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ABSTRACT

Mean-risk stochastic linear programming provides a framework for controlling cost variability

in problems involving sequential decision making under uncertainty. It goes beyond the classi-

cal expected value framework by including risk measures in the objective function and aims at

controlling cost variability in the solution. This allows for modeling risk averseness in variety

of applications such as long-term financial planning, scheduling of power systems, supply chain

management and portfolio optimization.

In this dissertation, we derive stochastic decomposition algorithms for solving mean-risk two-

satge stochastic linear programs (MR-SLP) and mean-risk multistage stochastic linear programs

(MR-MSLP) with deviation and quantile risk measures. Stochastic decomposition(SD) is a type of

internal sampling method and at every iteration of algorithm only one linear problem is solved for

approximating the recourse function. A salient feature of the SD algorithm is that the number of

samples is not fixed a priori, which allows to obtain good candidate solutions early in the procedure.

We also report on a computational study to evaluate the empirical performance of the SD

algorithms for MR-SLP and MR-MSLP with expected excess(EE), quantile deviation(QDEV) and

conditional value-at-risk(CVaR) as risk measures. The goal of the study was to analyze for a

given instance how SD algorithm performs across different levels of risk, investigate the effect of

different risk measures and understand when it is appropriate to use the risk-averse approach.

For MR-SLP, the SD algorithm is implemented and applied to standard test instances and it

shows that the risk measure QDEV has more impact on expected cost and the cost associated with

extreme scenarios compared to the impact of CVaR and EE. We also observed that for higher target

values, the risk measure EE becomes effective only for a relatively small number of scenarios and

has little to no-effect on the optimal solution for small values of the risk trade-off factor. The

computational study also demonstrates that under risk aversion the rate of convergence of SD

algorithm remains consistent as opposed to sample average approximation approach.

For the multistage case, the SD algorithm is applied to an instance of long-term hydrothermal

ii



scheduling (LTHS) and it shows that the risk trade-off factor has a significant impact on the solution

and the risk measure conditional value-at-risk exhibits a better control over the extreme scenarios

at lower values of risk trade-off factor. The study also shows that the risk-neutral approach is still

appropriate for the LTHS problem.
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1. INTRODUCTION

Stochastic linear programming (SLP) provides a framework for modeling problems involving

sequential decision making under uncertainty. Hence, it is commonly used for modeling purposes

in variety of applications such as long-term financial planning [1], scheduling of power systems

[2, 3, 4], supply chain management [5] and others. However, most of the literature in the field of

stochastic programming is based on the classical expected value framework to quantify variability

of random variables. The expected value framework implies risk neutrality, which may not be a

suitable approach in certain applications such as financial planning, portfolio management, energy

planning etc. Lack of ability to provide hedging against extreme scenarios or controlling variability

of scenario costs has led to a constant criticism of risk-neutral SLP approach. Therefore, risk mea-

sures have been introduced into the SLP models, where risk arising due to the inherent uncertainty

in a problem is reflected by including a dispersion statistic along with expectation in the objective

function of SLP.

This research work makes several contributions to the literature on mean-risk stochastic pro-

gramming. First of all, this work makes initial efforts towards applying stochastic decomposition

(SD) to mean-risk two-stage stochastic linear programs (MR-SLPs) with a goal of solving large-

scale instances. Solving large-scale MR-SLPs is challenging and this work devises a SD approach

[6] towards alleviating this challenge. SD is a streamlined interior sampling approach that allows

for generating one sample at a time in the course of an algorithm until enough samples have been

generated. Second, this work considers risk measures belonging to two different categories, devi-

ation and quantile risk measures and we have devised SD algorithm for each one. In particular, we

consider deviation risk measure expected excess [7] and quantile risk measures quantile deviation

[8] and conditional value-at-risk [9]. Another contribution of this work is a computational study of

an implementation of the SD algorithms applied to standard test instances and contrasting it against

exterior sampling method SAA. The study shows promising results that demonstrate the suitability

of the SD algorithms towards solving MR-SLPs and also helps in understanding the effect of risk
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measures on the optimal solution.

This work also makes contributions to the literature on mean-risk multistage stochastic linear

programs(MR-MSLP). Solving large-scale instances of MR-MSLP is challenging due to the prob-

lem size resulting from the combinatorial explosion of number of stages and scenarios per stage.

The main objective of this work is to derive a mean-risk MSD approach towards alleviating this

challenge. The subgradients in MSD are generated using one scenario of a random outcome per

iteration and therefore it has an advantage of not having to process every potential random out-

come, which can be a major drawback in case of large scale instances. For quantifying risk in

our formulation, we again consider the deviation risk measure expected excess [7] and quantile

risk measures quantile deviation [8] and conditional value-at-risk [9]. For each one of these three

risk measures, we present the detailed problem formulation at every stage of a MSLP and explain

the decomposition approach. Then we derive a mean-risk MSD algorithm. We also extend the

asymptotic convergence results of risk-neutral MSD to risk-averse cases and we address the issues

arising due to introduction of risk variables.

Finally, we report on a computational study based on application of mean-risk MSD to long-

term hydrothermal scheduling (LTHS), which is a widely studied application in MSLP [10, 4, 11,

12]. We performed extensive computations using different risk levels for each one of the three risk

measures and we present the details of impact this has over the optimal solution and each decision

variable over the planning horizon. The result help in assessing the suitability of the three risk

measures in context of MSLP.

The dissertation is organized into eight sections. Section 2 provides a brief review of relevant

literature on stochastic programming, covering the topics of risk-aversion, two-stage stochastic

programming and multistage stochastic programming. Section 3 introduces the risk measures

and deterministic equivalent formulation for MR-SLP. The decomposition approach, two-stage SD

algorithm and the convergence proof for risk-averse SD algorithm is outlined in Section 4. The

details of computational study for two-stage SLP along with the standard test instances used and

the computational results are provided in Section 5. Section 6 contains the decomposition approach

2



for MR-MSLP and the detailed MSD algorithms. Section 7 includes introduction to the long-term

hydrothermal scheduling problem and computational results of MSD algorithm. Finally, in Section

8 a succinct summary of findings, along with conclusion and future research is provided.
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2. LITERATURE REVIEW

In this section, research literature relevant to our work is discussed. In the first section, an

overview of literature dealing with algorithms, formulation and computational studies associated

with risk measures and two-stage SLP is described. The second section provides a brief review

of the literature related to MR-MSLP and the challenges associated with decomposition and opti-

mization of MSLPs due to their large scale.

2.1 Risk Measures and MR-SLP

A risk measure in principle, can be any function that complements the expected value of a

SLP instance by avoiding solutions with high variability, or ones that deviate significantly from a

target. Various risk measures have been defined in [7, 13] such that the risk formulations maintain

a block angular structure and therefore are amenable to decomposition. Based on the computation

of risk, the risk measures are broadly classified in two different categories deviation and quantile

risk measures. The deviation measure calculates risk based on deviation of a random variable from

a preselected target or the mean. Some common examples of deviation risk measures are expected

excess and absolute semi-deviation. In expected excess, deviation of outcomes from a pre-selected

target is used to calculate risk [7]; whereas in absolute semideviation, risk is measured by the

deviation from the expected value [14].

In contrast to deviation risk measures, quantile risk measures use a quantile of the probability

distribution to compute risk. Examples of quantile risk measures are Value-at-Risk , excess prob-

ability, quantile deviation and conditional value-at-risk. The most popular of those measures is

the value-at-risk (VaR), which has been extensively used in finance and banking [15, 16]. The

VaR is not tractable given its lack of convexity [17], which made it unsuitable for optimization

when losses are not normally distributed [18]. As a result Conditional Value-at-Risk (CVaR) was

proposed in [9], which is a coherent risk measure and also assesses the extent of losses beyond the

VaR by computing conditional expectations of values above the VaR. Quantile deviation (QDEV),
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unlike other risk measures computes two-sided deviation of scenario costs from a quantile, and

an optimization procedure has been proposed in [8] to compute QDEV. In risk measure excess

probability, risk is calculated as probability of a random variable exceeding a given target [19].

Risk aversion has a crucial role in optimization under uncertainty. Two-stage stochastic linear

programs with risk aversion provide a better mechanism in coping with losses, controlling variabil-

ity and handling extreme scenarios. Structural and algorithmic properties of two-stage stochastic

linear programs with deviation measures such as continuity, differentiability, convexity and stabil-

ity are derived in [20]. The continuity properties of the recourse function and stability results for

the optimal solutions of excess probability are derived and discussed in [21]. A min-max model

that is equivalent to a mean-risk model with quantile deviation risk measure is considered in [22].

The approach includes variance reduction techniques that enhance the rate of convergence as well

as a certificate of optimality and statistical stopping criteria for an iterative algorithm. Various risk

measures have been defined in [7, 13] such that the problem formulation maintains a dual block

angular structure, which is amenable to decomposition.

A number of sampling-based algorithms have been proposed in the literature. Depending on

the sampling strategy used, these algorithms can be broadly classified in two categories, exterior

and interior sampling methods. In exterior methods, sampling is used to generate a fixed number

of scenarios, and the resulting problem is often solved using some decomposition scheme. An

example of exterior sampling is the sample average approximation (SAA) scheme, described in

[23, 22].

Several approaches have been proposed to solve MR-SLPs with both deviation and quantile

risk measures using the external sampling schemes. An algorithmic treatment based on varia-

tions of the L-shaped method has been proposed in [20]. In [21] the authors developed an al-

gorithm for mean-risk problems and presented computational results for standard test instances.

A decomposition-based parametric cutting plane algorithm to generate mean-risk efficient fron-

tiers for two classes of mean-risk models has been proposed in [24]. The focus of this work is

on convexity properties and subgradient decomposition. An aggregate optimality cut and separate
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cut subgradient-based algorithm is proposed in [25], using absolute semideviation and quantile

deviation as risk measures.

In interior sampling methods, sampling is done during the course of execution of the algo-

rithm. SD is a prototype example of an interior sampling scheme. Other examples can be found in

a comprehensive survey of Monte Carlo sampling-based methods [26]. The description and con-

vergence properties of SD algorithm are discussed in [6] and [27]. A detailed survey of MR-SLP,

applications, algorithms, and risk measures is presented in [28].

2.2 MR-MSLP

MSLP provides a framework for modeling problems involving sequential decision making un-

der uncertainty and hence MSLP is commonly used for modeling purposes in variety of appli-

cations such as long-term financial planning [1], scheduling of power systems [2, 3, 4], supply

chain management [5] and others. MSLPs are difficult to optimize due to their large scale nature.

Therefore, various decomposition algorithms that use deterministic approximations of the recourse

function (expected-cost-to-go function) have been devised.

Two decomposition and partitioning methods for optimizing MSLP were first proposed by

Birge [29]. The first method is an outer linearization decomposition approach which extends the

L-shaped method to multistage. The second method is a piecewise partitioning strategy which de-

termined the optimal first stage solutions by partitioning the feasible region. Rockafellar and Mets

[3] have applied the principle of progressive hedging to generate improving sequence of decision

policies for optimizing multistage problems. In their method different scenarios are bundled to-

gether based on available information and iterative adjustments are made to decisions to arrive at

an optimal policy.

Unfortunately, multistage problems become unwieldy as the number of scenarios at every stage

increases or as the number of stages grows. Such an exponential growth, makes the MSLP compu-

tationally intractable and difficult to optimize even after the application of decomposition methods.

Therefore, to address this difficulty various sampling approaches have been developed for opti-

mizing large scale MSLPs. A sampling based method popularly known as stochastic dual dynamic
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programming (SDDP) was proposed by Pereira and Pinto [2]. In the SDDP method, using the same

principle as that of the L-shaped algorithm, piecewise linear functions are obtained from the dual

solutions of the MSLP at each stage to approximate the recourse function. The SDDP method,

does not require state discretization and thus avoids the combinatorial explosion resulting from

large number of stages and scenarios. Another sampling approach for optimizing MSLPs, called

multistage stochastic decomposition (MSD), was devised by Sen and Zhou [30]. MSD approach

is an extension of the sample regularized version of stochastic decomposition algorithm [6, 27] to

the multistage setting . The MSD algorithm shares some of the recursive features of ADP and has

been shown to asymptotically converge to an optimal solution.

Majority of the research work in the field of MSLP deals with the risk-neutral cases, where

the goal is to optimize the expected cost function. Although risk-neutral formulations provide

an optimal policy, they fail to control variability among different scenarios. Also, risk-neutral

formulations cannot deal with extreme losses. Therefore, risk aversion has a crucial role in MSLP

because it provides a suitable mechanism for handling losses, controlling variability and hedging

against extreme scenarios. Hence, MR-MSLP has applications in variety of domains such as long

term scheduling of power plant operations [12], multistage asset allocation [31] and others.

The pioneering work in the field of risk-aversion by Artzner et al. [17] proposed an axiomatic

theory of risk. According to the authors a risk measure is considered to be coherent if it satisfies the

properties of positive homogenity, translation invariance, monotonicity and convexity. Although a

desired property, coherent risk measures are not necessarily adequate in addressing risks for certain

problems [32].

Another important concept of MR-MSLP is time consistency. A MR-MSLP formulation is

said to be time consistent if its optimal decisions do not depend on scenarios which are improbable

to occur. We provide a formal definition of time consistency in Section 3.5. Risk-neutral MSLP

formulation always satisfy time consistency, but this may not be necessarily true for MR-MSLP.

Various concepts and approaches have been proposed [33, 34, 35, 36] to make MR-MSLP time

consistent. It should be noted that lack of time consistency does not imply that the corresponding
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optimal policies are unsuitable.

Owing to the difficulty in defining risk across different stages and the issue of time consistency,

MR-MSLPs are even more difficult to optimize than the MSLPs. Philpott and De Matos [12]

have considered a time consistent formulation of coherent risk measure Conditional Value-at-Risk

(CVaR) for modeling risk into a MSLPs to optimize a hydro-thermal scheduling problem. The

scheduling problem was then solved using SDDP algorithm. The connections between minmax

models, risk-aversion and nested formulations in the context of multistage setting has also been

studied [37]. A scenario decomposition method for solving MR-MSLP problems along with the

convergence proof was proposed by Ruszczyński et al. [38]. In this approach, bundles of risk

neutral approximations were constructed and the method was applied to a risk averse inventory

and assembly problem.

In this work, we extend the MSD for risk-neutral MSLP to MR-MSLP and apply it to the

long-term hydrothermal scheduling. MSD involves approximating the cost-to-go function and the

optimal decisions in sequential manner. At every iteration, a sample path traversing the entire

length of scenario tree from root node to a terminal node is generated. Then, the LPs associated

with the nodes on this path are solved to update the recourse function approximations. Hence,

unlike SDDP, MSD does not require traversing the entire tree in one single iteration.
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3. MEAN-RISK STOCHASTIC LINEAR PROGRAMS

In this section, we begin by defining a two-stage MR-SLP and brief explanation of decision

variables, constraints and properties. Then we present definitions and deterministic equivalent

formulations of each of the risk measure considered in this work. In the end, we provide the

stagewise formulations of MR-MSLP using recursion.

3.1 Two-Stage MR-SLP

A two-stage MR-SLP can be formulated as follows:

Min E[f(x, ω̃)] + λρ[f(x, ω̃)]) (3.1)

s.t. x ∈ X,

where x ∈ Rn1
+ is a vector of decision variables and X ⊆ Rn1 is a compact set. The use of a risk

measure ρ : F 7→ R characterizes the so-called mean-risk stochastic program, whereF is the space

of real random cost variables. The weighting factor λ > 0 quantifies the trade-off between expected

cost and risk. A risk measure can, in principle, be any function that complements the expected

value, for instance by avoiding solutions with high variability, or ones that deviate significantly

from a target. Such specifications have to take into account tractability, also it is desirable that the

MR-SLP maintains suitable properties such as convexity and block angular structure to allow the

formulation to be amenable to optimization methods.

For a given x ∈ X the real random cost variable f(x, ω̃) is given by

f(x, ω̃) := c>x+ h(x, ω̃),

with {f(x, ω̃)}x∈X ⊆ F defined on a probability space (Ω,A,P). The mapping E : F 7→ R

denotes the expected value, where F is the space of all real random cost variables on Ω satisfying
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E[|f(ω̃)|] <∞. For a realization (scenario) ω of ω̃, ω ∈ Ω, the recourse function h(x, ω) is given

by

h(x, ω) := Min q>y(ω) (3.2)

s.t. Wy(ω) ≥ r(ω)− T (ω)x,

y(ω) ≥ 0.

In problem (3.2), q ∈ Rn2 is the second-stage cost vector, y(ω) ∈ Rn2 is the recourse decision

vector, W ∈ Rm2×n2 is the recourse matrix, T (ω) ∈ Rm2×n1 is the technology matrix, and r(ω) ∈

Rm2 is the right hand side vector.

We consider MR-SLP under the following assumptions:

(A1) The sets X and Ω are compact.

(A2) For any given x ∈ X , E[|f(x, ω)|] <∞.

(A3) Recourse matrix W is fixed (fixed recourse).

(A4) For all x ∈ X , there exist a constant L such that L ≤ E[f(x, ω̃)].

Assumptions (A1) and (A2) guarantee the existence of an optimal solution. Satisfying assumption

(A3) guarantees relatively complete recourse which enables having a dual feasible set for the sub-

problem. In SD, since optimality cuts are generated using one scenario at a time, assumption (A4)

is required to make sure that the optimal solution is not cut-off by the optimality cuts.

3.2 Risk Measures

Let us begin with the mathematical definition and the interpretation of each risk measure. In

the definitions, max{a, 0} denotes the maximum operator applied to a ∈ R and 0, while Min and

Max refer to minimization and maximization of a real-valued objective function, respectively.

3.2.1 Expected Excess

Given a target ψ ∈ R, expected excess (EE) [7] is defined as:
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φEEψ(x) := E[max{f(x, ω̃)− ψ, 0}].

It reflects the expected value of the excess over the target ψ ∈ R, that is, if function f(x, ω)

represents costs, then EE computes average losses greater than the threshold ψ. Setting ρ := φEEψ

in formulation (3.1) we obtain the mean-risk formulation with EE as risk measure:

Min
x∈X

E[f(x, ω̃)] + λφEEψ(x). (3.3)

EE is used to evaluate and minimize the risk of not achieving a given performance target for every

scenario. For example, it can be used in portfolio optimization problems in which some desired

financial return is expected [39, 40].

Selection of an appropriate target ψ is crucial for risk measure EE. For every realization ω ∈ Ω,

if ψ ≤ f(x, ω) or if ψ ≥ f(x, ω) , then the optimal decision vector x will be same as that of the

risk-neutral case.

LEMMA 3.2.1. If for risk measure EE, the target ψ ∈ R is such that ψ ≤ f(x, ω) for every

realization ω ∈ Ω. Then, the optimal decision vector x will be same as that of the risk-neutral

case.

Proof. If ψ ≤ f(x, ω) for every ω ∈ Ω, then

max{f(x, ω)− ψ, 0} = f(x, ω)− ψ (3.4)

Substituting result 3.4 in the formulation 3.3, we get

Min
x∈X

E[f(x, ω̃)] + λE[max{f(x, ω̃)− ψ, 0}] = Min
x∈X

E[f(x, ω̃)] + λE[f(x, ω̃)− ψ]

= Min
x∈X

E[f(x, ω̃)] + λE[f(x, ω̃)]− λE[ψ]

= −λψ + (1 + λ) Min
x∈X

E[f(x, ω̃)]
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LEMMA 3.2.2. If for risk measure EE, the target ψ ∈ R is such that ψ ≥ f(x, ω) for every

realization ω ∈ Ω. Then, the optimal decision vector x will be same as that of the risk-neutral

case.

Proof. If ψ ≥ f(x, ω) for every ω ∈ Ω, then

max{f(x, ω)− ψ, 0} = 0 (3.5)

Substituting result 3.5 in the formulation 3.3, we get

Min
x∈X

E[f(x, ω̃)] + λE[max{f(x, ω̃)− ψ, 0}] = Min
x∈X

E[f(x, ω̃)] + λE[0]

= Min
x∈X

E[f(x, ω̃)]

3.2.2 Quantile Deviation

Given ε1, ε2 > 0, let α = ε2/(ε1 + ε2). The quantile deviation (QDEV) [41] risk measure is

defined as follows:

φQDEVε1,ε2 (x) := Minψ{E[ε1 max{ψ − f(x, ω̃), 0}+ ε2 max{f(x, ω̃)− ψ, 0}]}.

The QDEV captures the average two-sided deviation from the α-quantile. Setting ρ := φQDEVε1,ε2

in formulation (3.1) we obtain the mean-QDEV as follows:

Min
x∈X

E[f(x, ω̃)] + λφQDEVε1,ε2 (x). (3.6)

3.2.3 Conditional Value-at-Risk

Given α ∈ (0, 1), the conditional value-at-risk (CVaRα) [9] is defined as:

φCV aRα(x) := Minψ{ψ +
1

1− α
E[max{f(x, ω̃)− ψ, 0}]}.
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In can be shown that at optimality ψ is an alpha-quantile of the distribution of f(x, ω̃) [9]. If

f(x, ω̃) represents costs, then CVaR reflects the average losses higher than the α-quantile. Setting

ρ := φCV aRα in formulation (3.1) we obtain the mean-CVaR risk measure as follows:

Min
x∈X

E[f(x, ω̃)] + λφCV aRα(x). (3.7)

The CVaR is widely used in the field of financial risk management to evaluate market risk or credit

risk of a portfolio [42, 18, 43].

3.3 Properties of Coherent Risk Measures

LetF be set of all real-valued random variables. For a random variable S defined on probability

space (Ω,A,P), we will have S ∈ F . A risk function ρ is said to be coherent if it satisfies all the

following properties:

• Translation invariance: If a ∈ R and S ∈ F , then

ρ(S + a) = a+ ρ(S).

• Positive homogeneity: If c > 0 and S ∈ F , then

ρ(cS) = cρ(S).

• Monotonicity: If S1, S2 ∈ F and S1 ≤ S2, then

ρ(S1) ≤ ρ(S2).

• Convexity: If S1, S2 ∈ F and λ ∈ (0, 1), then

ρ(λS1 + (1− λ)S2) ≤ λρ(S1) + (1− λ)ρ(S2).

EE is not a coherent risk measure, nor is the objective function value of formulation (3.3),

for a fixed value of x. While EE satisfies properties of monotonicity and convexity, it fails to

satisfy the properties of translation invariance and positive homogeneity. Like EE, QDEV is not

a coherent risk measure as it violates translation invariance and monotonicity. This is also true

for the objective function of formulation (3.6). Among the three risk measures considered in this
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work, only CVaR satisfies all the four properties required to be a coherent risk measure and the

objective function of formulation (3.7) is coherent under special condition. Table 3.1 provides the

list of properties satisfied by each risk measure and and table 3.2 provides the list of properties

satisfied by each mean-risk formulation. The proof of properties associated with each risk measure

is provided in AppendixA. For the Mean-CVaR to be coherent we can redefined (3.7) as follows:

Min(1− λ)E[f(x, ω̃)] + λρ[f(x, ω̃)], where ρ is the risk measure and λ is the trade-off value.

Table 3.1: Properties Satisfied by Risk Measures

Risk Measure
Translational

Invariance

Positive

Homogeneity
Monotonicity Convexity

Expected Excess X X X X

Absolute Semi-Deviation X X X X

Quantile Deviation X X X X

CVaR X X X X

Table 3.2: Properties Satisfied by Mean-Risk Measures

Risk Measure
Translational

Invariance

Positive

Homogeneity
Monotonicity Convexity

Expected Excess X X X X

Absolute Semi-Deviation X X X X

Quantile Deviation X X X X

CVaR* X X X X
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3.4 Deterministic Equivalent Formulation of MR-SLP

Let us now establish the deterministic equivalent formulation for all of the risk measures using

formulation (3.1) and the definitions provided in subsection 3.2. The following formulations are

then used to explain the decomposition approach used in SD.

3.4.1 MR-SLP with EE

For a discrete random variable ω̃, the deterministic equivalent formulation for mean EE is given

by the following proposition:

PROPOSITION 3.4.1. Given λ ≥ 0 and a target ψ ∈ R, problem (3.1) with ρ = φEEψ is

equivalent to the following formulation [19]:

Min
x,y,ν

c>x+ E[q>y(ω̃) + λν(ω̃)] (3.8)

s.t. T (ω)x+Wy(ω) ≥ r(ω), ∀ω ∈ Ω

− c>x− q>y(ω) + ν(ω) ≥ −ψ, ∀ω ∈ Ω

x ∈ X, y(ω) ∈ R+, ν(ω) ∈ R+, ∀ω ∈ Ω,

where decision variable ν(ω) measures the excess above the target ψ for scenario ω.

Formulation (3.8), is a MR-SLP with dual block angular structure since the recourse decision

vector y(ω) and decision variable ν(ω) do not appear in the constraint x ∈ X . It is therefore

amenable to Benders decomposition [44].

3.4.2 MR-SLP with QDEV

For a discrete random variable ω̃, the deterministic equivalent formulation for mean QDEV is

given by the following proposition:

PROPOSITION 3.4.2. Given ε1, ε2 > 0, λ ∈ [0, 1
ε1

], let α = ε2/(ε1 + ε2), problem (3.1) with
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ρ = φQDEVε1,ε2 is equivalent to the following formulation [24]:

Min
x,ψ,y,ν

(1− λε1)c>x+ λε1ψ + (1− λε1)E[q( ω̃)>y(ω̃)] + λ(ε1 + ε2)E[ν(ω̃)] (3.9)

s.t. T (ω)x+Wy(ω) ≥ r(ω), ∀ω ∈ Ω

− c>x− q>y(ω) + ψ + ν(ω) ≥ 0, ∀ω ∈ Ω

x ∈ X,ψ ∈ R, y(ω) ∈ R+, ν(ω) ∈ R+, ∀ω ∈ Ω,

where ψ is the α-quantile of f(x, ω̃) at optimality.

Formulation (3.9) has a dual block angular structure and is therefore amenable to Benders decom-

position.

3.4.3 MR-SLP with CVaR

For a discrete random variable ω̃, the deterministic equivalent formulation for mean CVaR is

given by the following proposition:

PROPOSITION 3.4.3. Given λ ≥ 0 and α ∈ (0, 1), problem (3.1) with ρ = φCVaRα is equivalent

to the following formulation [19]:

Min
x,ψ,y,ν

c>x+ E[q>y(ω̃)] + λψ +
λ

1− α
E[ν(ω̃)] (3.10)

s.t. T (ω)x+Wy(ω) ≥ r(ω), ∀ω ∈ Ω

− c>x− q>y(ω) + ψ + ν(ω) ≥ 0, ∀ω ∈ Ω

x ∈ X,ψ ∈ R, y(ω) ∈ R+, ν(ω) ∈ R+, ∀ω ∈ Ω.

where ψ is a first stage decision variable. At optimality its value corresponds to the α-quantile of

f(x, ω̃).

Formulation (3.10), also has a dual block angular structure and is therefore amenable to Ben-

ders decomposition.
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3.5 MR-SLP

To define a MR-MSLP with T stages, let t ∈ {1, 2, . . . , T} be the stage index and consider

a stochastic process ω̃ = (ω̃1, ω̃2, · · · , ω̃T ) and a decision process x = (x1, x2, · · · , xT ). The

component x1 is a nonrandom vector-valued decision variable and ω̃1 is deterministic. The rest of

the components x2, · · · , xT of x and ω̃2, · · · , ω̃T of ω̃ are random vectors, not necessarily of the

same dimension, defined on a probability space (Ω,A,P). The ω̃t ∈ Ωt, where Ωt ⊆ Ω is the

sample space of random outcomes at stage t and Ω1 ⊆ Ω2 . . . ⊆ Ωt ⊆ Ωt+1 . . . ⊆ ΩT ⊆ Ω. The

sequential decision and stochastic data process is

x1, ω̃2, x2(x1, ω̃2), · · · , xT (xT−1, ω̃2, · · · , ω̃T ).

The decisions made at a given stage do not depend on any specific future outcomes of the

stochastic data or on future decisions, that is, the decision process is nonanticipative. Mathemat-

ically, At ⊆ A is a σ-field generated by ω[t] := (ω1, · · · , ωt) of the stochastic process ω̃ that

includes the stochastic data up to stage t, and A1 = {∅,Ω} is the trivial σ-field. Let ω̃[t+1] denote

the stochastic process at stage t+ 1 given ω[t] .Since the decision xt at stage t depends only on the

available information, it means that it is At-measurable.

We have x[t] := (x1, · · · , xt) to be the sequence of decisions at stages 1, · · · , t and Pt the

marginal distribution of ωt. The stochastic process is considered stagewise independent if the pro-

cess ω̃t is independent of ω[t−1], for all t = 2, . . . , T . For 1 ≤ t1 < t2 ≤ T , let the set X∗t1 be

the set of optimal solutions for stages t ∈ {t1, · · · , T} of MR-SLP conditional on a realization

ω[t1]. Then, the MR-SLP is said to be time consistent if X∗t2 ⊂ X∗t1 is an set of optimal solution

conditional on realization ω[t2] given realization ω[t1].

Let ρt : F 7→ R be a risk measure at stage t, whereF is set of real random cost variables defined

on probability space (Ω,A,P). A risk measure is a function that complements the expected value,

for instance by avoiding solutions with high variability, or ones that deviate significantly from a

target. Let λt > 0 be the weighting factor that quantifies the trade-off between expected cost and
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risk. Then a MR-MSLP with T ≥ 2 stages, can be formally stated as follows:

MSLP1 : Min
x1

c>1 x1 + E[f2(x1, ω̃2)] + λ2ρ2[f2(x1, ω̃2)] (3.11)

s.t. x1 ∈ X1,

where x1 ∈ Rn1
+ is a vector of first-stage decision variables, c1 ∈ Rn1 is the cost vector associated

with the first-stage and X1 ⊆ Rn1 is a compact set of feasible first-stage decisions. It is desirable

that the MSLP1 maintains suitable properties such as convexity and dual block angular structure

to allow the formulation to be amenable to decomposition methods.

Let xt(ωt) ∈ Rnt
+ be decision vector, ct ∈ Rnt be the cost vector and Xt(xt−1, ω[t]) ⊆ Rnt be

set of feasible decisions at stage t ∈ {2, . . . , T − 1} for realization ωt. Then the real random cost

variable ft(xt−1, ω[t]) at stage t is defined recursively as

ft(xt−1, ω[t]) := Min
xt(ωt)∈Xt(xt−1,ω[t])

c>t xt(ωt) + E[ft+1(xt, ω̃[t+1]) |ω[t]] (3.12)

+λt+1ρt+1[ft+1(xt, ω̃[t+1] |ω[t])],

where E[. |ω[t]] is the conditional expectation and ρt+1[. |ω[t])] is the conditional risk measure. For

the final stage t = T and a given feasible solution xT−1 ∈ XT−1(xT−2, ω[T−1]), the real random

cost variable fT (xT−1, ω[T ]) is defined as

fT (xT−1, ω[T ]) := Min
xT (ωT )∈XT (xT−1,ω[T ])

c>T xT (ωT ). (3.13)

For MSLP1 to be well-defined, we consider it under the following assumptions:

(A1) The set of first stage decisions X1 and Ω are compact.

(A2) At every stage, for any given xt(ωt) ∈ Xt(xt−1, ω[t]), E[ft+1(xt, ω̃[t])] <∞.

(A3) At every stage recourse matrix Wt is fixed (fixed recourse).

(A4) For all xt(ωt) ∈ Xt(xt−1, ω[t]), there exists a constant Lt such that Lt ≤ E[ft+1(xt, ω̃[t])].
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(A5) The stochastic process ω̃ has finite support.

Assumptions (A1) and (A2) guarantee the existence of an optimal solution in MSD. Satisfying

assumption (A3) guarantees relatively complete recourse at every stage, which enables having a

dual feasible set for the subproblem. Since in MSD subgradients are generated using one scenario

at a time, assumption (A4) is required to make sure that the optimal solution is not cut-off by the

optimality cuts.

3.6 Deterministic Equivalent Formulation of MR-MSLP

In this section we define the mean-risk formulation for MSLP using the definitions of risk

measures provided in Subsection 3.2. The formulations are defined recursively for each stage of

MSLP and they are used to explain the derivation of MSD algorithms for MR-MSLP.

3.6.1 MR-MSLP with EE

For a scenario ω ∈ Ω, the deterministic equivalent formulation for MR-MSLP with EE as risk

measure and T stages is given by the following proposition:

PROPOSITION 3.6.1. Given λt ≥ 0 and a target ψt ∈ R, problem (3.11) with ρ = φEEψ is

equivalent to the following formulation:

At stage t = 1,

Min c>1 x1 + E[f2(x1, ω̃2)] (3.14)

s.t. W1x1 ≥ r1,

x1 ∈ X1.
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For stages t = {2, 3, . . . , T − 1}, ft(xt−1, ω[t]) is defined recursively as follows:

ft(xt−1, ω[t]) := Min c>t xt(ωt) + E[ft+1(xt, ω̃[t+1]) | ω[t]] + λtνt(ωt) (3.15)

s.t. Wtxt(ωt) ≥ rt(ωt)− Tt(ωt)xt−1(ωt−1), ∀ω ∈ Ω

− c>t xt(ωt)− E[ft+1(xt, ω̃[t+1]) | ω[t]]

+ νt(ωt) ≥ −ψt + c>t−1xt−1(ωt−1), ∀ω ∈ Ω

xt(ωt) ∈ Xt(xt−1, ω[t]), νt(ωt) ≥ 0. ∀ω ∈ Ω,

For terminal stage t = T ,

fT (xT−1, ω[T ]) := Min c>T xT (ωT ) + λTνT (ωT ) (3.16)

s.t. WTxT (ωT ) ≥ rT (ωT )− TT (ωT )xT−1(ωT−1), ∀ω ∈ Ω

− c>T xT (ωT ) + νT (ωT ) ≥ −ψT + c>T−1xT−1(ωT−1), ∀ω ∈ Ω

xT (ωT ) ∈ XT (xT−1, ω[T ]), νT (ωT ) ≥ 0, ∀ω ∈ Ω,

where decision variable νt(ωt) measures the excess above the target ψt in stage t for scenario ω.

Formulations (3.14 -3.16) have a dual block angular structure, since the decision vector xt+1(ωt+1)

and the variable νt+1(ωt+1) do not appear in the constraint xt ∈ Xt(xt−1, ω[t]). Therefore, this

formulation is amenable to Benders decomposition [44].

3.6.2 MR-MSLP with QDEV

For a specified quantile α and a given scenario ωinΩ, the MR-MSLP formulation with QDEV

can be recursively defined as follows:

PROPOSITION 3.6.2. Given ε1, ε2 > 0, λt ∈ [0, 1/ε1], let α = ε2/(ε1 + ε2), problem (3.11) with

ρ = φQDEVε1,ε2 is equivalent to the following formulation:
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At stage t = 1,

Min (1− λ2ε1)c>1 x1 + λ2ε1ψ1 + E[f2(x1, ω̃2)] (3.17)

s.t. W1x1 ≥ r1,

x1 ∈ X1, ψ1 ∈ R.

For stages t = {2, 3, . . . , T − 1}, the function ft(xt−1, ω[t]) is defined recursively as follows:

ft(xt−1, ω[t]) := Min (1− λtε1)
[
(1− λt+1ε1)c>t xt(ωt) + λt+1ε1ψt(ωt)

+ E[ft+1(xt, ω̃[t+1]) | ω[t]]
]

+ λt(ε1 + ε2)νt(ωt) (3.18)

s.t. Wtxt(ωt) ≥ rt(ωt)− Tt(ω)xt−1(ωt−1), ∀ω ∈ Ω

− (1− λt+1ε1)c>t xt(ωt)− λt+1ε1ψt(ωt)− E[ft+1(xt, ω̃[t+1]) | ω[t]]

+ νt(ωt) ≥ −ψt−1(ωt−1) + c>t−1xt−1(ωt−1), ∀ω ∈ Ω

(3.19)

xt(ω) ∈ Xt(xt−1, ω[t]), ψt(ωt) ∈ R, νt(ωt) ≥ 0, ∀ω ∈ Ω.

Constraint (3.19) is used to compute the excess of current and future cost at stage t over quantile

ψt−1(ω) determined at stage t− 1. At terminal stage t = T ,

fT (xT−1, ω[T ]) := Min (1− λT ε1)c>T xT (ωT ) + λT (ε1 + ε2)νT (ωT ) (3.20)

s.t. WTxT (ωT ) ≥ rT (ωT )− TT (ωT )xT−1(ωT−1), ∀ω ∈ Ω

− c>T xT (ωT ) + νT (ωT ) ≥ −ψt−1(ωT−1) + c>T−1xT−1(ωT−1), ∀ω ∈ Ω

xT (ωT ) ∈ XT (xT−1, ω[T ]), νT (ωT ) ≥ 0, ∀ω ∈ Ω,

where ψt is the α-quantile of ft(xt−1, ω̃[t]) at optimality.

Formulations (3.17-3.20) have dual block angular structure and therefore, are amenable to Benders

decomposition.
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3.6.3 MR-MSLP with CVaR

For a discrete random variable ω̃, the deterministic equivalent formulation for MR-MSLP with

CVaR is given by the following proposition [12]:

PROPOSITION 3.6.3. Given λ ≥ 0 and α ∈ (0, 1), problem (3.11) with ρ = φCVaRα is equivalent

to the following formulation:

At stage t = 1,

Min c>1 x1 + λ2ψ1 + E[f2(x1, ω̃2)] (3.21)

s.t. W1x1 ≥ r1,

x1 ∈ X1, ψ1 ∈ R.

For stages t = {2, 3, . . . , T − 1}, the function ft(xt−1, ω[t]) is defined as follows:

Min c>t xt(ωt) + λt+1ψt(ωt) + E[ft+1(xt, ω̃[t+1] | ω[t])] +
λt

1− α
νt(ωt) (3.22)

s.t. Wtxt(ωt) ≥ rt(ωt)− Tt(ωt)xt−1(ωt−1), ∀ω ∈ Ω

− c>t xt(ωt)− λt+1ψt(ωt)− E[ft+1(xt, ω̃[t+1] | ω[t])]+

νt(ωt) ≥ −ψt−1(ωt−1) + c>t−1xt−1(ωt−1), ∀ω ∈ Ω

xt(ωt) ∈ Xt(xt−1, ω[t]), ψt(ωt) ∈ R, νt(ωt) ≥ 0. ∀ω ∈ Ω

At terminal stage t = T ,

fT (xT−1, ω[T ]) := Min c>T xT (ωT ) +
λT

1− α
νT (ωT ) (3.23)

s.t. WTxT (ωT ) ≥ rT (ωT )− TT (ωT )xT−1(ωT−1), ∀ω ∈ Ω

− c>T xT (ωT ) + νT (ωT ) ≥ −ψT−1(ωT−1) + c>T−1xT−1(ωT−1), ∀ω ∈ Ω

xT (ωT ) ∈ XT (xT−1, ω[T ]), νT (ωT ) ≥ 0, ∀ω ∈ Ω,
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where ψt is a decision variable at stage t and at optimality its value corresponds to the α-quantile

of ft(xt−1, ω̃[t]) [9].

Formulations (3.21-3.23), have dual block angular structure and are amenable to Benders decom-

position. Using the definitions and the deterministic equivalent formulations that are presented in

section 3.4, in the next section we provide details of the SD approach and outline the risk-averse

SD algorithm for MR-SLP.
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4. STOCHASTIC DECOMPOSITION ALGORITHM

Now that in Section 3 we have presented the definitions and the formulations of MR-SLP, in this

section we present a detailed decomposition approach for each risk measure and we follow it by

outlining mean-risk SD algorithms for MR-SLP along with the proof of convergence to optimality.

4.1 Stochastic Decomposition Algorithm for EE

We begin by presenting the details of our decomposition approach for MR-SLP with EE. We

first decompose problem (3.8), defined in Section 3, into master problem and subproblem. This

is possible due to the dual block angular structure of the formulation. The fundamental idea of

the SD algorithm involves solving one subproblem and one master problem at each iteration. The

subproblem is then used to recursively update a piecewise linear approximation of the recourse

function at each iteration k, while the master problem is used to generate successive iterates {xk}.

4.1.1 Decomposition for MR-SLP with EE

The deterministic equivalent formulation (3.8) has a dual block angular structure and therefore,

we can decompose the MR-SLP with EE as follows:

Min
x

c>x+ E[h(x, ω̃)] (4.1)

s.t. x ∈ X,

where for a realization ω ∈ Ω, we have

h(x, ω) := Min
y,ν

q>y(ω) + λν(ω) (4.2)

s.t. Wy(ω) ≥ r(ω)− T (ω)x, ∀ω ∈ Ω, (4.3)

− q>y(ω) + ν(ω) ≥ c>x− ψ, ∀ω ∈ Ω, (4.4)

y(ω) ≥ 0, ν(ω) ≥ 0, ∀ω ∈ Ω. (4.5)
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Notice that unlike function h(x, ω̃) define in (3.2), h(x, ω̃) in (4.2) includes a weighted deviation

variable ν(ω). Given an iterate xk at iteration k and an outcome ωk, the dual of problem (4.2)-(4.5)

can be stated as follows:

h(xk, ωk) := Max π(ωk)>(r(ωk)− T (ωk)x) + φ(ωk)(c>xk − ψ) (4.6)

s.t. π(ωk)>W − φ(ωk)q ≤ q

φ(ωk) ≤ λ

π(ωk) ≥ 0, φ(ωk) ≥ 0,

where, π(ωk) and φ(ωk) are the dual multipliers associated with constraints (4.3) and (4.4) repec-

tively.

The solution of dual problem (4.6) at iteration k, together with the dual solutions of all the past

iterations can be used to obtain a piecewise linear approximation of the expected recourse function

E[h(x, ω̃)], which can be defined as follows:

ηk(x) := max{αkt + (βkt )>x | t = 1, . . . , k}, (4.7)

where k is the current iteration number, t is the counter for all the iterations performed up to k, αkt

is the cut constant and βkt is the cut coefficient generated for t-th iteration at iteration k. Therefore,

the peicewise linear approximation of objective function at iteration k is

Fk(x) := c>x+ ηk,

where ηk is an auxiliary variable that describes the outer approximation of the recourse function.
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Now using the cut approximation ηk(x) we can define a master program as follows:

Min
x,ηk

c>x+ ηk (4.8)

s.t. x ∈ X

ηk − (βkt )>x ≥ αkt , ∀t = 1, . . . , k.

4.1.2 SD Algorithm for MR-SLP with EE

Using the master problem and sub problems defined in Section 4.1.1, the SD algorithm for

mean EE can be stated as follows:

SD-EE Algorithm

Step 0: Initialization.

Set k ← 0; V 0 ← ∅; U0 ← ∅; η0 = −∞; x0 ∈ X; x̄0 ∈ X; ψ ∈ R given (EE target;

L ∈ R given (lower bound) and δ ∈ (0, 1).

Step 1: Generate a Scenario.

k ← k + 1. Randomly generate scenario ωk of ω̃, independent of previously generated

scenarios.

Step 2: Determining Cut Approximation ηk(x).

a. Solve dual problem (4.2) for scenario ωk

(πk(ωk), φk(ωk)) ∈ argmax{(πk)>(r(ωk)− T (ωk)xk) + φk(c>x− ψ)

|π>W − qφk ≤ q, φk ≤ λ, πk, φk ≥ 0}.

b. Update sets V k and Uk.

V k ← V k−1 ∪ πk(ωk).
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Uk ← Uk−1 ∪ φk(ωk).

c. Determine the coefficients of the k-th cutting plane.

(πkt , φ
k
t ) ∈ argmax{(π)>(r(ωt)− T (ωt)xk) + φ(c>xk − ψ)

|π ∈ V k, φ ∈ Uk},∀t = {1, . . . , k − 1}.

αkk = 1
k

∑k
t=1{(πkt )>r(ωt)− φktψ}.

(βkk )> = 1
k

∑k
t=1{(πkt )>(−T (ωt)) + φkt c

>}.

d. Update coefficients of all previously generated cuts.

αkt ← (k−1
k

)αk−1
t + ( 1

k
)L, ∀t = 1, . . . , k − 1.

βkt ← (k−1
k

)βk−1
t , ∀t = 1, . . . , k − 1.

e. Add updated cuts to master problem.

ηk ≥ αkt + (βkt )>x, ∀t = 1, . . . , k.

⇒ ηk − (βkt )>x ≥ αkt , ∀t = 1, . . . , k.

Step 3.Updating Incumbent Solution.

if Fk(x
k)− Fk(x̄k−1) < δ[Fk−1(xk)− Fk−1(x̄k−1)],

x̄k ← xk

x̄k ← x̄k−1.

Step 4. Solve Master Problem.

Min
x,ηk

c>x+ ηk

s.t. x ∈ X,

ηk − (βkt )>x ≥ αkt , ∀t = {1, . . . , k},

to get the new candidate solution xk+1.

Step 5. Termination Criterion.

One of the following criteria can be used to terminate the algorithm. If the selected
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criterion is not satisfied, then return to step 1 and repeat the steps.

a. Termination criterion based on incumbent test:

Letmk be the number of times the incumbent solution changes up to iteration k and

let {x̄kn}mkkn=1 a subsequence of {xn}kn=1 be a collection of all incumbent solutions

up to iteration k. Define

γk = 1
k

∑k
t=1 Ft(x̄

t) and γ̄k = 1
mk

∑mk
n=1 Fkn(x̄kn).

Then terminate the algorithm for a large enough k, if

|Fk(x̄k)−γk−1

γ̄k−1 | ≤ ε, where ε > 0 is a given tolerance level.

b. Termination criteria based on objective value:

For a large enough k, terminate the algorithm if

Fk−1(x̄k−1)− Fk−1(xk) ≤ ε, where ε > 0 is a given tolerance level.

REMARK 4.1.1. In step 2 of the proposed SD-EE algorithm, we generate a random scenario ωk

independent of previously generated scenarios based on the probability distribution of Ω, which

can be done using Monte Carlo. In each iteration, at step 2 of the algorithms we obtain a solution of

one dual subproblem and at step 4 we have the solution of the master problem. The former is used

to recursively update a piecewise linear approximation of the recourse function, while the latter is

used to generate successive candidate solutions. Together they provide us with a valid lower bound

on the objective function.

After a a moderate number of iterations, it is expected that the frequency of updating the in-

cumbent solution as described in step 3 will decrease. The termination criterion described in step

5(a) makes use of this fact to terminate the algorithm once a stable solution is reached. The ter-

mination criterion described in step 5(b) is based on assumption that after a large enough number

of iterations the algorithm will stabilize, and therefore will reach the accumulation point of the
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incumbent solution.

4.2 Stochastic Decomposition for QDEV

Following the similar approach as that of EE, we begin by decomposing the deterministic

equivalent problem (3.9) of risk measure QDEV. The problem has a dual block angular structure

and therefore can be decomposed into master problem and subproblem. Unlike EE, in risk measure

QDEV an α-quantile needs to be estimated in the first stage of SLP for computation of risk.

4.2.1 Decomposition for MR-SLP with QDEV

The deterministic equivalent formulation (3.9), of the MR-SLP with QDEV is decomposed as

follows:

Min
x,ψ

(1− λε1)c>x+ λε1ψ + E[h(x, ψ, ω̃)] (4.9)

s.t. x ∈ X,

where

h(x, ψ, ω) := Min
y,ν

(1− λε1)q>y(ω) + λ(ε1 + ε2)ν(ω) (4.10)

s.t. Wy(ω) ≥ r(ω)− T (ω)x, ∀ω ∈ Ω, (4.11)

− q>y(ω) + ν(ω) ≥ c>x− ψ, ∀ω ∈ Ω, (4.12)

y(ω) ≥ 0, ν(ω) ≥ 0, ∀ω ∈ Ω. (4.13)

Given an iterate xk at iteration k and an outcome ωk, we solve the dual of problem (4.10)-(4.13) in

order to obtain the dual multipliers π(ωk) and φ(ωk) associated with constraints (4.11) and (4.12)

respectively.

The dual solution of (4.10)-(4.13) at iteration k, together with the dual solutions of all the past

iterations can be used to obtain a piecewise linear approximation of the expected recourse function
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E[h(x, ψ, ω̃)], which in the case of QDEV is defined as

ηk(x) := max{αkt + (βkt )>x+ γkt ψ|t = 1, . . . , k}. (4.14)

Therefore, the peicewise linear approximation of objective function at iteration k is

Fk(x, ψ) := (1− λε1)c>x+ λε1ψ + ηk

and the master program for MR-SLP with QDEV can be defined as follows:

Min
x,ψ,ηk

(1− λε1)c>x+ λε1ψ + ηk (4.15)

s.t. x ∈ X

ηk − (βkt )>x− γkt ψ ≥ αkt , ∀t = 1, . . . , k.

4.2.2 SD Algorithm for MR-SLP with QDEV

Using the master problem and sub problems defined in section 4.2.1, the SD algorithm for

mean QDEV can be stated as follows:

SD-QDEV Algorithm

Step 0: Initialization.

Set k ← 0; V 0 ← ∅; U0 ← ∅; η0 = −∞; x0 ∈ X; x̄0 ∈ X; ψ ∈ R make suitable

assumption (α quantile); L ∈ R given (lower bound), ε1 = 1−α, ε2 = α and δ ∈ (0, 1).

Step 1: Generate a Scenario.

k ← k + 1. Randomly generate scenario ωk of ω̃, independent of previously generated

scenarios.

Step 2: Determining Cut Approximation ηk(x).
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a. Solve dual problem (4.10) for scenario ωk

(πk(ωk), φk(ωk)) ∈ argmax{(πk)>(r(ωk)− T (ωk)xk) + φk(c>x− ψ)

|π>W − qφk ≤ q, φk ≤ λ(ε1 + ε2), πk, φk ≥ 0}

b. Update sets V k and Uk

V k ← V k−1 ∪ πk(ωk).

Uk ← Uk−1 ∪ φk(ωk).

c. Determine the coefficients of the kth cutting plane.

(πkt , φ
k
t ) ∈ argmax{(π)>(r(ωt)− T (ωt)xk) + φ(c>xk − ψ)

|π ∈ V k, φ ∈ Uk},∀t = {1, .., k − 1}.

αkk = 1
k

∑k
t=1{(πkt )>r(ωt)}.

(βkk )> = 1
k

∑k
t=1{(πkt )>(−T (ωt)) + φkt c

>}.

γkt = 1
k

∑k
t=1−φkt .

d. Update coefficients of all previously generated cuts.

αkt ← (k − 1/k)αk−1
t + (1/k)L, ∀t = 1, .., k − 1.

βkt ← (k − 1/k)βk−1
t , ∀t = 1, .., k − 1.

γkt ← (k − 1/k)γk−1
t , ∀t = 1, .., k − 1.

e. Add Updated Cuts to Master Problem.

ηk ≥ αkt + (βkt )>x+ γkt ψ, ∀t = 1, ..., k.

⇒ ηk − (βkt )>x− γkt ψ ≥ αkt , ∀t = 1, ..., k.

Step 3.Updating Incumbent Solution.

if Fk(x
k)− Fk(x̄k−1) < δ[Fk−1(xk)− Fk−1(x̄k−1)]

x̄k ← xk.

else
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x̄k ← x̄k−1.

Step 4. Solve the Master Problem.

Min (1− λε1)c>x+ λε1ψ + (1− λε1)ηk

s.t. x ∈ X,

ηk − (βkt )>x− γkt ψ ≥ αkt , ∀t = {1, ..., k},

to get the new candidate solution xk+1.

Step 5. Termination Criterion.

If the following criterion is not satisfied then starting from step 1 repeat all the steps.

Termination criteria based on objective value:

For a large enough k,terminate the algorithm if

Fk−1(x̄k−1)− Fk−1(xk) ≤ ε,

where ε > 0 is a given tolerance level.

REMARK 4.2.1. For termination of SD-QDEV, the criterion 5(a) described in SD-EE algorithm

can also be used.

4.3 Stochastic Decomposition for CVaR

Similar to QDEV, an α-quantile usually referred as value-at-risk is used for computing risk in

CVaR. The decision variable ψ in the first stage of SLP is used to estimate the value of α-quantile

and at optimality ψ becomes equal to the value-at-risk. The deterministic equivalent problem (3.9)

of mean-CVaR has a dual block angular structure and therefore it is amenable to decomposition.
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4.3.1 Decomposition for MR-SLP with CVaR

Using the deterministic equivalent formulation (3.10), we can decompose the two-stage MR-

SLP with CVaR, as follows:

Min
x,ψ

c>x+ λψ + E[h(x, ψ, ω̃)] (4.16)

s.t. x ∈ X,

where

h(x, ψ, ω) := Min
y,ν

q>y(ω) +
λ

1− α
ν(ω) (4.17)

s.t. Wy(ω) ≥ r(ω)− T (ω)x, ∀ω ∈ Ω, (4.18)

− q>y(ω) + ν(ω) ≥ c>x− ψ, ∀ω ∈ Ω, (4.19)

y(ω) ≥ 0, ν(ω) ≥ 0, ∀ω ∈ Ω. (4.20)

Given an iterate xk at iteration k and an outcome ωk, we solve the dual of problem (4.17)-

(4.20) to obtain the dual multipliers π(ωk) and φ(ωk) associated with constraints (4.18) and (4.19)

respectively.

The dual solution of (4.17)-(4.20) at iteration k, together with the dual solutions of all the past

iterations can be used to obtain a piecewise linear approximation of the expected recourse function

E[h(x, ω̃)], which in this case is defined as

ηk(x) := max{αkt + (βkt )>x+ γkt ψ|t = 1, . . . , k}. (4.21)

Therefore, the peicewise linear approximation of objective function is

Fk(x, ψ) := c>x+ λψ + ηk
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and the master problem for MR-SLP with CVaR is defined as follows:

Min
x,ψ,ηk

c>x+ λψ + ηk (4.22)

s.t. x ∈ X

ηk − (βkt )>x− γkt ψ ≥ αkt , ∀t = 1, . . . , k.

4.3.2 SD Algorithm for MR-SLP with CVaR

Using the master problem and sub problems defined in section [4.3] we propose the following

algorithm:

SD-CVaR

Step 0: Initialization.

Set k ← 0; V 0 ← ∅; U0 ← ∅; η0 = −∞; x0 ∈ X; x̄0 ∈ X; ψ ∈ R make suitable

assumption (α quantile); L ∈ R given (lower bound) and δ ∈ (0, 1).

Step 1: Generate a Scenario.

k ← k + 1. Randomly generate scenario ωk of Ω̃, independent of previously generated

scenarios.

Step 2: Determining Cut Approximation ηk(x).

a. Solve dual problem (4.17) for scenario ωk

(πk(ωk), φk(ωk)) ∈ argmax{(πk)>(r(ωk)− T (ωk)xk) + φk(c>x− ψ)

|π>W − qφk ≤ q, φk ≤ λ

1− α
, πk, φk ≥ 0}

b. Update sets V k and Uk
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V k ← V k−1 ∪ πk(ωk).

Uk ← Uk−1 ∪ φk(ωk).

c. Determine the coefficients of the kth cutting plane.

(πkt , φ
k
t ) ∈ max {(π)>(r(ωt)− T (ωt)xk) + φ(c>xk − ψ)

|π ∈ V k, φ ∈ Uk},∀t = {1, .., k − 1}.

αkk = 1
k

∑k
t=1{(πkt )>r(ωt)}.

(βkk )> = 1
k

∑k
t=1{(πkt )>(−T (ωt)) + φkt c

>}.

γkk = 1
k

∑k
t=1−φkt .

d. Update coefficients of all previously generated cuts.

αkt ← (k − 1/k)αk−1
t + (1/k)L, ∀t = 1, .., k − 1.

βkt ← (k − 1/k)βk−1
t , ∀t = 1, .., k − 1.

γkt ← (k − 1/k)γk−1
t , ∀t = 1, .., k − 1.

e. Add Updated Cuts to Master Problem.

ηk ≥ αkt + (βkt )>x+ γkt ψ, ∀t = 1, ..., k.

⇒ ηk − (βkt )>x− γkt ψ ≥ αkt , ∀t = 1, ..., k.

Step 3.Updating Incumbent Solution.

if Fk(x
k)− Fk(x̄k−1) < δ[Fk−1(xk)− Fk−1(x̄k−1)]

x̄k ← xk.

else

x̄k ← x̄k−1.

Step 4. Solve Master Problem.
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Min c>x+ λψ + ηk

s.t. x ∈ X,

ηk − (βkt )>x− γkt ψ ≥ αkt , ∀t = {1, ..., k},

to get the new candidate solution xk+1.

Step 5. Termination Criterion.

If the following criterion is not satisfied then starting from step 1 repeat all the steps.

Termination criteria based on objective value:

For a large enough k,terminate the algorithm if

Fk−1(x̄k−1)− Fk−1(xk) ≤ ε,

where ε > 0 is a given tolerance level.

REMARK 4.3.1. For termination of SD-CVaR, we can also employ the criterion 5(a) described in

SD-EE algorithm.
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4.4 Proof of Convergence

In this section we extend the convergence results of the risk-neutral SD algorithm described

in [6] to the risk averse SD algorithms. For each risk-measure we first show that the mean-risk

formulation satisfy assumption (A1)-(A5), even after the addition of dispersion variables. Then

using the fact that MR-SLP has relatively complete recourse and set of first-stage decision variables

is compact we show that the risk averse SD converges to an optimal solution.

4.4.1 Convergence Proof for SD-EE

For SD-EE, we prove that the approximation of the recourse function generated during the exe-

cution of the algorithm uniformly converges and the accumulation point of the candidate solutions

is an optimal solution. We begin by proving that the variable ν(ω) used for computing the excess

over the target ψ for realization ω is always finite for x ∈ X and therefore the assumption A2 holds

for two-stage SLP with EE.

COROLLARY 4.4.1. Suppose that assumptions A1-A2 hold, then for any x ∈ X and ω ∈ Ω the

dispersion statistic E[ν(ω̃)] <∞.

Proof. By assumption (A1), X ⊆ Rn1
+ is a compact set and from Equation (3.1) we have cost

vector c ∈ Rn1. Therefore the elements of set {c>xk}∞k=1 will always be finite.

From assumption (A2), for any given x ∈ X we have E[f(x, ω̃)] < ∞. Hence from Equation

(3.2), for any ω ∈ Ω, we have q>y(ω) <∞.

Since target ψ ∈ R, and in Proposition 3.4.1 we define ν(ω) as:

− c>xk − q>y(ω) + ν(ω) ≥ ψ ∀ω ∈ Ω. (4.23)

Therefore, we have E[ν(ω̃)] <∞.

In the following statements for denoting limits we use lim, for denoting upper limits and lower

limits we use lim and lim respectively. The functions hk(x, ω) and h(x, ω) are defined as follows:

hk(x, ω) = max {(π)>[r(ωk)− T (ωk)xk] + φ[c>x− ψ] |π ∈ V k, φ ∈ Uk},
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h(x, ω) = max {(π)>[r(ωk) − T (ωk)xk] + φ[c>x − ψ] |π ∈ V, φ ∈ U}, where set V and U

are collections of all dual vertices of the subproblem.

LEMMA 4.4.2. Suppose that assumptions A1-A2 hold, then the sequence {hk}∞k=1 of functions

hk(x, ω), converges uniformly on X × Ω.

Proof. Note that the set V k ⊆ V k+1 ⊆ V and set Uk ⊆ Uk+1 ⊆ U , This implies that hk(x, ω) ≤

hk+1(x, ω) ≤ h(x, ω) for all k and for all (x, ω) ∈ X ×Ω. Since {hk}∞k=1 increases monotonically

and is bounded from above by the function h(x, ω), it follows that {hk}∞k=1 converges pointwise to

some function g(x, ω) ≤ h(x, ω). Since set V k ⊆ V k+1 ⊆ V and set Uk ⊆ Uk+1 ⊆ U for all k,

V̄ = limk→∞Vk ⊆ V, (4.24)

and

Ū = limk→∞Uk ⊆ U. (4.25)

By assumption (A2), elements of V and U are finite and so are V̄ and Ū , hence

g(x, ω) = limk→∞hk(x, ω)

= limk→∞{Max {π>[r(ω)− T (ω)x] + φ[c>x− ψ]|π ∈ Vk, φ ∈ Uk}}

= Max {π>[r(ω)− T (ω)x] + φ[c>x− ψ]|π ∈ V̄ , φ ∈ Ū}. (4.26)

Therefore, from the statements (B.2), (B.3) and (B.4), we can conclude that {hk}∞k=1 converges

uniformly to the function g(x, ω), since {hk}∞k=1 is a monotone sequence of continuous functions

and X × Ω is a compact set.

THEOREM 4.4.3. Let {xkn}∞n=1 be an infinite subsequence of {xk}∞k=1. Suppose that assumptions

A1-A4 hold and if xkn → x̂, then with probability one

1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψ)→ E[h(x̂, ω̃)].
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Proof. From the equation (4.2) and step 2 of the algorithm, we know that

hkn(xkn , ωt) =πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψ)

and

1

kn

kn∑
t=1

hkn(xkn , ωt) =
1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψ).

By Lemma 4.4.2, there exists a function g(x, ω) ≤ h(x, ω) such that {hkn}∞n=1 converges uniformly

to g(x, ω). Thus, since we have

1

kn

kn∑
t=1

[hkn(xkn , ωt)− g(x̂, ωt)]→ 0 and
1

kn

kn∑
t=1

h(x, ωt)→ E[h(x, ω̃)],

it is sufficient to show that g(x̂, ωt) = h(x̂, ωt) with probability one. Since h(x, ω) is a continuous

function and {hkn}∞n=1 is a uniformly convergent sequence of continuous function, for every ε > 0

there exist δ > 0 and N <∞ such that

|(x̂, ωt)− (x, ω)| < δ ⇒|h(x̂, ωt)− h(x, ω)| < ε

3
∀n ≥ N

and

|hkn(x̂, ωt)−hkn(x, ω)| < ε

3
∀n ≥ N.

Thus, since xkn → x̂, for every ε > 0 there exist a further subsequence {(xk′n , ωk′n)}∞n=1 and

K <∞ such that
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|h(x̂, ωt)−h(x̂, ωk
′
n)| < ε/3,

|h(x̂, ωk
′
n)−h(xk

′
n , ωk

′
n)| < ε/3

and

|hk′n(xk
′
n , ωk

′
n)−hk′n(xk

′
n , ωt)| < ε/3,

for all k′n ≥ K. By construction we have hk′n(xk
′
n , ωk

′
n) = h(xk

′
n , ωk

′
n). Thus, for every ε > 0 there

exist a subsequence {xk′n}∞n=1 and K <∞ such that

|h(x̂, ωt)− hk′n(xk
′
n , ωt)| ≤ |h(x̂, ωt)− h(x̂, ωk

′
n)|

+ |h(x̂, ωk
′
n)− h(xk

′
n , ωk

′
n)|

+ |h(xk
′
n , ωk

′
n)− hk′n(xk

′
n , ωt)| < ε,

for all k′n ≥ K. Hence, by the uniqueness of the sequential limit, it follows that g(x̂, ωt) =

h(x̂, ωt). Therefore by probability one, we have

1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψ)→ E[h(x̂, ω̃)].

Also since h(x, ωt) = argmax{π(r(ωt) − T (ωt)x) + φ(c>x − ψ)|π ∈ V, φ ∈ U}, V k ⊆ V , and

Uk ⊆ U ∀k, it follows that

c>x+
1

kn

kn∑
t=1

h(x, ωt) ≥ c>x+
1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψ)

= c>x+ αknkn + βknknx, x ∈ X.
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THEOREM 4.4.4. Suppose that assumptions A1-A4 hold, then there exists a subsequence {xkn}∞n=1

of {xk}∞k=1, such that limn→∞[Fkn(xkn)− Fkn−1(xkn)] = 0, with probability one.

Proof. If assumption (A2) is satisfied, then for every ω ∈ Ω there exist M(ω) ∈ R+, such that

|h(x1, ω)−h(x2, ω)| ≤M(ω)||x1−x2|| for all x1, x2 ∈ X . Let ε > 0 be given, letM = E[M(ω)],

let r = ε
2M

, and let Br(x) denote an open ball of radius r centered at x. Then ∪x∈XBr(x) is an

open cover of X . Since X is a compact set, there exist Nε ≤ ∞ and {xi}Nεi=1 ⊂ X such that

X ⊂ ∪Nεi=1Br(xi). Moreover, since {xk} ⊂ X , it follows that each iterate is contained in one or

more of the open balls {Br(xi)}Nεi=1. Thus, there exist two sequence of indices, {kn} and {tn} such

that

0 < kn − tn ≤ Nε + 1 and ||xkn − xtn|| < r.

By assumption (A1), we know that X is a compact set. Thus, without loss of generality we may

assume that

limn→∞x
kn = x̂k and limn→∞x

tn = x̂t,

where x̂k and x̂t are accumulation points of sequences xkn and xtn respectively.

Now, in iteration k the cutting plane generated during iteration t appears as (please refer to step

2(d) of the SD-EE algorithm)

αkt + βkt x =
t

k
(αtt + βttx) +

k − t
k

L. (4.27)

As per the step 2 of algorithm we have

ηk−1(xk) = Max{αk−1
t + βk−1

t xk|t = 1, ..., k − 1}. (4.28)
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Therefore, using equation (4.27) we can rewrite equation (4.28) as follows

ηk−1(xk) ≥ t

k − 1
(αtt + βttx

k) + (1− t

k − 1
)L ∀t = 1, ..., k − 1.

Thus,

ηkn−1(xkn) ≥ tn
kn − 1

(αtntn + βtntnx
kn) + (1− tn

kn − 1
)L

=
tn

kn − 1
(αtntn + βtntnx

tn) +
tn

kn − 1
βtntn (xkn − xtn) + (1− tn

kn − 1
)L

=
tn

kn − 1
ηtn(xtn) +

tn
kn − 1

βtntn (xkn − xtn) + (1− tn
kn − 1

)L, (4.29)

where the last equality follows the fact that ηk(xk) = αkk+β
k
kx

k for all k. Furthermore by definition,

Fk(x
k)− Fk−1(xk) = c>xk + ηk(x

k)− c>xk − ηk−1(xk)

= ηk(x
k)− ηk−1(xk). (4.30)

Using equations (4.29) and (4.30) we have

Fkn(xkn)− Fkn−1(xkn) ≤ ηkn(xkn)− tn
kn − 1

(ηtn(xtn) + βtntn (xkn − xtn))− (1− tn
kn − 1

)L.

By construction,

0 < kn − tn ≤ Nε + 1 <∞,
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we have

||βtntn || ≤
1

tn

tn∑
t=1

M(ωt),

limn→∞
tn

kn − 1
= 1 and

limn→∞(1− tn
kn − 1

)L = 0.

Moreover, Theorem 4.4.3 ensures that ηkn(xkn) → E[h(x̂k, ω̃)] and ηtn(xtN ) → E[h(x̂t, ω̃)] with

probability one. It follows that

0 ≤ limk→∞Fk(x
k)− Fk−1(xk)

≤ limn→∞Fkn(xkn)− Fkn−1(xkn)

≤ limn→∞ηkn(xkn)− tn
kn − 1

(ηtn(xtn) + ||βtntn ||||x
kn − xtn||)− (1− tn

kn − 1
)L.

≤ limn→∞ηkn(xkn)− tn
kn − 1

(ηtn(xtn) +
1

tn

tn∑
t=1

M(ωt)||xkn − xtn||)− (1− tn
kn − 1

)L.

= E[h(x̂k, ω̃)]− E[h(x̂t, ω̃)] +M ||x̂k − x̂t||

≤ |E[h(x̂k, ω̃)]− E[h(x̂t, ω̃)]|+M ||x̂k − x̂t||

≤ 2M ||x̂k − x̂t||

≤ 2M(
ε

2M
)

= ε.

Thus, for every ε > 0, 0 ≤ limn→∞Fkn(xkn)− Fkn−1(xkn) ≤ ε and hence the result.

THEOREM 4.4.5. There exist a subsequence {xkn}∞n=1 of {xk}∞k=1, such that every accumulation

point of {xkn}∞n=1 is an optimal solution x∗ with probability one.

Proof. From Theorem 4.4.3, we know that there exist subsequence {xkn}∞n=1 such that limn→∞hkn(xkn)−
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hkn−1(x
kn) = 0. Let {xkn}n∈N be a subsequence such that limn∈Nx

kn = x̂. By assumption (A1)

we will always have accumulation point x̂ ∈ X thus for an optimal solution x∗ we have

F (x∗) ≤ F (x̂), (4.31)

where F (x) = c>x+ E[h(x, ω)], and also by construction we have

limk∈KFk(x
∗) ≤ c>x∗ + E[h(x∗, ω)] = F (x∗). (4.32)

As per the step 4 of algorithm we know that xk minimizes Fk−1, therefore

Fk−1(xk) ≤ Fk−1(x∗). (4.33)

Now using Theorem 4.4.3 and result limn∈NFkn(xkn) = F (x̂) we get limn∈NFkn−1(x
kn)

= F (x̂), with probability one. Combining equations (4.31), (4.32) and (4.33) we have

F (x∗) ≤ F (x̂) = limn∈NFkn−1(x
kn) ≤ limk∈KFk(x

∗) ≤ F (x∗).

Hence accumulation point of subsequence {xkn}∞n=1 is an optimal solution x∗ with probability one.

We have now proved that the SD algorithm will generate an optimal solution with probability one.

Next we need to show that with probability one, there exists at least one optimal accumulation

point of the sequence of incumbents {x̄k}. We will use Theorems 4.4.3 and 4.4.4 along with the

incumbent test used in step 3 of algorithm to prove this result. We begin by noting that for all k,

c>x̄k + αkik + βkikx ≤ Fk(x̄k) ≤ c>x̄k +
1

k

k∑
t=1

h(x̄k, ωt).

Since h(x, ω) is continuous in x for all ω ∈ Ω, if {x̄kn}∞n=1 is a subsequence such that x̄kn → x̄,
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h(x̄kn , ωt)→ h(x̄, ωt) for all t. Thus,

limn→∞c
>x̄kn + αknik + βkniknx ≤ limn→∞Fkn(x̄kn)

≤ limn→∞Fkn(x̄kn)

≤ limn→∞c
>x̄kn + λψ +

1

kn

kn∑
t=1

h(x̄kn , ωt).

With probability one, both the upper and lower limits described above are F (x̄) (please see Theo-

rem 4.4.3). Thus, it follows that

limn→∞Fkn(x̄kn) = F (x̄).

Similarly, if {x̄kn}∞n=1 → x̄, then the nature of the update mechanism described in step 2 of

algorithm and Theorem 4.4.4 ensures that

limn→∞Fkn+1(x̄kn) = F (x̄).

The above results can be summarized and formerly stated in the following corollary.

COROLLARY 4.4.6. Let {x̄k} denote the sequence of incumbent solutions, and let {x̄kn}∞n=1

be an infinite subsequence such that {x̄kn} → x̄. If the assumptions (A1)-(A4) hold, then with

probability one

limn→∞Fkn(x̄kn) = limn→∞Fkn+1(x̄kn) = F (x̄).

To establish that an optimal accumulation point of the incumbent sequence exists, next we explore

the implication of the incumbent test described in step 3 of the algorithm.

LEMMA 4.4.7. Suppose that assumption A1-A4 hold. Let θk = Fk−1(xk) − Fk−1(x̄k−1), and let

{kn}n∈N represent the sequence of iterations at which the incumbent is changed. If N is finite,
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then limk→∞θ
k = 0, with probability one. Otherwise, limm→∞

1
m

∑m
n=1 θ

kn = 0 with probability

one.

Proof. By definition, θk = Fk−1(xk)− Fk−1(x̄k−1) ≤ 0 for all k. If N is a finite set, there exist x̄

and K <∞ such that x̄k = x̄ for all k ≥ K and thus

Fk(x
k)− Fk(x̄) ≥ δ[Fk−1(xk)− Fk−1(x̄)] = δθ ∀k ≥ K.

By Theorem 4.4.4 and Corollary 4.4.6, there exist a subsequence indexed by set K such that

limk∈Kx
k = x̂

limk∈KFk(x
k) = f(x̂), limk∈KFk(x̄) = f(x̄),

limk∈KFk−1(xk) = f(x̂), limk∈KFk−1(x̄) = f(x̄),

with probability one. Thus,

limk∈K{Fk(xk)− Fk(x̄)} ≥ δ[limk∈K{Fk−1(xk)− Fk−1(x̄)}]

⇒ F (x̂)− F (x̄) ≥ δ[F (x̂)− F (x̄)]

= limk∈K δθk,

with probability one. Now since δ ∈ (0, 1) and θk ≤ 0 for all k, it follows that F (x̂) − F (x̄) = 0

and thus limk∈Kδθ
k ≤ 0, with probability one. Now suppose N is not a finite set. By hypothesis,

Fkn(xkn)− Fkn(x̄kn−1) < δ[Fkn−1(xkn)− Fkn−1(x̄kn−1)] = δθkn ≤ 0 ∀n.
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By definition of the subsequence {kn}, we note that x̄kn−1 = x̄kn−1 . Therefore

Fkn(x̄kn)− Fkn(x̄kn−1) ≤ δθkn ≤ 0 ∀n.

Thus,

1

m

m∑
n=1

{Fkn(x̄kn)− Fkn(x̄kn−1)} ≤ δ

m

m∑
n=1

θkn ≤ 0 ∀m

⇒ 1

m
{(
m−1∑
n=1

Fkn(x̄kn)− Fkn(x̄kn−1)) + (Fkm(x̄km)− Fk1(x̄k0))}

≤ δ

m

m∑
n=1

θkn ≤ 0 ∀m.

Assumptions (A1)-(A4) ensure that there exist M <∞, such that

|Fkm(x̄km)− Fk1(x̄k0)| < M ∀m.

Thus, since x̄kn = x̄kn+1−1, the left hand side converges to zero with probability one as m ap-

proaches∞. Thus,

limm→∞
1

m

m∑
n=1

θkn = 0.

THEOREM 4.4.8. Suppose that assumptions A1-A4 are satisfied. Let {x̄k}∞k=1 represent the se-

quence of incumbents and letX∗ represent set of optimal solutions. Then there exist a subsequence

{x̄k}k∈K for which every accumulation point is contained in X∗, with probability one.

Proof. Let {kn}n∈N represent the sequence of iterations at which the incumbent is changed. Note
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that if N is infinite set,

limm→∞
1

m

m∑
n=1

θkn ≤ limn→∞θ
kn ≤ 0.

Thus, as a result of lemma 4.4.7, whether N is finite or infinite, there exist a subsequence indexed

by set K such that

limk∈Kθ
k+1 = 0.

Note that

θk+1 = Fk(x
k+1)− Fk(x̄k) ≤ Fk(x

∗)− Fk(x̄k) ∀k ∈ K.

Thus as a result of Corollary 4.4.6, it follows that if x̄ is an accumulation point of {x̄k}k∈K, then

F (x̄) ≤ limk∈KFk(x
∗)

≤ c>x∗ + limk∈K
1

k

k∑
t=1

h(x∗, ωt)

≤ F (x∗),

and thus, x̄ ∈ X∗, with probability one.

The convergence proofs for risk measure QDEV and CVaR follow similar pattern as that of EE,

so to avoid distraction from the foregoing discussion we present the detailed proofs for SD-QDEV

and SD-CVaR in Appendix B.
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5. COMPUTATIONAL RESULTS

In this section we present the details of our computational study. The study is based on standard

test instances and it was performed to gain understanding of the empirical behavior of the SD

algorithms. Specifically, the study was carefully designed to achieve the following goals:

• Validate the convergence of SD algorithms to an optimal solution computationally.

• Compare the performance of SD algorithm with SAA approach.

• Study how the optimal solution for a given test instance varies with the risk measure used.

• Assess the impact of risk measures on the cost associated with the in-sample ‘extreme’ sce-

narios.

The SD and SAA algorithms were implemented in C++ using the IBM CPLEX Callable Library

version 12.8 [45] in the Microsoft Visual Studio 2017 environment. We used the object-oriented

approach for coding the algorithms by creating our own classes and methods to interact with

CPLEX Callable Library’s method. We created five major classes, namely LPobjectClass, Reader,

Master, Sublp and Algorithm. The class LPobjectClass is a superclass and its properties are inher-

ited by rest of the classes with exception of Algorithm class. The Reader class reads the SLP data

from test instances stored in SMPS (Stochastic mathematical Programming Society) Format. The

master problem and subproblem aspects are dealt by Master and Sublp class respectively. Finally,

the execution of algorithm is implemented in Algorithm class. All the experiments were conducted

on a computer workstation running Intel Xeon 2.40GHz with dual processors and 12GB RAM.

5.1 Test Instances

We use standard test instances from the SP literature, which are described in [27] and [46]

and are known as pgp2 [27], pgp2e [25], gbd [47], LandS [48], and storm [49]. The character-

istics of these test instances are summarized in Table 5.1. The columns of the table are instance

name, application, number of scenarios, number of first-stage constraints and variables, number of
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second-stage constraints and variables, and the optimal objective value [25]. For instances with

a very large number of scenarios the optimal value cannot be obtained, and a 95% confidence

interval of optimal objective value is reported [46].

Table 5.1: Standard Test Problems

First-Stage Second-Stage Optimal
Name Application Scenarios (Cons., Vars.) (Cons., Vars.) Objective Value
pgp2 Power Generation Planning 576 (2, 4) (7, 12) 447.32
pgp2e Power Generation Planning 576 (2, 4) (7, 12) 413.94
gbd Aircraft Allocation 6.5 ×105 (4, 17) (5, 10) (1648.76,1657.50)
LandS Electricity Planning 106 (2, 4) (7, 12) (225.20,226.24)
storm Cargo Flight Scheduling 6 ×1081 (185, 121) (528, 1259) (15496242.30,15500000.30)

Test instance pgp2 deals with electrical capacity expansion problem. It is a model so as to select

optimal cost strategy for investing in different sources of electricity such as gas-fired, coal-fired,

and nuclear generators. The stochastic elements in this problem are the power generation costs and

regional demands. The first-stage variables model the capital cost ($/Kw) per year based on type

of acquired generator. The second-stage decision variables determine how much each generator

should be used to satisfy the regional power demand. Instance pgp2e is a modified version of pgp2.

All the random variables associated with pgp2 have a marginal uniform distribution, which is not

suitable for studying the empirical behavior of mean-risk measures. Hence, the instance pgp2e was

generated by skewing the marginal distributions of the random variables thus making the instance

suitable for mean-risk measures. The details of the modification process are given in [25].

Test instance gbd is an aircraft allocation problem. The objective is to maximize profit by

allocating four different types of aircraft to five different routes. The cost involved are related to

the operation of an aircraft and the bumping of passengers. Randomness comes from the uncertain

demand associated with each route. The problem LandS deals with electrical investment planning.

In the first-stage a decision is made regarding the capacities of four new technologies. In the

second-stage, decisions concern the amount of electricity produced through the four technologies
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working under three different modes. Randomness represents the demand of electricity for each

mode. Finally, the instance storm deals with planning the allocation of aircraft routes, and was

used by the U.S. military during the Gulf War of 1991. Randomness arises from the uncertain

demand of cargo delivery. The first-stage of this instance deals with scheduling of flight routes

so as to minimize the cost of scheduled flights and cargo handling costs. The second-stage deals

with satisfying the cargo delivery demand and minimizing the penalty associated with the unmet

demand.

5.2 Results

To draw insights from the results regarding the risk-neutral versus risk-averse cases, we present

plots of the optimal value versus the risk trade-off parameter λ for each of the three risk measures.

For every test instance, we ran the algorithm for λ ∈ {0, 0.1, 0.2, . . . , 1} to trace the efficient

frontier of each problem. For QDEV and CVaR risk measures, we set the parameter α = 0.95

and for EE we set the target ψ closer to the α-quantile values of QDEV and CVaR. This was done

to provide a basis for comparison among the three risk measures. To evaluate the performance of

the algorithm for each risk measure, we recorded computational time (CPU), number of iterations

and objective value at termination. We should point out that, for the SD algorithm, the number of

samples is equal to the number of iterations at termination.

Since the SD algorithm involves sampling, we replicate every standard instance to get a better

statistical estimation of the optimal value. For each instance, we perform 30 replications for every

combination of the risk measure and the risk trade-off parameter λ. For each of the 30 replications,

in order to compute the value of statistics which are not directly available at the termination of

algorithm, we fix the optimal solutions and generate 5000 independent samples, uncorrelated to

any previously generated ones. In the end, by using results from each of the 30 replications, we

record following statistics for our analysis: the objective value at termination, the expected cost,

the expected cost of the risk deviation statistic, the upper bound value, the CPU time in seconds

and number of iterations.

Next, we report and discuss the computational results. We place most of the tables in the
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Appendix A to provide continuity to the foregoing discourse. We report the computational results

tables in the following test instance order: pgp2, pgp2e, gbd, lands and storm. The names of the

columns of each table are as follows: λ (risk trade-off parameter), ‘Obj Val’ (optimal objective

value), E[f(x, ω̃)] (expected cost), E[ν(ω̃)] (expected cost of the deviation statistic), ‘UB’ (upper

bound value), ‘CPU’ (computational time taken in seconds), and ‘Iteration’ (number of iterations,

which is equal to the number of samples taken). For each λ value in the table, the first row records

the average value of a statistic mentioned in the column for all 30 replications of the instance for

the given risk measure and the second row records the standard deviation.

5.2.1 Results for SD-EE

The results for SD-EE and SAA-EE are reported in Table A.1 and Table A.2 for pgp2, Table

A.3 and Table A.4 for pgp2e, Table A.5 and Table A.6 for gbd, Table A.7 and Table A.8 for lands,

and Table A.9 and Table A.10 for storm, respectively. All the tables are included in Section A.1 of

Appendix A. The first and second rows of each table (λ = 0) show the results for the risk-neutral

case. Notice that for all the test instances the optimal objective values of SD-EE correspond very

closely to the values from the literature listed in Table 5.1 and to the values reported for SAA-EE.

The most important feature of the SD-EE algorithm is that it takes a relatively small fraction of

the total number of scenarios to converge to an optimal solution, which is particularly salient in the

last three instances of Table 5.1. Unlike SAA, we do not need to specify the number of scenarios to

sample in SD-EE: we just set the tolerance level for the termination criteria and the algorithm only

samples the required number of scenarios to satisfy the criteria. This feature guarantees a desire

level of accuracy in solution, and at the same time offers a competitive computational time, which

is an advantage over the SAA approach.

In the tables, we can see that the objective values increase with the value of λ. This is expected

and is an indication of the increasing cost of being more risk-averse. The change in the value of

expected cost for different values of λ is an indication in the change of the first-stage decision

to adapt to the risk aversion level. For example, we see that for pgp2 the value remains almost

constant for most λ values, an indication that the risk-neutral approach is sufficient, whereas for
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pgp2e that is not the case.

The target value ψ for each instance was carefully set through experimentation. By making

several runs for different target values, we observed that for higher ψ values (which correspond to

fewer scenarios exceeding the target), the risk measure EE becomes effective only for a relatively

small number of scenarios and has little to no-effect on the solution for smaller values. Finally, we

should point out that another attractive feature of the SD-EE algorithm is that the computation time

required for convergence is relatively small since the algorithm typically requires few scenarios to

reach termination.

5.2.2 Results for SD-QDEV

The results of SD-QDEV algorithm for instances pgp2, pgp2e, gbd, lands and storm are sum-

marized in Appendix A in Tables A.11, A.13, A.15, A.17 and A.19, respectively and the results of

SAA-QDEV are summarized in Tables A.12, A.14, A.16, A.18 and A.19. As mentioned earlier,

for this algorithm we set the α value to 0.95, which results in ε1 = 1 and ε2 = αε1/(1− α) = 19.

As in the results for SD-EE, for all test instances the risk-neutral optimal values are very similar

to the optimal objective values from the literature listed in Table 5.1 and to the values reported for

SAA-QDEV. For instances with a large number of scenarios, the SD-QDEV algorithm uses only a

small fraction before convergence is achieved.

We can see from the tables that the objective values increase with λ. This is more pronounced

than in the SD-EE case. We also see that with SD-QDEV, the expected cost E[f(x, ω̃)] generally

increases with the risk trade-off factor, an indication that QDEV is more adept to changes in the

level of risk-averseness than EE. This is especially true for gbd, where there is a 30% increase

in the expected cost. The reader should recall that with QDEV, we penalize deviations from the

α-quantile both above and below, and this affords this risk measure more ‘flexibility’. We also

see that the SD-QDEV algorithm takes relatively small computation time to terminate, which is

comparable to that of SD-EE in general.
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5.2.3 Results for SD-CVaR

The results for the SD-CVaR and SAA-CVaR algorithms are reported in Appendix A in Tables

A.21-A.29 and Tables A.22-A.30 for instances pgp2, pgp2e, gbd, lands and storm, respectively.

Recall that, as with SD-QDEV, we set the α value to 0.95. As with the other two risk measures,

the risk-neutral optimal values (λ = 0) are similar to the optimal objective values reported for the

SAA-CVaR. It can also be observed that for all instances the objective value increases with λ.

Unlike the other quantile risk measures QDEV, with CVaR we can see that the expected cost

E[f(x, ω̃)] does not change by much as λ increases. For the CVaR it seems that more scenarios

are needed in order to be above the VaR or the α value needs to be set to a lower value than

0.95, to have any measurable impact on the optimal first-stage solution. Also, CVaR has more

impact on instances having skewed marginal distributions compared to the instances with uniform

marginal distribution. This is true for instance pgp2e which was generated by skewing the marginal

distribution of instance pgp2. For pgp2e, we see a noticeable increase in the expected cost (about

2%) from the risk-neutral case to the risk-averse case whereas for pgp2 the increase in the expected

cost is less pronounced (< 0.5%).

5.3 Impact of Risk Measure on Optimal Solution

To go deeper in the computational findings, in Table 5.2 we report the first-stage optimal solu-

tion for one replication of instance pgp2e for each combination of the risk measure and different

values of trade-off factor. Recall from Section 5.1 that instance pgp2e deals with electrical capacity

expansion. The first-stage decisions in this instance correspond to electricity generated from gas

fired power plants x1, coal fired power plants x2, nuclear power plants x3 and other generators x4.

For EE, we set the target ψ = 420. For QDEV and CVaR we set the parameter α = 0.95.

In Table 5.3, we report the first-stage cost c>x and the expected cost E[f(x, ω̃)] of instance

pgp2e based on optimal solutions reported in Table 5.2. For each λ we fix the optimal solution

obtained in Table 5.2 and generate a random sample of size 5000. The expected cost E[f(x, ω̃)] is

estimated by averaging out the values of f(x, ω̃) obtained.
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Table 5.2: Optimal Solution for Instance pgp2e

EE QDEV CVaR
λ x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

0.0 3.603 4.832 2.921 10.207 3.603 4.832 2.921 10.207 3.603 4.832 2.921 10.207
0.1 3.472 7.342 2.020 8.415 4.812 3.184 2.849 11.663 3.939 4.785 2.914 9.411
0.2 0.000 10.260 3.207 7.077 2.769 6.545 3.623 9.661 0.000 9.110 5.307 6.920
0.3 5.027 3.588 0.000 11.898 5.493 8.144 3.233 5.872 0.000 5.949 4.412 11.383
0.4 2.184 6.676 4.791 6.333 2.435 6.092 4.664 9.211 0.000 8.160 5.445 8.823
0.5 3.971 2.640 4.282 9.617 1.172 6.751 7.129 7.449 1.708 9.384 1.455 9.596
0.6 0.887 5.988 4.357 10.299 0.000 7.858 6.744 8.050 5.242 5.248 3.224 8.434
0.7 3.093 4.620 3.708 9.401 1.358 6.394 7.317 7.432 1.664 6.080 5.568 8.671
0.8 0.000 6.114 5.927 9.351 1.221 6.495 7.369 7.402 1.479 8.488 6.438 5.653
0.9 0.442 7.288 4.275 8.807 2.262 6.891 6.898 6.461 4.174 6.450 5.445 5.783
1.0 1.087 6.372 3.322 9.697 2.872 5.403 6.803 7.436 0.000 10.094 7.444 4.436

Table 5.3: Optimal Values for Instance pgp2e

EE QDEV CVaR
λ c>x E[f(x, ω̃)] c>x E[f(x, ω̃)] c>x E[f(x, ω̃)]
0 177.827 417.567 177.827 417.567 177.827 417.567

0.1 168.919 418.291 185.965 423.512 175.964 418.763
0.2 165.601 418.879 189.44 423.213 190.207 420.870
0.3 146.774 422.894 198.887 430.373 180.527 420.340
0.4 183.223 421.389 196.881 423.582 197.168 426.345
0.5 184.398 420.411 217.731 431.749 163.630 423.942
0.6 182.290 418.821 211.210 429.390 191.346 425.318
0.7 179.003 418.443 220.000 432.918 200.314 424.233
0.8 193.740 421.024 220.000 432.876 211.134 429.333
0.9 176.674 418.002 220.000 433.74 208.717 429.534
1 166.808 417.928 220.000 433.504 216.381 432.258
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We can see from Table 5.2 that for all the three risk measures, the power generated from gas

fired power plant x1 and other generators x4 decreases with increasing λ (as we become more risk-

averse), while the power generated from nuclear power plant x3 increases. This trend is moderate

for risk measure EE, but significant in the case of CVaR. Also, as the value of λ increases, the

power generated from coal fired power plant x2 increases slightly for risk measure QDEV and EE,

and more than doubles for CVaR. From Table 5.3, it can be inferred that the impact of risk measure

QDEV and CVaR on the first-stage cost and the expected cost for pgp2e is more pronounced

compared to the impact of EE, since in the cases of QDEV and CVaR there is an increase of 25%

in first-stage cost as the value of λ increases from 0 to 1. These results demonstrate the different

nature of these mean-risk measures when applied to the same test instance.

5.4 Expected Cost and Risk Trade-Off Factor

Figure 5.1: Expected Cost E[f(x, ω̃)]

Understanding the effect of a risk measure and the risk trade-off factor λ on the expected

cost and on the “extreme” scenarios is important for risk management purposes. This also helps in

deciding when it is appropriate to use a given risk measure for a given problem. It is also important
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to know the effect of the λ and how one can select which level to use in practice. In Figure 5.1

we plot the expected cost versus λ instance gbd for all three risk measures. We selected instance

gbd because the marginal distributions of the random variables in this instance are not uniform nor

normally distributed and therefore, the effect of a risk measure on the expected cost is significant.

We can observe from Figure 5.1 that as the value of λ increases, the expected cost for EE stays

almost constant, it increases slightly for CVaR and has a major increase for QDEV, in particular

after λ = 0.5. In Figure 5.2 we plot the expected cost for different λ values for a selected percent-

age of worst-case (‘extreme’) scenarios. We see from the figure that the cost associated with the

worst-case scenarios for risk measure QDEV decreases as we become more and more risk-averse.

The expected cost of the worst-case scenarios drops by almost 10% as the value of λ increases from

0 to 1. This effect is less evident in the case of CVaR (2.5%) and is almost insignificant in case of

EE (< 1%). This indicates that for a given value of risk trade-off factor, the risk measure QDEV

has more impact on expected cost and the cost associated with ‘extreme’ scenarios compared to

EE and CVaR.

5.5 Mean-Risk SD versus Mean-Risk SAA

To understand the impact of risk aversion on performance of different sampling approaches,

we compared the performance of SD and SAA approach under risk-neutral and risk-averse cases.

We implement the SAA approach described in [50] for each of the three risk measures EE, QDEV

and CVaR. For each instance, we collect a sample of one thousand random scenarios using Monte

Carlo simulation to implement SAA and for each instance we perform thirty replications of SAA.

Table 5.4 summarizes the average computation time in seconds for SD and SAA approach with

risk measures EE, QDEV and CVaR for test instances pgp2, pgp2e, gbd, LandS and storm. For

each instance the row λ = 0 lists the average computation time for risk-neutral case, whereas row

λ > 0 lists the average computation time under risk aversion for each risk measure..
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Figure 5.2: Cost of Worst Case Scenarios
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Table 5.4: Average CPU Time (Sec)

λ SD-EE SAA-EE SD-QDEV SAA-QDEV SD-CVaR SAA-CVaR

pgp2 0 4.89 4.21 3.88 4.47 4.35 4.09

> 0 4.74 4.20 2.90 5.80 3.64 5.92

pgp2e 0 3.79 5.44 4.84 5.60 4.30 5.43

> 0 4.49 5.46 2.80 7.03 3.13 8.37

gbd 0 3.43 3.83 3.42 4.13 4.10 4.15

> 0 4.10 4.32 3.44 7.53 3.62 8.41

LandS 0 2.96 4.43 3.14 4.45 3.50 4.30

> 0 3.67 4.32 2.39 6.54 2.83 6.81

storm 0 129.92 62.63 207.32 87.01 191.40 69.01

> 0 161.00 63.78 170.54 101.86 225.41 98.94

For quantile risk measures QDEV and CVaR, the computation time of SAA approach increases

under risk aversion. Specifically for instances with skewed distribution of second stage random

variables such as pgp2e and gbd, the computation time under risk aversion with CVaR and QDEV

increases by around 75% and 50% respectively. In contrast to SAA, the performance of SD algo-

rithm remains consistent under risk aversion.

Table 5.5 summarizes the average number of iterations required for the SD and SAA approach

to converge with risk measures EE, QDEV and CVaR for each of the five test instances. One

should note that in SD algorithm at each iteration only one LP is solved, whereas in case of SAA

approach LPs associated with all of the one thousand scenarios from the sample are solved. The

average number of iterations for SAA approach increases under risk aversion with quantile risk

measures QDEV and CVaR.
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Table 5.5: Number of Iterations

λ SD-EE SAA-EE SD-QDEV SAA-QDEV SD-CVaR SAA-CVaR

pgp2 0 790.17 31.43 758.70 29.67 742.00 30.40

> 0 778.43 31.09 635.81 42.45 705.19 43.91

pgp2e 0 744.30 39.90 796.03 40.40 781.97 38.83

> 0 774.60 39.61 629.94 49.57 671.70 58.32

gbd 0 677.13 30.40 661.60 30.13 710.27 30.57

> 0 713.42 33.78 719.00 51.33 648.02 55.10

LandS 0 670.60 31.63 709.17 30.83 726.97 31.13

> 0 725.95 31.11 607.67 45.88 657.64 48.62

storm 0 702.20 51.17 759.83 70.39 739.53 52.13

> 0 714.16 53.23 630.77 79.06 796.39 76.91
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6. MULTISTAGE STOCHASTIC DECOMPOSITION ALGORITHM

In this section we extend the non-regularized mean-risk two-stage SD algorithm to the multi-

stage setting. The fundamental idea of MSD algorithm is to solve only one LP at each stage per

iteration of the algorithm to generate cut approximations. For each iteration, a sample path ω start-

ing from the first stage to the terminal stage is randomly generated. Figure 6.1, shows a three stage

scenario tree and an example of a sample path ω2 = (ω2
2, ω

2
3), represented by the black nodes.

Figure 6.1: Scenario Tree

Except the root node n1, each node on the sample path has sibling nodes that share a common

ancestor. For example, node n2
2 on sample path ω2 has two sibling nodes n1

2 and n3
2, with one com-
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mon ancestor node n1. After a sample path is randomly generated, the MSD algorithm executes

the forward pass and then the backward pass.

During the forward pass, at each stage of the scenario tree an LP associated with the node on

the path is solved and the solution associated with the node is updated. In the backward pass,

the solutions associated with the nodes on sample path and the sibling nodes are used to compute

the approximation of the recourse function E[ft(xt−1, ω̃[t])] at every stage. Next, we derive the

decomposition approach for MR-MSLP with EE, QDEV and CVaR, respectively.

6.1 MSD for EE

Using the recursive formulations for MR-MSLP with EE from Proposition 3.6.1, in this section

we present our detailed decomposition approach for risk measure EE. The decomposition approach

at the terminal stage T is same as that of the MR-SLP, whereas for the non-terminal stages we use

approximation of associated LPs. We also provide formulas for computing cut coefficients and cut

constant at each stage and we follow it with detailed MSD-EE algorithm.

6.1.1 Decomposition for MR-MSLP with EE

For a given sample path ωk at iteration k, the forward pass generates the decision vector xt(ωkt )

for all stages t ∈ {1, . . . , T − 1}. In the backward pass, starting from the terminal stage the

approximation η of the recourse function is computed for every stage except for the terminal stage.

Terminal Stage

Using the iterate xT−1(ωkT−1) generated during the forward pass and the formulation (3.16), we

have the following deterministic LP at stage T on sample path ωk:

fkT (xT−1, ω
k
T ) := Min c>T xT (ωkT ) + λTνT (ωkT ) (6.1a)

s.t. WTxT (ωkT ) ≥ rT (ωkT )− TT (ωkT )xT−1(ωkT−1), (6.1b)

− c>T xT (ωkT ) + νT (ωkT ) ≥ −ψT (ωkT ) + c>T−1xT−1(ωkT−1), (6.1c)

xT (ωk) ∈ XT , νT (ωk) ≥ 0.
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Using the iterate xT−1(ωkT ) for iteration k and realization ωk, we solve the dual of problem

(6.1a-6.1c) to obtain optimal dual multipliers πkT (ωkT ) and φkT (ωkT ) associated with constraints

(6.1b) and (6.1c), respectively. This dual solution, along with all the dual solutions generated

at previous iterations at stage T for sibling nodes are used to compute the lower bounding function

ηkT (xT−1, ω̃[T ]) ≤ E[fT (xT−1, ω̃[T ])] at stage T − 1, as follows:

ηkT (xT−1, ω̃[T ]) := max{αkT i + (βkT i)
>xT−1(ωkT−1) | i = 1, . . . , k}. (6.2)

The scalar αkTk and the cut coefficients βkTk are calculated as follows:

αkTk =
1

k

k∑
i=1

{(πkT i)>rT (ωiT )− φkT iψT}, (6.3)

(βkTk)
> =

1

k

k∑
i=1

{(πkT i)>(−TT (ωiT )) + φkT ic
>
T−1}, (6.4)

(πkT i, φ
k
T i) ∈ argmax{(πT )>

(
rT (ωiT )− TT (ωiT )xkT−1(ωkT−1)

)
+ φT

(
c>T−1x

k
T−1(ωkT−1)− ψT (ωiT )

)
| πT ∈ V k

T , φT ∈ Uk
T},∀i = {1, . . . , k − 1}, (6.5)

where k is the current iteration index, i is the enumerator of all the iterations and V k
T and Uk

T are

sets of all the optimal dual multipliers πT and φT respectively, generated at the terminal stage t up

to iteration k. The approximation function ηkT (xT−1, ω̃[T ]) provides a lower bounding affine func-

tion for E[fkT (xT−1, ω
k
[T ]), and using the approximation ηkT (xT−1, ω̃[T ]) we can redefine function

63



fkT−1(xT−2, ω
k
[T−1]) at stage T − 1 as follows:

fkT−1(xT−2, ω
k
[T−1]) := Min c>T−1xT−1(ωkT−1) + ηkT + λT−1νT−1(ωkT−1) (6.6)

s.t. WT−1xT−1(ωkT−1) ≥ rT−1(ωkT−1)− TT−1(ωkT−1)xT−2(ωT−2),

− c>T−1xT−1(ωkT−1)− ηkT + νT−1(ωkT−1) ≥ −ψT−1(ωkT−1)

+ c>T−2xT−2(ωkT−2),

− (βkT i)
>xT−1(ωkT−1) + ηkT ≥ αkT i, ∀i = 1, . . . , k

xT−1(ωkT−1) ∈ XT−1(xT−2, ω
k
[T−1]), νT−1(ωkT−1) ≥ 0.

Non-Terminal Stage

Unlike the terminal stage, the LPs associated with the non-terminal stages are not deterministic,

due to the fact that the value of ft+1(xt, ω[t]) in problem (3.15) and in problem (3.16) is based on

realization ω. Let pknt denote empirical frequency for node n, that is the probability that reflects

the number of times node n at stage t has been visited up to iteration k given that it’s parent node

is visited. Therefore, since the LPs associated with non-terminal stages are not deterministic, for

approximating ηkt (xt, ω̃[t+1]) at a non-terminal stages t, we use the cut approximation ηkt+1 and the

empirical frequencies pknt . From equation (3.15) the objective function for a non-terminal stage t

at iteration k with cut approximation ηkt+1 is defined as follows:

fkt (xt−1, ω
k
[t]) := Min c>t xt(ω

k
t ) + ηkt+1 + λtνt(ω

k
t ), (6.7)

s.t. Wtxt(ω
k
t ) ≥ rt(ω

k
t )− Tt(ωkt )xt−1(ωkt−1),

− c>t xt(ωkt )− ηkt+1 + νt(ωt) ≥ −ψt + c>t−1xt−1(ωkt−1),

− (βk(t+1)i)
>xt(ω

k
t ) + ηkt+1 ≥ αk(t+1)i, ∀i = 1, . . . , k

xt(ω
k
t ) ∈ Xt(xt−1, ω[t]), νt(ω

k
t ) ≥ 0, ηkt+1 ∈ R,

where the approximation of the recourse function ηkt+1(xt, ω̃[t+1]) is linear and convex and is defined
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as follows:

ηkt+1(xt, ω̃[t+1]) := max{αk(t+1)i + (βk(t+1)i)
>xt(ω

k
t ) | i = 1, . . . , k}. (6.8)

Now to obtain a lower bounding function ηkt (xt−1, ω̃[t]) ≤ E[ft(xt−1, ω̃[t])], for all sibling nodes n

at stage t, let

(α̂kn(t+1), β̂
kn
(t+1)) ∈ argmax{αk(t+1)i + (βk(t+1)i)

>xnt | i = 1, . . . , k}, (6.9)

where xnt is incumbent solution at node n. Then, the weighted average of recourse function ap-

proximation ηkt+1(xt, ω̃[t+1]) at stage t for iteration k can be stated using the empirical frequencies

and set (6.9) as follows

ηkt+1(xt, ω̃[t+1]) :=
∑
n

pknt
(
α̂kn(t+1) + (β̂kn(t+1))

>xt
)
. (6.10)

Next, by substituting ηkt+1 from problem (6.7) with result from equation (6.10) we have following

approximation at stage t:

F k
t (xt−1, ω

k
[t]) :=

∑
n

pknt α̂
kn
(t+1)+Min(ct +

∑
n

pknt β̂
kn
(t+1))

>xt + λtνt (6.11a)

s.t. Wtxt ≥ rt(ω
k
t )− Tt(ωkt )xt−1(ωkt−1), (6.11b)

− (ct +
∑
n

pknt β̂
kn
(t+1))

>xt + νt ≥ −ψt

+ c>t−1xt−1(ωkt−1) +
∑
n

pknt α̂
kn
(t+1), (6.11c)

xt ∈ Xt(xt−1, ω[t]), νt ≥ 0.

Given the iterate xt−1(ωkt−1) for iteration k and realization ωk, we solve the dual of problem

(6.11a-6.11c) to obtain the dual multipliers πkt and φkt associated with constraints (6.11b) and

(6.11c), respectively. Using these dual multipliers πkt and φkt , we compute the scalar αkt and coef-
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ficients βkt for the peicewise linear approximation ηkt of E[ft(xt−1, ω̃[t])] at stage t− 1, as follows:

αkt = (πkt )>rt(ω
k
t )− φktψt + (1 + φkt )

∑
n

pknt α̂
kn
(t+1) (6.12)

(βkt )> = (πkt )>(−Tt(ωkt )) + φkt c
>
t−1. (6.13)

6.1.2 MSD Algorithm for MR-MSLP with EE

Let us continue to denote the algorithm iteration index by k and the iterates for stage t by

xkt (ω
k
t ). Furthermore, let incumbent solution and the candidate solution for stage t = 1 at iteration

k be denoted by x̄k1 and xk1, respectively. A node under consideration on the sample path ωk will

be denoted by n, while the immediate ancestor of node n will be denoted by na. We use sets V k
T

and Uk
T to store all the dual variables πk and φk generated at the terminal stage T up to iteration

k. Based on results derived in Section 6.1.1, the MSD algorithm for MR-MSLP with EE can be

stated as follows:

MSD-EE Algorithm

Step 0: Initialization.

Set k ← 0. For the terminal nodes, set V 0
n ← ∅ and U0

n ← ∅. Set η0
n(x) ← −∞,

x0
1 ∈ X1 and x̄0

1 ∈ X . Set target ψt ∈ R for t = 1, . . . , T − 1, and choose δ ∈ (0, 1). Set

lower bound Lt ∈ R for each stage t.

Step 1: Generate Sample Path.

Set k ← k+1. Randomly generate a sample path ωk ∈ ω̃, independent of any previously

generated sample paths.

Step 2: Forward Recursion.

2.1 If all the nodes on sample path ωk are visited in previous iterations, then the approxima-

tion ηk−1
t defined in (6.7) will be available for all nodes n. Starting from the stage t = 2
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and using x̄k1, solve problem (6.7) to optimize fk−1
t (xt−1, ω

k
[t]) to obtain new incumbent

solution xkt (ω
k
t ) for all the nodes associated with stages t = 2, . . . , T − 1.

2.2 If some nodes on the sample path ωk have not been visited during previous iterations,

then perform step 2.1 up to a previously unseen node is reached. Then obtain initial

feasible solution xkt (ω
k
t ) for LPs associated with all the remaining non-terminal nodes

on the sample path.

Step 3: Determine Cut Approximation ηkt .

Begin backward recursion from the terminal node and trace back the sample path to the root

node.

a. Solve the dual problem (6.1a)-(6.1c) for the terminal node on the sample path ωk to

obtain the dual multipliers:

(πkT (ωk), φkT (ωk)) ∈ Max{(πkT )>(rT (ωk)− TT (ωk)xT−1(ωk)) + φkT (c>T−1xT−1(ωk)− ψT )

| π>TWT − cTφkT ≤ cT , φ
k
T ≤ λT , π

k
T ≥ 0, φkT ≥ 0}.

b. Update sets V k
T and Uk

T :

V k
T ← V k−1

T ∪ πkT (ωk).

Uk
T ← Uk−1

T ∪ φkT (ωk).

c. Determine the coefficients of the k-th cutting plane for node na:

(πkT i, φ
k
T i) ∈ argmax{(πT )>(rT (ωi)− TT (ωi)xT−1(ωi)) + φT (c>T−1xT−1(ωi)− ψT )

| πT ∈ V k
T , φT ∈ Uk

T},∀i ∈ {1, 2, . . . , k − 1}.

αkTk ← 1
k

∑k
i=1{(πkT i)>rT (ωi)− φkT iψT}.

(βkTk)
> ← 1

k

∑k
i=1{(πkT i)>(−TT (ωi)) + φkT ic

>}.

d. Determine the cut coefficients of the k-th cutting plane for all nodes on sample path

ωk, starting from stage t = T − 2, T − 3, . . . , 1 by solving dual of problem

(6.11a)-(6.11c) to obtain αkt and (βkt )> using equation (6.12) and (6.13), respectively.
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e. Update coefficients of all previously generated cuts associated with each node n on

sample path ωk.

αkni ← (k−1
k

)αk−1
ni + ( 1

k
)Ln, ∀i = 1, . . . , k − 1.

βkni ← (k−1
k

)βk−1
ni , ∀i = 1, . . . , k − 1.

f. Update fkt (xt, ω
k
[t]) for each node n on sample path ωk.

ηkn − (βkni)
>xn− ≥ αkni, ∀i = 1, . . . , k.

g. Update approximation for each node n not on the sample path ωk.

fkn(xt, ω
k)← fkn−1(xt, ω

k)

Step 4.Update Incumbent Solution.

if fk1 (xk1)− fk1 (x̄k−1
1 ) < δ[fk−1

1 (xk1)− fk−1
1 (x̄k−1

1 )],

x̄k1 ← xk1

else

x̄k1 ← x̄k−1
1 .

Step5. Solve Master Problem.

Min
x,ηk

c>1 x1 + ηk2

s.t. x1 ∈ X1,

ηk2 − (βk2i)
>x1 ≥ αk2i, ∀i = {1, . . . , k},

to get the new candidate solution xk+1
1 .

Step 6. Termination Criterion.

If the following criterion is not satisfied, return to step 1. (Termination criteria based on

objective value):

For a large enough k, terminate the algorithm if

fk−1
1 (x̄k−1

1 )− fk−1
1 (xk1) ≤ ε, where ε > 0 is a given tolerance level.
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REMARK 6.1.1. In addition to the termination criteria defined in step 6 of MSD-EE algorithm,

certain characteristics of the MSD algorithm can be used to design additional termination criteria.

For example, it is known that the incumbent solution x̄k1 changes only finitely often. Therefore if

mk is the number of times the incumbent solution changes up to iteration k. Then eventually k−mk

will increase without bound. Therefore, a termination criterion based on incumbent objective value

can be defined as follows:

Let {x̄kn1 }
mk
kn=1 a subsequence of {xn1}kn=1, be a collection of all incumbent solutions up to iteration

k. Define

γk = 1
k

∑k
t=1 ft(x̄

t
1) and γ̄k = 1

mk

∑mk
n=1 fkn(x̄kn1 ).

Terminate the algorithm for a large enough k, if

|(fk(x̄k1)− γk−1)/γ̄k−1| ≤ ε, where ε > 0 is a given tolerance level.

6.2 MSD for QDEV

In this section we present our detailed decomposition approach for MR-MSLP with QDEV

using the recursive formulations described in Proposition 3.6.1. At the terminal stage T , the prob-

lem is deterministic and the dual solutions can be used for generating MSD cuts. Whereas, at the

non-terminal stages we solve an approximation of the associated LP to generate cuts. Next, using

the described decomposition approach we present the detailed MSD-QDEV algorithm.

6.2.1 Decomposition for MR-MSLP with QDEV

Similar to the decomposition approach of EE, in case of QDEV for a given sample path ωk at

iteration k, the forward pass generates the decision vector xkt (ω
k
t ) for all stages t ∈ {1, . . . , T −1}.

Then, the approximation ηt of the recourse function is computed at each stage during the backward

pass, beginning from the terminal stage. Unlike EE, in QDEV we also need to determine the α-

quantile ψt for all non-terminal nodes to compute variable νt.
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Terminal Stage

From the iterate xT−1(ωkT−1) and using the formulation (3.20), we have the following deter-

ministic linear problem for the terminal node at stage T on sample path ωk:

fkT (xT−1, ω
k
[T ]) := Min (1− λT ε1)c>T xT (ωkT ) + λT (ε1 + ε2)νT (ωkT ) (6.14a)

s.t. WTxT (ωkT ) ≥ rT (ωkT )− TT (ωkT )xT−1(ωkT−1), (6.14b)

− c>T xT (ωkT ) + νT (ωkT ) ≥ c>T−1xT−1(ωkT−1)− ψT−1(ωkT−1), (6.14c)

xT (ωkT ) ∈ XT (xT−1, ω[T ]), νT (ωkT ) ≥ 0.

Using the iterate xT−1(ωkT−1) for iteration k and realization ωk, we solve the dual of problem

(6.14a-6.14c) to obtain dual multipliers πkT (ωkT ) and φkT (ωkT ) associated with constraints (6.14b)

and (6.14c) , respectively. This dual solution, along with all the dual solutions generated in past

iterations at stage T are used to compute the approximation ηkT (xT−1, ω̃[T ]) at stage T − 1, defined

as follows:

ηkT (xT−1, ω̃[T ]) := max{αkT i + (βkT i)
>xT−1(ωkT−1) + γkT iψT−1(ωkT−1) | i = 1, . . . , k}. (6.15)

The cut scalar αkTk and the cut coefficients βkTk and γkTk are calculated as follows:

αkTk =
1

k

k∑
i=1

{(πkT i)>rT (ωi)}, (6.16)

(βkTk)
> =

1

k

k∑
i=1

{(πkT i)>(−TT (ωi)) + φkT i(c
>
T−1)}, (6.17)

γkTk =
1

k

k∑
i=1

−φkT i, (6.18)

(πkT i, φ
k
T i) ∈ argmax{(πT )>(rT (ωi)− TT (ωi)xkT−1(ωk)) + φT (c>T−1x

k
T−1(ωk)− ψT−1(ωk))

| πT ∈ V k
T , φT ∈ Uk

T},∀i = {1, . . . , k − 1}. (6.19)
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Non-Terminal Stage

The value of function ft+1(xt, ω[t+1]) in problems (3.17) and (3.18) is based on realization

ωt+1. Therefore, the LPs associated with the non-terminal stages are not deterministic. Hence, for

computation of approximation function at a non-terminal stages t, we use the cut approximation

ηkt+1 and the empirical frequencies pknt . From equation (3.18) the objective function for a non-

terminal stage t at iteration k with cut approximation ηkt+1 is defined as follows:

fkt (xt−1, ω
k
[t]) := Min (1− λtε1)

[
(1− λt+1ε1)c>t xt(ω

k
t ) + λt+1ε1ψt(ω

k
t ) + ηkt+1

]
+ λt(ε1 + ε2)νt(ω

k
t ) (6.20)

s.t. Wtxt(ω
k
t ) ≥ rt(ω

k
t )− Tt(ωkt )xt−1(ωkt−1),

− (1− λt+1ε1)c>t xt(ω
k
t )− λt+1ε1ψt(ω

k
t )− ηkt+1

+ νt(ω
k
t ) ≥ c>t−1xt−1(ωkt−1)− ψt−1(ωkt−1),

− (βk(t+1)i)
>xt(ω

k
t )− γk(t+1)iψt(ω

k
t ) + ηkt+1 ≥ αk(t+1)i, ∀i = 1, . . . , k

xt(ω
k
t ) ∈ Xt(xt−1, ω[t]), ψt(ω

k
t ) ∈ R, νt(ωkt ) ≥ 0, ηkt+1 ∈ R,

where the approximation ηkt+1(xt, ω̃[t+1]) is linear and convex and is defined as follows:

ηkt+1(xt, ω̃[t+1]) := max{αk(t+1)i + (βk(t+1)i)
>xt(ω

k
t ) + γk(t+1)iψt(ω

k
t ) | i = 1, . . . , k}.

Let for a sibling node n at stage t

(α̂kn(t+1), β̂
kn
(t+1), γ̂

kn
(t+1)) ∈ argmax{αk(t+1)i + (βk(t+1)i)

>xnt + γk(t+1)iψ
n
t | i = 1, . . . , k}. (6.21)

As in case of EE, substituting set (6.21) and empirical probabilities in formulation (6.20) we have
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following approximation at stage t:

F k
t (xt−1, ω

k
[T ]) :=(1− λtε1)

∑
n

pknt α̂
kn
(t+1) + Min (1− λtε1)

[(
(1− λt+1ε1)ct

+
∑
n

pknt β̂
kn
(t+1)

)>
xt + (λt+1ε1 +

∑
n

pknt γ̂
kn
(t+1))ψt

]
+ λt(ε1 + ε2)νt (6.22a)

s.t. Wtxt ≥ rt(ω
k
T−1)− Tt(ωk)xt−1(ωk), (6.22b)

−
(
(1− λt+1ε1)ct +

∑
n

pknt β̂
kn
(t+1)

)>
xt − (λt+1ε1

+
∑
n

pknt γ̂
kn
(t+1))ψt + νt ≥ −ψt−1(ωkt−1)

+ c>t−1xt−1(ωkt−1) +
∑
n

pknt α̂
kn
(t+1), (6.22c)

xt ∈ Xt(xt−1, ω[t]), ψt ∈ R, νt ≥ 0.

Given the iterate xt−1(ωkt ) for iteration k and realization ωk, we solve the dual of problem

(6.22a-6.22c) to obtain the dual multipliers πkt and φkt associated with constraints (6.22b) and

(6.22c), respectively. Using the dual multipliers πkt and φkt , we compute the scalar αkt and the cut

coefficients βkt and γkt for the linear approximation ηkt at stage t− 1, as follows:

αkt = (πkt )>rt(ω
k) + (1− λtε1 + φkt )

∑
n

pknt α̂
kn
(t+1) (6.23)

(βkt )> = (πkt )>(−Tt(ωk)) + φkt c
>
t−1, (6.24)

γkt = −φkt . (6.25)

6.2.2 MSD Algorithm for MR-MSLP with QDEV

We continue to denote the algorithm iteration index by k and the iterates for stage t by xkt (ω
k
t ),

while the immediate ancestor of node n will be denoted by na. We use sets V k
T and Uk

T to store all

the dual variables πk and φk generated at the terminal stage T up to iteration k. Based on results
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derived in Section 6.2.1, the MSD algorithm for MR-MSLP with QDEV is stated as follows:

MSD-QDEV Algorithm

Step 0: Initialization.

Set k ← 0. For the terminal nodes, set V 0
n ← ∅ and U0

n ← ∅. Set η0
n(x) ← −∞,

x0
1 ∈ X1 and x̄0

1 ∈ X . Assume α-quantile ψt ∈ R for the stage t, and δ ∈ (0, 1). Set

lower bound Lt ∈ R for each stage t.

Step 1: Generate Sample Path.

Set k ← k+1. Randomly generate a sample path ωk ∈ ω̃, independent of any previously

generated sample paths.

Step 2: Forward Recursion.

2.1 If all the nodes on sample path ωk are visited in previous iterations, then the approxima-

tion ηk−1
t defined in (6.20) will be available for all nodes n. Starting from the stage t = 2

and using x̄k1, solve problem (6.20) to optimize fk−1
t (xt−1, ω

k
[t]) to obtain new incumbent

solution xkt (ω
k) for all the nodes associated with stages t = 2, . . . , T − 1.

2.2 If some nodes on the sample path ωk have not been visited during previous iterations,

then perform step 2.1 up to a previously unseen node is reached. Then obtain initial

feasible solution xkt (ω
k) for LPs associated with all the remaining non-terminal nodes

on the sample path.

Step 3: Determine Cut Approximation ηkt .

Begin backward recursion from the terminal node and trace back the sample path to the root

node.

a. Solve the dual problem (6.14a)-(6.14c) for the terminal node on the sample path ωk to
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obtain the dual solution:

(πkT (ωk), φkT (ωk)) ∈ Max{(πkT )>(rT (ωk)− TT (ωk)xT−1(ωk)) + φkT (c>T−1xT−1(ωk)− ψT )

| π>TWT − cTφkT ≤ cT , φ
k
T ≤ λT (ε1 + ε2), πkT ≥ 0, φkT ≥ 0}.

b. Update sets V k
T and Uk

T :

V k
T ← V k−1

T ∪ πkT (ωk).

Uk
T ← Uk−1

T ∪ φkT (ωk).

c. Determine the coefficients of the k-th cutting plane for node na:

(πkT i, φ
k
T i) ∈ argmax{(πT )>(rT (ωi)− TT (ωi)xT−1(ωi)) + φT (c>T−1xT−1(ωi)− ψT )

| πT ∈ V k
T , φT ∈ Uk

T},∀i ∈ {1, 2, . . . , k − 1}.

αkTk ← 1
k

∑k
i=1{(πkT i)>rT (ωi)}.

(βkTk)
> ← 1

k

∑k
i=1{(πkT i)>(−TT (ωi)) + φkT ic

>}.

γkTk ← 1
k

∑k
i=1−φkT i.

d. Determine the cut coefficients of the k-th cutting plane for all nodes on sample path

ωk, starting from stage t = T − 2, T − 3, . . . , 1 by solving dual of problem

(6.22a)-(6.22c) to obtain αkt , (βkt )> and γkt using equation (6.23) and (6.24),

respectively.

e. Update coefficients of all previously generated cuts associated with each node n on

sample path ωk.

αkni ← (k−1
k

)αk−1
ni + ( 1

k
)Ln, ∀i = 1, . . . , k − 1.

βkni ← (k−1
k

)βk−1
ni , ∀i = 1, . . . , k − 1.

γkni ← (k−1
k

)(βk−1
ni )0, ∀i = 1, . . . , k − 1.

f. Update fkt (xt, ω
k) for each node n on sample path ωk.

ηkn − (βkni)
>xna − γkniψna ≥ αkni, ∀i = 1, . . . , k.

g. Update approximation for each node n not on the sample path ωk.

fkn(xt, ω
k)← fkn−1(xt, ω

k)
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Step 4.Update Incumbent Solution.

if fk1 (xk1)− fk1 (x̄k−1
1 ) < δ[fk−1

1 (xk1)− fk−1
1 (x̄k−1

1 )],

x̄k1 ← xk1

else

x̄k1 ← x̄k−1
1 .

Step5. Solve Master Problem.

Min
x,ηk

(1− λ2ε1)c>1 x1 + λ2ε1ψ1 + ηk2

s.t. x1 ∈ X1,

ηk2 − (βk2i)
>x1 − γk2iψ1 ≥ αk2i, ∀i = {1, . . . , k},

to get the new candidate solution xk+1
1 .

Step 6. Termination Criterion.

If the following criterion is not satisfied, return to step 1.

For a large enough k, terminate the algorithm if

fk−1
1 (x̄k−1

1 )− fk−1
1 (xk1) ≤ ε, where ε > 0 is a given tolerance level.

6.3 MSD for CVaR

Following the same approach as for the MR-MSLP with EE and QDEV, we present our de-

tailed decomposition approach and MSD algorithm for CVaR using the recursive formulations of

MR-MSLP with CVaR from Proposition 3.6.1. AT the stage T , the cut coefficients are computed

using the same approach as two-stage MR-SLP and for the non-terminal stages we solve an ap-

proximation of LPs to generate MSD cuts.
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6.3.1 Decomposition for MR-MSLP with CVaR

We follow the same decomposition approach as that of QDEV for CVaR. For a given sample

path ωk at iteration k, the forward pass generates the decision vector xt(ωkt ) for all stages t ∈

{1, . . . , T − 1}. Then, starting from the terminal stage the cut coefficients η for the approximation

of the recourse function is computed at each stage during the backward pass. We also need to

determine the α-quantile ψ at each stage for computation of CVaR.

Terminal Stage

Given the decision vector xT−1(ωkT−1) and α-quantile ψT−1(ωkT−1), generated during the for-

ward pass at stage T − 1 and the formulation (3.23), we have the following LP for the terminal

node at stage T for sample path ωk:

fkT (xT−1, ω
k
[T ]) := Min c>T xT (ωkT ) +

λT
1− α

νT (ωkT ) (6.26a)

s.t. WTxT (ωkT ) ≥ rT (ωkT )− TT (ωkT )xT−1(ωkT−1), (6.26b)

− c>T xT (ωkT ) + νT (ωkT ) ≥ −ψT−1(ωkT−1) + c>T−1xT−1(ωkT−1), (6.26c)

xT (ωkT ) ∈ XT (xT−1, ω[T ]), νT (ωkT ) ≥ 0.

Given the iterate xT−1(ωk) and ψT−1(ωk) for iteration k and realization ωk, we solve the dual

of problem (6.26a-6.26c) to obtain dual multipliers πkT (ωk) and φkT (ωk) associated with constraints

(6.14b) and (6.14c), respectively. The dual solution of problem (6.26a-6.26c) at iteration k, along

with the dual solutions of all the past iterations generated at stage T are then used to compute the

approximation ηkT (xT−1, ω̃[T ]) of E[fT (xT−1, ω̃[T ])] at stage T − 1, as follows:

ηkT (xT−1,ω̃[T ]
) := max{αkT i + (βkT i)

>xT−1(ωkT ) + γkT iψT−1(ωkT ) | i = 1, . . . , k}. (6.27)
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The scalar αkTk and the cut coefficients βkTk and γkTk are defined as follows:

αkTk =
1

k

k∑
i=1

{(πkT i)>rT (ωiT )}, (6.28)

(βkTk)
> =

1

k

k∑
i=1

{(πkT i)>(−TT (ωiT )) + φkT i(c
>
T−1)}, (6.29)

γkTk =
1

k

k∑
i=1

−φkT i, (6.30)

(πkT i, φ
k
T i) ∈ argmax{(πT )>(rT (ωiT )− TT (ωiT )xkT−1(ωkT−1)) + φT (c>T−1x

k
T−1(ωkT−1)

− ψT−1(ωkT−1)) | πT ∈ V k
T , φT ∈ Uk

T},∀i = {1, . . . , k − 1}. (6.31)

Non-Terminal Stage

The value of ft+1(xt, ω[t+1]) associated with CVaR, defined in problem (3.21) and in problem

(3.22) is based on realization ωt+1. Therefore, just like EE and QDEV the LPs associated with

the non-terminal stages of CVaR are not deterministic. Hence, for computation of approximation

function at a non-terminal stages t, we use the cut approximation ηkt+1 and the empirical frequencies

pknt . From equation (3.22) the objective function for a non-terminal stage t at iteration k with cut

approximation ηkt+1 is defined as follows:

fkt (xt−1, ω
k
[t]) := Min c>t xt(ω

k
t ) + λt+1ψt(ω

k
t ) + ηkt+1 +

λt
1− α

νt(ω
k
t ) (6.32)

s.t. Wtxt(ω
k
t ) ≥ rt(ω

k
t )− Tt(ωkt )xt−1(ωkt−1),

−c>t xt(ωkt )− λt+1ψt(ω
k
t )− ηkt+1 + νt(ω

k
t ) ≥ −ψt−1(ωkt−1) + c>t−1xt−1(ωkt−1),

− (βk(t+1)i)
>xt(ω

k
t )− γk(t+1)iψt(ω

k
t ) + ηkt+1 ≥ αk(t+1)i, ∀i = 1, . . . , k

xt(ω
k
t ) ∈ Xt(xt−1, ω[t]), ψt(ω

k
t ) ∈ R, νt(ωkt ) ≥ 0, ηkt+1 ∈ R,

where the approximation of the recourse function ηkt+1(xt) is linear and convex and is defined as
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follows:

ηkt+1(xt, ω̃[t+1]) := max{αk(t+1)i + (βk(t+1)i)
>xt(ω

k
t ) + γk(t+1)iψt(ω

k
t ) | i = 1, . . . , k}.

For all sibling nodes n at stage t, let

(α̂kn(t+1), β̂
kn
(t+1), γ̂

kn
(t+1)) ∈ argmax{αk(t+1)i + (βk(t+1)i)

>xnt + γk(t+1)iψ
n
t | i = 1, . . . , k}. (6.33)

Following the similar approach as that of EE, substituting set (6.33) and the empirical probabilities

in formulation (6.32), we have following approximation at stage t:

F k
t (xt−1, ω

k
[t]) :=

∑
n

pknt α̂
kn
(t+1) + Min

(
ct +

∑
n

pknt β̂
kn
(t+1)

)>
xt

+
(
λt+1 +

∑
n

pknt γ̂
kn
(t+1)

)
ψt +

λt
1− α

νt (6.34a)

s.t. Wtxt ≥ rt(ω
k
t )− Tt(ωkt )xt−1(ωkt−1), (6.34b)

−
(
ct +

∑
n

pknt β̂
kn
(t+1)

)>
xt −

(
λt+1 +

∑
n

pknt γ̂
kn
(t+1)

)
ψt

+ νt ≥ −ψt−1(ωkt−1) + c>t−1xt−1(ωkt−1) +
∑
n

pknt α̂
kn
(t+1), (6.34c)

xt ∈ Xt(xt−1, ω[t]), ψt ∈ R, νt ≥ 0.

Given the iterate xt−1(ωt−1) for iteration k and realization ωk, we solve the dual of prob-

lem (6.34a-6.34c) to obtain the dual multipliers πkt and φkt associated with constraint (6.34b) and

(6.34c), respectively. Using the dual multipliers πkt and φkt , we then compute the scalar αkt and the
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cut coefficients βkt and γkt for the linear approximation ηkt at stage t− 1, as follows:

αkt = (πkt )>rt(ω
k) + (1 + φkt )

∑
n

pknt α̂
kn
(t+1) (6.35)

(βkt )> = (πkt )>(−Tt(ωk)) + φkt c
>
t−1, (6.36)

γkt = −φkt . (6.37)

6.3.2 MSD Algorithm for MR-MSLP with CVaR

We use sets V k
T and Uk

T to store all the dual variables πk and φk generated at the terminal stage

T up to iteration k. We continue to denote the iterates for stage t by xkt (ω
k
t ), while the immediate

ancestor of node n will be denoted by na. Based on results derived in Section 6.3.1, the MSD

algorithm for MR-MSLP with CVaR is stated as follows:

MSD-CVaR Algorithm

Step 0: Initialization.

Set k ← 0. For the terminal nodes, set V 0
n ← ∅ and U0

n ← ∅. Set η0
n(x) ← −∞,

x0
1 ∈ X1 and x̄0

1 ∈ X . Initialize α-quantile ψt ∈ R for t = 1, . . . , T − 1, and choose

δ ∈ (0, 1). Set lower bound Lt ∈ R for each stage t.

Step 1: Generate Sample Path.

Set k ← k+1. Randomly generate a sample path ωk ∈ ω̃, independent of any previously

generated sample paths.

Step 2: Forward Recursion.

2.1 If all the nodes on sample path ωk are visited in previous iterations, then the approxima-

tion ηk−1
t defined in (6.32) will be available for all nodes n. Starting from the stage t = 2

and using x̄k1, solve problem (6.32) to optimize fk−1
t (xt−1, ω

k
[t]) to obtain new incumbent
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solution xkt (ω
k) for all the nodes associated with stages t = 2, . . . , T − 1.

2.2 If some nodes on the sample path ωk have not been visited during previous iterations,

then perform step 2.1 up to a previously unseen node is reached. Then obtain initial

feasible solution xkt (ω
k) for LPs associated with all the remaining non-terminal nodes

on the sample path.

Step 3: Determine Cut Approximation ηkt .

Begin backward recursion from the terminal node and trace back the sample path to the root

node.

a. Solve the dual problem (6.26a)-(6.26c) for the terminal node on the sample path ωk:

(πkT (ωk), φkT (ωk)) ∈ Max{(πkT )>(rT (ωk)− TT (ωk)xT−1(ωk)) + φkT (c>T−1xT−1(ωk)− ψT )

| π>TWT − cTφkT ≤ cT , φ
k
T ≤ λT/(1− α), πkT ≥ 0, φkT ≥ 0}.

b. Update sets V k
T and Uk

T :

V k
T ← V k−1

T ∪ πkT (ωk).

Uk
T ← Uk−1

T ∪ φkT (ωk).

c. Determine the coefficients of the k-th cutting plane for node na:

(πkT i, φ
k
T i) ∈ argmax{(πT )>(rT (ωi)− TT (ωi)xT−1(ωi)) + φT (c>T−1xT−1(ωi)− ψT )

| πT ∈ V k
T , φT ∈ Uk

T},∀i ∈ {1, 2, . . . , k − 1}.

αkTk ← 1
k

∑k
i=1{(πkT i)>rT (ωi)}.

(βkTk)
> ← 1

k

∑k
i=1{(πkT i)>(−TT (ωi)) + φkT ic

>}.

γkTk ← 1
k

∑k
i=1−φkT i.

d. Determine the cut coefficients of the k-th cutting plane for all nodes on sample path

ωk, starting from stage t = T − 2, T − 3, . . . , 1 by solving dual of problem

(6.34a)-(6.34c) to obtain αkt , (βkt )> and γkt using equation (6.35) and (6.36),

respectively.
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e. Update coefficients of all previously generated cuts associated with each node n on

sample path ωk.

αkni ← (k−1
k

)αk−1
ni + ( 1

k
)Ln, ∀i = 1, . . . , k − 1.

βkni ← (k−1
k

)βk−1
ni , ∀i = 1, . . . , k − 1.

γkni ← (k−1
k

)(βk−1
ni )0, ∀i = 1, . . . , k − 1.

f. Update fkt (xt, ω
k) for each node n on sample path ωk.

ηkn − (βkni)
>xna − γkniψna ≥ αkni, ∀i = 1, . . . , k.

g. Update approximation for each node n not on the sample path ωk.

fkn(xt, ω
k)← fkn−1(xt, ω

k)

Step 4.Update Incumbent Solution.

if fk1 (xk1)− fk1 (x̄k−1
1 ) < δ[fk−1

1 (xk1)− fk−1
1 (x̄k−1

1 )],

x̄k1 ← xk1

else

x̄k1 ← x̄k−1
1 .

Step5. Solve Master Problem.

Min
x,ηk

c>1 x1 + λ2ψ1 + ηk2

s.t. x1 ∈ X1,

ηk2 − (βk2i)
>x1 − γk2iψ1 ≥ αk2i, ∀i = {1, . . . , k},

to get the new candidate solution xk+1
1 .

Step 6. Termination Criterion.

If the following criterion is not satisfied, return to step 1.

For a large enough k, terminate the algorithm if

fk−1
1 (x̄k−1

1 )− fk−1
1 (xk1) ≤ ε, where ε > 0 is a given tolerance level.
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In the next section we apply the mean-risk MSD algorithm with risk measures EE, QDEV and

CVaR to an instance of LTHS.
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7. LONG-TERM HYDROTHERMAL SCHEDULING

We implemented the mean-risk MSD algorithms and applied it to the long-term hydrothermal

scheduling (LTHS). The aim of LTHS is to find an optimal policy for scheduling the operation of

hydro and thermal power systems over a multi-period planning horizon so that the expected cost

of power generation is minimized. LTHS is one of the widely studied application of MSLP. This

problem was first introduced by Sherkat et el. [10], who applied stochastic dynamic programming

algorithm to LTHS. Two sampling strategies namely Latin hypercube sampling and randomized

quasi-Monte Carlo sampling were applied for the generation of scenario trees for LTHS problem in

[4] and a stopping criteria based on statistical hypothesis test was applied. A tutorial on stochastic

programming using LTHS as an example along with the description of the stochastic optimization

model, scenario tree generation and application of a nested decomposition algorithm for optimizing

LTHS problem was provided in [11]. A risk-averse MSLP formulation with coherent risk measure

conditional value-at-risk was used for optimizing LTHS problem in [12]. In this paper, we use the

hydrothermal model described in [4, 11] and we use data for LTHS from [51].

7.1 LTHS Problem Formulation

The risk-neutral formulation of LTHS model at stage (month) t for scenario ω ∈ Ω and decision

vector xt−1 from stage t− 1, is given as follows:

ft(xt−1, ω[t]) := Min
∑
i∈I

c>i pti + c>lt + E[ft+1(xt, ω̃[t])] (7.1a)

s.t.
∑
i∈I

pti + lt + γqt = dt (7.1b)

vt + a(qt + st) = vt−1 + ayt(ωt) (7.1c)

vt ≤ vmax, qt ≤ qmax, pti ≤ pimax, ∀i ∈ I (7.1d)

vt, qt, st, pti, dt ≥ 0, ∀i ∈ I,
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where, I is the set of thermal power plants, ci is incremental unit cost of thermal power generation

in dollars from thermal power plant i ∈ I and pti is the power generated from thermal power plant

i ∈ I at stage t. The cost associated with load shedding is denoted by c and decision variable lt

denotes amount of load shedding at stage t. The objective function (7.1a) gives the cost associated

with power generation at stage t along with the expected future cost denoted by E[ft+1(xt, ω̃[t])].

The first constraint (7.1b), satisfies the power demand dt at stage t with power generation from

thermal power plants pti, hydro power plant γqt (where γ is coefficient of hydro plant productivity

and qt is the volume of turbine outflow during stage t) and the load shedding lt at stage t. The

second constraint (7.1c) ensures the continuity of amount of water available in hydro power plant.

The amount of water available at stage t and t− 1 is denoted by vt and vt−1, respectively and vmax

denotes the maximum storage capability of the reservoir. The constant a is used to convert water

flow into an equivalent volume in a month, st denotes hydro plant spillage at stage t and yt(ω)

denotes random incremental flow realized in month t. The third set of constraints (7.1d) limits the

amount of water available, volume of turbine outflow and power generation from thermal power

plants based on their maximum capacity. Next we present risk-averse formulations of the LTHS

problem with risk measures EE, QDEV and CVaR, respectively.

7.1.1 LTHS Formulation with EE

Given λt ≥ 0 and a target ψt ∈ R, the LTHS formulation at stage t for realization ω ∈ Ω and

decision vector xt−1 at month t− 1 with ρ = φEEψt
is equivalent to the following formulation:
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ft(xt−1, ω[t]) := Min
∑
i∈I

c>i pti + c>lt + E[ft+1(xt, ω̃[t])] + λtνt (7.2)

s.t.
∑
i∈I

pti + lt + γqt = dt

vt + a(qt + st) = vt−1 + ayt(ωt)

−
∑
i∈I

c>i pti − c>lt − E[ft+1(xt, ω̃[t])] + νt

≥ −ψt +
∑
i∈I

c>i pt−1,i + c>lt−1 (7.3)

vt ≤ vmax, qt ≤ qmax, pti ≤ pimax, ∀i ∈ I

vt, qt, st, pti, dt ≥ 0, ∀i ∈ I,

where constraint (7.3) computes the excess cost of power generation for realization ω over target

ψt.

7.1.2 LTHS Formulation with QDEV

Given λt ≥ 0 and a quantile α ∈ (0, 1), the LTHS formulation at stage t for realization ω ∈ Ω

and decision vector xt−1 and quantile ψt−1 at month t − 1 with ρ = φQDEVψt
is equivalent to the

following formulation:
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ft(xt−1, ω[t]) := Min (1− λtε1)
[
(1− λt+1ε1)

(∑
i∈I

c>i pti + c>lt
)

+ λt+1ε1ψt

+ E[ft+1(xt, ω̃[t])]
]

+ λt(ε1 + ε2)νt (7.4)

s.t.
∑
i∈I

pti + lt + γqt = dt

vt + a(qt + st) = vt−1 + ayt(ωt)

− (1− λt+1ε1)
(∑
i∈I

c>i pti + c>lt
)
− λt+1ε1ψt − E[ft+1(xt, ω̃[t])]

+ νt ≥ −ψt+1 +
∑
i∈I

c>i pt−1,i + c>lt−1 (7.5)

vt ≤ vmax, qt ≤ qmax, pti ≤ pimax, ∀i ∈ I

vt, qt, st, pti, dt ≥ 0, ∀i ∈ I,

where constraint (7.5) computes the excess cost of power generation for realization ω over quantile

ψt−1.

7.1.3 LTHS Formulation with EECVaR

Given λ ≥ 0 and α ∈ (0, 1), the LTHS formulation at stage t for realization ω ∈ Ω, and

decision vector xt−1 and quantile ψt−1 at month t−1 with ρ = φCVaRα is equivalent to the following

formulation:

86



ft(xt−1, ψt−1, ω) := Min
∑
i∈I

c>i pti + c>lt + λt+1ψt + E[ft+1(xt, ω̃[t])] +
λt

1− α
νt (7.6)

s.t.
∑
i∈I

pti + lt + γqt = dt,

vt + a(qt + st) = vt−1 + ayt(ωt),

−
∑
i∈I

c>i pti − c>lt − λt+1ψt − E[ft+1(xt, ω̃[t])] + νt

≥ −ψt−1 +
∑
i∈I

c>i pt−1,i + c>lt−1, (7.7)

vt ≤ vmax, qt ≤ qmax, pti ≤ pimax, ∀i ∈ I

vt, qt, st, pti, dt ≥ 0, ∀i ∈ I,

where constraint (7.7) computes the excess cost of power generation for realization ω over quantile

ψt−1.

7.2 Computational Results

We considered LTHS involving two thermal power generators p1 and p2, one hydro power

plant q and 60 stages, where each stage represents a month. The maximum power generation

capacity of the thermal power plants p1 and p2 is 65 MWh and 50 MWh, respectively. The cost of

power generation from each thermal power plant is 20 $/MWh and 100 $/MWh, respectively. The

maximum power generation capacity γq of hydro power plant is 100MWh, while the maximum

energy storage capacity of the reservoir is 150MWh. The power generation from the hydro power

plant is essentially free. Load shedding occurs when there is not enough energy generation from

thermal and hydro power plants to satisfy the demand. This incurs a high cost of $1000/MWh to

satisfy the unmet demand.

The amount of water inflow per month shown in Figure 7.1, is a random variable with three

observations representing a high, medium and low water inflow. This results in total of 360 possible

scenarios. Note that the scenario tree is stage-wise independent, that is, realization of the random
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Figure 7.1: Inflow per Stage

variable at stage t is independent of realization at stage t − 1. The demand is constant for each

stage and is equal to 100MWh.

7.2.1 Risk-Neutral MSLP

Now we present the results of risk-neutral MSLP for the LTHS instance solved using the above

specified data. As mentioned, the instance is solved for 60 stages, but the results are reported for

50 stages. This is done to mitigate the impact of the end effects.

In Figure 7.2, the results for risk-neutral case are presented using a variety of plots. Each plot

represents the results of 5000 randomly selected scenarios. The solid line in each graph represents

the median. To demonstrate the spread of results, we have used different shades to distinguish

between quantiles. The three shades from lightest to the darkest represent 0-1, 0.1-0.9 and 0.25-

0.75 quantiles, respectively.

Figure 7.2a displays amount of energy storage (MWh) in the reservoir after the power genera-

tion at each stage, for the risk-neutral case. From the figure it is evident that the median reservoir

level stays fairly high throughout all the stages and only in few instances the reservoir level touches

the nadir. Figures 7.2b, 7.2c and 7.2d show amount of power generated in MWh from power plant
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure 7.2: Results for Risk-Neutral MSLP for LTHS

89



p1, p2 and q, respectively. As can be observed from figure 7.2b and 7.2d, the power generation

from plants p1 and q complement each other and they seem to follow the seasonal variation in the

water availability. Power generation from the plant q stays above 35MWh for most of the stages

and reaches 100MWh for the stages where reservoir is at the full capacity. Power generation from

the plant p2 occurs only during few rare occasions and it corresponds to the stages where the reser-

voir is empty. Finally, 7.2e represents the cost incurred in each stage and the cost pattern mostly

mirrors the power generation pattern of plant p1. The median cost stays at or below $1300 for all

the stages.

7.2.2 MR-MSLP with EE

Figure 7.3 displays the results for the LHTS instance with EE and λ = 0.1. The selection of

target in case of MSLP with nested formulation is not straight forward, as it is in the two-stage

case. Since, the target at a given stage has to account for the total future cost and also for the

risk associated with all the future stages. Hence, to set the target at each stage we computed the

90th percentile of cost Ct at each stage for the risk neutral case. Then we computed the average

difference D between the maximum cost and the 90th percentile of cost for all stages. Using these

two values the target ψt at each stage was determined as follows:

ψt = Ct−1 +
(
D ∗ (61− t)/2

)
(7.8)

Figure 7.3a displays amount of water available in the reservoir at each stage after power gener-

ation with EE as risk measure. It can be observed that the median of energy stored in the reservoir

stays fairly high, but the reservoir level is rarely full or empty. As can be observed from figure 7.3b

and 7.3d, the power generation from plants p1 and q complement each other at a given stage and

they have a inverse relationship. In case of plant q the power generation deeps below 35MWh for

some stages signifying unavailability of water. The power generation from plant p2 shown in fig-

ure 7.3c corresponds with the low inflow of water. Finally, figure 7.3e represents the cost incurred

in each stage, and it is evident that for certain stages the cost is higher than $1300 on account of
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure 7.3: Results for MR-MSLP with EE for LTHS (λ = 0.1)
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power generation from the plant p2. Figures C.1, C.2 and C.3 represent results for MSD-EE with

λ value of 0.25, 0.5 and 1 respectively and are included in Appendix C.

7.2.3 MR-MSLP with QDEV

The results for the LHTS instance with QDEV, are displayed in Figure 7.4. The risk trade-off

parameter used for all the stages was λt = 0.1 and the α-quantile was set to 0.95. Figure 7.4a

displays amount of water available in the reservoir at each stage after power generation and in

contrast to the risk-neutral case the median water level stays close to zero for most of the initial

stages. In case of QDEV, it appears that the model stresses on using as much water as available in

a given stage. Figures C.4, C.5 and C.6 from Appendix C display the results for MSD-QDEV with

trade-off factor equal to 0.25, 0.5and1, respectively.

From figure 7.4b, 7.4c and 7.4d, one can observe that the power generation from plant p1, p2

and q follow a cyclic pattern which reflects the cyclic availability of water. Also, it is quite evident

that the expensive thermal powerplant p2 is regularly used for power generation. This is likely

the result of policy of using all the available water at a given stage and hence during the times of

water scarcity the demand can be met only through power plant p2. Finally, 7.4e represents the

cost incurred in each stage, and it is evident that there is lot more variation from stage to stage in

terms of cost incurred. The cost at stages associated with water scarcity often crosses the threshold

of $1300, whereas for the stages with plenty of water availability the cost touches zero mark.

Although, the median cost at any stage stays below $1300. The results reflect the nature of QDEV,

that is QDEV captures the two-sided deviation from the α-quantile and therefore it tries to reduce

overall variance at each stage at the expense of expected cost.
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure 7.4: Results for MR-MSLP with QDEV for LTHS (λ = 0.1)

7.2.4 MR-MSLP with CVaR

Figure 7.5 displays the results for the LHTS instance with CVaR . For all the stages the risk

trade-off parameter λ = 0.1 was used and the α-quantile was set to 0.95. The water availability

at each stage after the power generation is shown in 7.5a. In case of CVaR, the model appears to

conserve water at each stage and keep the level of stored energy as close to the maximum reservoir

level as possible.
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure 7.5: Results for MR-MSLP with CVaR for LTHS (λ = 0.1)

From figure 7.5b and 7.5d, it is evident that the power generation from plants p1 and q comple-

ment each other and they reflects the cyclic availability of water. The power generation from the

hydro power plant q rarely dips below 35 MWh, which is an indication of enough availability of

water in the reservoir. The use of thermal powerplant p2 for power generation as shown in figure

7.5c, is very rare in initial stages and is often engaged after 45th stage. Figure 7.5e represents the

cost incurred in each stage and it can be inferred that the cost very rarely exceeds $1300 except in

case of the terminal stages. Figures C.7, C.8 and C.9 represent results for MSD-CVaR with risk

trade-off factor equal to 0.25, 0.5 and 1 respectively and are included in Appendix C.
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7.2.5 Discussion

Figures 7.2a, 7.3a, 7.4a, and 7.5a, display energy storage (MWh) of the reservoir at each stage

after power generation for the risk-neutal, EE, QDEV and CVaR case respectively. In case of risk-

neutral and CVaR, the energy storage level in the reservoir is maintained as high as possible, that

is the stress of the model is on water conservation for future use. Especially the storage level for

CVaR is highest compared to all other risk measures and even compared to the risk-neutral case.

In contrast to the risk-neutral approach, the EE and QDEV cases stress on consumption of water

for power generation. The QDEV case has the worst energy storage level compared to any other

risk measures and its median storage level stays close to zero for most of the stages.

The power generation from plant p2 for risk-neutral, EE, QDEV and CVaR is shown in figures

7.2c, 7.3c, 7.4c, and 7.5c, respectively. Since, the cost of power generation from p2 is $100/MW,

the use of this power plant significantly increases the cost associated with satisfying the power

demand. In the risk-neutral and EE cases, power plant p2 is rarely used for power generation,

since energy storage in the reservoir is enough to satisfy the demand that cannot be met through

power plant p1 alone. Whereas in case of QDEV and CVaR, power plant p2 is used very often

and coincides with the stages associated with water shortages. The policy of water consumption

rather than conservation in case of QDEV often leads to scenarios with empty storage and hence

the unmet power demand has to be met through power plant p2.

Table 7.1: Average Cost of Operation per Stage

λ EE QDEV CVaR

0.1 $1002.52 $1036.16 $1062.06

0.25 $1007.32 $1155.72 $1268.95

0.5 $1027.72 $1207.34 $1313.47

1 $1024.67 $1264.81 $1361.18
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Finally, figures 7.2e, 7.3e, 7.4e and 7.5e represent the cost incurred in each stage for risk-

neutral, EE, QDEV and CVaR, respectively. The median cost at any given stage never crosses

threshold of $1300 for risk measure EE, QDEV and CVaR. Though the instances of cost exceeding

$1300 is more common in QDEV and CVaR. The average cost per stage for risk-neutral stage was

found to be $1001.58, which was smaller than all other three cases. For λ = 0.1 the average cost

per stage increased slightly to $1002.52 in case of EE and significantly increased to $1036.16 and

$1062.06 in case of QDEV and CVaR respectively. Table 7.1, summarizes the average cost of

operation for various combination of risk measures and risk trade-off factors.

7.2.6 Impact of Risk Measures on Extreme Scenarios

The use of MR-MSLP for modeling sequential decision making problems is justified by the

fact that risk measures provide a suitable mechanism for handling losses, controlling variability

and hedging against extreme scenarios. Therefore, it was necessary to gauge the impact of risk

measures on such extreme scenarios. Hence, for each risk measure and the risk neutral case, we

collected the top 1% most expensive scenarios (that is the scenarios with average cost greater than

0.99 percentile).
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(a) λ = 0.1 (b) λ = 0.25

(c) λ = 0.5 (d) λ = 1

Figure 7.6: Cost of Operation per Stage

Figure 7.6, displays the average cost at each stage for the extreme scenarios associated with

risk neutral, EE, QDEV and CVaR case. As it can be observed, at higher values of trade-off factor

risk measure QDEV and CVaR offer no relief from the cost fluctuations. It is at the lower value of

λ = 0.1 that CVaR exhibits much more control over the cost fluctuation. The average cost of this

extreme scenarios for risk neutral case was found to be $1161.23 and only MSD-EE at λ = 0.1

outperformed the risk neutral case. For various values of λ the average cost of extreme scenarios

per stage for each risk measure is shown in Table 7.2.
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Table 7.2: Average Cost per Stage for Extreme Scenarios

λ EE QDEV CVaR

0.1 $1158.21 $1234.02 $1236.81

0.25 $1178.30 $1420.27 $1501.17

0.5 $1236.46 $1478.41 $1582.25

1 $1280.01 $1523.58 $1589.98

Figure 7.7 displays the impact different risk measures have on the individual decision variable

associated with the extreme scenarios. Figure 7.7a represents the storage level of reservoir at

different stages for each risk measure (λ = 0.1) and the risk neutral case. It is evident from the

figure that in case of CVaR the emphasis is on conserving the water. In contrast, use of risk measure

QDEV results in occurrence of empty reservoir.
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

Figure 7.7: Impact of Risk Measures on Extreme Scenarios (λ = 0.1)
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8. CONCLUSIONS AND FUTURE RESEARCH

8.1 Conclusions

Risk-averse stochastic programming goes beyond the prevalent expected value framework and

aims at controlling variability of cost associated with different outcomes. We began this disser-

tation by introduction to risk-averse stochastic programming and followed it by presenting an

overview of literature on stochastic programming, risk-aversion and computational difficulties as-

sociated with solving large scale SLP problems. We then introduced the readers to the definition of

risk measures and their formulations. Next we developed and implemented stochastic decomposi-

tion algorithms for solving MR-SLP and MR-MSLP with three different risk measures: expected

excess (EE), quantile deviation (QDEV) and conditional value-at-risk (CVaR). We have also pro-

vided proofs of convergence for these algorithms and results of computational experiments.

Our numerical results for MR-SLP show that even for the large-scale instances such as Lands

and storm, the stochastic decomposition (SD) algorithm generally requires a relatively small num-

ber of scenarios to converge to an optimal solution. This is possible due to the interior sampling

approach of generating one scenario per iteration used in SD algorithm; if we were to consider

all possible scenarios it is usually very computationally demanding to solve large-scale instances

to optimality. Moreover, unlike SAA, in SD we do not need to specify the number of scenarios

to sample for a given instance. We can set a desired tolerance level for the termination criteria

and the algorithm will only sample required number of scenarios to satisfy the criteria. This fea-

ture guarantees a desire level of accuracy in solution and at the same time offers a competitive

computational time, which is an advantage over the SAA approach.

In case of MR-SLP, the computational study also provides several insights useful for under-

standing the effect of the risk measure and the risk trade-off factor on expected cost and variability

in two-stage setting. We show that the QDEV has more impact on expected cost and the cost asso-

ciated with extreme scenarios compared to the impact of CVaR and EE. We also observed that for
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higher target values, the risk measure EE becomes effective only for a relatively small number of

scenarios and has little to no-effect on the solution for small values of the trade-off factor.

Like its two-stage counterpart, risk-averse MSD offers several advantages over the traditional

algorithms. First and foremost, the combinatorial explosion of MSLP resulting from large number

of stages and scenarios is avoided by only solving the LPs associated with the sample path. Also for

implementing MSD, the entire scenario tree need not be revealed at the beginning of the algorithm

because at every iteration the subgradients are not computed using every potential outcome.

The application of mean-risk MSD to an instance of long-term hydrothermal scheduling helped

us in better understanding of risk-aversion in multistage settings. We observed that the trade-off

actor λ has an outsize impact on the optimal solution and is the key in achieving desirable results.

At λ = 0.1, CVaR exhibited better control over the extreme scenarios compared to EE and QDEV.

Also the experiment revealed the policy adopted by each risk measure in controlling the variability.

In case of CVaR, the emphasis was on conserving water as much as possible for the future use and

hence as the value of risk-trade of factor increased so did the reservoir level. In contrast, for risk

measure QDEV the optimal policy involved maximum use of available water at each stage and

at higher values of λ the reservoir level stayed close to zero. Among the three risk measures EE

offered the best performance in terms of average cost and hedging against the extreme scenarios,

but this is contingent upon selection of appropriate target values.

8.2 Future Research

Unlike the two-stage case where risk aversion is well understood and widely applied, there is no

obvious way of formulating risk measures in the multistage settings. Hence, different formulations

of risk measures could be tested for various applications to determine their appropriateness. Scope

also exist to define new risk measures more suitable for the multistage settings.

In future multistage stochastic decomposition algorithm can be extended to expected condi-

tional risk measures (ECRM), and then the results can be compared to the nested formulations.

Modifications to MSD can be made to further improve its convergence rate and to develop a more

sophisticated stopping criterion. Also, a detailed computational study using various instances could
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be conducted to assess the performance of MSD algorithm with respect to SDDP.

Future work could also include deriving and implementing stochastic decomposition algo-

rithms for other risk measures such as excess probability and absolute semi-deviation. In case

of excess probability the problem becomes a mix-integer program and in case of absolute semi-

deviation the use of expected mean to compute excess makes the problem averse to benders de-

composition.
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APPENDIX A

COMPUTATIONAL RESULTS TABLES

A.1 EE

Table A.1: Results for SD-EE for pgp2 (ψ = 450.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0.00 444.39 450.86 28.75 450.86 5.29 830.20

3.01 3.93 2.62 3.93 3.53 233.36

0.10 447.76 450.72 27.94 453.52 8.49 945.20

3.26 3.13 2.48 3.30 7.83 300.13

0.20 450.73 452.35 29.54 458.25 4.82 783.20

4.24 6.18 4.37 7.00 3.61 213.24

0.30 453.45 450.40 27.69 458.71 5.43 848.20

3.90 2.78 2.26 3.26 3.59 215.06

0.40 455.91 450.91 27.66 461.97 3.50 707.70

5.08 3.45 2.92 4.43 2.26 179.05

0.50 459.19 450.21 27.20 463.81 6.01 811.40

4.80 2.21 2.09 2.70 6.77 287.81

0.60 461.90 450.95 27.14 467.24 5.22 814.90

4.94 3.87 2.33 5.16 2.63 172.65

0.70 463.98 450.82 27.02 469.73 6.98 842.10

4.98 3.02 2.38 4.53 7.87 323.80

0.80 465.50 449.56 27.14 471.27 9.18 854.90

5.04 2.60 2.05 3.86 15.33 409.84

0.90 468.89 450.59 26.73 474.65 3.43 687.80

5.92 3.58 1.44 4.56 1.83 138.79

1.00 471.25 451.47 26.19 475.66 6.21 867.10

5.32 2.04 1.75 3.61 4.68 215.03
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Table A.2: Results for SAA-EE for pgp2 (ψ = 450.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0.00 445.86 448.32 29.85 448.32 4.21 31.43

2.79 1.80 1.53 1.80 0.55 3.96

0.10 448.39 448.32 29.85 451.30 4.09 30.63

2.95 1.80 1.53 1.95 0.38 2.77

0.20 450.91 448.32 29.85 454.29 4.23 30.33

3.11 1.80 1.53 2.10 1.02 3.25

0.30 453.43 448.32 29.85 457.27 4.10 30.47

3.27 1.80 1.53 2.25 0.45 3.33

0.40 455.95 448.32 29.85 460.26 4.15 30.90

3.44 1.80 1.53 2.40 0.50 3.57

0.50 458.47 448.32 29.85 463.25 4.19 31.07

3.60 1.80 1.53 2.55 0.51 3.70

0.60 460.97 448.60 29.41 466.25 4.09 30.53

3.76 1.79 1.52 2.68 0.56 4.03

0.70 463.46 448.60 29.41 469.19 4.09 30.43

3.92 1.79 1.52 2.83 0.62 4.51

0.80 465.95 448.60 29.41 472.13 4.20 31.30

4.08 1.79 1.52 2.98 0.62 4.44

0.90 468.42 448.60 29.41 475.07 4.53 32.70

4.25 1.79 1.52 3.14 0.89 4.31

1.00 470.90 448.60 29.41 478.01 4.38 32.57

4.42 1.79 1.52 3.29 0.61 3.57
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Table A.3: Results for SD-EE for pgp2e (ψ = 420.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0.00 411.61 417.81 50.49 418.81 2.98 690.50

5.31 4.36 3.67 4.36 1.09 105.57

0.10 416.40 417.69 49.12 422.60 4.92 785.30

5.48 5.28 3.32 5.53 4.16 239.25

0.20 420.94 419.08 49.21 428.93 5.19 805.70

5.87 4.66 5.33 5.31 3.56 217.07

0.30 425.20 419.18 49.33 433.98 3.47 705.10

6.90 5.49 5.15 6.84 1.71 120.94

0.40 430.06 420.30 49.24 439.99 3.99 710.20

9.36 3.64 3.15 4.66 3.06 208.47

0.50 433.48 421.74 52.76 448.12 3.92 743.10

7.75 3.74 3.02 4.73 1.50 121.40

0.60 437.06 420.22 50.58 450.57 5.60 849.90

7.87 3.40 3.82 4.48 3.14 173.63

0.70 441.58 421.31 50.49 456.65 4.37 762.50

8.24 2.81 3.96 4.95 2.57 180.67

0.80 450.01 418.45 47.92 456.79 4.71 781.90

6.87 3.93 3.61 5.72 3.13 184.92

0.90 452.62 420.03 48.62 463.79 3.76 732.20

9.84 4.89 5.08 8.80 1.51 108.39

1.00 457.30 420.40 48.85 469.25 5.37 797.30

11.49 5.05 4.77 8.94 4.20 241.81
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Table A.4: Results for SAA-EE for pgp2e (ψ = 420.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0.00 412.40 414.28 50.25 414.28 5.44 39.90

4.78 2.81 2.47 2.81 0.78 5.84

0.10 417.10 413.55 47.60 418.31 5.10 37.27

5.06 2.33 1.93 2.52 0.87 6.50

0.20 421.78 413.54 47.60 423.06 5.04 37.13

5.34 2.33 1.93 2.70 0.65 4.93

0.30 426.46 413.61 47.40 427.83 5.10 37.47

5.62 2.32 1.93 2.88 0.84 6.41

0.40 431.13 413.61 47.40 432.57 5.14 37.40

5.91 2.32 1.93 3.06 0.75 5.55

0.50 435.74 413.61 47.40 437.31 5.38 39.23

6.19 2.32 1.93 3.25 0.65 4.94

0.60 440.33 413.61 47.40 442.05 5.62 41.03

6.45 2.32 1.93 3.44 0.85 6.49

0.70 444.92 413.89 46.96 446.77 5.74 41.37

6.71 2.31 1.92 3.61 0.81 6.05

0.80 449.48 413.89 46.96 451.46 5.92 42.50

6.96 2.31 1.92 3.80 0.80 5.89

0.90 454.04 413.89 46.96 456.16 5.80 41.57

7.22 2.31 1.92 3.98 0.85 6.32

1.00 458.58 414.16 46.71 460.87 5.70 41.13

7.48 2.30 1.92 4.16 0.84 6.35
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Table A.5: Results for SD-EE for gbd (ψ = 1672.33).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0.00 1645.55 1660.63 245.39 1662.63 3.58 694.50

23.84 15.79 12.84 15.79 2.33 182.25

0.10 1668.77 1664.93 246.83 1689.61 3.68 732.00

19.55 17.17 14.57 18.47 1.37 105.00

0.20 1687.81 1664.95 248.15 1714.58 4.25 739.90

21.98 17.97 14.62 20.78 3.22 201.96

0.30 1718.53 1661.99 244.82 1735.44 3.24 686.40

23.82 18.23 13.37 21.94 1.11 103.14

0.40 1740.51 1665.98 248.78 1765.49 4.02 716.90

25.59 21.71 16.35 28.01 2.63 198.10

0.50 1770.21 1660.68 244.24 1782.80 3.94 710.10

34.78 15.39 12.43 20.67 3.11 216.83

0.60 1790.68 1663.31 246.36 1811.13 4.36 757.50

28.68 20.24 15.44 29.26 2.98 206.33

0.70 1816.52 1660.66 243.72 1831.27 3.69 711.20

28.95 20.98 13.35 29.96 2.65 167.99

0.80 1840.28 1663.87 245.45 1860.24 3.75 723.10

28.57 19.73 13.79 29.98 1.14 104.63

0.90 1863.66 1665.35 244.85 1885.72 2.70 626.20

38.12 21.37 14.21 33.69 1.32 110.21

1.00 1894.18 1665.13 244.73 1904.86 5.43 818.90

32.54 23.57 16.68 39.92 4.74 223.11
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Table A.6: Results for SAA-EE for gbd (ψ = 162.73).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0.00 1648.44 1653.95 243.99 1653.95 3.83 30.40

20.84 10.15 7.51 10.15 0.37 2.81

0.10 1672.58 1653.95 243.99 1678.35 4.04 31.73

22.45 10.15 7.51 10.87 0.42 3.13

0.20 1696.70 1653.94 243.81 1702.70 4.04 31.80

24.07 10.14 7.51 11.58 0.37 2.67

0.30 1720.82 1653.94 243.81 1727.08 4.04 31.97

25.71 10.14 7.51 12.30 0.35 2.51

0.40 1744.93 1653.94 243.81 1751.46 4.16 32.40

27.35 10.14 7.51 13.03 0.37 2.76

0.50 1769.03 1653.94 243.81 1775.84 4.40 34.20

28.99 10.14 7.51 13.76 0.44 3.29

0.60 1793.14 1653.94 243.81 1800.22 4.34 34.13

30.64 10.14 7.51 14.49 0.36 2.76

0.70 1817.23 1653.94 243.81 1824.61 4.36 34.27

32.30 10.14 7.51 15.22 0.37 2.77

0.80 1841.32 1653.94 243.81 1848.99 4.53 35.10

33.96 10.14 7.51 15.96 0.44 3.18

0.90 1865.40 1654.03 243.67 1873.33 4.54 34.87

35.62 10.14 7.51 16.69 0.37 2.78

1.00 1889.47 1654.03 243.67 1897.70 4.72 37.30

37.28 10.14 7.51 17.43 0.62 4.68
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Table A.7: Results for SD-EE for LandS (ψ = 227.40).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0.00 224.97 226.98 23.94 226.98 3.46 724.10

0.87 0.87 1.30 2.48 2.72 186.03

0.10 227.24 227.04 23.89 229.43 2.81 699.90

1.78 1.84 1.14 1.94 1.21 109.15

0.20 229.69 227.22 24.59 232.13 2.91 679.70

1.58 2.51 1.78 2.83 2.15 158.00

0.30 232.10 227.38 23.78 234.52 2.82 682.90

1.29 2.24 1.38 2.61 1.22 103.20

0.40 234.42 227.58 23.57 237.01 3.02 682.50

2.06 2.46 1.32 2.86 1.97 164.87

0.50 236.26 227.50 23.67 239.34 3.62 745.90

1.62 1.87 1.40 2.50 1.92 153.79

0.60 238.65 226.81 23.59 240.96 3.75 741.90

1.92 2.00 1.10 2.56 2.23 168.22

0.70 240.99 226.91 23.27 243.19 3.53 736.70

2.07 2.27 1.36 3.17 1.60 144.39

0.80 243.71 228.08 23.44 246.83 3.43 712.60

1.91 1.89 1.20 2.66 2.40 168.16

0.90 245.24 227.08 23.66 248.37 3.05 677.20

2.42 1.61 1.11 2.53 2.08 152.39

1.00 248.31 227.94 22.89 250.83 3.75 723.00

1.89 1.81 0.92 2.38 3.19 187.01
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Table A.8: Results for SAA-EE for LandS (ψ = 227.40).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0.00 224.78 225.52 23.14 225.52 4.43 31.63

1.93 0.92 0.57 0.92 0.38 2.58

0.10 227.06 225.53 23.02 227.83 4.38 31.53

2.03 0.91 0.57 0.96 0.38 2.58

0.20 229.33 225.54 22.95 230.13 4.38 31.47

2.12 0.91 0.57 1.01 0.54 3.58

0.30 231.60 225.56 22.87 232.42 4.34 31.30

2.22 0.90 0.57 1.06 0.38 2.59

0.40 233.85 225.58 22.81 234.71 4.28 30.97

2.31 0.90 0.56 1.11 0.53 3.61

0.50 236.10 225.61 22.75 236.99 4.25 30.67

2.41 0.90 0.56 1.16 0.32 2.17

0.60 238.35 225.64 22.69 239.26 4.26 30.70

2.51 0.90 0.56 1.22 0.34 2.35

0.70 240.59 225.64 22.69 241.53 4.30 31.00

2.60 0.90 0.56 1.27 0.35 2.38

0.80 242.82 225.70 22.61 243.79 4.29 30.90

2.70 0.89 0.56 1.32 0.26 1.79

0.90 245.05 225.74 22.57 246.05 4.31 30.90

2.80 0.89 0.56 1.37 0.36 2.43

1.00 247.28 225.76 22.54 248.31 4.40 31.67

2.90 0.89 0.56 1.42 0.39 2.60
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Table A.9: Results for SD-EE for storm (ψ = 15580000.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0.00 15420970.00 15563800.00 130966.60 15573800.00 129.92 702.20

21470.59 37756.88 18172.03 37756.88 36.52 79.83

0.10 15440670.00 15566840.00 126987.30 15579520.00 190.38 763.00

16553.85 28230.31 12767.68 29496.30 152.69 188.53

0.20 15439600.00 15582160.00 134747.00 15609090.00 184.99 739.70

20582.42 39807.94 20669.83 43934.10 178.24 210.31

0.30 15440860.00 15576710.00 132268.00 15616390.00 117.32 654.70

26092.92 38906.93 20729.33 45113.71 61.78 113.36

0.40 15443650.00 15567070.00 126857.40 15617830.00 158.28 705.60

24236.97 25998.73 13492.27 31338.19 115.95 181.34

0.50 15451580.00 15605800.00 148318.10 15679960.00 101.58 623.90

34227.32 59799.50 34489.04 76985.17 57.61 114.34

0.60 15468620.00 15601820.00 146132.70 15689490.00 202.20 759.00

17552.60 63855.29 34311.69 84417.55 170.71 226.51

0.70 15479620.00 15566860.00 126751.90 15655570.00 138.54 671.80

16796.89 25258.31 12798.47 34145.37 126.13 179.41

0.80 15486770.00 15566290.00 126411.20 15667410.00 218.29 800.30

19361.51 26702.94 13019.36 37055.19 161.75 192.24

0.90 15496190.00 15572580.00 130198.80 15689750.00 163.54 727.40

26900.17 34394.99 16059.95 48725.54 105.13 162.01

1.00 15500930.00 15560320.00 123821.20 15684140.00 134.85 696.20

23415.94 34395.20 17843.76 52205.75 60.22 104.37
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Table A.10: Results for SAA-EE for storm (ψ = 15580000.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0.00 15501523.33 15498813.33 96695.31 15498813.33 62.63 51.17

10118.70 4215.06 2128.78 4215.06 6.52 5.02

0.10 15511223.33 15498786.67 96682.92 15508466.67 63.81 51.93

10404.86 4211.70 2128.55 4380.23 5.89 4.72

0.20 15520910.00 15498780.00 96681.90 15518133.33 59.94 50.73

10526.33 4134.52 2092.76 4477.97 7.44 6.21

0.30 15527575.00 15497293.75 96396.99 15526206.25 63.45 54.00

10574.11 4220.11 2122.67 4782.06 6.22 5.04

0.40 15540276.67 15498813.33 96688.78 15537486.67 64.48 53.27

11147.61 4144.21 2092.90 4820.56 6.12 4.66

0.50 15549970.00 15498803.33 96689.52 15547143.33 65.92 54.77

11477.87 4148.13 2092.75 4989.97 6.81 5.49

0.60 15559650.00 15498813.33 96686.37 15556820.00 62.23 53.33

11811.15 4144.21 2092.64 5172.77 6.42 5.40

0.70 15569340.00 15498813.33 96680.17 15566486.67 63.36 53.03

12367.21 4218.57 2127.78 5451.40 6.10 4.94

0.80 15579026.67 15498783.33 96681.40 15576136.67 64.70 54.30

12717.49 4209.93 2128.44 5633.37 7.78 6.38

0.90 15588716.67 15498776.67 96681.07 15585803.33 66.71 54.30

13085.77 4205.88 2128.93 5826.43 6.12 5.31

1.00 15598413.33 15498780.00 96682.28 15595470.00 63.23 52.67

13456.05 4205.20 2128.74 6010.57 7.38 5.98
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A.2 QDEV

Table A.11: Results for SD-QDEV for pgp2

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0 443.87 450.71 - - 450.71 5.43 818.47

3.14 2.36 - - 2.36 3.71 202.37

0.1 457.09 450.88 2.97 557.76 467.50 4.04 720.13

4.45 3.52 3.39 21.12 6.70 3.16 183.12

0.2 470.49 452.08 1.89 557.13 480.63 3.86 710.40

5.24 4.55 0.96 11.14 4.08 2.16 143.46

0.3 484.64 452.93 1.54 557.32 493.51 4.11 705.47

5.35 6.03 0.82 9.04 4.85 2.96 173.70

0.4 496.12 452.89 1.84 554.03 508.08 3.82 700.60

5.27 5.07 0.93 9.60 5.16 2.45 161.49

0.5 508.02 452.90 1.62 554.56 519.89 3.69 673.40

5.41 4.85 0.73 6.24 5.62 2.42 149.85

0.6 520.22 453.38 1.70 554.56 534.52 2.59 617.43

5.50 5.89 1.05 7.52 9.73 1.16 94.42

0.7 532.46 453.17 1.58 555.23 546.70 2.42 588.27

6.46 5.37 0.97 6.02 11.10 1.65 105.31

0.8 545.05 454.13 1.57 555.01 559.97 1.91 559.13

6.37 5.28 0.98 5.94 12.58 0.48 47.00

0.9 556.85 453.93 1.64 553.35 573.02 1.77 548.63

6.33 4.98 0.94 5.40 14.57 0.42 48.09

1 568.82 454.83 1.55 555.00 585.89 1.77 547.47

6.71 6.19 1.00 5.90 16.89 0.49 53.07
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Table A.12: Results for SAA-QDEV for pgp2

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0.00 446.15 449.05 - - 449.05 4.47 29.67

2.87 1.64 - - 1.64 0.55 3.06

0.10 461.05 447.42 2.05 552.05 461.94 5.98 43.20

3.84 1.08 0.62 2.67 1.93 0.86 5.99

0.20 474.43 447.69 2.06 551.75 476.28 5.79 42.07

4.51 1.07 0.62 4.28 3.01 0.98 7.03

0.30 487.19 447.99 2.06 553.88 490.48 6.92 50.47

5.03 1.05 0.62 5.11 4.16 1.02 7.53

0.40 499.05 448.23 2.03 553.88 504.58 5.78 44.23

5.18 1.05 0.62 5.11 5.32 1.39 10.61

0.50 510.88 448.23 2.03 553.82 518.67 5.64 41.87

5.36 1.05 0.62 4.98 6.49 1.25 9.05

0.60 522.71 448.78 1.96 553.82 532.13 5.46 39.43

5.56 1.04 0.62 4.98 7.67 1.88 9.77

0.70 534.53 448.78 1.96 553.82 546.02 5.29 38.77

5.76 1.04 0.62 4.98 8.85 1.35 9.86

0.80 546.34 448.78 1.96 553.82 559.91 5.41 39.20

5.97 1.04 0.62 4.98 10.04 1.31 9.29

0.90 558.10 448.78 1.96 553.82 573.80 5.83 41.70

6.16 1.04 0.62 4.98 11.22 1.31 9.31

1.00 569.64 448.78 1.96 553.77 587.55 5.93 43.57

6.35 1.04 0.62 4.96 12.39 1.53 11.48
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Table A.13: Results for SD-QDEV for pgp2e

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0 410.03 417.75 - - 417.75 4.78 773.57

6.26 5.43 - - 5.43 3.44 193.43

0.1 439.60 419.03 5.37 637.17 451.59 3.48 666.30

5.88 4.51 3.73 38.79 4.70 3.08 180.98

0.2 469.06 421.77 3.34 643.06 479.41 3.60 684.53

6.10 4.16 1.73 24.05 4.31 2.44 163.39

0.3 493.79 421.66 3.14 638.81 505.63 3.11 664.80

6.58 4.85 1.47 12.59 5.74 1.47 113.84

0.4 521.46 424.29 2.94 633.50 531.46 2.69 629.93

5.88 5.04 1.08 15.44 4.09 1.24 105.61

0.5 546.24 425.20 2.70 637.62 558.39 2.76 631.33

6.81 5.06 1.12 16.69 5.75 1.01 84.23

0.6 572.01 429.14 2.61 633.15 582.89 2.76 622.53

6.64 4.75 1.10 12.01 9.69 1.65 120.29

0.7 595.36 430.85 2.93 629.34 610.83 2.02 567.50

7.73 3.54 1.50 12.52 15.76 0.49 52.11

0.8 618.82 431.46 3.02 627.75 636.84 1.80 542.20

8.89 2.32 1.79 15.56 19.72 0.32 31.62

0.9 642.51 431.04 2.99 628.94 662.94 1.85 544.47

9.20 2.82 1.49 11.46 21.34 0.37 38.32

1 665.67 431.55 2.93 628.20 686.55 2.42 585.33

10.24 2.32 1.55 12.71 22.60 0.94 75.22
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Table A.14: Results for SAA-QDEV for pgp2e

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0.00 413.08 415.47 - - 415.47 5.60 40.40

4.64 2.11 - - 2.11 0.64 4.69

0.10 444.45 419.06 2.46 640.93 446.46 8.21 58.33

5.40 1.78 0.31 8.23 1.89 1.67 11.77

0.20 472.23 419.64 2.39 640.48 473.61 9.13 63.10

5.89 1.75 0.31 7.54 2.14 1.54 11.13

0.30 498.88 421.47 2.26 640.78 500.05 8.83 59.83

6.37 1.68 0.30 7.94 2.46 1.72 12.04

0.40 524.45 422.52 2.26 638.79 526.08 7.56 54.00

6.69 1.66 0.30 8.11 2.89 1.49 11.07

0.50 549.51 426.58 2.25 634.51 551.68 7.82 55.80

7.03 1.58 0.30 8.32 3.35 1.61 12.21

0.60 573.82 427.55 2.25 632.91 576.48 6.79 48.93

7.49 1.56 0.30 8.81 3.86 1.60 11.97

0.70 597.72 431.32 2.26 632.37 600.77 5.70 41.10

8.09 1.51 0.30 9.25 4.38 1.44 10.34

0.80 621.51 431.32 2.26 632.13 624.98 5.41 38.70

8.83 1.51 0.30 9.23 4.91 1.03 7.09

0.90 645.29 431.32 2.26 632.11 649.18 5.30 38.10

9.59 1.51 0.30 9.31 5.45 1.12 7.64

1.00 668.84 431.32 2.26 632.19 673.15 5.50 37.83

10.35 1.51 0.30 9.37 5.99 1.20 7.80
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Table A.15: Results for SD-QDEV for gbd

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0 1638.72 1666.58 - - 1666.58 3.55 675.73

28.50 10.35 - - 10.35 2.07 149.71

0.1 1832.27 1669.77 25.73 3140.75 1868.33 3.49 636.90

31.06 11.65 12.19 220.11 13.60 1.54 117.45

0.2 2028.16 1672.13 23.18 3169.36 2064.28 3.12 610.03

37.79 15.30 10.23 190.43 13.15 1.56 110.09

0.3 2220.46 1671.89 23.04 3159.05 2256.26 3.46 626.90

41.98 13.29 7.89 145.51 17.96 1.33 100.01

0.4 2416.60 1687.36 23.13 3147.37 2456.37 3.24 604.80

54.29 20.34 13.60 221.77 33.22 1.08 86.09

0.5 2597.60 1701.25 23.49 3119.72 2645.40 3.02 578.13

68.47 30.11 9.90 176.76 29.24 0.88 72.59

0.6 2762.74 1962.86 23.42 2915.06 2815.27 3.43 595.20

73.64 125.37 8.36 105.18 26.15 1.48 96.67

0.7 2896.51 2125.57 17.72 2914.37 2925.80 3.30 588.17

70.58 62.29 5.47 84.93 24.71 1.22 84.13

0.8 3010.04 2152.21 16.84 2928.23 3042.45 3.09 571.63

65.54 47.37 5.55 100.89 26.77 0.78 58.69

0.9 3111.26 2174.20 16.01 2941.87 3153.31 2.96 559.73

82.52 59.16 6.34 106.05 32.84 0.84 63.01

1 3221.10 2187.47 15.69 2942.46 3255.19 3.43 591.97

78.29 42.57 4.92 81.97 34.65 1.44 92.93
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Table A.16: Results for SAA-QDEV for gbd

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0.00 1649.34 1658.49 - - 1658.49 4.13 30.13

19.25 11.98 - - 11.98 0.37 2.54

0.10 1843.75 1658.49 20.71 3179.05 1854.27 7.64 52.23

22.09 11.98 1.58 78.83 13.24 0.84 5.82

0.20 2037.44 1661.56 21.24 3165.40 2049.75 8.11 55.07

25.80 11.94 1.60 80.68 14.90 0.91 6.03

0.30 2230.27 1661.84 21.59 3164.87 2243.93 8.42 55.10

29.99 11.91 1.62 80.03 16.81 1.19 7.59

0.40 2421.95 1670.38 21.42 3138.16 2440.23 7.89 56.20

34.62 11.82 1.63 87.51 18.85 1.12 7.73

0.50 2608.38 1690.46 22.96 3109.56 2627.75 7.52 52.93

39.49 11.79 1.73 85.02 22.00 1.47 9.97

0.60 2779.16 2030.04 20.83 2903.43 2799.83 7.66 50.63

42.25 9.54 1.59 54.24 22.12 1.48 9.33

0.70 2898.64 2148.71 17.83 2897.88 2923.01 7.30 49.83

40.56 7.85 1.36 45.96 20.90 1.44 9.33

0.80 3007.37 2176.52 15.56 2918.44 3031.11 7.20 48.67

41.41 7.93 1.23 45.88 20.95 1.35 8.86

0.90 3112.63 2187.72 14.96 2939.02 3137.34 7.00 47.13

43.00 7.97 1.20 50.72 22.18 1.53 9.90

1.00 3214.50 2207.03 13.42 2952.87 3239.45 6.55 45.53

44.64 8.04 1.11 53.56 22.26 1.63 10.96
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Table A.17: Results for SD-QDEV for LandS

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0 224.32 226.51 - - 226.51 3.28 686.77

2.06 1.38 - - 1.38 2.95 173.47

0.1 235.32 226.51 1.30 318.98 238.36 3.51 688.33

1.84 1.21 0.76 11.90 1.23 2.25 148.15

0.2 247.00 226.55 0.87 324.34 249.58 2.57 628.07

2.01 1.02 0.45 10.55 0.97 1.01 91.35

0.3 258.11 226.96 0.88 322.31 260.82 2.93 651.63

1.96 1.55 0.43 8.10 1.33 1.89 133.08

0.4 269.20 227.46 0.98 318.49 271.68 3.05 630.87

2.18 1.50 0.35 6.18 1.16 2.15 139.61

0.5 280.29 228.09 0.81 320.18 282.20 2.68 629.10

2.36 1.37 0.31 6.52 1.05 1.65 124.45

0.6 291.03 228.63 0.86 319.13 293.19 2.40 598.23

2.80 1.89 0.33 5.65 1.61 0.91 82.93

0.7 301.82 228.84 0.80 319.12 303.27 2.22 596.13

2.91 1.71 0.25 4.43 1.30 0.82 74.23

0.8 312.50 229.60 0.84 318.31 314.08 1.93 568.83

3.25 1.58 0.35 5.85 1.58 0.55 56.60

0.9 323.29 229.63 0.81 318.43 324.15 1.68 538.87

3.64 1.32 0.24 4.35 1.29 0.24 27.91

1 333.88 230.79 0.83 318.55 335.05 1.91 562.63

3.66 2.04 0.34 5.53 2.16 0.49 52.81
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Table A.18: Results for SAA-QDEV for LandS

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0.00 225.29 225.72 - - 225.72 4.45 30.83

1.83 0.84 - - 0.84 0.42 2.83

0.10 236.86 225.82 1.03 322.19 237.31 7.10 48.80

1.70 0.82 0.06 2.75 0.79 0.86 5.74

0.20 248.12 226.05 1.01 321.08 248.60 7.12 48.80

1.62 0.81 0.06 2.65 0.75 1.01 6.79

0.30 259.21 226.41 1.05 320.25 259.75 7.12 48.60

1.60 0.79 0.06 2.76 0.75 1.04 7.03

0.40 270.13 226.83 1.02 319.59 270.71 6.67 47.57

1.62 0.78 0.06 2.73 0.75 0.87 6.05

0.50 280.90 227.59 0.99 318.76 281.47 6.62 47.57

1.70 0.76 0.05 2.56 0.76 0.83 5.91

0.60 291.53 228.29 0.98 318.51 292.13 6.20 44.47

1.80 0.74 0.05 2.53 0.80 0.93 6.61

0.70 302.08 228.77 0.98 318.57 302.74 6.35 45.30

1.94 0.74 0.05 2.61 0.85 1.23 8.49

0.80 312.56 229.15 0.96 318.57 313.25 6.03 43.20

2.10 0.73 0.05 2.61 0.91 1.01 7.10

0.90 322.99 229.46 0.96 318.53 323.71 6.08 41.93

2.28 0.73 0.05 2.64 0.97 1.05 7.11

1.00 333.28 229.78 0.95 318.58 334.04 6.15 42.60

2.48 0.73 0.05 2.52 1.04 1.17 7.88
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Table A.19: Results for SD-QDEV for storm

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0 15422680.00 15591983.33 - - 15591983.33 207.32 759.83

20372.57 57245.94 - - 57245.94 147.90 182.17

0.1 15454273.33 15591373.33 23665.86 16124053.33 15691973.33 186.08 708.60

29652.17 63630.46 33749.04 325617.64 74244.40 143.66 157.62

0.2 15521170.00 15607940.00 18874.62 16065373.33 15774926.67 187.75 690.40

24363.43 55467.60 14333.34 173342.40 74569.29 102.48 137.28

0.3 15534932.67 15664860.00 16662.85 16199363.33 15871326.67 218.97 720.23

22970.40 91761.89 20575.04 145574.35 68234.16 203.41 190.77

0.4 15674830.00 15579053.33 12055.10 16071606.67 15872516.67 186.74 683.30

27533.55 39294.14 8467.83 106310.51 56309.56 109.32 140.21

0.5 15751153.33 15566736.67 12879.48 16042400.00 15933363.33 360.41 677.73

26867.57 39336.99 8493.82 94654.26 62823.54 892.89 158.27

0.6 15827613.33 15557926.67 12641.39 16041616.67 15999830.00 172.91 613.87

26673.27 30313.47 9353.36 108010.72 67340.00 252.42 125.71

0.7 15896616.67 15556690.00 11933.28 16033393.33 16057450.00 107.13 586.80

28676.67 27048.96 6306.74 77121.45 48598.24 49.23 93.30

0.8 15989576.67 15537776.67 10159.71 16037323.33 16099973.33 109.38 589.47

31775.61 17129.73 5524.26 70178.49 42593.03 45.62 79.37

0.9 16060676.67 15528690.00 8944.29 16038656.67 16148666.67 95.62 533.07

26052.15 15790.36 3845.86 52747.77 31349.80 52.07 29.90

1 16155620.00 15508736.67 7856.80 16030400.00 16186853.33 80.41 504.20

30759.23 8354.38 2064.63 37108.35 14097.18 57.77 2.95
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Table A.20: Results for SAA-QDEV for storm

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0.10 15566925.00 15498032.14 - - 15565571.43 87.01 70.39

9561.37 4238.19 - - 4227.24 7.69 6.04

0.20 15632553.33 15498093.33 7176.79 16043990.00 15633230.00 101.62 75.93

13403.49 4420.40 545.51 30387.89 4844.27 13.43 9.85

0.30 15700537.93 15498141.38 7182.94 16044527.59 15700696.55 101.36 75.45

15283.40 4500.12 542.72 30798.10 5385.20 10.88 7.77

0.40 15767700.00 15498136.67 7244.27 16044283.33 15768440.00 103.34 79.93

17163.17 4428.47 547.88 29416.59 5949.71 14.76 11.28

0.50 15835253.33 15498133.33 7221.02 16043733.33 15835980.00 102.47 80.63

19282.67 4425.81 546.99 29255.61 6668.27 16.28 12.61

0.60 15902790.00 15498163.33 7235.07 16044000.00 15903613.33 98.71 80.07

21498.99 4413.65 547.42 30863.51 7439.72 14.18 11.23

0.70 15970316.67 15498140.00 7218.85 16043140.00 15971133.33 104.78 79.07

23797.71 4433.07 546.90 30211.49 8273.11 15.97 11.74

0.80 16036666.67 15500000.00 7224.87 16043333.33 16006666.67 98.09 79.13

49013.25 0.00 547.01 50400.69 25370.81 15.17 12.09

0.90 16105300.00 15498173.33 7211.91 16043213.33 16106270.00 105.91 80.43

28568.94 4421.26 546.52 29483.72 10019.16 17.70 13.13

1.00 16172080.00 15498173.33 7211.66 16044086.67 16173176.67 100.43 80.90

30979.14 4421.26 546.52 30093.17 10933.65 18.95 14.84

127



A.3 CVaR

Table A.21: Results for SD-CVaR for pgp2

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0 443.34 450.53 - - 450.53 5.16 805.13

3.69 2.40 - - 2.40 4.31 238.52

0.1 502.18 450.40 2.48 557.06 511.06 5.01 776.17

5.39 3.44 1.90 17.85 4.15 4.28 228.52

0.2 560.36 451.72 2.12 557.08 571.60 4.00 734.80

5.81 4.95 1.92 16.71 7.60 1.97 149.21

0.3 617.14 452.44 1.76 554.69 629.40 3.62 701.00

6.91 4.15 0.69 8.30 5.11 2.16 138.43

0.4 675.00 452.34 1.80 556.73 689.46 4.12 726.70

7.42 4.42 1.45 9.36 9.88 3.04 173.25

0.5 731.30 452.26 1.73 556.20 747.66 3.02 651.27

8.46 4.78 0.92 7.77 7.37 1.61 117.92

0.6 788.04 453.25 1.63 555.82 806.34 3.05 660.20

8.99 5.51 0.91 7.59 8.54 1.42 115.24

0.7 844.94 452.58 1.65 555.94 864.83 3.06 654.93

9.75 4.59 0.91 9.12 9.81 1.69 119.93

0.8 903.16 453.20 1.62 556.12 924.08 2.77 624.30

9.78 4.53 0.97 6.09 12.12 2.29 135.57

0.9 958.84 452.61 1.64 555.98 982.48 2.67 625.53

10.49 4.85 0.92 6.92 12.72 1.11 99.32

1 1016.07 452.57 1.60 554.81 1039.34 3.35 667.33

10.82 4.74 0.68 5.94 10.64 2.20 148.85

128



Table A.22: Results for SAA-CVaR for pgp2

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0.00 446.62 448.05 - - 448.05 4.09 30.40

3.19 1.78 - - 1.78 0.49 3.64

0.10 506.50 447.24 2.00 554.03 506.40 5.91 43.13

4.94 0.86 0.59 4.56 1.78 1.00 7.08

0.20 565.02 449.90 1.62 553.78 566.84 5.71 42.20

6.00 0.80 0.43 5.34 2.17 0.92 6.82

0.30 623.23 450.10 1.59 553.39 625.39 5.94 43.60

7.03 0.80 0.42 5.18 2.91 1.01 7.36

0.40 681.07 458.77 0.96 555.93 690.65 6.90 51.07

7.96 0.75 0.11 5.79 1.27 1.24 8.59

0.50 738.33 459.32 0.89 555.86 748.49 6.26 46.70

8.59 0.75 0.10 5.74 1.40 1.40 10.18

0.60 795.55 459.32 0.89 555.86 806.33 6.12 45.57

9.23 0.75 0.10 5.74 1.58 1.37 9.86

0.70 852.76 459.56 0.87 555.86 864.04 5.78 43.20

9.87 0.74 0.10 5.74 1.74 1.47 10.52

0.80 909.97 459.56 0.87 555.86 921.82 5.53 41.13

10.52 0.74 0.10 5.74 1.93 1.43 10.33

0.90 967.18 459.56 0.87 555.86 979.60 5.44 40.63

11.17 0.74 0.10 5.74 2.12 1.38 10.12

1.00 1024.38 459.56 0.87 555.86 1037.39 5.60 41.87

11.83 0.74 0.10 5.74 2.31 1.46 10.57
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Table A.23: Results for SD-CVaR for pgp2e

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0 409.68 417.73 - - 417.73 4.29 774.80

6.16 5.46 - - 5.46 2.97 190.21

0.1 481.80 419.09 5.27 644.24 494.05 5.49 824.97

6.44 3.34 4.16 41.99 5.26 3.57 209.79

0.2 551.28 420.06 3.17 647.44 562.21 4.64 766.63

7.11 3.95 1.47 20.17 4.06 3.76 198.68

0.3 618.25 421.14 3.09 645.91 633.48 3.94 706.43

8.15 4.18 1.79 19.73 6.34 3.71 203.86

0.4 687.29 422.14 3.40 636.06 703.78 3.59 712.27

9.05 4.71 1.43 16.14 8.63 1.80 134.16

0.5 754.27 421.79 2.84 645.63 772.97 2.66 631.07

10.00 4.49 1.28 18.08 9.30 1.54 120.46

0.6 822.88 423.35 2.82 637.23 839.55 2.88 660.03

9.00 3.86 0.96 15.45 6.28 1.07 94.64

0.7 889.48 423.48 3.02 634.89 910.19 3.25 684.07

11.26 4.51 1.38 12.91 12.60 1.68 126.31

0.8 956.31 424.43 3.01 635.82 981.21 2.57 630.33

12.29 4.56 1.60 17.48 17.57 1.09 92.85

0.9 1023.32 425.27 2.94 635.45 1050.08 2.57 623.67

12.73 5.69 1.54 14.41 20.25 1.30 115.64

1 1090.77 425.61 2.99 633.99 1119.35 2.49 619.63

14.81 4.46 1.57 16.88 20.38 0.98 85.62
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Table A.24: Results for SAA-CVaR for pgp2e

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0.00 413.37 414.31 - - 414.31 5.43 38.83

5.09 2.45 - - 2.45 0.93 6.83

0.10 486.13 414.05 6.90 639.91 491.32 8.42 57.60

5.54 2.08 1.30 8.91 4.30 1.60 11.01

0.20 555.81 414.33 6.90 639.44 568.48 8.89 61.03

6.06 2.06 1.30 8.32 6.78 1.63 11.31

0.30 624.89 415.14 6.83 637.30 645.33 9.11 63.07

6.66 2.04 1.30 7.93 9.31 1.97 14.01

0.40 693.42 429.70 1.91 638.58 703.92 9.21 63.97

7.34 1.54 0.16 7.63 2.50 2.16 15.10

0.50 761.38 429.70 1.91 638.78 772.48 8.32 57.90

7.99 1.54 0.16 8.50 2.78 1.65 11.90

0.60 829.21 430.76 1.92 636.53 840.89 7.97 56.33

8.62 1.52 0.16 7.78 3.06 1.57 11.59

0.70 896.97 430.76 1.92 637.07 909.25 7.95 55.90

9.31 1.52 0.16 8.61 3.36 1.71 12.37

0.80 964.69 431.50 1.89 635.65 977.61 8.11 56.40

9.99 1.51 0.16 7.44 3.63 1.71 12.14

0.90 1032.24 433.15 1.89 634.20 1045.73 8.16 57.57

10.63 1.48 0.16 8.25 3.91 1.79 13.26

1.00 1099.57 435.33 1.91 632.28 1113.74 7.56 53.43

11.29 1.45 0.16 7.69 4.20 1.61 11.81

131



Table A.25: Results for SD-CVaR for gbd

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0 1640.30 1667.43 - - 1667.43 3.00 646.17

27.04 11.86 - - 11.86 1.68 131.35

0.1 1995.71 1670.49 28.54 3097.69 2037.34 3.73 679.17

30.53 14.95 13.68 208.39 19.03 2.10 155.49

0.2 2351.91 1668.10 24.10 3166.71 2397.85 3.15 621.70

44.19 14.68 12.44 219.02 24.36 1.35 106.14

0.3 2714.99 1674.57 23.47 3164.79 2764.82 3.01 602.60

57.42 16.09 8.57 175.47 28.70 1.23 97.40

0.4 3071.76 1675.68 23.78 3153.01 3127.12 3.85 660.07

56.69 14.71 11.07 192.02 28.76 1.87 122.80

0.5 3427.88 1678.45 23.49 3154.64 3490.65 3.49 635.73

75.74 24.51 8.11 149.41 38.67 2.29 143.20

0.6 3778.60 1686.93 23.33 3135.17 3847.96 3.21 619.57

73.23 23.80 7.96 140.05 40.01 1.05 85.93

0.7 4145.13 1690.85 21.78 3149.21 4200.17 3.78 657.87

90.75 24.53 6.88 136.60 32.92 2.10 135.02

0.8 4484.25 1699.55 25.75 3078.46 4574.27 3.32 628.03

104.74 32.09 8.60 131.76 51.13 1.13 87.33

0.9 4842.37 1707.90 23.99 3113.89 4942.17 3.11 598.30

121.71 58.43 11.41 207.09 101.46 1.21 96.46

1 5197.87 1701.97 23.07 3120.71 5284.17 2.83 583.67

136.94 30.11 7.52 153.80 50.67 0.95 77.95
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Table A.26: Results for SAA-CVaR for gbd

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0.00 1654.56 1656.12 - - 1656.12 4.15 30.57

21.35 8.23 - - 8.23 0.37 2.65

0.10 2015.53 1656.11 23.14 3195.16 2017.30 8.29 54.30

27.37 8.23 1.84 103.73 10.67 1.05 6.57

0.20 2376.04 1659.40 22.69 3186.64 2378.79 8.54 56.37

34.28 8.14 1.82 103.18 13.40 1.01 6.41

0.30 2735.87 1659.40 22.50 3179.08 2738.41 8.54 55.87

41.91 8.14 1.80 109.92 16.55 1.11 6.93

0.40 3095.38 1659.48 22.54 3179.83 3098.02 8.37 54.63

49.76 8.14 1.81 102.56 19.88 1.25 7.93

0.50 3454.78 1659.48 22.49 3181.16 3457.62 8.56 54.97

57.74 8.14 1.80 105.05 23.27 1.18 7.37

0.60 3813.84 1659.48 22.54 3167.78 3817.29 8.85 57.50

65.95 8.14 1.81 110.66 26.76 1.38 8.76

0.70 4170.97 1682.86 22.54 3142.78 4174.39 8.70 56.60

74.45 7.95 1.82 112.54 30.07 1.70 10.72

0.80 4526.70 1682.86 22.54 3135.40 4530.32 8.38 54.53

82.81 7.95 1.82 109.22 33.62 1.72 10.81

0.90 4882.25 1684.09 22.31 3133.13 4885.83 8.07 53.73

91.14 7.92 1.80 108.02 36.90 1.62 10.50

1.00 5237.35 1691.74 22.61 3127.28 5241.46 7.80 52.47

99.50 7.91 1.82 109.48 40.80 1.62 10.30

133



Table A.27: Results for SD-CVaR for LandS

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0 224.28 226.29 - - 226.29 3.79 746.43

1.95 1.38 - - 1.38 3.42 224.00

0.1 258.15 226.41 1.16 322.35 260.97 4.31 774.07

2.28 1.04 0.85 13.54 1.29 3.08 200.04

0.2 291.96 226.72 1.01 321.03 294.97 3.22 699.07

1.95 1.40 0.55 9.37 1.45 2.00 153.71

0.3 325.34 226.57 0.97 321.37 328.79 2.87 662.70

2.60 1.28 0.47 7.90 1.69 1.84 145.96

0.4 358.99 226.87 1.09 318.37 362.97 2.17 611.47

2.86 1.62 0.51 8.46 2.14 0.94 96.17

0.5 393.16 227.16 0.90 320.20 396.29 3.20 683.40

3.02 1.45 0.35 5.76 1.92 2.07 151.16

0.6 426.02 227.14 0.97 319.59 430.49 2.36 620.00

3.20 1.33 0.42 7.17 2.04 1.14 99.92

0.7 459.97 227.61 0.84 321.11 464.19 2.72 650.37

3.87 1.71 0.39 6.48 1.83 1.56 130.50

0.8 493.46 228.08 0.84 319.89 497.40 2.62 648.13

4.24 1.63 0.37 6.57 2.56 1.44 106.84

0.9 527.21 228.00 0.88 319.32 531.22 2.42 634.77

4.52 1.49 0.34 6.15 2.46 0.89 82.63

1 560.21 227.87 0.83 319.59 564.15 2.32 613.03

4.71 1.41 0.30 5.77 2.15 1.48 122.56
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Table A.28: Results for SAA-CVaR for LandS

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0.00 225.18 225.59 - - 225.59 4.30 31.13

1.86 0.76 - - 0.76 0.39 2.57

0.10 259.37 225.68 1.08 322.76 259.77 6.95 49.23

1.94 0.74 0.07 3.47 0.81 0.89 5.96

0.20 293.29 225.91 1.01 321.90 293.67 6.86 48.67

2.06 0.73 0.06 3.39 0.87 0.84 5.77

0.30 327.10 226.14 1.02 321.24 327.49 6.96 49.50

2.20 0.72 0.06 3.34 0.94 0.79 5.60

0.40 360.83 226.32 1.01 320.90 361.23 6.99 49.67

2.37 0.72 0.06 3.37 1.03 0.77 5.43

0.50 394.51 226.57 0.99 320.44 394.89 6.74 48.17

2.56 0.71 0.06 3.44 1.11 0.89 6.24

0.60 428.14 226.85 0.95 320.18 428.45 6.94 49.43

2.77 0.71 0.06 3.31 1.18 0.81 5.66

0.70 461.73 227.06 0.95 319.99 462.02 6.84 48.97

2.98 0.70 0.06 3.39 1.28 0.86 5.95

0.80 495.28 227.33 0.94 319.68 495.56 6.70 48.00

3.21 0.70 0.06 3.21 1.37 0.82 5.72

0.90 528.81 227.57 0.95 319.57 529.10 6.56 47.23

3.44 0.69 0.06 3.29 1.47 0.82 5.82

1.00 562.32 227.64 0.96 319.48 562.64 6.56 47.33

3.67 0.69 0.06 3.27 1.59 0.94 6.67
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Table A.29: Results for SD-CVaR for storm

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0 15422153.33 15570036.67 - - 15570036.67 191.40 739.53

21608.42 34373.48 - - 34373.48 227.03 220.22

0.1 16987016.67 15607136.67 23322.37 16095873.33 17263370.00 272.22 760.00

35869.36 73111.65 29027.16 266676.28 110094.17 375.31 265.84

0.2 18594783.33 15593096.67 20395.16 16053623.33 18885396.67 319.22 666.37

38707.59 53172.65 23136.93 189259.23 102311.86 841.17 135.70

0.3 20211133.33 15606653.33 13726.66 16137503.33 20530256.67 231.80 707.40

38037.66 82402.14 18702.58 176675.56 171916.47 203.88 163.98

0.4 21824453.33 15572880.00 19165.61 16001770.00 22126903.33 172.63 683.23

38020.36 41067.18 16961.07 130221.76 116502.30 95.08 128.08

0.5 23438120.00 15585206.67 13697.15 16063480.00 23753910.00 178.56 676.60

38422.29 60973.58 11721.88 126651.06 113212.19 76.93 116.86

0.6 25019463.33 15560723.33 13475.37 16035830.00 25343920.00 196.94 690.17

58900.53 30896.44 8714.03 131448.93 62531.33 101.88 146.96

0.7 26638170.00 15597443.33 20496.93 16016420.00 27115896.67 224.50 711.97

114688.66 230764.69 12350.35 121430.34 3017201.12 113.15 142.99

0.8 28275906.67 15573540.00 13736.90 16041686.67 28626693.33 481.73 760.70

48369.73 47694.26 9996.43 104554.91 124117.80 202.21 378.96

0.9 29874676.67 15561676.67 13553.30 16032080.00 30034510.00 204.17 654.77

64696.27 23976.76 8753.25 102739.16 91098.11 145.02 144.37

1 31444123.33 15666460.00 11785.30 16077246.67 31781916.67 228.69 652.73

67541.26 50906.39 9978.03 160756.74 163565.04 118.57 107.35
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Table A.30: Results for SAA-CVaR for storm

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] ψ UB CPU Iteration

0.00 15497596.67 15498453.33 - - 15498453.33 69.01 52.13

10945.40 3908.32 - - 3908.32 6.34 4.35

0.10 17114070.00 15498463.33 5016.45 16037800.00 17115960.00 101.27 73.03

11636.51 3908.65 411.22 22545.86 4409.75 11.39 7.88

0.20 18730530.00 15498470.00 4907.32 16037680.00 18733553.33 93.26 75.70

12784.80 3907.21 407.71 22934.97 4984.72 10.90 8.72

0.30 20346980.00 15498500.00 5009.00 16038146.67 20350970.00 95.21 76.57

14263.68 3913.90 411.13 22831.51 5635.18 8.24 6.44

0.40 21963416.67 15498463.33 4989.46 16037786.67 21968466.67 99.27 77.23

16008.10 3906.01 410.35 22999.97 6319.56 11.15 8.38

0.50 23579850.00 15498473.33 4983.58 16038343.33 23585993.33 101.66 79.10

17920.72 3912.93 410.20 22581.92 7020.02 13.68 10.28

0.60 25196283.33 15498470.00 4981.02 16038160.00 25203513.33 94.16 76.70

19968.42 3913.12 409.98 22817.49 7748.22 12.77 10.11

0.70 26812706.67 15498463.33 4996.37 16038330.00 26820960.00 102.71 78.30

22090.39 3908.65 410.54 22851.73 8512.29 12.34 9.27

0.80 28429133.33 15498510.00 4986.67 16038066.67 28438523.33 102.65 77.53

24301.37 3909.52 409.99 22674.04 9280.04 15.25 11.29

0.90 30045556.67 15498493.33 4993.40 16037963.33 30055996.67 98.21 78.77

26566.68 3910.55 410.31 22651.25 10044.85 14.98 11.93

1.00 31661976.67 15498510.00 4988.75 16038090.00 31673533.33 101.01 76.17

28862.18 3909.52 410.06 23181.12 10820.20 15.87 11.54
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Table A.31: Results for SD-EE for pgp2 (ψ = 557.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0 443.31 451.77 5.57 451.77 3.62 717.23

3.71 3.30 3.36 3.30 2.12 152.35

0.1 443.63 450.79 3.81 451.17 6.49 843.23

2.92 2.86 2.40 2.90 5.94 266.91

0.2 444.02 451.06 4.66 452.00 4.69 751.20

3.52 4.77 5.44 5.67 3.92 220.74

0.3 444.47 450.27 3.78 451.40 4.62 748.40

3.96 2.37 2.85 2.76 2.50 150.75

0.4 444.52 450.45 3.61 451.89 6.29 773.77

3.62 2.78 2.50 3.06 8.11 277.79

0.5 444.80 450.33 3.22 451.94 5.02 743.77

4.00 2.10 2.51 2.46 4.25 219.31

0.6 445.24 451.11 3.81 453.40 7.13 843.77

3.40 5.68 2.72 6.48 10.25 297.59

0.7 445.68 449.99 2.79 451.94 7.56 862.97

3.97 3.11 1.94 3.59 10.95 316.61

0.8 445.76 450.64 2.97 453.01 5.14 817.03

4.13 3.16 2.21 4.28 3.47 195.66

0.9 445.77 450.15 2.63 452.52 5.00 775.97

4.02 2.99 2.06 3.80 3.70 205.30

1 446.26 450.09 2.72 452.81 5.97 805.37

3.85 2.93 2.09 4.16 5.63 261.50
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Table A.32: Results for SD-EE for pgp2e (ψ = 645.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0 410.11 417.83 9.41 417.83 4.48 768.57

5.77 3.84 5.31 3.84 3.55 208.90

0.1 410.51 418.46 9.74 419.44 4.65 767.50

5.56 4.53 6.49 4.95 4.18 235.55

0.2 410.67 417.02 6.63 418.34 4.78 786.53

5.65 3.39 2.28 3.28 3.50 220.77

0.3 411.07 417.69 7.97 420.08 3.43 713.87

5.71 3.89 4.45 4.31 2.06 143.50

0.4 412.43 417.89 7.05 420.71 3.50 721.60

5.44 4.57 4.70 5.52 1.85 142.34

0.5 412.40 417.43 6.80 420.83 4.82 773.10

5.98 3.04 2.85 3.35 4.90 249.88

0.6 412.49 417.63 5.60 421.00 3.75 720.43

5.99 3.13 2.18 2.95 3.07 188.06

0.7 413.66 417.77 6.40 422.25 4.15 739.87

5.93 3.86 3.76 5.22 4.13 212.05

0.8 413.79 418.00 6.38 423.10 4.38 762.10

6.10 3.79 2.97 5.38 3.79 214.18

0.9 413.14 417.84 5.93 423.18 4.61 768.23

6.11 3.39 2.74 3.15 4.18 227.98

1 415.19 417.22 5.10 422.31 3.88 736.30

6.19 2.94 2.06 2.94 2.62 185.92
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Table A.33: Results for SD-EE for gbd (ψ = 3100.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0 1641.51 1666.42 26.62 1666.42 3.86 721.60

26.84 10.96 2.12 10.96 2.04 160.30

0.1 1642.55 1670.21 26.99 1672.90 2.95 642.30

26.52 13.67 2.39 13.81 1.91 139.35

0.2 1647.57 1666.22 26.40 1671.50 4.03 723.93

23.80 13.79 2.01 13.99 2.47 170.13

0.3 1647.96 1666.98 26.70 1674.99 4.02 718.77

28.94 11.79 2.37 12.23 2.01 150.08

0.4 1655.10 1665.09 26.36 1675.64 3.73 688.53

28.86 9.74 1.77 10.12 2.40 162.07

0.5 1655.98 1665.76 26.30 1678.91 3.94 707.57

27.86 10.60 1.86 11.01 3.22 203.82

0.6 1658.22 1668.36 26.49 1684.25 3.68 705.43

28.27 13.81 2.13 14.54 2.61 176.66

0.7 1658.07 1667.47 26.28 1685.86 2.94 657.83

28.28 9.62 2.05 10.42 1.05 97.08

0.8 1662.08 1668.89 26.68 1690.24 3.51 683.90

30.31 13.40 2.30 14.64 2.01 157.16

0.9 1666.54 1667.30 26.21 1690.89 3.87 692.70

30.36 11.38 2.06 12.30 2.52 172.72

1 1667.42 1668.63 26.25 1694.88 3.29 681.07

30.54 14.05 2.02 14.93 1.94 155.07
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Table A.34: Results for SD-EE for LandS (ψ = 320.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0 224.49 226.49 1.15 226.49 3.25 733.00

2.07 1.39 0.27 1.39 1.96 149.16

0.1 224.44 226.35 1.11 226.46 3.05 711.33

2.17 1.67 0.22 1.66 1.68 143.28

0.2 224.62 226.86 1.32 227.13 3.69 699.00

2.16 1.88 0.46 1.95 1.90 146.94

0.3 224.55 226.40 1.17 226.75 4.12 701.60

2.08 1.34 0.25 1.36 3.05 185.09

0.4 224.77 226.25 1.26 226.75 4.31 736.73

1.96 1.28 0.23 1.28 3.61 186.11

0.5 224.84 226.25 1.25 226.87 4.86 768.83

2.07 1.18 0.26 1.24 3.12 200.19

0.6 224.97 226.65 1.12 227.32 3.31 674.20

1.93 1.29 0.22 1.29 1.69 132.37

0.7 225.01 226.46 1.23 227.32 4.07 726.10

1.98 1.33 0.29 1.35 2.80 169.29

0.8 225.41 226.13 1.16 227.06 3.89 720.43

1.86 1.02 0.20 1.02 2.07 158.44

0.9 225.43 226.40 1.21 227.49 3.90 711.07

2.25 1.03 0.31 1.06 2.84 186.82

1 225.69 226.13 1.12 227.25 5.18 774.03

2.32 1.04 0.18 1.08 5.05 246.79
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Table A.35: Results for SD-EE for storm (ψ = 16095000.00).

λ Obj Val E[f(x, ω̃)] E[ν(ω̃)] UB CPU Iteration

0 15419746.67 15578190.00 8498.31 15578190.00 156.94 720.67

20682.84 50816.22 4393.71 50816.22 83.05 139.59

0.1 15415116.67 15600636.67 10325.17 15601680.00 197.04 694.27

28036.60 62845.43 6212.93 63440.48 344.69 238.83

0.2 15417050.00 15568406.67 7789.96 15569896.67 191.33 715.87

17536.68 41499.32 3350.86 42098.40 236.56 212.55

0.3 15420573.33 15569030.00 7700.01 15571330.00 174.22 711.97

21650.57 38121.63 2686.25 38896.23 131.97 172.23

0.4 15417566.67 15596040.00 9642.59 15599896.67 157.07 719.37

24212.44 50237.69 4323.41 51928.97 85.27 135.94

0.5 15416063.33 15587026.67 8966.41 15591510.00 161.50 697.50

24732.05 48558.38 4018.83 50493.08 158.39 196.18

0.6 15421076.67 15595036.67 9422.34 15600683.33 217.11 767.90

19930.26 48701.06 3940.82 51025.18 210.67 232.20

0.7 15419156.67 15576753.33 7941.04 15582310.00 170.24 730.00

27802.06 30135.77 1898.27 31390.07 129.20 168.36

0.8 15421436.67 15578403.33 8271.27 15585016.67 202.01 748.13

21919.82 46861.12 3348.14 49468.58 222.35 217.70

0.9 15416430.00 15582686.67 8664.87 15590480.00 126.34 657.20

23726.46 47875.48 3657.28 51098.56 67.29 114.59

1 15421143.33 15575190.00 8102.88 15583293.33 243.57 783.47

24703.14 42513.64 3122.72 45554.49 225.88 239.31
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APPENDIX B

CONVERGENCE PROOFS FOR SD

B.1 Convergence Proof for SD-QDEV

For SD-QDEV, we follow similar approach as that of SD-EE by proving that the approximation

of the recourse function generated during the execution of the algorithm uniformly converges and

the accumulation point of the candidate solutions is an optimal solution. We begin by proving that

the variable ν(ω) for realization ω used for computing the excess over and below the α-quantile ψ

is always finite for x ∈ X . Therefore, the assumption A2 holds for two-stage SLP with QDEV. For

the convergence results of SD-QDEV and SD-CVaR, iterate xk will encompass both the decision

variables at first stage and the quantile variable ψ generated at iteration k.

COROLLARY B.1.1. Suppose that assumptions A1-A2 hold, then for any x ∈ X and ω ∈ Ω, the

dispersion statistic for QDEV E[ν(ω̃)] <∞.

Proof. By assumption (A1), X ⊆ Rn1
+ is a compact set and from Equation (3.1) we have cost

vector c ∈ Rn1. Therefore the elements of set {c>xk}∞k=1 will always be finite.

From assumption (A2), for any given x ∈ X we have E[f(x, ω̃)] < ∞. Hence from Equation

(3.2), for any ω ∈ Ω, we have q>y(ω) <∞.

Since α-quantile ψ ∈ R, from Proposition 3.4.2 we have

− c>xk − q>y(ω) + ψ + ν(ω) ≥ 0 ∀ω ∈ Ω. (B.1)

Hence, we have E[ν(ω̃)] <∞.

In the following statements for denoting limits we use lim, for denoting upper limits and lower

limits we use lim and lim respectively. The functions hk(x, ω) and h(x, ω) are defined as follows:

hk(x, ω) = max {(π)>[r(ωk)− T (ωk)xk] + φ[c>x− ψ] |π ∈ V k, φ ∈ Uk},

143



h(x, ω) = max {(π)>[r(ωk) − T (ωk)xk] + φ[c>x − ψ] |π ∈ V, φ ∈ U}, where set V and U

are collections of all dual vertices of the subproblem.

LEMMA B.1.2. Suppose that assumptions A1-A2 hold, then the sequence {hk}∞k=1 of functions

hk(x, ω), converges uniformly on X × Ω.

Proof. Note that the set V k ⊆ V k+1 ⊆ V and set Uk ⊆ Uk+1 ⊆ U , This implies that hk(x, ω) ≤

hk+1(x, ω) ≤ h(x, ω) for all k and for all (x, ω) ∈ X ×Ω. Since {hk}∞k=1 increases monotonically

and is bounded from above by the function h(x, ω), it follows that {hk}∞k=1 converges pointwise to

some function g(x, ω) ≤ h(x, ω). Since set V k ⊆ V k+1 ⊆ V and set Uk ⊆ Uk+1 ⊆ U for all k,

V̄ = limk→∞Vk ⊆ V, (B.2)

and

Ū = limk→∞Uk ⊆ U. (B.3)

By assumption (A2) and Corollary B.2.1, V and U are sets of finite elements and so are V̄ and Ū ,

hence

g(x, ω) = limk→∞hk(x, ω)

= limk→∞{Max {π>[r(ω)− T (ω)x] + φ[c>x− ψ]|π ∈ Vk, φ ∈ Uk}}

= Max {π>[r(ω)− T (ω)x] + φ[c>x− ψ]|π ∈ V̄ , φ ∈ Ū}. (B.4)

Therefore, from the statements (B.2), (B.3) and (B.4), we can conclude that {hk}∞k=1 converges

uniformly to the function g(x, ω), since {hk}∞k=1 is a monotone sequence of continuous functions

and X × Ω is a compact set.

Let Ψ be the set of iterates ψk ∈ R used for estimating α-quantile. Since, Ψ is a closed

and bounded set by Heine-Borel theorem Ψ is also a compact set. Therefore every sequence that

belongs to Ψ will have a converging subsequence.
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THEOREM B.1.3. Let {xkn}∞n=1 be an infinite subsequence of {xk}∞k=1. Suppose that assump-

tions A1-A4 hold and if xkn → x̂, then with probability one

1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψkn)→ E[h(x̂, ω̃)].

Proof. From the equation (4.11) and step 2 of the SD-QDEV algorithm, we know that

hkn(xkn , ωt) =πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψkn)

and

1

kn

kn∑
t=1

hkn(xkn , ωt) =
1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψkn).

By Lemma B.1.2, there exists a function g(x, ω) ≤ h(x, ω) such that {hkn}∞n=1 converges uni-

formly to g(x, ω). Thus, since we have

1

kn

kn∑
t=1

[hkn(xkn , ωt)− g(x̂, ωt)]→ 0 and
1

kn

kn∑
t=1

h(x, ωt)→ E[h(x, ω̃)],

it is sufficient to show that g(x̂, ωt) = h(x̂, ωt) with probability one. Since h(x, ω) is a continuous

function and {hkn}∞n=1 is a uniformly convergent sequence of continuous function, for every ε > 0

there exist δ > 0 and N <∞ such that

|(x̂, ωt)− (x, ω)| < δ ⇒|h(x̂, ωt)− h(x, ω)| < ε

3
∀n ≥ N

and

|hkn(x̂, ωt)−hkn(x, ω)| < ε

3
∀n ≥ N.

Thus, since xkn → x̂, for every ε > 0 there exist a further subsequence {(xk′n , ωk′n)}∞n=1 and

K <∞ such that
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|h(x̂, ωt)−h(x̂, ωk
′
n)| < ε/3,

|h(x̂, ωk
′
n)−h(xk

′
n , ωk

′
n)| < ε/3

and

|hk′n(xk
′
n , ωk

′
n)−hk′n(xk

′
n , ωt)| < ε/3,

for all k′n ≥ K. By construction we have hk′n(xk
′
n , ωk

′
n) = h(xk

′
n , ωk

′
n). Thus, for every ε > 0 there

exist a subsequence {xk′n}∞n=1 and K <∞ such that

|h(x̂, ωt)− hk′n(xk
′
n , ωt)| ≤ |h(x̂, ωt)− h(x̂, ωk

′
n)|

+ |h(x̂, ωk
′
n)− h(xk

′
n , ωk

′
n)|

+ |h(xk
′
n , ωk

′
n)− hk′n(xk

′
n , ωt)| < ε,

for all k′n ≥ K. Hence, by the uniqueness of the sequential limit, it follows that g(x̂, ωt) =

h(x̂, ωt). Therefore by probability one, we have

1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψkn)→ E[h(x̂, ω̃)].

Also since h(x, ωt) = argmax{π(r(ωt) − T (ωt)x) + φ(c>x − ψ)|π ∈ V, φ ∈ U}, V k ⊆ V , and

Uk ⊆ U ∀k, it follows that

c>x+ λψ +
1

kn

kn∑
t=1

h(x, ωt) ≥ c>x+ λψ +
1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψkn)

= c>x+ λψ + αknkn + βknknx x ∈ X.
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THEOREM B.1.4. Suppose that assumptions A1-A4 hold, then there exists a subsequence {xkn}∞n=1

of {xk}∞k=1, such that limn→∞[Fkn(xkn)− Fkn−1(xkn)] = 0, with probability one.

Proof. If assumption (A2) is satisfied, then for every ω ∈ Ω there exist M(ω) ∈ R+, such that

|h(x1, ω)−h(x2, ω)| ≤M(ω)||x1−x2|| for all x1, x2 ∈ X . Let ε > 0 be given, letM = E[M(ω)],

let r = ε
2M

, and let Br(x) denote an open ball of radius r centered at x. Then ∪x∈XBr(x) is an

open cover of X . Since X is a compact set, there exist Nε ≤ ∞ and {xi}Nεi=1 ⊂ X such that

X ⊂ ∪Nεi=1Br(xi). Moreover, since {xk} ⊂ X , it follows that each iterate is contained in one or

more of the open balls {Br(xi)}Nεi=1. Thus, there exist two sequence of indices, {kn} and {tn} such

that

0 < kn − tn ≤ Nε + 1 and ||xkn − xtn|| < r.

By assumption (A1), we know that X is a compact set. Thus, without loss of generality we may

assume that

limn→∞x
kn = x̂k and limn→∞x

tn = x̂t,

where x̂k and x̂t are accumulation points of sequences xkn and xtn respectively.

Now, in iteration k the cutting plane generated during iteration t appears as (please refer to step

2(d) of the SD-QDEV algorithm)

αkt + βkt x+ γkt ψ =
t

k
(αtt + βttx+ γkt ψ) +

k − t
k

L. (B.5)

As per the step 2 of algorithm we have
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ηk−1(xk) = Max{αk−1
t + βk−1

t xk + γkt ψ
k|t = 1, ..., k − 1}. (B.6)

Therefore, using equation (B.5) we can rewrite equation (B.6) as follows

ηk−1(xk) ≥ t

k − 1
(αtt + βttx

k + γkt ψ
k) + (1− t

k − 1
)L ∀t = 1, ..., k − 1.

Thus,

ηkn−1(xkn) ≥ tn
kn − 1

(αtntn + βtntnx
kn + γkntn ψ

kn) + (1− tn
kn − 1

)L

=
tn

kn − 1
(αtntn + βtntnx

tn + γtntnψ
tn) +

tn
kn − 1

βtntn (xkn − xtn)

+
tn

kn − 1
γtntn (ψkn − ψtn) + (1− tn

kn − 1
)L

=
tn

kn − 1
ηtn(xtn) +

tn
kn − 1

βtntn (xkn − xtn) +
tn

kn − 1
γtntn (ψkn − ψtn) + (1− tn

kn − 1
)L,

(B.7)

where the last equality follows the fact that ηk(xk) = αkk + βkkx
k + γkkψ

k for all k. Furthermore by

definition,

Fk(x
k)− Fk−1(xk) = c>xk + ηk(x

k)− c>xk − ηk−1(xk)

= ηk(x
k)− ηk−1(xk). (B.8)

Using equations (B.7) and (B.8) we have
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Fkn(xkn)− Fkn−1(xkn) ≤ ηkn(xkn)− tn
kn − 1

(ηtn(xtn) + βtntn (xkn − xtn))

+γtntn (ψkn − ψtn))− (1− tn
kn − 1

)L.

By construction,

0 < kn − tn ≤ Nε + 1 <∞,

we have

||βtntn || ≤
1

tn

tn∑
t=1

M(ωt),

limn→∞
tn

kn − 1
= 1 and

limn→∞(1− tn
kn − 1

)L = 0.

Moreover, Theorem B.1.3 ensures that ηkn(xkn) → E[h(x̂k, ω̃)] and ηtn(xtN ) → E[h(x̂t, ω̃)] with

probability one. It follows that
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0 ≤ limk→∞Fk(x
k)− Fk−1(xk)

≤ limn→∞Fkn(xkn)− Fkn−1(xkn)

≤ limn→∞ηkn(xkn)− tn
kn − 1

(ηtn(xtn) + ||βtntn ||||x
kn − xtn||)− (1− tn

kn − 1
)L.

≤ limn→∞ηkn(xkn)− tn
kn − 1

(ηtn(xtn) +
1

tn

tn∑
t=1

M(ωt)||xkn − xtn||)− (1− tn
kn − 1

)L.

= E[h(x̂k, ω̃)]− E[h(x̂t, ω̃)] +M ||x̂k − x̂t||

≤ |E[h(x̂k, ω̃)]− E[h(x̂t, ω̃)]|+M ||x̂k − x̂t||

≤ 2M ||x̂k − x̂t||

≤ 2M(
ε

2M
)

= ε.

Thus, for every ε > 0, 0 ≤ limn→∞Fkn(xkn)− Fkn−1(xkn) ≤ ε and hence the result.

THEOREM B.1.5. There exist a subsequence {xkn}∞n=1 of {xk}∞k=1, such that every accumulation

point of {xkn}∞n=1 is an optimal solution x∗ with probability one.

Proof. From Theorem 4.4.3, we know that there exist subsequence {xkn}∞n=1 such that limn→∞hkn(xkn)−

hkn−1(x
kn) = 0. Let {xkn}n∈N be a subsequence such that limn∈Nx

kn = x̂. By assumption (A1)

we will always have accumulation point x̂ ∈ X thus for an optimal solution x∗ we have

F (x∗) ≤ F (x̂), (B.9)

where F (x) = (1− λε1)c>x+ λε1ψ + E[h(x, ω)], and also by construction we have
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limk∈KFk(x
∗) ≤ (1− λε1)c>x∗ + λε1ψ

∗ + E[h(x∗, ω)] = F (x∗). (B.10)

As per the step 4 of algorithm we know that xk minimizes Fk−1, therefore

Fk−1(xk) ≤ Fk−1(x∗). (B.11)

Now using Theorem B.1.3 and result limn∈NFkn(xkn) = F (x̂) we get limn∈NFkn−1(x
kn)

= F (x̂), with probability one. Combining equations (B.9), (B.10) and (B.11) we have

F (x∗) ≤ F (x̂) = limn∈NFkn−1(x
kn) ≤ limk∈KFk(x

∗) ≤ F (x∗).

Hence accumulation point of subsequence {xkn}∞n=1 is an optimal solution x∗ with probability one.

We have now proved that the SD-QDEV algorithm will generate an optimal solution with prob-

ability one. Next we need to show that with probability one, there exists at least one optimal

accumulation point of the sequence of incumbents {x̄k}. We will use Theorems B.1.3 and B.1.4

along with the incumbent test used in step 3 of SD-QDEV algorithm to prove this result. We begin

by noting that for all k,

(1− λε1)c>x̄k + λε1ψ̄
k + αkik + βkikx ≤ Fk(x̄k) ≤ (1− λε1)c>x̄k + λε1ψ̄

k + +
1

k

k∑
t=1

h(x̄k, ωt).

Since h(x, ω) is continuous in x for all ω ∈ Ω, if {x̄kn}∞n=1 is a subsequence such that x̄kn → x̄,

h(x̄kn , ωt)→ h(x̄, ωt) for all t. Thus,
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limn→∞(1− λε1)c>x̄kn + λε1ψ̄
kn + αknik + βkniknx ≤ limn→∞Fkn(x̄kn)

≤ limn→∞Fkn(x̄kn)

≤ limn→∞c
>x̄kn + λε1ψ̄

kn +
1

kn

kn∑
t=1

h(x̄kn , ωt).

With probability one, both the upper and lower limits described above are F (x̄) (please see Theo-

rem B.1.3). Thus, it follows that

limn→∞Fkn(x̄kn) = F (x̄).

Similarly, if {x̄kn}∞n=1 → x̄, then the nature of the update mechanism described in step 2 of

algorithm and Theorem B.1.4 ensures that

limn→∞Fkn+1(x̄kn) = F (x̄).

The above results can be summarized and formerly stated in the following corollary.

COROLLARY B.1.6. Let {x̄k} denote the sequence of incumbent solutions, and let {x̄kn}∞n=1

be an infinite subsequence such that {x̄kn} → x̄. If the assumptions (A1)-(A4) hold, then with

probability one

limn→∞Fkn(x̄kn) = limn→∞Fkn+1(x̄kn) = F (x̄).

To establish that an optimal accumulation point of the incumbent sequence exists, next we explore

the implication of the incumbent test described in step 3 of the algorithm.
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LEMMA B.1.7. Suppose that assumption A1-A4 hold. Let θk = Fk−1(xk)− Fk−1(x̄k−1), and let

{kn}n∈N represent the sequence of iterations at which the incumbent is changed. If N is finite,

then limk→∞θ
k = 0, with probability one. Otherwise, limm→∞

1
m

∑m
n=1 θ

kn = 0 with probability

one.

Proof. By definition, θk = Fk−1(xk)− Fk−1(x̄k−1) ≤ 0 for all k. If N is a finite set, there exist x̄

and K <∞ such that x̄k = x̄ for all k ≥ K and thus

Fk(x
k)− Fk(x̄) ≥ δ[Fk−1(xk)− Fk−1(x̄)] = δθ ∀k ≥ K.

By Theorem B.1.4 and Corollary B.1.6, there exist a subsequence indexed by set K such that

limk∈Kx
k = x̂

limk∈KFk(x
k) = f(x̂), limk∈KFk(x̄) = f(x̄),

limk∈KFk−1(xk) = f(x̂), limk∈KFk−1(x̄) = f(x̄),

with probability one. Thus,

limk∈K{Fk(xk)− Fk(x̄)} ≥ δ[limk∈K{Fk−1(xk)− Fk−1(x̄)}]

⇒ F (x̂)− F (x̄) ≥ δ[F (x̂)− F (x̄)]

= limk∈K δθk,

with probability one. Now since δ ∈ (0, 1) and θk ≤ 0 for all k, it follows that F (x̂) − F (x̄) = 0
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and thus limk∈Kδθ
k ≤ 0, with probability one. Now suppose N is not a finite set. By hypothesis,

Fkn(xkn)− Fkn(x̄kn−1) < δ[Fkn−1(xkn)− Fkn−1(x̄kn−1)] = δθkn ≤ 0 ∀n.

By definition of the subsequence {kn}, we note that x̄kn−1 = x̄kn−1 . Therefore

Fkn(x̄kn)− Fkn(x̄kn−1) ≤ δθkn ≤ 0 ∀n.

Thus,

1

m

m∑
n=1

{Fkn(x̄kn)− Fkn(x̄kn−1)} ≤ δ

m

m∑
n=1

θkn ≤ 0 ∀m

⇒ 1

m
{(
m−1∑
n=1

Fkn(x̄kn)− Fkn(x̄kn−1)) + (Fkm(x̄km)− Fk1(x̄k0))}

≤ δ

m

m∑
n=1

θkn ≤ 0 ∀m.

Assumptions (A1)-(A4) ensure that there exist M <∞, such that

|Fkm(x̄km)− Fk1(x̄k0)| < M ∀m.

Thus, since x̄kn = x̄kn+1−1, the left hand side converges to zero with probability one as m ap-

proaches∞. Thus,

limm→∞
1

m

m∑
n=1

θkn = 0.

THEOREM B.1.8. Suppose that assumptions A1-A4 are satisfied. Let {x̄k}∞k=1 represent the se-

quence of incumbents and letX∗ represent set of optimal solutions. Then there exist a subsequence
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{x̄k}k∈K for which every accumulation point is contained in X∗, with probability one.

Proof. Let {kn}n∈N represent the sequence of iterations at which the incumbent is changed. Note

that if N is infinite set,

limm→∞
1

m

m∑
n=1

θkn ≤ limn→∞θ
kn ≤ 0.

Thus, as a result of lemma B.1.7, whether N is finite or infinite, there exist a subsequence indexed

by set K such that

limk∈Kθ
k+1 = 0.

Note that

θk+1 = Fk(x
k+1)− Fk(x̄k) ≤ Fk(x

∗)− Fk(x̄k) ∀k ∈ K.

Thus as a result of Corollary 6.5, It follows that if x̄ is an accumulation point of {x̄k}k∈K, then

F (x̄) ≤ limk∈KFk(x
∗)

≤ c>x∗ + limk∈K
1

k

k∑
t=1

h(x∗, ωt)

≤ F (x∗),

and thus, x̄ ∈ X∗, with probability one.
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B.2 Convergence Proof for SD-CVaR

For convergence proof of SD-CvaR, We begin by proving that the variable ν(ω) for realization

ω used for computing the excess over the α-quantile ψ is always finite for x ∈ X and the iterate

ψk ∈ R used for estimating α-quantile belong to a compact set Ψ. Therefore, the assumption A2

holds for two-stage SLP with CVaR.

COROLLARY B.2.1. Suppose that assumptions A1-A2 hold, then for any x ∈ X and ω ∈ Ω, the

dispersion statistic for CVaR E[ν(ω̃)] <∞.

Proof. By assumption (A1), X ⊆ Rn1
+ is a compact set and from Equation (3.1) we have cost

vector c ∈ Rn1. Therefore the elements of set {c>xk}∞k=1 will always be finite.

From assumption (A2), for any given x ∈ X we have E[f(x, ω̃)] < ∞. Hence from Equation

(3.2), for any ω ∈ Ω, we have q>y(ω) <∞.

Since α-quantile ψ ∈ R, from Proposition 3.4.3 we have

− c>xk − q>y(ω) + ν(ω) ≥ ψ ∀ω ∈ Ω. (B.12)

Hence, we have E[ν(ω̃)] <∞.

In the following statements for denoting limits we use lim, for denoting upper limits and lower

limits we use lim and lim respectively. The functions hk(x, ω) and h(x, ω) are defined as follows:

hk(x, ω) = max {(π)>[r(ωk)− T (ωk)xk] + φ[c>x− ψ] |π ∈ V k, φ ∈ Uk},

h(x, ω) = max {(π)>[r(ωk) − T (ωk)xk] + φ[c>x − ψ] |π ∈ V, φ ∈ U}, where set V and U

are collections of all dual vertices of the subproblem.

LEMMA B.2.2. Suppose that assumptions A1-A2 hold, then the sequence {hk}∞k=1 of functions

hk(x, ω), converges uniformly on X × Ω.

Proof. Note that the set V k ⊆ V k+1 ⊆ V and set Uk ⊆ Uk+1 ⊆ U , This implies that hk(x, ω) ≤

hk+1(x, ω) ≤ h(x, ω) for all k and for all (x, ω) ∈ X ×Ω. Since {hk}∞k=1 increases monotonically
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and is bounded from above by the function h(x, ω), it follows that {hk}∞k=1 converges pointwise to

some function g(x, ω) ≤ h(x, ω). Since set V k ⊆ V k+1 ⊆ V and set Uk ⊆ Uk+1 ⊆ U for all k,

V̄ = limk→∞Vk ⊆ V, (B.13)

and

Ū = limk→∞Uk ⊆ U. (B.14)

By assumption (A2) and Corollary B.2.1, V and U are sets of finite elements and so are V̄ and Ū ,

hence

g(x, ω) = limk→∞hk(x, ω)

= limk→∞{Max {π>[r(ω)− T (ω)x] + φ[c>x− ψ]|π ∈ Vk, φ ∈ Uk}}

= Max {π>[r(ω)− T (ω)x] + φ[c>x− ψ]|π ∈ V̄ , φ ∈ Ū}. (B.15)

Therefore, from the statements (B.13), (B.14) and (B.15), we can conclude that {hk}∞k=1 converges

uniformly to the function g(x, ω), since {hk}∞k=1 is a monotone sequence of continuous functions

and X × Ω is a compact set.

Let Ψ be the set of iterates ψk ∈ R used for estimating α-quantile. Since, Ψ is a closed

and bounded set by Heine-Borel theorem Ψ is also a compact set. Therefore every sequence that

belongs to Ψ will have a converging subsequence.

THEOREM B.2.3. Let {xkn}∞n=1 be an infinite subsequence of {xk}∞k=1. Suppose that assump-

tions A1-A4 hold and if xkn → x̂, then with probability one

1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψkn)→ E[h(x̂, ω̃)].

Proof. From the equation (4.18) and step 2 of the SD-CvaR algorithm, we know that
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hkn(xkn , ωt) =πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψkn)

and

1

kn

kn∑
t=1

hkn(xkn , ωt) =
1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψkn).

By Lemma B.2.2, there exists a function g(x, ω) ≤ h(x, ω) such that {hkn}∞n=1 converges uni-

formly to g(x, ω). Thus, since we have

1

kn

kn∑
t=1

[hkn(xkn , ωt)− g(x̂, ωt)]→ 0 and
1

kn

kn∑
t=1

h(x, ωt)→ E[h(x, ω̃)],

it is sufficient to show that g(x̂, ωt) = h(x̂, ωt) with probability one. Since h(x, ω) is a continuous

function and {hkn}∞n=1 is a uniformly convergent sequence of continuous function, for every ε > 0

there exist δ > 0 and N <∞ such that

|(x̂, ωt)− (x, ω)| < δ ⇒|h(x̂, ωt)− h(x, ω)| < ε

3
∀n ≥ N

and

|hkn(x̂, ωt)−hkn(x, ω)| < ε

3
∀n ≥ N.

Thus, since xkn → x̂, for every ε > 0 there exist a further subsequence {(xk′n , ωk′n)}∞n=1 and

K <∞ such that

|h(x̂, ωt)−h(x̂, ωk
′
n)| < ε/3,

|h(x̂, ωk
′
n)−h(xk

′
n , ωk

′
n)| < ε/3

and

|hk′n(xk
′
n , ωk

′
n)−hk′n(xk

′
n , ωt)| < ε/3,
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for all k′n ≥ K. By construction we have hk′n(xk
′
n , ωk

′
n) = h(xk

′
n , ωk

′
n). Thus, for every ε > 0 there

exist a subsequence {xk′n}∞n=1 and K <∞ such that

|h(x̂, ωt)− hk′n(xk
′
n , ωt)| ≤ |h(x̂, ωt)− h(x̂, ωk

′
n)|

+ |h(x̂, ωk
′
n)− h(xk

′
n , ωk

′
n)|

+ |h(xk
′
n , ωk

′
n)− hk′n(xk

′
n , ωt)| < ε,

for all k′n ≥ K. Hence, by the uniqueness of the sequential limit, it follows that g(x̂, ωt) =

h(x̂, ωt). Therefore by probability one, we have

1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψkn)→ E[h(x̂, ω̃)].

Also since h(x, ωt) = argmax{π(r(ωt) − T (ωt)x) + φ(c>x − ψ)|π ∈ V, φ ∈ U}, V k ⊆ V , and

Uk ⊆ U ∀k, it follows that

c>x+ λψ +
1

kn

kn∑
t=1

h(x, ωt) ≥ c>x+ λψ +
1

kn

kn∑
t=1

πknt (r(ωt)− T (ωt)xkn) + φkn(c>xkn − ψkn)

= c>x+ λψ + αknkn + βknknx x ∈ X.

THEOREM B.2.4. Suppose that assumptions A1-A4 hold, then there exists a subsequence {xkn}∞n=1

of {xk}∞k=1, such that limn→∞[Fkn(xkn)− Fkn−1(xkn)] = 0, with probability one.

Proof. If assumption (A2) is satisfied, then for every ω ∈ Ω there exist M(ω) ∈ R+, such that

|h(x1, ω)−h(x2, ω)| ≤M(ω)||x1−x2|| for all x1, x2 ∈ X . Let ε > 0 be given, letM = E[M(ω)],

let r = ε
2M

, and let Br(x) denote an open ball of radius r centered at x. Then ∪x∈XBr(x) is an
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open cover of X . Since X is a compact set, there exist Nε ≤ ∞ and {xi}Nεi=1 ⊂ X such that

X ⊂ ∪Nεi=1Br(xi). Moreover, since {xk} ⊂ X , it follows that each iterate is contained in one or

more of the open balls {Br(xi)}Nεi=1. Thus, there exist two sequence of indices, {kn} and {tn} such

that

0 < kn − tn ≤ Nε + 1 and ||xkn − xtn|| < r.

By assumption (A1), we know that X is a compact set. Thus, without loss of generality we may

assume that

limn→∞x
kn = x̂k and limn→∞x

tn = x̂t,

where x̂k and x̂t are accumulation points of sequences xkn and xtn respectively.

Now, in iteration k the cutting plane generated during iteration t appears as (please refer to step

2(d) of the SD-CVaR algorithm)

αkt + βkt x =
t

k
(αtt + βttx) +

k − t
k

L. (B.16)

As per the step 2 of algorithm we have

ηk−1(xk) = Max{αk−1
t + βk−1

t xk|t = 1, ..., k − 1}. (B.17)

Therefore, using equation (B.16) we can rewrite equation (B.17) as follows

ηk−1(xk) ≥ t

k − 1
(αtt + βttx

k) + (1− t

k − 1
)L ∀t = 1, ..., k − 1.
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Thus,

ηkn−1(xkn) ≥ tn
kn − 1

(αtntn + βtntnx
kn) + (1− tn

kn − 1
)L

=
tn

kn − 1
(αtntn + βtntnx

tn) +
tn

kn − 1
βtntn (xkn − xtn) + (1− tn

kn − 1
)L

=
tn

kn − 1
ηtn(xtn) +

tn
kn − 1

βtntn (xkn − xtn) + (1− tn
kn − 1

)L, (B.18)

where the last equality follows the fact that ηk(xk) = αkk+β
k
kx

k for all k. Furthermore by definition,

Fk(x
k)− Fk−1(xk) = c>xk + λψk + ηk(x

k)− c>xk − λψk +−ηk−1(xk)

= ηk(x
k)− ηk−1(xk). (B.19)

Using equations (B.18) and (B.19) we have

Fkn(xkn)− Fkn−1(xkn) ≤ ηkn(xkn)− tn
kn − 1

(ηtn(xtn) + βtntn (xkn − xtn))− (1− tn
kn − 1

)L.

By construction,

0 < kn − tn ≤ Nε + 1 <∞,

we have
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||βtntn || ≤
1

tn

tn∑
t=1

M(ωt),

limn→∞
tn

kn − 1
= 1 and

limn→∞(1− tn
kn − 1

)L = 0.

Moreover, Theorem B.2.3 ensures that ηkn(xkn) → E[h(x̂k, ω̃)] and ηtn(xtN ) → E[h(x̂t, ω̃)] with

probability one. It follows that

0 ≤ limk→∞Fk(x
k)− Fk−1(xk)

≤ limn→∞Fkn(xkn)− Fkn−1(xkn)

≤ limn→∞ηkn(xkn)− tn
kn − 1

(ηtn(xtn) + ||βtntn ||||x
kn − xtn||)− (1− tn

kn − 1
)L.

≤ limn→∞ηkn(xkn)− tn
kn − 1

(ηtn(xtn) +
1

tn

tn∑
t=1

M(ωt)||xkn − xtn||)− (1− tn
kn − 1

)L.

= E[h(x̂k, ω̃)]− E[h(x̂t, ω̃)] +M ||x̂k − x̂t||

≤ |E[h(x̂k, ω̃)]− E[h(x̂t, ω̃)]|+M ||x̂k − x̂t||

≤ 2M ||x̂k − x̂t||

≤ 2M(
ε

2M
)

= ε.

Thus, for every ε > 0, 0 ≤ limn→∞Fkn(xkn)− Fkn−1(xkn) ≤ ε and hence the result.

THEOREM B.2.5. There exist a subsequence {xkn}∞n=1 of {xk}∞k=1, such that every accumulation

point of {xkn}∞n=1 is an optimal solution x∗ with probability one.
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Proof. From Theorem B.2.3, we know that there exist subsequence {xkn}∞n=1 such that limn→∞hkn(xkn)−

hkn−1(x
kn) = 0. Let {xkn}n∈N be a subsequence such that limn∈Nx

kn = x̂. By assumption (A1)

we will always have accumulation point x̂ ∈ X thus for an optimal solution x∗ we have

F (x∗) ≤ F (x̂), (B.20)

where F (x) = c>x+ λψ + E[h(x, ω)], and also by construction we have

limk∈KFk(x
∗) ≤ c>x∗ + λψ∗ + E[h(x∗, ω)] = F (x∗). (B.21)

As per the step 4 of SD-CVaR algorithm we know that xk minimizes Fk−1, therefore

Fk−1(xk) ≤ Fk−1(x∗). (B.22)

Now using Theorem B.2.3 and result limn∈NFkn(xkn) = F (x̂) we get limn∈NFkn−1(x
kn)

= F (x̂), with probability one. Combining equations (B.20), (B.21) and (B.22) we have

F (x∗) ≤ F (x̂) = limn∈NFkn−1(x
kn) ≤ limk∈KFk(x

∗) ≤ F (x∗).

Hence accumulation point of subsequence {xkn}∞n=1 is an optimal solution x∗ with probability one.

We have now proved that the SD-CVaR algorithm will generate an optimal solution with prob-

ability one. Next we need to show that with probability one, there exists at least one optimal

accumulation point of the sequence of incumbents {x̄k}. We will use Theorems B.2.3 and B.2.4

along with the incumbent test used in step 3 of algorithm to prove this result. We begin by noting
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that for all k,

c>x̄k + λψ̄k + αkik + βkikx ≤ Fk(x̄k) ≤ c>x̄k + λψ̄k +
1

k

k∑
t=1

h(x̄k, ωt).

Since h(x, ω) is continuous in x for all ω ∈ Ω, if {x̄kn}∞n=1 is a subsequence such that x̄kn → x̄,

h(x̄kn , ωt)→ h(x̄, ωt) for all t. Thus,

limn→∞c
>x̄kn + λψ̄kn + αknik + βkniknx ≤ limn→∞Fkn(x̄kn)

≤ limn→∞Fkn(x̄kn)

≤ limn→∞c
>x̄kn + λψ̄kn +

1

kn

kn∑
t=1

h(x̄kn , ωt).

With probability one, both the upper and lower limits described above are F (x̄) (please see Theo-

rem B.2.3). Thus, it follows that

limn→∞Fkn(x̄kn) = F (x̄).

Similarly, if {x̄kn}∞n=1 → x̄, then the nature of the update mechanism described in step 2 of SD-

CvaR algorithm and Theorem B.2.4 ensures that

limn→∞Fkn+1(x̄kn) = F (x̄).

The above results can be summarized and formerly stated in the following corollary.

COROLLARY B.2.6. Let {x̄k} denote the sequence of incumbent solutions, and let {x̄kn}∞n=1

be an infinite subsequence such that {x̄kn} → x̄. If the assumptions (A1)-(A4) hold, then with

probability one
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limn→∞Fkn(x̄kn) = limn→∞Fkn+1(x̄kn) = F (x̄).

To establish that an optimal accumulation point of the incumbent sequence exists, next we explore

the implication of the incumbent test described in step 3 of the algorithm.

LEMMA B.2.7. Suppose that assumption A1-A4 hold. Let θk = Fk−1(xk)− Fk−1(x̄k−1), and let

{kn}n∈N represent the sequence of iterations at which the incumbent is changed. If N is finite,

then limk→∞θ
k = 0, with probability one. Otherwise, limm→∞

1
m

∑m
n=1 θ

kn = 0 with probability

one.

Proof. By definition, θk = Fk−1(xk)− Fk−1(x̄k−1) ≤ 0 for all k. If N is a finite set, there exist x̄

and K <∞ such that x̄k = x̄ for all k ≥ K and thus

Fk(x
k)− Fk(x̄) ≥ δ[Fk−1(xk)− Fk−1(x̄)] = δθ ∀k ≥ K.

By Theorem ?? and Corollary B.2.6, there exist a subsequence indexed by set K such that

limk∈Kx
k = x̂

limk∈KFk(x
k) = f(x̂), limk∈KFk(x̄) = f(x̄),

limk∈KFk−1(xk) = f(x̂), limk∈KFk−1(x̄) = f(x̄),

with probability one. Thus,
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limk∈K{Fk(xk)− Fk(x̄)} ≥ δ[limk∈K{Fk−1(xk)− Fk−1(x̄)}]

⇒ F (x̂)− F (x̄) ≥ δ[F (x̂)− F (x̄)]

= limk∈K δθk,

with probability one. Now since δ ∈ (0, 1) and θk ≤ 0 for all k, it follows that F (x̂) − F (x̄) = 0

and thus limk∈Kδθ
k ≤ 0, with probability one. Now suppose N is not a finite set. By hypothesis,

Fkn(xkn)− Fkn(x̄kn−1) < δ[Fkn−1(xkn)− Fkn−1(x̄kn−1)] = δθkn ≤ 0 ∀n.

By definition of the subsequence {kn}, we note that x̄kn−1 = x̄kn−1 . Therefore

Fkn(x̄kn)− Fkn(x̄kn−1) ≤ δθkn ≤ 0 ∀n.

Thus,

1

m

m∑
n=1

{Fkn(x̄kn)− Fkn(x̄kn−1)} ≤ δ

m

m∑
n=1

θkn ≤ 0 ∀m

⇒ 1

m
{(
m−1∑
n=1

Fkn(x̄kn)− Fkn(x̄kn−1)) + (Fkm(x̄km)− Fk1(x̄k0))}

≤ δ

m

m∑
n=1

θkn ≤ 0 ∀m.

Assumptions (A1)-(A4) ensure that there exist M <∞, such that

|Fkm(x̄km)− Fk1(x̄k0)| < M ∀m.

Thus, since x̄kn = x̄kn+1−1, the left hand side converges to zero with probability one as m ap-

proaches∞. Thus,
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limm→∞
1

m

m∑
n=1

θkn = 0.

THEOREM B.2.8. Suppose that assumptions A1-A4 are satisfied. Let {x̄k}∞k=1 represent the se-

quence of incumbents and letX∗ represent set of optimal solutions. Then there exist a subsequence

{x̄k}k∈K for which every accumulation point is contained in X∗, with probability one.

Proof. Let {kn}n∈N represent the sequence of iterations at which the incumbent is changed. Note

that if N is infinite set,

limm→∞
1

m

m∑
n=1

θkn ≤ limn→∞θ
kn ≤ 0.

Thus, as a result of lemma B.2.7, whether N is finite or infinite, there exist a subsequence indexed

by set K such that

limk∈Kθ
k+1 = 0.

Note that

θk+1 = Fk(x
k+1)− Fk(x̄k) ≤ Fk(x

∗)− Fk(x̄k) ∀k ∈ K.

Thus as a result of Corollary B.2.6, It follows that if x̄ is an accumulation point of {x̄k}k∈K, then
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F (x̄) ≤ limk∈KFk(x
∗)

≤ c>x∗ + limk∈K
1

k

k∑
t=1

h(x∗, ωt)

≤ F (x∗),

and thus, x̄ ∈ X∗, with probability one.
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APPENDIX C

LTHS: GRAPHS

C.1 MR-MSLP with EE

(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure C.1: Results for MR-MSLP with EE for LTHS (λ = 0.25)
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure C.2: Results for MR-MSLP with EE for LTHS (λ = 0.5)
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure C.3: Results for MR-MSLP with EE for LTHS (λ = 1)
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C.2 MR-MSLP with QDEV

(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure C.4: Results for MR-MSLP with QDEV for LTHS (λ = 0.25)
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure C.5: Results for MR-MSLP with QDEV for LTHS (λ = 0.5)
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure C.6: Results for MR-MSLP with QDEV for LTHS (λ = 1)
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C.3 MR-MSLP with CVaR

(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure C.7: Results for MR-MSLP with CVaR for LTHS (λ = 0.25)
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure C.8: Results for MR-MSLP with CVaR for LTHS (λ = 0.5)
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

(e) Cost of operation per stage

Figure C.9: Results for MR-MSLP with CVaR for LTHS (λ = 1)
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C.4 Impact of Risk Measures

(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

Figure C.10: Impact of Risk Measures on Extreme Scenarios (λ = 0.25)
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

Figure C.11: Impact of Risk Measures on Extreme Scenarios (λ = 0.5)
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(a) Reservoir per stage (b) Power generation from p1 per stage

(c) Power generation from p2 per stage (d) Power generation γq per stage

Figure C.12: Impact of Risk Measures on Extreme Scenarios
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APPENDIX D

PROOF FOR PROPERTIES OF RISK MEASURES

D.1 Expected Excess

LEMMA D.1.1. Risk measure expected excess does not satisfy the property of translation invari-

ance.

Proof. For a ∈ R , random variable S ∈ F and target ψ. The risk measure expected excess ρ is

defined as follows:

ρ(a+ S) = E[max{a+ S − ψ, 0}]

= a+ E[max{S − ψ,−a}]

6= a+ E[max{S − ψ, 0}], ∀ a 6= 0.

LEMMA D.1.2. Risk measure expected excess does not satisfy the property of Positive Homo-

geneity.

Proof. For c > 0, random variable S ∈ F and target ψ, risk measure expected excess ρ is defined

as follows:

ρ(cS) = E[max{cS − ψ, 0}]

6= cE[max{S − ψ, 0}], ∀ c 6= 1.
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LEMMA D.1.3. Risk measure expected excess satisfies the property of monotonicity.

Proof. Let the target be ψ and random variables S1 ∈ F and S2 ∈ F , be such that S1 ≤ S2 ⇒

E[S1 − ψ] ≤ E[S2 − ψ]. Then risk measure expected excess ρ is defined as:

ρ(S1) = E[max{S1 − ψ, 0}]

≤ E[max{S2 − ψ, 0}] = ρ(S2).

LEMMA D.1.4. Risk measure expected excess satisfies the property of convexity.

Proof. For random variables S1 ∈ F and S2 ∈ F , λ ∈ [0, 1] and target ψ, the risk measure

expected excess ρ is defined as:

ρ(λS1 + (1− λ)S2) = E[max{λS1 + (1− λ)S2 − ψ, 0}]

= E[max{λS1 − λψ + (1− λ)S2 − (1− λ)ψ, 0}]

= E[max{λ(S1 − ψ) + (1− λ)(S2 − ψ), 0}]

≤ E[λmax{S1 − ψ, 0}] + (1− λ)max{S2 − ψ, 0}].

≤ λE[max{S1 − ψ, 0}] + (1− λ)E[max{S2 − ψ, 0}].

D.2 Quantile Deviation

LEMMA D.2.1. Risk measure quantile deviation does not satisfy the property of translation in-

variance.

Proof. For a ∈ R ,S ∈ F as random variable and ψ ∈ R as quantile, the risk measure quantile

deviation ρ is defined as:
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ρ(a+ S) = Min{E[ε1max{ψ − (S + a), 0}+ ε2max{S + a− ψ, 0}]}

= Min{E[ε1max{(ψ − a)− S, 0}+ ε2max{S − (ψ − a), 0}]}

Let ψ − a = ψ′ ⇒

= Min{E[ε1max{ψ′ − S, 0}+ ε2max{S − ψ′, 0}]}

= ρ(S)

6= a+ ρ(S), ∀ a 6= 0.

LEMMA D.2.2. Risk measure quantile deviation satisfies the property of positive homogeneity.

Proof. For c > 0, S ∈ F as random variable and ψ ∈ R as quantile, the risk measure quantile

deviation ρ is defined as:

ρ(cS) = Min{E[ε1max{ψ − cS, 0}+ ε2max{cS − ψ, 0}]}

= cMin{E[ε1max{
ψ

c
− S, 0}+ ε2max{S −

ψ

c
, 0}]}

Let
ψ

c
= ψ′ ⇒

= cMin{E[ε1max{ψ′ − S, 0}+ ε2max{S − ψ′, 0}]}

= cρ(S).

LEMMA D.2.3. Risk measure quantile deviation does not satisfy the property of monotonicity.

Proof. Let S1, S2 ∈ F be uniform random variables, such that S1 ≤ S2. let ψ ∈ R be the quantile.

183



Then the risk measure quantile deviation ρ is defined as:

ρ(S1)− ρ(S2) = Min{E[ε1max{ψ − S1, 0}+ ε2max{S1 − ψ, 0}]}

−Min{E[ε1max{ψ − S2, 0}+ ε2max{S2 − ψ, 0}]}.

Let S1 and S2 be uniformly distributed random variables, such that S1 ∈ {1, 2} and S2 ∈ {2, 3}.

Let α = 0.1, therefore we have ε1 = 0.9 and ε2 = 0.1. Then for risk measure ρ as quantile

deviation,

ρ(S1)− ρ(S2) = Min{E[ε1max{ψ − S1, 0}+ ε2max{S1 − ψ, 0}]}

−Min{E[ε1max{ψ − S2, 0}+ ε2max{S2 − ψ, 0}]}

= 0.5− 0.25

= 0.25 ≥ 0.

LEMMA D.2.4. Risk measure quantile deviation satisfies the property of convexity.

Proof. Let S1, S2 ∈ F be random variables, λ ∈ [0, 1] and ψ ∈ R be the qantile, then the risk

measure quantile deviation ρ is defined as:
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ρ(λS1 + (1− λ)S2) = Min{E[ε1max{ψ − (λS1 + (1− λ)S2, 0}

+ ε2max{λS1 + (1− λ)S2 − ψ, 0}]}

= Min{E[ε1max{λψ + (1− λ)ψ − (λS1 + (1− λ)S2, 0}

+ ε2max{λS1 + (1− λ)S2 − λψ − (1− λ)ψ, 0}]}

= Min{E[ε1max{λψ − λS1 + (1− λ)ψ − (1− λ)S2), 0}

+ ε2max{λS1 − λψ + (1− λ)S2 − (1− λ)ψ, 0}]}

≤ Min{E[ε1max{λψ − λS1, 0}+ ε1max{(1− λ)ψ − (1− λ)S2), 0}

+ ε2max{λS1 − λψ, 0}+ ε2max{(1− λ)S2 − (1− λ)ψ, 0}]}

≤ Min{E[ε1max{λψ − λS1, 0}+ ε2max{λS1 − λψ, 0}]}

+ Min{E[ε1max{(1− λ)ψ − (1− λ)S2), 0}

+ ε2max{(1− λ)S2 − (1− λ)ψ, 0}]}

≤ λMin{E[ε1max{ψ − S1, 0}+ ε2max{S1 − ψ, 0}]}

+ (1− λ)Min{E[ε1max{ψ − S2), 0}+ ε2max{S2 − ψ, 0}]}

≤ λρ(S1) + (1− λ)ρ(S2).

D.3 Conditional Value-at-Risk

LEMMA D.3.1. Risk measure CVaR satisfies the property of translation invariance.

Proof. For a ∈ R ,S ∈ F as random variable and ψ ∈ R as quantile, the risk measure conditional

value-at-risk ρ is defined as:
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ρ(a+ S) = Min{ψ +
1

1− α
E[max{S + a− ψ, 0}]}

= Min{ψ +
1

1− α
E[max{S − (ψ − a), 0}]}

Let ψ′ = ψ − a⇒

= Min{ψ′ + a+
1

1− α
E[max{S − ψ′, 0}]}

= a+ Min{ψ′ + 1

1− α
E[max{S − ψ′, 0}]}

= a+ ρ(S).

LEMMA D.3.2. Risk measure CVaR satisfies the property of positive homogeneity.

Proof. For c > 0, S ∈ F as random variable and ψ as quantile, the risk measure conditional

value-at-risk ρ is defined as:

ρ(cS) = Min{ψ +
1

1− α
E[max{cS − ψ, 0}]}

= c
(
Min{ψ

c
+

1

1− α
E[max{S − ψ

c
, 0}]}

)
Let ψ′ =

ψ

c
⇒

= Min{ψ′ + 1

1− α
E[max{S − ψ′, 0}]}

= cρ(S).

LEMMA D.3.3. Risk measure CVaR satisfies the property of monotonicity.

Proof. Let S1 ∈ F ans S2 ∈ F be random variables, such that S1 ≤ S2. Therefore for a quantile

ψ ∈ R, we have E[max{S1 − ψ, 0}] ≤ E[max{S2 − ψ, 0}]. Then the risk measure conditional
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value-at-risk ρ is defined as:

ρ(S1) = Min{ψ +
1

1− α
E[max{S1 − ψ, 0}]}

≤ Min{ψ +
1

1− α
E[max{S2 − ψ, 0}]}

≤ ρ(S2).

LEMMA D.3.4. Risk measure CVaR satisfies the property of convexity.

Proof. Let S1, S2 ∈ F be random variables, λ ∈ [0, 1] and ψ ∈ R be the quantile, then the risk

measure conditional value-at-risk ρ is defined as:

ρ(λS1 + (1− λ)S2) = Min{ψ +
1

1− α
E[max{λS1 + (1− λ)S2 − ψ, 0}]}

= Min{ψ +
1

1− α
E[max{λS1 − λψ + (1− λ)S2 − (1− λ)ψ, 0}]}

≤ Min{λψ +
1

1− α
E[max{λS1 − λψ, 0}]

+ (1− λ)ψ +
1

1− α
E[max{(1− λ)S2 − (1− λ)ψ, 0}]}

≤ λ[Min{ψ +
1

1− α
E[max{S1 − ψ, 0}]}]

+ (1− λ)[Min{ψ +
1

1− α
E[max{S2 − ψ, 0}]}]

≤ λρ(S1) + (1− λ)ρ(S2).
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