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ABSTRACT

Fake news is one of the most serious challenges facing the news industry today, which could

result in adverse impacts on our society. Recent progress of deep neural networks (DNNs) has

shown some promising results in detecting fake news. However, a critical missing piece of such

detection is the interpretability, i.e., why a particular piece of news is detected as fake. This thesis

investigates several approaches for explainable detection of fake news, including its several forms:

texts, images and videos. First, we study some techniques to efficiently explain the output pre-

diction of any given news. It sheds light on the decision-making process of the detection models

and could illustrate why the detection model succeeds or fails. Second, we show that refining

those explanations can enhance the model’s generalization ability. To make this refinement pro-

cess feasible, we propose an active learning strategy to identify the challenging examples in the

training data that are responsible for the model’s overfitting. Several experiments have been con-

ducted to demonstrate the effectiveness of our active learning strategy for image/video-based fake

news detection. Third, we propose an interactive explainable detection system for language based

(text) fake news to help end-users identify the news credibility. We provide several explanations

like word/phrase importance, attribute importance, linguistic feature importance, and supporting

examples, which could help end-users understand why the system makes that decision.
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1. INTRODUCTION AND LITERATURE REVIEW

"Fake News" comes in multiple forms (articles, images, videos) and multiple flavors (misinfor-

mation, disinformation, propaganda, satire, rumors, hoaxes, click-bait and junk news). In general,

fake news is defined as the news with intentionally false information [6, 7]. Some studies have

found that such news arise at the intersection of busy social networks and limited attention spans.

In a perfect world, carefully reported and factually accurate news would go viral. But that isn’t

necessarily the case. We keep falling for fake news. Recently, Elon Musk’s April Fool tweet say-

ing "Tesla goes bankrupt" made their stock fell 5% the following day [8]. There were times when

it fell by 7% because of his tweet on a normal day [9]. Also, the reach of fake news during the

2016 U.S. presidential election campaign for top-20 fake news pieces was, ironically, larger than

the top-20 most-discussed true stories [10]. While "fake news" may be a buzzword, it’s certainly

no joke. Wide spread of fake news can cause serious negative impact on our society and thus it

become critically important to be able to curtail the spread of fake news on social media, promot-

ing trust in the entire news ecosystem. Inorder to do that first we need to understand it’s flavours,

challenges, effects etc.

1.1 Forms and Flavors

Generally, fake news come in either textual or vision form as shown in Fig. 1.1. In the past,

textual form is more commonly seen (ex: spam emails, reviews etc.). However, with the ad-

vancements in artifical intelligence, even vision based fake news got super realistic such as, the

difference between true and fake images are so subtle, even human eyes are hard to distinguish

them. For instance, Fig. 1.1c shows a fake image of obama created by a GAN-based technology

called DeepFake [11]. Also in 2018, a video released by BuzzFeed [12] making Barack Obama

voice his opinion on Black Panther (“Killmonger was right”) and call President Donald Trump “a

total and complete dipshit.” [13] attracted huge attention of even research communities.

Here, we will review several flavors of fake news that can be found on the web. All of them
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(a) Fake article on the web about politics [14].

(b) Fake article on web about social media [15].

(c) Face manipulation by DeepFake [11, 16].

Figure 1.1: Example web news analyzed by a fact-checking website, Snopes [1].

2



satisfy the following definition for fake news: a claim which did not originate from news events

and has not been verified while it spreads from one person to another[17, 7, 6]. Misinformation is

defined as the inaccurate or misleading info [18]. It can spread unintentionally [19] due to honest

reporting mistakes or due to incorrect interpretations [20]. Disinformation works in contrast to

Misinformation. Defined as false information that is spread deliberately to deceive people [18]

or promote biased agenda [21]. Hoaxes are defined as humorous and mischievous [22] that are

similar to disinformation in terms of intentionally conceiving to deceive readers [22]. Satire whose

primary purpose is to criticize or entertain the readers. They are characterized by irony, humor,

absurdity and they can mimic true news [23]. However, similar to hoaxes, they could be harmful

when shared out of context [24, 25]. Propaganda puts information which tries to influence the

opinions, emotions, and actions of target audiences by means of deceptive, selectively omitted

and one-sided messages. Typically, purpose of this category is political, ideological or religious

[26, 21]. Click-bait is a low quality journalism that are intended to attract traffic and monetize via

advertising revenue [21]. Junk news is more generic and it aggregates different types of informa-

tion, from propaganda to hyper-partisan or conspiratorial news and information. Typically, it refers

to the overall content that pertains to a publisher rather than to a single article [27].

1.2 Effects on Society

With rapid usage of social media, fake news can cause much diverse effects on the society.

Three main effects include:

• Could change the way people respond to legitimate news [28].

• Significantly weakens the public trust in governments and journalism [10].

• Rampant ’online’ fake news can lead to ’offline’ societal events [29].

In general, below four domains accounts for most of the attention on fake news. For each

domain, we will provide the striking effects that the world has recently experienced, that indeed

responsive for today’s explosive growth of attention on fake news.
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• Politics Accounts for most of the attention as highlighted in [30]. Some striking effects

include: The US presidential elections in 2016 have officially popularized the term ’fake

news’ to the degree that it has been suggested that Donald Trump may not have been elected

president [6]. Likewise, 2016 UK Brexit referendum [31] and the 2017 France presidential

elections have been impacted by fake news [32].

• Finance Crisis caused by a false tweet concerning president Obama was injured in an explo-

sion. This tweet wiped out $130 billion in stock value [33, 29].

• Crime As a consequence of the Pizzagate fake news, shootout occurred in a restaurant [7].

Over 1 million tweets were related to the fake news story “Pizzagate” by the end of 2016

presidential election [34].

• Health Diffused mistrust towards vaccines during Ebola and Zika epidemics [35].

1.3 Challenges in Detection

We present here few unique challenges involved in detecting fake news on social media.

• Just content doesn’t help. Fake news are intentionally written to deceive the readers and

to mimic traditional news outlets, resulting in an adversarial scenario where it is very hard

to distinguish true news from false ones simply based on their content [7, 36]. For example,

image in Fig. 1.1c looks super realistic and without additional information it’s tough to

identify it as fake. Same with language based (text) fake news as shown in Fig. 1.1.

• Manual fact-checking doesn’t scale. Rate and volumes at which fake news are produced

overturn the possibility to fact-check and verify all items in a rigorous way, i.e. by sending

articles to human experts for verification [36]. Also, there has been rise of fact-checking

websites, such as Snopes.com and PolitiFact.com, where people research claims, manually

assess their credibility, and present their verdict along with evidence (ex., background arti-

cles, quotations, etc.). However, this manual verification is time-consuming and not feasible

specially for large volumes.
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• Limited labeled data. Social media platforms impose limitations [37] on the collection of

public data and as of today the community has produced very limited quality datasets. Also,

it’s much difficult to find annotators with knowledge about particular news creator, news

subject etc. for fake news flavors like opinion based contents, and humorous stories like

satires.

• Feature engineering difficulties. It’s also difficult to develop machine learning models with

substantial feature modeling and rich lexicons to detect bias and subjectivity in the language

style. On the other hand, it’s very likely for deep learning models to get overfitted to small

datasets.

1.4 Simplifying the Definition

The definition of fake news used by each author is important to us, as the term became very

diffused by researchers, journalists, politicians, and users throughout the media. The fake news

can have several flavors as seen in section 1.1. Although, all of those flavors have exclusive at-

tributes that separate them in their respective meaning group, but all converge to the same semantic

meaning, that is of an information that is unverified, of easy spread throughout the net, with the

intention of either block the knowledge construction (by spreading irrelevant or wrong information

due to lack of knowledge of the theme) or either manipulate the readers opinion [38, 39, 40].

Due to very broad definition of fake news (for example opinion based contents, and humorous

stories like satires), it’s difficult to get unbiased (labeling) datasets or to create generalizable ma-

chine learning solutions. We need to restrict the definition, not only for conceptual enlightenment,

but for assertiveness in our revision, and meta-modeling reference of future works, as this would

be the foundation for experiments.

In this work we will restrict the definition of fake news to the one used in [7], which is "a news

that is intentionally and verifiable false". Note that this definition shares similarities to our initial

definition "news with the intent to deceive and false factual content, or the news with intentionally

false information". However our new definition is simplistic, since it does not cover half truths,
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opinion based contents, and humorous stories, like satires. Specifically for vision based fake news,

we will use datasets with modified images and their corresponding true images.

1.5 Current Detection Methods

To help mitigate their adverse effects, it is essential that we develop methods to detect the

manipulated forgeries. Recent advances in deep learning, overcome some of the challenges in

section 1.3 by incorporating news context inaddition to the news content. Context can be user

profile info [41, 42], post-based info like users social responses/comments [43, 44], network info

[45, 46, 47]. However, most of the vision based fake news just use news content (pixels) informa-

tion because of lack of the datasets with additional context information. So detection methods vary

based on the modality of fake news (vision/text). We have a brief survey on several lines of work

in vision and language that are related to this topic.

1.5.1 Vision

In this section, we briefly review three lines of research that model vision based fake news

detection. Current developments in forgery detection field mostly formulate it into a binary clas-

sification problem, roughly falling into two branches: CNN based approaches and artifacts based

methods. The first category takes either the whole or partial image as input and then classify it as

fake or not by designing diverse architectures of convolutional networks [48, 49, 50]. While the

second categories relies on hypothesis on artifacts or inconsistencies of a video or image, such as

lack of realistic eye blinking [51], face warping artifacts [52], and lacking self-consistency [53].

mismatched color profiles [54]. However, both these two categories of methods tend to overfit to

the data in the training set and perform poorly on new unseen manipulations [55]. Considering the

two distinct characteristics which differentiate forgery detection with typical image classification

task, in this work we aim at designing relevant models to enhance generalization performance of

the forgery detection problem.

Although autoencoder-based structure has been demonstrated to be successful in many image

outlier detection problems [56], using autoencoder for forgery detection still is a challenging prob-

6



lem due to two main reasons. Firstly, it is a fine-grained classification task. The difference between

true and fake images are so subtle, even human eyes are hard to distinguish them. Secondly, the

forgery region only occupies a small ratio of the whole image. If no explicit supervision imposed

to the learning process, the model may fail to focus on the forgery region. Instead, they may con-

centrate on non-forgery part, and learn spurious correlations to separate true and fake ones. This

would significantly hinder their generalization ability. So there hasn’t been much research on us-

ing autoencoder based approaches for this task. However, recently [55] uses an autoencoder based

approach for fake image detection but their generalization accuracy is still around 50% on all their

datasets.

1.5.2 Language

Language based (text) fake news detection has been traditionally formulated as a supervised

binary classification with a detection methods, from traditional machine learning (Logistic Regres-

sion, Support Vector Machines, Random Forest) to deep learning (Convolutional and Recurrent

Neural Networks) and to other models (Matrix Factorization, Bayesian Inference). The main chal-

lenge here is to get a labeled dataset with good quality. Current datasets typically fall into one

of the three categories - content based (short claims, twitter post etc.), context based (diffusion

networks, users’ profile, metadata), both (twitter post with its user profile info, facebook post with

comments etc.) [7, 57, 58]. So, we will sequentially review the methods by starting from those

contributions which focus only on content-based features; only the context and finally those that

consider both aspects.

• Content-based detection. Here we review the detection methods that solely analyze the

textual content of news, e.g. body, title. Decisions made just based on textual content are

likely to capture specific writing styles [59] and sensational emotions [60] that frequently oc-

cur in fake news contents. In general, several machine learning approaches [61, 62, 63] have

been explored using lexical or special linguistic features like ngrams, LIWC [63], punctua-

tion, syntax and readability. Also in later years, several supervised deep learning approaches
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[64, 65, 66, 67, 68, 69] have been explored that showed much better results compared to

machine learning methods. Recently, there was also an unsupervised approach [70] to dis-

tinguish different categories of fake news (from satire to junk news), based only on the news

content. Their method involves tensor decomposition of documents which aims to capture

latent relationships between articles and terms and the spatial/contextual relations between

terms. Further they use an ensemble method to leverage multiple decompositions inorder

to discover classes with lower outlier diversity and higher homogeneity. Their experimental

results outperform other state-of-the-art clustering techniques in correctly identify categories

of fake news. However, in general modeling a detection method just based on news content

is less likely to have good generalization ability or to handle real-world data efficiently.

• Context-based detection. Here we review the research contributions which are (social)

context-based in the sense that they utilize information derived from social interactions be-

tween users while making a decision. Some examples of such interactions include likes,

comment and (re)tweets, user connections etc. These interactions can also be grouped into

user-based, post-based and network-based. Accordingly, there are several works that learn

these user-based features from user profiles [41, 42], post-based features from users social

responses (in terms of stance) [71], topics [43] and credibility [44], learn network-based

features by constructing either diffusion networks [72] or propagation networks [45, 46] or

interaction networks [47]. For example, features learnt with the help of propagation net-

works concentrate on propagation of messages carrying malicious items in social networks

[72]. Propagation of news items is also taken into account by [73] which basically combines

convolutional and Gated Recurrent Units (GRU) [74] to model diffusion pathways as multi-

variate time series, where each point corresponds to the characteristics of the user retweeting

the news. Both these [73, 72] sound promising because of their analysis on user profiles

and online news sharing cascades. Despite of the inherent complexity of both techniques

(also limited datasets employed), it looks like network-based approach focusing on social

responses might effectively detect deceptive information. On the other hand, first unsuper-
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vised approach to false news detection is provided by [75], where veracity of the news and

users credibility are treated as latent random variables in a Bayesian model, and the inference

problem is solved using collapsed Gibbs sampling approach [76].

• Content and Context based detection. Here we will review the research contributions

that consider both news content and the associated (social) context interactions in making

the decision. This work [77] uses a deep learning approach to analyse user behaviours in

terms of lag, activity and shown that the source users who promote the news is a promis-

ing feature for the detection. Later [26] infers different deceptive strategies (misleading,

falsification) and different types of deceptive news (propaganda, disinformation, hoaxes).

Interesting part about their work is that beside traditional content-based features (syntax and

style), they employ psycho-linguistic signals like biased language markers, moral founda-

tions and connotations. In addition, they also inspect social responses on Twitter as to infer

different deceptive strategies and types of malicious information. Recently [47] proposes

an approach that employs tri-relationship among publishers, news items and users. Their

results show that the social context could be effectively exploited inorder to improve fake

news detection.

Figure 1.2: Example of content and context based detection. This also considers temporal dimen-
sion for better understanding of news behaviour over time [2].
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1.6 Need for Interpretable Detection

Figure 1.3: Need for explaining a deep neural network prediction from two perspectives: End-user,
Researcher/developer.

There is a growing interest among the academic and industrial community in interpreting deep

learning models and gaining insights into their working mechanisms. In our case, being able to

interpret/explain why a news was determined as fake or true is much desirable for several reasons

illustrated below.

1.6.1 End-user Perspective

For end-users, explanation will increase their trust and encourage them to adopt deep learning

systems. With explanation, the area experts could provide realistic feedbacks. Eventually, new

science and new knowledge which are originally hidden in the data could be extracted. Also,

explanation can further motivate the users to provide more/better annotations.

1.6.2 Researcher Perspective

From the perspective of deep learning system developers/researchers, the provided explanation

can help them better understand the problem, the data and why a model might fail, and eventually

help in increasing the system safety. Typically, this perspective has below two applications.

• Model Validation. Interpretations could help to examine whether a deep learning model

has employed the true evidences instead of biases which widely exist among training data.
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Also, deep learning models may rely on gender, topic and ethnic biases to make decisions.

Interpretability could be exploited to identify whether models have utilized these biases to

ensure our models don’t violate ethical and legal requirements.

• Model Debugging. Explanations could be employed to debug and analyze the misbehavior

of models when they give unexpected or wrong predictions. A representative example can

be adversarial learning [78]. Recent work demonstrated that deep neural networks can be

guided into making erroneous predictions with high confidence when processing deliberately

or accidentally crafted inputs [78, 79]. However, these inputs are quite easy to be recognized

by humans. So in such cases, explanation facilitates researchers to identify the possible

model deficiencies and analyze why these models may fail.

1.7 Current Interpretability Methods

Most of the DNN interpretation techniques can generally be grouped into two categories as

shown in Fig. 1.4 : intrinsic interpretability and post-hoc interpretability, depending on the time

when the interpretation is obtained. Intrinsic interpretability is achieved by constructing self-

explanatory models that incorporate interpretability directly to their structures. The family of this

category includes attention model etc. In contrast, the post-hoc one requires creating a second

model or even a simple heuristic to provide explanations for an existing model. The main dif-

ference between these two groups lies in the trade-off between model accuracy and explanation

fidelity. Inherently interpretable DNN’s could provide accurate and undistorted explanation but

could sacrifice prediction performance to some extent. The post-hoc type way is limited in their

approximate nature while keeping the underlying DNN accuracy intact.

1.7.1 Vision

As CNN is the most dominant architecture used in vision community, we will mainly focus on

explanation methods developed for CNN-based detection networks. The detection models needs to

possess local interpretability, which could indicate which region is attended by the model to make

its decisions. The benefit is that explanations can help users better understand their models or in
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Figure 1.4: Techniques to interpret a Deep Neural Network (DNN) [3, 4].

gaining trust about their model decisions. This can further motivate them to improve/provide more

annotations for some domain of training data on which model has bad performance.

• CNN Global Interpretation The global interpretation enables users to understand how the

CNNs work globally by inspecting the representations captured by the neurons at different

intermediate layers of CNNs [3]. Among different strategies to understand CNN represen-

tations, the most effective and widely utilized one is through finding the preferred inputs

for neurons at a specific layer. This is generally formulated in the activation maximization

(AM) framework [80]. This framework ultimately generates a visualization that could tell

what individual neuron is looking for in its receptive field. This method can be used for ar-

bitrary neurons, ranging from neurons at the first layer to the output neurons at the last layer,

to better understand what is encoded as representations at different layers.

• CNN Local Interpretation Local explanations target to identify the contributions of each

feature in the input towards a specific prediction of the deep neural network. These local

interpretation methods can be further classified into the following three main categories:

Back-propagation, Perturbation, and Investigation of representations in intermediate layers.

Back-propagation based methods [81, 82, 83] calculate the gradient or its variants, of a par-
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Figure 1.5: CNN local interpretation heatmaps produced by (b) Back-propagation, (c) Perturba-
tion, (d) Investigation of representations.

ticular output with respect to the input to derive the individual pixels in the input image.

However, this method is limited in its heuristic nature and may generate low quality expla-

nations that are noisy, as shown in Fig. 1.5(b).

Perturbation based methods [84, 85] tries to answer the question: which parts of the input, if

were not seen by the model, would change its prediction the most? This can also be framed

as how prediction score changes when few input features are altered? The perturbation is

performed sequentially across features which in our case are pixels, to determine their contri-

butions, and can be implemented either with omission or occlusion. For omission, a feature

is directly removed from the input and for occlusion, the feature is replaced with a reference

value, such as gray value of pixel or mean of the input pixel values. However, occlusion

raises an additional concern that new evidence may be introduced and that can be used by

the model as a side effect [84]. Thus we should be cautious when selecting reference values

inorder to avoid introducing extra pieces of evidence. If you notice, pixel-wise perturbations

could be computationally very expensive because of high dimensional inputs, since pixels

need to be perturbed sequentially. To overcome this complexity, perturbation can be done at

superpixel level with the help of a mask followed by gradient descent optimization. One re-
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cent work [85] uses an optimization framework to learn a perturbation mask, which explicitly

preserves the contribution values of each feature. These superpixel level explanations would

be more meaningful compared to pixel-level explanation as shown in Fig. 1.5(c). Although

superpixel level methods has drastically boosted the efficiency, generating an explanation

still requires several forward and backward operations.

Investigation of representation based methods [86, 87, 88, 89] explicitly utilize the deep

representations of the input to generate heatmaps(or saliency maps). Either perturbation or

back-propagation based explanations ignore these intermediate layers of the DNN which are

likely to contain rich semantic information. Examples of this kind of interpretation meth-

ods are CAM [88], Grad-CAM [89] which generate saliency maps by combining the feature

maps (or channels) in the intermediate CNN layers heuristically. The difference between

CAM and Grad-CAM is that the former can only be applied to a small set of CNN classi-

fiers with global average pooling layer prior to the output layer, while the latter has no such

requirement as it combines the intermediate feature maps using gradient, and thus can be

applied to a wider range of CNN architectures. However, one main advantage of the CAM

explanation method is that it is end-to-end differentiable, amenable for training with back-

propagation and updating CNN parameters. In general, people use the last convolution layer

feature maps to get meaningful CAM or Grad-CAM saliency maps, as last convolution layer

is known to learn more abstract representations with high levels of semantics.

1.7.2 Language

All explanation methods can be generally grouped into two categories: intrinsic and post-

hoc, depending on the time when the interpretability is obtained [90]. As RNN is the dominant

architecture used by NLP community, we will mainly review explanation methods from those two

categories that could provide interpretations for RNN predictions. These methods can be further

grouped into two: model-agnostic and model-specific. For model-agnostic methods, we regard the

model to be explained as black box by which we only have access to its input and output. On the

other hand, model-specific methods need to know model architecture and parameters.
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(a) Attention based explanation for NMT task [91]

(b) Back-propagation based explanation for text clas-
sification [92]

Figure 1.6: Example explanations in NLP.

• Model-specific explanation. Typically, this type of explantion either take advantage of

attention layers in the model or gradients of the parameters involved inbetween class of

interest and the model input. Attention based methods [93, 94, 91, 95] which are widely

utilized to explain predictions made by Recurrent Neural Networks (RNNs). This method

gives users the ability to interpret which parts/words of the input are attended by the model

for it’s prediction. Also, this approach has been used in multi-modal tasks like image caption

generation [94] where a convolution neural net is employed for encoding image into a vector

which is later used by RNN with attention mechanisms to generate corresponding descrip-
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tions about the encoded image. In this process, during each word generation, model changes

its attention to reflect the relevant parts of the image. Visualizing the attention matrix for

individual predictions could tell us what the model is looking at when generating a word.

Another dominant task which uses attention mechanism is machine translation [93]. At de-

coding stage, the neural attention module assigns different weights to the hidden states of

the decoder, which allows the decoder to selectively focus on different parts of the input sen-

tence at each step of the output generation. Through visualizing the attention scores, users

could understand how words in one language depend on words in another language for cor-

rect translation as shown in Fig. 1.6a. Back-propagation based methods [92, 82, 96, 97, 81]

computes the gradient or its variants of the model output with respect to the input, for a spe-

cific class of interest. This is typically done using traditional back-propagation to identify the

words whose variation would lead to the significant change of output probability. It is tricky

to say this method belongs to model-specific category and it may change depending on the

way we define model-agnostic/model-specific. As our definition for model-specific expla-

nation involves utilizing model parameters, thus it falls here. This approach is first proposed

in vision for image classification [80], later adapted to language tasks like text classification

etc. However, unlike in vision tasks there is no unique way of using this explanation method

for language tasks because of word embedding layer. So there has been different variants

of this method such as computing gradients with respect to individual entries in word em-

bedding vectors, and then the L2 norm [97] or the dot product of the gradient and the word

embedding [96] inorder to reduce the gradient vector to a scalar, representing the contribu-

tion of a single word. Also, there are some works that propose to back-propagate different

signals to the input, such as the relevance of the final prediction score through each layer of

the network onto the input layer [92, 82], or only propagating positive gradient signals in

the back-propagation process [81]. However, the pitfall of this explanation method is that

the heatmaps would be bit noisy and we need to employ some postprocessing to make ex-

planations look good. Some examples for this type are shown in Fig. 1.6b. Decomposition
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based methods [98, 99, 87] tries to utilize the deep representations of the input to explain the

DNN prediction. Above back-propagation based method, ignore the intermediate layers of

the DNN that might contain rich information for interpretation. By modeling the informa-

tion flowing process of the hidden representations in LSTM models, the LSTM prediction is

decomposed into additive contribution of each word in the input sentence [98, 99]. There has

been a recent work which extends this idea to all RNN architectures [87] by also enabling the

flexibility to generate word/phrase/clause level explanations. The decomposition result can

quantify the contribution of each individual word to our RNN prediction. Unlike approxi-

mation based methods, these explanations would be more meaningful/faithful to the original

model’s decision making process compared to the explanations taken from it’s approximated

model version. This is because deep representations serve as a strong regularizer, increasing

the possibility that the explanations faithfully characterize the behaviors of complex model,

thereby reducing the risks of generating surprising explanations.

• Model-agnostic explanation. Perturbation based methods [100, 101, 102] in NLP try an-

swers the question: which words in the input, if were not seen by the model, would change

its prediction significantly? This can also be framed as how prediction score changes when

few input words or word features were altered? The motivation of this method is that if

the most important word for a prediction is perturbed, then it will cause the largest prob-

ability drop of the output for the target class. Perturbation can be induced in two ways:

occlusion [102] and omission [100, 101]. For occlusion, word is replaced with a baseline

input where a zero-valued word embedding is utilized as replacement [102]. While for

omission, we directly delete the word [100]. This approach is easy to implement but the

problem is, it cannot guarantee meaningful explanations because of the word order modi-

fied by omission or occlusion. Both of them could make the sentence nonsensical. Since

word order is an essential factor for RNNs, these word order distortions may trigger the ad-

versarial side of RNN resulting in unfaithful explanations. Approximation based methods

[103, 104, 105, 106, 107, 108] try to approximate original deep-learning/black-box model
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with a shallow/white-box model. This can be done either with model extraction based meth-

ods like mimic learning [108, 107, 109, 105, 106]. or with local approximation based meth-

ods like LIME [103] etc. Mimic learning is a model extraction based method proposed in

[107, 105, 108], which tries to transfer the knowledge of a pre-trained complex/deep model

(called teacher) to a simple/interpretable model (called student) without sacrificing much on

accuracy. One way of doing it is by using soft prediction scores of the deep/teacher model

as target labels to train the student/interpretable model. Student model would generally be

a decision tree or forest based model or even rule-based model which could be later used

for explaining predictions. As long as the approximation is sufficiently close, the statistical

properties of the teacher model could be reflected in the student. Eventually, we obtain a

model with comparable prediction performance, and the behavior of which is much easier

to understand. Some work in this area includes, transforming a tree ensemble model into a

single decision tree[108]. In addition, a deep neural net is utilized to train a single decision

tree which mimics the function learnt by neural network so that the knowledge encoded in

DNN is transferred to the decision tree [109] and also they employed active learning in their

training pipeline to avoid overfitting of the decision tree. Overall, one advantage of mimic

learning is that we still get comparable performance as that of complex model unlike local

approximation based methods where we need to sacrifice more. Local approximation based

methods [103, 104, 87, 98, 99] approximate the complex model with a simple model on the

assumption that behaviors of complex model around the neighborhood of a given input is

well approximated by the simple model [103]. We can use sparse linear model as our simple

model and the weight vector of that linear model could be used to get feature contribution

scores for the original complex model prediction. However, these explanations could be un-

faithful in the cases where even the local behavior of complex model is extremely non-linear.

Hence, for simple models, instead of using linear models, we use the ones that are able to

capture the non-linear relationships. For example, a method can be designed using if-then

rules [104] which are even able to explain both the current instance and some other relevant
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instances.

1.8 Challenges for Interpretable Detection

In general, there is a well known tradeoff between prediction accuracy and interpretability. The

more interpretable models may result in reduced prediction accuracy compared to less interpretable

ones [107, 3]. For example, a single decision tree would be more interpretable than a random forest.

However, random forests models are known to achieve better prediction accuracy. Similarly, this

can be generalized to several different models as shown in Fig. 1.7.

Figure 1.7: Comparison of predictive accuracy and interpretability of various machine learning
methods. Neural nets typically have high accuracy and low interpretability.

1.9 Thesis Outline

In this thesis, we overcome the challenges mentioned in the above section by developing ex-

plainable fake news detection methods for vision and language that do not compromise much on

accuracy. Specifically this thesis is organized in following chapters:

Chapter 2 focuses on developing explainable fake news detection method for vision based fake
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news which can predict and also reason its prediction in the form of heatmaps or class activation

maps.

Chapter 3 focuses on correcting the above explanations to further refine the model general-

ization power. Also, this chapter introduces an active learning approach to make the refinement

process feasible by significantly reducing the labeling efforts required for this refinement process.

Chapter 4 focuses on language based (text) fake news and develops three methods for ex-

plainable detection. Explanation for an instance prediction will include word/phrase importance,

attribute importance and some supporting examples in the training data.

Chapter 5 introduces a web application for interactive explainable fake news detection for text

based fake news. In the backend, this system uses algorithms developed in chapter 4 to predict and

reason the user provided news input.

Chapter 6 offers discussion and future work.
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2. EXPLAINING VISION BASED FAKE NEWS

Several manipulation methods are available on the web to create a fake image. However,

manipulations that are noticeable to human eyes are less likely to create negative effects on the

society. But manipulations with special characteristics when shared on social media could cause

serious impact on our society. Two of those special characteristics include: fine-grained nature

and spatial locality. First says that the difference between true and fake images are so subtle, even

human eyes are hard to distinguish them. Second says that the forgery occupies only a certain

ratio of the whole image input. For instance, DeepFake videos [11] use GAN-based technology

to replace one’s face with anther’s. This manipulation changes human faces, while leaving the

background part unchanged. Considering these two characteristics, a desirable detection model

should be able to concentrate on the forgery region to learn effective representations. As such, the

detection model needs to possess local interpretability, which indicates which region is attended

by the model to make decisions [3]. The benefit is that we can later control the local interpretation

explicitly by imposing extra supervision on instance interpretation in the learning process, inorder

to enforce the model to focus on the forgery region to learn representations.

2.1 Detecting Fake Images

Our objective here is to train a network, which could distinguish fake images from true ones. A

key characteristic of forgery detection lies in its fine-grained nature. Thus effective representation

is needed for both true and fake images in order to ensure high detection accuracy. As such, we use

an autoencoder to learn more distinguishable representations which could separate true and fake

images in the latent space.

2.1.1 Notations

Here we introduce the basic notations used in this section. Given a source dataset D containing

both true images XT and fake images XF generated by a forgery method. D is split into training

set Dtrn = {(xi, li)}Ni=1, validation set Dval = {(xi, li)}Nval
i=1 and test set Dtst = {(xi, li)}Ntst

i=1, where
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Figure 2.1: Overview of our fake image detection framework AE.

li ∈ [0, 1] denotes fake and true class label respectively. A detection model f(x) is learned from

the training set Dtrn and evaluated on test set Dtst. Validation set Dval is used for early stopping or

model selection use case.

2.1.2 Methodology

The autoencoder (AE) is denoted using f , which consists a sub-network encoder fe(·) and

decoder fd(·). This encoder maps the input image x ∈ Rw×h×3 to the low-dimensional latent

vector space encoding z ∈ Rdz , where dz is the dimension of latent vector z. Then the decoder

remaps latent vector z back to the input space x̂ ∈ Rw×h×3. Both operations can be represented

mathematically as below.

z = fe(x, θe), x̂ = fd(z, θd), (2.1)

where θe and θd are parameters for the encoder and decoder respectively. To enforce our model to

learn more meaningful and intrinsic features, we introduce the latent space loss as well as recon-

struction loss.

L1(θe, θd, x, l) = Lrec + Llatent. (2.2)

The autoencoder (AE) is visualized in Fig. 2.1. Typically, encoder and decoder would be a se-

quence of conv/deconv layers with pooling, RELU operations. The specific network architecture

we used is listed under experiments section (2.1.3). The motivation behind using Global Average

Pooling (GAP) layer after last convolution layer in the encoder is illustrated under explaining the
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detections section (2.2). Above two loss functions are elaborated below.

Latent Space Loss: We make use of the latent space representation to distinguish the forgery

images from the true ones. The latent space vector is first split into two parts: T = {1, ..., dz
2
}, and

F = {dz+2
2
, ..., dz}. The total activation of xi for the true and fake category respectively is denoted

as:

ai,T =
2

dz
||zi,c||1, c ∈ T ; ai,F =

2

dz
||zi,c||1, c ∈ F. (2.3)

The final latent space loss is defined as follows:

Llatent =
∑
i

|ai,T − li|+ |ai,F − (1− li)|, (2.4)

where li is the ground truth of input image xi. The key idea of this loss is to enforce the activation

of the true part: {zi,c}, c ∈ T to be maximally activated if the input xi is a true image, and similarly

to increase the fake part {zi,c}, c ∈ F activation values for fake image inputs. At testing stage, the

forgery detection is based on the activation value of the latent space partitions. The input image xi

is considered to be true if ai,T > ai,F , and vice versa.

Reconstruction Loss: To force the fake and true images more distinguishable in the latent

space, it is essential to learn effective representations. Specifically, we use reconstruction loss

which contains three parts: pixel-wise loss, perceptual loss, and adversarial loss, to learn intrinsic

representation for all training samples. The overall reconstruction loss Lrec is defined as follows:∑
i

β1 ||xi − x̂i||22︸ ︷︷ ︸
Pixel Loss

+β2 ||C(xi)− C(x̂i)||22︸ ︷︷ ︸
Perceptual Loss

+β3 [−log(D(x̂i))]︸ ︷︷ ︸
Adversarial Loss

. (2.5)

The pixel-wise loss is measured using mean absolute error (MAE) between original input image

pixels and reconstructed image pixels. For perceptual loss, a pretrained comparator C(·) (e.g.,

VGGNet [110]) is used to map input image to feature space: Rw×h×3 → Rw1×h1×d1 . Then MAE

difference at the feature space is calculated, which represents high-level semantic difference of xi

and x̂i. In terms of adversarial loss, a discriminator D(·) is introduced aiming to discriminate the

generated images x̂i from real ones xi. This subnetworkD(·) is the standard discriminator network

introduced in DCGAN [111], and is trained concurrently with our autoencoder. The autoencoder
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is trained to trick the discriminator network into classifying the generated images as real. The

discriminator D is trained using the following objective:

LD = −[Ex∼PX
[logD(x)] + Ex∼PX

[log(1−D(x̂))]]. (2.6)

Parameter β1, β2, β3 are employed to adjust the impact of invidual losses. The three losses serve the

purpose of ensuring reconstructed image to: 1) be sound in pixel space, 2) be reliable in the high-

level feature space, and 3) look realistic respectively. The implicit effect is to force the vector z to

learn intrinsic representation which could make it better separate fake and true images. Besides,

using three losses instead of using only pixel-wise loss could help stabilize the training in less

number of epochs [112].

We conduct several experiments using the overall loss L1 defined in Eq.(2.2) which showed it’s

effectiveness across different kinds of manipulations.

2.1.3 Experiments

We conduct experiments to answer the following research questions. (1) Does the proposed

AE achieve better accuracy compared to other state-of-the-art methods? (2) How do different

components and hyperparameters affect the performance of AE?

In this section, we introduce the overall experimental setups including datasets, baselines, net-

works architecture and implementation details.

Datasets: We have considered two types of manipulations that modify true images. For each

manipulation, we have considered two different methods to generate fake images based on their

true versions. Manipulation types and datasets creation process is illustrated below. We will mainly

focus on creating fake images by doing modifications to face, because of their likelihood to have

high impact on society.

• Computer Graphics based manipulation. We have used a public database FaceForensics++,

proposed in [113], with 1000 real videos and 2000 manipulated videos. Among 2000

fake videos, 1000 are created with the method Face2Face [114] and 1000 with the method
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Face Attribute Inpainting

Face2face FaceSwap Glow StarGAN G&L ContextAtten

Train 288000 288000 41590 41590 28000 28000
Val 2800 2800 11952 11952 6000 6000
Test 2800 2800 5982 5982 6000 6000

Table 2.1: Dataset statistics for computer graphics based manipulation (includes face modifica-
tion), deep learning based manipulation (includes attribute modification, inpainting-based modifi-
cation).

Figure 2.2: Examples of computer graphics based manipulations to facial region. Top row contain
original images and later rows contain fake images created using Face2face and FaceSwap methods
respectively.
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Figure 2.3: Examples of deep learning based manipulations to modify facial attributes. Each row
contain a true image and two fake images created using StarGAN and Glow methods respectively.
Attribute name is included inbetween true and fake images.

Figure 2.4: Examples of deep learning based manipulations applied to the central region of the
image using inpainting based methods. Each row contain a true image and two fake images created
using G&L and ContextAtten methods respectively.
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FaceSwap [115]. Both the methods are graphics based and yield different datasets. In

general, Face2Face generates fake images that are particularly harder to detect by human

observers[113] since Face2Face does not introduce a strong semantical change, and thus,

introducing only subtle visual artifacts in comparison to the face replacement methods like

FaceSwap. Each dataset was split into 704 videos for training, 150 for validation, and 150

for testing. All splits are balanced, where the ratio of true and fake images are 1:1. All

videos have been compressed using H.264 with quantization parameter set to 23. Images

were extracted from videos using Cozzolino et al.’s settings [55]: 200 frames of each train-

ing video were used for training, and 10 frames of each validation and testing video were

used for validation and testing, respectively. There is no detailed description of the rules for

frame selection, so we selected the first (200 for train or 10 for test/val) frames of each video

and cropped the facial areas based on the segmentation masks provided in the database for

all manipulated videos. This public database also comes with ground truth masks for all

fake images that indicate whether a pixel has been modified or not, which can be used to

train forgery localization methods. Corresponding dataset statistics are given in Tab. 2.1 and

images are shown in Fig. 2.2.

• Deep Learning based manipulation. With advancements of deep learning techniques,

it is now possible to generate super-realistic fake images. Here we consider two categories

of datasets [55], fake images created using GAN-based attribute modification and fake im-

ages created from inpainting-based modification. Under the first category, real images from

CelebA dataset [116] are modified with two methods: StarGAN [117] and Glow [118].

The modified attributes include changing hair color, changing smile, etc. Some examples

are shown in Fig. 2.3. Under the second category, original images are modified using two

inpainting methods, G&L [119] and ContextAtten [120]. The inpainting is performed to

central 128×128 pixels of the original images as shown in Fig. 2.4. For both the categories,

all images are 256×256 pixels and all splits are balanced, where the ratio of true and fake

images are 1:1.
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Preprocessing: For all datasets, we have applied normalization with mean (0.485, 0.456,

0.406), standard deviation (0.229, 0.224, 0.225), since these values have been widely used in the

ImageNet Large Scale Visual Recognition Challenge [121]. We haven’t applied any data augmen-

tation in our experiments. If needed, images has been resized to meet network input dimension

requirements using a bilinear interpolation.

Baselines: We evaluate AE by comparing it with six baselines. All models are trained on the

same data and evaluated on the same data.

• SuppressNet [122]: A generic manipulation detector that uses a constrained convolutional

layer followed by two convolutional, two max-pooling and three fully-connected layers.

Constrained convolution layer is designed to suppress the high-level contents of the image.

• ResidualNet [123]: Residual-based descriptors are used for forgery detection. This model

recasts the hand-crafted Steganalysis features used in the forensic community to a CNN-

based network. Basically, these features are extracted as co-occurrences on 4 pixels patterns

along horizontal and vertical direction on the residual image, which is obtained after high-

pass filtering of the original input image.

• StatsNet [124]: To optimize the feature extraction scheme, this method integrates the com-

putation of statistical feature extraction within a CNN framework. CNN framework consists

of a global pooling layer that computes four statistics (mean, variance, maximum, mini-

mum). We consider the Stats-2L network since this model has the best performance.

• MesoInception [50]: This is a CNN-based network specifically designed to detect face

manipulations in videos. It uses two inception modules, two convolution layers with max-

pooling, followed by two fully-connected layers at the end. Mean square error instead of

cross-entropy is used as loss function.

• XceptionNet [125]: A CNN based network, where depth-wise separable convolution layers

with residual connections is used for forgery detection. We use a pretrained network on
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Encoder layer Output shape Decoder layer Output shape

Conv2d [64, 128,128] ConvTranspose2d [256, 4,4]
Relu [64, 128,128] BatchNorm2d & Relu [256, 4,4]
Conv2d [128,64,64] ConvTranspose2d [128, 8,8]
BatchNorm2d [128,64,64] BatchNorm2d & Relu [128, 8,8]
Relu [128,64,64] ConvTranspose2d [64, 16,16]
Conv2d [256,32,32] BatchNorm2d & Relu [64, 16,16]
BatchNorm2d [256,32,32] ConvTranspose2d [32, 32,32]
Relu [256,32,32] BatchNorm2d & Relu [32, 32,32]
Conv2d [512,16,16] ConvTranspose2d [16, 64,64]
BatchNorm2d [512,16,16] BatchNorm2d & Relu [16, 64,64]
Relu [512,16,16] ConvTranspose2d [8, 128,128]
Conv2d [512,16,16] BatchNorm2d & Relu [8, 128,128]
Relu [512,16,16] ConvTranspose2d [3, 256,256]
AvgPool2d [512,1,1] Tanh [3, 256,256]
Linear [128]

Table 2.2: Network architecture and output shapes.

ImageNet by replacing last fully connected layer with two outputs in order to match our use-

case. We use ImageNet weights to initialize all other layers. To set up the newly inserted

fully connected layer, we fix all weights up to this new layer and pre-train the network for 3

epochs. Finally, we train the network for additional 20 epochs and choose the one with with

best accuracy on validation set.

• ForensicTransfer [55]: This is an encoder-decoder based architecture with 5 convolution

layers in each sub-network. Decoder additionally uses a 2× 2 nearest-neighbor up-sampling

before each convolution (except the last one) to recover the original size. The latent space

(encoder output) has 128 feature maps among which 64 are associated with the real class

and 64 with the fake class. For a fair comparison, we use their version that is not fine-tuned

on target dataset.

Network Architecture: For encoder and decoder, we use a structure similar to U-net [126].
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Details about the layers and corresponding output shapes are given in Tab. 2.2. The AvgPool2d

corresponds to global average pooling layer, which transform the [512,16,16] activation layer into

512 dimension vector. After that, we use a Linear layer to turn it into the 128-dimension latent

space vector z (see Fig. 2.1). For comparator C(·), we use the 16-layer version VGGNet [110],

and the activation after 10-th convolutional layer with output shape [512,28,28] is used to calculate

the perceptual loss. For discriminator D, we use the standard discriminator network introduced in

DCGAN [111].

Training Details: For fair comparison, all models are trained on the same data and tested on

the same test set. We have used early stopping strategy using validation loss as stopping criteria

with patience set to 10 and for a maximum of 40 epochs. Model specific training details are

illustrated below.

• AE. For training, we use the Adam optimizer [127] with a learning rate of 0.001, batchsize

of 64 and default values for the moments β1 = 0.9, β2 = 0.999 and epsilon set to 10−8.

Tuned all three hyperparameters used in the equations in the methodology. For the first

two hyperparameters (β1, β2) in Eq.(2.5), we have tuned values between 0 and 1 with 0.1

as interval and for the third (β3), we have tried {0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1.0}.

During evaluation, we only use encoder part to make the decision.

• Baselines. All baselines are trained using the same loss optimizations mentioned in their

papers. Regarding hyperparameters, for SupressNet [122] and ResidualNet [123], we use

a learning rate = 10−5 with batch size of 64 and 16 respectively. For StatsNet [124] and

MesoInception [50], we use batch size of 64 with learning rates of 10−4, 10−3 respectively.

XceptionNet [125] is trained with batch size of 32 and learning rate of 0.0002. For Foren-

sicTransfer [55], we use a learning rate of 0.001 and a batch size of 64.

Accuracy Evaluation: For all datasets, detection accuracy on corresponding test sets is used

as metric to compare the models. For each dataset, training is done on train set and evaluated
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Face Attribute Inpainting

Models Face2face FaceSwap StarGAN Glow G&L ContextAtten

SuppressNet 93.86 93.04 99.98 98.94 99.08 99.06
ResidualNet 86.67 87.74 99.98 98.87 98.96 99.24
StatsNet 92.94 91.69 99.98 99.01 96.17 94.74
MesoInception 94.38 92.52 100.0 99.04 86.90 95.37
XceptionNet 98.02 98.67 100.0 98.98 99.86 98.12
ForensicTransfer 93.91 94.16 100.0 99.04 99.65 99.01

AE 96.92 97.08 100.00 99.04 99.74 99.12

Table 2.3: Detection accuracy of several models for six datasets. Values are reported based on
their performance on corresponding test set. All models are trained on dataset specific train set and
evaluated on dataset specific test set.

on corresponding test set. For example, results on Face2face dataset indicate performance on

Face2face test set after training on Face2face train set. Tab. 2.3 shows the comparison between

our method AE and several baselines across six datasets. For AE, following hyperparameters gave

the best results: α1 = 1.0, α2 = 1.0, β1 = 1.0, β2 = 1.0, β3 = 0.01. In general, there are two

interesting observations.

1. Models with latent space loss and lesser number of parameters (AE, ForensicTransfer) per-

form almost as good as pretrained/very deep layered models like XceptionNet or MesoIn-

ception. Additional adversarial, perceptual losses in our model (AE) have helped outperform

ForensicTransfer model. We will further stretch about the impact of different losses for AE

under ablation and hyperparameter analysis section.

2. On all datasets, most of the models are giving close to 100% accuracy which can trigger a

doubt on generalization ability. It is important to think of generalization as it’s difficult to

come up with individual model for each forgery method like Face2Face, FaceSwap etc.

Ablation and Hyperparameters Analysis: We utilize our model (AE) trained on face manip-

ulation task to conduct ablation and hyperparameter analysis which could provide more insights

about the contribution of different components in AE.
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AE_rec AE_latent AE_latent_pixel AE

Face2face 50.39 95.82 96.57 96.92
FaceSwap 58.12 93.24 95.10 97.08

Table 2.4: Ablation analysis of AE for face manipulation task.

β1 β2 β3 Face2face FaceSwap

Alter pixel 1.0 1.0 0.01 96.92 97.08
0.5 1.0 0.01 96.01 95.07
0.1 1.0 0.01 95.55 94.54

Alter perceptual 1.0 1.0 0.01 96.92 97.08
1.0 0.5 0.01 96.74 95.92
1.0 0.1 0.01 95.84 93.67

Alter adversarial 1.0 1.0 0.1 54.16 65.09
1.0 1.0 0.05 58.28 76.12
1.0 1.0 0.01 96.92 97.08

Table 2.5: Hyperparameter analysis for β1, β2, β3
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• Ablation analysis. We compare AE with its ablations to identify the contributions of

different components. Four ablations include: AE_rec, trained only with reconstruction loss

of Eq.(2.5); AE_latent, using only latent space loss in Eq.(2.3); AE_latent_pixel, using both

latent space loss and pixel loss in Eq.(2.5); AE_latent_rec, using latent space loss and whole

reconstruction loss in Eq.(2.2). Note that no attention loss is used in the ablations. The

comparison results are given in Tab. 2.4. There are several key findings. Firstly, latent space

loss is the most important part, without which even source test set accuracy could drop to

50.39% on Face2face and 58.12% on FaceSwap. Secondly, all of pixel-wise, perceptual, and

adversarial losses could contribute to additional performance boost.

• Hyperparameters analysis. We evaluate the effect of different hyperparameters towards

model performance by altering the values of β1, β2, β3 in Eq.(2.5). Corresponding results

are reported in Tab. 2.5. The results indicate that increase of weights for pixel loss and

perceptual loss could enhance model performance. In contrast, a small weight for adversarial

loss is beneficial for accuracy improvement. Also, reconstuction loss is more important

to FaceSwap than Face2Face which indeed make sense as Face2face way of creating fake

images do not introduce a strong semantic change, introducing only subtle visual artifacts in

contrast to FaceSwap [113].

2.2 Explaining the Detections

To build trust on deep learning methods, reasoning their predictions could be very useful.

Although, our autoencoder AE developed in last section gives more than 96% accuracy on all

datasets, due to data-driven training paradigm, there it’s not guaranteed that our model focuses on

the forgery region to make predictions, instead might have learnt spurious correlations by capturing

biased artifacts in the dataset. To validate this claim, first we need to generate some explanation

for every prediction.

There are couple of differnt ways to generate heatmaps to explain a CNN prediction as de-

scribed in chapter 1. We chose CAM explanation method because it is end-to-end differentiable,
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amenable for training with backpropagation and updating CNN parameters. Detailed illustration

of generating explanations in our case is given below.

2.2.1 Methodology for Local Interpretation

This is just a post-hoc way of generating heatmaps so none of our model AE parameters are

modified. The goal of local interpretation is to identify the contributions of each pixel in the input

image towards a specific model prediction [86]. The interpretation is illustrated in the format of

heatmap (or attention map). Inspired by the CNN local interpretation method Class Activation Map

(CAM) [88], we use global average pooling (GAP) layer as ingredient in the encoder, as illustrated

in Fig. 2.1. This enables the encoder to output attention map for each input. Let l-layer denotes the

last convolutional layer of the encoder, and fl,k(xi) represents the activation matrix at k-channel of

l-layer for input image xi. Let also wck corresponds to the weight of k-channel towards the unit c

of latent vector z. The CAM attention map for unit c is defined as follows:

Mc(xi) =

dl∑
k=1

wck · fl,k(xi). (2.7)

Later we upsampleMc(xi) to the same dimension as the input image xi using bilinear interpolation.

Each entry withinMc(xi) directly indicates the importance of the value at that spatial grid of image

xi leading to the activation zc. The final attention map M̂(xi) for an input image xi is denoted as:

M̂(xi) =

dF∑
c=1

|zi,c| ·Mc(xi) =

dF∑
c=1

dl∑
k=1

|zi,c| · wck · fl,k(xi), (2.8)

where zi,c denotes the c-th unit of the latent vector z for xi.

2.2.2 Visualizations of Interpretation

In this section, we provide heatmap visualizations of AE predictions on Face manipulation

dataset created using Face2Face.

We have generated explanations for trained AE model using Eq.(2.7). This process will not

change any of our model parameters. These explanations can help in developing trust on our AI

system. For each prediction of AE model, corresponding explanations as shown in Fig. 2.5. On
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Figure 2.5: Examples of heatmaps generated by AE for face manipulation data. Top row contain
original images, second row contain fake images created using Face2face and last are the corre-
sponding explanations of AE model.

the other hand, we can notice that model predictions are not fully focused on foregery part, indeed

capturing background information, important artifacts in the dataset. For Face2Face generated

fake images, most of the explanations are focused on artifacts like eye brows, mouth as shown in

Fig. 2.5. Although these are indeed modified artifacts in most of the images, but not necessarily

true for all the images. For example, in the above figure, regions like eyes (in last column image),

smile (in 4th column image) remain unimportant for making the decision. Also, originally unmod-

ified regions like eyebrows (in column 3, last column images) are being important for the model

decision. Although model correctly predicted all these images as fake, explanations do not make

sense to humans for images in last three columns.

We have further stretched on this limitation in chapter 3 and shown the benefits of correcting

these explanations when building global models.
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3. USING EXPLANATIONS TO ENHANCE GENERALIZATION

Due to limitations in getting annotated data for every task in NLP/Vision, there has been lot of

interest in building a global/multi-task models in both language and vision communities. If that’s

the case, then generalization ability would be a key factor during model selection stage. Most

of the current deep learning methods employ pure data-driven training paradigms. Therefore, it’s

very likely for them to capture biases or certain spurious correlations which happen to be predictive

in the current dataset. For example, our fake image detection model chapter 2 have shown more

than 96% acccuracies on all our datasets. But most of their explanations in chapter 2 do not focus

on the correct forgery part rather captured important artifacts that are sufficient to make a correct

decision. However, accuracies can drop to 50% if that trained model is tested on related datasets

[55]. Recent work of [55] shown that using a model trained on Face2Face generated images to

evaluate on FaceSwap generated images have reduced the accuracy to almost 50% which is similar

to random guessing. This kind of overfitting is a serious issue if we plan to use such models on

real world data.

In this chapter, we restrict our focus to vision and propose a method to improve the general-

ization ability of our detection model AE developed in chapter 2. Later, we shown that our newly

proposed method makes predictions relying on correct evidence and also achieves state-of-the-art

generalization performance on all datasets with improved interpretability.

3.1 Locality-aware AutoEncoder (LAE)

The key idea of LAE is that the model should focus on correct regions and exploit reasonable

evidences rather than capture biases within dataset to make predictions. Due to the pure data-driven

training paradigm, the autoencoder AE developed in section chapter 2 is not guaranteed to focus on

the forgery region to make predictions. Instead the AE may capture certain spurious correlations

which happen to be predictive in the current dataset. This would lead to decreased generalization

performance on unseen data generated by alternativeforgery methods. In LAE (as illustrated in
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dcgan), we explicitly enforce the model to rely on the forgery region to make detection predictions,

by augmenting the model with local interpretability developed in chapter 2 and regularizing the

interpretation with extra supervision. Besides, we design an active leaning framework to select the

challenging candidates for regularizing LAE.

Augmenting Local Interpretability: This approach is same as the way we generated heatmaps

in sec 2.2.1. The goal here is to identify the contributions of each pixel in the input image towards

a specific model prediction [86]. The interpretation is illustrated in the format of heatmap (or at-

tention map). Inspired by the CNN local interpretation method Class Activation Map (CAM) [88],

we use global average pooling (GAP) layer as ingredient in the encoder, as illustrated in Fig. 2.1.

This enables the encoder to output attention map for each input. Let l-layer denotes the last con-

volutional layer of the encoder, and fl,k(xi) represents the activation matrix at k-channel of l-layer

for input image xi. Let also wck corresponds to the weight of k-channel towards the unit c of latent

vector z. The CAM attention map for unit c is defined as follows:

Mc(xi) =

dl∑
k=1

wck · fl,k(xi). (3.1)

Later we upsampleMc(xi) to the same dimension as the input image xi using bilinear interpolation.

Each entry withinMc(xi) directly indicates the importance of the value at that spatial grid of image

xi leading to the activation zc. The final attention map M̂(xi) for an input image xi is denoted as:

M̂(xi) =

dF∑
c=1

|zi,c| ·Mc(xi) =

dF∑
c=1

dl∑
k=1

|zi,c| · wck · fl,k(xi), (3.2)

where zi,c denotes the c-th unit of the latent vector z for xi.

Regularizing Local Interpretation: To enforce the network to focus on the correct forgery

region to make detection, a straightforward way is to use instance-level forgery ground truth to

regularize the local interpretation. Specifically the regularization is achieved by minimizing the

distance between individual interpretation map M̂(xi) and the extra supervision for all the NF
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Figure 3.1: Schematic of LAE training for generalizable forgery detection. Latent space and recon-
struction losses to learn effective representation; extra supervision to regularize heatmap to boost
generalization accuracy; active learning to reduce forgery masks annotation efforts. Note that the
main difference between AE and LAE is the attention loss in Eq. 3.3

forgery images. The attention loss is defined as follows:

Lattention(θe, x,G) =

NF∑
i=1

[M̂(xi)−G(xi)]2, (3.3)

where G(xi) denotes extra supervision, which is annotated ground truth for forgery. This ground

truth is given in the format of pixel-wise binary segmentation mask (see Fig. 3.1 for an illustrative

example). The attention loss is end-to-end trainable and can be utilized to update the model pa-

rameters. Ultimately the trained model could focus on the manipulated regions to make decisions.

However, getting annotated forgery masks is time consuming especially for big datasets. So

below we present an active learning framework to reduce the annotation efforts and later, shown

that regularizing AE with just less than 1% annotations can boost generalization accuracy if those

1% annotations are the candidates filtered by our active learning framework.

3.2 Active Learning to Regularize Local Interpretation

However, generating pixel-wise segmentation masks is extremely time consuming, especially

if we plan to label all NF forgery images within a dataset. We are interested in employing only a

small ratio of data with extra supervision. In this section, we propose an active learning framework
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to select challenging candidates for annotation. At each iteration, we select a a small ratio of

data has ground truth for the forgery region through the following two steps iteratively. We will

describe below how the active learning works in three steps. Channels concept ranking: Due to

the hierarchical structure of encoder, the last convolutional layer has larger possibility to capture

high-level semantic concepts. In our case, we have 512 channels at this layer. A desirable detector

could possess some channels which are responsive to specific and semantically meaningful natural

part(e.g., face, mouth, or eye), while other channels may capture concepts related to forgery, (e.g.,

warping artifacts, or contextual inconsistency). Nevertheless, in practice the detector may rely on

some spurious patterns which only exist in the training set to make forgery predictions. Those

samples leading to this concept are considered as the most challenging case, since they cause the

model to overfit to dataset specific bias and artifacts.

We intend to select out a subset of channels in the last convolutional layer deemed as most

influential to the forgery classification decision. The contribution of a channel towards a decision

is defined as the channel’s average activation scores for an image. Specifically, the contribution

of channel k towards image xi is denoted as: {ui,k}dck=1, where dc is the number of channels. We

learn a linear model based on the dc concepts to predict the possibility of image xi to be fake:

p(ui) =
exp(w·ui)

1+exp(w·ui) . The loss function is defined as:

Lw =
∑
i=1

[li · log(p(ui)) + (1− li) · log(1− p(ui))]. (3.4)

After this training, we select 10 highest components of the optimized linear weight vector w

and the corresponding channels are considered as more relevant to the forgery decision.

Active candidate selection: After locating the most possible channels corresponding to the

forgery prediction, we feed all the NF fake images to the LAE model. Those who have highest

activation value for these top 10 channels are deemed as the challenging case. The key idea for this

choice is that these highest activation images are mostly likely to contain easy patterns which can

be captured by the model to separate true and fake images, and which are hard to be generalized
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Algorithm 1: Locality-aware AutoEncoder (LAE).
Note: Steps 1 to 6 are same as our AE model

Input: Training data D = {(xi, li)}Ni=1.
1 Set hyperparameters α1, α2, β1, β2, β3, λ1, λ2, learning rate η, iteration number

max_iter1,max_iter2, epoch index t = 0;
2 Initialize autoencoder parameters θe, θd;
3 while t ≤ max_iter1 do
4 L1(θe, θd, x, l) = α1Lrec + α2Llatent;
5 θe,t+1, θd,t+1 = Adam(L1(θe, θd, x, l), η);
6 t = t+ 1;

7 Reduce the learning rate: η ← η
10
, t← 0;

8 while t ≤ max_iter2 do
9 Lw =

∑
i=1[li · log(p(ui)) + (1− li) · log(1− p(ui))];

10 Select out Nactive images as active candidates;
11 Request labeling pixel-wise masks {G(xi)}Nactive

i=1 ;
12 Lattention(θe, x,G) =

∑Nactive
i=1 [M̂(xi)−G(xi)]2;

13 L2(θe, x, l, G) = λ1Llatent + λ2Lattention;
14 θe,t+1 = Adam(L2(θe, x, l, G), η);
15 t = t+ 1; η ← η

10
if t % 3 = 0;

Output: LAE makes right predictions based on right reasons.

beyond training and hold-out test set. Thus we would like to request their pixel-wise forgery masks

and followed by regularizing them. Based on this criteria, we select out Nactive images as active

candidates. The candidates number Nactive is less than 1% of total images and is empirically shown

significant improvement on generalization accuracy. Comparing to the number of total training

samples which is larger than 10k, we have dramatically reduced the labelling efforts.

Local interpretation loss: Equipped with the active image candidates, we request labeling

those images for pixel-wise forgery masks {G(xi)}Nactive
i=1 . The attention loss is calculated using the

distance between interpretation map and annotated forgery mask for all Nactive candidate images,

which is further combined with latent space loss to update model parameters.

Lattention(θe, x,G) =

Nactive∑
i=1

[M̂(xi)−G(xi)]2,

L2(θe, x, l, G) = λ1Llatent + λ2Lattention

(3.5)

The overall learning algorithm of LAE is presented in Algorithm 1. We apply a two-stage opti-
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mization to derive a generalizable forgery detector. In the first stage, we use L1 loss in Eq.(2.2)

to learn an effective representation. In the second stage, we need the model to focus on forgery

regions to learn better representations. So we exploit the active learning framework to select out

challenging candidates to get their pixel-wise forgery masks. Then we reduce the learning rate one-

tenth every 3 epoches and fine-tune the parameters of the encoder using the L2 loss in Eq.(3.5).

After training the model and during the testing stage, we use latent space activation in Eq.(3) to

distinguish forgery from true ones. The test images are considered to be true if ai,T > ai,F , and

vice versa.

3.3 Experiments

We conduct experiments to answer the following research questions. (1) Does LAE promote

the generalization accuracy when processing unseen instances, especially for those produced by

alternative methods? (2) Does LAE provide better attention maps after augmenting extra super-

vision in the training process? (3) How do different components and hyperparameters affect the

performance of LAE?

Most of the experimental setup here is same as the one we used for detecting fake images

in chapter 2. The baselines methods, data, network architectures, implementation, preprocessing

details are exactly same as in chapter 2. The only difference is that we now use one of the two

datasets in each manipulation method (Face/Attribute/Inpainting) for training and other dataset for

evaluation. Modified datasets terminology is further illustarted below.

3.3.1 Datasets

The overall empirical evaluation is performed on three types of forgery detection tasks. For

each modification method(Face/Attribute/Inpainitng), we use two datasets: source dataset and tar-

get dataset. The source dataset is split into training, validation and test set, which are used to train

the model, tune the hyperparameters and test the model accuracy respectively. In contrast, target

dataset contains forgery images generated by an alternative method, and is only utilized to assess

the true generalization ability of the detection models. Corresponding dataset statistics are given
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Face Attribute Inpainting

Face2face FaceSwap StarGAN Glow G&L ContextAtten

Train 288000 - 41590 - 28000 -
Validation 2800 - 11952 - 6000 -
Test 2800 2800 5982 5982 6000 6000

Table 3.1: Dataset statistics for three types: face modification, attribute modification, and
inpainting-based modification. For each type, source dataset is followed by target dataset. Three
subsets of source dataset are used to train model, tune hyperparameter, and test model respectively.
In contrast, the target dataset is only used to test the model generalization accuracy.

in Tab. 3.1. All subsets of the three modification methods are balanced, where the ratio of true and

fake images are 1:1.

• Face Modification. This is a computer graphic based manipulation and same as the one

described in section 2.1.3. Here, dataset created using Face2face [114] is considered as the

source dataset, while FaceSwap [115] ones as target dataset. The process of creating these

datasets is clearly explained in 2.1.3.

• Attribute Modification. This is a deep learning (GAN) based manipulation and same as

the one decribed in section 2.1.3. Here, dataset created using StarGAN [117] is considered

as the source dataset, while Glow [118] ones as target dataset. The process of creating these

datasets is clearly explained in 2.1.3.

• Inpainting-based Modification. This is a deep learning (GAN) based manipulation and

same as the one decribed in section 2.1.3. Here, dataset created using GL [119] is consid-

ered as the source dataset, while ContextAtten [120] ones as target dataset. The process of

creating these datasets is clearly explained in 2.1.3.

3.3.2 Training Details

In this section, we introduce additional training details needed after first stage training, that

is after getting trained AE model as mentioned in section 2.1.3 for each of the source datasets

(Face2Face/StarGAN/GL).
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Face2face StarGAN G&L

Linear model 96.92 100.0 99.74

Table 3.2: Accuracy performance of linear model in active learning.

LAE: As mentioned in Algorithm 1, first six steps is nothing but training an AE model for

each of the source dataset. So, all variants of LAE use learning rate of 0.001 and batch size of 64.

For the first two hyperparameters (β1, β2) in Eq. 2.5, we have tuned values between 0 and 1 with

0.1 as interval and for the third (β3), we have tried {0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1.0}. We

freeze the parameters of decoder, discriminator and only finetune encoder network parameters in

the second learning stage of Algorithm 1. Note that comparator anyhow is pretrained version of

VGG on ImageNet so parameters are already freezed. Just to remind, target dataset only serves

testing purposes, and none of images is used to train model or tune hyperparameters. For second

learning stage, learning rate is reduced by a factor of 0.1 every 3 epochs. Number of finetuning

epochs depends on number of active fake images. For instance, 4 and 7 epochs work well for 100

and 500 active images respectively. During finetuning, we have tried values between 0 and 1 with

0.1 interval for λ1, λ2 in Eq. 3.5.

Linear model in active learning For linear model mentioned in Eq. 3.4, we use flattened output

of Encoder’s AvgPool2d layer as input features. Thus every image input to linear model would be

represented with 512 features. We train this linear model for 5 epochs with SGD optimizer and

0.001 as learning rate. The linear model accuracy on source test sets are reported in Tab. 3.2. This

indicates that the linear model could achieve similar performance with AE (or LAE without atten-

tion loss finetuning). Lastly, we finetune the encoder network on the active fake images provided

by linear model using a batch size of 1 and an Adam optimizer with initial learning rate = 0.0001.

For random fake active image selection (see Fig. 3.5), we collected random 50, 50, 100, 100, 100,

100 images sequentially for experiments with N={50, 100, 200, 300, 400, 500}. This is to avoid

the extra work of labeling additional attention maps.

Baselines: All baselines and their training details are same as in section 2.1.3 except that now
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Figure 3.2: Pixel-wise ground truth masks.

train them on source datasets and test on corresponding target datasets.

Pixel-wise masks: For finetuning we need these masks to regularize explanations generated

by AE (or LAE with no attention loss). Here, We illustrate some examples of Pixel-wise forgery

masks in Fig. 3.2. These masks are for source Face2face generated dataset under face manipulation

type of method. These pixel-wise masks give the detailed manipulated regions. With this masks,

we regularize the attention loss during LAE training.

3.3.3 Generalization Accuracy Evaluation

For three manipulation methods, detection accuracy on source test set and target test set are

given in Tab. 3.3. There are three interesting observations.

Generalization gap: There is a dramatic accuracy gap between source and target dataset. All

baseline methods have relatively high accuracy on source test set (most of them are over 90%),

while having random classification (around 50%) on target dataset. Usually the detection perfor-

mance of models is calculated using the prediction accuracy on the source test set.
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Face Attribute Inpainting

Models Face2face FaceSwap StarGAN Glow G&L ContextAtten

SuppressNet 93.86 50.92 99.98 49.94 99.08 49.98
ResidualNet 86.67 61.54 99.98 49.86 98.96 58.45
StatsNet 92.94 57.74 99.98 50.04 96.17 50.12
MesoInception 94.38 47.32 100.0 50.01 86.90 61.34
XceptionNet 98.02 49.94 100.0 49.67 99.86 50.16
ForensicTransfer 93.91 52.81 100.0 50.08 99.65 50.05

LAE_100 92.14 60.17 98.72 56.17 98.92 54.01
LAE_400 90.93 63.15 95.09 57.01 99.23 54.54

Table 3.3: Detection accuracy on hold-out test set of source dataset and generalization accuracy
on test set of target dataset.

Due to the independent and identically distributed (i.i.d.) training-test split of data, especially

in the presence of strong priors, detection model can succeed by simply recognize patterns that

happen to be predictive on instances over the source test set. This is problematic, and source test

set might fail to adequately measure how well detectors perform on previously unseen inputs [128].

As new types of forgery emerge quickly, it is recommended for detectors to report performance

beyond hold-out test set.

LAE reduces generalization gap: LAE reduces the generalization gap by using a small ratio

of extra supervision. LAE_100 and LAE_400 mean the number Nactive is set as 100 and 400

respectively. When using 400 annotations (less than 1% than total number of training data in

Tab. 3.1), we achieve state-of-the-art performance on face manipulation and attribute modification

tasks. LAE outperforms best baselines by 1.61% and 6.93% respectively on target dataset of two

tasks. Compared to 100 annotations, using 400 annotations has boosted the detection accuracy

on target set by 2.98%, 0.84%, and 0.53% respectively. This indicates that LAE has potential to

further promote generalization accuracy with more annotations. Without using any target domain

fake images in the training process. Considering that new types of forgery models emerge quickly,

it is crucial to guarantee the generalization performance of forensic methods.

LAE can be further improved: Despite the accuracy increase on target dataset, there is still
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generalization gaps. We assume that the source and target distributions should be similar for a

specific forgery task. But in practice the distribution difference could be very large. The accuracy

increase bound of LAE depends on the distribution difference between source and target domain.

Towards this end, using a small number of target dataset data to finetune model could possibly

further reduce the generalization gap, and this direction would be explored in our future research.
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Figure 3.3: Attention map comparison with baselines.
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3.3.4 Interpretability Evaluation

For all three forgery detection manipulations, we provide case studies to qualitatively illustrate

the effectiveness of the generated explanation using attention maps shown from Fig. 3.3.

Comparison with baselines: LAE attention maps are compared with two baselines: MesoIn-

ception and XceptionNet, where the heatmaps for baselines are generated using Grad-CAM [129].

The visualization indicates that LAE has truly grasped the intrinsic patterns encoded in the forgery

part, instead of picking up spurious and undesirable correlation during the training process. For the

first two rows (face manipulation), LAE could focus attention on eyes, noses, mouths and beards.

In contrast, two baselines mistakenly highlight some background region, e.g., collar and forehead.

For the third and fourth row, LAE correctly focuses on the inpainted eagle neck and the modified

hair region respectively. By comparison, baselines depends more on non-forgery part, e.g., wings

and eyes to make detection.

(a) Face2face (b) FaceSwap

Figure 3.4: Source and target difference via representative heatmaps.

Source and target difference: Through attention map visualizations, we observe the distribu-

tion difference of source and target dataset. For example in face manipulation detection task (see

Fig. 3.4), Face2face mainly changes lips and eye brows, while FaceSwap changes mostly nose

and eyes. This validates the distribution difference between source and target dataset and brings

challenges to generalization accuracy.
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3.3.5 Ablation and Hyperparameters Analysis

We utilize models trained on face modification data to conduct ablation and hyperparameter

analysis to study the contribution of different components in LAE.

LAE_rec LAE_latent LAE_latent_pixel LAE_latent_rec LAE

Face2face 50.39 95.82 96.57 96.92 92.14
FaceSwap 49.46 50.70 50.58 50.54 60.17

Table 3.4: Ablation analysis of LAE for face manipulation task.

Ablation analysis: We compare LAE with its ablations to identify the contributions of dif-

ferent components. Four ablations include: LAE_rec, trained only with reconstruction loss of

Eq.(2.5); LAE_latent, using only latent space loss in Eq.(2.3); LAE_latent_pixel, using both latent

space loss and pixel loss in Eq.(2.5); LAE_latent_rec, using latent space loss and whole recon-

struction loss. Note that no attention loss is used in the ablations. The comparison results are

given in Tab. 3.4. The results indicate that no significant differences are observed for the target

FaceSwap dataset. There are several key findings. Firstly, latent space loss is the most important

part, without which even source test set accuracy could drop to 50.39%. Secondly, all of pixel-

wise, perceptual, and adversarial losses could contribute to performance on source test set. At the

same time, no significant increase is observed on the target dataset with any combination of these

losses. Thirdly, attention loss based on candidates selected via active learning could significantly

increase generalization accuracy on target dataset (around 10%).

Hyperparameters analysis: We evaluate the effect of different hyperparameters towards model

performance by altering the values of β1, β2, β3 in Eq.(2.5) and λ1, λ2 in Eq.(3.5). Corresponding

results are reported in Tab. 3.5 (without attention loss and active learning) and Tab. 3.6 (with atten-

tion loss and active learning) respectively. The results indicate that increase of weights for pixel
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β1 β2 β3 Face2face FaceSwap

Alter pixel 1.0 1.0 0.01 96.92 50.54
0.5 1.0 0.01 96.01 50.86
0.1 1.0 0.01 95.55 50.86

Alter perceptual 1.0 1.0 0.01 96.92 50.54
1.0 0.5 0.01 96.74 50.82
1.0 0.1 0.01 95.84 50.50

Alter adversarial 1.0 1.0 0.1 54.16 49.92
1.0 1.0 0.05 58.28 50.01
1.0 1.0 0.01 96.92 50.54

Table 3.5: Hyperparameter analysis for β1, β2, β3.

λ1 λ2 Face2face FaceSwap

Fix λ1=1.0 1.0 1.0 95.96 55.12
1.0 0.5 96.02 52.54
1.0 0.1 96.08 50.02

Fix λ1=0.5 0.5 1.0 92.14 60.17
0.5 0.5 94.48 56.31
0.5 0.1 95.94 51.02

Fix λ1=0.1 0.1 1.0 91.07 58.17
0.1 0.5 92.67 53.20
0.1 0.1 95.02 50.94

Table 3.6: Hyperparameter analysis for λ1, λ2.

loss and perceptual loss could enhance model performance on source test set. In contrast, a small

weight for adversarial loss is beneficial for accuracy improvement. As shown in Tab. 3.5, fixing

λ1 and reducing λ2 from 1.0 to 0.5 then to 0.1 have significantly decreased the accuracy on target

dataset. This confirms the significance of attention loss in improving generalization accuracy.

Forgery ground truth number analysis: We study the effect of attention regularization by

altering the number of challenging candidates(Nactive) selected by active learning (see Fig. 3.5).
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Figure 3.5: Random and active learning selection comparison. The x axis denotes annotation
number which has pixel-wise masks.

There are two interesting observations. First, increasing the number of annotations typically im-

proves model generalization, indicating the benefit of extra supervision. Second, using forgery

masks for less than 0.2% of training data has increased accuracy by 10%. Considering the annota-

tion effort of pixel-wise masks, this advantage of requiring small ratio of forgery mask annotations

is significant. Some example masks are shown in Fig. 3.2.

Random vs. active learning: For challenging candidate selection, we have compared ran-

dom selection with active learning based selection. The generalization result on target dataset

(FaceSwap) is illustrated in Fig. 3.5. There is a dramatic gap between random selection and active

learning. For instance, active learning could increase target dataset accuracy by 9.81% when the

annotation number is 100 (< 0.2% of training data). This indicates that active learning is effective

in terms of selecting challenging candidates.

3.4 More Interpretation Visualizations

In this section, we provide more heatmap visualizations to better understand the effectiveness

of attention loss finetuning and active learning.
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Figure 3.6: Attention map comparison with baselines.

Visualization comparisons: We provide heatmap visualization in Fig. 3.6. For three tasks,

we compare LAE heatmaps with two baselines. These visualizations validate that LAE makes

detection based on right and justified reasons.

Effectiveness of attention loss: To qualitatively evaluate the effectiveness of attention loss

and active learning, we provide ablation visualizations in Fig. 3.7. Specifically, we compare

LAE_no_atten (without using attention loss and active learning) and LAE. Before using atten-

tion loss, we can observe that the model does not accurately rely on the forgery region to make

decisions. After finetuning with attention loss with a small ratio of samples provided by active

learning, the model learns to concentrate on the forgery part to make detection.
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Figure 3.7: Effectiveness of attention loss.

3.5 Discussion

From all these experiments, it’s clear that explanations generated from a task can be helpful in

further improving the learning of that task. In our case, Locality-aware AutoEncoder (LAE) has a

higher probability to look at forgery region rather than unwanted bias and artifacts to make predic-

tions. Empirical analysis further demonstrates that LAE has superior generalization performance

on data generated by alternative forgery methods that are related to the source forgery method.

This boost in generalization comes by making predictions relying on correct forgery evidence.

In addition, our proposed active learning framework also found to be extremely useful in sig-
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nificantly reducing the efforts to get forgery masks (less than 1% of training data).

However, due to the inherent difficulty of the detection problem, we still could observe gen-

eralization gap between source dataset and target dataset that is generated by alternative methods.

Although they are related and belong to the same task/modification method, there still remains

slight distribution differences between them. Using transfer learning and other techniques to fur-

ther reduce this generalization gap could be explored in our future research.
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4. EXPLAINING LANGUAGE BASED FAKE NEWS

In this section, we first build fake text detection models mostly with deep learning methods and

later explain their decisions. For a given news statement, we want our models to correctly predict

if this news statement is real or fake and also provide the explanation why the decision is made.

Overall, we aim to make neural networks for NLP use cases more interpretable without sacrificing

much on accuracy.

4.1 Detecting Fake Text

Fake text detection is one of text classification tasks that takes a sentence or paragraph as

input, and determines if it is real or fake. There is no state-of-the-art dataset for this task but many

of the available datasets are crawled from either Politifact [5] or Snopes [1] which are basically

fact-checking websites where a group of journalists labels a news trending on web as either true or

fake. More info about datasets is illustrated in section 4.1.2.

4.1.1 Methodology

As our main focus is on explaining fake text detection, we came up with two traditional deep

learning methods used for text classification - LSTM-based, CNN-based and one random forest

based shallow model which uses predefined linguistic features in the input layer. Below we illus-

trate them in further detail.

ATTN: This is a CNN, attention based architecture which takes a sentence as input and outputs

softmax scores for two labels. This is designed to analyze text simply from semantic perspective.

For better semantic analysis, we employ several techniques, including pre-trained word embed-

dings, convolutional neural network, and self-attention mechanism. Self-attention is used because

it can capture global relationships between different words efficiently [130]. Overall architecture

is straightforward and contains input embedding layer followed by several layers of 1D convolu-

tionals, self-attention layers, maxpooling and lastly a softmax layer.

MIMIC Teacher: Mimic learning is also called knowledge distillation approach which ap-
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proximates a teacher model (usually deep network) with a student model(usually shallow network)

[105]. More info about MIMIC student is provided in section 4.1.2. Here let’s restrict our focus

to teacher network which takes a news sentence and it’s attributes like speaker, subject of the news

etc. and outputs softmax scores for two labels. Architecture includes an embedding layer followed

by CNN with maxpool to capture sentence representation, parallel Bi-LSTM modules to extract

features from rest of the attributes [69]. All features are concatenated and passed through fully

connected layer followed by a softmax layer.

PERT: It is designed for news statement analysis from linguistic features perspective. Archi-

tecture inludes a feature engineering step followed by a XGBoost classifier which is an optimized

gradient boosting algorithm that works by parallel processing, tree-pruning and regularization. For

effective feature engineering step, we employ eight linguistic features, including Adjective ratio,

Noun ratio, Verb ratio, Preposition ratio, Sentiment score, Normalized text length, Whether con-

tains the mark "?", Whether contains the mark "!". For each news sentence input, we extract its

linguistic features and train an XGBoost classifier using these features. The trained XGBoost is

then used to make predictions for new items.

4.1.2 Experiments

In this section, we introduce the overall experimental setups including datasets, baselines, net-

works architecture and training details.

Dataset: Many of the datasets related to deceptive customer reviews detection are crowd-

sourced datasets[131, 132]. However, these are not suitable for fake news detection as the positive

training data in them are collected from a simulated environment and also fake news on social

media are generally much shorter compared to customer reviews. Later, there has been efforts

[133, 134] to construct fake news dataset from fact checking websites [135, 5], but however they

are small in size (less than 350 samples). Recently, LIAR dataset [69] with 12.8K samples was

introduced to facilitate the development of deep learning methods for this task. This dataset is

crawled from Politifact website [5], which covers a widerange of political topics with fine-grained

labels. This is a very good dataset for detection task however this data do not includes some impor-
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Dataset Train Val Test

Politifact 4083 510 511

Table 4.1: Fake news detection dataset statistics crawled from Politifact [5]. All splits have 1:1
true and false labeled examples.

tant attributes that might make detection as fake. For example, whom the speaker is targetting in

the news, what is the topic/subject of the news (taxes, crime etc.) and more importantly this dataset

contains more than 5 years old news which are not super useful to our use case and can also cause

problems during human studies (lack of awareness about that old topic etc.). So all these reasons

motivated us to create another dataset using the same website but this time data is collected with

more attributes and also most recent ones. Our crawled dataset is further illustarted below.

Politifact The news data we crawled comes from a political fact-checking website, named Poli-

tiFact [5]. It is a Pulitzer prize-winning website containing tons of political news with diversified

categories. The reasons why we employ this data source are in four folds. First, this website

was used by most of the previously released datasets for fake news. Second, PolitiFact provides

professional justification and fine-grained labels for all news items, where the core principles in

independence, transparency and fairness guarantee its high credibility among the public. Third,

the news collected by PolitiFact have various attribute information, which directly meets our data

requirement for analysis. Fourth, raw data in PolitiFact has an API 1, and it is convenient to obtain

the customized dataset.

Data Preprocessing When crawling and processing the data, we only keep the attributes which

are highly related to news fakeness. Specifically, the maintained attributes include Subject, Con-

text, Speaker, Targeting and Statement, although some news items may not have all five attributes.

Besides, to effectively measure the fakeness of news and train the system, we transform the orig-

inal multi-class data to binary data where each news item is labelled as either True or False2. In

particular, labels with Mostly True, Half True, No Flip, Half Flip are switched to the positive label

1http://static.politifact.com.s3.amazonaws.com/api/v2apidoc.html
2A news item labelled as False is regarded as the fake news.
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Instance Label
Statement: It is unusual for a White House official like former National Security Adviser Susan Rice to make
unmasking requests.

Speaker: Tom Cotton

Context: an interview on CNN

Targetting: Susan Rice

Subject: Foreign Policy, Homeland Security, Privacy

False

Statement: Says Ted Cruz distributed the ad showing a nude Melania Trump on a rug.

Speaker: Donald Trump

Context: an interview on CNN

Targetting: Ted Cruz

Subject: Campaign Finance, Candidate Biography, Elections, Legal Issues, Negative Campaigning, Pop Culture.

False

Statement: Obama’s secretary of energy, Dr. Steven Chu, ’has said publicly he wants us to pay European levels
(for gasoline), and that would be USD9 or USD10 a gallon.’

Speaker: Newt Gingrich

Context: an appearance on "Fox News Sunday"

Targetting: Steven Chu

Subject: Gas Prices

True

Table 4.2: Few examples from our dataset crawled from Politifact [5].
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True, and labels with Mostly False, Pants On Fire, Full Flop are switched to the negative label

False. Instead of using multiple discrete labels, we use the final prediction scores to indicate the

level of fakeness, where higher scores correspond to higher fakeness level. Overall data statis-

tics are shown in are shown in Tab. 4.1. All splits are balanced in terms of true and false labeled

examples. Some examples from the dataset are shown in Tab. 4.2.

Baselines: Although our main focus is not detection accuracy, we still want to compare our

above defined three models with few baselines so that we are not compromising too much on

accuracy for the sake for better explainability. All baselines operate only on news statement and

do not use any other attribute information in their input (same as ATTN, PERT).

We have considered five baselines: Naive Bayes (NB), a regularized logistic regression (LR),

SVM [136], Bi-LSTM [137, 138], CNN [139]. For NB, LR and SVM, we have used bag-of-words

representation with two type of input representations - count based, TF-IDF which are further

illustrated in the training details section along with hyper parameter, word embeddings info of

deep learning models.

Training details: For fair comparison, all models are trained on the same data and tested on

the same test set. For deep learning models, we have used early stopping strategy using validation

loss as stopping criteria with patience set to 5 and for a maximum of 20 epochs. For non-deep

learning models, we used grid search to tune the hyperparameters and later reported results on the

same test set as being used by deep learning methods. For training of deep learning models, we

use the Adam optimizer [127] with a learning rate of 0.001, batchsize of 64 and default values

for the moments β1 = 0.9, β2 = 0.999 and epsilon set to 10−8. Model specific training details are

illustrated below. On the other hand, Stochastic gradient descent is used for non-deep learning

model learning process.

• ATTN. We employ pretrained 300-dimensional word2vec embeddings from Google News

[140] and thus each vector representation has a dimension of 300 (i.e. E= 300 in Fig. 4.1).

Each spatial location learns a 512-dimensional vector representation for each word (i.e. D=

512 in Fig. 4.1). For 1D convolutional part, kernel size is set to 1. Used Tensorflow for
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implementation.

• MIMIC Teacher. We use Glove Wikipedia 6B word embeddings [141] and BiLSTM with

128 hidden units. Experimented with both CNN and LSTM layers for statement part of the

input and found that CNN with (2,3,4) filter sizes, 128 filters give better results. For rest of

the attributes, we use BiLSTM module. Used Keras for implementation.

• PERT. We have used NLTK python module for feature engineering part to get our required

8 linguistic features. Used grid search to tune two important hyperparameters - max depth

of the trees, eta (which is analogous to learning rate). Used Keras for implementation.

Baselines: For Naive Bayes (NB), LR, SVM, we use the bag-of-words (BoW) input repre-

sentation by selecting 1000 most frequent words from the training set. For each model, we

ran two set of experiments - one using counts, other using TF-IDF scores. In the results,

we reported best of the two. In count based representation, we use counts of each word as

the features. For TF-IDF (term-frequency inverse-document-frequency) version, we use the

counts as the term-frequency. The inverse document frequency is the logarithm of the divi-

sion between total number of samples and number of samples with the word in the training

set. The features are normalized by dividing the largest feature value. For BiLSTM model,

experimented with 64, 128 hidden units and found 128 gave better results. For CNN, filter

sizes of (2,3,4) with 128 filters gave better results.

Accuracy Evaluation: All models are evaluated on the same test set and accuracy is used as

metric to compare them. Tab. 4.3 shows the comparison between our three models and several

baselines. Results highlight that usage of additional attribute information in the input can give you

better performance as MIMIC teacher outperforms all other models which indeed just use news

statement. Poor performance of PERT can be because of using only 8 linguistic features to make

prediction. However, our method is flexible to incorporate additional fetaures.

For NB, LR, SVM, we also tried increasing the number of frequent words for BoW represen-

tation from 1000 to 5000 and haven’t found much significant improvements. Although ATT has
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Models Test set accuracy

Naive Bayes 56.87 %
LR 54.67 %
SVM 57.92 %
Bi-LSTM 66.34 %
CNN 67.96 %

ATT 67.3 %
MIMIC Teacher 68.98 %
PERT 53.2 %

Table 4.3: Detection accuracy of several models for our Politifact dataset.

less accuracy than traditional CNN architecture, but it has a transparent architecture which can self

explain its predictions using word or phrase importance which is further illustrated in section 4.2.1.

The better performance of CNN over Bi-LSTM on this dataset might be because of short sentences

and identifying some simple features like angry terms, sadness, abuses, named entities that trig-

ger the sentiment might be more useful for prediction rather than learning long-range semantic

dependencies with RNNs.

By comparing our three models with baselines, we can conclude that we are not sacrifising

much on accuracy (except PERT model) in the process on building more explainable models.

Although traditional CNN performs better than some of our methods (ATT, PERT), but that is still

a black-box model unline ATT, PERT. Details in this regard are further illustrated in section 4.2.1.

4.2 Explaining the Detections

In this section, we provide three different types of explanations for the above detection task -

word/phrase importance, attribute importance, linguistic feature importance. We will explain the

same detection models as in section 4.1 using post-hoc (ex: mimic learning, perturbation) and

intrinsic (ex: attention) type explanation methods.
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Figure 4.1: Generating word/phrase importance from ATTN framework.

4.2.1 Word/Phrase Importance

These could be generated from our ATTN model in section 4.1.1. It is indeed a self-explanatory

model that incorporate explainability directly into its structure because of attention layers. Thus

it falls under intrinsic explainability category. It is called self-explanatory for following reasons:

first, it will generate a weight matrix based on its input only so that the interpretation results are

input-dependent. Second, the output is a weighted sum of input vectors based on the whole input,

where the weighted matrix is generated using the input itself. In this way, when we try to answer

which spatial locations in the previous layer contribute most to a certain location of the next layer,

all spatial locations are considered since the receptive field of the self-attention layer is the whole

input. It is different from convolutional layers where the receptive field is based on the kernel

size, which is much smaller than the input length in most case. After the self-attention layers, a

max-pooling layer and a final fully-connected layer are employed to produce a final prediction.

After prediction, we perform a backtracking from the output prediction to the input sentence to

investigate which input words contribute most to the output decision as shown in Fig. 4.1. To show

how our model is interpretable, let’s walk through an example. Assume we have a sentence with
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5 words. after the embedding layer and 1D convolutional layers, the size becomes (E, 5). Then

it passes through attention layers and the size of the matrix becomes (6, 5) where we assume the

dimension of self-attention model is 6. Next, we obtain a (6, 1) vector using max-pooling which

only keeps the maximum value for each feature. Finally, the fully-connected layer with softmax

activation leads to the prediction (lets say class is either 1 or 2).

If the prediction of this input sentence is class 2, we can check the weights of the fully-

connected layer which connect with location 2 of output and find the k highest weights (shown

in red, and here k=2). Then we know the second row and sixth row contribute most to the final pre-

diction. In these two rows, we can find the max value in each row and the corresponding columns

(column 1 and 4 in this example), which means the features at these two spatial locations con-

tribute most. Note that each row in Fig 4.1 corresponds to one type of feature while each column

represents a spatial location. Next, we can check the weight matrix generated by attention layer to

see which columns in the previous layer contribute most to these two columns. Repeat such back-

tracking to the output of 1D convolutional layers, we know which columns of the output of 1D

convolutional layers contribute most to the final decision. Since we set the kernel size and stride

equal to 1, each column of output of convolutional layers corresponds to one input word. Then we

know how different words affect the final decision. Similarly, if we wish to study two-grams or

three-grams, we can simply set the kernel size to two and three, respectively.

Lastly, we have shown an example for this type of explanation in Fig. 4.2 which is generated

from our trained ATTN model. We can see that model captured those important nouns (obama,

russia) and verbs (says, invited) in the sentence for its prediction.

4.2.2 Attribute Importance

For fake images, just looking at the image we can guess possible modified artifacts in the im-

age. Unlike fake images, fake part in the language based (text) news is difficult to understand just

from news statement. There is additional domain knowledge involved to do proper fact checking.

Some examples of this knowledge can be source of the news, context of the news (a twitter post,

a tv interview etc.), speaker of the statement etc. Fortunately, our dataset has all that additional at-
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Figure 4.2: Example explanation from ATTN model for a given news statement. one-gram im-
portances in the top and two-gram in the middle and three-gram importances in the bottom of the
figure.

tributes and we also have trained a MIMIC teacher model using those attributes as input. So in this

section, we will explain the predictions of that teacher model in the form of attribute importance

for fake news classification task.

MIMIC Student: We use knowledge distillation approach (also called mimic learning) to ap-

proximate the teacher model (deep architecture) trained in section 4.1.2 with a student model (ran-

dom forest or more specifically XGBOOST). Basically, the overall idea of MIMIC framework is to

mimic the performance of deep neural networks with the shallow models(generally tree ensemble

models) so that we can keep the good performance from neural networks and good explainabil-

ity from shallow modles. Later, use the student model to understand the attribute importance in

classifying a news as True/Fake. With this MIMIC framework, we can achieve both model-level

and instance-level interpretations, and further obtain relevant supporting examples from training

data. By model-level, we mean feature importance over all trained examples. On the other hand,

instance-level just means feature importance for a specific instance prediction. The structure of

MIMIC is illustrated in Figure 4.3.

As we have already trained a MIMIC teacher model, we now obtain the soft labels from the

teacher model and further use them to train XGBOOST, a shallow and interpretable method. The

overall architecture of this framework is shown in Fig. 4.3. We use the same training setup as

described in section 4.1.2. It’s final performance is similar to the teacher model as indicated in
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Table. Importance hyperparameters for student model are number of decision trees and in our case

80 trees gave best results on validation set. Also note that, during inference, we do not use teacher

model anymore, input is directly passed through student model.

Statement Speaker Targeting Subject Context

Embedding

Convolution

Max-Pooling

Bi-LSTM Bi-LSTM

Fully Connected

SoftMax

XGBoost

Final Prediction

Soft Labels

Student Model
(Shallow)

Teacher Model
(Deep)

Embedding

InstanceModel

Figure 4.3: The structure of MIMIC framework.

Explanations from MIMIC: As we want to interpret fake news from the attribute perspective,

in our scenario, each news item contains 5 different attributes, i.e. Subject, Speaker, Context,

Targeting and Statement. Using MIMIC framework, we want to quantify the relevant contributions

of these four attributes. For example, some of news items can be fake due to their Subject attribute,

and some of news can be true due to their Speaker or Statement attribute. As during inference,

input is directly passed through student model, we can collect attribute importance of fake news

input by analysing relative node importance in decision trees. Thus, it’s straightforward to generate

explanations from a forest based model for each instance prediction [142, 143, 144].
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Attribute contribution scores These contribution scores for each input news instance are ob-

tained by finding the relative node importance of each attribute in the decision trees. For that we

employed some simple heuristics like the number of times an attribute is used to make a decision

at intermediate nodes across all trees, the average gain of the attribute when it is used in trees.

Finally, we normalize all five attribute scores to make them sum to 1.0.

Activated path with attribute nodes As trained XGBOOST has many decision trees, only few

paths in them would be activated during inference stage. We collect those paths and sort them based

on their leaf node scores. For example Fig. 4.4b shown an activated path for the input instance

shown in Fig. 4.4a. Although these paths are a bit complex, we could still get some idea of what

happened inside the student model, like in this example, we can see news context is involved in

initial analysis followed by reviewing actual statement content and at the end some speaker-based

decision making nodes. Supporting examples For each instance prediction, we employed a rule

based approach to get five other examples from the training data whose attribute importance order

is same as the current instance attribute score order, same prediction label as the current one, with

some common words in top two attribute input fields. However, this looks very naive and could be

improved with other Bayesian approaches like [145, 146], which could be a promising work for

future.

4.2.3 Linguistic Feature Importance

In this section, we would like to explain a fake news detection using interpretable linguistic

features. Hence we utilize the trained PERT model in section 4.1.1 and use perturbation-based

method on it to provide the required explanations. As input to our model is eight linguistic fea-

tures (after feature engineering step), we utilize a perturbation based explanation method to get

importance of each of these eight features.

The idea of perturbation method to get feature importance is that feature importance can be

measured by observing how much the score (such as accuracy, etc.) decreases when a feature is

not available. To this end, we can remove a feature from the dataset, and then re-train the clas-

sifier and check the changes of score. Since re-training is computationally expensive, we replace
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(a) Input to the student model.

(b) Activated path of a decision tree in student’s forest.

Figure 4.4: Example explanation from MIMIC framework.

the feature value with random noise, drawn from the same distribution as the original one, in-

stead of removing. The computed prediction difference is utilized as the significance score for the

corresponding feature. All this procedure is illustrated in Fig. 4.5.

An example prediction of PERT model is shown in Fig. 4.6 which indicate that for that instance,

model mainly focuses on nouns, verbs, prepostions in the sentence to make its decision.
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Figure 4.5: Explanations from PERT model using perturbation.

Figure 4.6: PERT explanation for the news "The senate seat won in a special election by a democrat
had been held for more than thirty years by republicans." Blue bars indicate the contribution score
of each linguistic feature and bars pointing to right indicate that they are positively contributed for
true class prediction and pointing to left indicate positive contribution for fake prediction. PERT
confidence scores for this instance are 0.58 for true and 0.42 for fake.

67



5. INTERACTIVE SYSTEM TO EXPLAIN FAKE NEWS

We designed an explainable fake news detector, named XFake [147], to help end-users identify

the news credibility. This is implemented as a web application where users can query a news

and get instant prediction along with an explanation to help them understand why the system

thinks so. Explanations could be from multiple perspectives like attribute importance, word/phrase

significance, linguistic features as well as relevant supporting examples.

5.1 System Design

MIMIC

ATTN

PERT

Predictions

XFake System

Verified News Set

Explanations

Supporting 
Examples

V
isu

alizatio
n

Figure 5.1: The architecture of XFake system.

Here we given an overview of different components of the system to better understand input

and output. We utilize the detection/explanation methods (MIMIC, ATTN and PERT) developed

for language based fake news in section 4.1.1. Visualization and API call details are explained in

detail under section 5.2 and 5.3.

Input: We can incorporate multiple information about the news like statement (ex: He is

mathematically out of winning the race), speaker (ex: Donald Trump), subject (ex: Elections),
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context (ex: a tweet), targetting (Ted Cruz). It is not mandatory to provide all five attributes but we

expect users to provide statement attribute.

Output: There are two possible output types for each instance input. 1) Final prediction of the

news or classification result, 2) Corresponding explanations for that prediction.

• Predictions. This is the classification output result with “True” and “Fake” labels. Clas-

sification score for each label is also included as shown in Fig. 5.2. As we get prediction

output from three methods, we take weighted summation of all three prediction scores to get

an unified score indicating the probability for the given input to be a fake news i.e the higher

the prediction score, more likely that it is a fake news. Here weights are assigned based on

performance of individual models on test set described in 4.1.2 which came out to be 0.36,

0.36, 0.28 respectively for MIMIC, ATTN and PERT.

• Explanations. MIMIC, ATTN and PERT analyze news items from different perspectives.

Details about how each of these methods generate explanation are provided in section 4.2.

Overall, we would have 4 types of explanations as described below.

Attribute Analysis: This is obtained from MIMIC framework which basically tells the impor-

tance of attribute in the form of a score between 0 and 1 for each attribute. 1 indicate highly

important.

Statement Analysis: These come from ATT, PERT model based on just analyzing input state-

ment from semantic and syntactic perspectives respectively. Thus we output importance for

1-grams, 2-grams, 3-grams in the sentence. Also, we output linguistic feature importance

like (Noun ratio, Verbs ratio, length of sentence etc.) in the form scores between -1 and 1

for each feature. positive values indicate it’s contribution is aligned with the final prediction

(True/Fake). High score indicate it’s important.

Supporting Examples: This gives top five new articles related to the current input and helps

the user to understand the decision making by providing evidence of similar news. We assign

different similarity scores for different supporting examples based on the matching extent
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between the input and support. Supporting examples with higher scores would be considered

more informative in delivering explanation. These examples are generated from MIMIC,

ATTN by retrieving samples from original dataset using the current prediction explanations

(i.e. important attributes or important words/phrases). More details about how they are being

generated are explained in section 4.2. Showing these samples which are highly similar (in

terms of prediction label, common words, attribute and n-grams score) to the input news

would be helpful for users to understand the working patterns of XFake.

Decision paths: We show the important trees in the pre-trained MIMIC model and also

activated paths in them for the current instance. These activated paths in the decision tree

can tell us a naive idea of attribute order used for the prediction. End-user is able to review

all tree models used in the system. We show (red path) the decision paths that help user

to understand which nodes activations resulted in the decision making. Fig. 5.3 shows our

interactive tree, activated path visualization. More about interactive visualizations is further

explored in section 5.2.

We will explore components used on client and server side in the next sections.

5.2 Client/Front-end

This development is done using HTML, CSS, JavaScript. We visualize both prediction and

explanations by D3 JavaScript. Visualization mainly lies in three aspects. First, for numerical

values, such as prediction score and attribute significance, we visualize them by histograms, which

straightforwardly indicate the results and influences. Second, to enhance the explanability for

word/phrase attribution, we visualize the outputs by highlighting important words/phrases with

heatmaps, where the darkness positively relates to the importance of word/phrase. Third, for better

model explanability, the ensemble trees are visualized with interactive diagrams which are capable

of showing both overall structure and specific activated paths (depending on the input). Through

those visualization schemes, users could have a better sense towards XFake about why certain

news are classified as fake or true.
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Figure 5.2: Prediction and explanation from XFake.

Figure 5.3: Supporting examples and ensemble trees from XFake.

Considering the fake news identification scenario, we show a specific case demonstration of

XFake as follows.

Demonstration: As shown in Fig. 5.2, users can input news into the text boxes. We also

provide a button "Random News" to help users explore the system, which is used to retrieve random

items from our test set. Similarly, buttons "Fake Examples" and "True Examples" are also provided

to help quickly access some representative fake and true news. After clicking "Submit", users

would obtain all the outputs including both prediction and explanation in a few seconds. As for
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the prediction of the example in Figure 5, we get the score 0.76, which means that the given news

has the probability 76% to be fake. Regarding to the explanation, we can obtain it from both

attribute and statement analysis. Aided by MIMIC, for this example, we know that "Statement"

plays the most important role compared with others. Through ATTN, we can easily check those

highlighted words, such as "invited" and "Russia", with different darkness, which would also show

the contribution scores when mouse is hovering around. PERT gives users a clear view about which

linguistic features contribute to fake and which to true. In the example, we observe that features

"Propn Ratio", "Adjective Ratio" and "Noun Ratio" mainly contribute this news to be fake.

User Interface further shows supporting examples and visualized trees for users to better un-

derstand the system. As shown in Figure 6, we give two supporting news for instance, where one

is retrieved based on the important attributes (Context & Statement) from MIMIC and the other

is obtained by matching significant word ("Obama") from ATTN. For the support extraction with

MIMIC, we also attach a similarity score, indicating how much attribute information it overlaps

with the input one. Besides, 80 decision trees are visualized with interactive diagrams and high-

light the activated path of each tree regarding to the input. In Fig. 5.3, we only show one decision

tree for example. We can see that each decision tree can be expanded or compressed flexibly,

which allows users to track the decision process closely. Given a certain news, each decision tree

has only one activated path, corresponding to one specific decision attached at the end of the path

with relevant contribution score. Those visualized trees largely enhance the model explainability.

5.3 Server/Back-end

This development is done using FLASK which is a python based web-framework. We use

JSON payloads for API calls between client and server. Client request is first validated to check

input is in the required format. Then typical preprocessing is done on the input to remove non-

ASCII characters, converting to lower case etc. Calls are made to individual models (MIMIC,

ATTN and PERT) to get their prediction and explanations. Based on model outputs, additional

post processing is done to normalize the outputs and validate word, position info given by ATT

model for attention scores of n-grams importance. Finaly, all these outputs are sent to the client.
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5.4 Effectiveness

To demonstrate the effectiveness of XFAKE [147] in real-world or in other words to understand

how different amounts of explanation provided by XFAKE would affect user performance and un-

derstanding in assessing the veracity of news statements, we conduct relevant human evaluations

by Amazon Mechanical Turk (AMT), with 147 valid testing users in total covering diversified gen-

der, age and education level. Specifically, this experiment was designed to address the following

primary research questions:

• How does the amount of explanation information affect human performance in assessing the

veracity of news statements?

• How does the amount of explanation information affect user understanding of our models?

Thus, we designed an experiment to test different types and levels of explanation detail in order

to evaluate the effects on participant performance and model understanding. The involved user

tasks include Fact Check and Prediction Guess, where the first one is to test the usefulness of

the generated explanation and the second one is to indicate the users understanding towards the

system. The evaluation metrics are accuracy and time for user prediction.

Overall, the human study results showed a clear trade-off between the speed and accuracy regarding

to generated explanations. On one hand, explanation does help users better understand and predict

system behavior. On the other hand, explanation would take users more time to review and interpret

detection results for benefits.

5.5 Limitation

Current system is limited to the language based (text) inputs and can be extended to vision to

make it support multi-model news data which could be a promising extension of the system. Also,

current system is limited to political news data as our models are trained on dataset crawled from

Politifact website [5]. Thus, extending this system to support multi-source data (i.e not limited

to political news), is already the work under progress where we developed additional explanation
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methodologies for the models trained on new data crawled from Snopes [1] which has news from

multiple domains like - Religion, Education, Sports etc.
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6. DISCUSSION AND FUTURE WORK

The majority of this thesis has focused on developing separate models for explainable detection

of language and vision based fake news that can enhance user trust on our system. Also another

major innovation in this thesis was showing the use of explanations in model refinement process

by taking advantage of an active learning approach which actually made this refinement feasible.

I would like to conclude this thesis with the future direction. My future work involves human-

in-the-loop approaches for improving the model interpretations dynamically for multi-modal data.

My research will progress along the following paths.

6.1 Multi-Source Fake News Detection

Currently for language based fake news, we only use single source from Politifact.com for

detection. To further enhance the detection accuracy and reasonable interpretations, we would

like to do the fact-checking from multiple news sources so I plan to incorporate multiple sources

for fake news detection. This would make detection results be more solid, and let interpretations

become more convincing. I have begun work in this direction by creating a dataset that contains

relavent articles (crawled from Google search results) for each news claim of Snopes dataset. I

will further model the explainable detection methods such that they also use article source, article

content information in addition to the claim content. Thus we can explain the prediction from

multiple perspectives like importance of article source, article content, claim content, claim source.

6.2 Multi-Modal Fake News Detection

At present, the news data we considered only involves either text or images. However, we can

find many news on web with both image and text. Hence, I plan to incorporate multiple modalities

for future detection system. However, due to lack of such datasets, I will creating a dataset using

Twitter API and later focus on developing explainable deep learning methods that take cues from

both image and corresponding text to make a decision.
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6.3 Active-Source Fake News Detection

All our current detection methods focus exclusively on the algorithms and not on human-

computer interaction part. This can have impact on the machine performance when tackling real

world data. So I would like to explore human-in-the-loop machine learning practices where hu-

mans act as active source to optimize the entire learning process, including techniques for annota-

tion. As it’s costly to get human input on every data point, and so we need strategies for deciding

which data points are the most important for human review. I have begun work in this direction

by proposing an active learning criteria (discussed in chapter 3) to select important candidates that

require human annotation. Although that work is limited to vision based fake news but i would like

to use similar approaches for language as well. Also, i would like to enable human involvement

with the right interfaces as shown in Fig. 6.1 which can expedite the efficient labeling of tricky or

novel data that a machine can’t process, reducing the potential for data-related errors [148].

Figure 6.1: Human-in-the-loop pipeline for refining model interpretations dynamically.
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