl × Rl
[t], and pθ[t] denotes the probability density function of D[t] and N(t).
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1.2. Assume that the photon detection rate Λ is independent of θ. Then, I[t] can be calculated

as

I[t](θ) = e
−
∫ t
t0

Λ(τ)dτ
∞∑
K=1

{∫ t

t0

∫ τK

t0

· · ·
∫ τ3

t0

∫ τ2

t0

Iτ1,··· ,τK (θ)
K∏
k=1

Λ(τk)

× dτ1dτ2 · · · dτK−1dτK

}
, (4.2)

where the Fisher information matrix Iτ1,··· ,τK of the image detection process at fixed time points

τ1, · · · , τK Gτ1,··· ,τK
(

(UL, TL) , C,Θ
)

is given by

Iτ1,··· ,τK (θ) =


∑K
l=1 I

τ1,··· ,τl
Ul|Tl,Dl−1

(θ), t0 ≤ τ1 < · · · < τK ≤ t,

0, otherwise,
(4.3)

in which the Fisher information matrix Iτ1,··· ,τlUl|Tl,Dl−1
calculated with respect to the conditional prob-

ability density function pθUl|Tl,Dl−1
at fixed time points Tl = τ1:l is given by

I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ) = EUl|Tl=τ1:l


∂ log pθ

Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

T ∂ log pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ




=

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

)[∫
C

1

pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)

×

∂pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

T ∂pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

 drl

]
drl−1 · · · dr1, (4.4)

with r1:l := (r1, · · · , rl) , τ1:l := (τ1, · · · , τl), and Iτ1U1|T1
given by

Iτ1U1|T1
(θ) =

∫
C

1

pθU1|T1

(
r|τ1

)
∂pθU1|T1

(
r|τ1

)
∂θ

T ∂pθU1|T1

(
r|τ1

)
∂θ

 dr. (4.5)
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2.1. The Fisher information matrix IL of GL is given by

IL(θ) =

∫ ∞
t0

∫ τL

t0

· · ·
∫ τ3

t0

∫ τ2

t0

[∫
C
· · ·
∫
C

1

pθL

(
dL

)
∂pθL

(
dL

)
∂θ

T ∂pθL
(
dL

)
∂θ

 dr1 · · · drL

]

× dτ1dτ2 · · · dτL−1dτL,

where dl ∈ Cl × Rl
[∞], and pθL denotes the probability density function of DL.

2.2. Assume that the photon detection rate Λ is independent of θ. Then, IL can be obtained as

IL(θ) =

∫ ∞
t0

∫ τL

t0

· · ·
∫ τ3

t0

∫ τ2

t0

Iτ1,··· ,τL(θ)e−
∫ τL
t0

Λ(τ)dτ
L∏
k=1

Λ(τk)

× dτ1dτ2 · · · dτL−1dτL. (4.6)

Remark 1. Note that forK = 1, the time integral of Eq. (4.2) is calculated over the interval [t0, t],

i.e.,
∫ t
t0
Iτ1(θ)Λ(τ1)dτ1.

Proof. Let G[t]

( (
U[t], T[t]

)
, C,Θ

)
and GL

(
(UL, TL) , C,Θ

)
be image detection processes for a

time interval [t0, t] and for a fixed number L of photons, respectively. LetD[t] :=
(
U[t], T[t]

)
,Dk :=

(Uk, Tk) , k = 0, 1, · · · . Assume that the conditional probability density functions pθUl|Tl,Dl−1
, l =

1, 2, · · · , ofUl, given Tl andDl−1, satisfy the following regularity conditions, for θ = (θ1, · · · , θn) ∈

Θ,

(a)
∂pθ
Ul|Tl,Dl−1

(
rl|τl,dl−1

)
∂θi

exists for i = 1, · · · , n,

(b)

∫
C

∣∣∣∣∣∣
∂pθ
Ul|Tl,Dl−1

(
r|τl,dl−1

)
∂θi

∣∣∣∣∣∣ dr <∞ for i = 1, · · · , n,

where dl ∈ Cl × Rl
[t] for G[t], dl ∈ Cl × Rl

[∞] for GL, and pθ
(
r1|τ1, d0

)
:= pθ

(
r1|τ1

)
.

1.1. Then, the Fisher information matrix I[t](θ) of G[t] is given by

I[t](θ) = E

[(
∂ logL(θ|dK)

∂θ

)T (
∂ logL(θ|dK)

∂θ

)]
, (4.7)

where dK ∈ CK × RK
[t], K = 1, 2, · · · , and L denotes the likelihood function. By substituting the

71



expression of the likelihood function L[t] of G[t] (Eq. (3.36)) into Eq. (4.7), according to [55, 56],

we have

I[t](θ) = Pθ

(
N(t) = 0

)∂ logPθ

(
N(t) = 0

)
∂θ

T ∂ logPθ

(
N(t) = 0

)
∂θ


+

∞∑
K=1

∫ t

t0

· · ·
∫ τ3

t0

∫ τ2

t0

∫
C
· · ·
∫
C
pθ[t]

(
dK ,K

)∂ log pθ[t]

(
dK ,K

)
∂θ

T ∂ log pθ[t]

(
dK ,K

)
∂θ


× dr1 · · · drKdτ1dτ2 · · · dτK

=
1

Pθ

(
N(t) = 0

)
∂Pθ

(
N(t) = 0

)
∂θ

T ∂Pθ
(
N(t) = 0

)
∂θ



+

∞∑
K=1

∫ t

t0

· · ·
∫ τ3

t0

∫ τ2

t0

∫
C
· · ·
∫
C

1

pθ[t]

(
dK ,K

)
∂pθ[t]

(
dK ,K

)
∂θ

T ∂pθ[t]
(
dK ,K

)
∂θ


× dr1 · · · drKdτ1dτ2 · · · dτK , (4.8)

where Pθ
(
N(t) = 0

)
is the probability of N(t) = 0 and pθ[t] denotes the probability density

function of D[t] and N(t).
1.2. Assume that the photon detection rate Λ is independent of θ. By substituting Eqs. (3.4)-

(3.6) into Eq. (4.8), we have

I[t](θ) =

∞∑
K=1

P
(
N(t) = K

)∫ t

t0

· · ·
∫ τ3

t0

∫ τ2

t0

[∫
C
· · ·
∫
C

1

pθUK |TK

(
r1, · · · , rK |τ1, · · · , τK

)

×

∂pθUK |TK

(
r1, · · · , rK |τ1, · · · , τK

)
∂θ

T ∂pθUK |TK

(
r1, · · · , rK |τ1, · · · , τK

)
∂θ

 dr1 · · · drK

]

× pTK |N(t)

(
τ1, · · · , τK |K

)
dτ1dτ2 · · · dτK

= e
−
∫ t
t0

Λ(τ)dτ
∞∑
K=1

{∫ t

t0

· · ·
∫ τ3

t0

∫ τ2

t0

Iτ1,··· ,τK (θ)

K∏
k=1

Λ(τk)dτ1dτ2 · · · dτK

}
, (4.9)
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where, for t0 ≤ τ1 < · · · < τK ≤ t, Iτ1,··· ,τK is given by

Iτ1,··· ,τK (θ)

= EUK |TK=τ1:K


∂ log pθUK |TK

(
r1:K |τ1:K

)
∂θ

T ∂ log pθUK |TK

(
r1:K |τ1:K

)
∂θ




=

∫
C
· · ·
∫
C
pθUK |TK

(
r1:K |τ1:K

)∂ log pθUK |TK

(
r1:K |τ1:K

)
∂θ

T ∂ log pθUK |TK

(
r1:K |τ1:K

)
∂θ


× drK · · · dr1

=

∫
C
· · ·
∫
C

1

pθUK |TK

(
r1:K |τ1:K

)
∂pθUK |TK

(
r1:K |τ1:K

)
∂θ

T ∂pθUK |TK
(
r1:K |τ1:K

)
∂θ


× drK · · · dr1, (4.10)

where r1:K := (r1, · · · , rK) , τ1:K := (τ1, · · · , τK) , K = 1, 2, · · · . Since

pθUK |TK

(
r1:K |τ1:K

)
=
∏K

l=1 p
θ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
, according to Lemma 1 (chain rule for the

Fisher information matrix) of [60], we have

Iτ1,··· ,τK (θ) =


∑K
l=1 I

τ1,··· ,τl
Ul|Tl,Dl−1

(θ), t0 ≤ τ1 < · · · < τK ≤ t,

0, otherwise,

where the Fisher information matrix Iτ1,··· ,τlUl|Tl,Dl−1
of Ul, l = 1, · · · , K, calculated with respect to the

conditional probability density function pθUl|Tl,Dl−1
at fixed time points Tl = τ1:l, is given by

I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ) = EUl|Tl=τ1:l


∂ log pθ

Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

T ∂ log pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ




=

∫
C
· · ·
∫
C
pθUl|Tl

(
r1:l|τ1:l

)∂ log pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

T

×

∂ log pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

 drl · · · dr1

=

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

)[∫
C

1

pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)

×

∂pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

T ∂pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

 drl

]
drl−1 · · · dr1. (4.11)
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2.1. Moreover, by substituting the expression for the likelihood function LL of GL (Eq. (3.37))

into Eq. (4.7), the Fisher information matrix IL(θ) of GL can be obtained as

IL(θ) =

∫ ∞
t0

· · ·
∫ τ3

t0

∫ τ2

t0

∫
C
· · ·
∫
C
pθL

(
dL

)∂ log pθL

(
dL

)
∂θ

T ∂ log pθL

(
dL

)
∂θ

 dr1 · · · drL

× dτ1dτ2 · · · dτL

=

∫ ∞
t0

· · ·
∫ τ3

t0

∫ τ2

t0

∫
C
· · ·
∫
C

1

pθL

(
dL

)
∂pθL

(
dL

)
∂θ

T ∂pθL
(
dL

)
∂θ

 dr1 · · · drLdτ1dτ2 · · · dτL, (4.12)

where dL ∈ CL × RL
[∞], and pθL denotes the probability density function of DL.

2.2. Assume that the photon detection rate Λ is independent of θ. By substituting Eq. (3.3) into

Eq. (4.12), we have, according to Eq. (3.9) and using the similar procedure used in the previous

part,

IL(θ) =

∫ ∞
t0

· · ·
∫ τ3

t0

∫ τ2

t0

[∫
C
· · ·
∫
C

1

pθUL|TL

(
r1:L|τ1:L

)
∂pθUL|TL

(
r1:L|τ1:L

)
∂θ

T

×

∂pθUL|TL
(
r1:L|τ1:L

)
∂θ

 dr1 · · · drL

]
pTL

(
τ1:L

)
dτ1dτ2 · · · dτL

=

∫ ∞
t0

· · ·
∫ τ3

t0

∫ τ2

t0

Iτ1,··· ,τL(θ)e−
∫ τL
t0

Λ(τ)dτ
L∏
k=1

Λ(τk)dτ1dτ2 · · · dτL.

We next derive expressions for the Fisher information matrices of the image detection processes

driven by the stochastic trajectory X and image function q for a time interval [t0, t] and for a fixed

number L of photons in the following corollary to Theorem 4.

Corollary 2. Let G[t]

(
X,
(
U[t], T[t]

)
, q, C,Θ

)
(or GL

(
X, (UL, TL) , q, C,Θ

)
) be an image detection

process driven by the stochastic trajectory X and image function q for a time interval [t0, t] (or

for a fixed number L of photons). Let, for a row parameter vector θ = (θ1, · · · , θn) ∈ Θ, the
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n-dimensional vector F θ
l be given by

F θ
l

(
x, dl

)
:=

[(
df θx (rl)

)T (
dpθprl

(
x|τl, dl−1

))T]
︸ ︷︷ ︸

Block row vector

pθprl
(
x|τl, dl−1

)
f θx (rl)

 , x ∈ R3, (4.13)

where dl ∈ Cl × Rl
[t] (or dl ∈ Cl × Rl

[∞]), r1:l := (r1, · · · , rl) , τ1:l := (τ1, · · · , τl), pθprl :=

pθX(Tl)|Tl,Dl−1
, pθpr1

(
x|τ1, d0

)
:= pθpr1

(
x|τ1

)
, denotes the distribution of the prediction of the object

location, and dpθprl :=
∂pθprl
∂θ

, df θx := ∂fθx
∂θ

. Assume that the photon detection rate Λ is independent

of θ. Then, Iτ1,··· ,τK in Eq. (4.2) (or Eq. (4.6)) of Theorem 4 is given by

Iτ1,··· ,τK (θ) =


∑K

l=1 I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ), t0 ≤ τ1 < · · · < τK ≤ t,

0, otherwise,

where

Iτ1,··· ,τlUl|Tl,Dl−1
(θ) =

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

)

×

∫
R3

∫
R3

∫
C

F θl

(
x1, dl

) [
F θl

(
x2, dl

)]T
pθUl|Tl,Dl−1

(
rl|τl, dl−1

) drl

 dx1dx2

 drl−1 · · · dr1, (4.14)

and

pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

)
=

l−1∏
i=1

∫
R3

f θxo (ri) p
θ
prl

(
xo|τi, di−1

)
dxo, (4.15)

with Iτ1U1|T1
given by

Iτ1U1|T1
(θ) =

∫
C

∫
R3

∫
R3

1

pθU1|T1

(
r|τ1

) [(dfθx1
(r)
)T (

dpθpr1

(
x1|τ1

))T]pθpr1
(
x1|τ1

)
fθx1

(r)



×

pθpr1
(
x2|τ1

)
fθx2

(r)


T  dfθx2

(r)

dpθpr1

(
x2|τ1

)
 dx1dx2dr. (4.16)
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Remark 2. Note that if the image function q is independent of the parameter vector θ, then,

F θ
l

(
x, dl

)
= fx (rl)

(
dpθprl

(
x|τl, dl−1

))T
, x ∈ R3,

and the expression for Iτ1,··· ,τlUl|Tl,Dl−1
can be simplified as

I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ)

=

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

)[∫
C

1

pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
×
(
∂

∂θ

∫
R3
fxo (rl) p

θ
prl

(
xo|τl, dl−1

)
dxo

)T(
∂

∂θ

∫
R3
fxo (rl) p

θ
prl

(
xo|τl, dl−1

)
dxo

)
drl

]

× drl−1 · · · dr1

=

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

){∫
R3

∫
R3

[∫
C

1

pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)

× fx1 (rl) fx2 (rl)

∂pθprl

(
x1|τl, dl−1

)
∂θ

T ∂pθprl

(
x2|τl, dl−1

)
∂θ

 drl

]
dx1dx2

}
drl−1 · · · dr1. (4.17)

Proof. Let G[t]

(
X,
(
U[t], T[t]

)
, q, C,Θ

)
(or GL

(
X, (UL, TL) , q, C,Θ

)
) be an image detection pro-

cess driven by the stochastic trajectory X and image function q for a time interval [t0, t] (or a fixed

number L of photons). Assume that the photon detection rate Λ is independent of θ. The Fisher

information matrix Iτ1,··· ,τK in Eq. (4.2) (or Eq. (4.6)) of Theorem 4 is given by

Iτ1,··· ,τK (θ) =


∑K
l=1 I

τ1,··· ,τl
Ul|Tl,Dl−1

(θ), t0 ≤ τ1 < · · · < τK ≤ t,

0, otherwise,

where, for r1:l := (r1, · · · , rl) , τ1:l := (τ1, · · · , τl) , l = 1, · · · , K,

I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ) =

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

)[∫
C

1

pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)

×

∂pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

T ∂pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

 drl

]
drl−1 · · · dr1, (4.18)

and Iτ1U1|T1
is given by Eq. (4.5). According to Eq. (3.15), we can express the conditional proba-
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bility density functions pθUl|Dl−1,Tl
in terms of the image profile fx, x ∈ R3, as

pθUl|Tl,Dl−1

(
rl|τl, dl−1

)
=

∫
R3

f θxo (rl) p
θ
prl

(
xo|τl, dl−1

)
dxo, (4.19)

where pθprl := pθX(Tl)|Tl,Dl−1
denotes the distribution of the prediction of the object location,

pθpr1

(
xo|τ1, d0

)
:= pθpr1

(
xo|τ1

)
, and xo ∈ R3 denotes a running variable in the object space. By

substituting Eq. (4.19) into Eq. (4.18), we have, for dpθprl :=
∂pθprl
∂θ

and df θx := ∂fθx
∂θ

,

I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ)

=

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

){∫
C

1

pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
×
(∫

R3

[(
dfθx1 (rl)

)T
pθprl

(
x1|τl, dl−1

)
+ fθx1 (rl)

(
dpθprl

(
x1|τl, dl−1

))T ]
dx1

)

×
(∫

R3

[
dfθx2 (rl) p

θ
prl

(
x2|τl, dl−1

)
+ fθx2 (rl) dp

θ
prl

(
x2|τl, dl−1

)]
dx2

)
drl

}
drl−1 · · · dr1

=

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

){∫
C

∫
R3

∫
R3

1

pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)

×
[(
dfθx1 (rl)

)T (
dpθprl

(
x1|τl, dl−1

))T ]pθprl(x1|τl, dl−1

)
fθx1 (rl)

pθprl(x2|τl, dl−1

)
fθx2 (rl)

T  dfθx2 (rl)

dpθprl

(
x2|τl, dl−1

)


× dx1dx2drl

}
drl−1 · · · dr1

=

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

)∫
R3

∫
R3

∫
C

F θl

(
x1, dl

) [
F θl

(
x2, dl

)]T
pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

) drl

 dx1dx2


× drl−1 · · · dr1, (4.20)

where for l = 1, 2, · · · ,

F θ
l

(
x, dl

)
:=

[(
df θx (rl)

)T (
dpθprl

(
x|τl, dl−1

))T]pθprl
(
x|τl, dl−1

)
f θx (rl)

 , x ∈ R3,

pθUl|Tl,Dl−1

(
rl|τl, dl−1

)
=

∫
R3

f θxo (rl) p
θ
prl

(
xo|τl, dl−1

)
dxo,

pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

)
=

l−1∏
i=1

∫
R3

f θxo (ri) p
θ
prl

(
xo|τi, di−1

)
dxo,
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with Iτ1U1|T1
given by

Iτ1U1|T1
(θ) =

∫
C

∫
R3

∫
R3

1

pθU1|T1

(
r|τ1

) [(dfθx1
(r)
)T (

dpθpr1

(
x1|τ1

))T]pθpr1
(
x1|τ1

)
fθx1

(r)



×

pθpr1
(
x2|τ1

)
fθx2

(r)


T  dfθx2

(r)

dpθpr1

(
x2|τ1

)
 dx1dx2dr.

As mentioned in Section 3.2, for special cases of an object with a deterministic trajectory and a

static object, the probability density function of the image detection process Gτ1,··· ,τK at fixed time

points t0 ≤ τ1 < · · · < τK is simplified as given by Eqs. (3.16) and (3.17), respectively. We next

in Corollary 3 to Theorem 4 calculate the Fisher information matrix for these special cases, and

show that the obtained results are consistent with the results presented in [6, 61, 54, 62].

Corollary 3. For t0 ≤ τ1 < · · · < τK , let Gτ1,··· ,τK
(

(UK , TK) , C,Θ
)

be an image detection

process at fixed time points τ1, · · · , τK . Assume that pUl|Tl,Dl−1

(
rl|τl, dl−1

)
= pUl|Tl

(
rl|τl

)
, dl ∈

Cl × Rl
[∞], l = 1, 2, · · · .

1. Then, the Fisher information matrix Iτ1,··· ,τK of Gτ1,··· ,τK
(

(UK , TK) , C,Θ
)

is given by

Iτ1,··· ,τK (θ) =


∑K

l=1 I
τl
Ul|Tl(θ), t0 ≤ τ1 < · · · < τK ,

0, otherwise,

where for l = 1, · · · , K,

IτlUl|Tl(θ) =

∫
R2

1

pθUl|Tl

(
r|τl
)
∂pθUl|Tl

(
r|τl
)

∂θ

T ∂pθUl|Tl
(
r|τl
)

∂θ

 dr.

2.1. For an object with deterministic trajectory Xτ (θ) := (xτ (θ), yτ (θ)) ∈ R2, τ ≥ t0, assume

that there exists an image function q: R2 7→ R, which describes the image of an object on the
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detector plane at unit lateral magnification and it is assumed to be independent of the parameter

vector θ = (θ1, · · · , θn) ∈ Θ, such that

pθUl|Tl

(
r|τ
)

:=
1

M2
q

(
x

M
− xτ (θ),

y

M
− yτ (θ)

)
,

where r = (x, y) ∈ R2, t0 ≤ τ ≤ t, and M > 1 is a magnification factor. Let D1q and D2q be the

partial derivatives of q with respect to the x- and y-coordinates, respectively. Also, let Djxτ and

Djyτ , j = 1, · · · , n, denote the partial derivatives of xτ and yτ with respect to the jth parameter

coordinate, respectively. Then, for t0 ≤ τ1 < · · · < τK ,

Iτ1,··· ,τK (θ) =
K∑
l=1

Iτl(θ),

where

Iτl(θ) = V T
θ (τl)

∫
R2

1

q(u, v)

(D1q)(u, v)

(D2q)(u, v)


(D1q)(u, v)

(D2q)(u, v)


T

dudv

Vθ(τl),

and

Vθ(τl) :=

(D1xτl)(θ) · · · (Dnxτl)(θ)

(D1yτl)(θ) · · · (Dnyτl)(θ)

 ∈ R2×n.

2.2. For a static object with position X0(θ) = (x0(θ), y0(θ)) ∈ R2, we have, for t0 ≤ τ1 <

· · · < τK ,

Iτ1,··· ,τK (θ) = I(θ) = KĨ(θ),
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where

Ĩ(θ) = V T
θ

∫
R2

1

q(u, v)

(D1q)(u, v)

(D2q)(u, v)


(D1q)(u, v)

(D2q)(u, v)


T

dudv

Vθ,

and for θ = (θ1, · · · , θn) ∈ θ,

Vθ :=

(D1x0)(θ) · · · (Dnx0)(θ)

(D1y0)(θ) · · · (Dny0)(θ)

 ∈ R2×n.

Proof. For t0 ≤ τ1 < · · · < τK , let Gτ1,··· ,τK
(

(UK , TK) , C,Θ
)

be an image detection process at

fixed time points τ1, · · · , τK . Assume that

pUl|Tl,Dl−1

(
rl|τl, dl−1

)
= pUl|Tl

(
rl|τl

)
, dl ∈ Cl × Rl

[∞], l = 1, 2, · · · .

1. According to Eq. (3.16), we have, for rl ∈ R2, l = 1, 2, · · · ,

pUK |TK

(
r1, · · · , rK |τ1, · · · , τK

)
=

K∏
l=1

pθUl|Tl

(
rl|τl

)
. (4.21)

By substituting Eq. (4.21) into Eq. (4.4), we have

Iτ1,··· ,τK (θ) =


∑K

l=1 I
τl
Ul|Tl(θ), t0 ≤ τ1 < · · · < τK ,

0, otherwise,
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where for l = 1, · · · , K,

IτlUl|Tl(θ) =

∫
R2

(∫
R2

pθU1|T1

(
r1|τ1

)
dr1

)
· · ·
(∫

R2

pθUl−1|Tl−1

(
rl−1|τl−1

)
drl−1

)

× 1

pθUl|Tl

(
rl|τl

)
∂pθUl|Tl

(
rl|τl

)
∂θ

T ∂pθUl|Tl
(
rl|τl

)
∂θ

 drl

=

∫
R2

1

pθUl|Tl

(
r|τl
)
∂pθUl|Tl

(
r|τl
)

∂θ

T ∂pθUl|Tl
(
r|τl
)

∂θ

 dr. (4.22)

2.1. For an object with deterministic trajectory Xτ (θ) := (xτ (θ), yτ (θ)) ∈ R2, τ ≥ t0, assume

that there exists an image function q:R2 7→ R, which is assumed to be independent of the parameter

vector θ, such that for r = (x, y) ∈ R2, t0 ≤ τ ≤ t, and a magnification factor M > 1,

pθUl|Tl

(
r|τ
)

= fXτ (θ) (r) =
1

M2
q

(
x

M
− xτ (θ),

y

M
− yτ (θ)

)
. (4.23)

Then, by substituting Eq. (4.23) into Eq. (4.22), Iτl := IτlUl|Tl is obtained as, for θ = (θ1, · · · , θn) ∈
Θ,

Iτl(θ) =
1

M2

∫
R2

1

q

(
x
M − xτl(θ),

y
M − yτl(θ)

)
∂q

(
x
M − xτl(θ),

y
M − yτl(θ)

)
∂θ


T

×

∂q
(
x
M − xτl(θ),

y
M − yτl(θ)

)
∂θ

 dxdy

=
1

M2

∫
R2

1

q
(
x
M − xτl(θ),

y
M − yτl(θ)

)

∂q( x

M−xτl (θ),
y
M−yτl (θ))

∂θ1
...

∂q( x
M−xτl (θ),

y
M−yτl (θ))

∂θn



∂q( x

M−xτl (θ),
y
M−yτl (θ))

∂θ1
...

∂q( x
M−xτl (θ),

y
M−yτl (θ))

∂θn


T

dxdy.

(4.24)
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For each (x, y) ∈ R2, let hx,y = (hx, hy): R2 7→ R2, such that, for θ ∈ Θ, (xτl(θ), yτl(θ)) ∈ R2,

hx(xτl(θ), yτl(θ)) =
x

M
− xτl(θ), hy(xτl(θ), yτl(θ)) =

y

M
− yτl(θ).

Then, for dτl = (xτl , yτl): Θ 7→ R2, the composite function (q ◦ hx,y ◦ dτl)(θ) is given by

(q ◦ hx,y ◦ dτl)(θ) = q(hx,y(dτl(θ))) = q
( x
M
− xτl(θ),

y

M
− yτl(θ)

)
,

and therefore, using the formal definition of partial derivatives, we can rewrite Eq. (4.24) as

Iτl (θ) =
1

M2

∫
R2

1

(q ◦ hx,y ◦ dτl )(θ)


(D1(q ◦ hx,y ◦ dτl ))(θ1, · · · , θn)

...

(Dn(q ◦ hx,y ◦ dτl ))(θ1, · · · , θn)




(D1(q ◦ hx,y ◦ dτl ))(θ1, · · · , θn)

...

(Dn(q ◦ hx,y ◦ dτl ))(θ1, · · · , θn)


T

dxdy. (4.25)

Assume that dτl is continuously differentiable on all of Θ, and hx,y is differentiable at dτl(θ). Also,

suppose that q is differentiable at hx,y (dτl(θ)) . Then, according to Theorem 8 (see Section B.8),

for i =, 1 · · · , n,

(Di(q ◦ hx,y ◦ dτl))(θ) = (D1q)(hx,y(dτl(θ)))(D1hx)(dτl(θ))(Dixτl)(θ)

+ (D1q)(hx,y(dτl(θ)))(D2hx)(dτl(θ))(Diyτl)(θ)

+ (D2q)(hx,y(dτl(θ)))(D1hy)(dτl(θ))(Dixτl)(θ)

+ (D2q)(hx,y(dτl(θ)))(D2hy)(dτl(θ))(Diyτl)(θ)

= −(D1q)(hx,y(dτl(θ)))(Dixτl)(θ)− (D2q)(hx,y(dτl(θ)))(Diyτl)(θ)

= −
[
(Dixτl)(θ) (Diyτl)(θ)

](D1q)(hx,y(dτl(θ)))

(D2q)(hx,y(dτl(θ)))

 . (4.26)
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By substituting Eq. (4.26) into Eq. (4.25), we have, for θ = (θ1, · · · , θn) ∈ Θ,

Iτl(θ) =
1

M2
V Tθ (τl)

[ ∫
R2

1

q(hx,y(dτl(θ)))

(D1q)(hx,y(dτl(θ)))

(D2q)(hx,y(dτl(θ)))

(D1q)(hx,y(dτl(θ)))

(D2q)(hx,y(dτl(θ)))

T dxdy]Vθ(τl)
=

1

M2
V Tθ (τl)

 ∫
R2

1
q(hx,y(dτl (θ)))

[(D1q)(hx,y(dτl(θ)))]
2
dxdy∫

R2
1

q(hx,y(dτl (θ)))
(D1q)(hx,y(dτl(θ)))(D2q)(hx,y(dτl(θ)))dxdy∫

R2
1

q(hx,y(dτl (θ)))
(D1q)(hx,y(dτl(θ)))(D2q)(hx,y(dτl(θ)))dxdy∫

R2
1

q(hx,y(dτl (θ)))
[(D2q)(hx,y(dτl(θ)))]

2
dxdy

Vθ(τl), (4.27)

where

Vθ(τl) :=

(D1xτl)(θ) · · · (Dnxτl)(θ)

(D1yτl)(θ) · · · (Dnyτl)(θ)

 ∈ R2×n.

Let w1: R2 7→ R, such that

w1(u, v) =
1

q(u, v)
[(D1q)(u, v)]2 , (u, v) ∈ R2,

be an integrable function. Also, for each θ = (θ1, · · · , θn) ∈ Θ, (xτl(θ), yτl(θ)) ∈ R2, let gθ,τl =

(g1
θ,τl
, g2
θ,τl

): R2 7→ R2, such that

gθ,τl(x, y) = (g1
θ,τl

(x, y), g2
θ,τl

(x, y)) =
( x
M
− xτl(θ),

y

M
− yτl(θ)

)
= (u, v).

Then, we have for the Jacobian J(gθ,τl) of gθ,τl ,

J(gθ,τl) =

∂g
1
θ,τl

(x,y)

∂x

∂g1
θ,τl

(x,y)

∂y

∂g2
θ,τl

(x,y)

∂x

∂g2
θ,τl

(x,y)

∂y

 =

 1
M

0

0 1
M

 ,

83



and the modulus of its determinant is given by

∣∣∣∣∣∣∣det

 1
M

0

0 1
M


∣∣∣∣∣∣∣ =

∣∣∣∣ 1

M2

∣∣∣∣ =
1

M2
.

Then, according to Theorem 9 (see Section B.9),

∫
R2

w1(u, v)dudv =
1

M2

∫
R2

w1 (gθ,τl(x, y)) dxdy

=
1

M2

∫
R2

w1

( x
M
− xτl(θ),

y

M
− yτl(θ)

)
dxdy. (4.28)

Also, let w2, w3: R2 7→ R, such that

w2(u, v) =
1

q(u, v)
(D1q)(u, v)(D2q)(u, v), (u, v) ∈ R2,

and

w3(u, v) =
1

q(u, v)
[(D2q)(u, v)]2 , (u, v) ∈ R2,

be integrable functions. Similarly, according to Theorem 9 (see Section B.9),

∫
R2

wi(u, v)dudv =
1

M2

∫
R2

wi

( x
M
− xτl(θ),

y

M
− yτl(θ)

)
dxdy, i = 2, 3. (4.29)

Then, by substituting Eqs. (4.28) and (4.29) into Eq. (4.27),

Iτl(θ) = V Tθ (τl)

 ∫
R2

1
q(u,v) [(D1q)(u, v)]

2
dudv

∫
R2

1
q(u,v) (D1q)(u, v)(D2q)(u, v)dudv∫

R2
1

q(u,v) (D1q)(u, v)(D2q)(u, v)dudv
∫
R2

1
q(u,v) [(D2q)(u, v)]

2
dudv

Vθ(τl)
= V Tθ (τl)

∫
R2

1

q(u, v)

(D1q)(u, v)

(D2q)(u, v)

(D1q)(u, v)

(D2q)(u, v)

T dudv
Vθ(τl).

2.2. The results follow by using the similar procedure used in the previous part.
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The material presented in Theorem 4 and Corollary 2 provides a mathematical framework

to calculate the Fisher information matrix of image detection processes for a fixed time interval

and for a fixed number of photons for a moving object with a general stochastic motion model.

As mentioned before, in many biological applications, the motion of a small object in subcellular

environments can be modeled by a linear stochastic differential equation. The solution of this linear

stochastic differential equation can be modeled by a first order system driven by Gaussian noise. In

Corollary 4 to Theorem 4, we obtain recursive expressions for the Fisher information matrices for

both image detection processes for a fixed time interval and a fixed number of photons, in case that

the dynamical system is described by a first order system with Gaussian process and measurement

noise.

Corollary 4. Let Gg[t]
((

X̃, g, W̃g, Zg

)
,
(
U[t], T[t]

)
, Φ̃,M ′, C,Θ

)
(or GgL

((
X̃, g, W̃g, Zg

)
,

(UL, TL) , Φ̃,M ′, C,Θ
)

) be an image detection process with expanded state space X̃ and Gaus-

sian process and measurement noise models for a time interval [t0, t] (or for a fixed number L of

photons). Assume that

X(τ) = g(X̃(τ)) := GX̃(τ), τ ≥ t0,

where G ∈ R3×k, and let C := M ′G. Assume that the photon detection rate Λ, C and Zg are

independent of θ. Let

S
(ji)
θ,l −A

(j)
θ,lS

(ji)
θ,l−1

(
A

(i)
θ,l

)T
= B

(j)
θ,lRθ,l−1

(
B

(j)
θ,l

)T
, l = 2, 3, · · · ,

S
(ji)
θ,1 =

 φ̃θ(τ0, τ1)x̃θ,0

∂(φ̃θ(τ0,τ1)x̃θ,0)
∂θj

[(φ̃θ(τ0, τ1)x̃θ,0

)T (
∂(φ̃θ(τ0,τ1)x̃θ,0)

∂θi

)T]
, (4.30)

where

A
(i)
θ,l :=

φ̃θ(τl−1, τl) 0k×k

∂φ̃θ(τl−1,τl)
∂θi

φ̃θ(τl−1, τl) (Ik×k −Kθ,l−1C)

 , B
(i)
θ,l :=

 φ̃θ(τl−1, τl)Kθ,l−1

∂(φ̃θ(τl−1,τl)Kθ,l−1)
∂θi

 ,

and Rθ,l := CP l−1
θ,l C

T + Σg, Kθ,l := P l−1
θ,l C

T
(
CP l−1

θ,l C
T + Σg

)−1
, l = 1, 2, · · · , where P l−1

θ,l is
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obtained through Eqs. (3.28) and (3.29).

Then, the Fisher information matrix Iτ1,··· ,τK in Eq. (4.2) (or Eq. (4.6)) of Theorem 4 can be

calculated as

Iτ1,··· ,τK (θ) =


∑K

l=1 I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ), t0 ≤ τ1 < · · · < τK ≤ t,

0, otherwise,
(4.31)

where, for θ = (θ1, · · · , θn) ∈ Θ and l = 1, · · · , K, the i, jth, i, j = 1, · · · , n, entry
[
Iτ1,··· ,τlUl|Tl,Dl−1

]
i,j

of Iτ1,··· ,τlUl|Tl,Dl−1
can be calculated as

[
Iτ1,··· ,τlUl|Tl,Dl−1

(θ)
]
i,j

=
1

2
trace

[
R−1
θ,l

∂Rθ,l
∂θi

R−1
θ,l

∂Rθ,l
∂θj

]
+ trace

{
R−1
θ,l C̃S

(ji)
θ,l C̃

T
}
, (4.32)

with C̃ :=

[
02×k C

]
.

Proof. According to Theorem 4, the Fisher information matrix Iτ1,··· ,τK in Eq. (4.2) (or Eq. (4.6))

can be calculated as

Iτ1,··· ,τK (θ) =


∑K
l=1 I

τ1,··· ,τl
Ul|Tl,Dl−1

(θ), t0 ≤ τ1 < · · · < τK ≤ t,

0, otherwise,

where

I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ) =

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

)[∫
C
pθUl|Tl,Dl−1

(
rl|τl, dl−1

)

×

∂ log pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

T ∂ log pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θ

 drl

]
drl−1 · · · dr1,

with dl ∈ Cl ∈ Rl
[t] (or dl ∈ Cl ∈ Rl

[∞]), and r1:l := (r1, · · · , rl) , τ1:l := (τ1, · · · , τl) , l = 1, 2, · · · .
Under the certain regularity conditions, for θ = (θ1, · · · , θn) ∈ Θ, i, j = 1, · · · , n, the i, jth entry[
Iτ1,··· ,τlUl|Tl,Dl−1

]
i,j

of Iτ1,··· ,τlUl|Tl,Dl−1
can be calculated as

[
I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ)
]
i,j

=

∫
C
· · ·
∫
C
pθUl−1|Tl−1

(
r1:l−1|τ1:l−1

)

×
[
−
∫
C
pθUl|Tl,Dl−1

(
rl|τl, dl−1

)∂2 log pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θiθj

drl

]
drl−1 · · · dr1. (4.33)
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According to Eq. (3.35),

pθUl|Tl,Dl−1

(
rl|τl, dl−1

)
=

1

2π [det (Rθ,l)]
1/2

exp

(
− 1

2
eTθ,lR

−1
θ,l eθ,l

)
, (4.34)

where eθ,l := rl − Cx̂l−1
θ,l , Rl := CP l−1

θ,l C
T + Σg, and for l = 0, 1, · · · ,

x̂lθ,l+1 = φ̃θ(τl, τl+1)x̂lθ,l,

P lθ,l+1 = φ̃θ(τl, τl+1)P lθ,lφ̃
T
θ (τl, τl+1) + Q̃θ(τl, τl+1), (4.35)

and for l = 1, 2, · · · ,

x̂lθ,l = x̂l−1
θ,l +Kθ,l(rl − Cx̂l−1

θ,l ),

P lθ,l = P l−1
θ,l −Kθ,lCP

l−1
θ,l ,

Kθ,l = P l−1
θ,l C

T
(
CP l−1

θ,l C
T + Σg

)−1
, (4.36)

where x̂0
θ,0 := x̃θ,0, P

0
θ,0 := P̃θ,0. In order to calculate

[
Iτ1,··· ,τlUl|Tl,Dl−1

]
i,j
, i, j = 1, · · · , n, in Eq. (4.33),

we first calculate, for θ = (θ1, · · · , θn) ∈ Θ and i = 1, · · · , n, the derivative of log pθUl|Tl,Dl−1
with

respect to θi as below

∂ log pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θi

= −
1

2
trace

(
Rθ,l

∂Rθ,l

∂θi

)
−

1

2

(
∂eTθ,l

∂θi
R−1
θ,l eθ,l − e

T
θ,lR

−1
θ,l

∂Rθ,l

∂θi
R−1
θ,l eθ,l + eTθ,lR

−1
θ,l

∂eθ,l

∂θi

)
. (4.37)

Since the covariance matrix Rθ,l is symmetric, then,
∂eTθ,l
∂θi

R−1
θ,l eθ,l = eTθ,lR

−1
θ,l

∂eθ,l
∂θi

, and therefore,

according to Eq. (4.37),(note that trace
(
eTθ,lR

−1
θ,l

∂Rθ,l
∂θi

R−1
θ,l eθ,l

)
= eTθ,lR

−1
θ,l

∂Rθ,l
∂θi

R−1
θ,l eθ,l),

∂ log pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θi

= −
1

2
trace

(
R−1
θ,l

∂Rθ,l

∂θi

)
+

1

2
trace

(
eTθ,lR

−1
θ,l

∂Rθ,l

∂θi
R−1
θ,l eθ,l

)
−

1

2

(
∂eTθ,l

∂θi
R−1
θ,l eθ,l + eTθ,lR

−1
θ,l

∂eθ,l

∂θi

)

= −
1

2
trace

(
R−1
θ,l

∂Rθ,l

∂θi
−R−1

θ,l

∂Rθ,l

∂θi
R−1
θ,l eθ,le

T
θ,l

)
−
∂eTθ,l

∂θi
R−1
θ,l eθ,l

= −
1

2
trace

[(
R−1
θ,l

∂Rθ,l

∂θi

)
(I −R−1

θ,l eθ,le
T
θ,l)

]
−
∂eTθ,l

∂θi
R−1
θ,l eθ,l, (4.38)
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where I denotes the identity matrix with the corresponding size. Differentiating Eq. (4.38) with
respect to θj , gives [63]

∂2 log pθ
Ul|Tl,Dl−1

(
rl|τl, dl−1

)
∂θi∂θj

=

−
1

2
trace
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(I −R−1
θ,l eθ,le

T
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)− 1

2
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+
1

2
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[
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.

Therefore, the inner integral in Eq. (4.33) can be calculated as
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C
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Note that for j = 1, · · · , n,
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By substituting the above equation in Eq. (4.33), we have

[
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According to Eqs. (4.35) and (4.36),

x̂lθ,l+1 = φ̃θ(τl, τl+1)
(
x̂l−1
θ,l +Kθ,l(rl − Cx̂l−1

θ,l )
)
, l = 1, 2, · · · . (4.42)

Then, according to Lemma 5 (see Section B.7), by differentiating Eq. (4.42) with respect to θi, i =

1, · · · , n, after some straightforward calculations, for X(i)
θ,l :=

 x̂l−1
θ,l

∂x̂l−1
θ,l

∂θi

, we have the following

recursive formulation:

X
(i)
θ,l+1 = A

(i)
θ,l+1X

(i)
θ,l +B

(i)
θ,l+1eθ,l, θ = (θ1, · · · , θn) ∈ Θ, i = 1, · · · , n, (4.43)

and
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According to Lemma 6 (see Section B.10) and using Eq. (4.43), we have, for l = 1, 2, · · · ,
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Finally, by rewriting the Fisher information expression (Eq. (4.41)) as (let C̃ :=

[
02×k C

]
,

where 02×k denotes the 2× k zero matrix)
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and substituting Eq. (4.44) into Eq. (4.45), we have
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, l = 1, 2, · · · , can be calculated recursively as
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, (4.46)

and it completes the proof.
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In Section B.4, we provide an example to illustrate our results for calculating the Fisher in-

formation matrix for the specific case of a linear trajectory described in the example provided in

Section B.1 of Appendix B.

4.2.1 CRLB and standard deviation of estimates for different photon counts

We next evaluate the performance of our proposed maximum likelihood estimation method

in terms of the standard deviation of the estimates. For this purpose, we simulated data sets of

the detected photons emitted from a molecule, referred to as the images of a molecule, with a

stochastic trajectory, which differ by the mean photon count, i.e., the mean number of detected

photons during the exposure time interval, assumed for each trajectory. This mean photon count

ranges from 250 to 1250. For each mean photon count, the data set consists of 100 repeat images

simulated using the Gaussian profile (Eq. (3.24)) with the parameters given in Section 3.4.1. For

these data sets, we calculated the maximum likelihood estimates of the diffusion and the first

order drift coefficients, separately. Also, for the given data set and time points, we obtained the

square roots of the CRLBs for the diffusion and the first order drift coefficient by calculating the

square roots of the inverse of their corresponding Fisher information matrices at the fixed time

points. It can be seen in Fig. 4.1(a) that the standard deviations of the estimates are close to

the square roots of their corresponding CRLBs, and when the mean number of photons increases,

the standard deviation of the estimates decreases. Also, the percentage differences between the

standard deviations and the square roots of the CRLBs are shown in Fig. 4.1(b). The percentage

difference is the difference between the standard deviation of the estimates and the square root of

the corresponding CRLB, expressed as a percentage of the square root of the corresponding CRLB.

As can be seen in Fig. 4.1(b), these percentage differences are at most around 10%.

4.2.2 Fisher information matrix for non-Gaussian measurement noise

So far, for computational purposes and taking advantage of the Kalman filter formulation, we

have focused on computing the Fisher information matrix and CRLB only for Gaussian measure-

ments. Although the Gaussian assumption is very useful in some applications, there are many
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Figure 4.1: Analysis of the standard deviation of diffusion coefficient and drift coefficient estimates
produced by the maximum likelihood estimation method for the Gaussian measurement noise case.
Shown in the first row are the standard deviations of the diffusion coefficient and the first order drift
coefficient estimates versus the square roots of their corresponding CRLBs for simulated data sets.
The simulated data sets are the detected photons emitted from a molecule, referred to as the images
of a molecule, with a stochastic trajectory, which differ by the mean photon count assumed for each
trajectory. For each mean photon count, the data set consists of 100 repeat images. For a given data
set, the time points of the detected photons are drawn from a Poisson process and are the same for
all trajectories. All trajectories are simulated in the object space using Eq. (B.1) with the first order
drift coefficient F = −10/s and the diffusion coefficient D = 1 µm2/s. Also, we assume that the
initial location of the molecule is Gaussian distributed with mean x0 = (5, 5)T µm and covariance
P0 = 10I2×2 nm2. Detected locations of the photons emitted from the molecule in the image space
are simulated using Eq. (3.24) with the parameters given in Section 3.4.1. Shown in the second
row are the percentage differences between the standard deviation of the diffusion coefficient and
the first order drift coefficient estimates and the square roots of their corresponding CRLBs.
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cases for which this assumption can be problematic in practice due to the fact that the Gaussian

model is often not a suitable approximation for an analytical image profile. As mentioned earlier,

from the optical diffraction theory, a typical point spread function for an in-focus molecule is given

by the Airy profile. Also, for the out-of-focus scenario, the image function is given by a classical

model of Born and Wolf [36].

Here, we computed the Fisher information matrix of both drift and diffusion coefficients for the

Airy measurements case and compared the results with the Fisher information matrix obtained for

the case that the Airy profile is approximated by a 2D Gaussian profile. The typical approximation

of the Airy profile with α := 2πna/λ by a 2D Gaussian profile with standard deviation σ yields a

value of σ = 1.323/α [6]. We only focused on the one photon case, since computing the integrals

of the Fisher information expression for the Airy profile case numerically requires a large number

of samples and it is computationally expensive (see Section B.5 in Appendix B for the detailed

computational procedure). As shown in Fig. 4.2, the difference between the Fisher information

matrices of these two different profiles can be significant.
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Figure 4.2: Fisher information matrix for Airy measurement noise versus Gaussian measurement
noise. Fisher information matrix of diffusion and first order drift coefficients for the Airy measure-
ment noise with parameter α = 2πna/λ given in Section 3.4.1 and by a 2D Gaussian profile with
standard deviation σ = 1.323/α, in case we have one photon with an arrival time of τ1 = 20 ms.
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4.2.3 CRLB and Fisher information matrix for different sets of time points

To examine further the CRLB on parameter estimation for a moving single molecule with a

stochastic trajectory, we calculated the square root of the CRLB for the simulated trajectories with

the same parameters as in Fig. 4.1, and different time points drawn from a Poisson process with

a mean value which ranges from 250 to 1250. As can be seen in Fig. 4.3, the square root of the

CRLB for the drift coefficient highly depends on the time points of the observations, and does not

necessarily improve by increasing the number of observations. On the other hand, the square root

of the CRLB for the diffusion coefficient does not depend on the time points of the observations

significantly, and always improves by increasing the number of observations.
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Figure 4.3: Analysis of the square root of the CRLB of the diffusion coefficient and drift coefficient
estimates for different sets of Poisson distributed time points. Medians and standard deviations
of the square roots of the CRLBs of the diffusion coefficient and the first order drift coefficient
estimates are shown by the circles and error bars, respectively, for the simulated trajectories with
the same parameters as in Fig. 4.1, and different time points drawn from a Poisson process with
the same mean value, which ranges from 250 to 1250.

We also show the Fisher information matrices (and Fisher information matrix increments, i.e.,

the amount of information that we get by detecting a new photon) for Poisson distributed time

points and for equally distributed time points in Fig. 4.4. For this purpose, we simulated two data
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sets of single molecule trajectories with Gaussian measurements, first containing a trajectory of a

molecule simulated using Eqs. (B.1), where the time points are drawn from a Poisson process with

mean 250 in the time interval [0, 50] ms, and second containing 250 equally spaced time points

in the time interval [0, 50] ms. We then calculated the Fisher information matrix increments and

Fisher information matrix (sum of the increments) on the diffusion coefficient estimation for both

data sets. As can be seen, the Fisher information matrix increments are the same for the equally

spaced time points. However, for different realizations of Poisson time points, Fisher information

matrix increments are different from each other.
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Figure 4.4: Fisher information analysis of single molecule trajectories simulated using Poisson
distributed and equally spaced time points. Shown in the left are the Fisher information matrix
increments on the diffusion coefficient estimation for data sets of two trajectories, first containing
a trajectory of a molecule simulated using Eqs. (B.1), where the time points are drawn from a
Poisson process with mean 250 in the time interval [0, 50] ms, and second containing 250 equally
spaced time points in the time interval [0, 50] ms, with the parameters given in Fig. (4.1). Shown
in the right is the Fisher information matrix (sum of the increments) for both trajectories.
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5. EFFECT OF PIXELATION ON THE PARAMETER ESTIMATION OF SINGLE

MOLECULE TRAJECTORIES AND FISHER INFORMATION MATRIX

5.1 Introduction

In Chapters 3 and 4, we studied the parameter estimation of single molecule trajectories for

the fundamental data model, in which we had an ideal unpixelated detector and the measurements

were the time points and locations of the detected photons. In practice, pixelated detectors are

used in fluorescence microscopy, and therefore, the time points and exact locations of detection

of the photons are not available anymore. In this case, the only information that we have is the

pixel areas in which the photons impact the detector. Hence, the parameter estimation of single

molecule trajectories form pixelated images are not a trivial problem.

The majority of available methods model the effect of pixelation by using an additive noise

in the fundamental data model. However, in general, this approximation does not describe the

underlying stochastic model precisely. For example, in [15, 39, 40], the effect of pixelation is

encapsulated in a Gaussian additive random variable, referred to as the localization uncertainty.

Therefore, there is a need for a systematic approach to analyze the effect of pixelation.

In this chapter, we introduce the practical data model, in which the measurements are the

numbers of the photons detected in each pixel of a pixelated detector. Then, since the number of

detected photons in each pixel can be described in terms of the time points and locations of the

photons on the detector plane, we extend the results obtained for the fundamental data model to

the practical data model.

5.2 Practical data model

In the practical data model, the data acquired by a pixelated detector are the number of de-

tected photons at each pixel (Fig. 5.1). Let the pixelated detector Cp be defined as a collection

{C1, · · · , CK} of open and disjoint subsets of Cs, a region within R2 corresponding to the photon

detection area of the detector, such that
⋃K
k=1 Ck = Cs. If Cs = R2, the model is referred to as the
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Figure 5.1: Schematic of an optical microscope. An object located in the object (focal) plane is
imaged by an optical lens system and the image of the object is acquired by a pixelated detector
in the image space. A 2D random variable X(t), t ≥ t0, describes the location of the object in the
object plane at time t.

full practical data model. We use the random variable Sk, k = 1, · · · , K, to describe the number

of photons in the pixel Ck that result from the detection of photons from the object of interest.

We also introduce the following notation. For L,K = 1, 2, · · · , let ALK be a set of L-dimensional

vectors (a1, · · · , aL) , a1, · · · , aL = 1, · · · , K. For a vector v ∈ ALK , let ‖v‖=k , k = 1, · · · , K,

denote the number of the elements of v which are equal to k. For example, for v = (1, 1, 2) ∈ A3
3,

we have ‖v‖=1 = 2, ‖v‖=2 = 1, and ‖v‖=3 = 0. For z1, · · · , zK = 0, 1, · · · , and
∑K

k=1 zk = L, let

ALK (z1, · · · , zK) :=
{
v ∈ ALK | ‖v‖=k = zk, k = 1, · · · , K

}
. (5.1)
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For example,

A3
2 := {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 1), (2, 1, 2), (1, 2, 2), (2, 2, 2)} ,

A3
2 (1, 2) := {(2, 2, 1), (2, 1, 2), (1, 2, 2)} ,

A3
2 (2, 1) := {(1, 1, 2), (1, 2, 1), (2, 1, 1)} ,

A3
2 (0, 3) := {(2, 2, 2)} ,

A3
2 (3, 0) := {(1, 1, 1)} .

Note that the size
∣∣ALK (z1, · · · , zK)

∣∣ of the set ALK (z1, · · · , zK) is equal to L!
z1!···zK !

. In Theorem

5, we calculate the joint probability of S1, · · · , SK . But, we first calculate the joint probability

density function of the locations of the photons detected by an ideal unpixelated detector in Lemma

2. In this chapter, the location of the photon emitted by the object, at time τ ≥ t0, on the image

plane is described by U(X(τ)), where U is a random function that maps the object space into the

image space. Also, we assume that only the locations of the photons emitted by the object can be

detected by the unpixelated detector and the temporal information is not available. This further

helps us to derive the formulae for the practical data model directly from the fundamental data

model formulae.

Lemma 2. The conditional probability density function pU(X(T1)),··· ,U(X(TL))|N(t) ofU(X(T1)), · · · ,
U(X(TL)), given N(t), can be calculated as

pU(X(T1)),··· ,U(X(TL))|N(t) (r1, · · · , rL|L)

=
L!(∫ t

t0
Λ(ψ)dψ

)L ∫
R2

· · ·
∫
R2

fx1
(r1) · · · fxL (rL)

(∫ t

t0

∫ τL

t0

· · ·
∫ τ3

t0

∫ τ2

t0

pX(τ1),··· ,X(τL) (x1, · · · , xL)

×
L∏
i=1

Λ(τi)dτ1dτ2 · · · dτL−1dτL

)
dx1 · · · dxL, (5.2)

where r1, · · · , rL ∈ R2, and pX(τ1),··· ,X(τL), t0 ≤ τ1 < · · · < τL ≤ t, is the joint probability

density function of X(τ1), · · · , X(τL). If {X(τ1), · · · , X(τL)} is a Markov sequence, then, for
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x1, · · · , xL ∈ R2,

pX(τ1),··· ,X(τL) (x1, · · · , xL) = pX(τL)|X(τL−1) (xL|xL−1) · · · pX(τ2)|X(τ1) (x2|x1) pX(τ1) (x1) ,

where pX(τl)|X(τl−1), l = 2, · · · , L, is the conditional probability density function of X(τl), given

X(τl−1), and pX(τ1) is the probability density function of X(τ1).

Proof. We have

pU(X(T1)),··· ,U(X(TL))|N(t) (r1, · · · , rL|L)

=

∫
R2

· · ·
∫
R2

pU(X(T1)),··· ,U(X(TL)),X(T1),··· ,X(TL)|N(t) (r1:L, x1:L|L) dxL · · · dx1

=

∫
R2

· · ·
∫
R2

pU(X(T1)),··· ,U(X(TL))|X(T1),··· ,X(TL),N(t) (r1:L|x1:L, L) pX(T1),··· ,X(TL)|N(t) (x1:L|L) dxL · · · dx1

=

∫
R2

· · ·
∫
R2

pU(X(T1))|X(T1) (r1|x1) · · · pU(X(TL))|X(TL) (rL|xL)

×

(∫ t

t0

∫ τL

t0

· · ·
∫ τ3

t0

∫ τ2

t0

pX(T1),··· ,X(TL),T1,··· ,TL|N(t) (x1:L, τ1:L|L) dτ1dτ2 · · · dτL−1dτL

)
dxL · · · dx1

=

∫
R2

· · ·
∫
R2

pU(x1) (r1) · · · pU(xL) (rL)

(∫ t

t0

∫ τL

t0

· · ·
∫ τ3

t0

∫ τ2

t0

pX(T1),··· ,X(TL)|T1,··· ,TL,N(t) (x1:L|τ1:L, L)

× pT1,··· ,TL|N(t) (τ1:L|L) dτ1dτ2 · · · dτL−1dτL

)
dxL · · · dx1

=

∫
R2

· · ·
∫
R2

fx1
(r1) · · · fxL (rL)

(∫ t

t0

∫ τL

t0

· · ·
∫ τ3

t0

∫ τ2

t0

pX(τ1),··· ,X(τL) (x1:L)
L!
∏L
l=1 Λ(τl)(∫ t

t0
Λ(ψ)dψ

)L
× dτ1dτ2 · · · dτL−1dτL

)
dxL · · · dx1

=
L!(∫ t

t0
Λ(ψ)dψ

)L ∫
R2

· · ·
∫
R2

fx1
(r1) · · · fxL (rL)

(∫ t

t0

∫ τL

t0

· · ·
∫ τ3

t0

∫ τ2

t0

pX(τ1),··· ,X(τL) (x1:L)

×
L∏
l=1

Λ(τl)dτ1dτ2 · · · dτL−1dτL

)
dxL · · · dx1,

where x1:L := (x1, · · · , xL), r1:L := (r1, · · · , rL), τ1:L := (τ1, · · · , τL), and pX(τ1),··· ,X(τL), t0 ≤

τ1 < · · · < τL ≤ t, is the joint probability density function of X(τ1), · · · , X(τL).

In the following theorem, we calculate the probability Pr [S1 = z1, · · · , SK = zK ] in terms of

pU(X(T1)),··· ,U(X(TL))|N(t) calculated in the above lemma.
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Theorem 5. 1. In the practical data model, for z1, · · · , zK = 0, 1, · · · , and
∑K

k=1 zk = L, the

probability Pr [S1 = z1, · · · , SK = zK ] is given by

Pr [S1 = z1, · · · , SK = zK ] =

∞∑
z=0

( ∑
v:=(v1,··· ,vL+z)∈AL+z

K+1(z1,··· ,zK ,z)∫
Cv1

· · ·
∫
CvL+z

pU(X(T1)),··· ,U(X(TL+z))|N(t) (r1, · · · , rL+z|L+ z) drL+z · · · dr1

)
,

(5.3)

where pU(X(T1)),··· ,U(X(TL+z))|N(t), z = 0, 1, · · · , is the conditional probability density function of

U(X(T1)), · · · , U(X(TL+z)), given N(t).

2. In the full practical data model, we have

Pr [S1 = z1, · · · , SK = zK ] =
∑

v:=(v1,··· ,vL)∈ALK(z1,··· ,zK)∫
Cv1

· · ·
∫
CvL

pU(X(T1)),··· ,U(X(TL))|N(t) (r1, · · · , rL|L) drL · · · dr1. (5.4)

Proof. 1. Let the random variable SK+1 describe the number of photons in the complement pixel

CK+1 := R2 −
⋃K
k=1Ck that result from the detection of the photons emitted from the object of

interest. Then, according to the definitions of S1, · · · , SK+1, we have, for z1, · · · , zK = 0, 1, · · · ,
and L =

∑K
k=1 zk,

Pr [S1 = z1, · · · , SK = zK ]

=

∞∑
z=0

Pr [S1 = z1, · · · , SK = zK , SK+1 = z]

=

∞∑
z=0

Pr

 ⋃
v:=(v1,··· ,vL+z)∈AL+z

K+1(z1,··· ,zK ,z)

{
L+z⋂
l=1

(U(X(Tl)) ∈ Cvl) |N(t) = L+ z

} . (5.5)

Since the events
{⋂L+z

l=1 (U(X(Tl)) ∈ Cvl)
}

are mutually exclusive, we have

Pr

 ⋃
v:=(v1,··· ,vL+z)∈AL+z

K+1(z1,··· ,zK ,z)

{
L+z⋂
l=1

(U(X(Tl)) ∈ Cvl) |N(t) = L+ z

}
=

∑
v:=(v1,··· ,vL+z)∈AL+z

K+1(z1,··· ,zK ,z)

Pr

[
L+z⋂
l=1

(U(X(Tl)) ∈ Cvl) |N(t) = L+ z

]
,
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and therefore,

Pr [S1 = z1, · · · , SK = zK ]

=

∞∑
z=0

 ∑
v:=(v1,··· ,vL+z)∈AL+z

K+1(z1,··· ,zK ,z)

Pr

[
L+z⋂
l=1

(U(X(Tl)) ∈ Cvl) |N(t) = L+ z

]
=

∞∑
z=0

( ∑
v:=(v1,··· ,vL+z)∈AL+z

K+1(z1,··· ,zK ,z)

∫
Cv1

· · ·
∫
CvL+z

pU(X(T1)),··· ,U(X(TL+z))|N(t) (r1, · · · , rL+z|L+ z)

× drL+z · · · dr1

)
. (5.6)

2. The result follows using the similar approach used in part 1.

5.3 Maximum likelihood estimation

Let Θ denote the parameter space that is an open subset of Rn. The maximum likelihood

estimate θ̂mle of θ ∈ Θ is given by

θ̂mle = argmin
θ∈Θ

(
− logLp(θ|z1, · · · , zK)

)
,

where the likelihood function Lp for the practical data model is given by

Lp(θ|z1, · · · , zK) = Prθ [S1 = z1, · · · , SK = zK ] ,

in which {z1, · · · , zK} , z1, · · · , zK = 0, 1, · · · , L =
∑K

k=1 zk, denotes an image with K pixels. In

the above equation, the probability Prθ [S1 = z1, · · · , SK = zK ] is given by Eqs. (5.3) and (5.4)

for the practical and full practical data models, respectively.

In general, computing the integrals of the likelihood function is not a trivial task. Here, based

on the Monte Carlo approach provided in [45], we develop an algorithm to approximate these

integrals. The basis of our algorithm is the law of large numbers which can be stated as follows. Let

X(τ1), · · · , X(τL) be 2D random variables that describe the locations of the object at time points
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τ0 := t0 ≤ τ1 < · · · < τL ≤ t. Let pX(τ1),··· ,X(τL) be the joint distribution of X(τ1), · · · , X(τL).

For h: R2×L 7→ R, v := (v1, · · · , vL) ∈ ALK (z1, · · · , zK) , z1, · · · , zK = 0, 1, · · · , and
∑K

k=1 zk =

L, let

h (x1, · · · , xL) =
L∏
l=1

ICvl (xl), x1, · · · , xL ∈ R2, (5.7)

where, for an invertible magnification matrix M ∈ R2×2,

ICvl (xl) =

∫
Cvl

fxl(r)dr =
1

|det(M)|

∫
Cvl

q
(
M−1r − xl

)
dr. (5.8)

Also, let

E {h (X(τ1), · · · , X(τL))} =

∫
R2

· · ·
∫
R2

h (x1, · · · , xL) pX(τ1),··· ,X(τL) (x1, · · · , xL) dxL · · · dx1,

be the expected value of h (X(τ1), · · · , X(τL)) with respect to pX(τ1),··· ,X(τL). Then, according to

the law of large numbers,

lim
M→∞

1

M

M∑
m=1

(
L∏
l=1

ICvl (x
m
l )

)
=

∫
R2

· · ·
∫
R2

(
L∏
l=1

ICvl (xl)

)
pX(τ1),··· ,X(τL) (x1, · · · , xL) dxL · · · dx1,

where {Xm := (xm1 , · · · , xmL )}Mm=1 , x
m
l ∈ R2, l = 1, · · · , L,m = 1, · · · ,M , is a sequence of

independent and identically distributed samples drawn from the distribution pX(τ1),··· ,X(τL). In case

that {X(τl)}Ll=1 is a Markov sequence, i.e.,

pX(τ1),··· ,X(τL) (x1, · · · , xL) = pX(τ1) (x1)
L∏
l=2

pX(τl)|X(τl−1) (xl|xl−1) , x1, · · · , xL ∈ R2,

we draw Xm,m = 1, · · · ,M , through the following Monte Carlo algorithm:

Algorithm 2 (Monte Carlo method). Step 1. Draw independent and identically distributed (i.i.d.)

samples {xi1}
M
i=1 according to pX(τ1)(x), x ∈ R2, i.e., xi1 ∼ pX(τ1)(x), i = 1, · · · ,M .

Step 2. Draw i.i.d. samples {xi2}
M
i=1 according to pX(τ2)|X(τ1)

(
x|xi1

)
, x ∈ R2, i.e., xi2 ∼

103



pX(τ2)|X(τ1)

(
x|xi1

)
, i = 1, · · · ,M .

...

Step L. Draw i.i.d. samples {xiL}
M

i=1 according to pX(τL)|X(τL−1)

(
x|xiL−1

)
, x ∈ R2, i.e., xiL ∼

pX(τL)|X(τL−1)(
x|xiL−1

)
, i = 1, · · · ,M .

Step L+ 1. For v := (v1, · · · , vL) ∈ ALK (z1, · · · , zK) , z1, · · · , zK = 0, 1, · · · , and
∑K

k=1 zk =

L, approximate the probability Pr
[⋂L

l=1 (X(τl) ∈ Cvl)
]

as

Pr

[
L⋂
l=1

(X(τl) ∈ Cvl)

]
=

∫
R2

· · ·
∫
R2

(
L∏
l=1

ICvl (xl)

)
pX(τ1),··· ,X(τL) (x1, · · · , xL) dxL · · · dx1

≈ 1

M

M∑
m=1

(
L∏
l=1

ICvl (x
m
l )

)
.

In the following example, we assess the performance of the above algorithm in the computation

of the likelihood function for a simple scenario.

Example 1. Assume that we have a typical two-dimensional single molecule trajectory X(τ) in

the object space, where the time point τ = 0.01 ms is fixed, with the first order drift coefficient

F = 10/s and the diffusion coefficient D = 1 µ2/s. Also, we assume that the initial location of

the molecule is known and given by x0 = (2.4, 2.4)T µm. In the fundamental data model, detected

locations of the photons emitted from the molecule in the image space are simulated using a zero-

mean Gaussian profile with covariance matrix Σ = 0.01I2×2 µ
2m. In the practical data model,

a 60 × 60 pixelated detector with square pixels of a width of W = 16 µm is used to acquire the

pixelated image of the molecule trajectory. Assume that the photon emitted from the object hits the

pixel C1 centered at
(
c1
x, c

1
y

)
= (230.75, 237.25)T µm at the image space. Then, using Algorithm 2

we have

Pr [(X(τ) ∈ C1] =

∫
R2

IC1(x)pX(τ)(x)dx ≈ 1

M

M∑
m=1

IC1 (xm) ,
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Figure 5.2: Convergence of the Monte Carlo method. The probabilities Pr [(X(τ) ∈ C1] for dif-
ferent number M of Monte Carlo samples, where X(τ) is a two-dimensional single molecule
trajectory, are shown in which the time point τ = 0.01 ms is fixed, with the first order drift coef-
ficient F = 10/s and the diffusion coefficient D = 1 µ2/s. Also, assume that the initial location
of the molecule is known and given by x0 = (2.4, 2.4)T µm. Detected locations of the photons
emitted from the molecule in the image space are simulated using a zero-mean Gaussian model
with covariance matrix Σ = 0.01I2×2 µ

2m. A 60 × 60 pixelated detector with square pixels of a
width of W = 16 µm is used to acquire the pixelated image of the molecule trajectory. Assume
that the photon emitted from the object hits the pixel C1 centered at

(
c1
x, c

1
y

)
= (230.75, 237.25)T

µm at the image space.
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where, for an invertible magnification matrix M ∈ R2×2,

IC1(x) =
1

|det(M)|

∫
C1

q
(
M−1r − x

)
dr

=
1

|det(M)|

∫ c1x+W
2

c1x−W2

∫ c1y+W
2

c1y−W2

q
(
M−1 (rx, ry)− x

)
drydrx, x ∈ R2, (5.9)

and {xm}Mm=1 , x
m ∈ R2,m = 1, · · · ,M , is a sequence of independent and identically distributed

samples drawn from the distribution pX(τ) using Algorithm 2. In Fig. 5.2, we have shown the

probabilities Pr [(X(τ) ∈ C1] computed for different number M of Monte Carlo samples. As can

be seen in Fig. 5.3, the standard deviation of the probabilities decreases by increasing the number

of samples, which suggests the convergence of these probabilities.
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Figure 5.3: Histograms, means and standard deviations of the probabilities computed using the
Monte Carlo method. Gaussian models fitted to the histograms of the probabilities computed
using the Monte Carlo method are shown for (a) first, (b) second, (c) third and (d) fourth quarters
of the data sets of Fig. 5.2.
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We next examine the performance of our proposed parameter estimation method. For this

purpose, we simulated pixelated images of single molecule trajectories. These trajectories were

simulated using Eq. (B.1) with four time points, where the time points were drawn from a Poisson

process, and the first order drift coefficient F = −10/s and the diffusion coefficient D = 1.5

µm2/s. Also, we assumed that the initial location of the molecule was fixed at (2.4, 2.4)T µm.

The locations of the photons emitted from the molecule trajectories, in the image space, were

simulated using Eq. (3.23) with the Gaussian measurement noise (Eq. (3.12)) and σ = 0.1 µm.

We assumed that these photons were detected using a pixelated detector of pixel size and image

size of 6.5 × 6.5 µm and 60 × 60 pixels, respectively. We then estimated all parameters of the

trajectories, e.g., initial location of the molecule, drift and diffusion coefficients, together using

Algorithm 2, where the number of Monte Carlo samples at each step is equal to 2500. The errors

(estimate - true value) of the estimation are shown in Figs. 5.4 and 5.5. As can be seen in these

figures, the spreads of the errors are around zero and there is no systematic bias associated with

the estimates.

We also applied the algorithm to the pixelated images of single molecule trajectories simulated

using an Airy point spread functions with α = 2πna
λ

= 13.23, which corresponds to a Gaussian

profile with σ = 0.1 µm. The parameters of the molecule trajectories were the same as the param-

eters of the data set of Fig. 5.4. As can be seen in Figs. 5.6 and 5.7, we have obtained the similar

results as the Gaussian case.

We further evaluate the performance of the proposed method in terms of the standard deviation

of the estimates. In order to do this, we simulated the pixelated images of a stationary object using

a pixelated detector of pixel size and image size of 6.5× 6.5 µm and 60× 60 pixels, respectively,

assuming that three photons were detected by the detector. The locations of the photons in the

image space were simulated using Eq. (3.23) with the Gaussian measurement noise (Eq. (3.12))

and σ = 0.1 µm. We then estimated the location of the molecule using Algorithm 2, where the

number of Monte Carlo samples at each step is equal to 10000. The errors of the location estimates

are shown in Fig. 5.8. As before, the errors are spreading around zero and no systematic bias can be
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Figure 5.4: Analysis of the error of initial location estimates from pixelated images of single
molecule trajectories for the Gaussian measurement noise case. Differences between the estimates
of the initial x0- and y0-location of the molecule and their true values from the images of the
molecule trajectories simulated using Eqs. (B.1) with four time points, where the time points are
drawn from a Poisson process, and the first order drift coefficient F = −10/s and the diffusion
coefficient D = 1.5 µm2/s. The initial location of the molecule is fixed at X0 := (x0, y0) =
(2.4, 2.4)T µm. The locations of the photons emitted from the molecule trajectories, in the image
space, are simulated using Eq. (3.23) with the Gaussian measurement noise (Eq. (3.12)) and
σ = 0.1 µm. These photons are detected using a pixelated detector of pixel size and image size of
6.5× 6.5 µm and 60× 60 pixels, respectively.
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Figure 5.5: Analysis of the error of diffusion coefficient and drift coefficient estimates from pixe-
lated images of single molecule trajectories for the Gaussian measurement noise case. Differences
between the diffusion (first order drift) coefficient estimates and the true diffusion (first order drift)
coefficient value for data sets of Fig. 5.4.
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Figure 5.6: Analysis of the error of initial location estimates from pixelated images of single
molecule trajectories for the Airy measurement noise case. Differences between the estimates of
the initial x0- and y0-location of the molecule and their true values from the images of the molecule
trajectories simulated using the parameters of the data set of Fig. 5.4. The locations of the photons
emitted from the molecule trajectories, in the image space, are simulated using an Airy model with
α = 2πna

λ
= 13.23. These photons are detected using a pixelated detector of pixel size and image

size of 6.5× 6.5 µm and 60× 60 pixels, respectively.
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Figure 5.7: Analysis of the error of diffusion coefficient and drift coefficient estimates from pix-
elated images of single molecule trajectories for the Airy measurement noise case. Differences
between the diffusion (first order drift) coefficient estimates and the true diffusion (first order drift)
coefficient value for data sets of Fig. 5.6.
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seen. We also calculated the standard deviations of the estimates. These standard deviations, which

are computed as 57.4 nm and 59.6 nm for the x0- and y0-locations of the molecule, respectively,

are close to the localization accuracy, i.e., the square root of the CRLB, which is given as 58.37

nm for both x- and y-directions, reported in [6].

Here, we only consider a small number of photons, since, in general, the computation of the

likelihood function (Eq. (5.4)) is expensive. It is mostly because of the large number of the mem-

bers of the set ALK (z1, · · · , zK), which is equal to L!
z1!···zK !

, when L increases. In the future, using

more advanced computational methods, the formulae provided in this chapter can be implemented

more efficiently.
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Figure 5.8: Analysis of the error of location estimates from pixelated images of a stationary
molecule for the Gaussian measurement noise case. Differences between the estimates of the
initial x0- and y0-location of the molecule and their true values from the simulated images of a
stationary molecule using a pixelated detector of pixel size and image size of 6.5 × 6.5 µm and
60×60 pixels, respectively, assuming that three photons are detected by the detector. The locations
of the photons in the image space are simulated using Eq. (3.23) with the Gaussian measurement
noise (Eq. (3.12)) and σ = 0.1 µm.

5.3.1 Fisher information matrix

In the previous chapter, we provided a recursive formulation for the Fisher information matrix.

Here, we calculate a new expression for the Fisher information matrix for the fundamental data

model. Next, we use this new result to derive an expression for the Fisher information matrix for
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the practical data model. We first, in Definition 5, introduce a notation for the Fisher information

matrix of the fundamental data model given the number of photons.

Definition 5. Let the parameter space Θ describe an open subset of Rn containing the true param-

eters. For L = 1, 2, · · · , and a row parameter vector θ ∈ Θ, we introduce the Fisher information

matrix of the fundamental data model given N(t) = L, as

IfN(t)=L(θ) : = Epθ
U(X(T1)),··· ,U(X(TL))|N(t)=L


(
∂ log pθU(X(T1)),··· ,U(X(TL))|N(t) (r1:L|L)

∂θ

)T

×

(
∂ log pθU(X(T1)),··· ,U(X(TL))|N(t) (r1:L|L)

∂θ

)}

=

∫
R2

· · ·
∫
R2

pθU(X(T1)),··· ,U(X(TL))|N(t) (r1:L|L)

(
∂ log pθU(X(T1)),··· ,U(X(TL))|N(t)|N(t) (r1:L|L)

∂θ

)T

×

(
∂ log pθU(X(T1)),··· ,U(X(TL))|N(t) (r1:L|L)

∂θ

)
dr1 · · · drL, (5.10)

where r1:L := (r1, · · · , rL) , r1, · · · , rL ∈ R2, Epθ
U(X(T1)),··· ,U(X(TL))|N(t)=L

is the expected value

with respect to the probability pθU(X(T1)),··· ,U(X(TL))|N(t)=L, and pθU(X(T1)),··· ,U(X(TL))|N(t) is the con-

ditional probability density function of U(X(T1)), · · · , U(X(TL)), given N(t).

In the following theorem, we calculate the Fisher information matrix of the fundamental data

model defined in the above definition. In the rest of this paper, we only focus on the estimation of

the parameters of the motion model of the object, such as the initial location of the object, drift and

diffusion coefficients, i.e., we assume that Λ and fx are independent of θ.

Theorem 6. For a row parameter vector θ ∈ Θ, the Fisher information matrix IfN(t)=L(θ), L =

1, 2, · · · , of the fundamental data model given N(t) = L, can be calculated as

IfN(t)=L(θ) =
L!(∫ t

t0
Λ(ψ)dψ

)L ∫
R2

· · ·
∫
R2

Ifθ (r1:L, r1:L)

pθU(X(T1)),··· ,U(X(TL))|N(t) (r1, · · · , rL|L)
dr1 · · · drL, (5.11)
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where, for r1:L := (r1, · · · , rL) , r′1:L := (r′1, · · · , r′L), and r1, · · · , rL, r′1, · · · , r′L ∈ R2,

Ifθ (r1:L, r
′
1:L) :=

∫
R2

· · ·
∫
R2

∫
R2

· · ·
∫
R2

{∫ t

t0

∫ τ ′L

t0

· · ·
∫ τ ′2

t0

∫ t

t0

∫ τL

t0

· · ·
∫ τ2

t0

dFTθ (r1:L, x1:L, τ1:L)

× dFθ (r′1:L, x
′
1:L, τ

′
1:L) dτ1 · · · dτL−1dτLdτ

′
1 · · · dτ ′L−1dτ

′
L

}
dx1 · · · dxLdx′1 · · · dx′L,

pθU(X(T1)),··· ,U(X(TL))|N(t) (r1:L|L) =

∫
R2

· · ·
∫
R2

(∫ t

t0

∫ τ ′′L

t0

· · ·
∫ τ ′′2

t0

Fθ (r1:L, x
′′
1:L, τ

′′
1:L) dτ ′′1 · · · dτ ′′L−1dτ

′′
L

)

× dx′′1 · · · dx′′L,

Fθ (r1:L, x1:L, τ1:L) :=

(
L∏
i=1

fxi(ri)Λ(τi)

)
pθX(τ1),··· ,X(τL)(x1, · · · , xL),

dFθ (r1:L, x1:L, τ1:L) :=
∂

∂θ
Fθ (r1:L, x1:L, τ1:L) =

(
L∏
i=1

fxi(ri)Λ(τi)

)
dpθX(τ1),··· ,X(τL)(x1, · · · , xL), (5.12)

in which x1:L := (x1, · · · , xL) , x′1:L := (x′1, · · · , x′L) , x1, · · · , xL, x′1, · · · , x′L ∈ R2, τ1:L :=

(τ1, · · · , τL) , τ ′1:L := (τ ′1, · · · , τ ′L) , t0 ≤ τ1 < · · · < τL ≤ t, t0 ≤ τ ′1 < · · · < τ ′L ≤ t, and

dpθX(τ1),··· ,X(τL)(x1, · · · , xL) :=
∂pθ
X(τ1),··· ,X(τL)

(x1,··· ,xL)

∂θ
.

Proof. For a row parameter vector θ ∈ Θ, the Fisher information matrix IN(t)=1(θ), given N(t) =

1, can be calculated as

IfN(t)=1(θ) =
1∫ t

t0
Λ(ψ)dψ

×
∫
R2


∫
R2

∫
R2 fx(r)fx′(r)

{∫ t
t0

∫ t
t0

(
dpθX(τ1)(x)

)T
dpθX(τ2)(x

′)Λ(τ1)Λ(τ2)dτ1dτ2

}
dxdx′∫

R2 f ′′x (r)
(∫ t

t0
pθX(τ)(x

′′)Λ(τ)dτ
)
dx′′

 dr,

where dpθX(τ)(x) :=
∂pθ
X(τ)

(x)

∂θ
, x ∈ R2, τ ≥ t0. In general, the Fisher information matrix IfN(t)=L(θ),

given N(t) = L, can be calculated as, according to Eq. (5.10) of Definition 5,

IfN(t)=L(θ) : =

∫
R2

· · ·
∫
R2

1

pθU(X(T1)),··· ,U(X(TL))|N(t) (r1:L|L)

(
∂pθU(X(T1)),··· ,U(X(TL))|N(t) (r1:L|L)

∂θ

)T

×

(
∂pθU(X(T1)),··· ,U(X(TL))|N(t) (r1:L|L)

∂θ

)
dr1 · · · drL, (5.13)
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where, for r1:L := (r1, · · · , rL) , r1, · · · , rL ∈ R2,

pθU(X(T1)),··· ,U(X(TL))|N(t) (r1, · · · , rL|L) =
L!(∫ t

t0
Λ(ψ)dψ

)L ∫
R2

· · ·
∫
R2

L∏
i=1

fxi(ri)

×

∫ t

t0

∫ τL

t0

· · ·
∫ τ2

t0

pθX(τ1),··· ,X(τL)(x1, · · · , xL)

L∏
j=1

Λ(τj)dτ1 · · · dτL−1dτL

 dx1 · · · dxL,

(5.14)

and pθX(τ1),··· ,X(τL), t0 ≤ τ1 < · · · < τL ≤ t0, is the joint probability density function of
X(τ1), · · · , X(τL). By substituting Eq. (5.14) into Eq. (5.13), we have

I
f
N(t)=L

(θ) =
L!(∫ t

t0
Λ(ψ)dψ

)L ∫R2 · · ·
∫
R2

∫
R2
· · ·
∫
R2

{∫ t
t0

∫ τ′L
t0

· · ·
∫ τ′2
t0

∫ t
t0

∫ τL
t0

· · ·
∫ τ2
t0

×
(∫

R2
· · ·
∫
R2

∏L
i=1 fxi (ri)

∏L
j=1 fx′

j
(rj)∫

R2 · · ·
∫
R2
∏L
k=1

fx′′
k

(rk)

(∫ t
t0

∫ τ′′
L

t0
· · ·
∫ τ′′2
t0

pθ
X(τ′′1 ),··· ,X(τ′′

L
)
(x′′1 , · · · , x

′′
L

)
∏L
k=1

Λ(τ ′′
k

)dτ ′′1 · · · dτ
′′
L−1

dτ ′′
L

)
dx′′1 · · · dx

′′
L

× dr1 · · · drL

)(
dp
θ
X(τ1),··· ,X(τL)(x1, · · · , xL)

)T
dp
θ
X(τ′1),··· ,X(τ′

L
)
(x
′
1, · · · , x

′
L)

L∏
i=1

Λ(τi)
L∏
j=1

Λ(τ
′
j)dτ1 · · · dτL−1dτLdτ

′
1 · · · dτ

′
L−1dτ

′
L

}

× dx1 · · · dxLdx
′
1 · · · dx

′
L

=
L!(∫ t

t0
Λ(ψ)dψ

)L ∫R2 · · ·
∫
R2

(∫
R2
· · ·
∫
R2

∫
R2
· · ·
∫
R2

L∏
i=1

fxi (ri)

L∏
j=1

fx′
j

(rj)

{∫ t
t0

∫ τ′L
t0

· · ·
∫ τ′2
t0

∫ t
t0

∫ τL
t0

· · ·
∫ τ2
t0

×

(
dpθX(τ1),··· ,X(τL)(x1, · · · , xL)

)T
dpθ
X(τ′1),··· ,X(τ′

L
)
(x′1, · · · , x

′
L)
∏L
i=1 Λ(τi)

∏L
j=1 Λ(τ ′j)dτ1 · · · dτL−1dτLdτ

′
1 · · · dτ

′
L−1dτ

′
L

}
∫
R2 · · ·

∫
R2
∏L
k=1

fx′′
k

(rk)

(∫ t
t0

∫ τ′′
L

t0
· · ·
∫ τ′′2
t0

pθ
X(τ′′1 ),··· ,X(τ′′

L
)
(x′′1 , · · · , x

′′
L

)
∏L
k=1

Λ(τ ′′
k

)dτ ′′1 · · · dτ
′′
L−1

dτ ′′
L

)
dx′′1 · · · dx

′′
L

× dx1 · · · dxLdx
′
1 · · · dx

′
L

)
dr1 · · · drL, (5.15)

where dpθX(τ1),··· ,X(τL)(x1, · · · , xL) :=
∂pθ
X(τ1),··· ,X(τL)

(x1,··· ,xL)

∂θ
, x1, · · · , xL ∈ R2, t0 ≤ τ1 < · · · <

τL ≤ t.

In the following lemma, for an object’s motion modeled by a linear stochastic system, we

calculate the derivatives dpθX(τ1),··· ,X(τL) in the Fisher information matrix (Eq. (5.15)) derived in

the above theorem.

Lemma 3. Let the parameter space Θ describe an open subset of Rn containing the true parame-

ters. For θ = (θ1, · · · , θn) ∈ Θ, let

X(τl+1) = φθ(τl, τl+1)X(τl) +W θ(τl, τl+1), τ0 := t0 ≤ τ1 < · · · < τl, l = 1, 2, · · · ,
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where the 2D random variable X(τl) denotes the location of the object at time τl, φθ(τl, τl+1) ∈
R2×2 is the state transition matrix, and

{
W θ(τl, τl+1), l = 1, 2, · · ·

}
is a sequence of independent

zero mean Gaussian random variables with covariance Qθ(τl, τl+1) ∈ R2×2, Qθ(τl, τl+1) > 0.

Also, assume that the initial location of the object is given by X(τ0) = x0 ∈ R2. Then,

∂pθX(τ1),··· ,X(τL) (x1, · · · , xL)

∂θi

= pθX(τ1),··· ,X(τL) (x1, · · · , xL)
∂ log pθX(τ1),··· ,X(τL) (x1, · · · , xL)

∂θi

= pθX(τ1) (x1)

L∏
l=2

pθX(τl)|X(τl−1) (xl|xl−1)

(
∂ log pθX(τ1) (x1)

∂θi
+

L∑
l=2

∂ log pθX(τl)|X(τl−1) (xl|xl−1)

∂θi

)
, (5.16)

where

∂pθX(τ1) (x1)

∂θi
= −1

2
trace

[((
Qθ(τ0, τ1)

)−1 ∂Qθ(τ0, τ1)

∂θi

)(
I −

(
Qθ(τ0, τ1)

)−1
eθτ0,τ1(x0, x1)

(
eθτ0,τ1(x0, x1)

)T)]
−
∂
(
eθτ0,τ1(x0, x1)

)T
∂θi

(
Qθ(τ0, τ1)

)−1
eθτ0,τ1(x0, x1), (5.17)

and

∂ log pθX(τl)|X(τl−1) (xl|xl−1)

∂θi

= −1

2
trace

[((
Qθ(τl−1, τl)

)−1 ∂Qθ(τl−1, τl)

∂θi

)(
I −

(
Qθ(τl−1, τl)

)−1
eθτl−1,τl

(xl−1, xl)
(
eθτl−1,τl

(xl−1, xl)
)T)]

−
∂
(
eθτl−1,τl

(xl−1, xl)
)T

∂θi

(
Qθ(τl−1, τl)

)−1
eθτl−1,τl

(xl−1, xl), l = 2, · · · , L, (5.18)

where eθτl−1,τl
(xl−1, xl) := xl − φθ(τl−1, τl)xl−1, l = 1, · · · , L, and I denotes the identity matrix

with the corresponding size.

Proof. See the proofs of Theorem 3 and Corollary 4.

We next use the results obtained in the previous section to calculate the Fisher information

matrix for the practical data model. We first, in the following definition, introduce a notation for

the Fisher information matrix of the practical data model.

Definition 6. Let the parameter space Θ describe an open subset of Rn containing the true pa-
rameters. We introduce the following notation for the Fisher information matrix of the practical
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data model, for a row parameter vector θ ∈ Θ,

Ip(θ) : = EPrθ [S1=z1,··· ,SK=zK ]

{(
∂ logPrθ [S1 = z1, · · · , SK = zK ]

∂θ

)T (
∂ logPrθ [S1 = z1, · · · , SK = zK ]

∂θ

)}

=

∞∑
z1=0

· · ·
∞∑

zK=0

Prθ [S1 = z1, · · · , SK = zK ]

(
∂ logPrθ [S1 = z1, · · · , SK = zK ]

∂θ

)T

×
(
∂ logPrθ [S1 = z1, · · · , SK = zK ]

∂θ

)
. (5.19)

In the following theorem, we calculate the Fisher information matrix of the practical data model

introduced in the above definition.

Theorem 7. 1. For a row parameter vector θ ∈ Θ, the Fisher information matrix Ifp(θ) of the full
practical data model can be calculated as

Ifp(θ) =

∞∑
z1=0

· · ·
∞∑

zK=0

L!(∫ t
t0

Λ(ψ)dψ
)L

×

∑
v:=(v1,··· ,vL)∈AL

K
(z1:K)

∑
v′:=(v′1,··· ,v

′
L

)∈AL
K

(z1:K)

∫
Cv1
· · ·
∫
CvL

∫
Cv′1
· · ·
∫
Cv′
L

Ifθ
(
r1:L, r

′
1:L

)
dr′L · · · dr

′
1drL · · · dr1∑

v′′:=(v′′1 ,··· ,v
′′
L

)∈AL
K

(z1:K)

∫
Cv′′1
· · ·
∫
Cv′′
L

pθ
U(X(T1)),··· ,U(X(TL))|N(t)

(
r′′1 , · · · , r′′L|L

)
dr′′L · · · dr

′′
1

,

(5.20)

where z1:K := (z1, · · · , zK) , L =
∑K

k=1 zk, z1, · · · , zK = 0, 1, · · · , and pθU(X(T1)),··· ,U(X(TL))|N(t),

Ifθ are given by Eq. (5.12) of Theorem 6.
2. The Fisher information matrix Ip(θ) of the practical data model can be calculated as

Ip(θ) =

∞∑
z1=0

· · ·
∞∑

zK=0

∞∑
z=0

∞∑
z′=0

(L+ z)!(∫ t
t0

Λ(ψ)dψ
)L+z

(L+ z′)!(∫ t
t0

Λ(ψ)dψ
)L+z′

×

∑
v:=(v1,··· ,vL+z)∈AL+z

K+1
(z1:K ,z)

∑
v′:=(v′1,··· ,v

′
L+z′ )∈A

L+z′
K+1

(z1:K ,z
′)

∫
Cv1
· · ·
∫
CvL+z

∫
Cv′1
· · ·
∫
Cv′
L+z′

Ifθ

(
r1:L+z , r

′
1:L+z′

)
∑∞
z′′=0

∑
v′′:=(v′′

1:L+z′′ )∈A
L+z′′
K+1

(z1:K ,z
′′)

∫
Cv′′1
· · ·
∫
Cv′′
L+z′′

pθ
U(X(T1)),··· ,U(X(TL+z′′ ))|N(t)

(
r′′
1:L+z′′ |L+ z′′

)
dr′′
L+z′′ · · · dr

′′
1

× dr′L+z′ · · · dr
′
1drL+z · · · dr1, (5.21)

where r′′1:L+z′′ :=
(
r′′1 , · · · , r′′L+z′′

)
, r′′1 , · · · , r′′L+z′′ ∈ R2, z′′ = 0, 1, · · · .

Proof. It results by substituting Eqs. (5.3) and (5.4) of Theorem 5 into Eq. (5.19) of Definition 6,

and using the same procedure as the proof of Theorem 6.
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6. SUMMARY AND CONCLUSIONS

Single molecule microscopy is a powerful tool to study the dynamics of individual molecules

within living cells, which previously were masked through bulk microscopy due to the averaging

over a group of closely spaced molecules. In this thesis, we have developed parameter estimation

methods to analyze single molecule microscopy data. In particular, we have focused on two im-

portant applications of single molecule microscopy: single molecule super-resolution microscopy

and single molecule tracking.

In order to solve the localization problem for single molecule super-resolution images, we have

developed a non-fitting state space algorithm. In single molecule fluorescence images, the locations

of peaks of intensity correspond to the locations of molecules. Our proposed algorithm models

such an image by the frequency response of a multi-order system obtained using a state space

realization algorithm based on the singular value decomposition of a Hankel matrix. The locations

of the poles of such a system determine the peak locations in the frequency domain, and therefore

correspond to the locations of molecules. To assess the performance of the proposed localization

algorithm, we applied the algorithm to both simulated and experimental data comprising images

of closely spaced molecules. In the case of simulated data, we evaluated the detection rate of

the algorithm for molecules with different mean photon counts and different distances between the

molecules. We also analyzed the bias of the algorithm. The bias was evaluated as the average of the

deviations of the estimated molecule locations from the ground truth. In the case where there was

only one molecule per image, our results suggested that there was no systematic bias associated

with the algorithm. In the case of data sets consisting of repeat images of multiple molecules,

however, the results showed that bias existed which we found to be dependent on the distances

between the molecules relative to the image size. Also, the accuracy of the algorithm, determined

by how far the estimates were spread out from the ground truth, was assessed by looking at the

square root of the average of the squared deviations from the ground truth. In the case that we had

repeat images of the same molecules, we looked at the squared deviations of the estimates from
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their average, i.e., the accuracy was given by the standard deviation of the estimates. Importantly,

for data sets comprising repeat images of one molecule, the standard deviation of the estimates was

compared with the limit of the localization accuracy, a theoretical accuracy benchmark given by

the square root of the CRLB. The results showed that the accuracy of the algorithm was reasonable,

but the difference between the accuracy and the limit of accuracy was nevertheless around twice

the limit of accuracy. We showed, however, that by using the obtained location estimates as the

initial conditions for a maximum likelihood estimator, we can decrease the standard deviation

of the estimates and approach the limit of accuracy, as is usually possible with the maximum

likelihood estimator for standard single molecule estimation problems. We further demonstrated

with experimental data that the algorithm could recover the locations of the significant peaks in the

original image that correspond to the locations of individual Alexa Fluor 647 dye molecules.

To analyze single molecule tracking data, we have proposed a maximum likelihood estimation

method to estimate the parameters of the molecule trajectories in cellular environments. In our

method, we have considered a dynamical system where the motion of an object of interest, e.g.,

single molecule, is modeled generally by stochastic differential equations, and the measurements

are the time points and locations of the detected photons emitted by the moving fluorescently la-

beled object using an ideal pixelated detector, referred to as the fundamental data model. More

importantly, we have calculated the CRLB-based limit of accuracy, given by the inverse of the

Fisher information matrix, for the estimation of the unknown parameters. To examine the per-

formance of the proposed estimation method, we applied it to simulated data sets comprising

linear two-dimensional trajectories of a molecule with Gaussian, Airy and classical model of Born

and Wolf measurements. The results showed that there was no systematic bias associated with

the method. In addition, we showed that the means of the distributions of the prediction of the

molecule locations were able to follow the true locations of the molecule for all different types of

measurements. In particular, for data sets comprising repeat trajectories of a molecule with Gaus-

sian measurements, it was shown that the standard deviations of the diffusion and drift estimates

were close to the square roots of their corresponding CRLBs. We also showed that, in the case
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that we had one detected photon, the Fisher information matrices obtained for an Airy and its cor-

responding approximating Gaussian profile were different from each other, and therefore, the use

of the Gaussian approximation can be problematic in some applications. We showed that equally

sampled time points, which have been commonly used in most dynamical systems, and Poisson

distributed time points can lead to significantly different Fisher information matrices. We further

showed that even the results obtained for different realizations of a Poisson process could vary

notably.

In the fundamental data model, we assumed that the time points and locations of the photons,

which are detected by an ideal unpixelated detector, are available. However, in practice, pixe-

lated detectors, such as charge-coupled device (CCD) and electron multiplying CCD (EMCCD)

cameras, are commonly used for acquiring the image of the object. In this case, referred to as

the practical data model, the measurements, i.e., the fluorescence microscopy images, include the

numbers of the photons detected in each pixel. Therefore, the temporal information of the detec-

tion of the photons is not available anymore. Moreover, instead of having the exact locations of

detection of the photons, we only know the pixel areas in which the photons impact the detector.

These challenges make the analysis of single molecule trajectories from pixelated images a com-

plex problem. We addressed these challenges by extending our framework to the practical data

model. In cases that we had a small number of photons, the results showed that we were able to

estimate the parameters of the molecule trajectory from simulated fluorescence microscopy images

using our proposed method.
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APPENDIX A

FREQUENCY RESPONSE OF A MULTI-ORDER SYSTEM AS THE PSF MODEL

In this section, we present the results of the proposed algorithm applied to images simulated

using the frequency response of a multi-order system. In this case, instead of Eq. (2.36), µθ̂h is

given as

µθ̂h(k1, k2) :=
1

C

∣∣∣∣∣
h∑

n=1

Np,n

(ei2πk1/N1 − ā1
n)(ei2πk2/N2 − ā2

n)

∣∣∣∣∣ , ki = 1, ..., Ni, i = 1, 2, (A.1)

where C :=
∑N1

k1=1

∑N2

k2=1

∣∣∣∑h
n=1

1
(ei2πk1/N1−ā1

n)(ei2πk2/N2−ā2
n)

∣∣∣ is the normalization factor. Here, to

analyze the performance of the algorithm, we simulated data sets containing repeat images of one

molecule using the frequency response of a first-order system, i.e., using Eq. (A.1) with h=1. The

data sets differ by the mean photon count Np,1 for the molecule. For each mean photon count,

the data set consists of 1000 repeat images of size 20 × 20 pixels. In Figs. A.1(a) and A.1(b), an

example of an image with a mean photon count of Np,1 = 1000 is shown. To assess the bias of

the algorithm, we calculated the differences between the averages of the x- and y-estimates and

the corresponding true x- and y-coordinates. Similar to the case of images simulated with the Airy

profile [Fig. 2.3], the evenness of the spread of the estimated bias about 0 nm for both coordinates

[Fig. A.1(c)] demonstrates that there is no systematic bias associated with our proposed algorithm

when there is only one molecule per image.

Also, we calculated the standard deviation of the estimates for nine of the data sets and com-

pared the results with the limit of the localization accuracy calculated using the approach for ex-

perimental PSFs presented in [64]. It can be seen in Fig. A.2 that when the image of the molecule

is simulated as the frequency response of a first-order system, the accuracy of the algorithm comes

close to the limit of the localization accuracy.
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Figure A.1: Analysis of the bias of location estimates obtained from repeat images containing
exactly one molecule, simulated using the frequency response of a first-order system. (a) Image of
a point source simulated using the frequency response of a first-order system, i.e., using Eq. (A.1)
with h = 1, and a mean photon count of Np,1 = 1000. (b) Mesh view of the image shown in
(a). (c) Difference between the average of the x-estimates and the true x-value, and the difference
between the average of the y-estimates and the true y-value for data sets that differ by the mean
photon count per image assumed for the molecule. For each mean photon count, the data set
consists of 1000 repeat images of size 20× 20 pixels, simulated using the frequency response of a
first-order system.

1000 2000 3000 4000 5000
Mean photon count

0

2

4

6

8

L
o

ca
liz

at
io

n
 A

cc
u

ra
cy

 (
n

m
)

Standard deviation of x-estimates
Limit of the x-localization accuracy

1000 2000 3000 4000 5000
Mean photon count

0

2

4

6

8

L
o

ca
liz

at
io

n
 A

cc
u

ra
cy

 (
n

m
)

Standard deviation of y-estimates
Limit of the y-localization accuracy

Figure A.2: Analysis of the standard deviation of location estimates obtained from repeat images
containing exactly one molecule, simulated using the frequency response of a first-order system.
Shown in the left and right plots are the standard deviations of the x- and y-estimates and the limits
of the x- and y-localization accuracy, respectively, for nine of the data sets from Fig. A.1.
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APPENDIX B

COMPUTATION OF MAXIMUM LIKELIHOOD ESTIMATES AND

FISHER INFORMATION MATRIX

B.1 Example of maximum likelihood estimation

Let the 2D motion of an object be given by the following continuous-time stochastic differential

equation

dX(τ) = FI2×2X(τ)dτ +
√

2DI2×2dB(τ), τ ≥ t0, (B.1)

where I2×2 denotes the 2 × 2 identity matrix, F ∈ R and D > 0 denote the first order drift

and diffusion coefficients, respectively, and {B(τ) ∈ R2, τ ≥ t0} is a 2-vector Brownian mo-

tion process with E
{
dB(τ)dB(τ)T

}
= I2×2. Also, let X(t0) be Gaussian distributed with

mean x0 ∈ R2 and diagonal covariance matrix P0 := ρ0I2×2, ρ0 > 0, which is assumed to

be independent of B(τ). Assume that the photon detection rate Λ, the magnification matrix

M = mI2×2,m > 0, and the covariance matrix Σg = vI2×2, v > 0, of the measurement noise

are independent of the parameter vector θ ∈ Θ. Also, for the corresponding discrete system at

time points τ0 := t0 ≤ τ1 < τ2 < · · · < τK < · · · , let the transition matrix be given by

φ(τl−1, τl) := φs(τl−1, τl)I2×2, φ
s(τl−1, τl) ∈ R, and the process noise covariance matrix be given

by Qg(τl−1, τl) := qs(τl−1, τl)I2×2, q
s(τl−1, τl) > 0. Then, the covariances of the states, which can

be calculated through the Kalman filter formulae recursively, are also scalar matrices, i.e., can be

defined as P l−1
θ,l := ρl−1

θ,l I2×2, ρ
l−1
θ,l > 0, l = 1, 2, · · · . Also, let x̂l−1

θ,l denote the means of the states.

Then, the maximum likelihood estimate θ̂mle of θ = (θ1, · · · , θn) is the solution of the follow-

ing equation, according to Eq. (4.38), for the acquired data denoted by dK ∈ CK × RK
[∞], K =
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1, 2, · · · ,

∂ logL (θ|dK)

∂θi

=

K∑
l=1

−1

2
trace

( m2dρl−1,i
θ,l

m2ρl−1
θ,l + v

)I2×2 −

(
rl −mx̂l−1

θ,l

)(
rl −mx̂l−1

θ,l

)T
m2ρl−1

θ,l + v




−
mdx̂l−1,i

θ,l

(
rl −mx̂l−1

θ,l

)
m2ρl−1

θ,l + v

=

K∑
l=1

−1

2

(
m2dρl−1,i

θ,l

m2ρl−1
θ,l + v

)2−

∥∥∥rl −mx̂l−1
θ,l

∥∥∥2

m2ρl−1
θ,l + v

− mdx̂l−1,i
θ,l

(
rl −mx̂l−1

θ,l

)
m2ρl−1

θ,l + v
= 0, (B.2)

where i = 1, · · · , n, ‖.‖ denotes the Euclidean norm, and for l = 1, 2, · · · , X̂(i)
θ,l :=

[
x̂l−1
θ,l dx̂l−1,i

θ,l

]T
, dx̂l−1,i

θ,l :=
∂x̂l−1
θ,l

∂θi
, P (i)

θ,l :=

[
ρl−1
θ,l dρl−1,i

θ,l

]T
, and dρl−1,i

θ,l :=
∂ρl−1
θ,l

∂θi
can be calculated through the fol-

lowing recursive formulas, by combining the Kalman filtering equations (Eqs. (3.28) and (3.29))

and their derivatives, and using Lemma 5 (see Section B.7),

X̂
(i)
θ,l+1 = A

(i)
θ,l+1X̂

(i)
θ,l +B

(i)
θ,l+1

(
rl −mx̂l−1

θ,l

)
,

P
(i)
θ,l+1 = C

(i)
θ,l+1P

(i)
θ,l +

qsθ (τl, τl+1)

∂qsθ(τl,τl+1)

∂θi

 , (B.3)

where X̂(i)
θ,1 =

 φθ (t0, τ1)xθ,0

∂φθ(t0,τ1)
∂θi

xθ,0 + φθ (t0, τ1)
∂xθ,0
∂θi

, P (i)
θ,1 =

(φsθ (t0, τ1))2 ρ0 + qsθ(t0, τ1)

∂(φsθ(t0,τ1))
2

∂θi
ρ0 +

∂qsθ(t0,τ1)

∂θi

, and

A
(i)
θ,l+1 :=

φθ(τl, τl+1) 02×2

∂φθ(τl,τl+1)
∂θi

φθ(τl, τl+1) (I2×2 −Kθ,lM)

 ,
B

(i)
θ,l+1 :=

 φθ(τl, τl+1)Kθ,l

φθ(τl, τl+1)
∂Kθ,l
∂θi

+ ∂φθ(τl,τl+1)
∂θi

Kθ,l

 ,
C

(i)
θ,l+1 :=


(

1−mksθ,l
)

(φsθ(τl, τl+1))
2

0(
1−mksθ,l

)
∂(φsθ(τl,τl+1))2

∂θi
−m∂ksθ,l

∂θi
(φsθ(τl, τl+1))

2
(

1−mksθ,l
)

(φsθ(τl, τl+1))
2

 , (B.4)
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where the Kalman gain and its derivative are given by

Kθ,l = ksθ,lI2×2, ksθ,l :=
mρl−1

θ,l

m2ρl−1
θ,l + v

,
∂ksθ,l
∂θi

=
mvdρl−1,i

θ,l(
m2ρl−1

θ,l + v
)2 . (B.5)

1. If F 6= 0, then, for l = 1, 2, · · · ,

φs(τl−1, τl) = eF (τl−τl−1), qs(τl−1, τl) =
D

F

(
e2F (τl−τl−1) − 1

)
.

(a) If the only unknown parameter is the first order drift coefficient F , i.e., θ = F , then, for

∆τl+1 := τl+1 − τl,

Aθ,l+1 =

 eF∆τl+1I2×2 02×2

∆τl+1e
F∆τl+1I2×2 eF∆τl+1 (I2×2 −mKθ,l)

 ,
Bθ,l+1 =

 eF∆τl+1Kθ,l

eF∆τl+1

(
∂Kθ,l
∂θ + ∆τl+1Kθ,l

)
 ,

Cθ,l+1 =


(

1−mksθ,l
)
e2F∆τl+1 0(

1−mksθ,l
)

2∆τl+1e
2F∆τl+1 −m∂ksθ,l

∂θ e2F∆τl+1

(
1−mksθ,l

)
e2F∆τl+1

 ,
and

X̂θ,1 =

 eF∆τ1x0

∆τ1e
F∆τ1x0

 , Pθ,1 =

 e2F∆τ1ρ0 + D
F

(
e2F∆τ1 − 1

)
2∆τ1e

2F∆τ1ρ0 + D
F e

2F∆τ1
(
− 1
F + 2∆τ1

)
+ D

F 2

 . (B.6)

(b) If the only unknown parameter is the diffusion coefficient D, i.e., θ = D, then,

Aθ,l+1 =

eF∆τl+1I2×2 02×2

02×2 eF∆τl+1 (I2×2 −mKθ,l)

 , Bθ,l+1 =

 eF∆τl+1Kθ,l

eF∆τl+1
∂Kθ,l
∂θ

 ,
Cθ,l+1 =


(

1−mksθ,l
)
e2F∆τl+1 0

−m∂ksθ,l
∂θ e2F∆τl+1

(
1−mksθ,l

)
e2F∆τl+1

 ,
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and

X̂θ,1 =

eF∆τ1x0

02×1

 , Pθ,1 =

 e2F∆τ1ρ0 + D
F

(
e2F∆τ1 − 1

)
2∆τ1e

2F∆τ1ρ0 + 1
F

(
e2F∆τ1 − 1

)
 . (B.7)

2. If F = 0, then, for l = 1, 2, · · · ,

φs(τl−1, τl) = 1, qs(τl−1, τl) = 2D (τl − τl−1) .

If the only unknown parameter is the diffusion coefficient D, i.e., θ = D, then,

Aθ,l+1 =

I2×2 02×2

02×2 I2×2 −mKθ,l

 , Bθ,l+1 =

Kθ,l

∂Kθ,l
∂θ

 , Cθ,l+1 =

1−mksθ,l 0

−m∂ksθ,l
∂θ 1−mksθ,l

 ,
and

X̂θ,1 =

 x0

02×1

 , Pθ,1 =

ρ0 + 2D∆τ1

2∆τ1

 . (B.8)

B.2 Sequential Monte Carlo method

Here, for the acquired data denoted by dl ∈ Cl × Rl
[∞] (or dl ∈ Cl × Rl

[t]), l = 1, 2, · · · ,

we approximate the distribution pprl+1

(
xl+1|τl+1, dl

)
through the sequential Monte Carlo method

provided in [45]. Note that

pprl+1

(
xl+1|τl+1, dl

)
= pX(Tl+1)|Tl+1,Dl

(
xl+1|τl+1, dl

)
=

∫
R3

pX(Tl+1),X(Tl)|Tl+1,Dl

(
xl+1, x|τl+1, dl

)
dx

=

∫
R3

pX(Tl+1)|X(Tl),Tl+1,Dl

(
xl+1|x, τl+1, dl

)
pX(Tl)|Tl+1,Dl

(
x|τl+1, dl

)
dx

=

∫
R3

pX(Tl+1)|X(Tl),Tl+1,Dl

(
xl+1|x, τl+1, dl

)
pfil

(
x|dl

)
dx, (B.9)
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where pfil
(
x|dl

)
:= pX(Tl)|Dl

(
x|dl

)
, x ∈ R3, and for the linear stochastic system with state

X(τ) ∈ R3, τ ≥ t0, zero-mean Gaussian process noise with covariance matrix Qg(τl, τl+1) ∈

R3×3, Qg(τl, τl+1) > 0, and state-transition matrix φ(τl, τl+1) ∈ R3×3, we have, for xl ∈ R3,

pX(Tl+1)|X(Tl),Tl+1,Dl

(
xl+1|xl, τl+1, dl

)
= pX(Tl+1)|X(Tl) (xl+1|xl)

=
1

2π [det (Qg(τl, τl+1))]1/2

× exp

(
−1

2
(xl+1 − φ(τl, τl+1)xl)

TQ−1
g (τl, τl+1)(xl+1 − φ(τl, τl+1)xl)

)
. (B.10)

The distribution pfil of the filtered object location can be approximated as [45]

pfil

(
xl|dl

)
≈

N∑
i=1

wil(rl)δ
(
xl − ẋil

)
, (B.11)

where δ is the Dirac delta function, and the samples ẋil and their corresponding weights wil(rl), i =

1, · · · , N , are given through the following sequential Monte Carlo algorithm. Finally, by substi-

tuting Eqs. (B.10) and (B.11) into Eq. (B.9), the distribution pprl+1
can be approximated as

pprl+1

(
xl+1|τl+1, dl

)
≈

N∑
i=1

wil(rl)pX(Tl+1)|X(Tl)

(
xl+1|ẋil

)
=

N∑
i=1

wil(rl)

2π [det (Qg(τl, τl+1))]1/2
exp

(
− 1

2
(xl+1 − φ(τl, τl+1)ẋil)

T

×Q−1
g (τl, τl+1)(xl+1 − φ(τl, τl+1)ẋil)

)
.

Sequential Monte Carlo (particle filter) algorithm: [45]

1. Draw initial samples {xi0}
N
i=1 according to pX(t0)(x0), i.e.,

xi0 ∼ pX(t0)(x0), i = 1, · · · , N , and set l = 1.

2. Draw independent and identically distributed samples {ẋil}
N

i=1 according to

pX(Tl)|X(Tl−1)

(
ẋl|xil−1

)
, i.e., ẋil ∼ pX(Tl)|X(Tl−1)

(
ẋl|xil−1

)
, i = 1, · · · , N .
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3. Compute the weights sequence {wil(rl)}
N

i=1 as

wil(rl) =
fẋil(rl)∑N
i=1 fẋil(rl)

, i = 1, · · · , N.

4. Resample new particles xjl , j = 1, · · · , N , from the set {ẋil}
N

i=1 according to the importance

weights wil(rl), i.e., according to

P
(
xjl = ẋil

)
= wil(rl), i = 1, · · · , N,

where P
(
xjl = ẋil

)
denotes the probability of xjl = ẋil.

5. Increment l 7→ l + 1 and return to step 2.

B.3 Estimation results for Airy measurements

Here, we analyze the error of the diffusion and drift coefficient estimates for simulated data

sets with the Airy measurement profile, with the same standard deviation as the Born and Wolf and

Gaussian data presented in Figs. 3.3-3.6, and obtain similar results (see Figs. B.1 and B.2). We

also show the differences between the means of the distributions of the prediction of the molecule

locations and the true locations of the molecule in Fig. B.4 (see Section B.11).

B.4 Example for Fisher information calculation

For the data model described in the example provided in Section B.1, the Fisher information

matrix is given by Eqs. (4.31) and (4.32), where Sθ,l, l = 1, 2, · · · , is given recursively by, for

θ = (θ1, · · · , θn) ∈ Θ and i, j = 1, · · · , n,

S
(ji)
θ,l −A

(j)
θ,lS

(ji)
θ,l−1

(
A

(i)
θ,l

)T
= B

(j)
θ,lRθ,l−1

(
B

(j)
θ,l

)T
, l = 2, 3, · · · ,

and

S
(ji)
θ,1 =

φθ(τ0, τ1)xθ,0

∂(φθ(τ0,τ1)xθ,0)
∂θj

[(φθ(τ0, τ1)xθ,0)T
(
∂(φθ(τ0,τ1)xθ,0)

∂θi

)T]
,
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Figure B.1: Analysis of the error of diffusion coefficient and drift coefficient estimates produced
by the maximum likelihood estimation method for the Airy measurement model. (a) The two-
dimensional single molecule trajectory simulated in Fig. 3.3(a). (b) Detected locations of the
photons emitted from the molecule trajectory of part (a) in the image space which are simulated
using Eq. (3.23) with the Airy profile (Eq. (3.11)) and α := 2πna

λ
= 2.59. (c) Differences between

the diffusion coefficient estimates and the true diffusion coefficient value for 100 data sets, each
containing a trajectory of a molecule simulated using Eqs. (B.1) and (3.23) with the Airy profile,
and the parameters given in parts (a) and (b). (d) Differences between the first order drift coefficient
estimates and the true first order drift coefficient value for the data sets of part (c).
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Figure B.2: Predicted locations of the molecule for the Airy measurement model. (a) and (b)
Means of the distributions of the prediction of the molecule x- and y-locations, where the first
order drift coefficient is unknown, and the true x- and y-locations of the molecule for the same
data set as in Figs. B.1(a) and B.1(b). The measurements transformed from the image space to
the object space are also shown. (c) and (d) Means of the distributions of the prediction of the
molecule x- and y-locations and the true x- and y-locations of the molecule over the time interval
[0, 27.5] ms.
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with coefficient matrices given through Eqs. (B.3)-(B.5). In Section B.1, we calculated these

coefficient matrices for drift and diffusion coefficients estimation problem in different scenarios.

B.5 Computation of general Fisher information matrix

We calculate the Fisher information matrix numerically, for the case that we have one pho-

ton, through the following algorithm (here, it is assumed that θ = D, where D is the diffusion

coefficient).

1. For a, b ∈ R, a < b, let xi := a+ ih, yi := a+ ih, i = 0, · · · , n, and h := b−a
n

. Approximate

pX(τ1) as

pX(τ1)(x1) =

∫
R2

pX(τ1)|X(t0) (x1|x) pX(t0) (x) dx

≈ h2

n∑
i=0

n∑
j=0

pX(τ1)|X(t0) (x1|(xi, yj)) pX(t0) (xi, yj) , x1 ∈ R2.

2. Approximate dpX(τ1) :=
∂pX(τ1)

∂D
as

dpX(τ1)(x1) =

∫
R2

dpX(τ1)|X(t0) (x1|x) pX(t0) (x) dx

≈ h2

n∑
i=0

n∑
j=0

dpX(τ1)|X(t0) (x1|(xi, yj)) pX(t0) (xi, yj) , x1 ∈ R2. (B.12)

3. Approximate pU1|T1 as
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pU1|T1 (r|τ1) =

∫
R2

pX(τ1) (x) pU1|X(τ1) (r|x) dx

=

∫
R2

pX(τ1) (x) fx (r) dx

=
1

|det (M)|

∫
R2

pX(τ1) (x) q
(
M−1r − x

)
dx

≈ h2

|det (M)|

n∑
i=0

n∑
j=0

pX(τ1) (xi, yj) q
(
M−1r − (xi, yj)

)
, r ∈ C.

4. Approximate dpU1|T1 :=
∂pU1|T1

∂D
as

dpU1|T1 (r|τ1) =

∫
R2

dpX(τ1) (x) fx (r) dx

=
1

|det (M)|

∫
R2

dpX(τ1) (x) q
(
M−1r − x

)
dx

≈ h2

|det (M)|

n∑
i=0

n∑
j=0

dpX(τ1) (xi, yj) q
(
M−1r − (xi, yj)

)
, r ∈ C.

5. Let rxi = Mxi, ryi = Myi, i = 0, · · · , n, and hr = Mh. Approximate the Fisher informa-

tion matrix I(D) of diffusion coefficient D as

I(D) =

∫
C

1

pU1|T1 (r|τ1)
dp2

U1|T1
(r|τ1) dr

≈ h2
r

n∑
i=0

n∑
j=0

1

pU1|T1

(
(rxi , ryj)|τ1

)dp2
U1|T1

(
(rxi , ryj)|τ1

)
.

B.6 Joint probability distribution of arrival time points for a Poisson process

Lemma 4. For t0 ∈ R, let {N(τ), τ ≥ t0} be a Poisson process with intensity function Λ(τ), τ ≥

t0. Let Tl := (T1, · · · , Tl)T , l = 1, · · · , N(τ), τ ≥ t0, where the 1D random variable Tl describes
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the lth arrival time points of {N(τ), τ ≥ t0}.

1. Then, N(τ), τ ≥ t0, is Poisson distributed with mean
∫ τ
t0

Λ(ψ)dψ, i.e., for L = 0, 1, · · · , the

probability P
(
N(τ) = L

)
is given by

P (N(τ) = L) =
1

L!

(∫ τ

t0

Λ(ψ)dψ

)L
e
−
∫ τ
t0

Λ(ψ)dψ
, τ ≥ t0.

2. For t0 ≤ τ1 < · · · < τL, L = 1, 2, · · · , the probability density function pTL of TL is given by

pTL

(
τ1, · · · , τL

)
=

(
L∏
l=1

Λ(τl)

)
e−

∫ τL
t0

Λ(τ)dτ .

3. For t0 ≤ τ1 < · · · < τL ≤ t, L = 1, 2, · · · , the conditional probability density function

pTL|N(t) is given by

pTL|N(t)(τ1, · · · , τL|L) =
L!
(∏L

l=1 Λ(τl)
)

(∫ t
t0

Λ(τ)dτ
)L .

Proof. See Section 2 of [55].

B.7 Derivative of state estimates

Lemma 5. Let Θ denote a parameter space that is an open subset of Rn, and let τ1 ∈ R. For

θ = (θ1, · · · , θn) ∈ Θ, rl ∈ C, l = 1, 2, · · · , and τ1 < τ2 < · · · , let

x̂lθ,l+1 = φ̃θ(τl, τl+1)
(
x̂l−1
θ,l +Kθ,l(rl − Cx̂l−1

θ,l )
)
, x̂lθ,l+1 ∈ Rk, (B.13)

where φ̃θ(τl, τl+1) ∈ Rk×k, C ∈ R2×k, Kθ,l ∈ Rk×2, and their derivatives with respect to θi, i =

1, · · · , n, exist. Let X(i)
θ,l :=

 x̂l−1
θ,l

∂x̂l−1
θ,l

∂θi

 and eθ,l := rl − Cx̂l−1
θ,l . Then,

X
(i)
θ,l+1 = A

(i)
θ,l+1X

(i)
θ,l +B

(i)
θ,l+1eθ,l, l = 1, 2, · · · ,
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where

A
(i)
θ,l+1 :=

φ̃θ(τl, τl+1) 0k×k

∂φ̃θ(τl,τl+1)
∂θi

φ̃θ(τl, τl+1) (Ik×k −Kθ,lM)

 ,
B

(i)
θ,l+1 :=

 φ̃θ(τl, τl+1)Kθ,l

φ̃θ(τl, τl+1)
∂Kθ,l
∂θi

+ ∂φ̃θ(τl,τl+1)
∂θi

Kθ,l

 .
Proof. By differentiating Eq. (B.13) (Kalman state estimate update formula) with respect to θi, i =

1, · · · , n, we have, for l = 1, 2, · · · ,

∂x̂lθ,l+1

∂θi
=

[
∂φ̃θ(τl,τl+1)

∂θi
φ̃θ(τl, τl+1) (Ik×k −Kθ,lC)

] x̂l−1
θ,l

∂x̂l−1
θ,l

∂θi


+

(
φ̃θ(τl, τl+1)

∂Kθ,l

∂θi
+
∂φ̃θ(τl, τl+1)

∂θi
Kθ,l

)
eθ,l, (B.14)

Then, by combining Eqs. (B.13) and (B.14), for X(i)
θ,l =

 x̂l−1
θ,l

∂x̂l−1
θ,l

∂θi

, we have the following recursive

formulation

X
(i)
θ,l+1 = A

(i)
θ,l+1X

(i)
θ,l +B

(i)
θ,l+1eθ,l,

where

A
(i)
θ,l+1 :=

φ̃θ(τl, τl+1) 0k×k

∂φ̃θ(τl,τl+1)
∂θi

φ̃θ(τl, τl+1) (Ik×k −Kθ,lC)

 ,
B

(i)
θ,l+1 :=

 φ̃θ(τl, τl+1)Kθ,l

φ̃θ(τl, τl+1)
∂Kθ,l
∂θi

+ ∂φ̃θ(τl,τl+1)
∂θi

Kθ,l

 .

B.8 Chain rule

Theorem 8. Let S be an open set in RK and let c be a point of S. Let d = (d1, · · · , dM) be a

function mapping S into an open set H in RM , i.e., d: S 7→ H , that is differentiable at c. Let
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h = (h1, · · · , hN) be a function mapping H into an open set Q in RN , i.e., h: H 7→ Q, that is

differentiable at d(c). Let q be a real-valued function defined on Q that is differentiable at h(d(c)).

Then,

(Dk(q ◦ h ◦ d))(c) =
N∑
i=1

M∑
j=1

(Diq)(h(d(c)))(Djhi)(d(c))(Dkdj)(c), k = 1, · · · , K.

Proof. See the proof of Corollary 8.4.3 of [65].

B.9 Integral transformation theorem

Theorem 9. Let g = (g1, g2, · · · , gn): B ⊆ Rn 7→ Rn be an injective and continuously dif-

ferentiable function. Let w: Rn 7→ R be an integral function and A ⊆ Rn, then the integral

transformation theorem is given by

∫
g(A)

w(y1, y2, · · · , yn)dy1dy2 · · · dyn =

∫
A
w(g(x1, x2, · · · , xn))

× |det(J(g)(x1, x2, · · · , xn))| dx1dx2 · · · dxn,

where the Jacobian matrix is given by

J(g) :=



∂g1(x1,x2,··· ,xn)
∂x1

∂g1(x1,x2,··· ,xn)
∂x2

· · · ∂g1(x1,x2,··· ,xn)
∂xn

∂g2(x1,x2,··· ,xn)
∂x1

∂g2(x1,x2,··· ,xn)
∂x2

· · · ∂g2(x1,x2,··· ,xn)
∂xn

...
... . . . ...

∂gn(x1,x2,··· ,xn)
∂x1

∂gn(x1,x2,··· ,xn)
∂x2

· · · ∂gn(x1,x2,··· ,xn)
∂xn


.

Proof. See Section 10.3 of [65].

B.10 Innovation representation of the state space model

Lemma 6. Let Gg[t]
((

X̃, g, W̃g, Zg

)
,
(
U[t], T[t]

)
, Φ̃,M ′, C,Θ

)
(or GgL

((
X̃, g, W̃g, Zg

)
, (UL, TL) ,

Φ̃,M ′, C,Θ
)

) be an image detection process with expanded state space X̃ and Gaussian process

and measurement noise models for a time interval [t0, t] (or for a fixed number L of photons).
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Assume that

X(τ) = g(X̃(τ)) := GX̃(τ), τ ≥ t0,

whereG ∈ R3×k, and let C := M ′G. Assume that C and Zg are independent of the parameter vec-

tor θ ∈ Θ. For θ = (θ1, · · · , θn) and x̂l−1
θ,l := E

[
X̃θ(τl)|rl−1, · · · , r1

]
, let X(i)

θ,l :=

 x̂l−1
θ,l

∂x̂l−1
θ,l

∂θi

 , i =

1, · · · , n, be the extended state vector and eθ,l := rl − Cx̂l−1
θ,l be the prediction error. Then,

E
[
eθ,lX

(i)
θ,l

]
= 0, i = 1, · · · , n.

Proof. Since the measurement noise Zg, the process noise W̃g, and the initial condition of the state

vector X̃ are independent, the prediction error eθ,l and the extended state vectorX(i)
θ,l , i = 1, · · · , n,

are independent (see the proof of Theorem 5 of [66]), and we have

E
[
X

(i)
θ,l eθ,l

]
= E

[
X

(i)
θ,l

]
E [eθ,l]

= E
[
X

(i)
θ,l

]
E
[
C(X̃θ(τl)− x̂l−1

θ,l ) + Zg,l

]
= E

[
X

(i)
θ,l

]{
C

(
E
[
X̃θ(τl)

]
− E

[
E
[
X̃θ(τl)|rl−1, · · · , r1

]])
+ E [Zg,l]

}
.

According to the law of total expectation, E
[
E
[
X̃θ(τl)|rl−1, · · · , r1

]]
= E

[
X̃θ(τl)

]
, and there-

fore, we have

E
[
X

(i)
θ,l eθ,l

]
= E

[
X

(i)
θ,l

]{
C

(
E
[
X̃θ(τl)

]
− E

[
X̃θ(τl)

])
+ 0

}
= 0.

B.11 Analysis of the error of the predicted locations of the molecule

In this section, the errors between the means of the distributions of the prediction of the

molecule locations and the true locations of the molecule for Born and Wolf, Airy and Gaussian

measurements are shown in Figs. B.3, B.4 and B.5, respectively.
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Figure B.3: Analysis of the error of the predicted locations of the molecule for the Born and Wolf
measurement model. Shown in the left and right plots are the differences between the means of the
distributions of the prediction of the molecule x-locations, where the first order drift coefficient is
unknown, and the true x-values, and the means of the distributions of the prediction of the molecule
y-locations and the true y-values, respectively, for the data sets of Fig. 3.4.
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Figure B.4: Analysis of the error of the predicted locations of the molecule for the Airy mea-
surement model. Shown in the left and right plots are the differences between the means of the
distributions of the prediction of the molecule x-locations, where the first order drift coefficient is
unknown, and the true x-values, and the means of the distributions of the prediction of the molecule
y-locations and the true y-values, respectively, for the data sets of Fig. B.2.
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Figure B.5: Analysis of the error of the predicted locations of the molecule for the Gaussian
measurement noise case. Shown in the left and right plots are the differences between the means
of the distributions of the prediction of the molecule x-locations, where the diffusion coefficient is
unknown, and the true x-values, and the means of the distributions of the prediction of the molecule
y-locations and the true y-values, respectively, for the data sets of Fig. 3.6.
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